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Abstract—Environmental enrichment (EE) is a condition characterized by its complexity regarding social contact,
exposure to novelty, tactile stimuli and voluntary exercise, also is considered as a eustress model. The impact of
EE on brain physiology and behavioral outcomes may be at least partly underpinned by mechanisms involving
the modulation of the brain-derived neurotrophic factor (BDNF), but the connection between specific Bdnf exon
expression and their epigenetic regulation remain poorly understood. This study aimed to dissect the transcrip-
tional and epigenetic regulatory effect of 54-day exposure to EE on BDNF by analysing individual BDNF exons
mRNA expression and the DNA methylation profile of a key transcriptional regulator of the Bdnf gene, exon IV,
in the prefrontal cortex (PFC) of C57BL/6 male mice (sample size = 33). Bdnf exons II, IV, VI and IX mRNA expres-
sion were upregulated and methylation levels at two CpG sites of exon IV were reduced in the PFC of EE mice. As
deficit in exon IV expression has also been causally implicated in stress-related psychopathologies, we also
assessed anxiety-like behavior and plasma corticosterone levels in these mice to determine any potential corre-
lation. However, no changes were observed in EE mice. The findings may suggest an EE-induced epigenetic con-
trol of BDNF exon expression via a mechanism involving exon IV methylation. The findings of this study
contribute to the current literature by dissecting the Bdnf gene topology in the PFC where transcriptional and epi-
genetic regulatory effect of EE takes place.� 2023 IBRO. Published by Elsevier Ltd. All rights reserved.ted
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INTRODUCTION

Environmental enrichment (EE) is a housing condition

equipped with a variety of objects, running wheels and

social interaction. The constant offer of novelty, social

contact and different activities are key factors of

enrichment that have rewarding effects and as such

may also induce ‘‘eustress” (Nithianantharajah and

Hannan, 2006). These stimuli bring benefits to animals

such as improvement in mood and sensory, cognitive

and motor functions. (Nithianantharajah and Hannan,

2006; Simpson and Kelly, 2011). The dynamic and com-

plex characteristics of EE are able to stimulate learning,

exploratory behavior, social interaction and can elicit anx-

iolytic effects (van Praag et al., 2000; Sale et al., 2014;
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U

Rae et al., 2018). Indeed, EE is known to reverse

stress-related behaviors (Francis et al., 2002) and to

increase social interaction (Rae et al., 2018), although

enhanced aggressiveness and anxiety behaviors after

EE have also been reported (McQuaid et al., 2012;

McQuaid et al., 2013).

One of the key molecular markers involved in the

aforementioned effects of EE is the brain-derived

neurotrophic factor (BDNF) which is a small, secreted

protein, member of the neurotrophin family of growth

factors (Leibrock et al., 1989). It is cleaved from its pro-

form into its mature form via highly regulated molecular

mechanisms. The mature form is the biologically active

form implicated in neural plasticity and neurogenesis

(Rogers et al., 2019). Some studies have demonstrated

an inherent ability of EE to increase BDNF levels in sev-

eral brain regions (Young et al., 1999; Angelucci et al.,

2009). Enhanced BDNF levels in the cortex, hippocam-

pus, basal forebrain and hindbrain of enriched rats have

pivotal roles in numerous protective effects of EE (Ickes

et al., 2000). For instance, increased glial- and brain-

derived neurotrophic factor in the hippocampus is thought
rontal Cortex: Implications for an Epigenetically Controlled Mechanism. Neuroscience (2023), https://doi.
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to provide resilience to hippocampal injuries (Young et al.,

1999) and improvement in memory and learning pro-

cesses (Hirase and Shinohara, 2014). Also, EE has been

shown to increase ramification, length, and number of

dendritic spines (Greenough, Volkmar and Juraska,

1973; Connor, Wang and Diamond, 1982; Leggio et al.,

2005), leading to hippocampal neurogenesis

(Kempermann, Kuhn and Gage, 1997; van Praag,

Kempermann and Gage, 2000) that contributes to the

beneficial effects of EE on cognition. The impact of EE

on anxiety behavior in rats and cognitive enhancement

in humans requires the activation of hippocampal BDNF

signalling (Janke et al., 2015; Hakansson et al., 2017).

Despite the increasing evidence for the involvement of

hippocampal BDNF on the EE-related effects (Kuzumaki

et al., 2011), there is scarce evidence that addresses

the role of the prefrontal cortex (PFC) in this context.

The role of the PFC on emotional and cognitive

behavior has been widely studied (Friedman and

Robbins, 2022). It is primarily involved in decision making

and emotional regulation by exerting top-down inhibitory

control over regions involved in reward and emotion

(Miller and Cohen, 2001; Dixon et al., 2017). In this con-

text, the exon IV of the Bdnf gene is known to have an

important role in the modulation of inhibitory PFC func-

tions in mice as demonstrated in Sakata et al (2009) using

a PFC promoter IV-specific knockout mice.

Bdnf gene contains a single coding exon (exon IX)

and eight non-coding exons in rodents (Nair and Wong-

Riley, 2016), each of which can be connected to the cod-

ing exon and form at least nine different transcripts (Liu

et al., 2006). Interest has been directed to the epigenetic

regulation at the Bdnf promoters of the exons and the

resulting enduring changes of their expression, which

are influenced by environmental factors since early life

(Roth et al., 2009). In fact, rats exposed to voluntary exer-

cise – a key EE factor - showed hypomethylation of Bdnf

promoter IV in the hippocampus resulting in enhanced

mRNA and BDNF protein expression (Gomez-Pinilla

et al., 2011), reinforcing the impact of EE on the regula-

tion of Bdnf promoters which can influence BDNF expres-

sion and as a result, potentially behaviors.

Of all these exons, Bdnf exon IV promotor methylation

has gained interest as it controls BDNF expression

(Zheleznyakova et al., 2016). Bdnf exon IV is involved in

mechanisms of stress and pathophysiology of depression

(Sakata et al., 2010) and EE seems to be particularly ben-

eficial in reversing depression-like behavior in mice with

reduced exon IV expression (Jha et al., 2016; Dong

et al., 2018). Interestingly, patients with major depression

disorder with hypomethylation of a specific CpG site in the

Bdnf exon IV showed lower response to antidepressants

(Tadic et al., 2014), clearly highlighting the importance

of Bdnf exon IV epigenetic modification on antidepressant

efficacy. In agreement, a study in patients with major

depressive disorder (Lopez et al., 2013) showed

increased expression in peripheral BdnfmRNA in patients

classified as responders to chronic citalopram treatment,

accompanied by a decrease in H3K27me3 (trimethylation

at lysine 27 of histone H3) at promotor IV of Bdnf gene

after the treatment with the antidepressant. As such, exon
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IV methylation of the Bdnf gene has gained ground as a

biological marker to predict responses to antidepressants

(Lieb et al., 2018).

Epigenetic changes are mechanisms which

organisms can adapt in accordance with environmental

stimuli, prompting to subsequent phenotypical

alterations and known to contribute to the vulnerability

or resistance in several brain disorders (Sweatt, 2009).

DNA methylation is an epigenetic mechanism used by

cells to control gene expression. Several mechanisms

exist to control gene expression in eukaryotes, such as

DNA methylation in the promoter region, which usually

promotes transcription silencing (Brenet et al., 2011)

whereas histone modifications, like DNA acetylation, gen-

erally provide a permissive environment enhancing the

gene transcription (Moore et al., 2013). The influence of

DNA methylation on gene expression is generally linked

to two main mechanisms. DNA methylation may suppress

gene expression preventing transcription factors to bind to

their respective sites in promoters if a methyl-cytosine is

present (Moore et al., 2013). Alternatively, transcription

can be repressed with the help of proteins that binds to

methylated DNA, the Methyl CpG-binding proteins.

(Tate and Bird, 1993).

Moreover, environmental stimuli have been shown to

alter Bdnf methylation profile with clear consequences

on its expression. For instance, traumatic experiences,

such as continuous psychosocial stress, was shown to

induce Bdnf hypermethylation in exon IV and

concomitant reduction in its expression in the dorsal

hippocampal CA1 region of adult rats (Roth et al.,

2011). Similarly, adult rats exposed to stress (maternal

maltreatment) during early life (postnatal days 1–7) exhib-

ited significant methylation at both exons IV and IX (Roth

et al., 2009) demonstrating a sensitivity of exon IV on

methylation induced by stressful experiences.

With respect to EE, there is evidence that this strategy

can promote global or specific loci changes in DNA

methylation which involve modifications in the

expression of DNA methyltransferases in human and

rodents (Barrès et al., 2012; Griñán-Ferré et al., 2016).

Most of the studies describing the involvement of Bdnf
gene methylation in EE-related mechanisms have been

observed in the hippocampus. For instance, Morse et al

(2015) concluded that EE exposure for 5 weeks 1 h-per

day reversed histone methylation changes in the hip-

pocampus of aged rats in an object learning test, and this

was concomitant with an increase in total Bdnf mRNA

levels. Similarly, Zajac et al, (2010) found increased total

Bdnf gene expression in male mice exposed to EE

(4 weeks exposure, 1 h-per day, 3x/week) and

Kuzumaki et al, (2011) also showed BDNF mRNA upreg-

ulation in the hippocampus after 3–4 EE weeks. Even

though is stablished that adult hippocampal neurogenesis

can be enhanced by EE in the dentate gyrus (DG) (van

Praag, Kempermann and Gage, 2000) this mechanism

can be blocked in heterozygous knockout animais (Bdnf
+/�) like in Rossi et al, (2006) or even show no differential

expression of Bdnf in the DG but with the possibility to be

upregulated in other hippocampal regions (Zhang et al.,

2018). Other than hippocampus, knowledge regarding
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Fig. 1. Experimental design: the animals were kept in non-enriched

(NE) or enriched (EE) housing 24 h/day throughout the experiment

for 54 days. Arrow: blood sample collection, cross: elevated plus-

maze test.
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the effects of EE on epigenetic modulation of Bdnf gene in

the PFC is still scarce. Thus, the current study aimed to

dissect the Bdnf gene expression topology profile induced

by EE in the PFC and the epigenetic mechanism poten-

tially underlining these expression changes.

As such, we dissected the transcriptional and

epigenetic regulatory effect of long exposure to EE on

the PFC Bdnf gene by analysing individual exon gene

expression in the exons I, II, IV, VI and IX and DNA

methylation profile of exon IV of the Bdnf gene of

C57BL/6 mice. Given the role of exon IV on control of

emotional behaviour (Sakata et al., 2010; Chen et al.,

2011), we also assessed the effect of EE on anxiety like

behaviour and HPA activity. There is indeed a close link

between HPA activity and BDNF levels as demonstrated

by alterations of BDNF levels induced by corticosterone

administration in several brain regions (Schaaf et al.,

2000; Lin et al., 2022). Findings from these studies would

shed light on the molecular mechanism underlining the

well-established beneficial effect of EE on mental health

wellbeing.

EXPERIMENTAL PROCEDURES

Animals

Adult male C57BL/6 mice (thirty-three animals; PND 65–

75 at the beginning of the experiments; Biomedical

Sciences Institute, University of Sao Paulo) were

housed in groups of five per cage with free water and

food access in a room with controlled temperature (24

± 2 �C) and humidity conditions. Animals were

maintained under a 12/12 h light/dark cycle in an

inverted cycle (lights off between 10:00 am and

10:00 pm). Red lights were used to handle the animals

during the dark phase, when objects were exchanged in

the EE cage. Procedures were approved by the Ethical

Committee for Animal Use (CEUA) of the University of

Sao Paulo, registered under protocol no. 5664120118.

All animal experiments were carried out in accordance

with the National Institutes of Health guide for the care

and use of laboratory animals.

Housing conditions

The non-enriched groups (NE) were housed in standard

housing conditions (polypropylene cages, 27.5 cm

length � 16.5 cm width � 13 cm height) while the

enriched groups (EE) were housed in transparent

polycarbonate cages larger than the standard ones

(42 cm length � 28 cm width � 21.5 cm height) with a

range of stimuli such as pipes, ramps, ladders, houses

and running wheels (objects were changed/moved three

times a week) as previously described in Rueda et al.

(2012), Marianno et al. (2017), and Rae et al. (2018).

The bedding conditions and access to food and water

were the same for both groups.

Experimental design

Thirty-three mice (15 NE and 18 EE) were maintained in

non-enriched or enriched housing for 54 consecutive

days. Mice were tested on day 32 in the elevated plus-
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maze (EPM) to investigate the animal anxiety-like effect

in EE and NE. Blood samples were collected (see a

detailed description in blood sampling and

corticosterone concentration) immediately after the test.

The rationale for measuring corticosterone around

32 days of EE was to compare with previous study

showing that 30-days EE decreased corticosterone

levels and prevented anxiety-like behavior induced by

stressful conditions in rats (Islas-Preciado et al., 2016).

On day 54, after euthanasia, the brains were removed.

All the procedures were carried out during the animal light

phase (between 7:00 and 10:00 am). See Fig. 1 for an

illustration of the design of the experimental protocol.

Animals were not tested in the EPM at the end of the

experiment to avoid any interference of novelty exposure

stress on gene expression.

of

Elevated plus maze (EPM)

The EPM was used to assess anxiety-like responses in

rodents on day 32. The apparatus consists of two open

arms (33.5 cm � 7 cm) bordered by a 0.5 cm high wall

to prevent the animals from falling, and two closed arms

(33.5 cm � 7 cm) with walls 20 cm high, which is at a

height of 50 cm from the floor. The test was carried out

during the light period of the cycle (between 7:00 –

10:00 am), in a room with approximately 100 lux

(Komada, Takao and Miyakawa, 2008). After 1 hour of

habituation in the experimentation room, each mouse

was placed in the central area and freely explored the

apparatus for 5 minutes. The following parameters were

evaluated (Plus MZ software): open arms entries and time

spent in the open arms, closed arms entries and anxiety

index [1 � (frequency of entries in the open arms + per-

manence rate in the open arms)/2] (Cohen et al., 2008).

‘‘Entry” was considered only when the animal put the four

legs in the respective arm of the apparatus.

ted
 P

r

Blood sampling and corticosterone concentration

Corticosterone levels were measured on Day 32.

Approximately 150 ll of blood from the caudal vein was

collected in heparinized microtubes (500 U/ml, in the

proportion of 10% of the total volume of blood

collected). The tubes were centrifuged for 15 minutes at

2000g at 4 �C and the plasma was collected and stored

at �80 �C until corticosterone levels were measured

using the biochemical kit (Enzo Life Sciences� –
rontal Cortex: Implications for an Epigenetically Controlled Mechanism. Neuroscience (2023), https://doi.
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corticosterone ELISA kit), following the manufacturer’s

protocol.
330

331

332

333

334

335

336

337

338

339

340

341o
Brain tissue collection

Animals were euthanized on day 54 during the light cycle

(7:00–10:00 am) at approximately the same time to

minimize any circadian effects. The brains were

removed, and the PFC was freshly dissected. The

dissection was carried out under a microscope using a

mouse brain matrix ASI-Instruments� (Houston, TX),

based on the atlas of brain structures (Franklin and

Paxinos, 1997), with divisions 1 mm apart, to slice the

brain in coronal sections and brain punches (1.2 mm from

Harris Micro-Punch, Ted Pella). The sections were

immersed in RNA later stabilization solution (Sigma�)

and stored at �80 �C.
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Protein extraction and western blot assay – analysis
of BDNF protein levels

BDNF protein levels were analysed in the PFC of EE

(54 days) and standard housed mice to assess if any

transcriptional changes in Bdnf exons translate into

changes in BDNF protein levels in the PFC. The PFC

samples were homogenized by friction with a conical

plastic pestle (Thermo Fisher Scientific, MA, USA) in a

1.5 ml microtube, in lysis buffer (Tris-HCl 1 M pH 7.5,

10% SDS, glycerol, 3 M NaCl, deionized water, 500 mM

NaF, 500 mM beta-glycerophosphate, protease inhibitor

cocktail (Protease and Phosphatase Inhibitor) Cocktail -

Thermo Fisher Scientific, Inc) and kept on ice. The

samples were then sonicated at 50% of amplitude for

approximately 5 seconds (Ultrasonic processor Vibra

cell VC-505 – Sonics and Materials, Inc), incubated on

ice for 20 minutes and centrifuged at 4 �C for 20

minutes at 13,000 g. The supernatant was collected,

and the protein concentration was determined by the

Bradford method (Biorad protein assay, Bio-Rad

Laboratories, Inc) (Bradford, 1976). The extracted protein

was combined with Laemmli buffer (Bio-Rad Laborato-

ries, Inc, supplemented with 5% mercaptoethanol) and

incubated at 95 �C for 5 min. The protein samples (10 ll
of 2lg/ml protein) were separated by size on a 12.5% poly-

acrylamide SDS-PAGE gel (sodium dodecyl sulphate–

polyacrylamide gel) at 90 V using Mini-Protean� Tetra

Cell device (Bio-Rad Laboratories, Inc) and then trans-

ferred to the Nitrocellulose membrane (EMD Millipore

Corporation). Ponceau’s immunoblot method was used

to ensure the load of equal proteins (Salinovich and

Montelaro, 1986). The membrane was blocked with 5%

bovine serum albumin (BSA) diluted in 1x TBS-T buffer

(50 mM Tris–HCL, 150 mM NaCl, 0.1% Tween 20, pH

7.5) and incubated overnight at 4 �C. In the following

day the membranes were incubated with BDNF antibody

(Santa Cruz Biotechnology, rabbit polyclonal IgG; N-20,

sc-546, Lot#B0811) 1: 1000 and left overnight again at

4 �C. In the following day the membrane was probed with

a secondary antibody (1: 2000 dilution, anti-rabbit Ac,

Santa Cruz Biotechnology) for 2 h at room temperature

and then developed on a ChemiDoc MP photo-

documenter (Bio-Rad Laboratories, Inc). The samples
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were analysed with ImageLab� software (Bio-Rad Labo-

ratories, Inc). The relative density of each band was nor-

malized to the value of b-actin (dilution 1: 40000, Santa

Cruz Biotechnology). Four samples were used for the

NE and six samples for the EE group for the BDNF assay.
Bdnf gene expression assays and epigenetic
analysis

The non-coding exons I, II, IV, VI and the coding exon IX

were analysed, in accordance with previous studies

(Fuchikami et al., 2011; Karpova, 2014; Xu et al., 2018).

Our main target was exon IV considering its role in inhibi-

tory functions in the PFC (Sakata et al., 2009).

DNA methylation profile of exon IV was analysed by

pyrosequencing (PSQ) targeting 12 CpG sites.

of

DNA/RNA extraction

DNA/RNA isolation from the tissue samples were carried

out as described in Rae et al., (2018). AllPrep DNA/RNA

Mini kit (Qiagen UK) was used to simultaneously isolate

DNA and RNA from the tissue samples. The thawed sam-

ples were processed in nuclease-free 2 ml safe lock tubes

with a 5 mm stainless still bead (Qiagen UK) and 600 ml of
RLT + lysis buffer (RLT buffer + 1% b-mercaptoethanol)

per < 30 mg tissue. The samples were macerated using

a tissue disruptor (TissueLyser II QIAGEN�) by subject-

ing them to 2–3 times 20 pulses per sec, 2 minutes each.

The lysis product was centrifuged at 8000xg for 2 min at

room temperature, the supernatant was passed through

a DNA spin column to bind the DNA to the column. Equal

volume of 70% EtOH was added to the pass-through liq-

uid, mixed by repeat pipetting and then passed through

RNeasy spin column. The column with the RNA bound

to the matrix was washed once using Wash buffer RW1.

On-column DNase 1 treatment was carried out for 15 min-

utes at room temperature using Qiagen RNase-free

DNase 1 as per the manufacturer’s protocol, followed by

one more wash with RW1 and 2x RPE buffer. RNA was

eluted from the column with RNase-free water. The

DNA spin column was washed once each with washing

buffers AW1 and 2 and DNA was eluted using EB buffer

provided in the kit. The DNA and RNA were quality-

checked and quantitated using a nanoscale spectropho-

tometer (NanoDrop� 2000 Thermo Scientific). RNA was

stored at �80 �C and DNA at + 4 �C.
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Reverse transcription and real-time polymerase chain
reaction (PCR) (RT-qPCR)

QuantiNova Reverse Transcription kit (QIAGEN�) was

used to carry out cDNA synthesis from the of RNA

samples. In brief, 1 mg RNA was used per sample for

cDNA synthesis. A mastermix of Reverse Transcription

reactions (RT-Mix) was prepared for all samples as per

the protocol. A final volume of 15ul of RNA and gDNA

Removal Mix was prepared, incubated for 2 min at

45 �C and immediately transferred to ice. 5 ll of RT-Mix

was added to individual RNA samples followed by

incubation for 3 min at 25 �C, 10 min at 45 �C and finally

5 min at 85 �C.The resultant cDNA was stored at �20 �C.
efrontal Cortex: Implications for an Epigenetically Controlled Mechanism. Neuroscience (2023), https://
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The target DNA sequence was identified and obtained

from UCSC Genome Browser GRCm38-mm10. For

qPCR, primer sets were designed using NCBI Primer

Blast tool available in public domain. The qPCR was

carried out with reagents from QuantiNova SYBR Green

PC kit (QIAGEN�) on a 384 well plate, in triplicates, for

a final volume of 5 ml per well containing 1 ml of cDNA
each on a QuantiStudio 7 Applied Biosystems machine.

Housekeeping gene Gapdh was used to normalise the

expression of the target exons. The Real-time cycle

conditions were as follows: activation step of 2 min at

95 �C, followed by step 2 of 95 �C for 5 sec and 60 �C
for 10 sec for 40 cycles and a final an automated melt-

curve step. d-ctct method was used to get the fold-

change in respective exon mRNA expression.

The following primers were used:**
471

472

P

or
Exon I:
lease cite this article in

g/10.1016/j.neuroscien
Forward: 50TGTCTCTCAGAATGAGGGCG30

0 0

473
Reverse: 5 CATCCACCTTGGCGACTACA3

0 0

474
Exon II:
 Forward: 5 CATTGAGCTCGCTGAAGTTGG3

0 0

475
Reverse: 5 CCCAGTATACCAACCCGGAG3

0 0

476
Exon IV:
 Forward: 5 ATGGAGCTTCTCGCTGAAGG3

0 0

Reverse: 5 CGAGTCTTTGGTGGCCGATA3

0 0
  
Exon VI:
 Forward: 5 GCGTGACAACAATGTGACTCC3

0 0

Reverse: 5 TCTGGCTCTCGCACTTAGC3

0 0

Exon IX:
 Forward: 5 CGACATCACTGGCTGACACT3

0 0
Forward 50GGTAGAGGAGGTATTATATGATAGT30d
Reverse: 5 CAAGTCCGCGTCCTTATGGT3
Reverse Bio-5
0
ATTTCCCCTTCTCTTCAATTA30

Sequence 1 50AGGAGGTATTATATGATAGTT30
477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

Sequence to

Analyse

TAYGTTAAGG TAGYGTGGAG

TTTTTTYGTG

GATTTTTATT TATTTTTTTA

TTTATYGAGG

AGAGGATTGT TTTYGTTGTY

GTTTTTTTTA

TTTATTTTYG GYGAGTTAGT

ATGAAATTTT TTAGTTT

Sequence 2 50TTTAGTTTTTGTTTAGATTAAATGG30

Sequence to

Analyse

AGTTTTTYGT TGAAGGYGTG

YGAGTATTAT

TTTYGTTATG TAATTTTTAT

TATTAATAA

cte
Bisulfite conversion and pyrosequencing for DNA
methylation

Epitect Bisulfite Conversion kit (QIAGEN�) was used for

the bisulfite conversion of the DNA as per the

manufacturer’s protocol prior to pyrosequencing to

determine methylation status of targeted regions. The

Bisulfite solution was prepared by briefly incubating at

60 �C, followed by vertexing to dissolve the reagents

completely. A reaction volume of 140 ml was prepared

containing 40 ml of 500 ng DNA, 85ul of Bisulfite

Solution and 15 ml DNA protect buffer. The reaction was

carried out in a thermocycler as follows: denaturation for

5 min at 95 �C, incubation for 10 min at 60 �C, followed
by denaturation for 5 min at 95 �C and incubation for

10 min at 60 �C. All reagents were equilibrated to room

temperature prior to use. The mixture was transferred to

a 1.5 ml nuclease-free tube to which 310 ml Buffer BL

and 250 ml of absolute ethanol were added, mixed well

and the entire volume was transferred to a MinElute

DNA spin column, centrifuged for 1 min at full-speed to

bind the DNA to the column. The column was washed

with BW wash buffer. The desulfonation of the bound

DNA was carried out using 500 ml Buffer BD for 15 min

at room temperature followed by two washed with BW

buffer, one wash with 100% alcohol. The DNA was

eluted from the column using 40 ml of EB buffer. The

single-stranded bisulfite-converted DNA (BS-DNA) was

stored at �20 �C.

Pyrosequencing and methylation profile analysis

The pyrosequencing procedure was carried out as

previously described by Coley et al., 2012. The primers
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were designed using the PyroMark Primer Assay 2.0 soft-

ware (Qiagen). A region containing 12 CpG sites (from

UCSC Genome Browser, GRCm38-mm10) primarily

based on previous studies with rodents (Lubin et al.,

2008; Roth et al., 2009) was targeted for this study

(Fig. 3).

Two ll of BS-DNA was used for a total reaction

volume of 50 ll per sample, the amplification was

carried out using HotStartplus Taqpolymerase (Qiagen).

The PCR cycles were as follows: 15 min at 95 �C,
followed by 50 cycles of denaturation for 30 sec at

95 �C, annealing at 53 �C for 30 sec and extension at

72 �C for 30 sec and a final extension at 72 �C for 10 min.

Forty ll each of the amplicons were used for

sequencing. The amplified, biotin-labelled DNA

suspended in binding buffer and charged Sepharose

beads (Amersham Plc) were captured using a hedge-

hog and vacuum, released on to the annealing buffer

containing sequencing primer, annealed for 2 min at

80 �C prior to sequencing using a PSQ MD machine

and Pyromark Gold Q96 reagents (QIAGEN�).

Details of the primers used was as follows:Proo
f

Statistical analysis

Shapiro Wilk test was used to test for normality and the

unpaired t-student tests were used to compare the

mean of data of the groups (NE and EE). Data are

expressed as box-and-whisker-plots (median, 25th and

75th quartile; whiskers 5th-95th percentiles). Differences

with p< 0.05 was considered statistically significant. All

analyses were performed on the Statistica 12 software,

and the graphs were plotted in Graphpad Prism 9.0.
RESULTS

Gene expression

Analysis of individual exon gene expression revealed a

significant increase in EE compared to the respective

controls, as following: exon I (t= 2.43, df = 10,

p= 0.03, Fig. 2A); exon II (t= 1.54, df = 10, p= 0.01,

Fig. 2B); exon IV (t= 8.54, df = 10, p< 0.0001,
rontal Cortex: Implications for an Epigenetically Controlled Mechanism. Neuroscience (2023), https://doi.
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Fig. 2C); exon VI (t= 4.43, df = 10, p= 0.0013,

Fig. 2D); exon IX (t= 6.03, df = 10, p= 0.0001,

Fig. 2E). The individual exon gene expression was

calculated as fold change of EE against control NE. The

NE was presented as individual NE samples against the

average fold-change of all NE (n= 6) to show any

variation in expression among the NE samples.

BDNF protein levels

BDNF protein levels were measured after 54 days of EE.

No statistical difference was found between EE and NE

mice (t= 0.50, df = 8, p= 0.63; Fig. 2F).

Methylation status of Bdnf exon IV

CpG islands are stretches that have a higher CG density

compared with other genome regions which are generally

not methylated (Bird et al., 1985). Most CpG islands are

located in gene promoters (Saxonov et al., 2006) which

in turn are highly conserved in mice and human genomes

(Illingworth et al., 2010). CpG islands in promoter regions

regulate gene expression through transcriptional silenc-

ing, thus, methylation in these islands can be crucial for

the gene expression (Lim et al., 2019).

In our study, the increase in the Bdnf exon IV gene

expression led us to speculate a possible

hypomethylation status of CpG sites of a CpG island.

Twelve CpG sites of the exon IV of Bdnf gene were

analysed. One animal from the NE group failed the

pyrosequencing software quality control and was

excluded from the analysed data. Multiple unpaired t-

tests detected a statistically significant decrease in DNA

methylation at CpG sites 5 and 10 in the EE group vs

NE (t= 2.29, df = 9, p= 0.047; t= 2.44, df = 9,

p= 0.04). Methylation levels of the other CpG sites

were unchanged (Fig. 3).

Elevated Plus-Maze

Mice in enriched cage for 32 days showed higher number

of entries in the closed arms compared to the non-

enriched mice (t= 3.22, df = 30, p= 0.003, Fig. 4C).

No differences were found between the two groups in

the EPM test regarding anxiety-related parameters, i.e.,

% of time spent in open arms (t= 1.60, df = 30,

p= 0.12), % of entries in open arm (t= 1.54, df = 30,

p= 0.14), and anxiety index (t= 1.83, df = 30,

p= 0.08) (Fig. 4A, B, D). One animal from the EE

group jumped from the EPM and was excluded from the

statistical analyses.

Corticosterone levels

Corticosterone levels were measured after 32 days of EE.

No differences were found between EE and NE mice

(t= 0.61, df = 10, p= 0.56, Fig. 4E).

DISCUSSION

This study aimed to dissect the transcriptional and

epigenetic regulatory effect of 54-day exposure to EE on

prefrontal cortex (PFC) by analysing individual exon
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gene expression (exon I, II, IV, VI, XI) and DNA

methylation profile of exon IV of the Bdnf gene in

C57BL/6 mice. The data showed a significant exon

specific upregulation of Bdnf mRNA levels in the PFC

concomitant with reduction in DNA methylation in

certain CPG sites of exon IV of the Bdnf gene. Given

that DNA methylation commonly causes reduced gene

expression or silencing, we suggest that the

hypomethylation of CpG sites 5 and 10 in exon IV in the

PFC of EE mice is responsible for the increase in exon

IV Bdnf expression. These findings are suggestive of an

epigenetic control of Bdnf gene expression (at least at

the level of exon IV), by EE exposure in the PFC and

add to the current literature by further dissecting the

impact of EE on Bdnf expression and DNA methylation

in individual exons.

Increases in BDNF protein or Bdnf mRNA levels in the

hippocampus of animals exposed to EE housing have

already been reported (Falkenberg et al., 1992; Young

et al., 1999; Zhang et al., 2016; Rojas-Carvajal et al.,

2020). Nonetheless, studies assessing EE effects on

BDNF expression in the frontal cortex are scarcer and

inconsistent, with findings pointing to increase (Gelfo

et al., 2011), decrease (Rueda et al., 2012) or no effect

(Chen et al., 2005). The lack of consistency among the

studies are related to differences in time of exposure to

EE, species (rats in Gelfo et al., 2011; Chen et al., 2005

and mice in Rueda et al., 2012) and variability of enrich-

ment factors (Simpson and Kelly, 2011). Interestingly

and in contrast with EE, maltreatment stress in infancy

(stress-abusive mother) was shown to increase Bdnf

DNA methylation in exon IV and IX, an effect which was

concomitant with a reduced total Bdnf mRNA (exon IX)

in the adult PFC (Roth et al., 2009), demonstrating a con-

trasting epigenetic effect of stress on PFC Bdnf depend-
ing on stress type (e.g., environmental enrichment

‘‘eustress” vs maternal maltreatment stress).

The current study showed significant EE-induced

changes in CpG sites within BDNF exon IV in the PFC

which was concomitant with upregulation of BDNF gene

expression of certain exons. Likewise, Zajac et al.

(2010) described an EE-induced upregulation in BDNF

gene expression in the hippocampus. Interestingly, this

upregulation was independent of the extent of DNA

methylation along the BDNF gene sequence based on

analysis of overall levels of methylation of 4 CpG sites

of a CpG island (Zajac et al.,2010). Also, Tomiga et al

(2021) detected an exercise-induced hypomethylation in

the Bdnf promoter IV in the hippocampus at different

CpG sites, and Tadic et al (2014) found hypomethylation

in the Bdnf promoter IV in blood cells of depressed

patients in yet different CpG sites, highlighting that the

position of CpG methylation status in the Bdnf promoter

of exon IV may change depending on the brain regions

or environmental conditions (e.g., psychosocial stress,

enriched ambient, exercise). Despite the slight differ-

ences in the methylation status of CpG positions in the

Bdnf promoter IV and exon IV, the vast majority of studies

in the literature have consistently reported a strong nega-

tive correlation between the transcript levels and methyla-

tion status (i.e., increased transcription and

ted
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Fig. 2. Bdnf exons expression (I, II, IV, VI, IX; n= 6/NE and n= 6/EE) (A–E) (the expression is

presented as fold change against NE where NE is presented as individual samples against the

average fold-change of all the samples); BDNF levels (optical density normalized in relation to

control) and a representative image of western blot (n= 4–6/group) (F) in the PFC of mice housed in

non-enriched (NE) or enriched (EE) conditions for 54 days. Data are expressed as box-and-whisker-

plots (median, 25th and 75th quartile; whiskers 5th–95th percentiles). Unpaired t-student test,

*p< 0.05, **p< 0.01, ****p< 0.0001.
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hypomethylation or decreased tran-

scription and hypermethylation).

All in all, our findings corroborate

with a significant body of literature

demonstrating that exon IV Bdnf

expression can be altered by

environmental stimuli via epigenetic

mechanisms (Martinowich et al.,

2003; Aid et al., 2007; Roth et al.

2009; Sakharkar et al., 2016).

Indeed, Roth et al. (2011) reported

that traumatic experiences such as

continuous psychosocial stress can

elicit hypermethylation in exon IV

and reduce Bdnf gene expression

in the hippocampus of rats. Interest-

ingly, a previous study from the

same group demonstrated that neg-

ative maternal behavior and

increases in methylation of exon IV

in the PFC perpetuated across gen-

erations, suggesting a transgenera-

tional epigenetic effect on the exon

IV induced by negative psychosocial

environmental factors (Roth et al.,

2009). In addition, Bdnf exon IV pro-

moter methylation has been consid-

ered as a marker for treatment

response to antidepressant in

patients with major depressive disor-

der (Lieb et al., 2018), suggesting a

key role for exon IV epigenetic regu-

lation in shaping mood features and

treatment efficacy. The behavioral

impact of this hypomethylation of

exon IV detected in our study is not

clear and warrants further investiga-

tion but given the association of exon

IV methylation with depression, one

can only speculate that it is likely to

be involved in mood enhancement

and wellbeing. Patients with depres-

sion showed increased methylation

levels of promotor IV compared to

healthy controls (Kang et al., 2013;

Januar et al., 2015; Kang et al.,

2015). Hence, it is not perhaps sur-

prising that interventions that upreg-

ulate BDNF pathways exert

beneficial antidepressant effect.

Whether EE-induced Bdnf exon

IV regulation in the PFC affects

emotional behaviour and mental

state is not clear but there is

evidence to suggest that it may

involve alterations to PFC activity.

Exon IV is particularly sensitive to

neuronal activity (Martinowich et al.,

2003) and is rapidly transcribed in

response to stress (Marmigère

et al, 2003). It contains an anchorage
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site for CREB which is involved in the regulation of BDNF

transcription by a mechanism involving calcium influx,

mediated by a calcium-responsive transcription factor

(CaRF) (Tao et al., 1998; Tao et al., 2002; Dias et al.,

2003). Interestingly, promoter IV Bdnf mutant mice which

would inevitably affect epigenetic regulation of Bdnf
expression, was shown to exhibit altered PFC function,

by mechanisms related to GABAergic interneurons dys-

function (Sakata et al., 2009), clearly suggesting a link

between epigenetic regulation of this gene and PFC activ-

ity. Deficits in GABAergic inhibitory neurotransmission in

the PFC has been associated with psychiatric disorders,

especially schizophrenia and posttraumatic syndrome

disorder (PTSD) (Bremner et al., 2000; Egerton et al.,

2017), thus pointing towards a potential mechanism asso-

ciating exon IV and its epigenetic regulation with the

pathophysiology as well as the treatment of stress-

related mood disorders. Whether the hypomethylation of

exon IV induced by EE observed in our study offers a pro-

tection against mental health disorders remains to be

determined.

In concordance with our findings, Kuzumaki et al

(2011) also showed that EE can increase Bdnf mRNA

expression in the hippocampus, demonstrating a similar

EE-induced epigenetic mechanism controlling exon IV in

both the PFC and the hippocampus. Indeed, methylation

process affects the interaction between DNA and chro-

matin proteins or transcription factors, blocking the gene

transcription and expression.

Exons I, II and VI were also upregulated in the PFC of

EE mice. Unlike exon IV, exons I and II does not seem to

be involved in stress responses since its expression is not
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affected by an acute stress (Molteni

et al., 2009). An upregulation of

exons I, II, IV and VI suggest a gen-

eralized increase in mRNA tran-

scripts induced by EE in the PFC,

despite the variation in the distribu-

tion of Bdnf splice variants in the

soma and dendrites (Chiaruttini

et al., 2008). While exon I and IV

were localized in the somatic cellu-

lar, exons II and VI were found in

dendrites in response to pilocarpine

(Chiaruttini et al., 2008). Similar to

our study, voluntary physical exer-

cise – also considered an EE – in-

duced a specific enhancement in

exon VI expression in the somata

and dendrites of hippocampal

regions (Baj et al., 2012). Never-

theless, the behavioural impact of

this enhancement of exon VI tran-

scription in the PFC warrants fur-

ther investigation.

Although EE induces altered

gene expression of different exons

related to Bdnf transcription, it did
not significantly alter the protein

levels of BDNF. Changes in

mRNA levels does not always go

hand in hand with changes in

protein levels and the mechanism

Proo
f

to which mRNA levels correlates with differences in

protein expression commonly vary among different

studies. Some cases report a poor correlation – around

40% of protein levels explained by mRNA levels (Tian

et al., 2004; Vogel et al., 2010; Schwanhäusser et al.,

2011) or even less than 20% (Ingolia et al., 2009) – while

others can show high correlation - around 80% (Li, Bickel,

and Biggin, 2014). As such, whether regulation at the

translational level influences on global protein abundance

or whether it is restricted to a subset of genes remains

unclear (de Klerk and ’t Hoen, 2015).

Despite the profound changes in Bdnf gene

expression in the PFC of mice housed in EE conditions,

exposure to EE did not alter anxiety like behaviour in

the EPM test. The fact that EE did not modify the

anxiety-like behavior may not be surprising considering

that the beneficial effects of EE on anxiety-like behavior

is more evident when the animals are challenged with a

stressor or in animal models of anxiety susceptibility

(Renoir et al, 2011; Ravenelle et al., 2013; Koe et al,

2016), which is clearly not the case in our model. Interest-

ingly, Sakata et al., (2010) failed to detect any changes in

anxiety behavior as measured by EPM in mice deficient in

exon IV suggesting that changes in Bdnf gene expression

may not contribute to alteration in anxiety levels, at least

at the level of exon IV. Moreover, the ability of EE to alter

basal anxiety levels depends on the age in which animals

are exposed to the EE, length of time of exposure and ani-

mal strain; for instance, Chapillon et al (1999) found lower

trait anxiety profile in BALB/c adult mice reared in EE
enetically Controlled Mechanism. Neuroscience (2023), https://
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since infancy while in C57BL/6 mice reared in the same

condition, did not modify the level of trait anxiety, corrob-

orating our findings. Moreover, we found that 32 days EE

also did not alter the plasma corticosterone levels, sug-

gesting that EE did not trigger a hypothalamic–pituitary–

adrenal axis (HPA) response. This agrees with previous
Please cite this article in press as: Costa GA et al. Environmental Enrichment Increased Bdnf Transcripts in the Prefrontal Cortex: Implications for an Epige
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studies which were unable to detect

a HPA axis stimulation following one

(Lopes et al., 2018) or four weeks

(McQuaid, Audet and Anisman,

2012) of EE. Together, these find-

ings highlight that our EE model

was unlikely to affect stress levels

in mice. One ought to be, however,

a bit cautious as anxiolytic effects

of EE have been reported using

other experimental tests, such as

open-field and dark-light box

(Chourbaji et al., 2005; Jha et al.,

2016). Thus, even though we did

not find evidence of anxiety-like

changes in our EE protocol using

the EPM test, this possibility cannot

be rule out.

Epigenetic modifications

represent key mechanisms by

which negative environmental

factors (e.g., stressors) induce

enduring changes in gene

expression which participate in the

onset of various psychiatric

disorders. Bdnf is one of the key

genes which are known to undergo

long-lasting epigenetic changes in

response to negative

environmental challenges,

especially when these occur during

early development (Boulle et al.,

2012). As such deficiency in epige-

netically controlled BDNF signalling

seems to play a central role in the

course and development of various

neurological and psychiatric disor-

ders (Boulle et al., 2012). Thus,

strategies that modify and reverse

the impact of negative environmen-

tal challenges on epigenetic regula-

tion at specific Bdnf exons may

represent a promising strategy for

the treatment of psychiatric disor-

ders. The current findings from this

study suggest EE exposure as one

such strategy through a Bdnf exon

specific epigenetic mechanism.

However, by limiting our analysis to

exon IV it was not possible to pro-

vide a global picture of the methyla-

tion status of other exons. More

studies are warranted to determine

its functional and behavioral signifi-

cance which would determine its

translational value.
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