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Abstract
Understanding how individuals come into contact with each other is important in many fields from biology and ecology 
to robotics and physics. Interaction dynamics are central in understanding how information is spread between agents, how 
disease spreads through a population, and how group movement or behaviour occurs. However, in many applications, the 
underlying mode of movement is not considered, and instead, contacts are considered a fraction of all possible contacts 
amongst a population. This gives rise to the mass-action law which in turn implies a negative quadratic relationship between 
contacts and individuals. Here we consider how a simple but often used movement model, the correlated random walk,  
affects the contact rate in a standard Susceptible-Infection (SI) epidemiological model. Via extensive simulation, we show 
that the contact rate is not always well described by the assumed negative quadratic relationship, I(N − I) (where I is the 
number of infected at a given time and N the total number of individuals). Instead, we find that a contact rate proportional to  
[I(N − I)]

� with 0 < 𝛼 ≤ 1 is a better qualitative fit, where � depends upon parameters such as the straightness of the movement  
and the density of individuals. We highlight that the expected contacts at low densities increase with straight line movement, 
whereas, at high densities, they increase with more random movement.
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Introduction

The way in which individuals move in an environment can 
have a profound effect on interaction dynamics, such as 
the number and frequency of contacts between individuals 
(Fofana and Hurford 2017; White et al. 2018). This infor-
mation is important for exploring group level phenomena 
including group behaviour, information exchange and dis-
ease spread. Understanding interaction dynamics has impor-
tant ramifications and uses in a variety of fields, from move-
ment strategies in robotics (Goldberg and Matarić 1999; 
Pang et al. 2021) and information spread in the social sci-
ences (Huang 2000; Zhou et al. 2020) to epidemiology 
(Fofana and Hurford 2017; White et al. 2018) and particle 
dynamics (Ligget, 2012; Jiao and Gonella 2020). Currently, 
most mathematical models of these processes do not con-
sider the specific movement modes of individuals, averaging 

out the movement patterns across spatial scales and environ-
ments. Such averaging of movement at the population level 
is known to cause significant differences in predicted and 
observed behaviour (Franz and Erban 2013) and can miss 
important dynamics which are apparent when considering 
local or individual behaviour (Tang and Bennett 2010).

Movement ecology is the established field concerned 
with understanding and predicting the spatial characteristics 
of movement at both individual and group level, from local 
small-scale movement to long range relocations between 
countries and continents (Nathan et al. 2008). Incorporating 
movement ecology into models of interaction dynamics by 
explicitly including models of predicted movement will lead 
to more realistic descriptions of processes such as informa-
tion or disease spread. Whilst there have been attempts to 
more closely integrate the fields of movement ecology and 
epidemiology (Tracey et al. 2014; Fofana and Hurford 2017; 
Dougherty et al. 2018; White et al. 2018), there are still 
many unanswered important questions regarding interaction 
dynamics, specifically, determining the precise relationship 
between the number of individuals and the expected number 
of interactions, and how this relates to different models of 
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movement and spatial behaviours (Fofana and Hurford 2017; 
White et al. 2018).

Movement is a complex process reliant on many internal 
and external stimuli (Nathan et al. 2008). However, simple 
models are often used in analysing, predicting, and under-
standing movement behaviour, including diffusion processes 
(Blackwell 1997; Ovaskainen 2004), Brownian motion 
(Horne et al. 2007; de Jager et al. 2014; Bearup et al. 2016), 
agent-based models (Tang and Bennett 2010; McDermott 
et al. 2017), and both continuous and discrete random walks 
(Codling et al. 2008; Johnson et al. 2008; Bailey et al. 2018). 
Discrete random walks are commonly used in the field of 
movement ecology (Kareiva and Shigesada 1983; Codling 
et al. 2008) due to their relative simplicity and the nature 
of telemetry data being recorded as a discrete-time series. 
Random walk theory has been used to describe and analyse 
the behaviour of a wide range of animals, from the small 
and micro-scale movements of cells (Codling et al. 2008; 
Li et al. 2010), bacteria (Theves et al. 2015), and insects 
(Kareiva and Shigesada 1983; Bailey et al. 2021a) to the 
large and macro-displacements of elk (Fortin et al. 2005), 
whales (Whitehead et al. 2008), and seabirds (Bartumeus 
et al. 2010). As well as across time scales, from high fre-
quency multiple locations per second for short scale fast 
movement (Bailey et al. 2021b), to sparse daily or monthly 
data when monitoring large scale movement of migrations 
(Bergman et al. 2000).

When modelling movement by a discrete random walk 
(RW) at the individual level, the most common approaches 
are to use the following: a simple random walk (SRW), in 
which the direction of each step is taken at random, giving 
rise to movement closely linked with Brownian motion; a 
biased random walk (BRW), in which there is a preference 
for a specific direction at each timestep, this could be either 
towards a global compass direction or towards a specific 
location in space; or a correlated random walk (CRW), in 
which the movement direction at each time step is gov-
erned by the direction of movement at the previous time 
step (termed persistence), leading to a movement path which 
has a localised or short term bias in direction (Codling et al. 
2008). However, this local bias disappears as the number 
of time steps increase and the CRW in the long run mimics 
a SRW; the speed of this convergence is dependent upon 
the strength of correlation in successive steps, with weakly 
correlated movement mimicking a SRW faster (Benhamou 
2006). This correlation in movement results in the CRW 
exhibiting non-Markov behaviour as each step is dependent 
upon the previous step of the process.

As discussed in Fofana and Hurford (2017), a central 
assumption in many traditional formulations of contact 
rates between individuals in a large population is that of 
homogenous mixing and instantaneous contact. That is, each 
individual is as likely to come into contact with every single 

other individual within the population at any given time 
point. This gives rise to the ‘mass-action’ law, describing a 
negative quadratic relationship that governs the number of 
expected contacts. This approximation has successfully been 
used in many epidemiology models and is used to determine 
important parameters in disease spread, such as the repro-
ductive number R0. However, by including more specific 
rules regarding the movement of individuals, the assump-
tions that give rise to the mass-action law may be violated.

Whilst other models do more directly consider contact 
rates via data analysis (Otten et al. 2003; Richomme et al. 
2006; Hudson et al. 2019), network theory and analysis 
(Bansal et al. 2007; 2010; Volkova et al. 2010) or via exten-
sive simulations (Kirkeby et al. 2017; Hudson et al. 2019), 
these are usually post hoc and rely on recorded or observed 
data to become available and subsequently analysed. Fofana 
and Hurford (2017) considered how simple random walk 
models can influence contact rates, indicating that when 
included in a simple Susceptible-Infection (SI) model the 
mass-action law was still appropriate, with a CRW, BRW, 
and Lévy Walk giving qualitatively similar results. However,  
here by more extensive simulations, we demonstrate that 
this contact rate does not strictly follow the predicted nega-
tive quadratic relationship for a CRW, instead, more closely  
following [I(N − I)]� with 0 < 𝛼 ≤ 1 , where I is the number 
of infected at a given time and N the total number of indi-
viduals. We demonstrate that the density of individuals has a  
large impact on this value of �.

Methods

Justification for use of a CRW 

Although the drivers of movement are incredibly complex, 
requiring inputs from internal factors as well as reactions to 
both the environment and the movement of other individu-
als, CRWs have been used extensively as proxies to animal 
movement, in order both to analyse observed data and to 
describe movement in theoretical models. Whilst it is clear 
CRW are limited in their accuracy at recreating realistic ani-
mal movement (Fagan and Calabrese 2014), the model is 
still widely used, especially with ‘simpler’ organisms such as 
plankton (Menden-Deuer 2010), microalga Chlamydomonas 
reinhardtii (Garcia et al. 2011), and insects (Kareiva and 
Shigesada 1983; Gui et al. 2012; Loureiro and Nams 2020). 
Recently, CRW have found applications in the movement 
of robotics, becoming a popular choice of movement model 
when working with swarm robotics, to programme effi-
cient area search algorithms (Dimidov et al. 2016; Pang 
et al. 2019, 2021; Renzaglia and Briñón-Arranz 2020) and 
exploration mapping (Kegeleirs et al. 2019). CRWs are also 
used in the current theoretical work on the movement of 
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groups of insects confined to experimental arenas, to deter-
mine the optimal network of traps (Manoukis et al. 2014; 
Bau and Cardé, 2016), the most efficient shape and size 
of insect traps (Ahmed and Petrovskii 2019), understand 
general movement of insects (Byers 2009; Wittman et al. 
2019), encounter rates (Byers and Naranjo 2014), as well as 
to describe the population diffusion and invasive capabilities 
of a species (Turchin 1998) which in turn help inform IPM 
strategies (Allema et al. 2010; Banks et al. 2020). CRWs 
have also been shown to consider more complex group level 
behaviour when multiple CRWs are combined (Haydon et al. 
2008). Due to CRWs often being seen as a null model for 
simple movement (Fagan and Calabrese 2014), they are 
prevalent when attempting to understand or predict phe-
nomena which require underlying movement. For example, 
when analysing landscape connectivity and its relationship 
with invasive insects (Koh et al. 2013), modelling invasive 
spread of plants (Andersen et al. 2005) is frequently still 
used as a base model when attempting to classify movement 
(Reynolds et al. 2013; Grant et al. 2018; Bailey et al. 2021a), 
with examples of CRW being observed in various animals, 
such as insects including Colrado potato beetles (Gui et al. 
2012), moths (Bau and Cardé 2016), bark beetles (Byers 
2001), and Harpalus rufipes beetles (Loureiro and Nams 
2020) along with larger animals such as manta ray when 
foraging (Papastamatiou et al. 2012), elk (Fortin et al. 2005), 
and Cory’s shearwater sea birds (Focardi and Cecere 2014).

Details of model and simulation

In this work, we will use the general terminology of epide-
miology and consider a population consisting of individuals 
who are either infected or susceptible. This is for clarity and 
to be in keeping with previous similar work, but the results 
are not intended to focus solely on that field. For example, 
an infected individual can be thought of as an agent who has 
information, and a susceptible individual is equivalent to an 
agent who has yet to receive the information.

To determine the number of contacts between infected 
and susceptible individuals given as a function of the num-
ber of infected, we consider a fixed population of size N , 
with each individual moving determined by a CRW in a 
confined square arena with length, L , and a reflective bound-
ary (Bearup and Petrovskii 2015). A reflective boundary was 
chosen to prevent large groups collecting at the boundary 
(see Supplementary Material File 1), and as the model is 
aimed at recreating movement in a restricted area, a periodic 
boundary was not considered. The precise geometry of the 
arena and laws governing the border can have an effect on 
movement behaviour (such as for trap efficiency (Ahmed 
and Petrovskii 2019) and in the analysis of persistence in 
movement (Christensen et al. 2021)); however, these are not 

investigated here. The population is initially randomly uni-
formly placed within the arena.

We only consider a binary state space for each individual 
in which each is either infected or susceptible. With the 
infected state acting as an absorbing state, that is, when an 
agent becomes infected, they remain infected for the dura-
tion, can continue to pass on the infection, and cannot leave 
the population–this is equivalent to the simple Susceptible-
Infection (SI) model in epidemiology. Each simulation 
begins with one randomly located infected individual and 
continues until the entire population is infected. We denote 
the number of infected by I and the number of susceptible by 
S (giving the standard relationship of N = S + I).

We define the contact distance, r , as the distance below 
which a contact is considered to be made. This value was 
taken as 0.5, 1, and 2, with r = 2 used unless stated oth-
erwise. As the model uses a discrete time random walk, a 
contact can only be considered to be made at the end of 
each step (at each Xt in Fig. 1) and not anywhere between 
successive steps. The probability of a successful contact, 
pSI , that is a contact in which infection is successfully 
passed, is explored using four simple rules: (i) pSI = 1 ; (ii) 
pSI = 0.5 ; (iii) pSI = r − dSI , (with pSI = 0 if dSI ≥ r ) where 
dSI is the distance between the susceptible and infected indi-
viduals giving a linear relationship between distance and 
a successful contact; and (iv) pSI = 1∕

(

1 + dSI
)2 (with 

pSI = 0 if dSI ≥ r ) giving an inverse square relationship 
between distance and a successful contact. Unless stated oth-
erwise, the main text focuses on the simplest case, pSI = 1 . 
As a contact is not considered to be a physical interaction, 
individuals continue moving in the same manner after a con-
tact as they were before the contact, similar to other studies 
(Fofana and Hurford 2017; Ahmed et al. 2021).

2d discrete-time continuous-space CRWs are determined 
by the distance between locations (step lengths) and turn-
ing angles (difference in directions between successive loca-
tions) (Kareiva and Shigesada 1983) (Fig. 1). It should be 
noted that whilst the precise form of these underlying dis-
tributions is known to have an effect on the resulting move-
ment path (Bartumeus et al. 2008; Codling et al. 2010), as 
we are interested in contact rates across groups moving with 
the same movement parametrisations, the quantitative dif-
ferences should be minimal. However, in order to control for 
this, we considered step lengths drawn from three distribu-
tions: a Rayleigh distribution (with scale parameter � = 1) , 
a uniform distribution, and a fixed distance (fixed at either 
1 or 2 units–note, unless otherwise stated the fixed distance 
of length 1 unit was used throughout). Turning angles were 
drawn from one of two distributions: a uniform or a wrapped 
normal. To investigate how the straightness of the movement 
path effected the results, the concentration parameter, � , of 
the wrapped normal distribution took values of 0.5, 0.7, 0.9, 
0.95, and 0.99. Lower values correspond to more winding 
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movement (closer to a SRW) and values closer to 1 give 
straighter movement (note the use of a uniform distribution 
is equivalent to setting � = 0 in a wrapped normal distribu-
tion) (Fig. 1). These specific distributions and parameter val-
ues were chosen as they are similar to those used in previous, 
comparable general movement studies (Fofana and Hurford 
2017; Bailey et al. 2018; Ahmed and Petrovskii 2019; Bailey 
and Codling 2021).

Simulations were run with a fixed arena size of 50 × 50 
units featuring a population of N = 50, 250, 1000 and 2500 
giving relative densities of D = 0.02, 0.1, 0.4 and 1 agents 
per unit squared. These values are also similar to those found 
in comparative studies (Fofana and Hurford 2017).

All parameters are detailed in Table 1. Results were aver-
aged over 10,000 simulations, with all calculations carried 
out in R (R Core Team 2020).

Analytical predictions

In the case for a uniform distribution of step lengths, the 
number of contacts given I infected individuals is equivalent 
to the proportion of the arena expected to be covered by I 

circles of radius r . This is due to the model at each time 
point essentially randomly placing all individuals within the 
arena. This can be precisely formulated in the case where the 
boundary is periodic (that is movement is considered to be 
on a torus) (Hall 1988). Note this is the case for any type of 
turning angle distribution and contact distance.

Results

In general, it is clear that the negative quadratic given by 
the assumed mass-action law is not a good universal fit for 
the results, whereas the modified expression of [I(N − I)]� 
gives a quantitively better fit. The results of the simulations 
when using a constant step length of 1 unit and a contact 
radius of r = 2 units, with the infection being passed on with 
certainty given a contact ( pSI = 1 ), are shown in Fig. 2. In 
all panels, the solid curves correspond to differing values of 
the concentration parameter of the wrapped normal distribu-
tion, � , taking values of 0, 0.5, 0.7, 0.9, 0.95, and 0.99, going 
from dark to light respectively (recalling that values close to 

Fig. 1  A Example of a discrete 
RW described by locations 
Xt−1,Xt,Xt+1, with distance 
between locations (step-lengths) 
given by lt−1, lt, lt+1 and differ-
ence in direction of movement 
(turning angles) given as �t, �t+1 . 
The step-lengths and turning 
angles can be modelled by or 
drawn from probability func-
tions. B In the case for a CRW, 
the turning angle distribution 
would be centred around 0 
(mean = 0). C gives examples 
of three CRWs each with 
constant step length (1 unit) 
and turning angles drawn from 
a zero centred wrapped normal 
distribution; however, each has 
a different value for the con-
centration parameter, � , of the 
wrapped normal distribution: 
� = 0 (black)–corresponding 
to random movement; � = 0.7 
(red); � = 0.95 (green). Note 
the higher the value for � the 
straighter the movement
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0 give more random movement, and values close to 1 give 
straighter movement).

Focusing on how the density effects the results, we see 
that for relatively high densities the negative quadratic of 
the mass-action law is a good fit to the simulated results, but 
this goodness of fit is lost with decreasing densities, with the 
negative quadratic failing to demonstrate important features 
of the simulated results. Noticeably, as the density increases, 
the more similar the curves and at D = 1 the results are near 
indistinguishable. The best fitting negative quadratic curves, 
as predicted by mass-action, are shown in Fig. 2 by the blue 
dotted lines (Fig. 2a, c, e, g). For D > 0.02 , the simulations 
exhibit flatter peaks, steeper sides, and a negative skew-
ness compared with the best fitting negative quadratic. In 
all cases, for low or high numbers of Infected, the contact 
rate is higher than the predicted quadratic curve, often by 
orders of magnitude of 2–5. However, if we compare the 
results with a predicted growth of order [I(N − I)]� (Fig. 2b, 
d, f, h–red dashed), we note that the characteristics of the 
predicted curve more closely match the results, especially 
as the density increases.

It is clear, however, that none of the predicted curves 
accurately reflect the skewedness in the simulated results. 
Although this can be explained by considering that, after a 
few timesteps with k infected, we would expect all k infected 
individuals to be close to each other (due to the movement 
model) and their ‘reach’ for contacting susceptible indi-
viduals to be governed by the length of the perimeter of 
the shape that covers them. If we now consider precisely k 
susceptible individuals (equivalent to N − k infected), we 
expect them to be spread around the arena and not clus-
tered together in one group, as was the case for when there 
were k infected. Therefore, the length of the boundary here 
would be expected to be slightly greater. Were the process 
to be symmetric then the number of contacts in these two 
scenarios should be the same; however, as the number of 

contacts will be proportional to the length of the boundary 
between susceptible and infected and the second scenario is 
expected to have a larger boundary, we therefore expect a 
higher contact rate for N − k infected compared to k infected 
and, hence, a slight negative skew to the curves.

If we consider the optimal exponents found by the best 
fitting the [I(N − I)]� curve, across various parameter values, 
we can identify when the negative-quadratic of the mass-
action law is appropriate, the specific parameter values for 
when this occurs and the parameter values for when this is 
not suitable. Directly considering the values of � (Fig. 3), 
we note that as the density increases the value of � tends to 
1/2, regardless of the straightness of the movement (value 
of � ). The value of � is never greater than 0.6 except for the 
lowest density ( D = 0.02 ) with values of 𝜌 > 0.6 . That the 
value of � never reaches 1 indicates that the mass-action law 
is not appropriate in these settings. Interestingly, there is a 
critical value of the density, Dc , at which the higher � valued 
CRW leads to fewer contacts. This is shown in Fig. 2 with 
the order of the curves for D = 0.02 and D = 0.1 going from 
light to dark (high to low � ) whereas for D = 0.4 and D = 1 , 
this has switched with curves going from dark to light (low 
to high � ). In this model, with step length fixed at 1 unit, 
contact distance of 2 units, and a square arena, this change 
is seen to occur at around Dc ≈ 0.2 (equivalent to N = 500 ) 
(Supplementary Material File 3, Figure S1).

Changing the distribution of the step lengths from the 
fixed distance to the Rayleigh distribution does not cause 
any significant differences, although the Rayleigh distri-
bution does lead to a slight increase in the contact rate 
(Fig. 4a1–a4, b1–b4). Comparing the best fitting values of 
� for each distribution at each density and concentration 
parameter demonstrates that changing between these step 
length distributions does not alter the qualitative prop-
erties of the curves (Fig. 5). As expected, the uniform  
distribution (Fig. 4c1–c4) gives rise to curves matched 

Table 1  Detailing the parameters and values used for the simulations

Parameter Description Values

N Total number of individuals 50, 250, 1000, 2500
L Length of sides of simulation arena 50 units
D Density of individuals 

(

N∕L2
)

0.02, 0.1, 0.4, 1 individuals per sq. unit
� Concentration parameter of wrapped normal distribution for the turning angle 0, 0.5, 0.7, 0.9, 0.95 0.99
sl Step-length distribution - Fixed length: 1, 2 units

- Rayleigh Distribution ( � = 1)
- Uniform Distribution

r Contact distance (distance at which two individuals are deemed in contact) 0.5, 1, 2 units
pSI Probability of a successful contact given a susceptible and an Infected individual are 

within contact distance
pSI = 1

pSI = 0.5

pSI = r − dSI
pSI = 1∕(1 + dSI)

2

(where pSI = 0 whenever dSI ≥ r)
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almost perfectly by the predicted curve (dashed), regard-
less of value of the concentrations parameter. This pre-
dicted curve was found by calculating the percentage area 
of the arena expected to be covered by I disks of radius 2 

(the contact distance) as discussed in the “Analytical pre-
dictions” section. It is worth noting the contact rate for the 
uniform distribution gives values around 10 times higher 
than those from the fixed or Rayleigh distribution. The 

Fig. 2  Plots showing the num-
ber of contacts between suscep-
tible and infected as a function 
of the number of infected. 
Solid curves correspond to 
� = 0, 0.5, 0.7, 0.9, 0.95 and 0.99 
from dark to light, respec-
tively. In all cases, the step 
length was fixed at 1 unit; the 
contact distance was fixed at 
r = 2 units with probability 
of a successful contact given 
by pSI = 1 . Rows correspond 
to differing densities, D , of 
individuals relative to the area 
of the arena: a, b D = 0.02 
(equivalent to N = 50 ); c, d 
D = 0.1 ( N = 250 ); e, f D = 0.4 
( N = 1000 ); (g, h) D = 1 
( N = 2500 ). Blue dotted lines in 
a, c, e, g the first column show 
the best fitting negative quad-
ratic curve; dashed lines in b, d, 
f, h the second column give the 
best fitting curves of the form 
(I(N − I))� . In all cases, the best 
fitting curves were determined 
as those that minimised the sum 
of the squares of the residuals 
between the simulated results 
and the fitted curve
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uniform distribution also demonstrates a heavily positively 
skewed distribution as the density increases, although for 
lower densities the curves match closely to a quadratic 
mass-action curve (see Supplementary Material File 2 for 
the explanation of the positive skewness).

Considering when the rules describing a successful con-
tact change, the results are qualitatively similar as shown 
by the best fit curves producing near identical values for 
� across all concentration parameters (Fig. 6b). Figure 6a 
indicates the contact rate curves have been stretched by a 
constant, which is to be expected as these changes in rules 
simply reduce the number of contacts proportional to the 
expected value of the function for pSI (see also Supplemen-
tary Material File 3, Figure S2).

Allowing the contact distance, r , to decrease but keeping 
the step-length the same leads to the expected decrease in the 
number of successful contacts for a given number of infected 
(Supplementary Material File 3, Fig S3-6). However, this 
also results in an increase in the value of � , equivalent to 
the curves becoming more similar to the negative quad-
ratic (Fig. 7a–c). This is most noticeable for lower densi-
ties ( D = 0.02, 0.1 ; black and red lines, respectively, Fig. 7); 
however, � = 1 is only approached at the extremes, that is, 
when movement is very straight (high � ) and the value of r 
gets small relative to the step-length. If the ratio between the 
step-length and contact distance is increased further ( sl = 2 
units, r = 0.5 ; Fig. 7c), this trend continues with values of � 
seen to increase and the negative quadratic achieved ( � = 1 ) 
for the lower densities, across a broader range of � . At high 
densities ( D = 1 ) the value of alpha remains almost constant 

at 1/2, indicating the best fitting curve is actually the square 
root of the negative quadratic.

Discussion

Understanding how individuals interact and come into 
contact with each other has important implications in 
many fields, from ecology and epidemiology to robotics 
and smart cities. Here we have shown, via repeated simula-
tion, that including a simple model for individual move-
ment results in contact rates that can be well predicted 
as being proportional to [I(N − I)]� with � ≤ 1 . Crucially, 
this demonstrates that the negative quadratic as assumed 
in many models of contact rates is only appropriate in 
certain cases.

In general, it was shown that the density of individu-
als causes a large effect on the appropriate value of � , 
with decreasing densities having results well described 
by the negative quadratic of the mass-action law ( � = 1 ), 
whereas increasing densities were better described by the 
square root of the negative quadratic ( � = 1∕2 ). The sig-
nificance of the change in the value of � can be seen in 
the qualitative difference of the predicted curves in Fig. 2, 
with the better-fitting curves capturing important features 
of the simulated results, such as significantly higher con-
tacts for low numbers of Infected, which is important 
information for understanding and predicting the initial 
behaviour of disease and information spread. However, 
it should be noted that in most real-world settings the 
density would be expected to be lower than the small-
est value considered here ( D = 0.01 ) and only in certain 
cases could these higher values be achieved; such as large 
crowds, peak time commuter hubs, high density farming, 
and large insect swarms.

Interestingly, the density of the individuals relative to the 
area of the arena was found to affect the movement model 
which gave the greatest number of contacts, with low den-
sities requiring straighter movement, whereas higher densi-
ties required more random movement. That this change in 
straightness of movement affected the overall contact rate 
was not unexpected; however, that the density of individu-
als affected whether straighter or more tortuous paths gave 
rise to a higher contact rate was unanticipated. This could 
be explained by considering foraging behaviour of animals 
in areas of high resource value, which are characterised by 
highly sinuous movements (Patterson et al. 2008; Grecian 
et al. 2018). If we consider that at high densities individu-
als are constantly ‘close’ to one another and treating indi-
viduals as resources, implies that more random movements 
would be the most efficient. However, at low densities, 
we could consider the results analogous to the case for 
animals searching for resources. This would be similar to 

Fig. 3  Showing the best-fitting values of � against the turning angle con-
centration, � , for the curves shown in Fig. 2b, d, f, h. Colours indicate 
differing densities, with the following: black–D = 0.02 ; purple–D = 0.1 ; 
green–D = 0.4 ; orange–D = 1 . In all cases, the contact distance was 
r = 2 and pSI = 1
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the findings of Bartumeus et al. (2005) who showed that 
as a simple strategy for searching, CRWs with straighter 
movements were more efficient. The results here indicate 
that D ∼ 0.2 is the density for which the change between 
straighter and more random movement occurs, although 
there is no clear indication for why this is the value. It also 
appears to have a similar value for both a fixed and Ray-
leigh distribution of step lengths, but this would need to be 
further explored in order to be generalised.

That � does not tend to 1 as the density increases can be 
explained by noting that, at high densities, the spread of 
infection can be modelled as the growth of a circular wave 
with centre at the initial location of the original infected 
individual. This is because with increasing density the arena 
would appear homogeneous, with individuals densely and 
equally spread across the arena regardless of time-steps 
or movement model. Therefore, the infection will spread 
equally in all directions at each time-step, equivalent to a 
circular wave with a constant wavefront velocity, whereas for 
low densities individuals would not be densely and equally 
spread across the arena; therefore, the time between contacts 
would vary, causing the infected group to no longer grow 
equally in each direction and not resemble a circular wave. 
Assuming that the expected step length is not much larger 
than the contact distance, to prevent individuals from being 
able to ‘jump’ ahead of the wave front, then the wavefront of 
infection will always be ahead of the moving infected indi-
viduals and hence, the number of contacts is proportional to 
the increase in area that the wave covers in the next timestep. 
Importantly, this would not mimic the mass-action law as 
there is not an equal chance that at each time-step every 
individual is as likely to contact each other, since only indi-
viduals within the reach of the wavefront of infection will 
be in contact distance. This also explains why, as the density 
increases, the precise movement plays a less significant role 
in the contact dynamics (as seen in Fig. 2), as the movement 
does not have a large effect on the velocity of the wavefront, 
assuming the expected step-length is not much greater than 
the contact distance.

There are, however, clear limitations to these results. 
Notably the model for movement is discrete which assumes 
individuals ‘jump’ instantaneously between locations, and 

therefore, the passing of information/infection can only 
occur at these precise locations on their movement path 
(although varying values for r and the distribution of step 
lengths were investigated to mitigate this). Therefore, a con-
tinuous movement model would be more suitable. Whilst 
modelling such movements are possible (Johnson et al. 
2008; Michelot and Blackwell 2019), they are computation-
ally expensive and would not be expected to greatly change 
the results although this could be explored. Similarly, the 
process treats each individual as a mass-less point particle 
with no physical properties to a contact or interaction; that 
is, movement is not affected by two individuals coming into 
contact nor is movement adjusted to avoid collisions. This 
was purely for simplicity in the model and in keeping with 
other similar studies (Fofana and Hurford 2017; Ahmed 
et  al. 2021); however, more advanced individual based 
movement rules could be used to make this more realistic to 
animal movement, such as those developed for robotic group 
movement (Goldberg and Matarić 1999).

The movement model was strictly limited to a CRW, 
which is a common null model in movement and has been 
used in similar theoretical studies (Fofana and Hurford 2017;  
Ahmed and Petrovskii 2019). However, it does not usually 
accurately describe the complexity of movement (Fagan and 
Calabrese 2014). Recently, more complex models which 
combine both a local and long-term bias, termed biased cor-
related random walks (BCRW), have been developed and 
utilised and could be explored (Benhamou and Bovet 1992;  
Schultz and Crone 2001; Peleg and Mahadevan 2016; Bailey 
et al. 2018). Other models that have been used in similar 
contexts which allow for additional complexity in move-
ment include the truncated Levy walk (TLW) and composite 
correlated random walk (CCRW). TLWs assume sporadic 
large displacements between periods of localised Brownian 
motion, where the distribution of step lengths is described 
by a truncated power law (Rhee et al. 2011; Humphries et al. 
2013), whereas in a CCRW individuals switch between 
CRWs with different parametrisations (Benhamou 2007; 
Reynolds 2014). Such behaviour has been observed in a 
range of organisms’ movement, including mussels (Myti-
lus edulis) (de Jager et al. 2014; Reynolds 2014) and cells 
(Fricke et al. 2016; Huda et al. 2018), and in humans when 
self-organising in crowded spaces (Murakami et al. 2019). A 
simple extension of this work would be to consider the effect 
of these more complex movement models and their effect 
on the expected contact rate. Hurford and Fofana (2017) 
did consider a truncated Lévy walk and found it was quali-
tatively similar to a CRW, but a deeper exploration of these 
other movement models should be considered.

A further development would be to incorporate and allow 
for individual variation within the movement model. The 
importance of individual variation in movement within a 
population is gaining importance (Delgado et al. 2018; Jolles 

Fig. 4  Plots comparing the effect of different step length distribu-
tions. Panels a1–a4 used a fixed step length of 1 unit, panels b1–b4 
used a Rayleigh distribution with � = 1 , and panels c1–c4 used a 
uniform distribution. Curves shown correspond to the concentra-
tion parameter of the wrapped normal distribution, � , taking values 
� = 0, 0.5, 0.7, 0.9, 0.95 and 0.99 from dark to light, respectively. In 
all cases, the contact distance was fixed at r = 2 units with probability 
of a successful contact given by pSI = 1 . All results are for a square 
arena of length 50 units. Separate rows correspond to differing densi-
ties of the number of individuals relative to the area of the arena. The 
dashed black line in panels c1–c4 corresponds to the predicted curve 
as described in the “Analytical predictions” section

◂
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et al. 2020; Bailey et al. 2021b). Whilst variation in indi-
vidual movement is usually reported when analysing move-
ment data at the individual level, it is often averaged out 
at the group level with individuals’ movements assumed to 
be from the same underlying movement model. Similarly, 

many theoretical and simulation studies assume individual 
movement is homogeneous (Bailey et  al. 2018; Ahmed 
and Petrovski, 2019; Pang et al. 2019). However, including 
greater flexibility in the parameters describing the individual 
level movement should increase the realism of the simula-
tions. Similarly, throughout these simulations, the individual 
agents were not seen to interact with each other. In certain 
cases, this assumption of non-interaction may be accept-
able, specifically for simpler individuals (microorganisms, 
insects, etc.) or in crowds where interactions are not expected 
to effect movement other than acting as an obstacle. How-
ever, in groups where movement can be driven by the rules 
of interactions (such as schools of fish, flocks of birds, and 
packs of mammals), then these would need to be considered. 
Exploring this movement would involve incorporating some 
group level movement models, such as those from Codling 
and Bode (2014), Langrock et al. (2014), Ose and Ohmann 
(2017), Jablonski et al. (2018), and Kay and Ohmann (2018). 
This could be used to explore the spread of infection/informa-
tion through a large moving group of individuals, although as 
with the individual level, work to include individuality within 
these models should also be explored.

These results are indicative of simple movement in a fea-
tureless space, whereas more realistic animal movement not 
only involves interactions within the environment but will also 
depend on the drivers for an individual to move. For example, 
many animals display home-range behaviours, in which they 
move through specific areas revisiting similar locations, giving 
sites of high fidelity connected by common movement corri-
dors (Powell 2000). This can be for various reasons, including 

Fig. 5  Comparing the best-fitting values of � against the turning 
angle concentration, � , for different step-length distributions. Solid 
lines correspond to step-lengths with a fixed length of 1 unit and 
dashed-lines correspond to step-lengths coming from a Rayleigh 
distribution with � = 1 . Colours indicate differing densities, with: 
black–D = 0.02 ; purple–D = 0.1 ; green–D = 0.4 ; orange–D = 1 . In 
all cases the r = 2

Fig. 6  Comparing different rules for the probability of a successful 
contact, pSI . Panel a shows the curves corresponding to the following 
rules: (i) pSI = 1 (purple); (ii) pSI = 0.5 (dark red); (iii) pSI = r − dSI 
(with pSI = 0 if dSI ≥ r ) where dSI is the distance between the sus-
ceptible and infected individuals (light blue); (iv) pSI = 1∕

(

1 + dSI
)2 

(with pSI = 0 if dSI ≥ r ) (gold). Simulations ran with the following: 
D = 0.4 ( N = 1000 ), � = 0.7 , contact distance fixed at r = 2 , step-
length fixed at 1 unit (results for all other values of � are shown in 
Supplementary Material File 3, Figure S2). Panel b displays the best 
fitting � values for each pSI rule at all � values
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patrolling, hunting/foraging, searching for mates, and defending 
territory (Börger and Fryxell, 2008; Powell and Mitchell 2012), 
and has been observed across the animal kingdom from fish 
(Kramer and Chapman 1999; Welsh et al. 2013) to mammals 
(Harris et al. 1990; Bowman et al. 2002) to birds (Ottaviani 
et al. 2006; Kolts and McRae 2017). In this type of movement, 
the contact rates between such animals would be more depend-
ent on the crossover of these home-ranges and would depend 
less upon the model of movement (be it a CRW, Brownian 
motion, etc.). Recently, advances have been made in statisti-
cally predicting the expected number of contacts in home range 
movement (French et al. 2019; Martinez-Garcia et al. 2020; 
Ferrarini et al. 2021; Noonan et al. 2021), though these methods 
still rely on the acquisition of accurate telemetry data in order 
to inform the statistical models.

A final simple extension to this work would be to con-
sider how and if the results are affected by incorporating 
some of the more complicated models used in epidemiology. 
For example, the SIR model allows for individuals to transi-
tion from being infected to a new state (usually labelled as 
recovered or removed). In this case, we would expect the 
results to slightly differ from those found here, as the recov-
ered state can be thought as reducing the population size of 
susceptible and infected, which is equivalent to reducing 
their density and we would still be only interested in the 
contact rate between susceptible and infected. As density 
has been shown to have a large effect on the contact rate 
then we would expect this to cause a change in the results, 
with the transition rate from Infected to recovered being the 
important parameter. More complex models could also be 
considered, such as those that allow for reinfection, immi-
gration/emigration, or differing levels of susceptibility.

Whilst work has been done on incorporating movement 
directly into models of information/disease spread (Fofana 

and Hurford 2017; White et al. 2018), due to the difficulty 
of incorporating the displacement of even a relatively sim-
ple model of movement, such as a CRW, within the PDE 
framework of epidemiology, has resulted in simulations 
being the general approach to disease modelling when 
directly including movement. As stated by Fofana and Hur-
ford (2017), incorporating these more complicated models 
of movement into the governing set of PDEs is an impor-
tant area of research. Whilst we did not attempt the PDE 
approach, the results indicate that more complex movement 
does have an effect of the underlying assumptions of sim-
ple measures inherent in information/disease spread models 
and, therefore, work to fully incorporate and explore move-
ment dynamics within the governing equations of disease/
information spread is important. Such an analytical approach 
should also reveal the reasons behind other findings here, 
such as the location of the maximum number of contacts and 
the value for the critical density, Dc , as well as giving a more 
precise relationship for the number of contacts compared to 
the naïve approximation of [I(N − I)]� used here.
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