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Abstract
In this study, we present a cohort study involving 106COPD patients using portable environmental sensor nodes with attached

air pollution sensors and activity-related sensors, as well as daily symptom records and peak flow measurements to monitor

patients’ activity and personal exposure to air pollution. This is the first studywhich attempts to predict COPD symptoms based

on personal air pollution exposure. We developed a system that can detect COPD patients’ symptoms one day in advance of

symptoms appearing. We proposed using the Probabilistic Latent Component Analysis (PLCA) model based on 3-dimen-

sional and 4-dimensional spectral dictionary tensors for personalised and population monitoring, respectively. The model is

combined with Linear Dynamic Systems (LDS) to track the patients’ symptoms.We compared the performance of PLCA and

PLCA-LDS models against Random Forest models in the identification of COPD patients’ symptoms, since tree-based

classifiers were used for remotemonitoring of COPD patients in the literature.We found that there was a significant difference

between the classifiers, symptoms and the personalised versus population factors. Our results show that the proposed PLCA-

LDS-3Dmodel outperformed the PLCA and the RFmodels between 4 and 20% on average. When we used only air pollutants

as input, the PLCA-LDS-3D forecasting results in personalised and population models were 48.67 and 36.33% accuracy for

worsening of lung capacity and 38.67 and 19%accuracy for exacerbation of COPDpatients’ symptoms, respectively.We have

shown that indicators of the quality of an individual’s environment, specifically air pollutants, are as good predictors of the

worsening of respiratory symptoms in COPD patients as a direct measurement.

Keywords Internet of things (IoT) in Healthcare � Remote monitoring systems � Personal air pollution exposure �
Chronic obstructive pulmonary disease (COPD) � Probabilistic latent models

1 Introduction

Obtaining comprehensive information about patients’ daily

symptoms and exposure to acute risk factors can aid doctors

in the accuracy of the diagnosis process as well as in the

rehabilitation of patients. Moreover, it can assist patients by

suggesting alterations to their behaviour to prevent wors-

ening of their symptoms. Having greater evidence-based

information can also help policymakers to make better

decisions to minimise citizens’ risk, improving both their

health and quality of life. According to themedical literature,

daily self-reported symptoms correlate with patients’ dete-

rioration. Provision of a personal digital health system that

encapsulates the recording of daily symptoms, personal

environmental exposure and activities of patients’ could help

provide a solution for effective self-monitoring of symptoms

and vital signs. Moreover, it could prevent or decrease hos-

pital admissions caused by severe worsening of symptoms

(‘‘exacerbations’’) using such systems to notify patients as

early as possible. Such a system needs to learn and adapt to

each patient’s symptom responses and dynamic environ-

ment, while taking into account the overall pattern.

While there are conventional physiological factors that

can be used in the prediction systems [1–3], such as body

weight, pulse rate, SpO2, there still remains a need for

investigation to understand the effects of environmental

factors. Moreover, factors such as bodyweight can be

chronic predictors, but not acute day to day predictors,

which is what we aim to demonstrate in this study. By

utilising environmental factors in the prediction, we aim toExtended author information available on the last page of the article
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design behavioural interventions to reduce risk of wors-

ening of symptoms and/or exacerbation. These interven-

tions would be in addition to any clinical interventions. The

two approaches are complementary, not duplicative.

This is the first study which attempts to predict COPD

symptoms based on personal air pollution exposure

observed by using portable environmental sensor nodes

with attached air pollution sensors. In this study we further

extend our preliminary work in [4] by conducting numer-

ous new experiments that take into account the following

factors: (i) five different classification models that includes

two new models that can take into account the season of the

year; (ii) population versus personalised models in order to

explore the effect of number of participants on our models;

(iii) with and without personal coverage threshold to

investigate the performance in symptom identification

when participants carry our sensors and when they leave it

at home running; (iv) three different sets of sensory input

variation to quantify the effect of all sensory input, air

pollutants and peak flow separately; (v) two different fea-

ture sets to explore the effect of rich spectral feature set

versus simple statistical features.

2 Background

There have been several remote monitoring studies in the

detection of exacerbations of COPD patients’ symptoms

and various prediction models and data modalities used in

these studies [1–3, 5–7]. A Bayesian Network Model was

applied to self-reported symptoms and peak flow mea-

surements in order to predict the exacerbations of COPD

patients in [5]. A Linear Discriminant Classification tech-

nique applied to systolic and diastolic blood pressure,

pulse, saturation in [1]. In contrast to our study, the authors

removed the recovery period (i.e. transient of symptom)

from their data set in [1]. In [2], a multi-level logistic

regression model was used to predict exacerbations from

oxygen saturation, pulse rate and peak flow measurements.

These studies did not address the forecasting of exacerba-

tions of COPD patients.

In [6], the researchers applied a Probabilistic Neural

Network on daily questionnaire data to predict the exac-

erbations of COPD patients’ symptoms. There is not ade-

quate information regarding the training and testing

methodology of this study nor a detailed analysis of the

predictions made by this model. Moreover, although the

authors argue that it is an early prediction system, there is

little evidence that this system is a forecasting system. In

another study [3], a regression tree and relatively rich

physiological parameters, such as respiratory and heart

rate, body weight and temperature, and peak flow mea-

surements, were used to forecast exacerbations one day in

advance. They found that the most predictive power was

obtained by using bodyweight, SpO2 and peak flow mea-

surements. In [7], a k-means clustering approach was used

for forecasting the exacerbations based on questionnaire

data. However, the authors did not include the recovery

period in their analysis. They found that they can forecast

the onset of exacerbations an average of 4 to 6 days in

advance. Nonetheless, these studies fell short in using

dynamic systems in the forecasting process and did not use

any sliding windows to process data continuously. It is

possible to find an extensive review of recent studies about

remote monitoring of COPD patients in [8].

While most of the studies mentioned above managed to

obtain reasonably good results in their predictions, the

majority did not focus on forecasting exacerbations, nor did

they incorporate personal air pollution exposure measure-

ments. Therefore, our study is the first of its kind to attempt

forecasting symptoms and exacerbations as well as all three

temporal states of symptoms (i.e. onsets, transients, offsets)

directly from high-resolution personal air pollution exposure

measurements and peak flow measurements. Having such

systems could provide GPswith evidence-based information

and could be used for behavioural interventions to reduce

risk of worsening of symptoms and/or exacerbations.

3 Methodology

3.1 Data collection methodology

Patients were approached by GPs through the Clinical

Practice Research Datalink (CPRD), an anonymised gen-

eral practice records database containing ongoing primary

care medical data [9]. Participants were invited to a clinic

and provided with a PAM (see Fig. 1). They were

instructed to keep the monitor at home and take it out with

them for a minimum of once a week for up to 6 months. At

the beginning of the monitoring phase, the participants

filled a questionnaire to provide information regarding their

lifestyle, and residence characteristics, including type of

cooker used in the home (e.g. wood burning stove, gas, or

electric) and car ownership. Moreover, spirometry readings

were collected at the initial appointment and subsequent

follow-up visits as appropriate. During the monitoring

period, participants completed daily diary cards of their

symptoms, any changes in their medications and treatment,

and sleep disturbance, and to measure and record their peak

expiratory flow using a peak flow meter by taking the

average of three consequent peak flow measurements. We

used a spirometer device in the evaluation of the COPD

patients at the hospital. A replacement was recruited if at

any stage the wearing compliance of the PAM was low, or

the participant chosen to withdraw. Throughout the
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monitoring period, participants received phone calls from

the research assistant to check how they were coping with

the study. Six weeks into the monitoring period, partici-

pants were suggested to visit a clinic with the research

assistant in order to discuss any problems with the PAMs or

diary cards. At the end of the monitoring period, partici-

pants were invited to a final appointment to return the

PAMs and completed diary cards. More detailed informa-

tion about the data collection methodology can be found in

[10] and about the instruments used in the study can be

found in [11–13].

3.2 Motivation and system overview

Figure 1 illustrates the proposed framework. The overall

aim of the proposed framework is the creation of a system

for the detection of worsening of COPD patients’ symp-

toms which can also support multivariate tracking of

symptoms over time. A comprehensive comparison has

been made between Bayesian Tensor Factorisation and

various feature selection techniques and traditional classi-

fiers (i.e. RFs, Lasso, SVM) in [14]. While the results

showed that Tensor Factorisation techniques have outper-

formed the traditional techniques when the dimensionality

of datasets increased, the obtained eigen tensors need to be

fed into a classifier to carry out a classification task as in

[15]. The shortcoming of these studies is either they cannot

deal with multi-label classification or time series prediction

problems. Instead, we used a PLCA method [16] that can

predict multiple sets of outcomes in high dimensional

tensor format at the same time. The tensor and matrix

factorisation techniques do not model the transition of

time-axis and produce continuous output. Therefore, it is

possible to get fragmented output rather than a smooth

predictive outcome. As a solution, we applied a hybrid

approach, that is proposed in [4, 17]. The probabilistic

approach combines the PLCA model with Markov chain of

latent variables or State Space Models, where each obser-

vation conditioned on the state of the corresponding latent

variable. We compared our model against Random Forest

(RF) classifier. It is a multi-class and multi-label classifier

and proven to be a powerful pattern recognition technique.

Indeed, RF was recently shown the best performance

among 179 classifiers arising from 17 families (e.g.

Bayesian, Support Vector Machines, Neural Networks,

boosting, bagging, nearest neighbours) on 121 data sets

from University of California, Irvine (UCI) Machine

Learning Repository1 in an extensive study [18]. Although

it was not an RF model, Tree Classifiers were also used in a

recent study on remote monitoring of COPD patients [3].

We developed two different PLCA models: (i) person-

alised PLCA models per participant (i.e. a 3rd order dic-

tionary tensor: symptom type, temporal state of the

Fig. 1 The proposed framework for the prediction of patients’ COPD

symptoms. The Personal Air Monitor (PAM) being carried on the

bottom left and peak flow meter on the top left. Corresponding

meanings of the abbreviations are as follows: T: Time (daily); S:

Symptoms; A: Temporal state of a symptom (i.e. Onset, Transient,

Offset); F: Spectral features extracted from sensory data; M: Seasons.

The window size is 8 days and step size is 1 day

1 https://archive.ics.uci.edu/ml/index.php.
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symptoms, and frequency) and (ii) a population PLCA

model (4th order dictionary tensor: patients, symptom type,

temporal state of the symptoms, and frequency). The sys-

tem takes multi-channel sensory observations as input. The

specific observations include Nitric Oxide (NO), Carbon

Monoxide (CO), Particulate Matter \1 lm in diameter

(PM1), Particulate Matter\ 2.5 lm in diameter (PM2.5),

Particulate Matter \10 lm in diameter (PM10), relative

humidity (RH), background noise, triaxial accelerometer,

temperature, spatial coordinates (GPS). Daily peak flow

measurements of each participant were also used in our

experiments as an input and as a binarised output obtained

based on each participant’s median peak flow measure-

ments. The model uses a pre-extracted dictionary of

spectral templates in the form of tensors. Non-negative

Matrix Factorisation (NMF) approach used in the creation

of the dictionary templates. Symptom tracking using LDS

can take place within the PLCA inference or can take place

as a post-processing step. We used the LDS within the

PLCA model. The model output is finally converted into a

list of symptoms identified along with the temporal states,

such as onset, transient, and offset. Then, a thresholding

approach is applied to the output, where we compute sets

of metrics, F-measure, for all possible permutations and

use the best threshold values for each symptom in the

testing phase.

3.3 Preprocessing

The lags determines how often an incident may occur. In our

experiments, we computed lags based on peak flow mea-

surements of patients in order to determine the window size.

We individually calculated autocorrelations and lags of

patients and then calculated the average and median of the

outputs to determine the window size for entire cohort. We

used the small lag as window size (i.e. 8 days) both for

environmental and health data streams. We used Discrete

Wavelet Transform (DWT), particularly Daubechies wave-

lets to decompose the environmental data into lower reso-

lution components, and extracted magnitude, acute and

cumulative spectral and statistical features, such as Spectral

Flux, Spectral Centroid, Spectral Energy, Average, Median,

Kurtosis, Variance, Skewness using a sliding window in the

feature extraction phase with a window size of 8 days.

3.4 Probabilistic latent component analysis
(PLCA)

The applied PLCA models take multi-channel sensor

readings, Vf ;t and approximates it as a bivariate probability

distribution over time and frequency, P(f, t). This quantity

then is factored into a frame probability P(t), which is

computed directly from the observed data, and a condi-

tional distribution over frequency Pðf j tÞ. The frames are

treated as repeated draws from an underlying random

process characterised by Pðf j tÞ. It can model this distri-

bution with a mixture of latent factors as follows:

Pðf ; tÞ ¼PðtÞPðf j tÞ
¼PðtÞ

X

z

Pðf j zÞðPðz j tÞ ð1Þ

where z corresponds to the component index, P(t) is the l1

norm for the t-th spectral features frame (a known quan-

tity), Pðf j zÞ is the spectral template that corresponds to

the z-th component, and Pðz j tÞ is the activation of the z-th

component over t. It is effectively same as NMF since there

is only a single latent variable z in Eq. (1). However, it has

an advantage of probabilistic interpretation, which enables

us to introduce additional parameters and constraints.

3.4.1 PLCA 3D

Suppose now that we wish to model a mixture of S

symptoms, where each source has A possible temporal

states. The PLCA allows us to extends the model described

in Eq. (1) to accommodate these parameters as follows:

Pðf j tÞ ¼ PðtÞ
X

s;a

Pðf j s; aÞPðs j tÞPða j s; tÞ ð2Þ

The model decomposes the approximated spectral features

P(f, t) into a dictionary of spectral templates per symptom

s, and temporal state of symptom a, as well as probability

distributions for symptom activations. We developed two

different models for our experiments, namely, PLCA-3D

and PLCA-4D models. The PLCA-3D model is used in

both personalised and population level symptom detection.

It is formulated as in Eq. (2). The PLCA-4D model is only

used in the population study, where we extended the pre-

vious model by taking into account seasonality of symp-

tom, m, in order to see the effect of seasonal change on the

symptom detection. It is formulated as in Eq. (3):

Pðf j tÞ
¼ PðtÞ

X

m;s;a

Pðf j m; s; aÞPðs j tÞPða j s; tÞPðm j s; tÞ

ð3Þ

where s 2 f1; :::; Sg denotes the symptom class, a 2
f1; :::;Ag denotes the temporal state of symptom, and m 2
f1; :::;Mg denotes the seasonality of symptom. P(t) is

defined as
P

f Vf ;t, which is a known quantity. It corre-

sponds to the sum of all spectral features for each time

frame t. Each t corresponds to spectral features calculated

for the last 8 days. For the PLCA-3D, by applying NMF on

the extracted features, we obtained a 3-dimensional tensor
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dictionary Pðf j a; sÞ that contains the spectral features for

each patient’s symptom s, temporal state a. Pðs j tÞ is the
time-varying symptom activation. Pða j s; tÞ represents the
activation of temporal state of each symptom, s, across

time t. Similarly, for the PLCA-4D, we prepared a 4-di-

mensional tensor dictionary Pðf j m; s; aÞ that represents

the spectral features, f, symptoms, s, temporal states of

symptoms, a, and additionally, the seasonality of symp-

toms, m. Pðm j s; tÞ represents the seasonality activation per
symptom s, across time t.

To be regarded as probabilities, spectral features Pðf j
s; aÞ are normalised with respect to f as to sum to one.

Moreover, Pðs j tÞ, Pða j s; tÞ, and Pðm j s; tÞ are similarly

normalised with respect to s, a, and m, respectively. On the

contrary, Pðf j tÞ and P(t) are not normalised since they

carry information on the energy of the spectral features.

Nonetheless, since P(t) and P(f, t) are cancelled out

through the partition functions, this doesn’t affect infer-

ence. The unknown model parameters, Pðs j tÞ, Pða j s; tÞ,
and Pðm j s; tÞ, were estimated using iterative update rules,

Expectation-Maximisation (EM) algorithm. For the E-step

of the PLCA-3D model, the following posterior is

computed:

Pðs; a j f ; tÞ ¼ Pðf j s; aÞPðs j tÞPða j s; tÞP
s;a Pðf j s; aÞPðs j tÞPða j s; tÞ ð4Þ

For the M-step of PLCA-3D model, Pðs j tÞ and Pða j s; tÞ
are updated using the posterior of Eq. (4):

Pðs j tÞ ¼
P

a;f Pðs; a j f ; tÞVf ;tP
s;a;f Pðs; a j f ; tÞVf ;t

ð5Þ

Pða j s; tÞ ¼
P

f Pðs; a j f ; tÞVf ;tP
a;f Pðs; a; j f ; tÞVf ;t

ð6Þ

3.4.2 PLCA 4D

In our population study, we used the PLCA-4D model,

where we incorporated a seasonality variable, m, in our

model to capture the seasonal change in our predictions.

Specifically, it captures 4 different seasons (i.e. spring,

summer, autumn, winter) in our model. Thus, we formu-

lated our problem by using the following equations. For the

E-step of the the PLCA-4D, the following posterior is

computed:

Pðm; s; a j f ; tÞ

¼ Pðf j m; s; aÞPðs j tÞPðm j s; tÞPða j s; tÞP
m;s;a Pðf j m; s; aÞPðs j tÞPðm j s; tÞPða j s; tÞ

ð7Þ

For the M-step of the PLCA-4D model, Pðs j tÞ, Pða j s; tÞ,
and Pðm j s; tÞ are updated using the posterior of Eq. (7):

Pðs j tÞ ¼
P

m;a;f Pðm; s; a j f ; tÞVf ;tP
m;s;a;f Pðm; s; a j f ; tÞVf ;t

ð8Þ

Pða j s; tÞ; ¼
P

m;f Pðm; s; a j f ; tÞVf ;tP
m;a;f Pðm; s; a j f ; tÞVf ;t

ð9Þ

Pðm j s; tÞ; ¼
P

a;f Pðm; s; a j f ; tÞVf ;tP
m;a;f Pðm; s; a j f ; tÞVf ;t

ð10Þ

Once we obtained our models, we further apply constrains

to deal with sparsity of certain unknown model parameters.

Due to the fact that only a few symptom classes are

expected to occur at a given time frame, we impose spar-

sity on the symptom detection Pðs j tÞ. The sparsity con-

straints are applied by following a similar method to the

one used in [19], by changing the update Eqs. (5), (8) as

follows:

Pðs j tÞ ¼
ð
P

a;f Pðs; a j f ; tÞVf ;tÞjP
sð
P

a;f Pðs; a j f ; tÞVf ;tÞj
ð11Þ

Pðs j tÞ ¼
ð
P

m;a;f Pðm; s; a j f ; tÞVf ;tÞjP
sð
P

m;a;f Pðm; s; a j f ; tÞVf ;tÞj
ð12Þ

In order to lower the entropy in Pðs j tÞ and to promote

sparsity, we set j [ 1 (i.e. typical values are between 1.1

and 1.5). We set j to 1.1. Due to the fact that Pðf j s; aÞ and
Pðf j m; s; aÞ was pre-extracted and considered as fixed

variable, we have not used any update rule for the symptom

feature templates.

We initialised the unknown parameters Pðs j tÞ,
Pða j s; tÞ, Pðm j s; tÞ in the EM updates with random val-

ues between 0 and 1. We iterated Eqs. (5) and (6) for the

PLCA-3D model, and Eqs. (8)–(10) for the PLCA-4D

model until convergence. In our experiments, we found 40

iterations to be sufficient. For both of the PLCA models,

the obtained output is a 2-dimensional non-binary repre-

sentation of symptom activations over time, given by

Pðs; tÞ ¼ PðtÞPðs j tÞ with dimensions of S� T . Essen-

tially, the output created by calculating the posterior

probability of each symptom over all possible symptoms

(i.e. Pðs ¼ 1 j tÞ;Pðs ¼ 2 j tÞ; :::;Pðs ¼ S j tÞ) weighted

by energy of the spectral features. The PLCA model output

P(s, t) contains the non-binary activation of overlapping

symptoms s over time t. However the models of Eqs. (2)

and (3) do not support any temporal constraints. Thus, they

can lead to temporally fragmented output. Here, we used

LDS to perform symptom tracking.

3.5 Linear dynamic systems (LDS)

LDS is a special case of State Space Models (SSM), where

the latent and observed variables are multivariate Gaussian

distributions, and their means are linear functions of their
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parent states. LDS estimates the state z 2 Rn of a discrete-

time controlled process that is governed by the linear

stochastic difference equation given below:

ztþ1 ¼ Azt þ �t ð13Þ

ytþ1 ¼ Hztþ1 þ dt ð14Þ

where zt�1 is the hidden state, A represents the transition

model, and � is the process noise, yt is the observation, H is

the observation model. In addition, the variable t represents

the time step in the tracking process. The observations

made are m-dimensional with a measurement y 2 Rm. The

random variables �t the process noise and dt represent the
measurement noise. They are assumed to be independent of

each other with normal probability distribution as given in

the following equation:

�t �Nð0;QÞ; ð15Þ

dt �Nð0;RÞ ð16Þ

where Q is the process noise covariance and R is mea-

surement noise covariance which change at each time step.

Figure 2 shows a graphical illustration of an LDS system.

3.5.1 Learning LDS parameters

In our LDS model, we assume that symptom activation

P(s, t) is a ‘noisy’ observation yt and latent states zt corre-

spond to our desired output. Moreover, the latent variable

space of our LDSmodel includes ‘velocity’ values _zt for each
symptom class, signifying the difference in amplitude values

in the symptom activationmatrixP(s, t) across adjacent time

frames. By initialising Pðs j tÞ in the EM updates with a

binarymask that corresponds to the ground truth annotations,

the resulting output only has nonzero activations in the time

instants and classes corresponding to ground truth symp-

toms. Given a fully observed data, once can estimate

transition states of the state space models, as it has been

explained in [20]. Thus, given our fully observed data, we

estimated the transition states, A andH, by solving the least

squares problem for zt�1 ! zt and zt ! yt.

JðAÞ ¼
X

t

ðzt � Azt�1Þ2 ð17Þ

JðHÞ ¼
X

t

ðyt �HztÞ2 ð18Þ

Then, we assumed process and observation noise covari-

ance matrices (i.e. Q and R) to be diagonal in the form of

Q ¼ aI and R ¼ bI, which scaling parameters, a; b 2 R

estimated from training data. We set our a and b to 0.2 and

0.1, respectively. Note that while A represents transition

states of LDS, A represents temporal states of symptoms in

our equations.

3.5.2 LDS inference and postprocessing

In the inference phase, we estimate model posterior of the

LDS model, which is represented as:

Pðztjy1:tÞ ¼ Nðztjlt;RtÞ. We computed the posteriors by

using the Kalman Filter equations given in [20–22]. Our

probabilistic process is based on Gaussian distribution.

Following the prediction step calculations of the stochastic

difference equations given in Eqs. (13) and (14), once we

initialised our covariance matrix, E½ðzk � ẑkÞðzk � ẑkÞT �,
we calculated the prediction of the covariance matrix as

follows:

R̂tþ1 ¼ ARAT þQ ð19Þ

To update the estimate, we obtained the residuals, r, by the

calculating the difference between our predicted observa-

tion and the actual observation as follow:

rtþ1 ¼ ytþ1 � ŷtþ1 ð20Þ

ŷtþ1 ¼ HAẑtþ1 ð21Þ

In order to calculate the weight that needs to be placed on

the error signal, we calculated the Kalman gain matrix, K,

by following equation:

Ktþ1 ¼ R̂tþ1H
T þ ðHR̂tþ1H

T þ RÞ�1 ð22Þ

Subsequently, we minimised the Mean Squared Error

(MSE) and updated the estimate for the state and covari-

ance matrices:

ztþ1 ¼ ẑtþ1 þ ðKtþ1rtþ1Þ ð23Þ

Rtþ1 ¼ ðI�Ktþ1HÞR̂tþ1 ð24Þ

where I is the identity matrix.The output of the symptom

tracking process is the posterior mean lt (i.e. which is

represented as zt). After including the computed velocity

Fig. 2 A graphical representation of a Linear Dynamic System with

time derivatives for tracking. The hidden states, first derivative of

hidden states, and observations, and time steps in tracking process are

labeled as z, _z, y, t, respectively
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into the hidden states, our hidden states are defined as:

zt ¼ ðz1t. . .zSt _z1t. . . _zStÞ, where the first set of latent vari-

ables corresponding to lt and the second set of latent

variables corresponding to lt�1.

While the posterior effectively represents the detected

symptom s, it still needs to be post-processed to obtain a

binary symptom representation, so that it can be compared

with ground truth data. We achieved this by using a simple

thresholding by using f-measure calculations to find the

optimum cut-off threshold points, hs, for each symptom

class and temporal state. To find the optimum cut-off point,

we used Receiver Operating Characteristic (ROC) function

and then computed TPRþ ð1� FPRÞ, where TPR is True

Positive Rate and FPR is False Positive Rate. Then, we

sorted the results and took average of top 5 optimum

thresholds to be used in our testing phase.

4 Evaluation

4.1 Description of dataset

Overall, 106 participants were recruited over a period of

two years. Each was asked to carry the PAM and keep daily

records for six months. We collected over 54 million data

points. It is the largest data set of its kind in the world.

Figure 3 shows the patient monitoring coverage during our

study (up to 182 days). Reasons for low coverage included

dropping out of the study, sensor malfunction, holiday

periods and incapacitating illness.

Figure 4a depicts the number of symptom onsets and

Fig. 4b depicts the number of symptom transients (i.e.

healing period) for participants who carried our sensors for

more than 60% of the time during our study (n ¼ 50). To

examine the effect of exposure coverage, we conducted

experiments with participants who carried our sensors for

more than 60% of the observation as well as with no per-

sonal coverage threshold. The number of symptom onsets

showed a large variance depending on the symptom. The

highest variation was seen for worsening of peak flow

measurements, on average 10 onsets. It is worth noting that

only exacerbations and peak flow (lung capacity) were

considered biomarkers, as others were based on the

patients’ personal diary symptom records. ‘Exacerbations’

were assigned by a respiratory clinician upon completion

based on a combination of symptoms, medication use and

lung capacity. We calculated the median peak flow for each

participant, then transformed the daily peak flow mea-

surements into binary outputs based on the median (i.e.

below the personal median 1 and above the personal

median 0.). We named this biomarker, ‘‘worsening of peak

flow’’. We annotated the temporal states of the symptoms

(i.e. onset, transient, offset) in order to use in our prediction

models. The onset of a symptom was considered as the first

day appearance of a symptom, transient of a symptom was

considered as the recovery period between the first day

appearance of a symptom and the last day appearance of a

Fig. 3 The ratio of personal exposure coverage. The red line indicates

the 60% (50 participants) exposure coverage limit

Fig. 4 a, b show the number of occurrence of the symptom onsets and

transients, respectively
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symptom, and offset was considered as the last day

appearance of a symptom.

Most of the symptoms had a low number of onset occur-

rences, such as being hospitalised, using inhalers, steroids,

experiencing sputum, taking oxygen. However, this was not

the case for peak flow measurements where the number of

occurrences and variance in worsening of peak flow mea-

surements was high. It can be seen in Fig. 4b that there was

frequent symptom transients in the cohort study. In other

words, although the participants may not have experienced

their symptomsvery often, it could take a long time to recover.

This posed a particular data analysis challenge; fewer symp-

tom onsets and a data set dominated by transients.

4.2 Training and testing

Our experiments were designed to compute the F-measures

for the combinations of the following factors:

• Classifiers (CLSR): RF, PLCA-3D, PLCA-LDS-3D,

PLCA-4D, PLCA-LDS-4D.

• Symptoms (SYMP): Worsening of peak flow, exacer-

bations, sleep disturbance, wheese, breathlessness,

cough, sputum, oxygen, inhalers, antibiotics.

• Number of participants (NOPA): personalised analysis,

population analysis.

• Personal exposure coverage (PC): 60%, no threshold.

• Sensors (SENS): all sensors (i.e. NO, CO, PM1, PM

2.5, PM 10, Relative Humidity, triaxial accelerometer,

temperature, audio from microphones, GPS data, and

peak flow measurements); only air pollutants (i.e. NO,

CO, PM1, PM2.5, PM10, relative humidity); only peak

flow measurements.

• Spectral features (FEAT): only average; a rich set of

spectral features (i.e. average, median, variance, max-

imum, minimum, spectral flux, kurtosis, entropy,

energy, skewness).

4.3 Understanding the effects of different
factors

To test significance of the factors and their interaction, we

conducted two four-way Multivariate Analyses of Variance

(MANOVA) due to large numbers of subcategories. The first

MANOVA (MANOVA-I) test involved number of partici-

pants (i.e. personalised versus population), classifiers (i.e.

RF, PLCA-3D, PLCA-4D, PLCA-LDS-3D, PLCA-LDS-

4D), sensors (i.e. all sensors including peak flow measure-

ments, only air pollutants, only peak flow measurements),

and symptoms (i.e. Worsening of peak flow, worsening of

exacerbations, sleep disturbance, wheese, breathlessness,

cough, sputum, oxygen, inhalers, antibiotics) as independent

variables. The second MANOVA (MANOVA-II) test

involved classifiers, symptoms, personal coverage threshold

(i.e. minimum of 60% and no coverage limit), and features

(i.e. rich spectral feature set, only average) as independent

variables. There were four independent variables in both of

the MANOVA tests: the F1-measure values for the overall

symptom detection, F1-measure values for temporal state

detection, namely, onset, transient, and offset. The statistical

MANOVA-I results are presented in Table 1 and MAN-

OVA-II results are presented in Table 2. The definitions in

[23] have been adopted to discuss the effect sizes: small

effect size (g2 � 0:01), medium effect size

(0:01� g2 � 0:06) and large effect size (0:06� g2 � 0:14).

We also provided supplementary materials for the 95%

confidence interval differences between classifiers in

Appendix A.1 and symptoms in Appendix A.2, and addi-

tional visualisations of results in Appendix A.3.

4.3.1 Classifiers

There was a highly significant effect of the classifiers

(CLSR) on the overall and temporal symptom states pre-

dictions. The overall symptom prediction results were

highly significant with Fð4; 672Þ ¼ 59:742; p\:001. The

effect size of the classifier factor was very large, g2 ¼ :262.

Similarly, the prediction of all temporal symptom states

were highly significant with very large effect sizes:

Fð4; 672Þ ¼ 614:663; p\:001, g2 ¼ :785 for Onsets;

Fð4; 672Þ ¼ 54:911; p\:001, g2 ¼ :246 for Transients;

Fð4; 672Þ ¼ 566; 991; p\:001, g2 ¼ :771 for Offsets.

The posthoc analyses (multiple comparison procedure,

Bonferroni) showed that for the overall symptom predic-

tions, the PLCA-LDS-3D predictions (l ¼ 0:201) were

significantly higher than the rest of the classifiers (p\0:001).

Similarly, the PLCA-LDS-3D performed better than the rest

of the models in the detection of temporal states of the

symptoms. Figure 5a, b shows the overall results obtained

for the detection of the symptoms for each classifier in per-

sonalised and population categories. For the personalised

predictions, the highest average result was obtained by

optimised RF model (l = 0.34, r = 0.19); however, overall

results were competitive. The PLCA LDS 3D (l = 0.33, r
=0.13) and PLCA 3D (l = 0.31, r = 0.12) models obtained

very close results to the RF model with smaller standard

deviations. Therefore, it is possible to argue that the PLCA

LDS3D and PLCA3D classifiers are reasonablymore robust

models compared to the RF model. In the population pre-

dictions, the PLCA LDS 3Dmodel produced the best results

by far (l = 0.17, r = 0.13), whereas PLCA 3D (l = 0.11, r =

0.12) and PLCA LDS 4D (l = 0.12, r = 0.10) performed

reasonably well. On the contrary, the worst results were

obtained by PLCA 4D (l = 0.06, r = 0.03) and RFmodels (l
= 0.02, r = 0.04).
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Figure 5c–h shows the overall results obtained for the

detection of the temporal states of symptoms, namely,

onset, transient, and offset. For the personalised predic-

tions, the PLCA-LDS 3D model gave the best results for all

temporal states (Onset: l ¼ 11%, r ¼ 5%; Transient:

l ¼ 26%, r ¼ 10%; Offset: l ¼ 11%, r ¼ 5%), whereas

the RF model only performed well in the detection of

temporal states (onset: l ¼ 0%, r ¼ 0%; transient:

l ¼ 26%, r ¼ 23%; offset: l ¼ 0%, r ¼ 0%). For the

population predictions, although the PLCA LDS 3D model

gave the best results (onset: l ¼ 6%, r ¼ 6%; transient:

l ¼ 13%, r ¼ 10%; offset l ¼ 5%, r ¼ 5%), overall

results were fairly low. The RF model did not perform well

on the population analysis (onset: l ¼ 0%, r ¼ 0%; tran-

sient l ¼ 1%, r ¼ 1%; offset: l ¼ 0%, r ¼ 0%). The rest

of the classifiers did not perform as well as PLCA-LDS 3D

model. The average performance, Dl, in the detection of

temporal states for the PLCA 4D and PLCA LDS 4D were

between 0.02 and 0.06%. Overall the average optimum

parameters discovered by using Randomised Search algo-

rithm for the RF model were as follows: number of

estimators = 155.2, min. samples split = 5.66, min. samples

leaf = 5.77, max. depth = 54.4.

The performance of the PLCA LDS 3D can be explained

by the fact that it takes into account the transition of

symptoms, and therefore, it performs better in capturing the

temporal aspects of the symptoms whilst the PLCA and RF

models do not incorporate such computation. The results

obtained for the PLCA 4D and PLCA-LDS-4D were rela-

tively lower than the PLCA-LDS-3D and PLCA 3D mod-

els. One reason could be that we may need more data to

capture the seasonal effect of environmental measurements

on patients’ symptoms. Another explanation could be that

Table 2 Results of Four-Way Analyses of Variance for the COPD symptom detection system

MANOVA II

Source Overall Onset Transient Offset

df F g2 df F g2 df F g2 df F g2

CLSR 4 21:298� � � 0.106 4 155:201� � � 0.463 4 20:537� � � 0.102 4 163:331� � � 0.476

SYMP 11 10:305� � � 0.136 11 29:421� � � 0.310 11 9:359� � � 0.125 11 21:680� � � 0.249

PC 1 0.181 0.00 1 3.458 0.005 1 0.073 0.00 1 0.442 0.001

FEAT 1 0.734 0.001 1 0.931 0.001 1 0.058 0.00 1 0.047 0.00

CLSR�SYMP 44 1.336 0.075 44 4:834� � � 0.228 44 2:497� � � 0.132 44 3:755� � � 0.187

CLSR�PC 4 0.266 0.001 4 0.481 0.003 4 0.174 0.001 4 1.170 0.006

CLSR�FEAT 4 0.619 0.003 4 0.833 0.005 4 0.171 0.001 4 2.111 0.012

SYMP�PC 11 0.682 0.010 11 3:232� � � 0.047 11 0.470 0.007 11 2:861�� 0.042

SYMP�FEAT 11 0.209 0.003 11 0.876 0.013 11 0.147 0.002 11 0.632 0.010

PC�FEAT 1 0.400 0.001 1 0.232 0.00 1 0.040 0.00 1 0.011 0.00

CLSR�SYMP�PC 44 0.266 0.016 44 1.145 0.065 44 0.289 0.017 44 0.727 0.043

CLSR�SYMP�FEAT 44 0.278 0.017 44 0.562 0.033 44 0.117 0.007 44 0.502 0.030

CLSR�PC�FEAT 4 0.933 0.005 4 0.228 0.001 4 0.138 0.001 4 1.503 0.008

SYMP�PC�FEAT 11 0.360 0.005 11 0.354 0.005 11 0.296 0.005 11 0.186 0.003

CLSR�SYMP�PC�FEAT 44 0.343 0.021 44 0.481 0.029 44 0.209 0.013 44 0.331 0.020

Error 720 720 720 720

g2 is the partial eta squared measure of effect size. The table demonstrates the statistical effect of main factors and the significant interactions

between factors. Corresponding meanings of the abbreviations are as follows: CSLR classifier, FEAT feature set, SYMP symptoms, PC personal

coverage

�p\0:05

��p\0:01

� � �p\0:001

cFig. 5 The F1-measure values of each classifier obtained in the

detection of symptoms and their temporal states, namely, onset,

transient, and offset. a, b show the symptom detection results. c–
h show the detection of temporal states of symptoms. The error bars

depict the 95% confidence interval. The results are normalised

between 0 and 1. The F1 measures presented for three highly

significant factors found in the MANOVA test, namely, classifier,

number of participants (i.e. personalised versus population), and

symptoms

17256 Neural Computing and Applications (2023) 35:17247–17265

123



Neural Computing and Applications (2023) 35:17247–17265 17257

123



the traditional way of splitting a year into seasons by three

months may not reflect the actual seasonal variations in the

UK. It can also be difficult to measure the seasonal effect

when patients are not very active and do not frequently go

out.

4.3.2 Symptoms

There was a highly significant effect of the type of symp-

toms (SYMP) on the prediction of symptoms

Fð11; 672Þ ¼ 172:174; p\0:001) and their temporal states,

Onset: Fð11; 672Þ ¼ 133:965; p\0:001, Transient:

Fð11; 672Þ ¼ 193:306; p\0:001), Offset:

Fð11; 672Þ ¼ 102:574; p\0:001). The effect size for the

detection of symptoms (g2 ¼ 0:738) and their temporal

states (onset: g2 ¼ 0:687, transient: g2 ¼ 0:760, offset:

g2 ¼ 0:627) were very large. The posthoc analyses showed

that there was significant difference between worsening of

peak flows and other symptoms (p\0:001) except for

wheeze. For the onset and offset detection of the symptoms,

the best results were obtained for the worsening of peak

flow. The average differences between the detection of

worsening of peak flow and all other symptoms were highly

significant (p\0:001). On the contrary, for the transient

detection, the best results were obtained for wheeze. The

average differences between the detection of wheeze and all

other symptoms were highly significant (p\0:001).

It is evident that high frequency prevalence of wheeze

symptoms in the personalised analysis increased the overall

performance in the detection of this symptom. This is more

likely to be caused by the filtering strategy used in the

training and testing phase in the personalised analysis.

Additionally, there were reasonable results in the detection

of the biomarkers, namely, exacerbations and worsening of

peak flow. The overall average and standard deviation of

results in the detection of exacerbation was l ¼ 19% with

r ¼ 1% and in the detection of worsening of peak flow was

l ¼ 27:7% with r ¼ 2%.

4.3.3 Influence of number of participants

The analysis of variance showed that the effect of number of

participants (NOPA) was highly significant for the detection

of symptoms Fð1; 672Þ ¼ 3436:225; p\:001 and their

temporal states, Onset: Fð1; 672Þ ¼ 898:448; p\:001,

Transient: Fð1; 672Þ ¼ 3555:974; p\:001, Offset:

Fð1; 672Þ ¼ 818:017; p\:001. The effect sizes were found

to be very large in the detection symptoms (g2 ¼ 0:836) and

their temporal states (Onset: g2 ¼ 0:785, Transient:

g2 ¼ 0:841, Offset: g2 ¼ 0:549).

The overall symptom detection results obtained from

personalised models were higher than the population model

(PERS: l ¼ 32%and r ¼ 16%, POPU: l ¼ 10% and r ¼
11%). There was a similar pattern in the detection of the

temporal states of symptoms. The performances in the

detection of the temporal states for the personalised models

were l ¼ 6% with r ¼ 6% for the detection of onsets, l ¼
25% with r ¼ 17% for the detection of transient, l ¼ 6%

with r ¼ 6% for the detection of offsets. On the other hand,

there were lower results for the population models. The

performances in the detection of the temporal states for the

population models were l ¼ 3% with r ¼ 3% for the

detection of onsets, l ¼ 6% with r ¼ 6% for the detection

of transient, l ¼ 3% with r ¼ 3% for the detection of

offsets. While the results indicate that the overall perfor-

mance of the personalised models in the detection of

symptoms and their temporal states were clearly better than

the population models, it is worth to point out that there

were fewer symptoms used in the personalised models

since we only used the symptoms occurred with all three

temporal states both in the training (i.e. first half of each

month) and testing phase (i.e. second half of each month)

for each participant. Therefore, the personalised models are

more likely be overtrained where as the population models

are more likely to be undertrained.

4.3.4 Sensory input

Our results showed that there was no significant effect of

the choice of sensory input (SENS) in the detection of

overall symptoms. There was significant effect of the

choice of sensory input on the detection of transient state of

the symptoms Fð1; 672Þ ¼ 6:758; p\:05 with a medium

effect size, g2 ¼ 0:020, and there was significant effect on

the detection of the offsets of the symptoms, Fð1; 672Þ ¼
3:512; p\:05 with a small effect size, g2 ¼ 0:010.

There was a very small difference between different

types of sensory inputs for the detection of symptoms and

their temporal states (�1%�D� 1%). The results indicate

that the quality of an individual’s environment, specifically

air pollutants, are as good predictors of the worsening of

respiratory symptoms in COPD patients as a direct measure

of changes in their acute lung capacity. It was interesting to

see that when we used only peak flow measurements as

input, the results for the detection of worsening of peak

flow measurement was still not very high. This can be

explained by the fact that there was significant variation in

the number of onsets of the worsening of peak flows (see

Fig. 4a). It could be inferred therefore that the low per-

formance results may more likely to be caused by wors-

ening of peak flow measurements with short transients. The

results show that using only peak flow measurements or

only air pollution measurements are also sufficient for the

prediction of symptoms.
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4.3.5 Personal coverage

There was no significant effect of the personal coverage

(PC) in our predictions even though the results obtained in

the detection of onsets were the closest to show a signifi-

cant effect, p ¼ :06. The average F1 measurements for the

60% personal coverage threshold was l ¼ 17% with r ¼
16% and for no threshold was l ¼ 18% with r ¼17%. The

performance in the detection of the temporal states for the

60% personal coverage threshold were l ¼ 4% with r ¼
4% for the detection of onsets, l ¼ 13% with r ¼ 13% for

the detection of transients, l ¼ 4% with r ¼ 5% for the

detection of offsets. In parallel, there were similar results

when we did not use any threshold in the models. The

performance in the detection of the temporal states for no

threshold models were l ¼ 3% with r ¼ 3% for the

detection of onsets, l ¼ 13% with r ¼ 3% for the detection

of transients, l ¼ 3% with r ¼ 3% for the detection of

offsets. This implies that using only indoor monitoring

measurements may be sufficient to cover some of the

COPD patients’ symptoms as they may not be very active

in their daily lives. However this outcome requires further

research since personal air pollution exposure and its health

effects are a relatively new research field and may involve

many complex elements.

4.3.6 Feature sets

One of the important contributions of our study was that we

used a rich set of features (FEAT) in our analysis to better

capture the cumulative, acute and magnitude-related

symptoms. However, when we compared the rich set of

feature sets against only computing average for each slid-

ing window, we found that there was no significant effect

of the choice of feature sets in our study. The overall

results were very similar to each other (rich feature set: l ¼
17%,r ¼ 16%; only average: l ¼ 16%, r ¼ 17%). Simi-

larly, there was similar pattern in the detection of temporal

states, where the results varied between l ¼ 3% and r ¼
5% for the detection of onset and offset of the symptoms

for both of the feature sets, and l ¼ 12% and r ¼ 13% for

the detection of transients.

4.3.7 Interaction between the factors

There was highly significant interactions between CLSR,

SYMP, andNOPA. All of the interactions between these three

factors were highly significant with very large effect sizes.

Although there was no significant effect of SENS factor on the

detection of symptoms, there was highly significant effect of

SENS factor on the detection of transients Fð2; 672Þ ¼
6:758; p\:01 with medium effect size g2 ¼ 0:020, and there

was significant effect on the detection of offsets,

Fð2; 672Þ ¼ 3:512; p\:01, with small effect size

g2 ¼ 0:010. When SENS interacted with CLSR, there was a

highly significant effect with medium effect size for the

detection of symptoms, Fð8; 672Þ ¼ 8:310; p\:001,

g2 ¼ 0:090, and for the temporal symptom states: Onset:

Fð8; 672Þ ¼ 5:066; p\:001, g2 ¼ 0:057, Transient:

Fð8; 672Þ ¼ 8:546; p\:001, g2 ¼ 0:092, Offset:

Fð8; 672Þ ¼ 8:412; p\:001, g2 ¼ 0:091. Moreover, there

was highly significant effect with a medium effect size on the

detection of symptoms when SENS interacted with CLSR and

NOPA, Fð4; 776Þ ¼ 5:798; p\:001, g2 ¼ 0:033. There was

highly significant effect with a medium effect size on the

detection of temporal symptom states: Onset:

Fð4; 672Þ ¼ 3:637; p\:001, g2 ¼ 0:021, Transient:

Fð4; 672Þ ¼ 6:003; p\:001, g2 ¼ 0:034, Offset:

Fð4; 672Þ ¼ 6:922; p\:001, g2 ¼ 0:040.

4.4 Discussion

Overall, our results were not very high. However, unlike

the forecasting model applied to questionnaire data in [7],

our prediction models continued to make a prediction even

during the transient of symptoms (i.e. recovery period)

instead of limiting the symptoms only to onsets. While

removing the recovery period of patients from the data set

could significantly improve the training and testing of the

model, it could cause overfitting, since there would be a

very small amount of available data. We believe that our

study would be the closest application to a real-world

scenario. It is evident that there is a small variation in all

our model runs, depending on the type of input and features

used. Despite the moderate performance of models in

forecasting outcomes, it is possible to observe that PLCA-

LDS model considerably outperformed Random Forest.

The results obtained for the PLCA-LDS-4D was lower than

the PLCA-LDS-3D model. One reason could be that more

data are needed to capture the seasonal effect of environ-

mental measurements on patients’ symptoms. It can also be

difficult to measure seasonal effects when patients are not

very active and do not frequently go out. Additionally, this

can partly be explained by large numbers of missing data in

the seasonality dimension, m, of the four-dimensional

tensor dictionary and the method used in the imputation

process. While the participants took part in the study for ‘‘a

maximum of six months’’, we utilised a traditional two-

dimensional approach (i.e. p� ðm� s� aÞ) in the impu-

tation process. Therefore, it is possible that the large

numbers of missing data, as well as the utilisation of two-

dimensional imputation process, might have shown a

negative effect on the results of the PLCA-4D and PLCA-

LDS 4D models. Moreover, it would be beneficial to

Neural Computing and Applications (2023) 35:17247–17265 17259

123



investigate using random accelerations and determine its

impact on the PLCA-LDS models.

Our study is the largest of its kind anywhere in the world

and the first study to investigate the effects of environ-

mental factors on COPD patients’ daily symptoms and

forecast the symptoms one day in advance. By utilising

environmental factors in the prediction, we aimed to design

behavioural interventions to reduce risk of worsening of

symptoms and/or exacerbation. These interventions would

be in addition to any clinical interventions. It can help

predict what environmental conditions cause a worsening

of symptoms for an individual, can assist clinicians to give

personalised advice in rehabilitation as to how COPD

patients can change their behaviour and living conditions to

improve health and quality of life.

5 Conclusions

In this study, we presented our results on the prediction of

the worsening of COPD patients’ daily symptoms one day

in advance by using sensory observations. In general,

reasonable results were obtained for all of the classifiers.

Although the predictions were not always accurate, the

PLCA-LDS 3D model outperformed other PLCA models

and RF model. We found that there was significant dif-

ference between the classifiers, symptoms and the person-

alised versus population analysis. We have also shown that

indicators of the quality of an individual’s environment,

specifically air pollutants, are as good predictors of the

worsening of respiratory symptoms in COPD patients as a

direct measure of changes in their acute lung capacity. It

should be noted that it is difficult to monitor personal

exposure in a free living cohort, such as ours; we had no

control over their behaviour and patients’ frequently failed

to carry the sensory devices when they left their home.

Nonetheless, there was no significant effect found for

personal coverage threshold in our experiments.

There may also be some other possible factors affecting

our model results. We are aware of the fact that the per-

sonalised predictions are highly likely to be affected by

over-fitting, since they are trained with a relatively small

data set per participant, compared to other modelling sce-

narios. Conversely, it is possible that when we conducted

our population experiments on the far larger data set, the

opposite effect may have occurred, i.e. they might be

under-trained. This may explain why we found significant

difference between personalised and population experi-

ments. There was also significant effect of the choice of

classifier and the type of symptoms in our experimental

results.
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Appendix A.1: The 95% confidence interval
differences for the classifier and symptom
factors

We provide the 95% confidence interval differences for the

classifier and symptom factors in this section.

A.1 Classifier

For the overall symptom predictions, the PLCA-LDS-3D

predictions (l ¼ 0.201) were significantly higher than the

rest of the classifiers (p\ 0.001). The average F-measure

95% confidence interval differences between the PLCA-

LDS-3D classifier and the rest of the classifiers were as

follows: the RF (4%�D� 7%), PLCA-3D

(4%�D� 7%), PLCA-4D (16%�D� 20%), and PLCA-

LDS-4D models (10%�D� 13%).

Similarly, the PLCA-LDS-3D performed better than the

rest of the models in the detection of temporal states of the

symptoms. The average F-measure 95% confidence inter-

val differences between the PLCA-LDS-3D classifier and

the RF model were between 7%�D� 8% for the onset

detection, were between 4%�D� 6% for the transient

detection, and were between 7%�D� 8% for the offset

detection. The difference was smaller between the PLCA-

LDS-3D and the other classifiers. The 95% confidence

interval differences of PLCA-LDS-3D compared to the rest

of the classifiers were as follows: PLCA-3D (Onset:

1%�D� 1%, Transient: 3%�D� 5%, Offset:

1%�D� 2%), PLCA-4D (Onset: 5%�D� 6%, Tran-

sient: 12%�D� 15%, Offset: 5%�D� 6%), and PLCA-

LDS-4D models (Onset: 4%�D� 5%, Transient:

10%�D� 12%, Offset: 4%�D� 5%).

cFig. 6 The figures show the marginal means of F1-measures of the

prediction of the symptoms and their temporal states for the rich set of

features and only using average in the predictions of personalised and

population models. The error bars depict the 95% confidence interval.

The horizontal black lines indicates the observed grand average
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A.2: Symptoms

The best results were obtained for the worsening of peak

flow. The 95% confidence interval on the difference of the

average F1 measures between worsening of peak flow and

other symptoms were as follows: antibiotics

(13%�D� 19%), breathlessness (1%�D� 6%), cough

(3%�D� 10%), visiting GP (10%�D� 17%), hospi-

talised (20%�D� 27%), inhalers (20%�D� 27%), sleep

disturbance (4%�D� 11%), sputum (7%�D� 14%),

steroids (10%�D� 17%), exacerbations (5%�D� 12%),

and wheeze (�1%�D� 5%).The average differences

between the detection of worsening of peak flow and other

symptoms were highly significant too (p\ 0.001) except

for wheeze.

For the onset detection of the symptoms, the best results

were obtained for the worsening of peak flow. The average

difference of the F1 values between worsening of peak

flows and other symptoms were as follows: antibiotics

(5%�D� 6%), breathlessness (5%�D� 7%), cough

(6%�D� 8%), visiting GP (5%�D� 7%), hospitalised

(7%�D� 9%), inhalers (8%�D� 10%), sleep distur-

bance (5%�D� 7%), sputum (6%�D� 8%), steroids

(7%�D� 9%), exacerbations (6%�D� 8%), and wheeze

(6%�D� 8%).The average differences between the

detection of worsening of peak flow and all other symp-

toms were highly significant as well (p\ 0.001).

On the contrary, for the transient detection, the best

results were obtained for wheeze. The average F1 values

between worsening of peak flow and other symptoms were

as follows: antibiotics (14%�D� 19%), breathlessness

(2%�D� 6%), cough (4%�D� 8%), visiting GP

(11%�D� 15%), hospitalised (18%�D� 23%), inhalers

(18%�D� 22%), worsening of peak flow

bFig. 7 The figures show the marginal means of F1-measures of the

prediction of the symptoms and their temporal states for each

classifier with respect to the sensory input of all sensors (ALL), only

air pollutants (AIRP), and only peak flow measurements (PF) in the

predictions of personalised and population models. The error bars

depict the 95% confidence interval. The horizontal black lines

indicates the observed grand average

Fig. 8 The figures show the marginal means of F1-measures of the

prediction performance of each classifier with respect to the personal

coverage thresholds (pc): 60% and 0% threshold (i.e. no threshold).

The error bars depict the 95% confidence interval. The horizontal

black lines indicates the observed grand average
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(6%�D� 10%), sleep disturbance (7%�D� 11%), spu-

tum (6%�D� 10%), steroids (10%�D� 14%), and

exacerbations (6%�D� 10%). The average differences

between the detection of wheeze and all other symptoms

were highly significant (p\ 0.001).

The offset detection results were very similar to the

onset detection results. The best results were again

obtained for the offset detection of the worsening of peak

flow measurements. Similar to the onset detection results,

the overall difference between the worsening of peak flow

measurements and the rest of the symptom prediction

results were between 4%�D� 9%. The average F1 value

difference between worsening of peak flows and other

symptoms were as follows: antibiotics (4%�D� 6%),

breathlessness (4%�D� 6%), cough (6%�D� 8%),

visiting GP (4%�D� 6%), hospitalised (6%�D� 8%),

inhalers (7%�D� 9%), sleep disturbance (4%�D� 6%),

sputum (5%�D� 6%), steroids (7%�D� 9%), exacer-

bations (5%�D� 7%), and wheese (5%�D� 7%). The

average differences between the detection of worsening of

peak flow and all other symptoms were highly significant

(p\ 0.001).

A.3 Visual representation of the results obtained
with different factors

In this section, we provide the summarised results obtained

for the interaction between classifiers and features in

Fig. 6, classifiers and sensors in Fig. 7, and classifiers and

personal coverage thresholds in Fig. 8. These results were

the outcome of our statistical analysis used to investigate

the effect of different factors (see Sect. 4.3).

Availability of data and materials The PLCA code: https://github.-

com/skolozali/cope_study. Data will be made publicly available on

the IEEE Data Port upon publication of the manuscript.
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Detecting COPD exacerbations early using daily telemonitoring

of symptoms and k-means clustering: a pilot study. Med Biol Eng

Comput 53:441–451

8. Tomasic I, Tomasic N, Trobec R, Krpan M, Kelava T (2018)

Continuous remote monitoring of COPD patients—justification

and explanation of the requirements and a survey of the available

technologies. Med Biol Eng Comput 56:547–569

9. Quint JK, Moore E, Lewis A, Hashmi M, Sultana K, Wright M,

Smeeth L, Chatzidiakou L, Jones R, Beevers S, Kolozali S, Kelly

F, Barratt B (2018) Recruitment of patients with chronic

obstructive pulmonary disease (COPD) from the clinical practice

research datalink (CPRD) for research. NPJ Prim Care Respir

Med 28(1):21

10. Moore E, Chatzidiakou L, Jones RL, Smeeth L, Beevers S, Kelly

FJ, Quint JK, Barratt B (2016) Linking e-health records, patient-

reported symptoms and environmental exposure data to charac-

terise and model COPD exacerbations: protocol for the cope

study. BMJ Open 6(7):e011330

11. Chatzidiakou L, Krause A, Popoola OAM, Di Antonio A, Kell-

away M, Han Y, Squires FA, Wang T, Zhang H, Wang Q, Fan Y,

Chen S, Min H, Quint JK, Barratt B, Kelly FJ, Zhu T, Jones RL

(2019) Characterising low-cost sensors in highly portable plat-

forms to quantify personal exposure in diverse environments.

Atmos Meas Tech 12:4643–4657

12. Mead MI, Popoola OAM, Stewart GB, Landshoff P, Calleja M,

Hayes M, Baldovi JJ, McLeod MW, Hodgson TF, Dicks J, Lewis

A, Cohen J, Baron R, Saffell JR, Jones RL (2013) The use of

electrochemical sensors for monitoring urban air quality in low-

cost, high-density networks. Atmos Environ 70(2):186–203

13. Popoola OAM, Stewart GB, Mead MI, Jones RL (2016) Devel-

opment of a baseline-temperature correction methodology for

electrochemical sensors and its implications for long-term sta-

bility. Atmos Environ 147:330–343

14. Yang Y, Dunson DB (2013) Bayesian conditional tensor factor-

izations for high-dimensional classification. J Am Stat Assoc

1459:656–669

15. Maruhashi K, Todoriki M, Ohwa T, Goto K, Hasegawa Y, Ina-

koshi H, Anai H (2018) Learning multi-way relations via tensor

decomposition with neural networks. In: The 32nd AAAI con-

ference on artificial intelligence, pp 3770–3777

16. Smaragdis P, Raj B (2007) Shift-invariant probabilistic latent

component analysis. J Mach Learn Res 5:1-29

17. Benetos E, Lafay G, Lagrange M, Plumbley MD (2017) Poly-

phonic sound event tracking using linear dynamical systems. In:

IEEE/ACM transactions on audio, speech, and language pro-

cessing, pp 1–12

18. Fern M, Cernadas E (2014) Do we need hundreds of classifiers to

solve real world classification problems? J Mach Learn Res

15:3133–3181

19. Grindlay G, Ellis DPW (2011) Transcribing multi-instrument

polyphonic music with hierarchical eigeninstruments. IEEE J Sel

Top Signal Process 5(6):1159–1169

17264 Neural Computing and Applications (2023) 35:17247–17265

123



20. Murphy KP (2012) Machine learning. A probabilistic perspec-

tive. Chapter state space models. MIT Press

21. Chrishopher BM (2006) Pattern recognition and machine learn-

ing. Springer

22. Stephen M (2015) Machine learning. An algorithmic perspective,

2nd edn. A Chapman & Hall Book

23. Cohen J (1977) Statistical power analysis for the behavioral

sciences, 2nd edn. Lawrence Erlbaum Associates, Hillsdale

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Authors and Affiliations
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& Şefki Kolozali

sefki.kolozali@essex.ac.uk

Lia Chatzidiakou

ec571@cam.ac.uk

Roderic Jones

rlj1001@cam.ac.uk

Jennifer K. Quint

j.quint@imperial.ac.uk

Frank Kelly

frank.kelly@imperial.ac.uk

Benjamin Barratt

b.barratt@imperial.ac.uk

1 School of Computer Science and Electronic Engineering,

University of Essex, Colchester, UK

2 Department of Chemistry, University of Cambridge,

Cambridge, UK

3 Faculty of Medicine, National Heart and Lung Institute,

Imperial College London, London, UK

4 Faculty of Medicine, School of Public Health, Imperial

College London, London, UK

Neural Computing and Applications (2023) 35:17247–17265 17265

123

http://orcid.org/0000-0001-9920-1299

	Early detection of COPD patients’ symptoms with personal environmental sensors: a remote sensing framework using probabilistic latent component analysis with linear dynamic systems
	Abstract
	Introduction
	Background
	Methodology
	Data collection methodology
	Motivation and system overview
	Preprocessing
	Probabilistic latent component analysis (PLCA)
	PLCA 3D
	PLCA 4D

	Linear dynamic systems (LDS)
	Learning LDS parameters
	LDS inference and postprocessing


	Evaluation
	Description of dataset
	Training and testing
	Understanding the effects of different factors
	Classifiers
	Symptoms
	Influence of number of participants
	Sensory input
	Personal coverage
	Feature sets
	Interaction between the factors

	Discussion

	Conclusions
	Open Access
	Appendix A.1: The 95% confidence interval differences for the classifier and symptom factors
	A.1 Classifier
	A.2: Symptoms
	A.3 Visual representation of the results obtained with different factors

	Availability of data and materials
	References




