
Singly Exponential Translation of Alternating Weak1

Büchi Automata to Unambiguous Büchi Automata2

Yong Li #3

University of Liverpool, UK4

SKLCS, Institute of Software, Chinese Academy of Sciences, China5

Sven Schewe #6

University of Liverpool, UK7

Moshe Y. Vardi #8

Rice University, USA9

Abstract10

We introduce a method for translating an alternating weak Büchi automaton (AWA), which corres-11

ponds to a Linear Dynamic Logic (LDL) formula, to an unambiguous Büchi automaton (UBA). Our12

translations generalise constructions for Linear Temporal Logic (LTL), a less expressive specification13

language than LDL. In classical constructions, LTL formulas are first translated to alternating very14

weak automata (AVAs)—automata that have only singleton strongly connected components (SCCs);15

the AVAs are then handled by efficient disambiguation procedures. However, general AWAs can16

have larger SCCs, which complicates disambiguation. Currently, the only available disambiguation17

procedure has to go through an intermediate construction of nondeterministic Büchi automata18

(NBAs), which would incur an exponential blow-up of its own. We introduce a translation from19

general AWAs to UBAs with a singly exponential blow-up, which also immediately provides a singly20

exponential translation from LDL to UBAs. Interestingly, the complexity of our translation is21

smaller than the best known disambiguation algorithm for NBAs (broadly (0.53n)n vs. (0.76n)n),22

while the input of our construction can be exponentially more succinct.23

2012 ACM Subject Classification Theory of computation → Automata over infinite objects; Theory24

of computation → Verification by model checking25

Keywords and phrases Büchi automata, unambiguous automata, alternation, weak, disambiguation26

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2023.3727

Related Version Full Version: https://arxiv.org/abs/2305.0996628

Acknowledgements We thank the anonymous reviewers for their valuable feedback. This work has29

been supported in part by the EPSRC through grants EP/X021513/1 and EP/X017796/1, NSFC30

grant 62102407, NSF grants IIS-1527668, CCF-1704883, IIS-1830549, CNS-2016656, DoD MURI31

grant N00014-20-1-2787, and an award from the Maryland Procurement Office.32

1 Introduction33

Automata over infinite words were first introduced by Büchi [8]. The automata used by34

Büchi (thus called Büchi automata) accept an infinite word if they have a run over the35

word that visits accepting states infinitely often. Nondeterministic Büchi automata (NBAs)36

are nowadays recognized as a standard tool for model checking transition systems against37

temporal specification languages like Linear Temporal Logic (LTL) [1, 11,13,26].38

NBAs belong to a larger class of automata over infinite words, also known as ω-automata.39

Translations between different types of ω-automata play a central role in automata theory,40

and many of them have gained practical importance, too. For example, researchers have41

started to pay attention to a kind of automata called alternating automata [20,22] in the 80s.42

Alternating automata not only have existential, but also universal branching. In alternating43

© Yong Li, Sven Schewe and Moshe Y. Vardi;
licensed under Creative Commons License CC-BY 4.0

34th International Conference on Concurrency Theory (CONCUR 2023).
Editors: Guillermo A. Pérez and Jean-François Raskin; Article No. 37; pp. 37:1–37:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:liyong@liverpool.ac.uk
https://orcid.org/0000-0002-7301-9234
mailto:svens@liverpool.ac.uk
https://orcid.org/0000-0002-9093-9518
mailto:vardi@cs.rice.edu
https://orcid.org/0000-0002-0661-5773
https://doi.org/10.4230/LIPIcs.CONCUR.2023.37
https://arxiv.org/abs/2305.09966
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 Singly exponential translation of AWAs to UBAs

automata, the transition function no longer maps a state and a letter to a set of states, but to44

a positive Boolean formula over states. An alternating Büchi automaton accepts an infinite45

word if there is a run graph over the word, in which all traces visit accepting states infinitely46

often. Every NBA can be seen as a special type of alternating Büchi automaton (ABA),47

while the translation from ABAs to NBAs may incur an exponential blow-up in the number48

of states [20]. Indeed, ABAs can be exponentially more succinct than their counterpart49

NBAs [6]. Apart from their succinctness, another reason why alternating automata have50

become popular in our community is their tight connection to specification logics. There51

is a straight forward translation from Linear Dynamic Logic (LDL) [12, 25] to alternating52

weak Büchi automata (AWAs), both recognizing exactly the ω-regular languages. AWAs53

are a special type of ABAs in which every strongly connected component (SCC) contains54

either only accepting states or only rejecting states. (AWAs have also been applied to the55

complementation of Büchi automata [17].) Further, there is a one-to-one mapping [5,7,11]56

between LTL and very weak alternating Büchi automata (AVAs) [23]—special AWAs where57

every SCC has only one state.58

Automata over infinite words with different branching mechanisms all have their place59

in building the foundation of automata-theoretic model checking. This paper adds another60

chapter to the success story of efficient automata transformations: we show how to efficiently61

translate AWAs to unambiguous Büchi automata (UBAs) [10], and thus also the logics that62

tractably reduce to AWAs, e.g., LDL. UBAs are a type of NBAs that have at most one63

accepting run for each word and have found applications in probabilistic verification [2]1.64

Our approach can be viewed as a generalization of earlier work on the disambiguation of65

AVAs [4,14]. The property of the very weakness has proven useful for disambiguation: to66

obtain an unambiguous generalized Büchi automaton (UGBA) from an AVA, it essentially67

suffices to use the nondeterministic power of the automaton to guess, in every step, the68

precise set of states from which the automaton accepts. There is only one correct guess69

(which provides unambiguity), and discharging the correctness of these guesses is straight70

forward. AVAs with n states can therefore be disambiguated to UGBAs with 2n states and71

n accepting sets, and thus to UBAs with n2n states.72

Unfortunately, this approach does not extend easily to the disambiguation of AWAs:73

while there would still be exactly one correct guess, the straight-forward way to discharging74

its correctness would involve a breakpoint construction [20], which is not unambiguous.75

The technical contribution of this paper is to replace these breakpoint constructions by76

total preorders, and showing that there is a unique correct way to choose these orders. We77

provide two different reductions, one closer to the underpinning principles—and thus better78

for a classroom (cf. Section 3.4)—and a more efficient approach (cf. Section 4).79

Given that we track total preorders, the worst-case complexity arises when all, or almost80

all, states are in the same component. To be more precise, if tpo(n) denotes the number of81

total preorders on sets with n states, then our construction provides UBAs of size O
(
tpo(n)

)
.82

As tpo(n) ≈ n!
2(ln 2)n+1 [3], we have that limn→∞

n
√

tpo(n)
n = 1

e ln 2 ≈ 0.53, which is a better83

bound than the best known bound for Büchi disambiguation [16] (and complementation [24]),84

where the latter number is ≈ 0.76.85

While it is not surprising that a direct construction of UBAs for AWAs is superior to a86

1 We note that specialized model checking algorithm for Markov chains against AWAs/LDL, without
constructing UBAs, has been proposed in [9] without implementations. Nonetheless, our translation can
potentially be used as a third party tool that constructs UBA from an AWA/LDL formula for PRISM
model checker [18] without changing the underlying model checking algorithm [2].

Y. Li, S. Schewe, M. Vardi 37:3

construction that goes through nondeterminization (and thus incurs two exponential blow-ups87

on the way), we did not initially expect a construction that leads to a smaller increase in88

the size when starting from an AWA compared to starting from an NBA, as AWAs can89

be exponentially more succinct than NBAs, but not vice versa (See [17] for a quadratic90

transformation).91

As a final test for the quality of our construction, we briefly discuss how it behaves92

on AVAs, for which efficient disambiguation is available. We show that the complexity of93

our construction can be improved to n2n when the input is an AVA, leading to the same94

construction as the classic disambiguation construction for LTL/AVAs [4, 14] (cf. Section 5).95

We also discuss how to adjust it so that it can produce the same transition based UGBA in96

this case, too. The greater generality we obtain comes therefore at no additional cost.97

Related work. Disambiguation of AVAs from LTL specifications have been studied98

in [4, 14]. Our disambiguation algorithm can be seen as a more general form of them. The99

disambiguation of NBAs was considered in [15], which has a blow-up of O((3n)n); the100

complexity has been later improved to O(n · (0.76n)n) in [16]. Our construction can also be101

used for disambiguating NBAs, by going through an intermediate construction of AWAs from102

NBAs; however, the intermediate procedure itself can incur a quadratic blow-up of states [14].103

Nonetheless, if the input is an AWA, our construction improves the current best known104

approach exponentially by avoiding the alternation removal operation for AWAs [6,20].105

2 Preliminaries106

For a given set X, we denote by B+(X) the set of positive Boolean formulas over X. These107

are the formulas obtained from elements of X by only using ∧ and ∨, where we also allow tt108

and ff. We use tt and ff to represent tautology and contradiction, respectively. For a set109

Y ⊆ X, we say Y satisfies a formula θ ∈ B+(X), denoted as Y |= θ, if the Boolean formula110

θ is evaluated to tt when we assign tt to members of Y and ff to members of X \ Y . For111

an infinite sequence ρ, we denote by ρ[i] the i-th element in ρ for some i ≥ 0; for i ∈ N, we112

denote by ρ[i · · ·] = ρ[i]ρ[i + 1] · · · the suffix of ρ from its i-th letter.113

An alternating Büchi automaton (ABA) A is a tuple (Σ, Q, ι, δ, F) where Σ is a finite114

alphabet, Q is a finite set of states, ι ∈ Q is the initial state, δ : Q × Σ → B+(Q) is115

the transition function, and F ⊆ Q is the set of accepting states. ABAs allow both non-116

deterministic and universal transitions. The disjunctions in transition formulas model the117

non-deterministic choices, while conjunctions model the universal choices. The existence of118

both nondeterministic and universal choices can make ABAs exponentially more succinct119

than NBAs [6]. We assume w.l.o.g. that every ABA is complete, in the sense that there is a120

next state for each s ∈ Q and σ ∈ Σ. Every ABA can be made complete as follows. Fix a121

state s ∈ Q and a letter σ′ ∈ Σ. If δ(s, σ′) = ff, we can add a sink rejecting state ⊥, and set122

δ(s, σ′) = ⊥ and δ(⊥, σ) = ⊥ for every σ ∈ Σ; If δ(s, σ′) = tt, we can similarly add a sink123

accepting state ⊤, and set δ(s, σ′) = ⊤ and δ(⊤, σ) = ⊤ for every σ ∈ Σ. For a state s ∈ Q,124

we denote by As the ABA obtained from A by setting the initial state to s.125

The underlying graph GA of an ABA A is a graph ⟨Q, E⟩, where the set of vertices is126

the set Q of states in A and (q, q′) ∈ E if q′ appears in the formula δ(q, σ) for some σ ∈ Σ.127

We call a set C ⊆ Q a strongly connected component (SCC) of A if, for every pair of states128

q, q′ ∈ C, q and q′ can reach each other in GA.129

A nondeterministic Büchi automaton (NBA) A is an ABA where B+(Q) only contains the130

∨ operator; we also allow multiple initial states for NBAs. We usually denote the transition131

function δ of an NBA A as a function δ : Q × Σ → 2Q and the set of initial states as I. Let132

CONCUR 2023

37:4 Singly exponential translation of AWAs to UBAs

w = w[0]w[1] · · · ∈ Σω be an (infinite) word over Σ.133

A run of the NBA A over w is a state sequence ρ = q0q1 · · · ∈ Qω such that q0 ∈ I and,134

for all i ∈ N, we have that qi+1 ∈ δ(qi, w[i]). We denote by inf(ρ) the set of states that occur135

in ρ infinitely often. A run ρ of the NBA A is accepting if inf(ρ) ∩ F ̸= ∅. An NBA A accepts136

a word w if there is an accepting run ρ of A over w. An NBA A is said to be unambiguous137

(abbreviated as UBA) [10] if A has at most one accepting run for every word.138

Since ABA have universal branching (or conjunctions in δ), a run of an ABA is no longer139

an infinite sequence of states; instead, a run of an ABA A over w is a run directed acyclic140

graph (run DAG) Gw = (V, E) formally defined below:141

V ⊆ Q × N where ⟨ι, 0⟩ ∈ V .142

E ⊆
⋃

ℓ>0(Q × {ℓ}) × (Q × {ℓ + 1}) where, for every vertex ⟨q, ℓ⟩ ∈ V, ℓ ≥ 0, we have that143

{ q′ ∈ Q | (⟨q, ℓ⟩, ⟨q′, ℓ + 1⟩) ∈ E } |= δ(q, w[ℓ]).144

A vertex ⟨q, ℓ⟩ is said to be accepting if q ∈ F . An infinite sequence ρ = ⟨q0, 0⟩⟨q1, 1⟩ · · · of145

vertices is called an ω-branch of Gw if q0 = ι and for all ℓ ∈ N, we have (⟨qℓ, ℓ⟩, ⟨qℓ+1, ℓ + 1⟩) ∈146

E. We also say the fragment ⟨qi, i⟩⟨qi+1, i + 1⟩ · · · of ρ is an ω-branch from ⟨qi, i⟩. We say a147

run DAG Gw is accepting if all its ω-branches visit accepting vertices infinitely often. An148

ω-word w is accepting if there is an accepting run DAG of A over w.149

Let A be an ABA. We denote by L(A) the set of words accepted by A.150

It is known that both NBAs and ABAs recognise exactly the ω-regular languages. ABAs151

can be transformed into language-equivalent NBAs in exponential time [20]. In this work, we152

consider a special type of ABAs, called alternating weak Büchi automata (AWAs) where, for153

every SCC C of an AWA A = (Σ, Q, ι, δ, F), we have either C ⊆ F or C ∩F = ∅. We note that154

different choices of equivalent transition formulas, e.g., δ(p, σ) = q1 and δ(p, σ) = q1 ∧(q1 ∨q2),155

will result in different SCCs. However, as long as the input ABA is weak2, our proposed156

translation still applies.157

One can transform an ABA to its equivalent AWA with only quadratic blow-up of the158

number of states [17]. A nice property of an AWA A is that we can easily define its dual159

AWA Â = (Σ, Q, ι, δ̂, F̂), which has the same statespace and the same underlying graph as160

A, as follows: for a state q ∈ Q and a ∈ Σ, δ̂(q, a) is defined from δ(q, a) by exchanging the161

occurrences of ff and tt and the occurrences of ∧ and ∨, and F̂ = Q \ F . It follows that:162

▶ Lemma 1 ([21]). Let A be an AWA and Â its dual AWA. For every state q ∈ Q, we have163

L(Aq) = Σω \ L(Âq).164

In the remainder of the paper, we call a state of an NBA a macrostate and a run of an165

NBA a macrorun in order to distinguish them from those of ABA.166

3 From AWAs to UBAs167

In this section, we will present a construction of UBA Bu from an AWA A such that168

L(Bu) = L(A). We will first introduce the construction of an NBA from an AWA given in [9]169

and show that this construction does not necessarily yield a UBA (Section 3.1). Nonetheless,170

we extract the essence of the construction and show that we can associate a unique sequence171

to each word (Section 3.2).172

We then enrich this unique sequence with additional, similarly unique, information, which173

we subsequently abstract into the essence of a unique accepting macrorun of Bu. Developing174

2 To make ABAs as weak as possible, one solution would be computing minimal satisfying assignments to
the transition formulas, which is well defined and results in minimal possible SCCs.

Y. Li, S. Schewe, M. Vardi 37:5

this into a UBA whose macrorun can be uniquely mapped to the sequence (Section 3.4) is175

then just a simple technical exercise.176

3.1 From AWAs to NBAs177

As shown in [20], we can obtain an equivalent NBA N (A) from an ABA A with an exponential178

blow-up of states, which is widely known as the breakpoint construction. In [9], the authors179

define a different construction of NBAs B from AWAs A, which can be seen as a combination180

of the NBAs N (A) and N (Â). Below we will first introduce the construction in [9] and181

extract its essence as a unique sequence of sets of states for each word.182

The macrostate of B is encoded as a consistent tuple (Q1, Q2, Q3, Q4) such that Q2 =183

Q \ Q1, Q3 ⊆ Q1 \ F , and Q4 ⊆ Q2 \ F̂ .184

The formal translation is defined as follows.185

▶ Definition 2 ([9]). Let A = (Σ, Q, ι, δ, F) be an AWA. We define an NBA B = (Σ, QB, IB, δB, FB)186

where187

QB is the set of consistent tuples over 2Q × 2Q × 2Q × 2Q.188

IB = { (Q1, Q2, Q3, Q4) ∈ QB | ι ∈ Q1 }3,189

Let (Q1, Q2, Q3, Q4) be a macrostate in QB and σ ∈ Σ.190

Then (Q′
1, Q′

2, Q′
3, Q′

4) ∈ δB((Q1, Q2, Q3, Q4), σ) if Q′
1 |= ∧s∈Q1δ(s, σ) and Q′

2 |= ∧s∈Q2 δ̂(s, σ)191

and either192

Q3 = Q4 = ∅, Q′
3 = Q′

1 \ F and Q′
4 = Q′

2 \ F̂ ,193

Q3 ̸= ∅ or Q4 ≠ ∅, there exists Y3 ⊆ Q′
1 such that Y3 |= ∧s∈Q3δ(s, σ) and Q′

3 = Y3 \ F ,194

and there exists Y4 ⊆ Q′
2 such that Y4 |= ∧s∈Q4 δ̂(s, σ) and Q′

4 = Y4 \ F̂ .195

FB = { (Q1, Q2, Q3, Q4) ∈ QB | Q3 = Q4 = ∅ }.196

Intuitively, the resulting NBA performs two breakpoint constructions: one breakpoint197

construction macrostate (Q1, Q3) for A and the other breakpoint construction macrostate198

(Q2, Q4) for Â. Let w ∈ Σω. The tuple (Q1, Q3) in the construction uses Q1 to keep track of199

the reachable states of A in a run DAG Gw over w and exploits the set Q3 to check whether200

all ω-branches end in accepting SCCs. If all ω-branches in Q3 have visited accepting vertices,201

Q3 will fall empty, as Q3 only contains non-accepting states. Once Q3 becomes empty, we202

reset the set with Q′
3 = Q′

1 \ F since we need to also check the ω-branches that newly appear203

in Q1. If Q3 becomes empty for infinitely many times, we know that every ω-branch in Gw is204

accepting, i.e., all ω-branches visit accepting vertices infinitely often. Hence w is accepted205

by A since there is an accepting run DAG from Aι. We can similarly reason about the206

breakpoint construction for Â.207

Besides that L(B) = L(A), Bustan, Rubin, and Vardi [9] have also shown the following:208

▶ Lemma 3 ([9]). Let B be the NBA constructed as in Definition 2. Then209

Let S ⊆ Q, we have that210

L(B(S,Q\S,Q3,Q4)) =
⋂
s∈S

L(As) ∩
⋂

s∈Q\S

L(Âs)211

where Q3 ⊆ S and Q4 ⊆ Q \ S;212

Let (Q1, Q2, Q3, Q4) and (Q′
1, Q′

2, Q′
3, Q′

4) be two macrostates of B, we have that213

L(B(Q1,Q2,Q3,Q4)) ∩ L(B(Q′
1,Q′

2,Q′
3,Q′

4)) = ∅ if Q1 ̸= Q′
1, and214

3 IB is not present in [9] and we added it for the completeness of the definition.

CONCUR 2023

37:6 Singly exponential translation of AWAs to UBAs

p q

s

t

r

b
a

a
b

p q

s

t

r

a

b

b

a

(Q, {}) (Q, {q, s, t})

(Q, {q, s})(Q, {s})
(Q, {q, t})

b

b

b

b

b

b

b
B

A Â

Figure 1 An example of an AWA A, its dual Â and incomplete part of the constructed B over
bω, where for instance the transition ((Q, {q, s}), b, (Q, {t})) is missing.

L(B(Q1,Q2,Q3,Q4)) = L(B(Q′
1,Q′

2,Q′
3,Q′

4)) if Q1 = Q′
1.215

Let w ∈ L(B) and ρ = (Q0
1, Q0

2, Q0
3, Q0

4)(Q1
1, Q1

2, Q1
3, Q1

4) · · · be an accepting macrorun of216

B over w. According to Lemma 3, it is easy to see that the Q1-set sequence Q0
1Q1

1 · · · is in217

fact unique for every accepting macrorun over w. If there are two accepting macroruns, say218

ρ1 and ρ2, of B over w that have two different Q1-set sequences, there must be a position219

j ≥ 0 such that their Q1-sets differ. By Lemma 3, the suffix w[j · · ·] cannot be accepted220

from both macrostates ρ1[j] and ρ2[j], leading to contradiction. Therefore, every accepting221

macrorun of B over w corresponds to a unique sequence of Q1-sets. However, B does not222

necessarily have only one accepting macrorun over w, because there is nondeterminism in223

developing the breakpoints.224

▶ Lemma 4. The NBA B defined as in Definition 2 is not necessarily unambiguous.225

Proof. We prove Lemma 4 by giving an example AWA A for which the constructed B is not226

unambiguous. The example AWA A and its dual Â are given in Figure 1 where accepting227

states are depicted with double circles, initial states are marked with an incoming arrow and228

universal transitions are originated from a black filled circle. The transitions are by default229

labelled with Σ = {a, b} unless explicitly labelled otherwise. We let Q = {p, q, s, t, r}. First,230

we can see that bω ∈ L(Ap) ∩ L(Aq) ∩ L(As) ∩ L(At) ∩ L(Ar). So the unique Q1-sequence of231

all accepting macroruns in B over bω should be Qω, according to Lemma 3. We only depict an232

incomplete part of B over bω where we ignore the Q2 and Q4 sets because we have constantly233

Q2 = {} and Q4 = {} by definition. One of the initial macrostates is m0 = (Q, {}), which234

is also accepting. When reading the letter b, we always have {p, q, s, t, r} |= ∧c∈Qδ(c, b).235

Thus, the successor of m0 over b is m1 = (Q, Q \ {p, r}) = (Q, {q, s, t}) since the breakpoint236

set Q′
3 needs to be reset to Q′

1 \ F when Q3 = {}. When choosing the successor set237

Q′
3 for Q3 = {q, s, t} at m1, we have two options, namely {q, s} and {q, t}, since q has238

nondeterministic choices upon reading letter b. Consequently, B can transition to either239

m2 = (Q, {q, s}) or m3 = (Q, {q, t}), upon reading b in m1. In fact, all the nondeterminism240

of B in Figure 1 is due to nondeterministic choices at q. We can continue to explore the241

state space of B according to Definition 2 and obtain the incomplete part of B depicted in242

Figure 1. Note that, we have ignored some outgoing transitions from (Q, {q, s}) since the243

present part already suffices to prove Lemma 4. It is easy to see that B has at least two244

accepting macroruns over bω. Thus we have proved Lemma 4. ◀245

Y. Li, S. Schewe, M. Vardi 37:7

In fact, based on Definition 2, it is easy to compute a unique sequence of sets of states246

for each given word, which builds the foundation of our proposed construction.247

3.2 Unique sequence of sets of states for each word248

In the remainder of the paper, we fix an AWA A = (Σ, Q, ι, δ, F). For every word w ∈ Σω,249

we define a unique sequence of sets of states associated with it as the sequence Q0
1Q1

1Q2
1 · · ·250

such that, for every i ≥ 0, we have that:251

P1 Qi
1 ⊆ Q,252

P2 for every state q ∈ Qi
1, w[i · · ·] ∈ L(Aq) and253

P3 for every state q ∈ Q \ Qi
1, w[i · · ·] /∈ L(Aq) (or, similarly, w[i · · ·] ∈ L(Âq)).254

These properties immediately entail the weaker local consistency requirements:255

L2 for every state q ∈ Qi
1, Qi+1

1 |= δ(q, w[i]) (entailed by P2) and256

L3 for every state q ∈ Q \ Qi
1, Q \ Qi+1

1 |= δ̂(q, w[i]) (entailed by P3).257

It is obvious that, for every state s ∈ Q, Σω = L(As)⊎L(As) = L(As)⊎L(Âs) holds. We258

define Qw = { s ∈ Q | w ∈ L(As) }. This clearly provides Q \ Qw = { s ∈ Q | w ∈ L(Âs) }.259

For every w ∈ Σω, we therefore have260

w ∈
⋂

s∈Qw

L(As) ∩
⋂

s∈Q\Qw

L(As) or, equivalently, w ∈
⋂

s∈Qw

L(As) ∩
⋂

s∈Q\Qw

L(Âs).261

For every i ≥ 0, P2 and P3 are then equivalent to the requirement Qi
1 = Qw[i···].262

To see how the local constraints L2 and L3 can be obtained from P2 and P3, respectively,263

we fix an integer i ≥ 0. Let s ∈ Qi
1, so we know that As accepts w[i · · ·]. Let Si+1 be the set264

of successors of s in an accepting run DAG of As over w[i · · ·], i.e., Si+1 |= δ(s, w[i]). As the265

run DAG is accepting, we in particular have, for every t ∈ Si+1, that At accepts w[i + 1 · · ·],266

which implies Si+1 ⊆ Qi+1
1 . With Si+1 |= δ(s, w[i]), this provides Qi+1

1 |= δ(s, w[i]), and267

thus L2.268

Similarly, we can also show that, for every state q ∈ Q \ Qi
1, we have Q \ Qi+1

1 |= δ̂(q, w[i]).269

As before, Âq accepts w[i · · ·] for every q ∈ Q \ Qi
1 by definition. We let Si+1 be the set of270

successors of q in an accepting run DAG of Âq. This implies at the same time Si+1 |= δ̂(q, w[i])271

(local constraints for the run DAG) and Si+1 ⊆ Q \ Qi+1
1 (as the subgraphs starting there272

must be accepting). Together, this provides Q \ Qi+1
1 |= δ̂(q, w[i]), and thus L3 also holds.273

Moreover, every set Qi
1 is uniquely defined based on the word w[i · · ·]. Therefore, the274

sequence Rw = Q0
1Q1

1 · · · we have defined above indeed is the unique sequence satisfying P1,275

P2, and P3. Let us consider again the NBA construction of Definition 2: obviously, it enforces276

the local consistency requirements L2 and L3 on the definition of the transition relation δB,277

which is the necessary condition for the Q1-sequence being unique; the sufficient condition278

that Qi
1 = Qw[i···] for all i ∈ N is guaranteed with the two breakpoint constructions.279

In the remainder of the paper, we denote this unique sequence for a given word w by Rw.280

The UBA we will construct has to guess (not only) this unique sequence correctly on the fly,281

but also when it leaves each SCC, as shown later.282

3.3 Unique distance functions283

As discussed before, we have a unique sequence Rw = Q0
1Q1

1 · · · for w. However, as we have284

seen in Section 3.1, Rw alone does not suffice to yield an UBA. The construction from Section285

3.1, for example, validates that all rejecting SCCs can be left using breakpoints, and we286

have shown how that leaves leeway w.r.t. how these breakpoints are met. In this section,287

CONCUR 2023

37:8 Singly exponential translation of AWAs to UBAs

we discuss a different, an unambiguous (but not finite) way to check the correctness of Rw288

by making the minimal time it takes from a state, for the given input word, to leave the289

rejecting SCC of A or Â on every branch of this run DAG. For instance, in Figure 1, it is290

possible to select different successors for state q when reading a b, going to either s or t. One291

of them will lead to leaving this SCC immediately, either s (when reading a b) or t (when292

reading an a). For acceptance, the choice does not matter—so long as the correct choice is293

eventually made. On the word bω, for example in A, we could go to t the first 20 times, and294

to s only in the 21st attempt; the answer to the question ‘how long does it take to leave the295

SCC starting in q on this run DAG?’ would be 42.296

The shortest time, however, is well defined. In the example automaton A, it depends on297

the next letter: if it is a, then the distance is 1 from t, 2 from q, and 3 from s, and when it298

is b, then the distance is 1 from s, 2 from q, and 3 from t.299

To reason about the minimal number of steps it takes from a state within a rejecting300

SCC that needs to leave it, we will define a distance function.301

Formally, we denote by R the set of states in all rejecting SCCs of A and A the set of302

states in all accepting SCCs of A. For a given word w and its unique sequence Rw, we identify303

the unique distance4 to leave a rejecting SCCs at each level i in Gw by defining a distance304

function di : (Qi
1 ∩ R) ⊎ (A \ Qi

1) → N>0 for each i ∈ N.305

▶ Definition 5. Let w be a word and Rw = Q0
1Q1

1 · · · be its unique sequence of sets of states.306

We say Φw = (Q0
1, d0)(Q1

1, d1) · · · is consistent if, for every i ∈ N, we have (Qi
1, di) and307

(Qi+1
1 , di+1) satisfy the following rules:308

R1. For every state p ∈ R ∩ Qi
1 that belongs to a rejecting SCC C in A,309

a : (Qi+1
1 \ C) ∪ {q ∈ C ∩ Qi+1

1 | di+1(q) ≤ di(p) − 1} |= δ(p, w[i]) and310

311

b : if di(p) > 1, (Qi+1
1 \ C) ∪ {q ∈ C ∩ Qi+1

1 | di+1(q) ≤ di(p) − 2} ̸|= δ(p, w[i]) hold.312

R2. For every state p ∈ A \ Qi
1 that belongs to an accepting SCC C in A,313

a :
(
Q \ (Qi+1

1 ∪ C)
)

∪ {q ∈ C \ Qi+1
1 | di+1(q) ≤ di(p) − 1} |= δ̂(p, w[i]) and314

315

b : if di(q) > 1,
(
Q\(Qi+1

1 ∪C)
)
∪{q ∈ C \Qi+1

1 | di+1(q) ≤ di(p)−2} ̸|= δ̂(p, w[i]) hold.316

Intuitively, the distance function defines a minimal number of steps to escape from317

rejecting SCCs over different accepting run DAGs and maximal over different branches of318

one such run DAG.319

For instance, when di(p) = 1, we have that Qi+1
1 \ C |= δ(p, w[i]) if p ∈ Qi

1 ∩ R, otherwise320

Q \ (Qi+1
1 ∪ C) |= δ̂(p, w[i]) if p ∈ A \ Qi

1. It means that p can escape from C within one step321

from an accepting run DAG Gw[i···] starting from ⟨p, 0⟩.322

▶ Lemma 6. For each w ∈ Σω, there is a unique consistent sequence Φw = (Q0
1, d0)(Q1

1, d2) · · ·323

where Q0
1Q1

1Q2
1 · · · is Rw and d0d1 · · · is the sequence of distance functions.324

One can easily construct a consistent sequence of distance functions as follows. Let C be325

a rejecting SCC of A; the case for a rejecting SCC of Â is entirely similar. Below, we describe326

how to obtain a sequence of distance values for each state q ∈ C ∩ Qi
1 with i ≥ 0 in order to327

form a consistent sequence Φw. For q ∈ C ∩ Qi
1 at the level i, we first obtain an accepting run328

4 Note that, while the distance is unique, the way does not have to be. To see this, we could just expand
the alphabet of A by adding a letter c, and by adding c to the transitions from both s and t to r. Then
there are two equally short (length 2) ways from q to r whenever the next letter is c.

Y. Li, S. Schewe, M. Vardi 37:9

DAG Gw[i···] over w[i · · ·] starting from ⟨q, 0⟩. One can define the maximal distance, say K,329

over all branches from ⟨q, 0⟩ to escape the rejecting SCC C. Such a maximal distance value330

must exist and be a finite value, since all branches will eventually get trapped in accepting331

SCCs. For all accepting run DAGs G′
w[i···] over w[i · · ·] starting from the vertex ⟨q, 0⟩, there332

are only finitely many run DAGs of depth K from ⟨q, 0⟩; we denote the finite set of such run333

DAGs of depth K by Pq,i. We then denote the maximal distance over one finite run DAG334

Gq,i,K ∈ Pq,i by KGq,i,K
. (Note that we set the distance to ∞ for a finite branch in Gq,i,K if335

it does not visit a state outside C.) We then set di(q) = min{KGq,i,K
: Gq,i,K ∈ Pq,i} ≤ K.336

One of Gq,i,K must provide the minimal value, so that di(q) is well defined. This way, we337

can define the sequence of distance functions d = d0d1 · · · for the sequence Rw. We can also338

prove that the sequence Rw × d is consistent by an induction on all the distance values k > 0;339

We refer to [19] for the details.340

The proof for the uniqueness of d to Rw can also be obtained by an induction on the341

distance value k > 0; See [19] for details. The intuition is that every consistent sequence of342

distance functions c does not have smaller distance values than d for every state q ∈ C ∩ Qi
1343

(see the construction of d above), and if c does have greater distance values for some state, a344

violation of the consistency constraints in Definition 5 will be found, leading to contradiction.345

3.4 Unique total preorders346

The range of the sequence d = d0d1d2 . . . of distance functions for Rw is not a priori bounded347

by any given finite number when ranging over all infinite words. Therefore, we may need348

infinite amount of memory to store d. To allow for an abstraction of d that preserves349

uniqueness and needs only finite memory, we will abstract the values of each function di350

as families of total preorders, {⪯i
C}C∈S , where S denotes the set of SCCs in the graph of351

A. For a given SCC C ∈ S, a total preorder ⪯i
C is a relation defined over Hi × Hi, where352

Hi = C ∩ Qi
1 if C ⊆ R or Hi = C \ Qi

1 if C ⊆ A; As usual, ⪯i
C is reflexive (i.e., for each353

q ∈ Hi, q ⪯i
C q) and transitive (i.e., for each q, r, s ∈ Hi, q ⪯i

C r and r ⪯i
C s implies q ⪯i

C s).354

We also have q ≺i
C r whenever q ⪯i

C r but r ̸⪯i
C q. We write q ⋍i

C r if we have q ⪯i
C r and355

r ⪯i
C q. Since ⪯i

C is total, for every two states p, q ∈ Hi, we have p ⪯i
C q or q ⪯i

C p. Note356

that ≺i
C is acyclic: it is impossible for two states q, p ∈ Hi satisfying p ≺i

C q and q ≺i
C p.357

Formally, we define a consistent sequence of total preorders as below.358

▶ Definition 7. Let w ∈ Σω and Rw = Q0
1Q1

1 · · · be its unique sequence of sets of states. We359

say Pw = (Q0
1, {⪯0

C}C∈S)(Q1
1, {⪯1

C}C∈S) · · · is consistent if, for every i ∈ N, we have that360

(Qi
1, {⪯i

C}C∈S) and (Qi+1
1 , {⪯i+1

C }C∈S) satisfy the following rules:361

R1’. ∀q, q′ ∈ C ∩ Qi
1 ⊆ R, we have that q ≺i

C q′ iff there exists r ∈ C ∩ Qi+1
1 such that362

a : {r′ ∈ C ∩ Qi+1
1 | r′ ≺i+1

C r} ∪ (Qi+1
1 \ C) |= δ(q, w[i]) and363

364

b : {r′ ∈ C ∩ Qi+1
1 | r′ ≺i+1

C r} ∪ (Qi+1
1 \ C) ̸|= δ(q′, w[i]) hold,365

where C ⊆ R is a rejecting SCC of A.366

R2’. ∀q, q′ ∈ C \ Qi
1 ⊆ A, we have q ≺i

C q′ iff there exists r ∈ C \ Qi+1
1 such that367

a : {r′ ∈ C \ Qi+1
1 | r′ ≺i+1

C r} ∪
(
Q \ (Qi+1

1 ∪ C)
)

|= δ̂(q, w[i]) and368

369

b : {r′ ∈ C \ Qi+1
1 | r′ ≺i+1

C r} ∪
(
Q \ (Qi+1

1 ∪ C)
)

̸|= δ̂(q′, w[i]) hold,370

where C ⊆ A is an accepting SCC of A.371

CONCUR 2023

37:10 Singly exponential translation of AWAs to UBAs

As the names indicate, the Rules R1’ and R2’ correspond to Rules R1 and R2, respectively,372

from Definition 5. We will first show that there is a consistent sequence of total preorders373

for each word.374

▶ Lemma 8. For each word w ∈ Σω, there exists a consistent sequence Pw = (Q0
1, {⪯0

C375

}C∈S)(Q1
1, {⪯1

C}C∈S) · · · , where Q0
1Q1

1 · · · is the unique sequence Rw.376

Proof. It is simple to derive a consistent sequence Pw = (Q0
1, {⪯0

C}C∈S)(Q1
1, {⪯1

C}C∈S) · · ·377

from Φw = (Q0
1, d0)(Q1

1, d1) · · · as given in Lemma 6: We can simply select, for all i ∈ N and378

C ∈ S, ⪯i
C is the total preorder over C ∩ Qi

1 (if C ⊆ R) or C \ Qi
1 (if C ⊆ A) with p ⪯i

C q379

iff di(p) ≤ di(q). In particular, p ≺i
C q iff di(p) < di(q).380

It is easy to verify that the sequence Pw as defined above is indeed consistent. For381

instance, for all q, q′ ∈ C ∩ Qi
1 ⊆ R, if q ≺i

C q′, then di(q) < di(q′) by definition. Then we382

can choose the r-state in Definition 7 (Rule R1’) such that di+1(r) = di(q′) − 1. (Note that383

some such a state r must exist since di(q′) > di(q) ≥ 1.)384

Combining Definition 5 (R1) and Definition 7 (R1’), we have that Rule R1b now entails385

R1’b, and Rule R1a entails R1’a, because {r′ ∈ C ∩ Qi+1
1 | r′ ≺i+1

C r} ⊇ {r′ ∈ C ∩ Qi+1
1 |386

di+1(r′) ≤ di(q) − 1}, because di(q) − 1 ≤ di(q′) − 2 < di(q′) − 1 = di+1(r).387

The argument for accepting SCCs is using rules R2 and R2’ in the same way. ◀388

After discussing how such a sequence can be obtained, we now establish that it is unique.389

Note, however, that it is unique for the correct sequence Rw, while there may be sequences of390

total preorders that work with incorrect sequences of sets of states. (For example, a total391

preorder can accommodate an infinite distance for all states, where the obligation to leave392

a rejecting SCC cannot be discharged, while the local consistency constraints can be met.)393

Nonetheless, a breakpoint construction ensures to obtain the unique sequence Rw.394

▶ Lemma 9. Let w be a word in Σω and Φw = (Q0
1, d0)(Q1

1, d1) · · · be its unique consistent395

sequence of distance functions. Let Pw = (Q0
1, {⪯0

C}C∈S)(Q1
1, {⪯1

C}C∈S) · · · be a sequence396

satisfying Definition 7. Then397

For every two states q, q′ ∈ C ∩ Qi
1 ⊆ R, if q ⪯i

C q′, then di(q) ≤ di(q′), and in particular398

if q ≺i
C q′, then di(q) < di(q′). (C is a rejecting SCC)399

For every two states q, q′ ∈ C \ Qi
1 ⊆ A, if q ⪯i

C q′, then di(q) ≤ di(q′), and in particular400

if q ≺i
C q′, then di(q) < di(q′). (C is an accpting SCC)401

Proof. We only prove the first claim; the proof of the second claim is entirely similar.402

Let C be a rejecting SCC and i be a natural number. We let q and q′ be two states403

in C ∩ Qi
1. In order to prove that q ⪯i

C q′ implies di(q) ≤ di(q′), we can just prove its404

contraposition that di(q′) < di(q) implies q′ ≺i
C q for all distance values k > 0 with di(q′) ≤ k.405

We can similarly prove that q ≺i
C q′ implies di(q) < di(q′).406

Our goal is then to prove that, for all k > 0, di(q′) < di(q) =⇒ q′ ≺i
C q and407

di(q′) ≤ di(q) =⇒ q′ ⪯i
C q when di(q′) ≤ k. In the remainder of the proof, we will prove it408

by induction over the distance value k > 0. Note that our claim is quantified over all natural409

numbers i.410

For the induction basis (k = 1), we have di(q′) ≤ k by assumption. So, di(q′) = 1. But411

then Qi+1
1 \ C |= δ(q′, w[i]). Consequently, by Rule R1’b, q′ must be a minimal element of412

⪯i
C . Hence, we have q′ ⪯i

C q. Since by assumption that di(q) > di(q′) = 1, Rule R1 supplies413

Qi+1
1 \ C ̸|= δ(q, w[i]). We can therefore choose r from Rule R1’ as a minimal element of ⪯i+1

C414

to get Si+1 = { r′ ∈ C ∩ Qi+1
1 | r′ ≺i+1

C r } = ∅. It follows that Si+1 ∪ (Qi+1
1 \ C) |= δ(q′, w[i])415

(R1’a) but Si+1 ∪ (Qi+1
1 \ C) ̸|= δ(q, w[i]) (R1’b). By Definition 7, we have q′ ≺i

C q. Hence,416

for k = 1 and di(q′) ≤ k = 1, it holds that di(q′) < di(q) implies q′ ≺i
C q.417

Y. Li, S. Schewe, M. Vardi 37:11

When di(q) = di(q′) = k = 1, it directly follows that q ̸≺i
C q′ and q′ ̸≺i

C q by Definition 7,418

thus also q′ ≃i
C q since ⪯i

C is a total preorder. Therefore, if di(q′) ≤ di(q), then q′ ⪯i
C q,419

thus also q ≺i
C q′ implies di(q) < di(q′).420

For the induction step k 7→ k + 1, we have di(q′) = k + 1 and we want to prove421

q′ ≺i
C q when k + 1 = di(q′) < di(q), and prove q′ ≃i

C q when di(q′) = di(q) (hence422

di(q′) ≤ di(q) =⇒ q′ ⪯i
C q). We only give the high level proof idea here and refer to [19] for423

details.424

Recall that in the induction basis, we proved that q′ is a minimal element with respect to425

⪯i
C when di(q′) ≤ k. Our key observation is that, for all k > 0, all elements in { p ∈ C ∩ Qi

1 |426

di(p) = k + 1 } are minimal with respect to ⪯i
C in the set { p ∈ C ∩ Qi

1 | di(p) > k } (See [19]427

for proof details). The intuition is that our claim is equivalent to that for every two states428

q, q′ ∈ C ∩ Qi
1 ⊆ R, q ⪯i

C q′ if and only if di(q) ≤ di(q′) (Since ⪯i
C is a preorder, we also429

have q ≺i
C q′ iff di(q) < di(q′)). Hence, the minimal elements in { p ∈ C ∩ Qi

1 | di(p) > k }430

(i.e., { p ∈ C ∩ Qi
1 | di(p) = k + 1 }) must also be the minimal elements with respect to ⪯i

C ,431

based on our induction hypothesis.432

Let S = {p ∈ C ∩ Qi
1 | di(p) > k}. First, we know that q′ is a minimal element with433

respect to ⪯i
C in the set S, as di(q′) = k + 1 by assumption. Since by assumption that434

k < di(q′) = k + 1 < di(q), we know that q is also in S. Hence, q′ ⪯i
C q holds.435

We still need to prove that q′ ≺i
C q under the assumption that di(q′) < di(q). By436

assumption that di(q) > di(q′) = k + 1, we pick a state r′ that is minimal w.r.t. ⪯i+1
C437

in the set {p ∈ C ∩ Qi+1
1 | di+1(p) > k} (and hence di+1(r′) = k + 1). We then prove438

that the selected state r′ is the r-state that witnesses q′ ≺i
C q for R1’ of Definition 7. The439

observation is that, by Definition 5, we have Qi+1
1 \C ∪{ p ∈ C ∩Qi+1

1 | di+1(p) ≤ di(q′)−1 =440

di+1(r′)−1 } |= δ(q′, w[i]) but Qi+1
1 \C ∪{ p ∈ C ∩Qi+1

1 | di+1(p) ≤ di+1(r′)−1 } ̸|= δ(q, w[i]).441

By induction hypothesis, for all states p ∈ C ∩ Qi+1
1 such that di+1(p) ≤ di+1(r′) − 1 = k442

(i.e., di+1(p) < di+1(r′)), we also have p ≺i
C r′. It then follows that by Definition 7 that443

q′ ≺i
C q holds. Hence, di(q′) < di(q) =⇒ q′ ≺i

C q.444

To prove that q ≺i
C q′ implies di(q) < di(q′), we also prove its contraposition, i.e.,445

di(q′) ≤ di(q) implies q′ ⪯i
C q for all i ∈ N. We have already shown that di(q′) < di(q)446

implies q′ ≺i
C q. Moreover, if di(q′) = di(q) = k + 1, then q′ ≃i

C q, since both q′ and q are447

minimal element w.r.t. ⪯i
C in the set {p ∈ C ∩ Qi

1 | di(p) > k}. It then follows that q ≺i
C q′

448

implies di(q) < di(q′). Hence, we have completed the proof. ◀449

By Lemma 9, for states p, q ∈ Hi, we have both p ≃i
C q ⇐⇒ di(p) = di(q) and450

p ≺i
C q ⇐⇒ di(p) < di(q) hold for all i ∈ N, where Hi = C ∩ Qi

1 if C ⊆ R and Hi = C \ Qi
1451

if C ⊆ A. Then Corollary 10 follows immediately from Lemma 6.452

▶ Corollary 10. For each w ∈ Σω, there is a unique consistent sequence of sets of states453

and total preorders Pw = (Q0
1, {⪯0

C}C∈S)(Q1
1, {⪯1

C}C∈S) · · · where Q0
1Q1

1Q2
1 · · · is the unique454

sequence Rw.455

In order to lift this unique set to an UBA, we need to discharge the correctness of the456

sequence Q0
1Q1

1Q2
1 · · · . This is, however, a relatively simple task: for the correct sequence,457

the total preorders provide the same rational way of creating the same accepting runs on458

the tails w[i · · ·] of w from the states marked as accepting in A by inclusion in Qi
1, or as459

accepting from Â by non-inclusion in Qi
1.460

To prepare such a construction, we first define an arbitrary (but fixed) order on the SCCs461

of A, as well as a next operator for cycling through SCCs, and fix an initial SCC C0 ∈ S.462

Recall that S is the set of all SCCs in A. Note that we assume that the graph of A has at463

CONCUR 2023

37:12 Singly exponential translation of AWAs to UBAs

least one SCC. If this is not the case, we can simply build an unambiguous safety automaton464

that guesses Rw. Then, our construction of UBA is formalized below.465

▶ Definition 11. Let A = (Σ, Q, ι, δ, F) be an AWA. We define an NBA Bu = (Σ, Qu, Iu, δu, Fu)466

as follows.467

The macrostates of Qu are tuples (Q1, Q2, {⪯C}C∈S , S, D) such that468

Q1 and Q2 partition Q, i.e., Q2 = Q \ Q1469

for all C ∈ S, if C ⊆ R then ⪯C is a total preorder over Q1 ∩ C470

for all C ∈ S, if C ⊆ A then ⪯C is a total preorder over Q2 ∩ C471

S ∈ S is an SCC in the graph of A472

D is a downwards closed set w.r.t. the total preorder ⪯S: if q ∈ D then (1) q ∈ Q1 ∩ S473

if S ⊆ R resp. q ∈ Q2 ∩ S if S ⊆ A, and (2) q′ ⪯S q implies q′ ∈ D,474

Iu = { (Q1, Q2, {⪯C}C∈S , S, D) ∈ Qu | ι ∈ Q1, S = C0, D = ∅ },475

Let (Q1, Q2, {⪯C}C∈S , S, D) be a macrostate in Qu and σ ∈ Σ. Then we have that476

(Q′
1, Q′

2, {⪯′
C}C∈S , S′, D′) ∈ δu

(
(Q1, Q2, {⪯C}C∈S , S, D), σ) if477

Q′
1 |= ∧s∈Q1δ(s, σ) and Q′

2 |= ∧s∈Q2 δ̂(s, σ) (local consistency)478

for all C ∈ S, (Q1, ⪯C) and (Q′
1, ⪯′

C) satisfy the requirements of Rule R1’ (if C ⊆ R)479

resp. Rule R2’ (if C ⊆ A)480

if D = ∅, then S′ = next(S) and D′ = Q′
1 ∩ S′ if S′ ⊆ R resp. D′ = Q′

2 ∩ S′ if S′ ⊆ A,481

if D ̸= ∅, then S′ = S and D′ is the smallest downwards closed set (see above) such482

that D′ ∪ (Q′
1 \ S) |= ∧s∈Dδ(s, σ) if S ⊆ R resp. D′ ∪ (Q′

2 \ S) |= ∧s∈D δ̂(s, σ) if S ⊆ A,483

Fu = { (Q1, Q2, {⪯C}C∈S , S, D) ∈ Qu | D = ∅ }.484

The new construction uses D as the breakpoint to ensure that the correct unique sequence485

Rw for each word w is obtained. The nondeterminism of the construction lies only in486

choosing Q′
1 (which entails Q′

2) and in updating the total preorders. From an accepting487

macrorun of Bu over a word w, one can actually construct an accepting run DAG Gw of488

A by selecting successors in the next level for each state q only the ones in the smallest489

downwards closed set D satisfying δ(q, σ). This way, all branches of Gw by construction will490

eventually get trapped in an accepting SCC, since D will become empty infinitely often.491

Hence, L(Bu) ⊆ L(A). Moreover, one can construct from the unique sequence of preorders492

Φw of a word w ∈ L(A) as given in Corollary 10 a unique infinite macrorun ρ of Bu. Wrong493

guesses of the preorders for Rw will result in discontinued macroruns once a violation to R1’494

(or R2’) has been detected. That is, there are no consistent ways to update the preorders495

in the next macrostate. Further, by Lemma 9, we have that di(q) = di(q′) ⇔ q ≃i
C q′ and496

di(q) < di(q′) ⇔ q ≺i
C q′ for all i ∈ N. So, by Definition 5 and Definition 7, one can observe497

that, if Di ̸= ∅, sup{di(q) | q ∈ Di} = sup{di+1(q) | q ∈ Di+1} + 1 (choosing sup ∅ = 0),498

where Di is the D-component of macrostate ρ[i] with i ∈ N. Since for every nonempty Di,499

sup{di(q) | q ∈ Di} is finite and the maximal value in Di is always decreasing, the value will500

eventually become 0, i.e., D always becomes empty eventually. That is, ρ must be accepting.501

Hence, Theorem 12 follows; See [19] for more details.502

▶ Theorem 12. Let Bu be defined as in Definition 11. Then (1) L(Bu) = L(A), and (2) Bu503

is unambiguous.504

▶ Example 13. Consider again the AWW A depicted in Figure 1. Recall that, in Figure 1,505

the macrostate (Q, {q, s, t}) has two successors over b because of the nondeterminism in506

developing breakpoints. We now apply Definition 11 to construct a UBA Bu from A. There507

are three SCCs in A, namely C0 = {p}, C1 = {q, s, t} and C2 = {r}. Since C0 and C2 both508

have only one state, the total preorders for them are fixed and thus ignored here. We only509

Y. Li, S. Schewe, M. Vardi 37:13

need to guess the preorder over C1. Let us consider the constucted Bu over bω starting510

from the macrostate m0 = (Q, {}, ⪯0
C1

, C1, C1) where ⪯0
C1

is defined as {s ≺0
C1

q ≺0
C1

t}.511

First, recall that Rbω = Qω. Obviously, m1a = (Q, {}, {s ≺1
C1

q ≺1
C1

t}, C1, {q, s}), which512

corresponds to (Q, {q, s}) in Figure 1, is a valid successor of m0 over b, while m1b =513

(Q, {}, {s ≺1
C1

q ≺1
C1

t}, C1, {q, t}), which corresponds to (Q, {q, t}) in Figure 1, is not. The514

reason is that {q, t} is not a downwards closed set with respect to ⪯1
C1

, since we have515

s ≺1
C1

t but s is missing in the breakpoint set. One may wonder whether we can change the516

preorder ⪯1
C1

and consider the candidate successor m1c = (Q, {}, {q ≺2
C1

t ≺2
C1

s}, {q, t}).517

Indeed, {q, t} is now a downwards closed set with respect to ⪯2
C1

. However, (Q, ⪯0
C1

) and518

(Q, ⪯2
C1

) do not satisfy the local consistency as required by Definition 7. First, we have519

that Q \ C1 ∪ {} |= δ(s, b). So, there do not exist r-states in C1 ∩ Q that witness q ≺2
C1

s520

and t ≺2
C1

s, as required by R1’ of Definition 7. In fact, one can verify that s ≺C1 q ≺C1 t521

is the only valid preorder over C1 when the input word is bω. This is due to the fact that522

when reading b, the distance to escape C1 is 1 from s, 2 from q, and 3 from t. Hence, m1c523

must not be a valid successor of m0. The accepting macrorun of Bu (from Definition 11)524

over bω is (Q, {}, {s ≺C1 q ≺C1 t}, C0, {}) b−→ (Q, {}, {s ≺C1 q ≺C1 t}, C1, {q, s, t}) b−→525

(Q, {}, {s ≺C1 q ≺C1 t}, C1, {q, s}) b−→ (Q, {}, {s ≺C1 q ≺C1 t}, C1, {s}) b−→ (Q, {}, {s ≺C1526

q ≺C1 t}, C1, {}) b−→ (Q, {}, {s ≺C1 q ≺C1 t}, C2, {}) b−→ (Q, {}, {s ≺C1 q ≺C1 t}, C0, {}) · · · .527

4 Improvements and Complexity528

When revisiting the construction in search for improvements, it seems wasteful to keep total529

preorders for all SCCs in the graph of A, given that they are not interacting with each other.530

Can we focus on just one at a time? It proves to be possible to optimise the automaton531

from Definition 11 in this way, with re-establishing uniqueness proving the greatest obstacle.532

The resulting automaton is smaller in practice, mainly because it only keeps track of a total533

preorder over only one SCC.534

We provide this construction only as an improvement over the principle construction from535

Definition 11 for two reasons. First, while this provides quite a significant advantage where536

there are many small SCCs rather than one big SCC, this has little effect on the worst case537

(which occurs when there is one SCC, cf. Theorem 16). Second, it loosens the connection538

that the total preorders from Definition 11 need to be the natural abstraction of the unique539

distance function from Definition 5.540

▶ Definition 14. Let A = (Σ, Q, ι, δ, F) be an AWA. We define an NBA U = (Σ, Qu, Iu, δu, Fu)541

as follows.542

The macrostates of Qu are tuples (Q1, Q2, ⪯C , C, D) such that543

Q1 and Q2 partition Q544

C is an SCC in the graph of A and545

∗ if C ⊆ R then ⪯C is a total preorder of Q1 ∩ C546

∗ if C ⊆ A then ⪯C is a total preorder of Q2 ∩ C547

let M be the set of maximal elements of the total preorder ⪯C , and let H = C ∩ Q1 if548

C ⊆ R resp. H = C ∩ Q2 if C ⊆ A; then D = H or D = H \ M549

Iu = { (Q1, Q2, ⪯C , C, D) ∈ Qu | ι ∈ Q1, C = C0, D = ∅ },550

Let (Q1, Q2, ⪯C , C, D) be a macrostate in Qu and σ ∈ Σ. Then we have that551

(Q′
1, Q′

2, ⪯′
C′ , C ′, D′) ∈ δu

(
(Q1, Q2, ⪯C , C, D), σ) if552

Q′
1 |= ∧s∈Q1δ(s, σ) and Q′

2 |= ∧s∈Q2 δ̂(s, σ) (local consistency)553

if D = ∅, then C ′ = next(C) and D′ = Q′
1 ∩C ′ if C ′ ⊆ R resp. D′ = Q′

2 ∩C ′ if C ′ ⊆ A,554

CONCUR 2023

37:14 Singly exponential translation of AWAs to UBAs

if D ̸= ∅ then C ′ = C,555

∗ (Q1, ⪯C) and (Q′
1, ⪯′

C) must satisfy the requirements of Rule R1’ (if C ⊆ R) resp.556

Rule R2’ (if C ⊆ A) and557

∗ D′ is the smallest downward closed set w.r.t. ⪯′
C such that5 D′ ∪ (Q′

1 \ C) |=558

∧s∈Dδ(s, σ) if C ⊆ R resp. D′ ∪ (Q′
2 \ C) |= ∧s∈D δ̂(s, σ) if C ⊆ A,559

Fu = { (Q1, Q2, ⪯C , C, D) ∈ Qu | D = ∅ }.560

The nondeterminism of the construction again lies in choosing Q′
1 (which entails Q′

2) and561

in updating the total preorder. One can also construct from an accepting macrorun of U562

over w an accepting run DAG Gw of A, using the same way as we did for Theorem 12. So,563

L(U) ⊆ L(A).564

For the other direction, we first observe that the preorders of every accepting macrorun565

(Q0
1, Q0

2, ⪯0, S0, D0)(Q1
1, Q1

2, ⪯1, S1, D1) · · · of U over w can be tightly related with the566

distance values of states defined in d. More precisely, let Di′ = Di = ∅ with i′ < i being two567

consecutive accepting positions. Then for all j ∈ (i′, i], we have that:568

1. for all q ∈ Dj and all q′ ∈ Ci ∩ Qj
1. dj(q) ≤ dj(q′) ⇔ q ⪯j q′, and dj(q) ≤ i − j hold,569

2. for all q ∈ Ci ∩ Qj
1 and all q′ ∈ M j = (Ci ∩ Qj

1) \ Dj . q ⪯j q′ and dj(q′) > i − j hold, and570

3. mj = sup{dj(q) | q ∈ Dj} = i − j, using sup ∅ = 0,571

where Ci ⊆ R is a rejecting SCC of A. Note that Cj = Ci for all i′ < j ≤ i. The case for572

Ci ⊆ A can be defined similarly. Let mj = sup{dj(q) | q ∈ Dj}. The intuition is that all states573

in M j = (Ci ∩ Qj
1) \ Dj = { s ∈ Ci ∩ Qj

1 | dj(s) > mi } are aggregated by construction as the574

maximal elements w.r.t. ⪯j , while ⪯j orders all states in Dj = { s ∈ Ci ∩ Qj
1 | dj(s) ≤ mj }575

exactly as in the preorders of Corollary 10. So, the correspondence between dj and ⪯j in the576

three items then follows naturally. For technical reasons, if q ∈ Dj or q′ ∈ (Ci ∩ Qj
1) \ Dj do577

not exist in above items, we say the item above still holds. See [19] for proof details.578

In fact, one can construct such an accepting macrorun satisfying the three items above579

for U by simulating Bu as follows. If ρ = (Q0
1, Q0

2, {⪯0
C}C∈S , S0, D0)(Q1

1, Q1
2, {⪯1

C}C∈S , S1,580

D1)(Q2
1, Q2

2, {⪯2
C}C∈S , S2, D2) · · · is the accepting macrorun of Bu on a word w, then U has581

an accepting macrorun ρ̂ = (Q0
1, Q0

2, ⪯0, S0, D0)(Q1
1, Q1

2, ⪯1, S1, D1)(Q2
1, Q2

2, ⪯2, S2, D2) · · ·582

(that differs from ρ only in preorders), such that583

if Si ⊆ R, then ⪯i is a total preorder on Si ∩ Qi
1 where ⪯i=⪯i

Si if Di = Si ∩ Qi
1 and584

otherwise, the maximal elements M i of ⪯i are (Si ∩ Qi
1) \ Di, and the restriction of ⪯i585

to Di × Di agrees with the restriction of ⪯i
Si to Di × Di, and586

similarly, if Si ⊆ A, then ⪯i is a total preorder on Si ∩ Qi
2 where ⪯i=⪯i

Si if Di = Si ∩ Qi
2587

and otherwise, the maximal elements M i of ⪯i are (Si ∩ Qi
2) \ Di, and the restriction of588

⪯i to Di × Di agrees with the restriction of ⪯i
Si to Di × Di.589

It is easy to verify that ρ̂ satisfies all local constraints for Rule R1’ resp. R2’. Hence,590

L(A) = L(Bu) ⊆ L(U), thus also L(U) = L(A).591

One can show that ρ̂ is the sole accepting macrorun of U over w by the following facts.592

(i) There is only a single initial macrostate that fits Rw, and when we take a transition from593

an accepting macrostate (including the first), the next SCC is deterministically selected; (ii)594

Moreover, all relevant states from this SCC are in the Di component and mi = sup{di(q) |595

q ∈ Di} is the distance to the next breakpoint (by Item (3) above), and thus the ⪯i and Di
596

5 Note that this is a deterministic assignment that does not necessarily lead to a set D′ that covers all of
⪯′

C or all of ⪯′
C except for the maximal elements; if it does not, then this transition is disallowed

Y. Li, S. Schewe, M. Vardi 37:15

up to it. With a simple inductive argument we can thus conclude that ρ̂ is the only such597

accepting macrorun. Then, Theorem 15 follows.598

▶ Theorem 15. Let U be defined as in Definition 14. Then (1) L(U) = L(A) and (2) U is599

unambiguous.600

We now turn to the complexity of our constructions. Let tpo(n) denote the num-601

ber of total preorders over a set with n states. By [3], tpo(n) ≈ n!
2(ln 2)n+1 , so that we602

get limn→∞
n
√

tpo(n)
n = limn→∞

n√
n!

n · 1
n√2 ln 2 · 1

ln 2 = 1
e · 1 · 1

ln 2 = 1
e ln 2 ≈ 0.53. Hence,603

tpo(n) ≈ (0.53n)n, which is a better bound than the best known bound (0.76n)n for Büchi604

disambiguation [16] and complementation [24].605

▶ Theorem 16. If A has n states, then the numbers of states of U and Bu are O
(
tpo(n)

)
606

and O
(
n · tpo(n)

)
, respectively.607

Proof. For both automata, the worst case occurs when all states are in the same SCC C,608

say C = R. Starting with U , each macrostate is a tuple (Q1, C \ Q1, ⪯, C, D). There are609

four possibilities for the tuple, namely C = Q1 = D, C = Q1 ⊋ D, C ⊋ Q1 = D, and610

C ⊋ Q1 ⊋ D. For each of these four cases, we can produce an injection from the tuple611

(macrostate) onto a total preorder ⪯′ over C, so that we have at most 4 · tpo(n) macrostates.612

For C = Q1 = D, for example, we can keep the ⪯ over C, i.e., we set ⪯′=⪯. When there613

is strict inclusion, i.e., C ⊋ Q1, we extend the ⪯ on Q1 to a total preorder ⪯′ over C by614

adding the states in C \ Q1 resp. Q1 \ D as minimal resp. maximal elements (with their615

separate equivalence class). For each of the four cases, the respective mapping is injective.616

As this covers all macrostates of U , U has at most 4 · tpo(n) macrostates.617

For Bu, there are O(n) possible choices for D, since the maximal element in D with respect618

to the preorder ⪯ has at most n possibilities. This leads to O(n · tpo(n)) macrostates. ◀619

5 Discussion620

We have given the first direct translation from AWAs to UBAs. The complexity of our621

translation is even smaller than that of the best known disambiguation algorithm for622

NBAs [16] (broadly (0.53n)n vs. (0.76n)n). We can further optimise the construction of623

U slightly by moving to transition-based acceptance conditions. That is, an ω-word is now624

accepted by U if one of its corresponding runs visits accepting transitions for infinitely625

many times. Essentially, where (Q′
1, Q′

2, ⪯′, C, ∅) ∈ δu

(
(Q1, Q2, ⪯, C, D), σ

)
, (Q′

1, Q′
2, ⪯′

626

, C, ∅) would be replaced by δu

(
(Q1, Q2, ≡, C, ∅), σ

)
. (≡ identifies all states it compares; it is627

the only total preorder acceptable for D = ∅.)628

This is done recursively, until the only macrostates with D = ∅ left are those with629

Q1 ∩ R = ∅ = Q2 ∩ A and (arbitrarily) C = C0. Note that the initial macrostate has to be630

changed for this, too.631

Removing most macrostates with D = ∅, this reduces the statespace slightly. It is also the632

automaton obtained by de-generalising the standard LTL to transition-based unambiguous633

generalized Büchi automaton construction. We can also ‘re-generalise’: every singleton634

SCC can be removed from the round-robin at the cost of including an individual Büchi635

condition that accepts when the state s is not in Q1 or Q2, respectively, or if Q1 |= δ(s, σ) or636

Q2 |= δ̂(s, σ), respectively, holds. If all components are singleton, we obtain the standard637

constuction for AVAs / LTL since the preorders of our construction given in Section 4 can be638

omitted. This way, the D set in a macrostate degenerates to a purely breakpoint construction.639

Then, the improved complexity for AVAs matches the current known bounds n2n for the640

LTL-to-UBA construction [14,26].641

CONCUR 2023

37:16 Singly exponential translation of AWAs to UBAs

References642

1 Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.643

2 Christel Baier, Stefan Kiefer, Joachim Klein, Sascha Klüppelholz, David Müller, and James644

Worrell. Markov chains and unambiguous Büchi automata. In Swarat Chaudhuri and Azadeh645

Farzan, editors, Computer Aided Verification - 28th International Conference, CAV 2016,646

Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part I, volume 9779 of Lecture Notes in647

Computer Science, pages 23–42. Springer, 2016. doi:10.1007/978-3-319-41528-4_2.648

3 J.P. Barthelemy. An asymptotic equivalent for the number of total preorders on a finite set.649

Discrete Mathematics, 29(3):311–313, 1980. URL: https://www.sciencedirect.com/science/650

article/pii/0012365X80901594, doi:https://doi.org/10.1016/0012-365X(80)90159-4.651

4 Michael Benedikt, Rastislav Lenhardt, and James Worrell. LTL model checking of interval652

markov chains. In Nir Piterman and Scott A. Smolka, editors, Tools and Algorithms for the653

Construction and Analysis of Systems - 19th International Conference, TACAS 2013, Held as654

Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2013,655

Rome, Italy, March 16-24, 2013. Proceedings, volume 7795 of Lecture Notes in Computer656

Science, pages 32–46. Springer, 2013. doi:10.1007/978-3-642-36742-7_3.657

5 Frantisek Blahoudek, Juraj Major, and Jan Strejcek. LTL to smaller self-loop alternating658

automata and back. In Robert M. Hierons and Mohamed Mosbah, editors, Theoretical Aspects659

of Computing - ICTAC 2019 - 16th International Colloquium, Hammamet, Tunisia, October660

31 - November 4, 2019, Proceedings, volume 11884 of Lecture Notes in Computer Science,661

pages 152–171. Springer, 2019. doi:10.1007/978-3-030-32505-3_10.662

6 Udi Boker, Orna Kupferman, and Adin Rosenberg. Alternation removal in Büchi automata.663

In Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf der Heide,664

and Paul G. Spirakis, editors, Automata, Languages and Programming, 37th International665

Colloquium, ICALP 2010, Bordeaux, France, July 6-10, 2010, Proceedings, Part II, volume666

6199 of Lecture Notes in Computer Science, pages 76–87. Springer, 2010. doi:10.1007/667

978-3-642-14162-1_7.668

7 Udi Boker, Karoliina Lehtinen, and Salomon Sickert. On the translation of automata to linear669

temporal logic. In Patricia Bouyer and Lutz Schröder, editors, Foundations of Software Science670

and Computation Structures - 25th International Conference, FOSSACS 2022, Held as Part671

of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich,672

Germany, April 2-7, 2022, Proceedings, volume 13242 of Lecture Notes in Computer Science,673

pages 140–160. Springer, 2022. doi:10.1007/978-3-030-99253-8_8.674

8 J. Richard Büchi. On a decision method in restricted second order arithmetic. In Proc. Int.675

Congress on Logic, Method, and Philosophy of Science. 1960, pages 1–12. Stanford University676

Press, 1962.677

9 Doron Bustan, Sasha Rubin, and Moshe Y. Vardi. Verifying omega-regular properties of678

Markov chains. In Rajeev Alur and Doron A. Peled, editors, Computer Aided Verification,679

16th International Conference, CAV 2004, Boston, MA, USA, July 13-17, 2004, Proceedings,680

volume 3114 of Lecture Notes in Computer Science, pages 189–201. Springer, 2004. doi:681

10.1007/978-3-540-27813-9_15.682

10 Olivier Carton and Max Michel. Unambiguous Büchi automata. Theor. Comput. Sci., 297(1-683

3):37–81, 2003. doi:10.1016/S0304-3975(02)00618-7.684

11 Paul Gastin and Denis Oddoux. Fast LTL to Büchi automata translation. In Gérard Berry,685

Hubert Comon, and Alain Finkel, editors, Computer Aided Verification, 13th International686

Conference, CAV 2001, Paris, France, July 18-22, 2001, Proceedings, volume 2102 of Lecture687

Notes in Computer Science, pages 53–65. Springer, 2001. doi:10.1007/3-540-44585-4_6.688

12 Giuseppe De Giacomo and Moshe Y. Vardi. Linear temporal logic and linear dynamic689

logic on finite traces. In Francesca Rossi, editor, IJCAI 2013, Proceedings of the 23rd690

International Joint Conference on Artificial Intelligence, Beijing, China, August 3-9, 2013,691

pages 854–860. IJCAI/AAAI, 2013. URL: http://www.aaai.org/ocs/index.php/IJCAI/692

IJCAI13/paper/view/6997.693

https://doi.org/10.1007/978-3-319-41528-4_2
https://www.sciencedirect.com/science/article/pii/0012365X80901594
https://www.sciencedirect.com/science/article/pii/0012365X80901594
https://www.sciencedirect.com/science/article/pii/0012365X80901594
https://doi.org/https://doi.org/10.1016/0012-365X(80)90159-4
https://doi.org/10.1007/978-3-642-36742-7_3
https://doi.org/10.1007/978-3-030-32505-3_10
https://doi.org/10.1007/978-3-642-14162-1_7
https://doi.org/10.1007/978-3-642-14162-1_7
https://doi.org/10.1007/978-3-642-14162-1_7
https://doi.org/10.1007/978-3-030-99253-8_8
https://doi.org/10.1007/978-3-540-27813-9_15
https://doi.org/10.1007/978-3-540-27813-9_15
https://doi.org/10.1007/978-3-540-27813-9_15
https://doi.org/10.1016/S0304-3975(02)00618-7
https://doi.org/10.1007/3-540-44585-4_6
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997

Y. Li, S. Schewe, M. Vardi 37:17

13 Gerard J. Holzmann. The model checker SPIN. IEEE Trans. Software Eng., 23(5):279–295,694

1997. doi:10.1109/32.588521.695

14 Simon Jantsch, David Müller, Christel Baier, and Joachim Klein. From LTL to unambiguous696

Büchi automata via disambiguation of alternating automata. Formal Methods Syst. Des.,697

58(1-2):42–82, 2021. doi:10.1007/s10703-021-00379-z.698

15 Detlef Kähler and Thomas Wilke. Complementation, disambiguation, and determinization699

of Büchi automata unified. In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M.700

Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, Automata, Languages and701

Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11,702

2008, Proceedings, Part I: Tack A: Algorithms, Automata, Complexity, and Games, volume703

5125 of Lecture Notes in Computer Science, pages 724–735. Springer, 2008. doi:10.1007/704

978-3-540-70575-8_59.705

16 Hrishikesh Karmarkar, Manas Joglekar, and Supratik Chakraborty. Improved upper and706

lower bounds for Büchi disambiguation. In Dang Van Hung and Mizuhito Ogawa, editors,707

Automated Technology for Verification and Analysis - 11th International Symposium, ATVA708

2013, Hanoi, Vietnam, October 15-18, 2013. Proceedings, volume 8172 of Lecture Notes in709

Computer Science, pages 40–54. Springer, 2013. doi:10.1007/978-3-319-02444-8_5.710

17 Orna Kupferman and Moshe Y. Vardi. Weak alternating automata are not that weak. ACM711

Trans. Comput. Log., 2(3):408–429, 2001. doi:10.1145/377978.377993.712

18 Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verification of713

probabilistic real-time systems. In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Computer714

Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT, USA, July715

14-20, 2011. Proceedings, volume 6806 of Lecture Notes in Computer Science, pages 585–591.716

Springer, 2011. doi:10.1007/978-3-642-22110-1_47.717

19 Yong Li, Sven Schewe, and Moshe Y. Vardi. Singly exponential translation of alternating718

weak büchi automata to unambiguous büchi automata. CoRR, abs/2305.09966, 2023. arXiv:719

2305.09966, doi:10.48550/arXiv.2305.09966.720

20 Satoru Miyano and Takeshi Hayashi. Alternating finite automata on omega-words. Theor.721

Comput. Sci., 32:321–330, 1984. doi:10.1016/0304-3975(84)90049-5.722

21 David E. Muller, Ahmed Saoudi, and Paul E. Schupp. Alternating automata, the weak723

monadic theory of trees and its complexity. Theor. Comput. Sci., 97(2):233–244, 1992.724

doi:10.1016/0304-3975(92)90076-R.725

22 David E. Muller and Paul E. Schupp. Alternating automata on infinite objects, determinacy726

and rabin’s theorem. In Maurice Nivat and Dominique Perrin, editors, Automata on Infinite727

Words, Ecole de Printemps d’Informatique Théorique, Le Mont Dore, France, May 14-18,728

1984, volume 192 of Lecture Notes in Computer Science, pages 100–107. Springer, 1984.729

doi:10.1007/3-540-15641-0_27.730

23 Gareth Scott Rohde. Alternating automata and the temporal logic of ordinals. PhD thesis,731

University of Illinois at Urbana-Champaign, 1997.732

24 Sven Schewe. Büchi complementation made tight. In Susanne Albers and Jean-Yves Marion,733

editors, 26th International Symposium on Theoretical Aspects of Computer Science, STACS734

2009, February 26-28, 2009, Freiburg, Germany, Proceedings, volume 3 of LIPIcs, pages735

661–672. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany, 2009. doi:10.4230/736

LIPIcs.STACS.2009.1854.737

25 Moshe Y. Vardi. The rise and fall of LTL. In Giovanna D’Agostino and Salvatore La Torre,738

editors, Proceedings of Second International Symposium on Games, Automata, Logics and739

Formal Verification, GandALF 2011, Minori, Italy, 15-17th June 2011, 2011. invited talk.740

URL: https://www.cs.rice.edu/~vardi/papers/gandalf11-myv.pdf.741

26 Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to automatic program742

verification (preliminary report). In Proceedings of the Symposium on Logic in Computer743

Science (LICS ’86), Cambridge, Massachusetts, USA, June 16-18, 1986, pages 332–344. IEEE744

Computer Society, 1986.745

CONCUR 2023

https://doi.org/10.1109/32.588521
https://doi.org/10.1007/s10703-021-00379-z
https://doi.org/10.1007/978-3-540-70575-8_59
https://doi.org/10.1007/978-3-540-70575-8_59
https://doi.org/10.1007/978-3-540-70575-8_59
https://doi.org/10.1007/978-3-319-02444-8_5
https://doi.org/10.1145/377978.377993
https://doi.org/10.1007/978-3-642-22110-1_47
http://arxiv.org/abs/2305.09966
http://arxiv.org/abs/2305.09966
http://arxiv.org/abs/2305.09966
https://doi.org/10.48550/arXiv.2305.09966
https://doi.org/10.1016/0304-3975(84)90049-5
https://doi.org/10.1016/0304-3975(92)90076-R
https://doi.org/10.1007/3-540-15641-0_27
https://doi.org/10.4230/LIPIcs.STACS.2009.1854
https://doi.org/10.4230/LIPIcs.STACS.2009.1854
https://doi.org/10.4230/LIPIcs.STACS.2009.1854
https://www.cs.rice.edu/~vardi/papers/gandalf11-myv.pdf

	1 Introduction
	2 Preliminaries
	3 From AWAs to UBAs
	3.1 From AWAs to NBAs
	3.2 Unique sequence of sets of states for each word
	3.3 Unique distance functions
	3.4 Unique total preorders

	4 Improvements and Complexity
	5 Discussion

