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A B S T R A C T   

When urban rail transit (URT) does not provide 24-hour services, passengers who travel at late 
night may not be able to reach their destinations with only URT trains. As a result, passengers 
have to find alternative transport means, or combine URT trains with other transport services to 
fulfill their journeys. This paper investigates the integrated optimization of last train timetabling 
and bridging service design with consideration of passenger path choices. Two bridging services 
are considered: taxis and buses. Based on pre-constructed path sets, a bi-objective mixed-integer 
nonlinear programming (MINLP) model is developed, aiming at minimizing total passenger travel 
time and total passenger travel cost. To reduce the model scale and improve solution efficiency, 
three path dominance principles are proposed to remove redundant passenger paths without loss 
of optimality. An adaptive iterative algorithm is designed to obtain the Pareto frontier curve. The 
proposed model and solution methods are demonstrated on the Chengdu URT network. Results 
indicate that passenger travel costs and travel times can be significantly reduced by the integrated 
optimization. It also provides passengers with a safer night travel environment due to the 
reduction in passenger travel times in taxis.   

1. Introduction 

Urban rail transit (URT) system plays a pivotal role in urban passenger transportation to alleviate road congestion and reduce 
environmental pollution. Due to the benefits of large capacity, wide accessibility, high security, and low carbon emissions, etc., 
brought by URT systems, urban residents increasingly rely on it for their daily travels. Nowadays, more and more URT networks have 
been constructed and subsequently expanded in megacities. As of the end of 2020, a total of 538 cities in 77 countries have operated 
urban rail transit, with an operating mileage of more than 33,346 km (Han et al., 2021). However, the URT systems in most countries 
(e.g., China, Singapore, Japan, Denmark, Italy, etc.) do not provide 24-hour services. They are closed late at night and/or early 
morning for system maintenance and operation cost savings purposes. In this sense, the last train for each URT line every day would be 
the final chance for passengers to reach their destinations via URT trains. However, since URT trains cannot traverse different URT 
lines due to facility restrictions, passengers can sometimes miss the connecting train due to late arrivals at the transfer station. When 
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the connecting train is the last train, passengers will not be able to reach their intended destinations via URT trains only. 
For URT operators, they try to transport as many passengers as possible through effective last-train timetable design. Nevertheless, 

limitations of URT network topology and large variation in individual passenger behavior make it impossible for URT operators to 
transport all passengers to their intended destinations via last trains, especially when it comes to large-scale URT networks. In some 
scenarios, passengers may need to make long detours through the URT network to reach their destinations, meaning a relatively long 
travel time for passengers and it is not desirable. Instead, passengers may change their minds at any point on a URT train and switch to 
a more reliable transportation mode for the remainder of their journeys, especially when passengers have realized that they have little 
chance to reach their intended destinations via URT trains only. Therefore, in cities without 24-hour URT services, multimodal paths 
can be easily developed as a norm for late-night passengers, and effective coordination between last URT trains and alternative 
transportation modes becomes exclusively important for URT operators to maintain their operational performance, although it is very 
challenging. 

The term ‘multimodal path’ refers to the use of more than one transport mode to complete a journey. During late-night, passengers 
traveling by URT trains can choose alternative transport means to help complete their travels, especially if certain destinations cannot 
be reached by the last URT trains. Particularly, taxi services and bus services as parts of road transport are not uncommon to be 
provided for passengers as bridging services to address reachability issues in late night. The characteristics of taxis and buses are 
compared in Table 1. In contrast, a passenger can transfer to a bridging taxi at any URT station to reach his/her destination directly, but 
he/she can only transfer to a specific bridging bus at a designated station to reach the destination. This is because it is unrealistic to 
have a bridging bus between any two stations. Due to high operating costs, it is not economical to deploy bridging buses when pas-
senger demand is quite low. Dispatchers need to design operating routes and schedules for bridging buses in advance according to the 
passenger demand and the timetables of the last URT trains. 

This paper aims to improve the service quality of passengers travelling at night by optimizing the timetable of last URT trains and 
designing bridging services. An intuitive approach is to address this problem in a step-by-step manner, as shown in Fig. 1. First, the last 
train timetabling is executed to determine the arrival and departure times of each train at each station and the feasibility of each 
transfer. Second, passengers are routed based on the feasibility of each transfer. Third, bridging services are designed to serve the 
passengers who cannot reach their destinations within acceptable travel times. However, the solution obtained by this process is hardly 
the optimal solution. This is because when the bridging services are determined, passengers may change to more favorable paths (e.g. 
lower travel costs or/and shorter travel times). However, some favorable paths may not be accessible, prompting adjustments to train 
timetables. Therefore, it is necessary to integrate last train timetable optimization and bridging service design under consideration of 
passenger path choices. 

The integrated optimization of last train timetabling and bridging service design brings the following difficulties and challenges: 
First, there would be a huge number of candidate paths for passengers. On the one hand, this is due to the complexity of the URT 

network; on the other hand, it is because passengers might transfer to bridging services at any URT stations. Since the most favorable 
paths for passengers may vary with the train timetable and bridging services, it is a challenge to select paths for passengers based on 
variable train timetables and bridging services among the numerous candidate paths. 

Second, there would be a huge number of candidate routes for bridging services. On the one hand, there will be a bridging taxi route 
between any two URT stations; on the other hand, a combination of some URT stations can form a bridging bus route. Taxi bridging and 
bus bridging have their pros and cons. The optimal design of bridging services needs to consider the path choices of passengers. It is 
challenging to design bridging services based on variable path choices for passengers among the numerous options. 

Third, the last train timetable is required to be optimized based on the path choices of passengers. Besides the constraints on train 

Table 1 
Comparison of bridging taxis and bridging buses.   

Type Safety Flexibility Fixed route Speed Price Capacity Operating costs 

Taxi Private Low High No Fast High Small No 
Bus Public High Low Yes Slow Low Large Yes  

Fig. 1. The hierarchical planning process.  
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safety operation, the established train timetable needs to ensure that all transfers included in the selected passenger paths are feasible. 
It is challenging to optimize the last train timetable based on variable path choices for passengers. 

Fourth, since passengers may transfer between non-last trains and last trains, appropriate adjustments to the timetable of non-last 
trains may further improve service quality. The increase of trains with variable arrival and departure times increases the difficulty of 
solving the integrated optimization problem. 

With respect to the above-discussed challenges, this study focuses on the integrated optimization of the last train timetabling 
problem and bridging service design problem under consideration of passenger path choices. Through a bi-objective mixed-integer 
nonlinear programming (MINLP) model, this study aims at: 1) finding an optimal last-train timetable and bridging services that allows 
passengers to reach their destination timely and cost-effectively; 2) developing an effective passenger path generation method that 
assures the practicability of this model in handling large network size problems; 3) revealing managerial insights to support URT 
operators’ decision-making. The remainder of the paper is organized as follows. Section 2 presents a comprehensive literature review 
of the last train timetabling problem, identifies research gaps, and articulates novelties. Section 3 presents the bi-objective MINLP 
model for the last train timetable optimization incorporating bridging service design. Section 4 introduces how to construct candidate 
path sets for passengers and emphatically expounds three path dominance principles. Section 5 presents an adaptive iterative algo-
rithm to obtain the Pareto frontier curve of the bi-objective optimization model. A case study of a real-world URT network is conducted 
in Section 6 to evaluate the proposed model and solution methods with practical applications. Finally, Section 8 concludes the paper 
and provides suggestions for future research. 

2. Literature review 

As we aim to investigate the integrated optimization of last train timetabling problem and bridging design problem with consid-
eration of passenger path choices, we organize this part from three aspects: the last train timetabling (LTT) problem without 
considering passenger path choices, the LTT problem with considering passenger path choices, and the bridging bus design problem. 
Based on the literature review, the contributions of this paper are given at the end. 

2.1. The LTT problem without considering passenger path choices 

Many studies for an LTT problem do not take passenger path choices into account. These studies assume that the number of 
passengers who need to transfer at each transfer station is fixed. Then, the last train timetable is optimized to provide passengers with 
more feasible transfers, or to reduce the passenger transfer waiting time. For example, Xu et al. (2008) propose a heuristic multi-layer 
coordination algorithm to calculate the desired departure time periods of the last trains with the aim of minimizing total passenger 
transfer waiting time. Kang et al. (2015a) propose a non-linear programming model as well as a genetic algorithm for the LTT problem 
to maximize the number of feasible transfers and minimize total transfer waiting times at the same time. To solve large-scale problems, 
Kang and Meng (2017) develop a mixed-integer linear programming (MILP) model and a two-phase decomposition method to address 
the last train departure time choice problem. Guo et al. (2020) develop a bi-objective MILP model to determine the last train timetable 
in such a way that the number of transfer synchronization events can be maximized and meanwhile the longest transfer synchroni-
zation time can be minimized. The existing researches that focus on the LTT problem but do not consider passenger path choices also 
include Chen et al. (2019a), Dou and Guo (2017), Guo et al. (2017), Huang et al. (2021), Kang et al. (2015b, 2019, 2020), Kang and 
Zhu (2017), Nie et al. (2021), Yin et al. (2019), Zhang et al. (2021a,b), Zhou et al. (2018), Yang et al. (2017a,b, 2018, 2021). 

Few studies incorporate LTT problems with other transport modes coordination. For example, Kang et al. (2019) study the design of 
bus bridging services for the passengers who fail to transfer between the last trains. They develop a last train and bus bridging co-
ordination MILP model to maximize the number of feasible train-to-train transfers and minimize the total waiting times for train-to-bus 
passengers. Huang et al. (2021) progressively develop three MILP models to optimize the last train timetable incorporating intermodal 
coordination (i.e., intercity trains and airplanes). They classify the URT stations and lines into different levels. Based on the refined 
classification of stations and lines, they aim to maximize the intermodal coordination, considering the space–time distribution of the 
arrivals and departures of the connecting modes. 

The advantage of not considering passenger path choices is that it can effectively reduce the scale and the complexity of the 
optimization, so that other influencing factors of an LTT problem can be further considered. For example, Yang et al. (2017a,b, 2018, 
2021) study the LTT problem under transfer passenger demand uncertainty. Chen et al. (2019a) optimize the last train timetable 
considering heterogeneous transfer walking times. However, since passengers can reach their destinations only if all transfers included 
in the selected paths are feasible, more feasible transfers do not guarantee that more passengers can reach their destinations (Chen 
et al., 2019b; Zhou et al., 2019). Additionally, it is not realistic to assume that passenger path choices are always fixed, especially when 
the LTT problem is embedded in cooperation with flexible transport modes (e.g. taxis). 

2.2. The LTT problem with considering passenger path choices 

Differently, some studies for LTT problems include passenger path choices considerations (e.g., Chen et al., 2019b; Li et al., 2016; 
Long et al., 2020; Yang et al., 2020; Yao et al., 2019; Zhou et al., 2013, 2019). They optimize the last train timetable and passenger path 
choices at the same time, with the aim of maximizing the total number of destination-reachable passengers or origin–destination (OD) 
pairs. To the best of our knowledge, all the existing studies on LTT problems considering passenger path choices only develop their 
optimization models based on pre-generated passenger candidate paths. For instance, Zhou et al. (2013) study the last-train departure 
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time choice problem and formulate passenger route choices with a Logit model. Li et al. (2016) propose a method to calculate the last 
boarding time (i.e., the latest time for a passenger to board the last train at his/her origin station in order to reach his/her destination 
successfully). Based on this, they propose a non-linear programming model and a genetic algorithm for the LTT problem to maximize 
the number of destination-reachable passengers. Chen et al. (2019b) and Zhou et al. (2019) propose two different MILP models to 
optimize the last train timetable with the aim of maximizing the number of destination-reachable passengers. Specifically, Chen et al. 
(2019b) model passengers’ destination reachability with passengers’ actual arrival times at their destinations. To solve large-scale 
instances, a genetic algorithm is designed to solve the model. Differently, Zhou et al. (2019) use the logical relations between the 
transfer feasibility and destination reachability to formulate passengers’ destination reachability. In addition, they propose some 
network simplification strategies to reduce the model scale, so that this model can be solved by the commercial optimization software. 
Besides, Yang et al. (2020) formulate the LTT problem as a 0–1 linear programming model using a space–time network framework. Yao 
et al. (2019) develop a bi-level last train timetable optimization model. The upper level aims to maximize the number of destination- 
reachable passengers and minimize their transfer waiting times. The lower level aims at determining passenger path choices 
considering a detour routing strategy. 

For those papers addressing LTT problems with passenger path selection, the coordination with other transport modes is barely 
considered. For example, Long et al. (2020) study the problem of synchronizing the last URT trains to better serve passengers from the 
last high-speed railway (HSR) trains. They develop a bi-objective MILP model in which only the passenger demand from the last HSR 
trains is considered. The two objectives are to maximize the number of destination-reachable passengers and minimize total service 
closure time of the last URT trains. 

The advantage of considering passenger path choices is that the optimized last train timetable can better serve passengers by 
considering their actual needs. However, it also leads to a significant increase in the scale of optimization models. Most of the existing 
studies focusing on LTT problems adopt heuristic algorithms (e.g., genetic algorithm, Lagrangian relaxation) as the solution strategy. 
These heuristic algorithms can significantly shorten the computational time but have compromise in the quality of their optimal 
solutions. In addition, almost all the studies about LTT problems with considering passenger path choices ignore these passengers who 
cannot reach their destinations only via URT trains. Alternatively, the multimodal path combining URT and bridging services resolves 
the unreachable destination issue, but it complicates the optimization process for the LTT problem. 

2.3. The bridging service design problem 

Bridging services are usually used as a temporary replacement for rail transit to deal with rail transit operation interruption issues. 
Two bridging services are considered in this study. In the following, we will review the research on these two bridging services 
respectively.  

(1) Bus bridging 

In recent years, there has been a lot of research on bus bridging, especially in designing bus bridging services to cope with dis-
ruptions to rail transit systems. Zhang et al. (2021b) and Kuo et al. (2022) give comprehensive literature reviews on bus bridging 
design issues. Kepaptsoglou and Karlaftis (2009) is the first paper to deal with bus bridging in response to metro disruptions. They 
propose a framework for designing bridging buses: determining the extent of disruption and the metro stations that need to be bridged, 
designing bridging routes and frequencies, and assigning buses to routes. Codina et al. (2013) propose a nonlinear integer pro-
gramming model and a heuristic algorithm to determine the frequency of predefined bus bridging routes under congested conditions. 
Jin et al. (2016) develop a column generation procedure and a path-based multicommodity network flow model to respectively 
generate the most efficient bus bridging routes and allocate available bus resources to these candidate routes. Considering un-
certainties in passenger demand and spare capacities of existing rail and bus lines, Luo and Xu (2021) develop a two-stage stochastic 
programming model to formulate the optimal routes and frequencies of bridging buses. In this model, they take into account that 
passengers can transfer between different transportation modes and lines and provide multiple alternative paths for passengers to 
choose from. Chen and An (2021) propose a MILP model to simultaneously solve the bus bridging route selection, bus deployment, and 
bus timetabling problem. Wang et al. (2022) consider two sources of bridging buses (i.e. spare buses and running buses) and develop an 
integer programming model to address the problem of bus bridging route generation and bus deployment. Zheng et al. (2022) establish 
a bi-level programming model to handle the bus bridging service design problem considering the reliability of transportation system. 

In addition to addressing the disruptions of rail transit systems, bus bridging services are also used in other scenarios. For example, 
Yang et al. (2017a) integrate passenger flow control and bus bridging service design to tackle the congestion issue of metro system. 
Kang et al. (2021) incorporate bus bridging service design into first train timetable optimization to reduce excessive transfer waiting 
times. Kang et al. (2019) design bus bridging services for the passengers who fail to transfer between the last trains. 

It is worth noting that when applying bridging buses in rail transit disruption, rail transit overcrowding, or the first train period, 
bridging buses are generally used for short-distance replacement of interrupted or congested rail transit or transfer stations with long 
waiting times. Therefore, after transferring from a train to a bridging bus, passengers need to return to the rail transit system to 
continue their subsequent journey. In contrast, when applying bridging buses to address transfer failures between last trains, pas-
sengers need to go directly to their destinations through the bridging bus after transferring from the last train to the bridging bus. Due 
to the wide distribution of passengers’ destinations, it is difficult and even impossible to meet the needs of all passengers by designing 
bridging buses, especially considering the high operating costs of operating a shuttle bus. In this case, ride-hailing (or taxis) can be used 
as a supplement to bridging buses to meet the needs of passengers who cannot reach their destinations due to transfer failures. 
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(2) Ride-hailing (taxi) bridging 

Ride-hailing is a form of bridging that can be constantly deployed and highly flexible, but with quite limited in capacity. Due to its 
characteristics, research on ride-hailing (or ride-sharing) focuses on the impact of ride-hailing services on rail transit disruption 
management, the impact on road congestion, and the extent to which ride-hailing services can be used as a supplement to disrupted rail 
transit (Zhang et al., 2021b). For example, based on the Munich case, Zeng et al. (2012) investigate whether to cooperate with taxi 
companies and how to price compensation services in response to short-term disruptions in public tram systems. Based on the Van-
couver case, Tyndall (2019) investigates the extent to which carsharing services can replace disrupted public transit rail systems. Yang 
and Chen (2019) propose a model of cooperation between URT operators and ride-hailing platforms to deal with URT disruptions. 
They also propose a pricing strategy for ride-hailing platforms in the event of URT disruption. Liu et al. (2020) consider using in-service 
buses to provide bus bridging services during subway disruptions, resulting in lower service levels for other bus passengers. They 
investigate bus bridging policies and the affordability of ride-hailing services from a social equity perspective. 

To the best of our knowledge, there is currently no literature on taking taxis as the bridging services to deal with transfer failures 
between last trains. Unlike bridging buses, the difficulty in the cooperation between last trains and taxis is that passengers can transfer 
to taxis at any URT station to reach their destinations directly. Where these transfers will happen depends on the timetable of URT 
trains and also how passengers perceive the travel costs and travel times. For example, when reaching the destination by URT is not 
possible passenger may leave the URT system at an intermodal transfer station where they take a taxi to reach the destination. This 
intermodal transfer station is better to be as close as possible to passengers’ destinations, as passengers wish to reduce the travel costs 
for taxis. However, passengers may need to take a long detour within the URT network to reach the intermodal transfer station that is 
close to the destination. A long detour means long travel time, which is usually not preferred by passengers particularly during late 
night. Hence, it is challenging to design a coordinated last-train timetable with taxi bridging to minimize passenger travel time and 
travel cost. 

2.4. The contributions of this paper 

This paper contributes to the literature with the integrated optimization of last train timetabling and bridging service design with 
the consideration of passenger path choices. For clarify, the comparison with the most relevant research is shown in Table 2. Based on 
pre-constructed path sets of passengers, we develop a bi-objective MINLP model, aiming to minimize total passenger travel time and 
minimize total passenger travel cost. To reduce the model scale and improve the solution efficiency, we propose three path dominance 
principles to eliminate redundant passenger paths without loss of optimality. To explore the trade-off between the two objectives, we 
design an adaptive iterative algorithm based on an augmented ε-constraint model. The key contributions of this paper are summarized 
as follows.  

• We fill the gap of research in the last train timetabling field with the integrated optimization of last train timetabling and bridging 
service design with the consideration of passenger path choices. We consider the bridging services of both buses and taxis.  

• A bi-objective optimization model is proposed to minimize both the travel time and travel cost of passengers. The model can be 
solved efficiently by a commercial solver for a real-life URT network.  

• Three path dominance principles are proposed to effectively eliminate numerous redundant passenger paths without loss of 
optimality. These principles help to speed up the computation of our optimization model further. The proposed path dominance 
principles are not limited to be used in our work, but can also be used in other path-based last-train timetable optimization models 
in general.  

• We demonstrate the effectiveness of our model and methods with extensive numerical experiments on a real-world URT network, 
and derive insightful findings and suggestions for URT operators. 

3. Mathematical formulation 

This paper focuses on the last-train timetable optimization within multimodal urban transport networks. We integrate the last-train 
timetable optimization and bridging service design with the consideration of passenger path choices. We consider two bridging ser-
vices: taxis and buses. Bridging taxis are provided when passengers cannot reach their destinations via last URT trains or when pas-
sengers need to take long detours within the URT network to reach their destinations. Bridging buses are further provided when a large 
number of passengers will take bridging taxis from the same station to the same/close destination. Passengers may transfer to bridging 

Table 2 
Comparisons with the most relevant studies.  

Paper Scenario Train timetabling Passenger path choices Bridging services Solution method 

Zhou et al. (2019) Last train √ √ × Commercial solver 
Kang et al. (2019) Last train √ × bus Decomposition method 
Kang et al. (2021) First train √ × bus Decomposition method 
Luo and Xu (2021) Rail transit disruption × √ bus Benders decomposition 
This paper Last train √ √ Taxi and bus Commercial solver  
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taxis at any station with available taxis, and to a bridging bus at any station with a bridging bus. Thus, within the multimodal urban 
transport network, there are the following types of candidate paths for passengers (as illustrated in Fig. 2):  

1) The pure taxi path: a passenger takes a taxi from the origin directly to the destination.  
2) The pure URT path: a passenger takes URT trains from the origin to the destination, and may need multiple transfers between URT 

trains during the journey.  
3) The multimodal path: a passenger first takes URT trains from the origin to a non-destination station, and then transfers to a bridging 

taxi/bus to the destination. Before reaching the intermodal transfer station, this passenger may transfer between URT trains. 

The last train timetable determines the transfer feasibility between URT trains, and further determines the accessibility of the pure 
URT path to the destination and the accessibility of the multimodal path to the intermodal transfer station. In this paper, we consider 
that for passengers, when both bridging taxis and buses are available, the main difference between using taxi bridging and bus bridging 
lies in travel cost and travel time. Specifically, bus bridging is much cheaper than taxi bridging; however, the travel time for taxi 
bridging is shorter than using bus bridging, because the bus may stop at multiple stops along the way. To control the operational cost of 
bridging buses, a bus bridging route will only be deployed when there is sufficient passenger demand. We consider that each bridging 
bus only allows passengers to board at its starting station, and stops at multiple stations along the way for passengers to get off. 
Additionally, the number of taxis available are also took into account. Under the above considerations, we aim to provide passengers 
with advantageous paths (i.e., lower travel costs and/or shorter travel times) by integrating the last train timetable optimization and 
bridging service design. 

In this section, we formulate the integrated optimization model of last train timetabling problem and bridging service design 
problem as a bi-objective mixed integer nonlinear programming model. The structure of this section is organized as follows. Section 3.1 
introduces the assumptions used throughout this paper. Section 3.2 gives all the sets, parameters, and decision variables defined for the 
MINLP model. Sections 3.3 and 3.4 describe all the constraints and objective functions established in the bi-objective MINLP model, 
respectively. Section 3.5 analyzes the complexity of the model (i.e. the number of decision variables and constraints) and compares it 
with the existing advanced models. 

3.1. Assumptions 

Assumption 1. The capacity of the last URT train is sufficient to carry all passengers. 

This assumption is common in the literature on the LTT problem (e.g., Kang et al., 2015a; Yang et al., 2020; Zhou et al., 2019) and is 
explained as follows. In general, the late-night passenger demand is relatively low. If the capacity of the last URT train is not enough to 
carry all passengers (e.g., on Friday night), URT operators should consider extending the operating hours and/or adding more URT 
trains in operation, as it is one of the most important night transportations for passengers. However, this problem is out of the scope of 
this paper. 

Assumption 2. The transfer walking time between two URT lines at a transfer station is known and fixed. 

This assumption is also common in the literature on the LTT problem (e.g., Chen et al., 2019b; Kang et al., 2015a; Zhou et al., 2019) 
and is used to reduce the problem complexity. Additionally, when the passenger demand is low, the transfer walking time can be 
obtained through on-the-spot investigations, with slight fluctuation. We set the transfer walking time a little larger than the average 
transfer walking time for most passengers as in Chen et al. (2019b) and Huang et al. (2021). 

Assumption 3. The travel time and travel cost along each passenger candidate path are known and fixed when the bridging service has been 
determined. 

This assumption is a simplification of the problem and is used to reduce the problem complexity. In reality, the travel time of 

Fig. 2. Passenger candidate path types.  
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passengers depends on travel distance, the speed of URT trains and bridging services, real-time road conditions, and waiting times for 
bridging services, etc. The travel cost of passengers is mainly determined by travel distance. Since the focus of this study is to explore 
how last URT trains cooperate with bridging services and to reveal the benefits of the cooperation between URT trains and bridging 
services, how to design a robust train timetable under the uncertainty of travel time and travel cost is out of the scope of this study. 

Assumption 4. Passengers are assumed to transfer to bridging taxis at any URT station, but can only transfer to bridging buses at train-to- 
train transfer stations rather than at any URT station along the way. 

This assumption has no impact on the model formulation, but only affects the input of the proposed optimization model. It helps to 
reduce the size of candidate paths. This assumption is justified as follows. On the one hand, this assumption helps to bundle the demand 
so that the operators do not need to set up a bridging bus at every location where there is demand but small. On the other hand, the 
accessibility of all URT stations that are located on the same URT line between two adjacent train-to-train transfer stations is the same. 
That means passengers who are travelling in the same line and need to transfer from this line to another will gather at the train-train 
transfer stations. If bridging buses are offered at locations before these passengers reaching the train-train transfer stations, there will 
be overlaps between the train lines and bus routes, while this is not necessary and not cost-effective. 

Assumption 5. As for the path type of multimodal paths, we only consider paths along which passengers first take URT trains and then 
transfer to taxis/bus. In other words, we exclude paths along which passengers first take taxis/bus and then transfer to URT trains. 

We exclude such multimodal paths (i.e. taxi/bus first and then URT trains) because such paths are uncommon in practice. This is 
because owing to uncertain road conditions (e.g. congestion), there is great uncertainty about whether passengers taking taxis/buses 
can arrive at the intermodal transfer station on time to catch the last URT train. Consequently, such paths are not welcomed by 
passengers. 

Assumption 6. Passengers will not go through the same URT line more than once. 

This assumption is used when constructing the passenger path set. It is reasonable because redundant transfers will increase the risk 
of failed transfers. 

3.2. Sets, parameters, and variables 

Table 3 gives all decision variables defined for the bi-objective MINLP model, including train timetabling variables (i.e. tarr
l,s,i and 

tdep
l,s,i), transfer feasibility variables (i.e. xtf ), passenger routing variables (i.e. yod,p), bridging bus design variables (i.e. zs1 ,s2 ), and service 

evaluation variables(i.e. TCod,p and TTod,p). All the sets and parameters used in this model are summarized in Appendix A. 

3.3. Constraints 

The constraints formulated in this model include train timetabling constraints, passenger path choice constraints, constraints on the 
relationship between train timetabling and passenger routing, and bridging bus route design constraints. 

3.3.1. Train timetabling 
The URT network in a city consists of numerous bi-directional URT lines. Each bi-directional URT line is a double-track railway line 

and consists of two different directional URT lines (i.e., down direction and up direction). We define L as the set of all directional URT 
lines. For each directional URT line l ∈ L, a sequence of stations is denoted by S(l) = {s1

l ,s
2
l ,⋯,sn

l }, where station s1
l and sn

l represent the 
start and terminal stations, respectively. Trains on each directional URT line run from the start station to the terminal station and stop 
at each station along the way for passengers to get on and off. Trains do not overtake because each station has only one dedicated track 
to serve the trains of a specific directional URT line. 

This study aims at optimizing the timetables of last trains. However, since passengers may transfer between non-last trains and last 
trains, optimizing the timetable of both last trains and several related non-last trains (e.g. the penultimate train and the antepenul-
timate train) may be helpful to further improve passenger service (e.g. to transport more passengers to reach their destinations via URT 

Table 3 
Definition of decision variables.  

Variable Type Description 

tarr
l,s,i Continuous The arrival time of train i ∈ I(l) at station s ∈ S(l) on line l ∈ L. 

tdep
l,s,i 

Continuous The departure time of train i ∈ I(l) at station s ∈ S(l) on line l ∈ L. 

xtf Binary = 1, if transfer tf ∈ TF is feasible; = 0, otherwise. 
yod,p Binary = 1, if passengers in group od ∈ U choose path p ∈ Pod; = 0, otherwise. 
zs1 ,s2 Binary =1, if a bus bridging route (s1, s2) ∈ BR is deployed; = 0, otherwise. 
tbs1 ,s2 Continuous The earliest departure time of each bridging bus along route (s1 , s2) ∈ BR at its starting station s1. 
TCod,p Continuous The travel cost of all passengers in group od ∈ U traveling along path p ∈ Pod. 
TTod,p Continuous The travel time of all passengers in group od ∈ U traveling along path p ∈ Pod.  
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trains). In addition, when two directional URT lines share the same tracks at/between specific stations, the non-last trains operating 
between the two last trains of the two directional lines should also be adjusted in order to ensure sufficient optimization space for the 
last train timetable. For example, as illustrated in Fig. 3, two directional URT lines (i.e., Line s1 → s10 and Line s1 → s16) share the same 
tracks from station s1 to station s4. The last train of Line s1 → s10 is train 10, and the last train of Line s1 → s16 is train 8. In this case, the 
timetable of train 8, train 9, and train 10 will all be adjusted, although train 9 is a non-last train. Additionally, this study considers that 
the sequence of trains running along each directional URT line is fixed. For each directional URT line l ∈ L, we define I(l) = {i1l , i

2
l ,⋯ 

, in− 1
l , inl } as the sequence of trains running on the line l, where inl denotes the last train, and in− 1

l denotes the penultimate train. Then, we 
define Iv(l) as the set of trains (including the last trains and several designated non-last trains) of which the timetable will be optimized, 
and Iv(l) ⊆ I(l). 

We define two decision variables tarr
l,s,i and tdep

l,s,i representing the arrival and departure times of train i ∈ I(l) at station s ∈ S(l) on line 
l ∈ L, respectively. The constraints on train timetabling are established as follows: 

The dwell time at each station should be within an appropriate range to ensure the quality of passenger services. That is, 

DTl,s ≤ tdep
l,s,i − tarr

l,s,i ≤ DTl,s, ∀l ∈ L, i ∈ Iv(l), s ∈ S(l) (1)  

where DTl,s and DTl,s represent the minimum and maximum dwell times at station s on line l, respectively. 
The running time between two adjacent stations should be within an appropriate range to ensure the safety of train operation and 

the quality of passenger services. That is, 

RTl,s,s+1 ≤ tarr
l,s+1,i − tdep

l,s,i ≤ RTl,s,s+1, ∀l ∈ L, i ∈ Iv(l), s, s+ 1 ∈ S(l) (2)  

where RTl,s,s+1 and RTl,s,s+1 represent the minimum and maximum running times from station s to station (s + 1) on line l, respectively. 
As depicted in Fig. 4, safety headways (i.e., headway between successive arrivals Harr

l , headway between successive departures Hdep
l , 

Fig. 3. An example of two URT lines sharing the same tracks at/between specific stations.  

Fig. 4. Illustration of safety headways.  
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and headway between the departure and arrival of different trains Hda
l ) should be satisfied between every two adjacent trains (i.e., train 

i and its preceding train ipre) at the same station. This is expressed by Constraints (3) – (5). It is worth noting that if two directional URT 
lines share the same tracks at/between some specific stations, the preceding train of the same train can be different at different stations. 
For example, in Fig. 3, the preceding train of train 8 at station s4 is train 7, while at station s11 is train 6. 

tarr
l,s,i − tarr

lpre ,s,ipre ≥ Harr
l , ∀l ∈ L, i ∈ Iv(l), s ∈ S(l) (3)  

tdep
l,s,i − tdep

lpre ,s,ipre ≥ Hdep
l ,∀l ∈ L, i ∈ Iv(l), s ∈ S(l) (4)  

tarr
l,s,i − tdep

lpre ,s,ipre ≥ Hda
l ,∀l ∈ L, i ∈ Iv(l), s ∈ S(l) (5)  

where lpre represents the directional URT line where train ipre serves. That is, ipre ∈ I(lpre). 
The service closure time of each directional URT line should not be later than the latest allowed closure time, otherwise it would 

delay vehicle cleaning and system maintenance. This is expressed by 

tarr
l,sn

l ,i
n
l
≤ Tl,∀l ∈ L (6)  

where inl represents the last train of line l, and sn
l represents the terminal station of line l. Tl represents the latest allowed service closure 

time of line l, which varies from line to line. 
Finally, for practicality, timetable modification to trains in set Iv(l) cannot raise conflicts with trains in set I(l)\Iv(l). Therefore, 

trains of which the timetables will not be adjusted, i.e., trains in set I(l)\Iv(l), should also be considered in the optimization model and 
have their timetables fixed as the original timetables. That is, 

tdep
l,s,i = τdep

l,s,i,∀l ∈ L, i ∈ I(l)\Iv(l), s ∈ S(l) (7)  

tarr
l,s,i = τarr

l,s,i,∀l ∈ L, i ∈ I(l)\Iv(l), s ∈ S(l) (8)  

where τarr
l,s,i and τdep

l,s,i represent the original arrival and departure times of train i at station s on line l, respectively. 

3.3.2. Passenger path choices 
We define U as the set of passenger groups. Each passenger group in U is indexed by od, where o and d indicate the origin and 

destination stations, respectively. For each passenger group od ∈ U, we define Pod as the set of candidate paths. The paths in each set 
Pod include the pure taxi paths, the pure URT paths, and the multimodal paths that combine URT and bridging services. The con-
struction of passenger path sets will be introduced in Section 4. Here we wish to emphasize that passenger candidate paths are 
generated before timetable optimization but include all possible paths that could appear in any optimized timetables. 

We define a binary decision variable yod,p, which is equal to 1 if passengers in group od ∈ U choose path p ∈ Pod. For simplicity, we 
assume that passengers in the same group choose the same path. Then, Constraint (9) is established, which requires each passenger 
group to choose only one path from the candidate path set. 

∑

p∈Pod

yod,p = 1, ∀od ∈ U (9)  

3.3.3. Relationship between train timetabling and passenger routing 
Transfer feasibility is the key to linking the train timetable to passenger path choices. Specifically, passengers can only choose paths 

that are reachable to their destinations. A passenger path can be reachable only when all transfers contained in this path are feasible. 
The last train timetable determines the transfer feasibility between URT trains, and further determines the accessibility of pure URT 
paths and multimodal paths. 

We define TF as the set of all train-to-train transfers in the given URT network. Each transfer in the set TF is denoted by tf =

(l, i, l’, i’, s), which means that passengers transfer from train i ∈ I(l) to train i’ ∈ I(l’) at station s ∈ S(l) ∩ S(l’). We define a binary 
variable xtf , which is equal to 1 if transfer tf ∈ TF is feasible. Then, Constraints (10) and (11) are developed to formulate the re-
lationships between train timetabling and passenger path choices. To be specific, Constraint (10) indicates that a transfer must be 
feasible if it is included in a selected passenger path. Constraint (11) indicates that a transfer is feasible only if the departure time of the 
connecting train is later than the arrival time of the feeder train plus the transfer walking time at this transfer station. 

xtf ≥

∑
od∈U

∑
p∈Pod

yod,p ⋅ θtf ,p

|U|
,∀tf ∈ TF, (10)  

where θtf ,p is a given binary parameter, which is set to 1 if transfer tf is contained in path p. |U| represents the number of passenger 
groups, so that the value of the right-hand side of this constraint is between 0 and 1. 

tdep
l’ ,s,i’ − tarr

l,s,i − Wtf ≥ M ⋅
(
xtf − 1

)
,∀tf ∈ TF, tf = (l, i, l’, i’, s) (11) 
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where Wtf represents the transfer walking time associated with transfer tf . M is a sufficiently large positive value, which can be 
determined by the method proposed by Kang and Meng (2017). 

3.3.4. Bridging services design 
Bridging services are typically used when passengers travel from one URT line to another (but fail to transfer or require a long 

detour). We consider two bridging services: taxis and buses. As mentioned, it is not economically viable to deploy a bus bridging route 
between any two URT stations where passenger demand is quite low. We therefore only deploy bridging buses for routes with sufficient 
passenger demand. We consider that each bridging bus only picks up passengers at its starting station, but stops at multiple stations for 
passengers to get off. In a pre-processing step, we design all possible bridging bus routes. We specify for each route its starting station 
and destination, and the intermediate stops between. We generate all candidate bus bridging routes based on passenger candidate path 
sets, which will be detailed in Section 4.5. We define BR as the set of all candidate bus bridging routes, which are the input to our 
optimization model. 

In the model, we decide whether a bus bridging route will be used, as well as the departure times of bridging buses at their starting 
stations. We define a binary variable zs1 ,s2 , which is equal to 1 if bus bridging route (s1, s2) ∈ BR is deployed. Then, Constraint (12) is 
established, which indicates that a bus bridging route is deployed between two given stations when the number of passengers requiring 
bridging service is greater than a certain value. 

∑

od∈U
Qod ⋅

⎛

⎝
∑

p∈Pod :s
dep
p ∕=d,sdep

p =s1 , andd=s2

yod,p

⎞

⎠ ≥ MQ ⋅ zs1 ,s2 ,∀(s1, s2) ∈ BR (12)  

where MQ represents the minimum passenger demand requirement for deploying a bus bridging route. Qod represents the number of 
passengers in group od. sdep

p represents the station where passengers leave the URT network along path p ∈ Pod. When path p is a pure 
taxi path or a multimodal path (i.e., sdep

p ∕= d), passengers need to transfer to bridging services. 
Each bridging bus only picks up passengers at its starting station, and stops at multiple stations for passengers to get off. Thus, to 

ensure the feasibility of the train-to-bus transfer, it is only required to collaboratively optimize the departure times of bridging buses at 
their starting stations and last train timetables. We define a decision variable tbs1 ,s2 to represent the earliest departure time of each 
bridging bus along route (s1, s2) ∈ BR at its starting station s1. Then, Constraint (13) is established to ensure the feasibility of the train- 
to-bus transfer. 

tbs1 ,s2 ≥ max
{

WTB
s + tarr

l,s,i

⃒
⃒
⃒∀l ∈ L, i ∈ I(l), s ∈ S(l), s = s1

}
,∀(s1, s2) ∈ BR (13)  

where WTB
s represents the transfer walking time associated with the train-to-bus transfer at station s. 

When choosing to taking bridging taxis, passengers may transfer to bridging taxis at any URT stations, provided that the station has 
sufficient taxis available. Therefore, Constraint (14) is established, requiring that the number of passengers transferring to bridging 
taxis at each station is less than the number of available taxis. 

∑

od∈U

⎛

⎝Qod ⋅
∑

p∈Pod :s
dep
p =sandsdep

p ∕=d

yod,p ⋅
(
1 − zs,d

)

⎞

⎠ ≤ MNs, ∀s ∈
⋃

l∈L
S(l) (14)  

where MNs represents the number of taxis available at station s. Since yod,p and zs,d are both binary decision variables, this constraint is 
nonlinear and then linearized by the method introduced in Appendix B. 

3.4. Objective functions 

Two objectives are considered in this model: one is minimizing total travel cost of passengers, and the other is minimizing total 
travel time of passengers. Travel times and travel costs vary with different paths and different bridging services. Generally speaking, 
bridging buses have lower travel costs than bridging taxis, but longer travel times than bridging taxis. The calculation formulas of 
travel cost and travel time are given in Sections 3.4.1 and 3.4.2, respectively, and then the two objective functions are given in Section 
3.4.3. 

3.4.1. Travel cost calculation 
We define TCtaxi

od,p to represent the travel cost of all passengers in group od ∈ U traveling along path p ∈ Pod, where taxis are used as 
bridging services. We define TCbus

od,p to represent the travel cost of all passengers in group od ∈ U traveling along path p ∈ Pod, where 
buses are used as bridging services. Then, the travel cost along path p ∈ Pod can be calculated by: 

TCod,p =

⎧
⎨

⎩

TCtaxi
od,p (s, d) ∕∈ BR

TCbus
od,p ⋅ zs,d + TCtaxi

od,p ⋅
(
1 − zs,d

)
(s, d) ∈ BR

, ∀od ∈ U, ∀p ∈ Pod (15) 
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where d represents passengers’ destination station. The value of s depends on the type of path p. s represents passengers’ origin station 
if path p is a pure taxi path. s represents passengers’ destination station if path p is a pure URT path. And, s represents the intermodal 
transfer station where passengers transfer from URT trains to bridging services if path p is a multimodal path. 

3.4.2. Travel time calculation 
Similar to the travel cost, the travel time along path p ∈ Pod can be calculated by: 

TTod,p =

⎧
⎨

⎩

TTtaxi
od,p (s, d) ∕∈ BR

TTbus
od,p ⋅ zs,d + TTtaxi

od,p ⋅
(
1 − zs,d

)
(s, d) ∈ BR

,∀od ∈ U, ∀p ∈ Pod (16)  

where TTtaxi
od,p and TTbus

od,p represent the travel cost along path p ∈ Pod by using taxis and buses as the bridging services, respectively. d and 
s have the same meaning as in formula (14). 

3.4.3. Objectives 
Finally, the two objective functions, i.e., minimizing total travel cost of passengers and minimizing total travel time of passengers, 

are given by: 

minz1 =
∑

od∈U

∑

p∈Pod

(
TCod,p ⋅ yod,p

)
(17)  

minz2 =
∑

od∈U

∑

p∈Pod

(
TTod,p ⋅ yod,p

)
(18)  

where TCod,p, TTod,p, and yod,p are all decision variables. Therefore, the objective functions are nonlinear and can be linearized by the 
method introduced in Appendix B. 

3.5. Model complexity analysis 

We analyze the complexity of the proposed optimization model (i.e., the numbers of decision variables and constraints) and 
compare it with the existing state-of-the-art model proposed by Zhou et al. (2019). 

3.5.1. Analysis of the number of decision variables and constraints 
Table 4 lists the number of decision variables and constraints in our proposed model. It can be observed that the number of decision 

variables in our model depends on the size of the URT network (i.e., the number of URT stations, and the number of transfers), the total 
number of passenger candidate paths, and the number of candidate bus bridging routes. The number of constraints in our model 
depends on the size of the URT network (i.e., the number of directional URT lines, the number of URT stations, and the number of 
transfers), the number of passenger groups, and the number of candidate bus bridging routes. 

3.5.2. Comparison with the existing advanced models 
To highlight the advantages of our model in scale and solution efficiency, we compare our model with the existing state-of-the-art 

model proposed by Zhou et al. (2019), where they stated that their model can be solved directly with the commercial solver with 
satisfactory computation time and solution quality. The model in Zhou et al. (2019) was developed to solve the last train timetabling, 
taking into account passenger path choices but not any bridging services. 

Apart from bridging service design, the biggest difference between our proposed model and the one proposed in Zhou et al. (2019) 
is how to formulate the relationship between train timetabling and passenger routing, which is why our model has advantages in model 
scale and solution efficiency. Specifically, Zhou et al. (2019) define a series of binary variables for passenger path choices, transfer 
feasibility, path destination reachability, and passenger destination reachability. Then, they establish numerous big-M constraints to 
formulate the logical relations between these binary variables. Therefore, their model has a huge number of constraints and decision 
variables. Differently, in this paper, we only define binary variables for passenger path choices and transfer feasibility, and establish a 
set of linear constraints (i.e. Constraints (10)) to formulate the logical relations between these binary variables. By comparison, our 
proposed model has far fewer decision variables and constraints than the model in Zhou et al. (2019). Table 5 reports the number of 

Table 4 
Number of decision variables and constraints in our proposed model.  

Variables Maximum amount Constraints Maximum amount 

tarr
l,s,i and tdep

l,s,i 
2 ⋅

∑
l∈L(|I(l)| ⋅ |S(l) |) Constraints (1) – (8) |L| + 5 ⋅

∑
l∈L(|I(l) | ⋅ |S(l) |)

xtf |TF| Constraints (9) |U|

yod,p 
∑

od∈U |Pod| Constraints (10) and (11) 2 ⋅ |TF|
zs1 ,s2 |BR| Constraints (12) and (13) 2 ⋅ |BR|
TCod,p and TTod,p 2 ⋅

∑
od∈U|Pod| Constraints (14) |

⋃
l∈LS(l)|
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decision variables and constraints related to the relationship between train timetabling and passenger routing in the two models. In 
addition, in terms of solution efficiency, our proposed model also outperforms the model in Zhou et al. (2019), which we will present in 
Section 6.3. 

4. Generation of passenger candidate paths and candidate bus bridging routes 

In this section, we introduce the method of constructing the set of passenger candidate paths. Recall that there are three types of 
candidate paths for passengers: pure taxi paths, pure URT paths, and multimodal paths. Candidate bus bridging routes are then 
generated based on the passenger candidate paths. 

There are the following three difficulties in generating passenger candidate paths:  

(1) Passenger candidate paths are generated before timetable optimization. Since the reachability of each path may vary with the 
train timetable, the candidate path set should cover all possible favorable paths that could exist in any optimized timetables. For 
this purpose, when we decide on connecting trains at a transfer station, we take all trains whose latest departure times are 
greater than the earliest arrival time of the feeder train as candidate connecting trains for passengers. For trains with fixed 
timetables, their latest departure times and earliest arrival times can be obtained from their original timetables. For trains with 
variable timetables, their latest departure times and earliest arrival times can be calculated based on the constraints of train 
operations (i.e. Constraints (1) – (8)) and the earliest arrival times of passengers at the boarding station. See Section 4.2 for more 
details.  

(2) There may be a huge number of candidate paths for passengers, which increases the scale of the optimization model. On the one 
hand, there will be a large number of pure URT paths due to the complexity of the URT network and the possibility of passengers 

Table 5 
Number of decision variables and constraints in the two models.  

Model Number of variables Number of constraints 

Zhou et al. (2019) 
|TF| + |U| + |U| ⋅ |TF| +

∑
od∈U |Pod| 2 ⋅ (|U| + |U| ⋅ |TF|)

This paper |TF| +
∑

od∈U|Pod| |TF|

All decision variables and constraints counted here are those related to the relationship between train timetabling and pas-
senger routing. 

Fig. 5. Framework for generating passenger candidate paths and candidate bus bridging routes.  
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transferring between last trains and non-last trains. On the other hand, since passengers might transfer to bridging taxis at any 
URT stations with available taxis, and to a bridging bus at any URT transfer station with a bridging bus (according to 
Assumption 4), there will be a large number of multimodal paths. Therefore, we propose three path dominance principles to 
eliminate redundant passenger paths without loss of optimality. Such redundant passenger paths could be either pure URT paths 
or multimodal paths, which do not contribute to improving the optimal objective value (i.e., minimizing passenger travel time 
and travel cost). These three path dominance principles are presented in Section 4.3, and their effects are demonstrated in 
Section 6.2.3.  

(3) Due to the large number of passenger candidate paths, path generation can be quite time consuming. Hence, before path 
generation, we merge some OD pairs if their relevant candidate paths will be the same in terms of included transfers. The 
method of merging OD pairs is introduced in Section 4.1, and its effects are demonstrated in Section 6.2.1. 

Fig. 5 shows the overall framework for generating passenger candidate paths and candidate bus bridging routes. First, OD pairs are 
merged by the method proposed in Section 4.1; Second, physical URT paths, which do not include train information (i.e., the trains that 
passengers will take along the path), are generated based on the given URT network by the k shortest path algorithm (Eppstein, 1998); 
Third, train-dependent URT paths (i.e., pure URT paths) are generated based on physical URT paths by the method proposed in Section 
4.2, and further filtered by the three path dominance principles proposed in Section 4.3; Fourth, pure taxi paths and multimodal paths 
are generated based on the pure URT paths by the method proposed in 4.4, and further filtered by the three path dominance principles; 
Fifth, all candidate bus bridging bus routes are generated based on the multimodal paths by the method proposed in Section 4.5. 

4.1. Merging OD pairs 

If two OD pairs will have the same candidate paths in terms of included transfers, then these two OD pairs can be merged. An 
example is given to illustrate the idea of merging OD pairs. Fig. 6 shows a simplified URT network with three bi-directional URT lines. 
We consider 16 different OD pairs with origins at station s1, s2, s3, or s4 and destinations at station s7, s8, s9, or s10. As can be seen, they 
have the same candidate URT paths (when they take the same train at their origin stations) in terms of included transfers. In this case, 
the 16 OD pairs can be merged so that we only perform the path generation process once for the 16 OD pairs instead of 16 times without 
OD pairs merging. 

We propose the following method of merging OD pairs. Given two OD pairs, denoted by o1d1 and o2d2, they can be merged if their 
origin stations o1 and o2 satisfy at least one of Conditions (1) – (3), and their destination stations d1 and d2 also satisfy at least one of 
Conditions (1) – (3). 

Condition 1. Stations o1 and o2 (d1 and d2) are the same station. 
Condition 2. Stations o1 and o2 (d1 and d2) are not transfer stations and on the same URT line, and there is no transfer station 
between o1 and o2 (d1 and d2) along this line. 
Condition 3. The four stations o1, o2, d1, and d2 are all on the same URT line. 

4.2. Generating pure URT paths 

The pure URT path contained in the path set Pod refers to the train-dependent URT path that contains train information. Each pure 
URT path p ∈ Pod is denoted by three sets: set Lod,p contains a sequence of URT lines that path p will go through, set Sod,p contains a 
sequence of stations that path p will go through (including the origin station, the transfer stations, and the destination station), and set 
Iod,p contains a sequence of URT trains that passengers will take along path p. To generate train-dependent URT paths, first, the k 
shortest path algorithm (Eppstein, 1998) is adopted to generate at most k physical URT paths that connect station o to station d within 

Fig. 6. An example of merging OD pairs.  
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the URT network. A physical URT path does not include train information. Then, we add train information for each physical URT path 
according to passengers’ earliest arrival times at transfer stations. For the train-dependent URT paths generated based on the same 
physical URT path, they have the same line set Lod,p and the same station set Sod,p but different train sets Iod,p. The procedure to generate 
multiple URT train-dependent paths based on a given URT physical path is described as follows: 

Step 1. Initialization. 
Step 1.1. Construct the line set L* and the station set S* based on the physical URT path (as illustrated in Fig. 7), i.e., L* = {l1,l2,⋯,

l|L* |}, S* = {s1, s2,⋯, s|L* |, s|L* |+1}, where s1 indicates passengers’ origin station, sm (m = 2,⋯, |L*|) indicates the transfer station where 
passengers will transfer from the train of line lm− 1 to the train of line lm, and s|L* |+1 indicates passengers’ destination station. 

Step 1.2. Define variables tboa and tEA. tboa indicates the earliest time when passengers board a designated train, and tEA indicates 
the earliest time when passengers arrive at a designated station on a designated train. 

Step 1.3. Define and initialize the train set Inew = ∅ and the set of train sets Ω = ∅. Proceed to Step 2. 
Step 2. Designate trains for line l1 traveling from station s1 to s2. 
Step 2.1. Passengers are assumed to take the last train at the origin station. Thus, we construct a train set containing the last train inl1 

of line l1, i.e., Inew =
{

inl1
}

, Ω = Ω
⋃
{Inew}. 

Step 2.2. Calculate the earliest time tboa for passengers to board train inl1 
(i.e., the earliest arrival time of train inl1 

at station s1) under 
the constraints of train operations (i.e., Constraints (1) – (8)). Proceed to Step 3. 

Step 3. Designate trains for line l|I* |+1 traveling from station s|I*|+1 to station s|I* |+2. 
For each train set in Ω, denoted by I* =

{
i1, i2,⋯, i|I* |

}
, we calculate tEA (i.e., the earliest time when passengers arrive at station 

s|I* |+1 by train i|I* |) and tboa (i.e., the earliest time when passengers board the connecting train at station s|I* |+1). Then, we designate 
trains for the line l|I* |+1 according to tboa. Specifically, if the timetable of train i|I* | is fixed, then perform Steps 3.1 and 3.2; otherwise, 
perform Steps 3.3 and 3.4. After processing all train sets in Ω, proceed to Step 4. 

Step 3.1. tEA is equal to the original arrival time of train i|I* | at station s|I* |+1. That is, tEA = τarr
l
|I* | , s

|I* |+1 ,i|I* |
. Then, tboa is determined by 

tboa = tEA + Wtf , where Wtf is the corresponding transfer walking time. 
Step 3.2. If there is at least a train in the train set I

(
l|I*|+1

)
\Iv

(
l|I* |+1

)
that departs from station s|I*|+1 later than tboa, then the train 

with the smallest departure time (denoted by i*) is selected to add the train set I*, that is, I* = I*⋃{i*}. If such train cannot be found, 
then for each train i in the train set Iv

(
l|I* |+1

)
, construct a new train set Inew = I*⋃{i}, Ω = Ω

⋃
{Inew}, and remove I* from Ω. Proceed to 

consider the next train set in Ω. 
Step 3.3. tEA is calculated under the constraints of train operations (i.e., Constraints (1) – (8)) and an additional constraint requiring 

that the departure time of train i|I* | from station s|I* | should be greater than passengers’ earliest boarding time tboa, i.e., tdep
l
|I* | , s

|I* | ,i|I* |
≥ tboa. 

Then, tboa is determined by tboa = tEA + Wtf , where Wtf is the corresponding transfer walking time. 
Step 3.4. If there is at least a train in the train set I

(
l|I* |+1

)
\Iv

(
l|I* |+1

)
that departs from station s|I* |+1 later than tboa, then for each 

train i that satisfying this condition, construct a new train set Inew = I*⋃{i} and Ω = Ω
⋃
{Inew}. Then for each train i in the train set 

Iv
(
l|I* |+1

)
, construct a new train set Inew = I*⋃{i}, and Ω = Ω

⋃
{Inew}. Remove I* from Ω, and proceed to consider the next train set in 

Ω. 
Step 4. Termination check. 
If the length of every train set in Ω is equal to the length of the line set L*, then for each train set I* in Ω, we generate a train- 

dependent URT path p = {L*,S*, I*}; otherwise, proceed to Step 3. 

4.3. Path dominance principles 

In order to reduce the model scale without loss of optimality, we propose three path dominance principles to eliminate redundant 
passenger paths that do not contribute to improving the optimal objective value (i.e., minimizing passenger travel time and travel 
cost). Note that redundant passenger paths could be either pure URT paths or multimodal paths. 

Fig. 7. A physical URT path between OD pair od.  
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To this end, each path p is represented by a sequence of station-train pairs (as illustrated in Fig. 8), that is, SIall
od,p = {(s1

od,p,i
1
od,p),(s

2
od,p,

i2od,p),⋯, (sdes
od,p, i

des
od,p)}, which records all the stations (not just transfer stations) that path p goes through and the trains that passengers 

take when they depart from each station. However, for the station-train pair (sdes
od,p, i

des
od,p), s

des
od,p represents passengers’ destination station 

or intermodal transfer station, and ides
od,p represents the train from which passengers get off at station sdes

od,p. 
The development of the three path dominance principles is inspired by Florian (2004) and Otto Anker Nielsen & Frederiksen (2006, 

2009), where path dominance principles are proposed to reduce the number of alternative paths in schedule-based transit assignment 
problems. However, their proposed principles cannot be directly applied to this paper, because the last train timetable considered in 
this paper is unfixed, while the bus/train timetable in their papers is fixed. The three path dominance principles proposed in this paper 
are introduced as follows. The optimality proofs for these three principles are given in Appendix C, and their effects are demonstrated 
in Section 6.2.3. 

Principle 1. Given two paths p1 ∈ Pod and p2 ∈ Pod (p1 ∕= p2), if the following conditions are all satisfied, then path p2 can be removed from 
set Pod without loss of optimality.  

(1) The station-train pair set of path p1 is a subset of the station-train pair set of path p2, i.e., SIall
od,p1

⊆ SIall
od,p2

.  
(2) The travel cost and travel time of path p1 are both smaller than path p2, i.e., max(TCtaxi

od,p1
,TCbus

od,p1
) ≤ min(TCtaxi

od,p2
,TCbus

od,p2
), and 

max(TTtaxi
od,p1

,TTbus
od,p1

) ≤ min(TTtaxi
od,p2

,TTbus
od,p2

). 

Principle 2. Given two paths p1 ∈ Pod and p2 ∈ Pod (p1 ∕= p2) that connect to the same destination station or the same intermodal transfer 
station, if the following conditions are all satisfied, path p2 can be removed from set Pod without loss of optimality.  

(1) The two paths go through the same station s.  
(2) The station-train pairs after station s (including station s) are the same for the two paths.  
(3) If the trains boarding at the origin station along the two paths are the same, then there is only one transfer along path p1 before 

station s (including station s); otherwise, there is no transfer along path p1 before station s (including station s).  
(4) The longest total travel time to station s along path p1 is shorter than the shortest total travel time to station s along path p2.  
(5) The travel cost and travel time of path p1 are both smaller than path p2, i.e., TCtaxi

od,p1
≤ TCtaxi

od,p2
, TCbus

od,p1
≤ TCbus

od,p2
, TTtaxi

od,p1
≤ TTtaxi

od,p2
, 

and TTbus
od,p1

≤ TTbus
od,p2

. 

Principle 3. Given two paths p1 ∈ Pod and p2 ∈ Pod (p1 ∕= p2) that connect to the same destination station or the same intermodal transfer 
station, if the following conditions are all satisfied, path p2 can be removed from set Pod without loss of optimality.  

(1) The two paths go through the same stations in the same order.  
(2) Passengers take the same trains along these two paths, except for the trains (denoted by ides

od,p1 
and ides

od,p2
) that take passengers to 

their destination or the intermodal transfer station from the last train-to-train transfer station.  
(3) Train ides

od,p2 
precedes train ides

od,p1 
in terms of running order.  

(4) The travel cost and travel time of path p1 are both smaller than path p2, i.e., TCtaxi
od,p1

≤ TCtaxi
od,p2

, TCbus
od,p1

≤ TCbus
od,p2

, TTtaxi
od,p1

≤ TTtaxi
od,p2

, 
and TTbus

od,p1
≤ TTbus

od,p2
. 

4.4. Generating multimodal paths and pure taxi paths 

Along each generated pure URT path, passengers may encounter transfer failures at any transfer stations and fail to reach their 
destinations, or passengers may not be satisfied with the travel time or travel cost of the pure URT path. Under the above circum-

Fig. 8. A pure URT/multimodal path between OD pair od.  
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stances, passengers would choose pure taxi paths or multimodal paths instead. As mentioned, passengers can transfer to bridging taxis 
at any stations that have available taxis, and to a bridging bus at any train-to-train transfer station with a bridging bus. Therefore, for 
each station s traversed along a pure URT path, we generate a multimodal path along which passengers take URT trains from the origin 
station o to station s and then transfer to the bridging service to the destination station d. 

Any stations that are located on the same URT line between two adjacent transfer stations have the same accessibility. Among these 
stations, only the ones that dominate in terms of travel time and/or travel cost and have sufficient number of available taxis need to be 
considered when generating the multimodal paths that involve taxi bridging services. The method proposed in our previous work (i.e. 
Ning et al. (2022)) is used here to eliminate the taxi bridging stations that have no advantage in improving our optimal objective value. 
When generating the multimodal paths that involve bus bridging services, only train-to-train transfer stations are considered as the 
starting stations of bus bridging routes. Furthermore, to reduce the number of candidate multimodal paths, the three path dominance 
principles proposed in Section 4.3 are applied to eliminate redundant multimodal paths without loss of optimality. 

In addition, passengers may also choose to take bridging taxis from their origin stations directly to their destinations. Therefore, a 
pure taxi path is generated for the passengers of each OD pair. We consider only one pure taxi path for each OD pair which is set as the 
shortest path from station o to station d within the road network. 

4.5. Generating candidate bus bridging routes 

To control the operating cost of bridging buses, a bus bridging route is only deployed when there is a large amount of passenger 
demand. We consider the bus bridging routes that only pick up passengers at buses’ starting stations and stop at multiple stations for 
passengers to get off. As introduced before, OD pairs are merged into groups and thus passengers in the same group may have different 
destinations but the same intermodal transfer station where they will transfer to the same bridging service. Therefore, the process of 
generating candidate bus bridging routes is designed as follows: 

Step 1. For each candidate multimodal path p ∈ Pod where its intermodal transfer station is a train-to-train transfer station (denoted 
by s), a candidate bus bridging route is generated that starts at station s and ends at a passenger’s destination station d. 

Step 2. For each candidate bus bridging route, denoted by (s1,s2), calculate its maximum passenger demand (denoted by MQs1 ,s2 ) 
based on the OD pairs it can cover. If MQs1 ,s2 is less than MQ (i.e., the minimum passenger demand requirement for deploying a bus 
bridging route), this candidate bus bridging route is removed from the candidate bus bridging route set. 

5. Solution method 

To explore the trade-off between the two objectives (i.e., minimizing total passenger travel cost and total passenger travel time), we 
design an adaptive iterative algorithm based on the augmented ε-constraint method proposed by Mavrotas (2009) to solve the Pareto 
frontier curve. The augmented ε-constraint method can generate Pareto optimal solutions and avoids generating weak Pareto solutions 
(Mavrotas, 2009). The adaptive iterative algorithm is designed to iteratively implement the augmented ε-constraint method based on 
different settings of ε. By adaptively adjusting the value of ε, the proposed iterative algorithm can achieve a good balance between the 
density of Pareto frontier points and the computation efficiency. 

5.1. Augmented ε-constraint method 

The augmented ε-constraint (AUGMECON) model of the bi-objective optimization model is shown below, where the objective 
minz1 is used as an extra constraint with the value of ε as the upper bound. The positive slack variable π is introduced to represent the 
difference between ε and z1 and is forced to be maximized so that the AUGMECON model can generate a Pareto optimal solution. 
Readers can refer to Mavrotas (2009) for the proof of Pareto optimal solutions. 

Augmented ε-constraint (AUGMECON) model: 

minz2 − eps ⋅ π  

s.t.

z1 + π = ε  

Constraints(1) − (16)

z1 =
∑

od∈U

∑

p∈Pod

(
TCod,p ⋅ yod,p

)

z2 =
∑

od∈U

∑

p∈Pod

(
TTod,p ⋅ yod,p

)

π ∈ R+ (19)  

where eps is a sufficiently small number. 
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5.2. Adaptive iterative algorithm 

We first calculate the upper and lower bounds (denoted by zUB
1 and zLB

1 ) of the objective z1. Specifically, zUB
1 is set as the sum of the 

maximum travel costs in each passenger’s candidate paths. zLB
1 is determined by solving the proposed integrated optimization model 

with only the objective minz1. The upper and lower bounds are input to our adaptive iterative algorithm. 
The process of the adaptive iterative algorithm is depicted in Fig. 9. In each iteration, the AUGMECON model with a specific value 

of ε is solved to generate a Pareto optimal solution. In the first iteration, the value of ε is set to zUB
1 . In the m th iteration (m > 1), the 

value of ε is set to zm− 1
1 − Δ, where zm− 1

1 represents the value of z1 in the Pareto optimal solution obtained in the (m − 1) th iteration, and 
Δ represents the minimum difference in z1 between two adjacent Pareto optimal solutions obtained. By adjusting the setting of Δ, a 
trade-off between the density of Pareto frontier points and computation time is advisable. The smaller the Δ is, the denser the Pareto 
frontier points will be, and the longer the computation time is. The iteration stops when the value of ε is less than or equal to zLB

1 . 

6. Case study 

In this section, a series of numerical experiments were implemented on the Chengdu URT network to illustrate the application of 
the proposed integrated optimization model. The model was solved by GUROBI 9.5.2 on a laptop with AMD Ryzen 7 5800H @ 3.20 
GHz and 13.9 GB RAM. The structure of this section is organized as follows. Section 6.1 describes the basic information about the 
Chengdu URT network and bridging services. Section 6.2 reports the effectiveness of the proposed passenger path generation method. 
Section 6.3 reports the solution efficiency of the proposed integrated optimization model. Section 6.4 reports the effect of cooperation 
between URT trains and taxis, and Section 6.5 reports the effect of cooperation between URT trains, taxis, and bridging buses further. 
The analyses in Sections 6.4 and 6.5 are based on single-objective optimization, while Section 6.6 is designed to explore the trade-off 
between the two objectives (i.e., to minimize total passenger travel cost, and to minimize total passenger travel time). Finally, while 
only the last train timetable is considered to be variable in Sections 6.4 – 6.6, in Section 6.7 we further study the effect of simulta-
neously adjusting the last train and non-last train timetable together. 

6.1. Network description 

Fig. 10 depicts the map of the Chengdu URT network as of April 2019. It consists of 7 bi-directional URT lines and 156 stations. The 
down direction of each URT line is denoted by the arrow next to the line name. The start and terminal stations of each bi-directional 
line are marked with triangles. The original train timetable, the maximum and minimum train running/dwell times, and the minimum 
safety headways were collected from the Chengdu URT corporation. According to the original timetable, the earliest closure time 
among all directional lines was 23:14:09 (i.e., the down direction of Line 10), while the latest closure time among all directional lines 
was 00:12:46 (i.e., the down direction of Line 3). In the numerical experiments, the closure time of each URT directional line is allowed 

Fig. 9. Flowchart of the proposed adaptive iterative algorithm.  
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to be postponed by at most 10 min than in the original timetable, which coincides the setting in Chen et al. (2019b). 
The 156 stations form a total of 24,180 OD pairs with different origin stations and/or different destination stations. To compre-

hensively analyze the performance of the Chengdu URT network, these 24,180 OD pairs were all considered in the numerical ex-
periments. The number of passengers for each OD pair was set as 1 to consider equal OD importance. Each passenger was assumed to 
arrive at the origin station just after the departure time of the penultimate train but before the departure time of the last train. 

The travel time and travel cost in URT trains and taxis were obtained from the website (https://map.baidu.com/). The minimum 
passenger demand requirement for deploying a bus bridging route (i.e. MQ) was set to 200 passengers. The travel cost for a bridging 
bus per passenger was set to ¥ 2, which coincides with the bus price in most cities in China. Buses are cheaper than both taxis and URT 
trains in the considered real-life cases of Chengdu city. The travel times of bridging buses were assumed to be longer than bridging 
taxis, and were set as the travel times of bridging taxis plus the additional dwell times at each stop along the way. In all cases of Section 
6, the number of taxis available at each train-to-train transfer station is set to infinity, and to zero at other URT stations. In Section 7, we 
performed cases where limited numbers of available taxis at all stations are considered. 

6.2. The effectiveness of passenger path generation methods 

In this section, we present the scale and computation time for generating passenger candidate paths, and demonstrate the effec-
tiveness of merging OD pairs and path dominance principles. 

6.2.1. The results of merging OD pairs 
The considered 24,180 OD pairs were merged into 1,296 groups by the method introduced in Section 4.1. Since the OD pairs in the 

same group have the same candidate paths in terms of contained transfers, the path generation process only needs to be performed 
1,296 times instead of 24,180 times without merging, which saved a lot of computation time for generating passenger paths. 

We illustrated the distribution of the number of OD pairs in each group in Fig. 11. It can be seen that most of the groups contained 
less than 10 OD pairs, while a few groups contained more than 100 OD pairs. On average, each group contained 19 OD pairs. 

6.2.2. The results of passenger path generation 
For the considered 1,296 passenger groups, different passenger path sets were generated based on different values of k (i.e. the 

maximum number of physical URT paths generated per OD pair), the number of trains with variable timetables, and whether path 

Fig. 10. Chengdu URT network.  
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dominance principles were applied or not. The computational results are summarized in Table 6. Note that the computation time is the 
total time of merging OD pairs, generating each type of candidate paths (including pure URT paths, pure taxi paths, and multimodal 
paths), and with applying path dominance principles to remove redundant paths. 

From Table 6, we can observe that when only considering the last train of each URT line, the larger the k was, the more candidate 
paths for passengers will be generated, and the longer the computation time was. When k was the same, the more the trains with 
variable timetables we have, the more candidate paths for passengers will be generated, and the longer the computation time was. 
However, thanks to merging OD pairs, the total computation time for generating passenger paths was not long. In our numerical 
experiments, the longest computation time for path generation was 41 min, and the corresponding number of passenger candidate 
paths was 38,347 (after applying path dominance principles). In addition, by our method, the path generation of each passenger group 
is independent of each other, parallel computing can thus be adopted to further reduce the computation time of path generation. 

6.2.3. The effect of path dominance principles 
Results in Table 6 show that the proposed path dominance principles can effectively eliminate numerous paths. The larger the value 

of k, the more paths were generated, and more paths were eliminated by the path dominance principles. The more trains with variable 
timetables were, the more paths will be generated, and more paths were eliminated by the path dominance principles. In particular, 
when k was set to 3 and the timetables of last trains, penultimate trains, and antepenultimate trains were all variable, up to 60.2% of 
the paths were eliminated. In addition, among the removed paths, there are far more pure URT paths than multimodal paths. 

To further demonstrate the effectiveness of path dominance principles, we solved our proposed optimization model on the pas-
senger path sets constructed with and without path dominance principles. To illustrate the generality of these path dominance 
principles, we here adopted the objective function that is most commonly used in the existing literature on the last train timetabling 
problem. That is, to maximize the number of passengers who can take pure URT paths to their destinations. The model solution results 
are reported in Table 7. 

Results in Table 7 show that although numerous paths were removed by path dominance principles, the models can still obtain the 
same optimal solutions as the ones without path reductions. This indicates that our path dominance principles effectively eliminated 

Fig. 11. Distribution of the number of OD pairs in each group.  

Table 6 
Results of passenger path generation.  

# train(s) per line K time [min] # all paths # pure URT paths # multimodal paths 

N Y RED N Y RED N Y RED 

1 3  2.4 15,221 11,370  25.3% 8,719 4,956  43.2% 5,206 5,118  1.7% 
1 5  5.4 27,238 19,123  29.8% 16,402 8,722  46.8% 9,387 8,952  4.6% 
1 10  12.6 46,401 29,124  37.2% 29,591 13,903  53.0% 15,323 13,734  10.4% 
1 inf  41.1 72,031 38,347  46.8% 47,984 19,018  60.4% 22,553 17,835  20.9% 
2 3  10.2 39,352 20,936  46.8% 28,335 10,235  63.9% 9,721 9,405  3.3% 
3 3  30.6 94,550 37,615  60.2% 75,557 19,413  74.3% 17,697 16,906  4.5% 

# trains: 1 – only last train timetables are variable; 2 –the timetables of last trains and penultimate trains are variable; 3 – the timetables of last trains, 
penultimate trains, and antepenultimate trains are variable. 
N/Y: The path set was constructed without/with path dominance principles. 
RED: The reduction of the number of paths by path dominance principles. 
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the paths that do not contribute to improving the optimal objective value. Besides, owing to the reduction of paths, the number of 
decision variables in models was significantly reduced, especially when k was set to 3 and the timetables of last train and penultimate 
trains were both variable, i.e. 59.2% of decision variables were reduced. The number of constraints is independent of the number of 
passenger paths, which has been analyzed in Section 3.5.1. This indicates that our model has good scalability. Furthermore, the 
computation time was also reduced dramatically by applying path dominance principles. Particularly, when k was set to 3 and the 
timetables of last train and penultimate trains were both variable, the computation time was reduced by 85.8% (from 15 h to 2 h) by 
applying path dominance principles. 

6.3. The efficiency of our proposed model 

In this section, we demonstrate the efficiency of our proposed model and compare it with the existing state-of-the-art model 
proposed by Zhou et al. (2019), where they stated that their proposed model can be solved directly with the commercial solver with 
satisfactory computation time and solution quality. For consistency purpose, the two models adopted the same objective function (i.e., 
maximizing the number of passengers who can take pure URT paths to their destinations, the one used in Zhou et al. (2019)), same 
passenger input (i.e., 1,296 passenger groups) and same set of passenger candidate paths (i.e., only include pure URT paths). The 
computational results of the two models are summarized in Table 8. 

From Table 8, we can observe that the solution efficiency of our proposed model is greatly affected by the number of trains with 
variable schedules. This may be due to the inclusion of a set of big M constraints in our model to describe the relationship between 
transfer feasibility and train timetables (i.e. Constraints (11)). When the number of trains with variable timetables increases, the 
number of transfers that need to be decided increases, and the number of the big M constraints also increases, thus affecting the so-
lution efficiency of the model. 

Compared with the model in Zhou et al. (2019), our proposed model outperforms in terms of model scale and solution efficiency. 
Specifically, the numbers of decision variables and constraints of our model were much less than those of the model in Zhou et al. 
(2019). The computation time of our model was also much less than that of the model in Zhou et al. (2019). In particular, when the 
timetables of last trains and penultimate trains were both variable, the number of decision variables in our model was only 1.3% of the 
model in Zhou et al. (2019), and the number of constraints in our model was only 0.5% of the model in Zhou et al. (2019). The model in 
Zhou et al. (2019) took more than 21 h to solve to the optimum, but our model only took 2 h. 

6.4. The effect of cooperation between URT trains and taxis 

To reveal the performance of the cooperation between URT trains and taxis, we optimized the last train timetable under two 
different passenger path sets using our proposed integrated optimization model: 1) one path set only includes pure URT paths and pure 
taxi paths (U + T); and 2) another set includes pure URT paths, pure taxi paths, and multimodal paths (U + T + M). The two opti-
mization objectives (i.e., minimizing total passenger travel cost and minimizing total passenger travel time) were considered sepa-
rately. In this section, the timetable of non-last trains was considered to be fixed to the original timetable. We considered generating 

Table 7 
Model solution results with and without path dominance principles.  

# train K # variables # constraints time [sec] obj 

N Y RED N Y RED 

1 3 10,012 6,185  38.2% 5,201 31 11  64.5% 16,439 
1 5 17,698 9,961  43.7% 5,374 68 30  55.9% 16,954 
1 10 30,887 15,143  51.0% 5,414 113 72  36.3% 17,150 
1 inf 49,280 20,258  58.9% 5,421 130 60  53.8% 17,178 
2 3 30,919 12,602  59.2% 8,771 53,527 7,587  85.8% 17,988 

N/Y: The path set was constructed without/with path dominance principles. 
RED: The reduction of the number of variables or the solution time of the optimization model due to path dominance principles. 

Table 8 
Comparison of the scale and efficiency of our model with an existing advanced model.  

# trains K # paths This paper Zhou et al. (2019) 

# VAR # CON obj gap [%] time [sec] # VAR # CON obj gap [%] time [sec] 

1 3 4,956 6,185 5,201 16,439 0 11 496,075 984,357 16,439 0 149 
1 5 8,722 9,961 5,374 16,954 0 30 599,141 1,183,146 16,954 0 2,278 
1 10 13,903 15,143 5,414 17,150 0 72 628,967 1,232,489 17,150 0 8,083 
1 inf 19,018 20,258 5,421 17,178 0 60 637,961 1,240,256 17,178 0 37,610 
2 3 10,235 12,602 8,771 17,988 0 7,587 956,690 1,896,040 17,988 0 76,696 

# VAR: The number of variables. 
# CON: The number of constraints. 
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three physical URT paths for each passenger, therefore, a total of 11,370 candidate paths were generated by applying path dominance 
principles. The computational results are summarized in Table 9. 

As shown in Table 9, the total travel time and total travel cost of passengers were significantly reduced with the addition of the 
multimodal paths (i.e., with the cooperation between URT trains and taxis). Specifically, when considering minimizing total passenger 
travel cost, the total passenger travel cost in case 2 (U + T + M) was reduced by 22.2% compared to case 1 (U + T). When considering 
minimizing total passenger travel time, the total passenger travel time in case 4 (U + T + M) was reduced by 23.0% compared to case 3 
(U + T). 

We next analyze the change in the number of passengers who choose each type of paths after adding multimodal paths. As shown in 
Table 10, when considering minimizing total passenger travel cost in cases 1 (U + T) and 2 (U + T + M), the number of passengers 
choosing pure URT paths barely changed after adding multimodal paths. This is because multimodal paths include the use of taxi 
services, which are generally more expensive than pure URT paths. In addition, about 20% of passengers moved on from pure taxi 
paths to multimodal paths in pursuit of lower travel costs. The average travel time for passengers dropped from 32.5 min (in case 1, U 
+ T) to 31.1 min (in case 2, U + T + M) as shown in Table 9. When considering minimizing total passenger travel time in cases 3 (U + T) 
and 4 (U + T + M), as shown in Table 10, 37.4% (=58.9% – 21.5%) of passengers moved on from pure taxi paths to multimodal paths, 
and 22.6% (=41.1% – 18.5%) of passengers moved on from pure URT paths to multimodal paths. Consequently, up to 60.0% of 
passengers chose multimodal paths when minimizing total passenger travel time. This implies that multimodal paths may take shorter 
travel times than pure URT paths or/and pure taxi paths. 

In addition, multimodal paths can also bring in the following two significant benefits. The first benefit is that the revenue of the 
URT company (i.e., the total travel cost of passengers for URT trains) increased despite URT services sharing passengers with taxi 
services in multimodal paths. Such increase is demonstrated in Table 10, for a 15.6% higher revenue in case 2 (U + T + M) than in case 
1 (U + T) when considering minimizing total travel cost. When considering minimizing total travel time, the URT revenue in case 4 (U 
+ T + M) was also increased by 11.0% compared to case 3 (U + T). The reason behind this increase is that although multimodal paths 
require passengers sharing between URT and taxi services, they also help URT services attract more passengers. 

Another benefit of introducing multimodal paths is that the total passenger travel time in taxis was reduced. Specifically, as shown 
in Table 10, when considering minimizing total passenger travel cost, the total passenger travel time in taxis in case 2 (U + T + M) was 
reduced by 24.6% compared to case 1 (U + T). When considering minimizing the total passenger travel time, the total passenger travel 
time in taxis in case 4 (U + T + M) was reduced by 9.4% compared to case 3 (U + T). The reason for such reduction is because the 
number of passengers choosing pure taxi paths decreased. Although such passengers may turn to multimodal paths which also include 
the use of taxis, the increased use of URT services can still significantly reduce the total travel time in taxis. This also implies that 
multimodal paths could be a safer transport mode for passengers during night traveling, particularly for female travelers who may find 
safer with public transportation over private ones. 

Finally, we report the changes in the optimized last train timetable after adding the multimodal paths in Table 11. It can be seen 
that the number of feasible transfers included in passengers’ selected paths (i.e. # FT) was reduced after adding the multimodal paths. 
On the one hand, this is beneficial for passengers, because it can reduce the possibility of passenger transfer failure caused by uncertain 

Table 9 
Results under URT and taxi cooperation.  

Case Path types # paths Solution time [sec] Total travel cost [¥] Total travel time [hour] Average travel cost [¥] Average travel time [min]  

min total travel cost 
1 U + T 6,252 11 481,287 13,078  19.9  32.5 
2 U + T + M 11,370 8 374,414 12,523  15.5  31.1   

min total travel time 
3 U + T 6,252 3 744,222 12,273  30.8  30.5 
4 U + T + M 11,370 1 638,078 9,445  26.4  23.4 

T/U/M: respectively represent three types of passenger paths, i.e., T (pure taxi path), U (pure URT path) and M (multimodal path). 

Table 10 
The effect of the multimodal path under different optimization objectives.  

Case Path types # passengers URT revenue [¥] Travel time in taxis [hour] 

T U M  

min total travel cost 
1 U + T 7,861 (32.5%) 16,319 (67.5%) 0 87,006 4,716 
2 U + T + M 3,093 (12.8%) 16,291 (67.4%) 4,796 (19.8%) 100,534 3,556   

min total travel time 
3 U + T 14,235 (58.9%) 9,945 (41.1%) 0 47,970 8,079 
4 U + T + M 5,205 (21.5%) 4,477 (18.5%) 14,498 (60.0%) 53,270 7,316 

T/U/M: respectively represent the number of passengers who choose pure taxi paths, pure URT paths, or multimodal paths to reach their destinations. 
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factors in the actual operation. On the other hand, this is also beneficial for URT operations. There are fewer feasible transfers that need 
to be maintained in actual operation, while the URT revenue still increased after adding the multimodal paths (as shown in Table 10). 
In addition, Table 11 indicates that the total delay time (TotalD) was decreased and the total advance time (TotalA) was increased after 
adding the multimodal paths. It implies that passenger may be able to reach their destinations or intermodal transfer stations earlier (i. 
e. shorter travel time), which helps to increase passenger satisfaction with URT services. 

6.5. The effect of URT train, taxi, and bridging bus cooperation 

In this section, we analyze the effect of incorporating bridging buses based on the collaboration between URT and taxis. Compared 
to bridging taxis, bridging buses offer lower travel costs but longer travel times for passengers. This means that when we take 
minimizing total passenger travel time as the objective function, the number of bus bridging routes deployed will be zero. Therefore, 
we only considered the objective function of minimizing total passenger travel cost. We only adjusted the timetable of last trains and 
considered the non-last train timetable to be fixed to the original timetable. The passenger candidate paths were the same as in Section 
6.4 (i.e. 11,370 paths). The minimum passenger demand requirement for deploying a bus bridging route (i.e. MQ) was set to 200. Based 
on this, a total of 52 candidate bus bridging routes were generated. Two new scenarios (cases 5 and 6) were designed to verify the effect 
of bus bridging services, as well as the scenario (case 2) that has been investigated for another purpose in Section 6.4.  

(1) Case 2: Bridging buses were not considered. The last train timetable was optimized under the cooperation between URT trains 
and taxis. (i.e. case 2 in Section 6.4)  

(2) Case 5: The last train timetable was optimized under the cooperation between URT trains and taxis. Then, based on passenger 
path choices, bus bridging routes were deployed to replace bridging taxis where passenger demand was greater than the 
minimum value of MQ.  

(3) Case 6: The last train timetable was optimized under URT train, taxi, and bridging bus cooperation. 

We first compare the optimization results of cases 2 and 5. As shown in Table 12, replacing some bridging taxis with four bridging 
buses on the basis of URT and taxi cooperation (in case 5) can reduce passenger travel costs by 7.2%, while only causing a slight 
increase (i.e. 0.1%) in travel times for passengers. As shown in Table 13, 4.7% of passengers chose the bridging buses after adding 
bridging buses (in case 5), so that the total passenger travel time in taxis was reduced by 14.8% compared to case 2. 

Further, we investigate the effect of integrating bridging bus route design into the last train timetable optimization (i.e. case 6). 
Compared to case 5 (without integration), in case 6 the total travel cost of passengers was further reduced by 13.3%, and the total 
travel time of passengers was also unexpectedly reduced by 7.3% (as shown in Table 12). The reasons for the reduction in passenger 
travel time are explained below. When bridging buses were not available in case 5, in pursuit of lower travel costs, passengers may 
need to take long detours in the URT network to reach their destinations or intermodal transfer stations (that are close to their des-
tinations) to reduce the travel cost by taxis. Since buses are cheaper than both taxis and URT trains, when bridging buses were available 
in case 6, rather than detouring within the URT network, these passengers would move on to multimodal paths and transfer to a 

Table 11 
Comparison of the optimized timetables with/without URT and taxi cooperation.  

Case Path types # FT # SA # SD TotalA [min] TotalD [min] MaxA [min] MaxD [min]  

min total travel cost 
1 U + T 178 167 280  1525.8  3621.6  8.7  12.6 
2 U + T + M 170 174 272  1527.2  3193.8  8.7  12.1   

min total travel time 
3 U + T 160 205 242  1191.6  2694.1  6.3  12.6 
4 U + T + M 127 252 193  1655.5  2525.6  8.3  10.8 

FT: The number of feasible transfers included in passengers’ selected paths. 
SA/SD: The number of stations at which the last train timetable was advanced/delayed compared to the original timetable. 
TotalA/TotalD: Total advance/delay time. 
MaxA/MaxD: Maximum advance/delay time. 

Table 12 
Results under URT, taxi, bridging bus cooperation.  

Case Bridging 
services 

Solution time 
[sec] 

# bus 
routes 

Total travel cost 
[¥] 

Total travel time 
[hour] 

Average travel cost 
[¥] 

Average travel time 
[min] 

2 Taxi 8 0 374,414 12,523  15.5  31.1 
5 Taxi, bus* / 4 347,286 12,540  14.4  31.1 
6 Taxi, bus (opt) 37 31 301,043 11,629  12.5  28.9 

# bus routes: Number of bus bridging routes deployed in the solution. 
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bridging bus as early as possible. This is verified by that 23.3% (=67.4% – 44.1%) of passengers moved on from pure URT paths to 
multimodal paths, and the number of passengers choosing bridging buses were increased by 28.6% (=33.3% – 4.7%), as shown in 
Table 13. Consequently, the passenger travel time in URT trains were greatly reduced in case 6 compared to case 5, which was far 
greater than the increase in travel time caused by the use of bridging buses. This is verified by the 21.0% reduction in URT revenue in 
case 6 (as shown in Table 13). Therefore, the total passenger travel time was reduced when bridging bus route design was integrated 
into the last train timetable optimization. Additionally, the total passenger travel time in taxis was further reduced by 15.6% (as shown 
in Table 13) through the integrated optimization of the last train timetable and bus bridging routes. 

Finally, we report the changes in the optimized last train timetable after incorporating the bus bridging route design into the last 
train timetable optimization in Table 14. It can be seen that the number of feasible transfers included in passengers’ selected paths (i.e. 
# FT) was increased after incorporating collaborative optimization of bridging bus routes. This implies that after the introduction of 
bridging buses, although passengers will reduce the use of URT trains, higher requirements are put forward on the transfer feasibility 
between URT trains, which deserves the attention of URT operators. 

6.6. The trade-off between travel cost and travel time 

In this section, we analyze the trade-off between the total passenger travel cost and the total passenger travel time by generating the 
Pareto frontier curve using the adaptive iterative algorithm described in section 5. Here we only adjusted the timetable of last trains 
and considered the non-last train timetable to be fixed to the original timetable. To balance the density of Pareto frontier points and 

Table 13 
The effect of the integrated optimization of the last train timetable and bus bridging routes.  

Case Bridging services # passengers URT revenue [¥] Travel time in taxis [hour] 

T U M Bus 

2 Taxi 3,093 (12.8%) 16,291 (67.4%) 4,796 (19.8%) 0 100,534 3,556 
5 Taxi, bus* 3,093 (12.8%) 16,291 (67.4%) 4,796 (19.8%) 1,146 (4.7%) 100,534 3,029 
6 Taxi, bus (opt) 3,051 (12.6%) 10,650 (44.1%) 10,479 (43.3%) 8,051 (33.3%) 79,442 2,557 

T/U/M: respectively represent the number of passengers who choose pure taxi paths, pure URT paths, or multimodal paths to reach their destinations. 
Bus: the number of passengers who choose bridging buses as bridging services. 

Table 14 
Comparison of the optimized timetables with/without bridging buses.  

Case Bridging services # FT # SA # SD TotalA [min] TotalD [min] MaxA [min] MaxD [min] 

2 Taxi 170 174 272  1527.2  3193.8  8.7  12.1 
5 Taxi, bus* 170 174 272  1527.2  3193.8  8.7  12.1 
6 Taxi, bus (opt) 195 190 257  1299.1  3675.5  6.5  12.3 

FT: The number of feasible transfers included in passengers’ selected paths. 
SA/SD: The number of stations at which the last train timetable was advanced/delayed compared to the original timetable. 
TotalA/TotalD: Total advance/delay time. 
MaxA/MaxD: Maximum advance/delay time. 

Fig. 12. Pareto frontier curve under the last train timetable optimization.  
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computation time, Δ (i.e., the minimum difference in z1 between two adjacent Pareto optimal solutions obtained) was set to 10,000. 
Recall that z1 refers to the total passenger travel time. The algorithm carried out a total of 35 iterations, and the average calculation 
time of each iteration was only 51 s. The obtained Pareto frontier curve is illustrated in Fig. 12. 

From Fig. 12, we can observe that the passenger travel cost can be reduced at the cost of increasing passenger travel time. When the 
total travel time was the minimum (i.e. 9,445 h), the total travel cost was the maximum (i.e. ¥ 638,475). At this point, to reduce the 
total travel cost by ¥ 10,063 (i.e. from ¥ 638,475 to ¥ 628,412), the total travel time only needs to be increased by 2 h (i.e. from 9,445 h 
to 9,447 h). However, as passenger travel costs decreased, the increase in passenger travel times accelerated. Particularly, to reduce the 
total travel cost from ¥ 308,389 to ¥ 301,043 (i.e. a reduction of ¥ 7,346), the total travel time has to be increased by 595 h (i.e. from 
11,028 h to 11,623 h). When the total travel cost was the minimum (i.e. ¥ 301,043), the total travel time was the maximum (i.e. 11,623 
h). 

Fig. 13 illustrates the numbers of passengers choosing different types of paths under different Pareto optimal solutions. On the one 
hand, under each Pareto optimal solution, the number of passengers who chose multimodal paths was the largest, followed by the 
number of passengers who chose pure URT paths, and the least number of passengers who chose pure taxi paths. On the other hand, as 
passenger travel costs decreased, while the number of passengers who chose multimodal paths was decreased, the proportion of 
passengers who used bridging buses was increased. Specifically, when the total travel cost was the maximum, although the number of 

Fig. 13. Numbers of passengers choosing different types of paths under different Pareto-optimal solutions.  

Fig. 14. Numbers of bus bridging routes and numbers of feasible transfers under different Pareto solutions.  
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passengers who chose multimodal paths is the largest among all Pareto optimal solutions, none of the passengers use bridging buses. 
When the total travel cost was the minimum, the number of passengers who chose multimodal paths was the least among all Pareto 
optimal solutions, but more than three-quarters of the passengers used bridging buses. 

Finally, Fig. 14 illustrates the numbers of bridging buses deployed and the numbers of feasible transfers under different Pareto 
optimal solutions. It can be seen that as passenger travel costs decreased, the number of bus bridging routes deployed was increased, 
but the number of feasible transfers required by passengers was also increased. This indicates that when passengers pursue lower travel 
costs, more bus bridging routes can be deployed, but it will place higher requirements on the transfer feasibility between URT trains, 
which may increase the difficulty of daily operation. In actual operation, URT operators can determine the beneficial last-train 
timetable and bus bridging routes based on the above aspects. 

6.7. The impact of collaborative timetable optimization of non-last trains and last trains 

Since passengers may transfer between non-last trains and last trains, optimizing the timetable of both last trains and several 
related non-last trains may be helpful to further improve passenger services (e.g., transport more passengers to reach their destinations 
via URT trains, reduce passenger travel costs and travel times). 

6.7.1. Single objective optimization 
We first analyze the impact of collaborative timetable optimization of non-last trains and last trains under single objective. The two 

optimization objectives (i.e., minimizing total passenger travel cost and minimizing total passenger travel time) were considered 
separately. The results are summarized in Table 15 and Table 16 and compared with the results of optimizing only the last train 
timetable. 

We first analyze the effect of optimizing the timetables of both last trains and penultimate trains. When considering minimizing 
total passenger travel cost, as shown in Table 15, optimizing the timetables of last trains and penultimate trains (in case 7) can 
significantly reduce the total passenger travel cost by 38.0% compared to optimizing only last train timetable (in case 6). Meanwhile, 
as shown in Table 16, the total travel time in taxis was also reduced by 57.5% through optimizing the timetable of penultimate trains. 

Table 15 
Results under the timetable optimization of last trains and non-last trains.  

Case # 
trains 

# paths # 
CBR 

solution time 
[sec] 

# 
SBR 

Tot travel cost 
[¥] 

Tot travel time 
[hour] 

Avg travel cost 
[¥] 

Avg travel time 
[min]  

min total travel cost 
6 1 11,370 52 37 31 301,043 11,629  12.5  28.9 
7 2 20,936 76 1,260 42 186,561 11,370  7.7  28.2 
8 3 37,615 81 52,135 44 159,198 11,352  6.6  28.2   

min total travel time 
9 1 11,370 52 1 0 638,078 9,445  26.4  23.4 
10 2 20,936 76 11 0 587,488 8,921  24.3  22.1 
11 3 37,615 81 51 0 573,474 8,748  23.7  21.7 

# trains: 1 – optimize the last train timetable; 2 – optimize the timetable of the last train and penultimate train; 3 – optimize the timetable of the last 
train, the penultimate train, and the antepenultimate train. 
# paths: The number of passenger candidate paths. 
CBR/SBR: respectively represent the number of candidate bus bridging routes and the number of bus bridging routes deployed in the optimal 
solutions. 

Table 16 
The effect of collaborative optimization of non-last train timetables.  

Case # trains # passengers URT revenue [¥] Travel time in taxis [hour] 

T U M Bus  

min total travel cost 
6 1 3,051 (12.6%) 10,650 (44.1%) 10,479 (43.3%) 8,051 (33.3%) 79,442 2,557 
7 2 1,456 (6.0%) 10,969 (45.4%) 11,755 (48.6%) 10,334 (42.7%) 84,197 1,088 
8 3 917 (3.8%) 11,626 (48.1%) 11,637 (48.1%) 10,319 (42.7%) 86,973 711   

min total travel time 
9 1 5,205 (21.5%) 4,477 (18.5%) 14,498 (60.0%) 0 53,270 7,316 
10 2 3,176 (13.1%) 5,330 (22.1%) 15,674 (64.8%) 0 56,310 6,736 
11 3 2,707 (11.2%) 5,351 (22.1%) 16,122 (66.7%) 0 57,296 6,560 

T/U/M: respectively represent the number of passengers who choose pure taxi paths, pure URT paths, or multimodal paths to reach their destinations. 
Bus: the number of passengers who choose bridging buses as bridging services. 
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This is mainly due to the improved transfer feasibility between URT trains. On the one hand, the use of URT trains by passengers was 
increased, which is verified by the increase in URT revenue (shown in Table 16). On the other hand, there are eleven more bus bridging 
routes along which passenger demand was greater than MQ (shown in Table 15) and can therefore be deployed to serve passengers. 
When considering minimizing total passenger travel time, as shown in Table 15, optimizing the timetables of last trains and penul-
timate trains (in case 10) can reduce the total passenger travel time by 5.5% and reduce the total passenger travel cost by 7.9% 
compared to optimizing only last train timetable (in case 9). Meanwhile, as shown in Table 16, the URT revenue was increased by 5.7% 
through optimizing the timetable of penultimate trains. No bus bridging routes were deployed as the travel time by buses is generally 
longer than taxis. As for the computation time to optimize the timetables of both last trains and penultimate trains, the solution time 
was about 2 h when minimizing total passenger travel cost, and only 11 s when minimizing total passenger travel time. Both are 
acceptable because the last train timetabling problem is a tactical problem. In conclusion, it is worthwhile to optimize the timetables of 
both last trains and penultimate trains at the same time. 

However, when simultaneously optimizing the timetables of last trains, penultimate trains, and antepenultimate trains, as shown in 
Table 15 and Table 16, there was only little improvement in passenger services quality (i.e., travel time and travel cost) and URT 
revenue in cases 8 and 11 compared to cases 7 and 10. Specifically, when minimizing total passenger travel cost in case 8, the average 
travel cost was reduced by ¥ 1.1, and the URT revenue was increased by 3.3%. When minimizing total passenger travel time in case 11, 
the average travel time was reduced by 0.4 min, and the URT revenue was increased by 1.8%. Nevertheless, the computation time 
when minimizing total passenger travel cost was quite long (i.e. about 14.5 h in case 8). From this aspect, it is not necessary to optimize 
the timetables of last trains, penultimate trains, and antepenultimate trains at the same time. 

Finally, we report the changes in the optimized train timetable under the collaborative optimization of last train timetables and 
non-last train timetables in Table 17. It can be seen that the more trains that can be adjusted, the greater the changes to the original 
timetable will be. URT operators can decide which non-last train timetables to adjust taking into account the improvements discussed 
above. 

6.7.2. Bi-objective optimization 
We analyze the impact of collaborative timetable optimization of non-last trains and last trains under two objectives. The adaptive 

Table 17 
Comparison of the optimized timetables under collaborative optimization of non-last train timetables.  

Case # trains # FT # SA # SD TotalA [min] TotalD [min] MaxA [min] MaxD [min]  

min total travel cost 
6 1 195 190 257  1299.1  3675.5  6.5  12.3 
7 2 258 575 258  6872.5  2949.8  13.7  14.0 
8 3 393 800 427  9870.9  3684.4  18.8  11.4   

min total travel time 
9 1 127 252 193  1655.5  2525.6  8.3  10.8 
10 2 194 500 334  4844.1  3424.1  13.0  11.0 
11 3 264 705 518  7157.0  5824.9  13.2  11.3 

FT: The number of feasible transfers included in passengers’ selected paths. 
SA/SD: The number of stations at which the last train timetable has been advanced/delayed compared to the original timetable. 
TotalA/TotalD: Total advance/delay time. 
MaxA/MaxD: Maximum advance/delay time. 

Fig. 15. Pareto frontier curve under the timetable optimization of different trains.  
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iterative algorithm was adopted to obtain the Pareto frontier curve. The algorithm carried out a total of 41 iterations, and the average 
calculation time of each iteration was 10.5 min. The value of Δ (i.e., the minimum difference in z1 between two adjacent Pareto 
optimal solutions obtained) was set to 10,000. The collaborative optimization results were compared with the results where only last 
train timetables are optimized. See Fig. 15 and Fig. 16. 

As shown in Fig. 15, similar to the optimization results that consider only last train timetables, when additionally optimizing the 
penultimate train timetables, the passenger travel cost can be reduced at the cost of increasing passenger travel time. As passenger 
travel costs decreased, the increase in passenger travel times accelerated. In addition, as shown in Fig. 16, as passenger travel costs 
decreased, the number of bus bridging routes deployed was increased. 

Under the same total passenger travel cost, the minimum total travel time that can be achieved by optimizing the timetables of last 
trains and penultimate trains was much smaller than the minimum total travel time that can be achieved by optimizing only last train 
timetables. In particular, when the total passenger travel cost was ¥ 301,043 (i.e. the minimum travel cost that can be achieved by 
optimizing only last train timetables), the corresponding passenger travel time was 11,623 h under the optimization of only last train 
timetables, while the passenger travel time were reduced to 9,305 h (i.e. a 19.9% reduction) by coordinated timetable adjustment of 
penultimate trains. Meanwhile, the number of bus bridging routes was also reduced from 31 to 28 by coordinated timetable adjustment 
of penultimate trains, as shown in Fig. 16. 

7. Further extensions 

In the previous section, we set the number of taxis available at each train-to-train transfer station to infinity, and to zero at other 
URT stations. In this section, we verify the practicability and effectiveness of the proposed model and method in the case of a limited 
number of taxis available. 

Based on historical taxi GPS data (mot.gov.cn), the spatial distribution of taxis in Chengdu during the last train operation period can 
be obtained. Based on this, the number of available taxis at each station was randomly generated. The last train timetable was 
optimized based on the two different objective functions (i.e., minimizing total passenger travel cost and minimizing total passenger 

Fig. 16. Numbers of bus bridging routes under the timetable optimization of different trains.  

Table 18 
Results under different numbers of taxis available.  

Case # taxis Solution time 
[sec] 

# bus routes Total travel cost [¥] Total travel time 
[hour] 

Average travel cost 
[¥] 

Average travel time 
[min]  

min total travel cost 
6 Inf 37 31 301,043 11,629  12.5  28.9 
12 Limited 116 31 312,602 11,856  12.9  19.4   

min total travel time 
4 Inf 1 0 638,078 9,445  26.4  23.4 
13 Limited 331 26 524,360 10,778  21.7  26.7 

# taxis: Number of taxis available. “Inf” represents the situation where the number of available taxis was set to infinity at each train-to-train transfer 
station, and zero at other URT stations. “Limited” represents the situation where the number of taxis available was randomly generated based on 
historical taxi GPS data. 
# bus routes: Number of bus bridging routes deployed in the solution. 
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Table A1 
Definition of sets.  

Symbol Description 

L Set of directional URT lines in the given URT network, indexed by l and l’. A bi-directional URT line includes two different directional URT lines. 
S(l) Set of stations on line l, S(l) = {s1

l ,s
2
l ,⋯,sn

l }, where station s1
l and sn

l represent the start and terminal stations, respectively. Each station is indexed by s. 
I(l) Set of trains on line l, I(l) = {i1l , i

2
l ,⋯, in− 1

l , inl }, where inl and in− 1
l represent the last and penultimate trains, respectively. Each train is indexed by i. 

Iv(l) Set of trains of which the timetable will be determined, Iv(l) ⊆ I(l). 
U Set of passenger groups, indexed by od, where o and d indicate the origin and destination stations, respectively. 
Pod Set of candidate paths of passengers in group od ∈ U. Each path is indexed by p. 
TF Set of train-to-train transfers. Each transfer is indexed by tf = (l, i, l’, i’, s), representing that passengers transfer from train i ∈ I(l) to train i’ ∈ I(l’) at 

station s ∈ S(l) ∩ S(l’). 
BR Set of candidate bus bridging routes. Each bus route is denoted by (s1,s2), meaning that this bridging route will start at station s1 and end at station s2.  

Table A2 
Definition of parameters.  

Symbol Description 

ipre The preceding train of train i. 
lpre The directional URT line where train ipre is. That is, ipre ∈ I(lpre). 
DTl,s The minimum dwell time at station s ∈ S(l) on line l ∈ L. 
DTl,s The maximum dwell time at station s ∈ S(l) on line l ∈ L. 
RTl,s,s+1 The minimum running time from station s ∈ S(l) to station s+1 ∈ S(l) on line l ∈ L. 
RTl,s,s+1 The maximum running time from station s ∈ S(l) to station s+1 ∈ S(l) on line l ∈ L. 
Harr

l The minimum safety headway between successive arrivals of trains on line l ∈ L. 
Hdep

l 
The minimum safety headway between successive departures of trains on line l ∈ L. 

Hda
l The minimum safety headway between the departure of the preceding train and the arrival of the following train on line l ∈ L. 

Tl The latest allowed service closure time for line l ∈ L. 
τarr

l,s,i The original arrival time of train i ∈ I(l) at station s ∈ S(l) on line l ∈ L. 

τdep
l,s,i 

The original departure time of train i ∈ I(l) at station s ∈ S(l) on line l ∈ L. 

Wtf The transfer walking time associated with transfer tf ∈ TF. 
WTB

s1 
The transfer walking time associated with the train-to-bus transfer at station s1 where (s1, s2) ∈ BR. 

Qod The number of passengers in group od ∈ U. 
θtf,p = 1, if transfer tf ∈ TF is contained in path p ∈ Pod; = 0, otherwise. 
sdep
p The station where passengers leave the URT network along path p ∈ Pod. If path p is a pure taxi path, then station sdep

p is passengers’ origin station. If path 
p is a pure URT path, then station sdep

p is passengers’ destination station. If path p is a multimodal path, then station sdep
p is the station where passengers 

transfer to bridging services. 
MQ The minimum passenger demand requirement for deploying a bus bridging route. 
MNs The number of taxis available at station s. 
TCtaxi

od,p The travel cost of all passengers in group od ∈ U traveling along path p ∈ Pod where taxis are used as bridging transportation. 

TCbus
od,p The travel cost of all passengers in group od ∈ U traveling along path p ∈ Pod where buses are used as bridging transportation. 

TTtaxi
od,p The travel time of all passengers in group od ∈ U traveling along path p ∈ Pod where taxis are used as bridging transportation. 

TTbus
od,p The travel time of all passengers in group od ∈ U traveling along path p ∈ Pod where buses are used as bridging transportation. 

M A sufficiently large positive value.  

Fig. C1. Examples to illustrate path dominance principles.  
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travel time) respectively. The timetable of non-last trains was considered to be fixed to the original timetable. The computational 
results (i.e. cases 12 and 13) are compared with the solution results under the condition that the number of available taxis is infinite (i. 
e. case 4 in Section 6.4 and case 6 in Section 6.5), see Table 18. 

The results show that the model and method proposed in this paper can also deal with the situation where the number of available 
taxis is limited and may even be smaller than passenger demand. The solution time was also satisfactory. Comparing to the case where 
the number of taxis was infinite, both travel cost and travel time increased slightly due to the limited number of available taxis. 
Interestingly, when minimizing total passenger travel time, due to the limitation of the number of available taxis, passengers would 
tend to concentrate on the designated transfer station to take the bridging bus, which reduced the total passenger travel cost. 

8. Conclusions and future research 

This paper focuses on the integrated optimization of last train timetabling and bridging service design within multimodal urban 
transport networks. Two bridging services are considered: taxis and buses. We developed a bi-objective MINLP model with low 
complexity and high efficiency. We considered two objectives – minimizing total passenger travel times and minimizing total pas-
senger travel costs. An adaptive iterative algorithm was proposed to obtain the Pareto frontier curve of the bi-objective optimization 
model. The proposed algorithm can achieve a good balance between the density of Pareto frontier points and the computation effi-
ciency. This model was established based on pre-generated passenger path sets. To improve solution efficiency of the model, we 
proposed three path dominance principles to eliminate redundant paths that do not contribute to improving the optimal objective 
value without loss of optimality. The proposed model and solution methods have been tested on the Chengdu URT network. According 
to the results of numerical experiments, we can draw the following conclusions:  

• The proposed optimization model can be solved by commercial solvers with satisfactory computation time and solution quality for 
a real-life URT network.  

• The proposed path dominance principles can effectively remove numerous redundant paths without loss of optimality and can 
reduce the computation time to solve the model. 

• With the addition of the cooperation of bridging services (taxis and buses), passenger travel costs and travel times can be signif-
icantly reduced.  

• By our model, URT companies can simultaneously optimize train timetables and design bridging services according to the trade-off 
between passenger travel times and travel costs. Multimodal paths can take shorter travel times than pure URT paths or/and pure 
taxi paths. With multimodal paths, the total passenger travel time in taxis was reduced, which provides passengers with a safer 
night travel environment particularly for female travelers. In addition, with the introduction of multimodal paths, fewer feasible 
transfers need to be maintained in the URT network while the revenues for URT companies still increase. For URT companies this 
means easier operation and more profits. When bridging buses were not available, in pursuit of lower travel costs, passengers may 
need to take long detours in the URT network to reach their destinations or leave from intermodal transfer stations (that are close to 
their destinations) to reduce the travel cost by taxis. When introducing bus bridging services, rather than detouring within the URT 
network passengers would choose multimodal paths to transfer to a bridging bus as early as possible, because buses are cheaper 
than both taxis and URT trains. However, when more bus bridging routes are deployed, it will place higher requirements on the 
transfer feasibility between URT trains, which may increase operation difficulty for URT companies.  

• URT operators are suggested to simultaneously adjust the timetable of several non-last trains (e.g. penultimate trains are enough for 
Chengdu URT network) when determining the last train timetable, which can increase the revenue of URT companies and reduce 
the number of bus bridging routes deployed. 

Further research can be extended in the following aspects. (1) The proposed model is a deterministic optimization model. In reality, 
on the one hand, the spatial–temporal distribution of passenger demand fluctuates daily. On the other hand, the travel times in taxis 
and buses fluctuate with stochastic road conditions, and the waiting time for taxis is affected by the number of available taxis. In 
addition, the number of available taxis fluctuates with stochastic road conditions. Therefore, it is of practical interest to design a robust 
train timetable considering uncertain passenger demand and uncertain road conditions. (2) For simplicity, in this paper, the train 
capacity is assumed to be sufficient to carry all passengers. Otherwise, URT companies should consider extending the operating hours 
and/or adding more URT trains to operation. An interesting topic could be to determine the service closure time and the number of 
trains running during the last-train period considering the train capacity and actual passenger demand. (3) In order to apply the in-
tegrated optimization model to larger URT networks, we can design a more efficient algorithm according to the structure and char-
acteristics of the model in future research. 
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Appendix A. . Sets and parameters 

See Table A1 and Table A2. 

Appendix B. . Linearization 

The Constraint (10) is the product of two binary variables. It can be linearized according to Equation (B.1). 

y = x1 ⋅ x2 ⇔

⎧
⎪⎨

⎪⎩

y ≤ x1

y ≤ x2

y ≥ x1 + x2 − 1

y ∈ {0, 1}

(B.1)  

where x1 and x2 are both binary variables. 
The objective function is the product of a continuous variable and a binary variable. It can be linearized according to Equation 

(B.2). 

y = x3 ⋅ x4 ⇔

⎧
⎨

⎩

y ≤ x4
y ≥ x4 − ub ⋅ (1 − x3)

lb ⋅ x3 ≤ y ≤ ub ⋅ x3

(B.2)  

where x3 is a binary variable, x4 ∈ [lb, ub] is a continuous variable. 

Appendix C. . Optimality proofs of path dominance principles 

Before illustrating the optimality proof of the three path dominance principles, we first introduce Lemma 1, which states the pivotal 
characteristics of redundant passenger paths. 

Lemma 1. Given two paths p1 ∈ Pod and p2 ∈ Pod (p1 ∕= p2) that connect to the same destination station or the same intermodal transfer 
station, if the trains boarding at the origin station along the two paths are the same, the two paths go through the same station s, and the station- 
train pairs after station s (including station s) are the same for the two paths, then, there must be at least one transfer along each path before 
station s (including station s). Additionally, under these circumstances, if there is only one transfer along path p1 (or path p2) before station s 
(including station s), this transfer cannot be located at station s. 

Proof of Lemma 1. Suppose that there is no transfer along path p1 before station s (including station s), or there is only one transfer 
along path p1 before station s (including station s) that is located at station s. The train boarding at the origin station o along the two 
paths is denoted by i. That is, passengers traveling along path p1 take train i from the origin station o directly to station s. This indicates 
station o and station s are located on the same URT line. Since passengers will not go through the same URT line more than once (see 
Assumption 6), and passengers traveling along path p2 also board train i at the origin station o and goes through station s, passengers 
traveling along path p2 take train i from station o directly to station s without any transfer before station s (excluding station s). This 
indicates that paths p1 and p2 are exactly the same before station s. Besides, the station-train pairs after station s (including station s) are 
the same for the two paths. Consequently, paths p1 and p2 are exactly the same path, which contradicts p1 ∕= p2. Therefore, there must 
be at least one transfer along path p1 before station s (including station s), and if there is only one transfer along path p1 before station s 
(including station s), this transfer cannot be located at station s. The proof is completed (see Fig. 17). 

Proof of Principle 1. Since SIall
od,p1

⊆ SIall
od,p2

, that is, all the transfers contained in path p1 are included in path p2. Therefore, if path p2 

is feasible, path p1 must be feasible; whereas if path p1 is feasible, path p2 may not be feasible. Moreover, if the two paths are both 
feasible, path p1 will be selected instead of path p2 due to that max(TCtaxi

od,p1
,TCbus

od,p1
) ≤ min(TCtaxi

od,p2
,TCbus

od,p2
), and max(TTtaxi

od,p1
,TTbus

od,p1
) ≤

min(TTtaxi
od,p2

,TTbus
od,p2

). Thus, path p2 can be removed from the path set without loss of optimality. The proof is completed. 
Proof of Principle 2. Before the optimality proof, we wish to emphasize the fact that for a given train, the slower the train (i.e., the 

later the train arrives), or the earlier the passenger arrives, the more likely the passenger will catch up with the train. The following 
symbols are defined for the proof: 

t: the arrival time of passengers at the origin station. 
i*: the train that passengers will take when they depart from station s. 
STTs,p2 : the shortest travel time from the origin station to station s along path p2 (including the transfer walking time of passengers 

at station s). 
LTTs,p1 : the longest travel time from the origin station to station s along path p1 (station s is not a transfer station along path p1). 
Since the station-train pairs after station s (including station s) are the same for the two paths, if passengers on both paths can reach 

station s, then the reachability of the two paths is the same. Therefore, the key reason for the different reachability of the two paths lies 
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in whether passengers can reach station s (and successfully transfer at station s) along these two paths . 
According to condition (3), Principle 2 includes two cases which will be discussed separately. For clarity, an example of each case is 

given in Figure C. 1, where different colors represent different URT lines.  

(1) Passengers will board different trains at the origin station along the two paths. 

In this case, one requires that there is no transfer along path p1 before station s (including station s). Otherwise, when calculating 
the longest travel time of path p1, the waiting time at the origin station cannot be ignored. In addition, since train i* is defined as the 
train that passengers will take when they depart from station s, it indicates that passenger traveling along path p1 will take train i* at 
the origin station. Since the station-train pairs after station s (including station s) are the same for the two paths, station s is the transfer 
station where passengers will transfer to train i* along path p2. Note that there may be other transfers before station s (excluding station 
s) along path p2. 

We consider an extreme situation. That is, passengers travel along path p2 with the shortest travel time (i.e., the trains run with the 
shortest running times and shortest dwell times, and passengers do not have any waiting time) and just catch train i* at station s, and 
then train i* departs from station s. Accordingly, the departure time of train i* at station s is equal to (t + STTs,p2 ). Assume that train i* 

runs with the longest running times and longest dwell times, and (t+STTs,p2 ) is the latest time for train i* to depart from station s. Under 
this circumstance, we can obtain that the earliest departure time of train i* at the origin station is equal to (t + STTs,p2 − LTTs,p1 ). Since 
STTs,p2 > LTTs,p1 , t + STTs,p2 − LTTs,p1 > t. Therefore, passengers traveling along path p1 can catch train i* at the origin station. This 
indicates that if path p2 is feasible, then path p1 must be feasible. 

However, consider another extreme situation, that is, suppose that passengers traveling along path p1 can just catch train i* at the 
origin station. Accordingly, the departure time of train i* at the origin station is equal to t. Assume that train i* runs with the longest 
running times and longest dwell times, then the departure time of train i* at station s is equal to (t + LTTs,p1 ). Since LTTs,p1 < STTs,p2 , t +
LTTs,p1 < t + STTs,p2 . This indicates that under this circumstance, even if passengers travel along path p2 with the shortest travel time, 
they cannot catch train i* at station s. Therefore, if path p1 is feasible, path p2 may not be feasible.  

(2) passengers will board the same train at the origin station along the two paths. 

In this case, one requires that there is only one transfer along path p1 before station s (including station s). Otherwise, when 
calculating the longest travel time of path p1, the waiting times (i.e., the waiting time at the origin station and the transfer waiting 
time) cannot be ignored. According to Lemma 1, this transfer is located before station s (excluding station s), denoted by stf . That is, 
passengers traveling along path p1 will transfer to train i* at station stf . Since the station-train pairs after station s (including station s) 
are the same for the two paths, passengers traveling along path p2 will transfer to train i* at station s. Note that there must be other 
transfers before station s (excluding station s) along path p2, according to Lemma 1. 

We consider an extreme situation. That is, passengers travel along path p2 with the shortest travel time and just catch train i* at 
station s, and then train i* departs from station s. Accordingly, the departure time of train i* at station s is equal to (t + STTs,p2 ). Assume 
that train i* runs with the longest running times and longest dwell times, and (t+STTs,p2 ) is the latest time for train i* to depart from 
station s. Under this circumstance, we can obtain that the earliest departure time of train i* from the transfer station stf is equal to (t +
STTs,p2 − ΔLTTtf ,s

i ), where ΔLTTtf ,s
i represents the longest travel time from station stf to station s. In addition, the latest arrival time of 

passengers at station stf is equal to (t + LTTs,p1 − ΔLTTtf ,s
i ). Since STTs,p2 > LTTs,p1 , t + STTs,p2 − ΔLTTtf ,s

i > t + LTTs,p1 − ΔLTTtf ,s
i . 

Therefore, passengers traveling along path p1 can catch train i* at station stf . This indicates that if path p2 is feasible, then path p1 must 
be feasible. 

However, consider another extreme situation, that is, suppose that passengers traveling along path p1 can just catch train i* at 
station stf . Accordingly, the departure time of train i* at station stf is equal to (t + LTTs,p1 − ΔLTTtf ,s

i ). Assume that train i* runs with the 
longest running times and longest dwell times, then the departure time of train i* at station s is equal to (t + LTTs,p1 ). Since 
LTTs,p1 < STTs,p2 , t + LTTs,p1 < t + STTs,p2 . This indicates that under this circumstance, even if passengers travel along path p2 with the 
shortest travel time, they cannot catch train i* at station s. Therefore, if path p1 is feasible, path p2 may not be feasible. 

The above discussion of the two cases shows that if path p2 is feasible, path p1 must be feasible; whereas if path p1 is feasible, path p2 
may not be feasible. Moreover, condition (5) indicates that if the two paths are both feasible, path p1 will be selected instead of path p2 

due to that TCtaxi
od,p1

≤ TCtaxi
od,p2

, TCbus
od,p1

≤ TCbus
od,p2

, TTtaxi
od,p1

≤ TTtaxi
od,p2

, and TTbus
od,p1

≤ TTbus
od,p2

. Thus, path p2 can be removed from the path set 
without loss of optimality. The proof is completed. 

Proof of Principle 3. According to conditions (1) and (2), the reachability of the two paths is the same before the transfer to trains 
ides
od,p1 

and ides
od,p2

. Therefore, the key reason for the different reachability of the two paths lies in whether passengers can catch up with 
trains ides

od,p1 
and ides

od,p2
. Condition (3) (i.e., train ides

od,p2 
precedes train ides

od,p1
) indicates that if passengers can catch up with train ides

od,p2
, then 

they must be able to catch up with train ides
od,p1

; whereas if passengers can catch up with train ides
od,p1

, then they may not be able to catch up 
with train ides

od,p2
. Moreover, condition (4) indicates that if the two paths are both feasible, path p1 will be selected instead of path p2 due 

to that TCtaxi
od,p1

≤ TCtaxi
od,p2

, TCbus
od,p1

≤ TCbus
od,p2

, TTtaxi
od,p1

≤ TTtaxi
od,p2

, and TTbus
od,p1

≤ TTbus
od,p2

. Based on above, path p2 can be removed from the 
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path set without loss of optimality. The proof is completed. 
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