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Abstract

Perfusion-weighted imaging (PWI) is a noninvasive Magnetic Resonance (MR)/Computed
Tomography (CT) technique that assesses various hemodynamic parameters to examine
blood flow in brain regions. These parameters are used in stroke patients to locate the
penumbra or the tissue at risk, which can be salvaged with reperfusion therapies. Certain
artefacts are associated with the imaging pipeline and segmentation methods used in scanner
softwares to estimate perfusion parameters. The focus of this thesis is the development of
an image analysis pipeline for perfusion parameter estimation and segmentation models. We
concentrate on difficult problems such as arterial region segmentation on perfusion weighted
images and tumor segmentation on images with low contrast, in-homogeneous intensity, and
non-smooth edges.

We begin with developing a arterial region segmentation model in the variational frame-
work. We propose a new model in which geometric constraints are incorporated into a
distance function. The modified model employs discrete total variation in the distance term
and locates arterial regions by minimizing the energy of a convex functional, outperform-
ing previous selective segmentation works that typically employ either a cost function or
a clustering-based approach. This enhancement enables our model to effectively select an
arterial region that performs well in identifying tissue at risk. Another work investigates
whether fitting a hemodynamic model to the Arterial input function (AIF) obtained from
arterial segmentation and minimizing the partial volume effect during AIF selection improves
volumetric estimation of core and penumbra in stroke patients.

In the second half of this thesis, we propose an efficient framework for selective segmen-
tation using a new region force term and a geodesic distance penalty based on a discrete
TV formulation. The proposed model is user-independent and allows for precise segmenta-
tion in tumor images and medical images with non-homogeneous, non-smooth, and scraggy
boundary edges. A chapter is dedicated to integrate the variational segmentation method
with deep learning. Despite being extremely popular recently, deep learning techniques are
frequently constrained by the need for sizable sets of labelled data. We demonstrate how la-
bels can be supplemented by using a variational method as a loss function in a unsupervised
training algorithm for brain tumour segmentation.
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Chapter 1

Introduction

1.1 Project Outline

This thesis describes the research findings of a four-year Dual PhD degree programme be-
tween National Tsing Hua University (NTHU), Taiwan and University of Liverpool (UoL),
United Kingdom. Under the joint supervision of Prof. Fan-Pei Gloria Yang (NTHU) and
Prof. Ke Chen (UoL), research was carried out for two years at the Center of Cognition
Sciences, NTHU, and two years at the University of Liverpool in alternate years.

Conventional Computed Tomography (CT) and Magnetic Resonance (MR) imaging are
not sufficiently sensitive to evaluate acute stroke [2]. Perfusion-weighted imaging (PWI) is
a noninvasive MR/CT technique that infers how blood traverses the brain’s vasculature by
assessing various hemodynamic parameters such as cerebral blood volume, cerebral blood
flow, mean transit time, and time to peak [3]. In stroke patients, these parameters are used
to locate the penumbra and core [4, 5, 2, 3, 6]. Penumbra refers to brain regions that are
on the verge of infarction but are still salvageable if reperfused [7, 3, 8]. The infarct core
is the tissue that has already infarcted or will infarct regardless of reperfusion [8]. Risk of
errors in core and penumbra volume estimations leads to misleading conclusions. Part of
the risk stems from using established and more standard software, which employs simple
mathematical models that are incapable of delivering the required accuracy and sensitivity
[2].

The main aim of this project was to exploit novel variational approaches to create an
image analysis pipeline for perfusion weighted imaging to increase our understanding of core
and penumbra evaluation. This may aid in predicting clinical response to early reperfusion.
Alongside, we purposed new segmentation models that could detect tumour boundaries in
brain images when the boundary edges were non-homogeneous, non-smooth, and scraggy.
Furthermore, although not initially part of the project, in the final section of the thesis we
train a deep learning network to perform segmentation tasks on tumour images.
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14 1.2. Perfusion Weighted Imaging

The main objectives / tasks were:

1. Familiarization with state of art techniques and software tools used in stroke imaging.
This included both mathematical literature for image processing as well as patient
data from acquisition in clinics. This was done in year one at NTHU, as discussed in
chapters 1, 2, and 3.

2. Advanced segmentation model development for arterial segmentation on perfusion-
weighted images. This was completed during year two at UoL and is discussed in
chapter four.

3. Current perfusion theory algorithms were improved in order to calculate the core and
penumbra in stroke patients. Proposed image analysis pipeline was validated for ac-
curate patient data. This was completed in third year at NTHU and is discussed in
chapter 5.

4. Advanced segmentation model development for multimodal images. This was done at
UoL and is covered in detail in chapter 6 and chapter 7.

1.2 Perfusion Weighted Imaging

This section is based on authors published paper [9]. In the following section basic principles
associated with Perfusion weighted imaging (PWI) are introduced. A brain perfusion image
is an indicator of brain functioning as these images can be modelled to estimate the amount
of blood taken up in different brain regions [2, 10, 8]. Perfusion data sets are used in the
diagnosis of two types of stroke: ischemic (lack of blood flow) and hemorrhagic (bleeding
in brain vessels) [8]. For general treatment and triaging decisions, Computed Tomography
Perfusion (CTP) or Magnetic Resonance Perfusion images (MRP) are usually used as diag-
nostic tools [11].

The passage of blood to the capillary bed in brain tissue is referred to as cerebral perfu-
sion. Perfusion MRI is a type of MRI sequence that assesses cerebral hemodynamic parame-
ters (Figure 1.1) such as Cerebral Blood Flow (CBF), Mean Transit Time (MTT), Cerebral
Blood Volume (CBV), T-MAX, and Time To Peak (TTP) [2]. Cerebral Blood Flow (CBF)
is the rate of capillary blood flow in brain tissues. Cerebral Blood Volume (CBV) is the
amount of blood in a given amount of brain tissue. Mean Transit Time (MTT) is the
amount of time a given volume of blood spends in the cerebral vessel. T-MAX is the time
interval at which the residue function attains its maximum or when the contrast shows its
highest effect. T-MAX is calculated in terms of seconds. TTP is time interval (seconds)
where a first highest peak is attained by concentration curves. To create perfusion maps of
different hemodynamic parameters like CBF, CBV, and MTT, signal loss in cerebral vessels

14



15 1.2. Perfusion Weighted Imaging

Figure 1.1: Perfusion Images: Input MRI PWI image, corresponding perfusion parameter
maps of Cerebral Blood Volume (CBV), Cerebral Blood Flow (CBF) and T-MAX (Left to
Right). Tmax> 6 is the region known as tissue at risk (Right).

is measured from PWI-MRI scans after the injection of a bolus of an MR paramagnetic con-
trast agent or tracer [5, 8]. These perfusion parameter maps or images are the final output
that clinicals need to decide if the patients require reperfusion therapies. Accurate visual
description of CBF, MTT, and CBV is crucial when evaluating tissue with restricted blood
flow that may still be salvageable with proper treatment and reperfusion therapies [4].

A useful paradigm to select stroke patients for reperfusion therapies involves assessment
of irreversibly damaged infarct core and the extent of hypoperfused tissue at risk or penum-
bra from CTP or MRP brain images. Accurate ischemic core and penumbra volumes are
strong predictors of patient triage, as 87.0 % of patients have a favourable clinical outcome
after endovascular thrombectomy (EVT) [12, 13]. Cerebral reperfusion following an accurate
estimation of the core and penumbra results in the rescue of endangered brain tissues, with
a significant correlation to the patients’ clinical improvement. Tmax > 6 seconds (Figure
1.1) for penumbra and relative CBF ≤ 30 % (a.u) for core are the commonly used thresholds
to determine the optimal core and penumbra volumes [8, 6].

Next, we illustrate how the perfusion parameters are derieved from the perfusion images.
Visually this is represented as a flowchart in Figure 1.2. In the perfusion model PWI scans
are the initial input data. The image intensity function S(t) in these images represents
the signal loss information recorded during the administration of contrast agent injections
to stroke patients [8, 5]. The following relationship is used to convert MR signal intensity
functions S(t) to concentration functions C(t) [5]-

C(t) =
−k
TE

ln(
S(t)

S0

) (1.1)

Here, TE is time to echo of the scanner, So is the baseline signal detected from initial
scans, S(t) is the signal time function and k is a proportionality constant. The baseline
signal is less than the signal S(t) and to prevent negative concentrations , k can be chosen as
a negative constant. To estimate perfusion parameters, prior information in form of Arterial
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16 1.2. Perfusion Weighted Imaging

Figure 1.2: Flowchart of perfusion parameter estimations. EPI refers to Echo planar imaging.

Input function (AIF) from arterial region is essential [8]. The Arterial Input Function (AIF)
is the time-dependent concentration of contrast agent supplied by the artery to the brain
vessels [5, 8, 4, 2]. As AIF, a single or multiple pixels on the brain axial images can be chosen.
The ideal AIF pixels should be in the region of large vessel, with early bolus arrival or early
time-to-peak and also time dependent concentration curve of these AIF pixels should have
maximum peak concentration with a large area [3]. The Tracer-kinetic perfusion theory sug-
gests that tracer concentrations C(t) in all brain regions are determined by the convolution
of residue function R(t) and the arterial input function Ca [5]. Once R(t) is evaluated after
deconvolving the equation 1.2, then the perfusion parameters are evaluated by the following
relations.

C(t) = Ca(t)⊗R(t) (1.2)

CBF = 100.60[max(R(t))] (1.3)

CBV = 100.

∫
Ct(t)dt∫
Ca(t)dt

(1.4)

MTT =
60.CBV

CBF
(1.5)
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17 1.3. Image Processing and Image Segmentation

Figure 1.3: An example demonstrating a typical segmentation. Here, the image has been
partitioned into segments. The right hand figure shows the segments, with the boundary
separating the segments highlighted in Red.

The AIF concentration curve is the central quantity for calculating the perfusion param-
eters required by the clinicians. This implies that selection of AIF will affect the final output
results which the clinical need in the form of brain images representing blood flow or volume
in stroke patients. If an AIF with lower peak concentration and with delayed time to peak is
used then the final results for perfusion parameters i.e blood flow or blood volume may not
be accurate, sharp and specific [8]. This may lead to misleading decisions for the therapies
or treatments to be administered to stroke patients. The clinicals are more concerned about
the final output brain images representing blood flow or blood volume.

1.3 Image Processing and Image Segmentation

A digital image is a two-dimensional (2-D) data matrix Z(x, y), with each element (x,y)
representing a pixel [14, 15]. Each pixel or image element is associated with a finite, dis-
crete numeric representation known as pixel intensity. Binary, gray-scale, or RGB (Red-
Blue-Green) images are examples of digital images. Binary images stored as single bits are
frequently referred to as bi-level or two-level, as each pixel has an intensity value of 1 or
0, representing black and white colour, respectively [14]. Each pixel in a gray-scale image
represents intensity information, with intensity ranging from black (0) at the lowest inten-
sity to white at the highest (255). Each pixel in a coloured image represents the intensity
produced by combining three channels or colours, namely red, green, and blue [16]. In this
thesis, we mainly work with gray-scale brain Magnetic Resonance (MR) and Computerised
Tomography (CT) brain images.

Image processing is the digital manipulation of images using advanced algorithms to ex-
tract useful information from 2-D matrix image data. Its applications range from medicine
to remote sensing, passing through geological processing and entertainment [14]. Image pro-
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18 1.3. Image Processing and Image Segmentation

Figure 1.4: Example of Tumour Segmentation

cessing is further classified based on the type of information to be extracted from the input
image. Detecting objects that are not visible in an image is part of image visualisation [16].
Image segmentation is the process of separating or segmenting a single or multiple objects
in an image [17]. Image sharpening and restoration are processes that are used to create a
clear, noise-free image from an original image [18, 19]. Pattern recognition involves deter-
mining various patterns surrounding the image’s multiple objects [16]. Image registration
involves transforming various scenes or slices of an image data into one coordinate system
[18]. This thesis focuses on Image Segmentation and Image Processing applications to Per-
fusion weighted imaging (PWI), a noninvasive technique used to predict brain regions with
decreased perfusion or blood flow in stroke patients.

In practise, it is possible that the viewer is not interested in all parts of the image, but
only needs to visualise a specific region based on common characteristics. For example,
a clinical might want to extract the tumour-containing region from a brain axial CT/MR
image (Figure 1.4). Image segmentation is the process of dividing an input image into a
number of different regions with similar pixel characteristics in order to identify objects or
boundaries [20, 21, 22, 18]. The input in image segmentation is an image, and the output
is a clear visualisation or image of one or more objects separated from the original input
image (Figure 1.3). Image tumour segmentation is an important medical task [16]. Tumour
segmentation facilitates in diagnosis, surgical planning, and also allows for the analysis of
tumour shape and size prior to surgery, as well as comparison of tumour volume at various
stages of treatment [15, 23].

The complexity of Brain CT/MR and PWI images, as well as the irregular shapes of the
organs to be segmented, in-homogeneous intensities at tumour boundaries, noise levels, and
variable contrasts at tumour edges, make segmentation a difficult task [14, 16]. No single
image segmentation algorithm in the literature performs adequately for all types of images
with variable noise levels. Furthermore, image segmentation performance varies from image
to image. According to recent research, variational techniques are promising models for
solving segmentation problems [22, 23, 24]. Finding the variational model solution involves
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minimising nonlinear functionals. The minimiser, represented by a contour, locates the ob-
ject’s boundaries, separating it from other objects in the image [15].

The aims of the project include using state of the art variational segmentation models
and developing new segmentation models for arterial region and tumour segmentation on
brain images. The initial problem we consider here in chapter 4 is regarding application of
variational segmentation model for the selection of arterial region or Arterial Input Function
(AIF) to detect brain regions with reduced blood flow. Furthermore in chapter 5, we inves-
tigated whether using a deep learning approach for Arterial Input Function (AIF) selection
improves the volumetric/visual estimation of penumbra and core regions. Along with opti-
mal AIF, we studied the substantial influence of the Partial Volume Effect (PVE) induced
by the MR scanner on PWI images in chapter 5. We investigated potential approaches for
reducing volume averaging artefacts in order to achieve adequate results for identifying brain
regions with reduced perfusion in stroke patients.

In chapter 6, we present novel selective segmentation methods for multi-modal image seg-
mentation that are independent of user input. By using a region force term and a geodesic
distance penalty based on a discrete TV formulation, we proposed an efficient framework
for selective segmentation. We used empirical and quantitative evaluations on multi-modal
(MRI, CT) images to compare the performance of our model to that of other state-of-the-art
models. Following that, in chapter 7 we will discuss a deep learning architecture for unsu-
pervised learning that uses information from the proposed variational segmentation model
to detect tumours and lesions with high visual variance, shape difference, and ambiguous
boundaries.

1.4 Chapters of Thesis

The chapters of thesis are organised as -

Chapter 2

This chapter introduces some basic mathematical tools that will be used throughout
the thesis. We will briefly introduce useful preliminary definitions, theorems, and examples
from normed linear spaces, calculus of variations, bounded space of variations, regularisation
for image processing, and level set methods. A discussion of the notion of convexity, dis-
cretisation of partial differential equations (PDE) on regular domains using finite difference
methods, as well as an overview of numerical methods such as additive operator splitting
will be addressed.

Chapter 3
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This chapter provides an overview of the literature’s relevant segmentation models. We
present global variational segmentation models first, followed by selective segmentation mod-
els. To segment the input image, these segmentation models employ variational methods
based on calculus of variation. Each segmentation model includes an energy functional, and
the goal is to find the functional’s minimizer. The minimizer takes the form of a partial
differential equation, and the solution corresponds to the image’s segmented region. The
notions and ideas presented in this chapter will be used in chapter 4 and chapter 6.

Chapter 4

This chapter is based on published paper [3]. The Arterial Input Function (AIF) is re-
quired as an input for core and penumbra estimation in stroke patients. As a result, the AIF
segmentation paradigm has clinical significance. In this chapter, we propose a new technique
for addressing the problem of AIF selection, which is based on a variational segmentation
model that incorporates geometric constraints into a distance function. The modified model
utilizes discrete total variation in the distance term and locates the arterial regions by min-
imising energy of a convex functional. The proposed model was compared to state of the art
methods. The proposed segmentation model predicted AIF curves with a higher amplitude
and earlier time to peak, as well as good performance in identifying the tissue at risk.

Chapter 5

This chapter is based on two papers, one that have been accepted in a conference proceed-
ings and the other is published [6]. In the first part of this chapter, we looked into potential
approaches for minimising the partial volume effect during AIF selection. The spatial reso-
lution used in perfusion MRI and the average size of major arteries make a degree of partial
volume unavoidable during AIF measurement. The proposed scaling method yields more
reasonable absolute perfusion parameter values, as evidenced by higher mean CBF/Tmax
values and CBF/Tmax images. This ensured that both the core and the infract region were
not overlooked.

In second section, we investigate whether fitting a hemodynamic model to the AIF im-
proves the volumetric estimation of core and penumbra in stroke patients in relation to
clinical measures. With Institutional Review Board approval, the study included 160 acute
stroke patients (male = 87, female = 73, median age = 73 years). CTP imaging, NIHSS, and
ASPECTS grading had been performed on the patients. CNN AIF was created by training
a Convolutional Neural Network (CNN) model to fit a raw AIF curve to a Gamma variate
function. The core and penumbra volumes were estimated using CNN AIF.

Chapter 6

This chapter is based on the author’s paper that has been submitted. In this chapter, we
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propose an efficient framework for selective segmentation using a new region force term and
a geodesic distance penalty based on a discrete TV formulation. The proposed segmentation
model is robust and competitive with the current state-of-the-art, according to empirical
evaluations. We compared the performance of our model to other segmentation methods by
evaluating segmentation scores of multi-modal (MRI, CT) segmented images. In compari-
son to previous segmentation models, the proposed model is user-independent and allows for
precise segmentation of objects in medical images with non-homogeneous, non-smooth, and
scraggy boundary edges.

Chapter 7

In this chapter, we combine variational and deep learning approaches for segmentation.
We demonstrate how a variational segmentation solution can be implemented as a loss func-
tion for a neural network. This allows unlabeled data to be integrated into the training set
without the need for intensive ground truth labels. In this chapter, we combine the selective
geodesic variational model with new region force from chapter 6 with a deep learning method
to aid in the segmentation of challenging images.

Finally, In this last section, we propose possible future research directions derived from
the work presented in the thesis.
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Chapter 2

Mathematical Preliminaries

This chapter covers some fundamental mathematical theories, definitions, examples, and the-
orems that will help readers understand the mathematical concepts underlying the segmen-
tation models in chapters 3, 4, and 6. This chapter’s content is typically drawn from linear
algebra or advanced calculus literature. Following basic definitions, this chapter includes a
useful discussion of inverse problems, regularization methods, discretization of partial differ-
ential equations (PDEs) on regular domains, and methods for solving nonlinear systems of
equations.

2.1 Linear Vector Spaces

Definition 2.1.1 (Field). F is a field with two operations addition( +) and multiplication
(.) which satisfy the following axioms -

1. If x, y ∈ F then x+ y ∈ F .

2. If x+ y = y + x for all x, y ∈ F

3. x+ (y + z) = (x+ y) + z for all x, y, z ∈ F

4. Foe every x ∈ F there exists −x ∈ F such that x+ (−x) = 0.

5. If x, y ∈ F then x · y ∈ F .

6. If x.y = y.x for all x, y ∈ F .

7. x.(y.z) = (x.y).z for all x, y, z ∈ F .

8. There exists two elements, 0, 1 ∈ F such that for x ∈ F , x+ 0 = x and x · 1 = x.

9. For every x ̸= 0 ∈ F there exists an element x−1 ∈ F such that x · x−1 = 1.
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23 2.1. Linear Vector Spaces

Example 2.1.1 (Field Examples). The set of complex numbers C , the set of real numbers
R, set of rational numbers Q, rational functions fields, algebraic function fields, algebraic
number fields are some examples of fields.

Definition 2.1.2 (Linear Vector Space). Let F be a field and V be a non-empty set with
two defined operations of addition and scalar multiplication. For u, v ∈ V sum is represented
as u+v, and if α ∈ F , the multiplication of u by α is given by αu. V is a linear vector space
if the following properties hold for any arbitrary u, v, w ∈ V and for all scalars elements
α, β ∈ F .

1. u+ v ∈ V (closure)

2. u+ v = v + u (commutativity)

3. (u+ v) + w = u+ (v + w) (associativity of addition)

4. There exists an element 0 ∈ V such that u + 0 = 0 + u = u (existence of identity
element)

5. For all u ∈ V there exists an element −u ∈ V such that u + (−u) = 0 (existence of
inverse under addition)

6. αu ∈ V (closure on scalar multiplication)

7. α(u+ v) = αu+ αv (distributivity)

8. (α + β)u = αu+ βu (distributivity)

9. α(βu) = (αβ)u (associativity under scalar multiplication)

10. There exists an element 1 ∈ V such that u · 1 = u (existence of identity of scalar
multiplication)

Example 2.1.2 (Linear Vector Space Examples).

• Fmn the set of mn matrices with entries in Field F , set of polynomials with coefficients
in Field F , Rn and Cn for all n ∈ N are examples of linear vector space.

Definition 2.1.3 (Norm). Let V be a vector space over a field F . A real valued function
N : V → R is a norm if all u, v ∈ V follow :

1. N(u) = 0 if u = 0.

2. N(u) > 0 for all u ̸= 0 ∈ V .

3. N(αu) = |α|N(u) for all scalars α.

4. N(u+ v) ≤ N(u) +N(v).
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Definition 2.1.4 (Semi-norm). A semi-norm is defined similarly as a norm, with the dif-
ference that the above properties 1-2 are replaced with-

N(u) ≥ 0, for all u ∈ V.

The norm of a vector u is usually represented by ||u||.

Example 2.1.3 (Examples of norms).

• Euclidean norm of a vector, where x ∈ Rd, defined as an example of norm that gives
the ordinary distance from x to the origin.

||x|| =
√
x21 + x22 + . . .+ x2d.

• Another norm is Infinity norm, defined as:

||x||∞ = max(|x1|, |x2|, . . . , |xd|).

• Another widely used norm is ℓp-norm. x ∈ Rd, p ≥ 1 , then the ℓp-norm of x is defined
as:

||x||p =

(
d∑

i=1

|xi|p
) 1

p

.

• If for a continuous function f on Ω we have
∫
Ω
|f(x)|pdx < ∞, then the Lp norm is

given by:

||f(x)||Lp =
(∫

Ω

|f(x)|pdx
) 1

p
.

If p =∞, then the norm takes the form:

||f(x)||L∞ = sup
x
|f(x)|.

• Total Variation norm.

For u ∈ Ω ⊂ R, Total Variation (TV) norm of u is :

TV (u) =

∫
Ω

|∇u| dΩ.
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Definition 2.1.5 (Normed Linear Space). A vector space V with a norm is called a normed
linear space.

Definition 2.1.6 (Cauchy Sequence and Completeness). Let {vi}∞i=1 be a sequence in a
normed linear space V . {vi}∞i=1 is Cauchy sequence if for every ϵ > 0, there exists an N ∈ N
such that:

||vi − vj|| < ϵ, for all i, j > N.

if Cauchy sequence {vi}∞i=1 ⊂ V converges to an element v ∈ V (i.e. limi→∞ vi = v), then
V is complete space.

Definition 2.1.7 (Banach Space). A complete normed linear space V is a Banach space.

Definition 2.1.8 (Open set). For a normed space V a subset S ⊂ V is said to be open if
for each point u ∈ S there exists δ > 0 such that |u− v| < δ for all v ∈ S.

Definition 2.1.9 (Complement of a set and Closed set). The complement of set A in V is
set of all points x ∈ V which does not belong to A. A subset A ∈ V is closed if its complement
is open.

Definition 2.1.10 (Lipschitz Condition). if for any point x, y ∈ S ⊂ R for some M ∈ R
the real function f : S → R satisfies
|f(x)− f(y)| ≤M |x− y|
then f is said to satisfy the Lipschitz condition in S and f is known as Lipschitz function. R
is set of set of real numbers.

Definition 2.1.11 (Inner Product). V is a vector space defined over a scalar field F . A
function ⟨·, ·⟩ : V × V → F is known as an inner product on V if all arbitrary u, v, w ∈ V
abide the following properties :

1. ⟨u, u⟩ ≥ 0.

2. ⟨u, u⟩ = 0 if and only if u = 0.

3. ⟨u+ v, w⟩ = ⟨u,w⟩+ ⟨v, w⟩.

4. ⟨αu, v⟩ = α⟨u, v⟩, for all α ∈ F .

5. ⟨u, v⟩ = ⟨v, u⟩.

Example 2.1.4 (Examples of Inner Products).

• for x, y ∈ Rd, the Euclidean inner product on Rd is :

⟨x, y⟩ = x1y1 + . . .+ xdyd.
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Figure 2.1: Convex set and non convex set

• C[a, b] is the vector space of continuous real-valued functions defined on the interval
[a, b] . With g, h ∈ C[a, b], inner product on C[a, b] is defined as:

⟨g, h⟩ =
∫ b

a

g(x)h(x) dx.

Definition 2.1.12 (Hilbert Space). If every Cauchy sequence in a vector space V with inner
product ⟨u, v⟩ converges to an element of V , then V is said to be a Hilbert space. A Hilbert
space is always a Banach space, but the inverse is not necessarily true.

Definition 2.1.13 (Convex sets). A set U in a vector space V is defined to be convex if, for
all u, v ∈ U and all θ ∈ [0, 1], the point w defined by:

w = (1− θ)u+ θv

is in U . This means that every point on the line segment connecting u and v should lie in
U . We can see visually in figure 2.1 that the line segment joining two points in a convex set
lies in the set.

Definition 2.1.14 (Convex function). A function f : U → R defined on a convex set U is
a convex function if

f(θu+ (1− θ)v) ≤ f(u) + (1− θ)f(v),
for all u, v ∈ U and θ ∈ [0, 1]. f is strictly convex if this inequality is always strict for u ̸= v.

Example 2.1.5 (Examples of convex functions on R and Rn).
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• The function f(x) = x2 defined on the domain R, exponential function f(x) = eax for
a ∈ R and a > 0 or a < 0, defined on R are strictly convex.

• Another example for convex function are the norm ||x||p =
(∑n

i=1 |xi|p
) 1

p
, for p ≥ 1,

||x||∞ = maxk(|xk|).

Definition 2.1.15 (Dual Space). let V be a normed linear space defined over a scalar field
F , equipped with a norm || · ||. Then the dual space V ′of V , is the set of linear functions
f : V → F . Dual norm || · ||′, on dual space V ′ is:

||f ||′ = sup{|f(u)| : u ∈ V, ||u|| = 1}.

Definition 2.1.16 (Reflexive Space). Let V be a normed linear space, V ′ be its dual space,
and V ′′ be its bidual or dual of dual space. If the map, h : V → V ′′ defined as

h(f) = f(u),

for f ∈ V ′, u ∈ V , is an onto map then the dual space V ′ is said to be Reflexive space.

2.2 Inverse Problems

An inverse problem in science is the process of calculating from a set of observations the
causal factors that produced them. Inverse problems are widely used in a variety of fields,
and are of key importance in the field of imaging problems.

Inverse problems are either well-posed or ill-posed. Hadamard [25] defined the following
criteria for a well-posed problem-

1. a solution exists;

2. solution should be unique;

3. solution’s behaviour changes continuously with the initial conditions.

A solution can usually be calculated using a stable algorithm for well-posed problems.
An inverse problem is said to be ill-posed if any of the three conditions listed above is not
met. The third property is the most frequently violated by an ill-posed problem; imaging
inverse problems frequently disregard the uniqueness property.

In this thesis, we will be concerned with discretizations of linear inverse problems of the
form:

Ax = b
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28 2.2. Inverse Problems

where the vector b represents measured data (typically with noise) and the matrix A repre-
sents the forward mapping. Given A and b, the aim is to compute an approximation of the
unknown vector x. We are mainly interested in the problem which is ill-posed in the sense
that the singular values of A gradually decay and cluster at zero. In chapter 1 section 1.2,
we have the matrix system CaR(t) = C(t), so x is matrix R(t), whereas A is Ca and b is
C(t). When the matrix is ill conditioned, i.e. has a high condition number, the computed
solution is extremely sensitive to errors/noise in b. Regularization of the solution is thus
required to produce stable solutions.

2.2.1 Regularisation

Regularisation is achieved via solving a penalised least squares problem of the form-

arg min x||Ax− b||22 + λ2||x||22

where the penalty term ||x||22 is chosen to reflect the specific type of regularization that is
suited for the problem. We obtain the classical Tikhonov regularization problem as [26].

A different way to achieve regularization is to apply an iterative method directly on the
fit-to-data term and terminate the iterations when semi-convergence is achieved; that is, ter-
minate when a desired approximation is obtained, but before noise starts to show up in the
solution. Using an iterative method in this way is often referred to as iterative regularization.

Singular value decomposition (SVD) [27] is another way of regularising the solution sys-
tem for a matrix system Ax = b . SVD decomposes A as -

A = U
∑

V T =
n∑

i=1

uiσiv
T
i (2.1)

Here, ui and vi are columns of U and V and
∑

is a matrix with diagonal elements as singular
values σ1, σ2...σn. For the matrix system the solution x is computed as-

X = A−1b =
n∑

i=1

uTi b

σi
vi (2.2)

The extremely large errors in the naive solution come from the noisy SVD components asso-
ciated with the smaller singular values. The truncated SVD (TSVD) solution is obtained by
retaining the first k components of the naive solution. The truncation parameter k ensures
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29 2.3. Calculus of Variations

all the noise-dominated SVD coefficients are discarded.

X = A−1b =
k∑

i=1

uTi b

σi
vi (2.3)

2.3 Calculus of Variations

In this section we discuss some well known Theorems and definitions from the literature of
calculus of variations.

Definition 2.3.1 (Total Variation (TV)). Let Ω be a bounded open subset of Rn. The total
variation of a function u : Ω→ R is defined by

TV (u) =

∫
Ω

|∇u(x)| dx, (2.4)

for x ∈ Ω.

Total Variation is a widely used regulariser for many image processing problems [28]. In
chapter 3, 4, and 6 we will discuss Total variation as a useful regulariser for image segmen-
tation problems.

Definition 2.3.2 (Bounded Variation). Let Ω be a bounded open subset of Rn. Bounded
variation is defined as:

BV (Ω) =
{
u ∈ L1(Ω) : TV (u) <∞

}
Definition 2.3.3 (Gateaux derivative). Let J : V → R be a function defined on a Banach
space V . The Gateaux derivative of J is defined as:

δJ(u; v) = lim
ϵ→0

J(u+ ϵv)− J(u)
ϵ

(2.5)

for u, v ∈ V . If the limit exists for all v ∈ V then we say that J is Gateaux differentiable at
u.

2.3.1 Variation of a Functional

The Euler-Lagrange equation of a general functional is introduced here. Taking the first
variation, this aims to identify the function for which the given functional is stationary.
Consider a general functional on a normed linear space Ω , J (u) : Ω→ R:

J (u) =
∫
Ω

L(x, u(x,∇u(x)) dx, (2.6)

29



30 2.3. Calculus of Variations

The first variation means solving the following minimisation problem:

min
u
J (u). (2.7)

To solve the above minimisation problem, the necessary condition is that the for all test
functions Gateaux derivative of J vanishes:

δJ = δJ(u; v) = lim
ϵ→0

J(u+ ϵv)− J(u)
ϵ

= 0, (2.8)

The quantity δJ is the first variation of the functional J (u).

Theorem 2.3.1 (Gauss’s Divergence Theorem). Let F be a continuously differentiable vector
field in a bounded, closed domain Ω ⊂ Rd, whose boundary ∂Ω is smooth. Then, according
to the divergence theorem :

∫
Ω

(∇ · F ) dx =

∫
∂Ω

F · n ds, (2.9)

here, (∇ · F ) is the divergence of the vector field F and n is the unit outward normal vector
of ∂Ω.

Definition 2.3.4 (Local minimiser). Let F : Ω → R be a real valued functional defined on
normed space Ω. F (u) has a local minimiser u∗ if ϵ exist such that

F (u∗) ≤ F (u), for all u ∈ Nϵ(u
∗), (2.10)

here, Nϵ(u
∗) = {u ∈ Ω : ||u− u∗|| < ϵ} is a small neighbourhood around u∗.

Definition 2.3.5 (Global minimiser). Let J : Ω→ R be a real valued function defined on a
normed space Ω. J(u) has a global minimiser u∗ if:

J(u∗) ≤ J(u), for all u ∈ Ω. (2.11)

Definition 2.3.6 (Stationary point). Let J : Ω→ R be a real valued functional on a normed
space Ω. If J is Gateaux differentiable at u ∈ Ω for all test functions v ∈ Ω, then u is a
stationary point of J if δJ(u; v) = 0.

Definition 2.3.7 (Euler-Lagrange equation). The equation δJ(u; v) = 0 is called the Euler-
Lagrange equation for the minimisation problem minu J (u).

Theorem 2.3.2 (Necessary condition for a local minimiser). For a Gateaux differentiable
functional J : Ω→ R, if u is a local minimiser of J(u), then u is a stationary point of J(u).
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31 2.4. Discretisation of Partial Differential Equations

Example 2.3.1 (Euler-Lagrange equation for TV). Total Variation (TV) from Definition
is:

TV (u) =

∫
Ω

|∇u(x)| dx,

defined on a domain Ω ⊂ Rd. The Gateaux derivative of the Total Variation is:

δTV (u; v) = lim
ϵ→0

1

ϵ

∫
Ω

(
|∇(u+ ϵv)| − |∇u|

)
dx

= lim
ϵ→0

1

ϵ

∫
Ω

(
|∇u|+ ϵ

∇u · ∇v
|∇u|

+O(ϵ2)− |∇u|
)
dx

=

∫
Ω

∇u · ∇v
|∇u|

dx

Using integration and Gauss’s theorem :

∫
Ω

∇u · ∇v
|∇u|

dx =

∫
∂Ω

∇u
|∇u|

· n ds−
∫
Ω

∇ ·
( ∇u
|∇u|

)
v dx,

here, ∂Ω is the boundary of Ω and n is the unit outward normal of ∂Ω. For δTV (u; v) = 0
we are left with: ∫

∂Ω

∇u
|∇u|

· n ds−
∫
Ω

∇ ·
( ∇u
|∇u|

)
v dx = 0.

This should be true for all test functions v ∈ Ω. So, we can derive the following Euler-
Lagrange equation:

∇ ·
( ∇u(x)
|∇u(x)|

)
= 0, for x ∈ Ω,

with Neumann boundary conditions ∇u · n = ∂u
∂n

= 0.

2.4 Discretisation of Partial Differential Equations

In imaging problems, Euler-Lagrange equation is a partial differential equation (PDE). The
solution of the PDE should be the minimiser. Analytic solutions are not possible in the
vast majority of practical imaging problems, so we must solve the PDE by obtaining an
approximation of the solution using numerical methods.
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32 2.4. Discretisation of Partial Differential Equations

Definition 2.4.1 (Laplace operator). The Laplace operator is defined to be the divergence
of the gradient of a function. For a scalar function f defined for x ∈ Rd, the Laplacian
operator ∆ of f is:

∆f(x) = ∂2x1
f + . . .+ ∂2xd

f

It is usually denoted as ∆, ∇2,∇ · ∇ or div · ∇.

Many times in imaging problems, we must discretise and numerically solve a PDE. There
are various methods available to discretise PDE problems, such as the finite element method,
finite difference method, and finite volume method.

Considering two dimensional, Ω = [0, 1]× [0, 1]. In order to discretise on this domain we
divide the domain into grid points by using (n + 1) × (m + 1) Cartesian grids with width
hx = 1

n
and hy =

1
m

in the x and y directions respectively. This results in n×m grid points,
and the grid point (i, j) is at the position :

(xi, yj) =
(2i− 1

2
hx,

2j − 1

2
hy
)
, for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

2.4.1 Finite Difference Schemes

If we consider the Taylor expansions on a discrete grid, then we can approximate continuous
functions u of a PDE by

u(xi + hx, yj) = u(xi, yj) + hx
∂u

∂x
(xi, yj) +O(h2),

and

u(xi − hx, yj) = u(xi, yj)− hx
∂u

∂x
(xi, yj) +O(h2),

To approximate the partial derivative δu
δx
, δu

δy
at a particular point (xi, yj) we can use either

of the following-

• First order forward difference:

∂u

∂x
(xi, yj) ≈ ∇+

x (ui,j) =
u(xi + hx, yj)− u(xi, yj)

hx
.

• First order backward difference:

∂u

∂x
(xi, yj) ≈ ∇−

x (ui,j) =
u(xi, yj)− u(xi − hx, yj)

hx
.
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33 2.4. Discretisation of Partial Differential Equations

• First order central difference:

∂u

∂x
(xi, yj) ≈ ∇c

x(ui,j) =
u(xi + hx, yj)− u(xi − hx, yj)

2hx
.

Similarly, the second order approximation to ∂2u
∂x2 (xi, yj) can be done by:

∆c
x(ui,j) = ∇−

x (∇+
x (ui,j)) =

u(xi + hx, yj)− 2u(xi, yj) + u(xi − hx, yj)
h2x

.

2.4.2 Boundary Conditions

Approximations of the points that appear outside the discretised grid, in this case the point
un+1,j is done from the boundary conditions. The two most common types of boundary
conditions are-

Dirichlet boundary conditions specify the value of the function at the boundary, i.e.
L∂Ωu(x) = u(x) = g(x) for x ∈ ∂Ω. To calculate partial derivative, the point un+1,j is
replaced by the value of g at the boundary i.e.:

∂u

∂x
(xn, yj) ≈ ∇+

x (ui,j) =
gn,j − un,j

hx
.

Neumann boundary conditions specify the value of the derivative of a function at the
boundary, i.e. L∂Ωu(x) = ∇u(x) · n = g(x) for x ∈ ∂Ω, where n is normal to the boundary
∂Ω. For partial derivative again:

∂u

∂x
(xn, yj) ≈ ∇+

x (ui,j) =
un+1,j − un,j

hx
= gn,j,

Example 2.4.1 (Discrete Poisson equation). Consider the Poisson equation

∆u(x) = f(x), for x ∈ Ω, L∂Ωu(x) = g(x), for x ∈ ∂Ω,

for some operator L∂Ω as the boundary conditions. For domain Ω = [0, 1]×[0, 1] we discretise
the grid into an n×n grid ( hx = hy = h = 1

n
). We can discretise using finite differences as

follows:

(∆hu)i,j =
ui+1,j + ui−1,j − 4ui,j + ui,j+1 + ui,j−1

h2
.

Each point requires 5 values of u, so the discretisation is called a 5−point difference operator
scheme. For the right boundary (i = n), if we impose zero-Dirichlet boundary conditions
u(x) = 0 for x ∈ ∂Ω, then:

(∆hu)n,j =
un−1,j − 4un,j + un,j+1 + un,j−1

h2
.
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34 2.5. Numerical Methods

2.5 Numerical Methods

This section provides an overview of some basic numerical iterative methods that are widely
used in the literature to solve systems of linear and nonlinear equations. Once an initial value
is set, the iterative methods provide more and more accurate solutions with each iteration.
When some stopping condition is met, the sequence of approximate solutions is terminated.
First, we discuss methods to solve linear system of equations.

2.5.1 Numerical methods to solve Linear Systems of Equations

The linear system of equations is represented as -

Ax = b, (2.12)

here, A is an n× n matrix, x is an n× 1 unknown vector to be obtained as a solution, and
b is an n× 1 vector, i.e. :

A =


a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n
...

...
. . .

...
an,1 an,2 . . . an,n

 , x =


x1
x2
...
xn

 , b =


b1
b2
...
bn

 .

If the matrix A is invertible (i.e. determinant of A is non-zero) then x can be calculated as:

x = A−1b.

For large systems, this is known as a direct method, and it is computationally expensive.

Jacobi Method

The Jacobi method [29] is one of the more simpler iterative methods to solve equations of
the form Ax = b. If we discretize the matrix system into elements, i = 1, . . . , n, we get:

bi =
n∑

j=1

ai,jxj = ai,ixi +
n∑

j=1,j ̸=i

ai,jxj.

xi can be known in the form:

xi =
1

ai,i

(
bi −

n∑
j=1,j ̸=i

ai,jxj

)
.
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35 2.5. Numerical Methods

In Jacobi method, the new elements of the sequence for the k th iteration are produced from
values of the (k − 1)th iteration.

x
(k)
i =

1

ai,i

(
bi −

n∑
j=1,j ̸=i

ai,jx
(k−1)
j

)
. (2.13)

Update of x
(k)
i requires prior values of x(k−1). In each subsequent iteration, each element is

updated independently of the others. Jacobi method can also be written in matrix form.
Matrix A is decomposed into its diagonal part D, lower triangular part L and upper trian-
gular part U as a linear sum i.e. A = D + L+ U where

D =


a1,1 0 . . . 0
0 a2,2 . . . 0
...

...
. . .

...
0 0 . . . an,n

 ,

L =



0 0 0 . . . 0 0 0
a2,1 0 0 . . . 0 0 0
a3,1 a3,2 0 . . . 0 0 0
...

...
. . .

...
...

...
an−2,1 an−2,2 an−2,3 0 0 0
an−1,1 an−1,2 an−1,3 . . . an−1,n−2 0 0
an,1 an,2 an,3 . . . an,n−2 an,n−1 0


,

and

U =



0 a1,2 a1,3 . . . a1,n−2 a1,n−1 a1,n
0 0 a2,3 . . . a2,n−2 a2,n−1 a2,n
0 0 0 a3,n−2 a3,n−1 a3,n
...

...
. . .

...
...

...
0 0 0 0 an−2,n−1 an−2,n

0 0 0 . . . 0 0 an−1,n

0 0 0 . . . 0 0 0


.

Then, system Ax = b can be rewritten as -

b = (D + L+ U)x,

x can be achieved by-

x = D−1
(
b− (L+ U)x),
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36 2.5. Numerical Methods

Gauss-Seidel Method

The Jacobi method was further improved into a new method known as Gauss-Seidel method
[30]. This method uses newer approximations {x(k)j }i−1

j=1 to update x
(k)
i , whereas old approx-

imations {x(k−1)
j }i−1

j=1, were used in the Jacobi method. Because these new approximations
are more accurate than the old ones, an exact solution can be found faster.

The Gauss-Seidel iterations are written as:

x
(k)
i =

1

ai,i

(
bi −

i−1∑
j=1

ai,jx
(k)
j −

n∑
j=i+1

ai,jx
(k−1)
j

)
, (2.14)

For matrix form, element-wise update is written as:

ai,ix
(k)
i +

i−1∑
j=1

ai,jx
(k)
j = bi −

n∑
j=i+1

ai,jx
(k)
j .

The above system in matrix form is:

(D + L)x(k) = b− Ux(k−1),

The k th update is given as:

x(k) = −(D + L)−1Ux(k−1) + (D + L)−1b

= TGSx
(k−1) + cGS, (2.15)

where TGS = −(D + L)−1U and cGS = (D + L)−1b.

2.5.2 Numerical methods to solve Non-Linear Systems of Equa-
tions

Usually variational imaging problems lead to non-linear systems. In this subsection, we dis-
cuss some commonly widely used non-linear solvers in image processing problems, such as
Gradient Descent method [31], Additive Operator Splitting (AOS) [32], Primal Dual Gradi-
ent Method (PGDM) [33], and the Alternating Direction Method of Multipliers [34].

Gradient Descent Method

If F : Ω ⊂ Rd → R is a continuously differentiable functional with a minimiser u∗. Descent
methods have an initial solution u(0), which is further updated as a more accurate solution as:

u(k) = u(k−1) − α(k−1)s(k−1) k = 1, 2, . . . ,
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37 2.5. Numerical Methods

here α(k−1) > 0 (a scalar), is the step length and −s(k−1) is the search direction. Step length
may change at each iteration. A widely used descent method is the gradient descent method
[31] or the steepest descent method. In this method the search direction is opposite to
∇F (u(k−1)). The rationale behind this is that F decreases most quickly in this direction.
Gradient descent scheme is:

u(k) = u(k−1) − α(k−1)∇F
(
u(k−1))

)
k = 1, 2, . . . .

The main feature of a descent method is that each iteration reduces the function value. i.e.

F (u(k)) ≤ F (u(k−1)),

α(k−1) is chosen sufficiently small. In time marching, step length α(k−1) is usually fixed as
some time-step α(k−1) = τ . Descent scheme is :

u(k) = u(k−1) − τ∇F
(
u(k−1))

)
k = 1, 2, . . . .

Even though they are more straightforward, time marching schemes are constrained as they
are only stable for low values of τ , possibly requiring a greater number of iterations to reach
convergence to a consistent solution. A semi-implicit scheme, rather than an explicit scheme,
could be used to reduce the stability constraints on τ .

Additive Operator Splitting

The semi-implicit, Additive Operator Splitting (AOS) scheme [32] was created to solve PDEs
with the following m-dimensional anisotropic diffusion terms:

∂u

∂t
= ∇ ·

(
G(u(x))∇u(x)

)
+ f(x),

= ∂x1

(
G(u(k−1))∂x1u

(k)
)
+ . . .+ ∂xm

(
G(u(k−1))∂xmu

(k)
)
+ f(x) (2.16)

in [0, T ]× Ω, with Ω ⊂ Rm, and with initial and zero Neumann boundary conditions:

u(0, ·) = u0,
∂u

∂n
= 0 on ∂Ω,

here, n is the normal to the boundary ∂Ω. Here, f is the reaction term and G is the diffusivity
function. Explicit, implicit or semi-implicit schemes can be used to discretise the equation

37



38 2.5. Numerical Methods

(2.16). While semi-implicit and implicit schemes are invariably stable, explicit schemes heav-
ily rely on selecting a small time step. Because the implicit scheme is more difficult to solve,
semi-implicit schemes are preferred. Discretising (2.16) with a semi-implicit scheme leads to:

u(k) − u(k−1)

τ
=

m∑
ℓ

Aℓ

(
u(k−1)

)
u(k) + f, k ≥ 1

where τ is the time-step and Aℓ is a discretised version of ∂xℓ

(
G(u(k−1))∂xℓ

u(k)
)
. I being the

identity matrix, this scheme can be rewritten as :

u(k) =
(
I − τ

m∑
ℓ

Aℓ(u
(k−1))

)−1

(u(k−1) + τf),

final AOS scheme can be modified as:

u(k) =
1

m

m∑
ℓ

(
I − τmAℓ(u

(k−1))
)−1

(u(k−1) + τf) (2.17)

The key feature of the AOS scheme is that it treats each direction independently, allowing
us to solve a set of m one-dimensional problems and average the results to obtain the new
iterate. If we consider the two-dimensional case (m = 2). Matrices Aℓ denote the diffusivity
across the xℓ axis. For m = 2, the matrices are:

(
A1(u

(k−1))u(k)
)
i,j

=
(
∂x1G(u

(k−1))∂x1u
(k)
)
i,j

=
1

h1

(
G(u(k−1))i+ 1

2
,j(∂x1u

(k))i+ 1
2
,j −G(u(k−1))i− 1

2
,j(∂x1u

(k))i− 1
2
,j

)

=
1

h1

((G(u(k−1))i+1,j +G(u(k−1))i,j
2

)(u(k)i+1,j − u
(k)
i,j

h1

)
−
(G(u(k−1))i,j +G(u(k−1))i−1,j

2

)(u(k)i,j − u
(k)
i−1,j

h1

))

=
1

2h21

((
G(u(k−1))i+1,j +G(u(k−1))i,j

)
u
(k)
i+1,j

+
(
G(u(k−1))i,j +G(u(k−1))i−1,j

)
u
(k)
i−1,j

−
(
G(u(k−1))i+1,j +G(u(k−1))i−1,j + 2G(u(k−1))i,j

)
u
(k)
i,j

)
,
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39 2.5. Numerical Methods

and similarly:(
A2(u

(k−1))u(k)
)
i,j

=
1

2h22

((
G(u(k−1))i,j+1 +G(u(k−1))i,j

)
u
(k)
i,j+1

+
(
G(u(k−1))i,j +G(u(k−1))i,j−1

)
u
(k)
i,j−1

−
(
G(u(k−1))i,j+1 +G(u(k−1))i,j−1 + 2G(u(k−1))i,j

)
u
(k)
i,j

)
.

Here, h1 and h2 are step lengths. The matrices Aℓ are tridiagonal matrices, so Thomas
algorithm can be used to implement the system (2.17). Instead of the O(N3) operations
needed by conventional Gaussian elimination methods (where N is the total number of dis-
cretized grid points), the Thomas algorithm [32] enables the solution to be reached in O(N)
operations.

Next, we outline the criteria that an iterative scheme should satisfy in order to be a dis-
crete scale-space. The advantages of satisfying these conditions is a guarantee of convergence
and stability. Without loss of generality, we consider a general discretisation of (2.16) as:

u(0) = ω, u(k) = Q(u(k−1))u(k−1), ∀k ∈ N, (2.18)

We treat a discretised image as a vector u0 ∈ RN and denote index set by J = {1, 2, . . . , N}.
The discrete scheme (2.18) forms a non-linear scale-space if Q = (qi,j) satisfies the following
criteria:

• Continuity in its argument:
Q ∈ C(RN ,RN×N).

• Symmetry:
qi,j = qj,i, ∀i, j ∈ J.

• Unit row sum: ∑
j∈J

qi,j = 1, ∀i ∈ J.

• Non-negativity:
qi,j ≥ 0, ∀i, j ∈ J.

• Strictly positive diagonal:
qi,i > 0, ∀i ∈ J.

• Irreducibility: For all i, j ∈ J , there exist k0, . . . , kr ∈ J with k0 = i, and kr = j such
that qkp,kp+1 ̸= 0 for p = 0, . . . , r − 1.
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40 2.5. Numerical Methods

As shown in a past study by Weickert et al. [32] a discrete scale-space satisfies the following
key properties:

• Average grey level invariance: The intensity value µ = 1
N

∑
j∈J ωj is not affected by

the discrete diffusion filter, i.e.:

1

N

∑
j∈J

u
(k)
j = µ, ∀k ∈ N.

• Extremum principle:

min
j∈J

ωj ≤ u
(k)
i ≤ max

j∈J
ωj, ∀i ∈ J, ∀k ∈ N.

• Convergence to a constant steady-state:

lim
k→∞

u
(k)
j = µ, ∀j ∈ J.

Furthermore, because the scheme is unconditionally stable, there are no restrictions on the
size of the time step, demonstrating a significant advantage of AOS over explicit and semi-
implicit time marching schemes.

Theorem 2.5.1. The AOS scheme (2.17) with m = 2 corresponding to the finite difference
equation:

(Fu)(k−1) :=
1

τ
u(k) − 1

2τ

(
I − 2τA1

(
u(k−1)

))−1(
u(k−1) + τf

)
− 1

2τ

(
I − 2τA2

(
u(k−1)

))−1(
u(k−1) + τf

)
,

for k = 1, 2, . . . is an O(τ + h2) approximation, where h1 = h2 = h. Therefore, the scheme
is consistent with PDE (2.16).

Alternating Direction Method of Multipliers

Popular iterative approach for solving convex optimisation problems is the Alternating Di-
rection Method of Multipliers (ADMM) approach [34]. If we consider the problem:

min
u,v

f(u) + g(v), subject to Au+Bv = c, (2.19)

where u ∈ Rd1 ,v ∈ Rd2 , A ∈ Rp×d1 , B ∈ Rp×d2 and c ∈ Rp. ADMM’s main objective is to
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use partial updates for each of the variables u and v. We define the augmented Lagrangian
to incorporate the constraint into the formulation:

Lρ(u,v,x) = f(u) + g(v) + xT (Au+Bv − c) +
ρ

2
||Au+Bv − c||22, (2.20)

here, x is the dual variable and ρ > 0 is a penalty parameter controlling the constraint. The
ADMM update that solves (2.20) is given by :

u(k) = argminu Lρ(u,v
(k−1),x(k−1)),

v(k) = argminv Lρ(u
(k),v,x(k−1)),

x(k) = x(k−1) + ρ(Au(k) +Bv(k) − c).

(2.21)

Instead of solving the u and v together, splitting them into two separate sub-problems
can greatly reduce the implementation and computation demand required for each itera-
tion. The alternating minimisation in ADMM can be thought of as a single Gauss-Seidel
pass over u and v. Another advantage of ADMM with simpler implementation is that it can
have convergence guarantees under modest f and g assumptions, see for more details [34, 35].

Primal Dual Gradient methods

This approach usually does not require expensive minimization sub-steps like in the ADMM.
The Primal Dual Gradient method (PDHG) [33, 36] is a popular iterative method to solve
convex optimisation problems. Consider the saddle point problem:

min
x∈X

max
y∈Y

f(x) + ytAx− g(y) (2.22)

Here, X, Y , are convex sets A ∈ RM×N is a matrix, and X ⊂ RN , Y ⊂ RM are convex sets.
Primal Dual Hybrid Gradient method is listed in Algorithm 1. The forward-backward

algorithm is used to update the primal x and dual parameter y, which are updated using a
combination of forward and backward steps. In steps (2-3), the method updates x to lower
the energy 2.22 by first performing a gradient descent step with respect to the inner product
term in Equation 2.22, and then performing a ”backward” or proximal step involving f . By
first marching up the gradient of the inner product term with respect to y and then taking
a step backward with respect to g, steps (5–6) increase the energy 2.22.
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Algorithm 1 Basic PDHG

Require: : xo ∈ RN , yo ∈ RM , σk, τk > 0

1. While not converged do.

2. xk+1 = xk − τkATyk .

3. xk+1 = arg minx∈Xf(x) +
1

2τk
||x− x̂k+1||2

4. x̂ = xk+1 + (xk+1 − xk).
5. ŷk+1 = yk + σ.kAŷk+1.

6. yk+1 = argminy∈Y g(y) +
1

2σk
||y − ŷk+1||2

7. EndWhile k = k + 1
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Chapter 3

Review of Segmentation Models

3.1 Introduction

Image segmentation partitions an image into segments in which each pixel is assigned to an
object [16]. It is used in a wide range of practical applications, such as medical image anal-
ysis, face recognition and detection, satellite image analysis, video surveillance, computer
vision for autonomous vehicles and many more [14, 15].

In the past decades, variational methods based on variational calculus have proven to be
effective [37, 38]. Depending on the application, models are devised to use both region (in-
tensity) and edge-based information from the image [38, 39, 37]. Variational models can be
formulated to achieve either multiple object segmentation’s or selective single object segmen-
tation. The following sections introduce segmentation models that segment the input image
using variational methods based on calculus of variation. Each segmentation model includes
an energy functional, and the goal is to find the functional’s minimizer. The minimizer of the
energy functional is achieved using calculus of variations. The minimizer takes the form of
a partial differential equation, and the solution corresponds to the image’s segmented region.

Potts model, which is defined in a discrete framework for multi-phase image segmentation
[40], is the origin of many variational methods. Many previous segmentation models adopted
the Potts model in some way [41]. Blake-Zisserman model [42] proposed that smooth images
can be reconstructed on discrete domains . Both the Potts model and the Blake-Zisserman
model have undergone numerous approximations due to the difficult task of solving the en-
ergy functional of these models [40, 42]. The Mumford and Shah model [37] was an early
segmentation model that found the piecewise-constant approximation of the image and the
edge that represents discontinuity. Following a discussion of the Mumford and Shah model,
we will discuss the Chan-Vese model [38], which is a two-dimensional piecewise constant
variant of the Mumford and Shah model, in the following section of global segmentation
models. Prior to these segmentation models, we will discuss about the energy functionals
that these segmentation models use.
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44 3.1. Introduction

In this thesis, we are concerned mostly with selective segmentation problems. After fo-
cusing on global segmentation formulations, we move on to selective segmentation models.
Edge detector function in selective models constructs an active contour to locate the bound-
ary of an object using intensity information [43]. The first studies to use this function were
snake models proposed by Kass et al. [44] and the Geodesic Active Contours model proposed
by Caselles et al [43]. We will also review the formulations of recent selective models like
- Chen Badshah model [21], Rada Chen model [45], Spencer Chen model [46], and convex
selective models [24]. Then, we review a selective segmentation model known as the convex
geodesic model [15], which employs additional regularisation terms to achieve better selective
segmentation.

3.1.1 Variational Segmentation approach

The functional F (u) is made up of two parts. The first is the fitting term, and the second is
the regularisation term. A fitting function is f in the following functional. The fitting term’s
function is to define the correspondence between the objective function and the data. J is
the regularisation term or a term that imposes regularity. The regularisation term penalises
the objective function for over-fitting or for making the optimal solution unique.

F (u) =

∫
Ω

J(u)dx+ α

∫
Ω

f(u)dx (3.1)

Such energy functionals are minimised using variational methods. By increasing the parame-
ter α the fitting term becomes more dominant, resulting in a solution that closely represents
the average data. Reducing the parameter α would make the regularisation term more
prominent, resulting in a smoother or regular solution. The solution is generally in the form-

u∗ = arg minuϵSF (u) (3.2)

where u∗ is an optimiser of the functional F (u), defined on an appropriate space S. If F is
continuous and differentiable, the first variation or the minimizer of the energy functional is
computed using the Euler-Lagrange equation.

δF

δu
= 0 (3.3)
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3.2 Global Segmentation

Here, in this section we will detail some previous global segmentation and selective segmen-
tation models. However, Roberts convex geodesic model is more relevant as the models we
introduce in chapter 4 and chapter 6 have roots in the Roberts convex model.

3.2.1 Mumford and Shah Model

The Mumford-Shah segmentation model [37] involves a functional whose minimizer serves
as a criterion for segmenting an input image into sub-regions. It is concerned with the piece-
wise smooth approximation of an input image u0(x) by a pair (u,C), where u represents the
desired segmented region with sharp boundary C. Ω is a bounded domain, and u0(x) is a
bounded measurable function defined on Ω. Then the Mumford-Shah functional is defined as-

F (MS)(u,C) = µ.Length(C) + λ

∫
Ω

|u0(x)− u(x)|2dx+
∫
Ω/C

||∇u(x)||2dx (3.4)

A fitting term (|u0(x) − u(x)|2) and two regularity terms (µ.Length(C),∇u(x)) are in-
cluded in the above functional. The fitting term imposes smoothness on u, while the other
terms impose regularity on C. The solution image u is in form of smooth regions with sharp
boundaries C and is obtained by minimising the functional. The functional penalises the
distance between the model and the input image, the lack of smoothness of the model within
the sub-regions, and the length of the sub-region boundaries, as represented by the three
terms. A solution for (u,C) can be found by minimising the functional 3.4. Because of the
undefined domain caused by non-regularity of C, computing the minimiser of this functional
is difficult.

Many attempts have been made to approximate the Mumford- Shah functional in order
to find the minimiser. Ambrosio and Tortorelli [47] proposed that the functional can be
approximated by a sequence of elliptic variational problems with a phase field energy term.
Level set methods [22], as described in the following subsection, have also been widely used.
Pock et al. [48] proposed a primal-dual scheme for using the dual domain to find the min-
imiser of Mumford-Shah model. Cai et al. [49] proposed another convex approximation to
the Mumford-Shah model.

Mumford and Shah also discuss the restriction of F to piecewise-constant functions u.
In other words if we consider the input image to be made up of piecewise constant regions
k with u = ck on each open set k defined on domain Ωk, where the values ck are simply the
average values of u0 in each region k. The piecewise-constant functional takes the form -
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46 3.2. Global Segmentation

F (MS)(u,C) = µ.Length(C) + λ

∫
Ωk

|u0(x)− ck|2dx (3.5)

If images are to be partitioned into two components, foreground and background, then
the curve C has two components, c1 and c2. This is known as the two-phase constant
Mumford-Shah functional, and the functional takes the following form -

F (MS)(C, c1, c2) = µ.Length(C) + λ

∫
Ω1

|u0(x)− c1|2dx+ λ

∫
Ω2

|u0(x)− c2|2dx (3.6)

Next, we need to find the minimizer for this functional. We will discuss details of com-
puting minimiser of this functional by using level set methods in relation to the Chan-Vese
model in next subsection.

3.2.2 Chan-Vese Model

The Chan vese Functional [38] is the two dimensional piece wise constant variant of the
Mumford and Shah model and takes the form-

F (CV )(C, c1, c2) = µ.Length(C) + ν.Area(insideC) + λ1

∫
Ω1

|u0(x, y)− c1|2dxdy

+λ2

∫
Ω2

|u0(x, y)− c2|2dxdy
(3.7)

Here the foreground Ω1 is the required region to be segmented and Ω2 =
Ω
Ω1
is background.

λ1,λ2, µ, ν are fixed non negative parameters and c1 and c2 are average intensities of input
image uo inside Ω1 and Ω2 . Level set method is utilised for minimization of an energy
based-functional F . To use level set functions, it is assumed that the image u0 is formed
by two regions of approximately piece-wise-constant intensities, of distinct values ui0 and u

o
0.

The object to be detected is represented by the region with the value ui0. Within a closed
curve C, boundary of object is denoted by C0, c1 and c2 are average intensities inside and
outside the curve C. The following is the fitting term:

F1(C) + F2(C) =

∫
insideC

|u0(x, y)− c1|2dxdy +
∫
outsideC

|u0(x, y)− c2|2dxdy (3.8)

In this simple case, it is obvious that C0, which is the boundary of the object is the
minimizer of the fitting term.
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47 3.2. Global Segmentation

infCF1(C) + F2(C) = 0 = F1(C0) + F2(C0) (3.9)

It is to be noted that, if the curve is outside the object then F1(C) > 0 and F2(C) ≈ 0.
If the curve C is inside the object, then F1(C) ≈ 0 but F2(C) > 0 . If the curve is both
inside and outside the object, then F1(C) > 0 and F2(C) > 0. Finally, we can see here
that the fitting energy is minimized when C = C0. The above fitting term along with two
regularization terms i.e. the length of curve and area inside C are formulated as Chan- Vase
functional [38]-

F (c1, c2, C) = µ.Length(C) + νArea(inside(C)) + λ1

∫
insideC

|u0(x, y)− c1|2dxdy

+λ2

∫
outsideC

|u0(x, y)− c2|2dxdy
(3.10)

here µ ≥ 0, ν ≥ 0, λ1 > 0, λ2 > 0
The minimization problem is the following

infc1,c2,CF (c1, c2, C) (3.11)

This C can be initialised with parameters and then updated with each iteration. However,
changes in boundary topology (splitting or merging of the boundary) are far too complex
to be encoded by parametrisation. A straightforward solution is to embed the boundary in
higher dimensions. This is accomplished using the level set method, and instead of tracking
a parametrized C, we now track the zero level set of a function ϕ. We are now concentrating
on determining the function ϕ, and the object boundary C is obtained indirectly from the
information of ϕ.

3.2.3 Level set Method

Here, C is represented in terms of the zero level set of Lipschitz function ϕ : Ω → R such
that- 

C = (x, y) ∈ Ω : ϕ(x, y) = 0

inside(C) = w = (x, y) ∈ Ω : ϕ(x, y) > 0

outside(C) = Ω
w̄
= (x, y) ∈ Ω : ϕ(x, y) < 0

(3.12)

By using level set formulation the unknown variable C is replaced by the unknown vari-
able ϕ. Heaviside function H and Dirac measure δ0 are defined as-

H(z) =

{
1, ifz ≥ 0

0, ifz < 0
(3.13)
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48 3.2. Global Segmentation

Figure 3.1: Plot of the function ϕ(x) and the interface C ={(x, y) ϵ Ω : ϕ(x, y) = 0}.

δ0(z) =
d

dz
H(z) (3.14)

By utilising the Heaviside and the Dirac function, the length term and area term in F as
well as the fitting terms take the following form-

Length(ϕ = 0) =

∫
Ω

|∇H(ϕ(x, y))|dxdy =

∫
Ω

δ0(ϕ(x, y))|∇ϕ(x, y)|dxdy (3.15)

Area(ϕ ≥ 0) =

∫
Ω

H(ϕ(x, y))dxdy (3.16)∫
ϕ>0

|u0(x, y)− c1|2dxdy =

∫
Ω

|u0(x, y)− c1|2H(ϕ(x, y))dxdy (3.17)∫
ϕ<0

|u0(x, y)− c2|2dxdy =

∫
Ω

|u0(x, y)− c2|2(1−H(ϕ(x, y)))dxdy (3.18)

Then energy can be rewritten as -

F (c1, c2, ϕ) = µ.

∫
Ω

δ0(ϕ|∇ϕ|dxdy + ν.

∫
Ω

H(ϕ)dxdy + λ1

∫
Ω

|u0(x, y)− c1|2H(ϕ)dxdy

+λ2

∫
Ω

|u0(x, y)− c2|2(1−H(ϕ)dxdy

(3.19)
The objective is to find the minimizer of the above functional. Keeping ϕ fixed and

minimizing F with respect to C1 gives us -

∂F

∂c1
= 0 (3.20)
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we get

2λ1

∫
Ω

|u0(x, y)− c1|H(ϕ(x, y))dxdy = 0 (3.21)∫
Ω

u0(x, y)H(ϕ(x, y))dxdy =

∫
Ω

c1H(ϕ(x, y))dxdy (3.22)

c1(ϕ) =

∫
Ω
u0(x, y)H(ϕ(x, y))dxdy∫

Ω
H(ϕ(x, y))dxdy

(3.23)

similarly minimizing with respect to c2

c2(ϕ) =

∫
Ω
u0(x, y)(1−H(ϕ(x, y)))dxdy∫

Ω
(1−H(ϕ(x, y)))dxdy

(3.24)

For Euler–Lagrange equation of the unknown function , slightly regularized versions of
the functions H and δ0 are used and are denoted by Hϵ and δϵ. Regularised functions are
visually demonstrated in Figure 3.2. Associated regularized functional is formulated as -

Fϵ(c1, c2, ϕ) = µ.

∫
Ω

δϵ(ϕ)|∇ϕ|dxdy + ν.

∫
Ω

Hϵ(ϕ)dxdy + λ1

∫
Ω

|u0(x, y)− c1|2Hϵ(ϕ)dxdy

+λ2

∫
Ω

|u0(x, y)− c2|2(1−Hϵ(ϕ))dxdy

(3.25)

Figure 3.2: Regularised Heaviside and Delta function.(a) Hϵ(ϕ) (b) δϵ (ϕ) , ϵ = 0.1

Keeping c1 and c2 fixed and minimizing with respect to ϕ i.e. δF
δϕ
, we deduce the asso-

ciated Euler–Lagrange equation for ϕ. To minimize F we need to find Eulers equation, so
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minimizing with respect to ϕ-

limh→o
dFCV

ϵ (ϕ+ hψ, c1, c2)

dh
= 0 (3.26)

Here ψ is any test function.

d

dh

∫
Ω

µ(δϵ(ϕ+ hψ)|∇(ϕ+ hψ)|dxdy|h=0 +
d

dh
ν

∫
Ω

Hϵ(ϕ+ hψ)dxdy|h=0+

d

dh

∫
Ω

(λ1|u0(x, y)− c1|2Hϵ(ϕ+ hψ) + λ2|u0(x, y)− c2|2(1−Hϵ(ϕ+ hψ)))|h=0 = 0

(3.27)

Computing derivatives we have -

µ

∫
Ω

δ
′

ϵ(ϕ)|∇(ϕ)|ψdxdy + µ

∫
Ω

δϵ(ϕ)
∇ϕ
|∇(ϕ)|

.∇ψdxdy +
∫
Ω

δϵ(ϕ)(ν + λ1|u0(x, y)− c1|2

−λ2|u0(x, y)− c2|2)ψdxdy = 0
(3.28)

By using Greens theorem we have -∫
Ω

v∇.w̄dx = −
∫
Ω

∇v.w̄dx+
∫
dΩ

vw̄.n̄ds (3.29)

Taking ψ = v and δϵ(ϕ)∇ϕ
|∇ϕ| = w̄ . The above equation becomes-∫

Ω

δϵ(ϕ)
∇ϕ∇ψ
|∇ϕ|

dxdy = −
∫
Ω

ψ∇.(δϵ(ϕ)∇ϕ
|∇ϕ|

)dxdy +

∫
dΩ

ψ
δϵ(ϕ)

|∇ϕ|
δϕ

δn̄
ds (3.30)

using above and we have ∇ϕ.n⃗ = δϕ
δn∫

Ω

µδ
′

ϵ(ϕ)|∇ϕ|ψdxdy −
∫
Ω

µδϵ(ϕ)∇.(
∇ϕ
|∇ϕ|

)ψdxdy −
∫
Ω

µδ
′

ϵ(ϕ)∇ϕ.
∇ϕ
|∇ϕ|

ψdxdy

+

∫
dΩ

µψ
δϵ(ϕ)

|∇ϕ|
δϕ

δn̄
ds+

∫
Ω

δϵ(ϕ)(ν + λ1(u0(x, y)− c1)2 − λ2(u0(x, y)− c2)2)ψdxdy = 0

(3.31)
Now we have the following Eular-Lagrange equation for ϕ.

δϵ(ϕ)
[
µ∇.( ∇ϕ

|∇ϕ|
)− ν − λ1(u0 − c1)2 + λ2(u0 − c2)2] = 0,

δϵ(ϕ)

|∇ϕ|
δϕ

δn̄
= 0 on δΩ (3.32)

The approximation of above equation can be done by introducing an artificial time step t
and using the gradient descent method. In this way we get the following evolution equation
which represents the minimizer of the functional in terms of partial differential equation.
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∂ϕ

∂t
= δϵ(ϕ)

[
µdiv(

∇ϕ
|∇ϕ|

)− ν − λ1(u0 − c1)2 + λ2(u0 − c2)2] = 0 in Ω

ϕ(0, x, y) = ϕ0(x, y)in Ω

δϵ(ϕ)

|∇ϕ|
δϕ

δn̄
= 0 on δΩ

(3.33)

In the next section we discuss the scheme used to solve the above equation to get the
solution ϕ. However, as we must find |∇H(ϕ)|, but H(ϕ) is discontinuous at zero, so we
regularise H(ϕ) at the discontinuity by setting it as-

H2,ϵ(z) =
1

2
(1 +

2

π
arctan(

z

ϵ
)) (3.34)

Figure 3.3: Regularised Heaviside Function

Here with H2,ϵ the algorithm has tendency to compute a global minimizer. To discretize
the equation in ϕ, we use finite difference implicit scheme. h is the space step, ∆t is the time
step and (xi, yi) = (ih, jh) are the grid points for 1 ≤ i, and j ≤M . Let ϕn

i,j = ϕ(n∆t, xi, yi)
be an approximation of ϕ(t, x, y) with ϕ0 = ϕ0. We now apply the finite differences method
-

∆x
−ϕi,j = ϕi,j − ϕi−1,j

∆x
+ϕi,j = ϕi+1,j − ϕi,j

∆y
−ϕi,j = ϕi,j − ϕi,j−1

∆y
+ϕi,j = ϕi,j+1 − ϕi,j

(3.35)

With information of ϕ0, we first compute c1(ϕ
n) and c2(ϕ

n) by (3.26) and (3.27). By dis-
cretization in ϕ and using definitions of forward and central difference we obtain solution
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Figure 3.4: Example of multiple object segmentation done by chan-vase model.(a) input
(Left) (b) segmented image (right)

ϕn+1 from-

ϕn+1
i,i − ϕn

i,i

∆t
= δh(ϕ

n
i,j)
[ u
h2

∆x
−.(

∆x
+ϕ

n
i,j√

(
(∆x

+ϕn
i,j)

2)

(h2)
+

(ϕn
i,j+1−ϕn

i,j−1)
2

(2h)2

)

+
u

h2
∆y

−.(
∆y

+ϕ
n
i,j√

(
(∆y

+ϕn
i,j)

2)

(h2)
+

(ϕn
i+1,j−ϕn

i−1,j)
2

(2h)2

)− v − λ1(u0,i,j − c1(ϕn))2 + λ2(u0,i,j − c2(ϕn))2
]

(3.36)
Figure 3.4 is an experimental result using the Chan Vase model. The input coins image is
segmented with the objects being recognized as coins.

3.2.4 Convex version of Chan Vese Model

The Chan-Vese method is non-convex with respect to ϕ as the optimization problem is non-
convex, which makes it prone to locate local minima. That is, a different initialisation of ϕ
may yield a significantly different result, as shown in Figure 3.6 (a)-(d). As a result, some
research has been conducted into convex relaxation methods. The global minimiser of such
convex models, which is preferred in practise, is independent of initialization.

The non-convex Chan-Vese model was reformulated to an equivalent convex model by
Chan, Esdoglu, and Nikolova in order to find a global minimiser [50]. The authors’ key
observation is that the Chan-Vese algorithm employs a non compactly supported, smooth
approximation Hϵ for H. The authors proposed that the stationary solution of Chan-Vase
functional [38, 51] is similar to the stationary solution ϕ of the following equation:

δϕ

δt
= ∇. ∇ϕ

|∇ϕ|
− (λ1(u0(x, y)− c1)2 − λ2(u0(x, y)− c2)2) (3.37)
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The above scheme is the gradient descent of the following energy functional-∫
Ω

|∇ϕ|dx+
∫
Ω

(λ1(u0(x, y)− c1)2 − λ2(u0(x, y)− c2)2)ϕdx (3.38)

To find the minimiser of the above energy, Chan, Esdoglu, and Nikolova [50] proposed a
simple way by restricting the minimization of ϕ to [0, 1].

Theorem 3.2.1. (Theorem 2 in [50]) For any given c1, c2 ∈ R, a global minimiser of the
Chan-Vese model (3.33) can be found by solving out the following convex minimisation prob-
lem:

min0≤u(x)≤1

∫
Ω

|∇u(x)|dx+
∫
Ω

λ((u0(x, y)− c1)2 − (u0(x, y)− c2)2)u(x)dxdy (3.39)

and then setting Ω1 = {x : u(x) ≥ 0.5}
The authors proposed the following unconstrained minimization to balance the drawback

of imposing the constraint u ∈ [0, 1] in Theorem 3.2.1.

Theorem 3.2.2. (Claim 1 from [50]) Let r(x) ∈ L∞(Ω). Then the convex, constrained
minimisation problem in Theorem 3.2.1 has the same set of minimisers as the following
convex, unconstrained minimisation problem:

minu(x)

∫
Ω

|∇u(x)|dx+
∫
Ω

λ((u0 − c1)2 − (u0 − c2)2)u(x)dx+ α

∫
Ω

νdx (3.40)

where ν(u) := max{0, 2|u− 1
2
| − 1} is an exact penalty function, provided that, α > λ

2
||(u0−

c1)
2 − (u0 − c2)2||L∞(Ω)

The addition of exact penalty term ν(u) forces u in the range [0, 1]. It would be more
practical to use the regularised version as in Figure 3.5 we can observe that ν(u) is non-
differentiable at 0 and 1. In Figure 3.5 we show different regularised versions of νϵ(u).

νϵ(u) = Hϵ(
√
(2u− 1)2 + ϵ− 1)[

√
(2u− 1)2 + ϵ− 1] (3.41)
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Figure 3.5: Penalty function ν(u) and the regularised version νϵ(u) with different values for
ϵ.

by using the above convex energy functional we can see in figure 3.6, initialisation of so-
lution is not a concern for convex framework as initialisations provide the same segmentation
output if we utilise Theorem 3.2.2.
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Figure 3.6: Segmentation comparison of convex and non convex Chan-Vese model. In the
non convex relaxed setting, different initialisations (a), (c) provide the different segmentation
results (b), (d). In the convex relaxed setting, different initialisations (e), (g) provide the
same segmentation results (f), (h) .

3.3 Selective Segmentation

Selective segmentation models are used when a user needs to segment only one object from
an image that contains multiple objects or regions. Selective segmentation has numerous
applications in medical imaging since clinicals require the segmentation of a tumour area or
a specific organ from MR or CT scans [14] . We have a domain Ω and an input image z(x, y).
The selective segmentation models require user input in the form of a marker set M , with
these points being close to the object to be segmented. The Energy functional locates the τ
contour that is close to the points in M . Here, we review methods of selective segmentation
in the literature, and discuss current challenges.

55



56 3.3. Selective Segmentation

3.3.1 Geodesic Active Contours

Geodesic Active contour (GAC) model is one of the early selective segmentation model
purposed by Caselles et al. [43] where the energy functional is -

FGAC =

∫
Ω

g(|∇z(x, y)|)dxdy (3.42)

The term g is edge detector function and Ω is image domain. The commonly used edge
detector function is -

g(s) =
1

1 + βs2
(3.43)

The idea behind the edge detector function was that g is small near object boundaries and
is controlled by the parameter β. While providing segmentation results, this model faces a
number of challenges. First, the model is based on the gradient of the image, images with
noise are unsuitable for this method. Secondly, if the edge detector function is not negligible
at an edge, the contour will transcend the object’s boundary, generating an incorrect seg-
mentation result. Generally, s = |∇(Gσ ⊗ z)|, where Gσ is a Gaussian filter. Gaussian filter
is convolved with image z, which blurs it. This convolution blurs the image’s noisy pixels
and ensures that noise does not distract from the image’s edges.

Figure 3.7: (a) original image (b) segmentation result for no Gaussian filtering of input
image. (b) Edge detector segmentation result for varying σ.

3.3.2 Gout et al.

Certain improvements were done to the Geodesic contour model. Gout et al. [39] used an
additional distance term D in the integral, where the integrand is Dg(|∇z|) . The distance
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term being the penalty on distance from set M (with k points) allows the contour to be
near M . However, the model struggles with when object edges are blurred in case of blurred
images.

FGout =

∫
Ω

Dg(|∇z(x, y)|)dxdy (3.44)

We can rewrite in terms of level set function as -

FGout(ϕ) = µ

∫
Ω

D(x, y)g(|∇z(x, y)|)|∇Hϵ(ϕ)|dx (3.45)

The commonly used Distance term is the following-

D(x) = Πk
i=1(1− exp(

|x− xi|2

2σ2
))∀xi ∈M (3.46)

Here, σ is the tuning parameter which tunes the distance map. However, even with the
additional distance penalty the model struggles with when object edges are blurred in case
of blurred images.

3.3.3 Badshah and Chen

The Gout et al. model [39] can generate a effective selective segmentation performance on
images with no noise, whereas in the presence of background noise, the edge detector g is
susceptible to picking false edges. To improve Gout model, Badshah and Chen [20] added
intensity fitting terms from the Chan-Vese model.

FBC(ϕ, c1, c2) = µ

∫
τ

Dg(|∇z|)|∇Hϵ(ϕ)|dx+λ1
∫
Ω

(z−c1)2Hϵ(ϕ)dx+λ2

∫
Ω

(z−c2)2(1−Hϵ(ϕ))dx

(3.47)

When compared to Gout et al. model, the addition of the Chan-Vese fitting terms allows
the Badshah-Chen model to more robustly segment noisy images, since it is less dependent
on edge detection.

3.3.4 Rada and Chen

When the intended object is close to or connected with another object of similar inten-
sity strength, the Badshah-Chen model is vulnerable to failure. Rada and Chen [52, 45]
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proposed the following model to address this flaw by imposing size constraints on the object.

FRC(ϕ, c1, c2) = µ

∫
τ

Dg(|∇z|)|∇Hϵ(ϕ)|dx+ λ1

∫
Ω

(z − c1)2Hϵ(ϕ)dx

+λ2

∫
Ω

(z − c2)2(1−Hϵ(ϕ))dx+ γ[

∫
Ω

(Hϵ(ϕ)dx− A1)
2 +

∫
Ω

((1−Hϵ(ϕ))dx− A2)
2]

(3.48)

where A1 and A2 are the areas of the target and the background respectively. A1 is the
polygon area formed by joining the points of M and A2 = |Ω| − A1. The selective fitting
term uses no local information from set M , as a result segmentation result can be separated
over the domain in small fragments, whose sum area shall be identical to the area fitting
term used in the model.

3.3.5 Spencer and Chen Model

Spencer and Chen [24] separated the distance function from the edge detector term and used
it as a single penalty term. The distance term DE used was normalised euclidean distance
from marker set M .

minϕ,c1,c2 [F(u, c1, c2)] = µ

∫
Ω

g(|∇z|)|∇Hϵ(ϕ)|dx+ λ1

∫
Ω

[(z − c1)2Hϵ(ϕ)]dx

+λ2

∫
Ω

[(z − c2)2(1−Hϵ(ϕ))]dx+ θ

∫
Ω

DE(x, y)Hϵ(ϕ)dx

(3.49)

The Idea to use of DE is to stop the contour from evolving far away from M by restricting
H(ϕ) ∈ Ω

M
to be close to zero. The selection of parameter θ is important for appropriate

segmentation result. If θ too large, the segmentation result will be identical to marker set
M . If θ is small, multiple objects are segmented. This model might get stuck between local
minimisers. Spencer and Chen used the ideas discussed in 3.2.4 to reformulate a segmentation
solution into a convex minimisation problem. The convex relaxed model [24] uses indicator
function u as a replacement for the level set function ϕ.
Given, a two dimensional gray scale image z(x, y) : Ω ← R, the Spencer-Chen Convex
Geodesic model is-

minu,c1,c2 [F(u, c1, c2)] = µ

∫
Ω

g(|∇z(x, y)|)|∇u|dΩ +

∫
Ω

[λ1(z(x, y)− c1)2 − λ2(z(x, y)− c2)2]udΩ

+θ

∫
Ω

DE(x, y)udΩ + α

∫
Ω

νϵ(u)dΩ

(3.50)
Where µ, λ1, λ2, θ, and α are positive constants and u is the selective segmentation solution.
c1 and c2 are the average image intensities of the foreground and background, respectively.
The edge detector function is denoted by g, and the Euclidean distance term is denoted by
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DE. The additional penalty term νϵ = max{0, 2|u− 1
2
| − 1} confines the minimizer to be in

the range [0, 1]. Moreover, additional requirement for u ∈ [0, 1] is to select parameter α as:

α >
1

2
||[λ1(z − c1)2 − λ2(z − c2)2] + θDE|| (3.51)

The Euclidean distance term is extremely sensitive to the marker set chosen. The marker
points must be evenly distributed in the region of interest to be segmented for satisfactory
segmentation. Even in the segmentation region, the Euclidean penalty is always present,
and it can be very high if there are few marker points. In the following subsection, we dis-
cuss a more robust geodesic distance penalty, which allows us to have small or zero distance
penalties at the edges and within the segmentation region.

3.3.6 Convex Liu et.al

Recent convex models [23] also considered applying weighting to the data fitting terms of
Mumford-Shah convex variant models. The convex Liu et. al [23] functional is -

FLiu(u) = µ

∫
Ω

|∇u|dx+ µ2

∫
Ω

|∇u|2dx+ λ

∫
Ω

w2(x, y)|z − u|2dx (3.52)

here, µ, µ2, λ are non negative and w requires information of Distance term i.e. w(x, y) =
1 − D(x, y)g|∇z|. The effect of this weight means that, close to edges and marker points
(where ω2 is large) the fidelity term plays an important role and important features are
preserved, whereas away from edges and marker points (where ω2 is small) smoothing plays
a more prominent role, smoothing out unwanted objects.

3.3.7 Roberts Chen Convex Geodesic Selective Model

In chapter 6 of this thesis, we will detail a selective segmentation model that has its roots
in Roberts Chen convex geodesic model [15]. Here, we discuss the geodesic model in detail
[15].

We discuss a more robust geodesic distance penalty, which allows us to have small or zero
distance penalties at the edges and within the segmentation region as replacement for non
zero euclidean distance. The Energy functional of convex geodesic selective model differs
from initial segmentation models as it includes intensity fitting terms from the Chan-Vese
model and a distance penalty term which uses geodesic distance from the marker set M in
the distance penalty term rather than the Euclidean distance. The model involves a con-
vex functional, which is to be minimized to achieve segmentation. The minimizer of this
functional specifies the criteria to segment selective objects. The minimizer of the following
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functional is in the form of partial differential equation. The next subsection reviews the
methods used to solve the obtained partial differential equation in order to get the final
segmentation.

Let z(x, y) represent the input image, defined on a image domain Ω ⊂ R2 . u represents
the level set of contour . c1, c2 are average intensities of z inside and outside u. The functional
is in the following form-

F (u, c1, c2) = µ

∫
Ω

g(|∇z|)|∇u|dΩ +

∫
Ω

[λ1(z − c1)2 − λ2(z − c2)2]udΩ + θ

∫
Ω

DM(x, y)udΩ

+α

∫
Ω

νϵ(u)dΩ

(3.53)
θ,µ,λ1, λ2 are non negative parameters. The term g(|∇z|) is the edge detector which is
g(s) = 1/1 + βs2 where β is tuning parameter. The last term is an exact penalty term due
to convex formulation of the functional, where v(u)= max{0, 2|u− 1

2
| − 1}. This is done to

achieve unconstrained minimization as this encourages the minimizer to be in range [0,1].
Next we review the calculation of Geodesic term DM .

The geodesic distance from the marker set M is given by DM(x, y) = 0 for (x, y) ∈ M

and DM(x, y) =
D0

M (x,y)

||D0
M ||L∞

for (x, y) ̸∈ M , where D0
M(x, y) is the solution of the following

PDE:

|∇D0
M(x, y)| = f(x, y), D0

M(x0, y0) = 0, (x0, y0) ∈M. (3.54)

If f(x, y) = 1 then the distance penalty DM(x, y) is simply the normalised Euclidean dis-
tance. For selective image segmentation, we want small gradients in homogeneous areas of
the image and large gradients at edges. So the f is set as -

f(x, y) = ϵD + βG|∇z(x, y)|2 (3.55)

Setting f in the above form ensures that in areas where |∇z(x, y)| = 0, the distance
function increases by some small amount ϵD. Here, image z(x, y) is scaled to [0, 1] and at
edges, geodesic distance increases as |∇z(x, y)| is large. The constants of f are used as βG
= 1000 and ϵD = 10−3.

To improve noise robustness and qualitative nature of segmentation results, author con-
sidered an-isotropic TV denoising. The new f is formulated as -

f1(x, y) = ϵD + βG|∇Sk(z(x, y))|2 (3.56)

Here Sk represents the gauss-siedel iterative scheme done to update z in order to do anisotropic
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Figure 3.8: Comparison of distance constraints. (a) Input image with a marker point (b)
Euclidean distance constraint (c) Geodesic distance constraint

denoising. To compensate the distance penalty for objects that are far from marker set with
low penalty the author modified f as-

f2(x, y) = ϵD + βG|∇Sk(z(x, y))|2 + νDE(x, y) (3.57)

If ν increases, the distance function resembles the Euclidean distance DE more. Authors
used ν = 10−1 [15] as it adds a reasonable penalty to pixels far from the marker set. If
there are blurred edges between objects in an image, the geodesic distance will not increase
significantly at this edge. Therefore, the final segmentation result will include unwanted
objects and will not result in the required accurate segmentation results. To improvise the
model uses anti markers. Anti-markers are the markers or set of points which indicate the
objects that we do not want to segment, i.e. the opposite of marker points, denoted by AM .
Geodesic distance map from the set AM is denoted by DAM(x, y) . Pixels near to the set
AM are penalized as the following-

DAM(x, y) =
exp(−ᾱD̄GAM(x, y))− exp(−ᾱ)

1− exp(−ᾱ)
(3.58)

Here ᾱ = 200 and DGAM(x, y) is normalised geodesic distance from set AM . The reformu-
lated model is-

minu,c1,c2F(u, c1, c2) = µ

∫
Ω

g(|∇z(x, y)|)|∇u|dΩ +

∫
Ω

[λ1(z(x, y)− c1)2 − λ2(z(x, y)− c2)2]udΩ

+θ

∫
Ω

DG(x, y)udΩ + α

∫
Ω

νϵ(u)dΩ
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(3.59)

where DG(x, y) = (DM (x,y)+DAM (x,y))
2

is the geodesic distance from marker set M . This is
average of distance map of marker and antimarker set. DM is to be calculated using f = f2.
Like the Chan Vase model we use calculus of variation and solve above equation with respect
to c1 and c2 with u fixed. This leads to-

c1(u) =

∫
Ω
u.z(x, y))dΩ∫

Ω
udΩ

(3.60)

c2(u) =

∫
Ω
(1− u).z(x, y))dΩ∫

Ω
(1− u)dΩ

(3.61)

Using calculus of variation and solving above equation with respect to u with fixed c1 and
c2 leads to Euler’s equation -

µ∇(g(|∇z(x, y)|) ∇u
|∇u|ϵ2

)− [λ1(z(x, y)− c1)2 − λ2(z(x, y)− c2)2]− θDG(x, y)− αν
′

ϵ(u) = 0

(3.62)
We also have Neumann boundary conditions δu

δn
= 0 on δΩ where n is the outward unit

normal vector. Now we discuss the numerical scheme to solve the above PDE.

3.3.8 Additive Operator Splitting

The AOS scheme [32, 53] allows equal treatment of all coordinate axes and is stable for big
time steps. The scheme presents the semi-implicit algorithm [32, 53] based on a discrete
non-linear diffusion scale-space framework. This scheme is applied to the m-dimensional
diffusion equation and it takes the following form:

δu

δt
= µ∇(G(u)∇u)− f (3.63)

δu

δt
=
∑ δ

δxj
(Gj(u)

δu

δxj
)− f (3.64)

initial and boundary conditions are - u(0, .) = u0 and δu
δn

= 0 on δΩ. Here, g is diffusivity
function and f is reaction term. We consider discrete times tk = kτ , and m =2. After
discretisation -

uk+1 =
1

2

2∑
l=1

(I − 2µτAl(u
k))−1(uk + τf) (3.65)
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τ is the time step. Matrices A1(u) and A2(u) are obtained as following-

(A1(u
k)uk+1)i,j =

(Gi+ 1
2
,j)

h2x
uk+1
i+1,j +

(Gi− 1
2
,j)

h2x
uk+1
i−1,j +

(Gi+ 1
2
,j +Gi− 1

2
,j)

h2x
uk+1
i,j (3.66)

(A2(u
k)uk+1)i,j =

(Gi,j+ 1
2
)

h2y
uk+1
i,j+1 +

(Gi,j− 1
2
,)

h2y
uk+1
i,j−1 +

(Gi,j+ 1
2
+Gi,j− 1

2
)

h2y
uk+1
i,j (3.67)

For the half points in G, average of the surrounding pixels is considered. The AOS method
described here assumes f does not depend on u; however, in the case of convex geodesic
model, it depends on ν which has jumps around 0 and 1, so the algorithm has stability
issues. The major part is to extract a linear part out of the non linearity in f = f(u).
Using Taylor expansion of νϵ(u) around u = 0 and u = 1 and grouping the terms into
the constant and linear components in u, respectively, νϵ(u) = a0(ϵ) + b0(ϵ)u + O(u2) and
νϵ(u) = a1(ϵ)+ b1(ϵ)u+O(u2). It actually turns out that b0 = b1 and denote the linear term
as b. This allows to approximate a change in v

′
ϵ(u) as b.δu. Next, interval is defined where

v
′
ϵ(u) jumps as -

Iξ = [0− ξ, 0 + ξ] ∪ [1− ξ, 1 + ξ] (3.68)

and linear function is -

b̄ki,j = {b, uki,j ∈ Iξ} (3.69)

Using these, we can now offset the change in ν
′
ϵ(u

k) by changing the formulation to-

δu

δt
= µ∇(G(u)∇u)− αb̄ku+ [αb̄ku− f ] (3.70)

this can be written in AOS form as-

uk+1 = uk + τµ∇(G(uk)∇uk+1)− ταb̄kuk+1 + [ταb̄kuk − fk] (3.71)

This can be reformulated as following-

uk+1 =
1

2

2∑
l=1

(I + B̄k − 2µτAl(u
k))−1((I + B̄k)uk + τfk) (3.72)

here B̄k = diag(ταb̄k). This scheme does not satisfy the discrete scale-space conditions of
Weickert [53] (which guarantee convergence of the scheme). It does not satisfy all of them.
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In particular, the matrix I + B̄k − 2µτAl(u
k) does not have unit row sum and is not sym-

metrical. The authors [15] adapted the scheme to the equivalent which is -

uk+1 =
1

2

2∑
l=1

(I − 2µτ(I + B̄k)−1Al(u
k))−1(uk + τ(I + B̄k)−1fk) (3.73)

where the matrix Q2 = (I − 2µτ(I + B̄k)−1Al(u
k)) does have unit row sum. Convergence is

achieved in past literature for any small value of ξ [53]. Figure 3.9 demonstrates a selective
segmentation solution achieved on abdominal image by utilising AOS in Robert Chen Convex
Geodesic model.

Figure 3.9: (a) Input abdominal image with marker set (b) segmented image (c) zoomed
segmentation result on a abdominal image.
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Chapter 4

Arterial Input Function Segmentation
based on a Contour Geodesic model
for Tissue at Risk identification in
Ischemic Stroke

Deconvolution of concentration -time curves with the Arterial Input Function (AIF) is nec-
essary to identify regions with decreased blood flow in Ischemic stroke patients. This has
been discussed in chapter 1 section 1.3 (1.2). The AIF is a key reference input curve used in
the deconvolution model to obtain quantitative CBF, CBV and perfusion-diffusion mismatch
estimation. Selection of the AIF curve influences the result of the deconvolution operation
and this makes optimal AIF segmentation very important. The optimal AIF is segmented
in form of multiple pixels (blue dots) in arterial region as in Figure 4.1. The corresponding
AIF curve of the selected AIF pixels should have a baseline followed by a peak along with a
regular recirculation part (Figure 4.1).

Figure 4.1: A)The AIF curve. B) selected arterial region on brain image.
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In this chapter, we propose a segmentation model which via minimizing an energy, locates
the arterial regions more accurately. After segmenting the arterial region, matrix analysis
is utilised to find the voxel with maximum peak height within the contour to overcome the
problem associated with shallow or low peak height AIF selection. This chapter is based on
the author’s published paper [3].

4.1 Introduction

There has been plenty of progress in recent years regarding how and where to measure AIF
[54, 55]. Although the AIF should, in principle, be measured from inside an artery (or at
least from a voxel that contains primarily arterial contributions), but many studies in past
often considered measuring the AIF from the region outside or from a region in the vicinity
of an artery [54, 56, 57, 55]. Also, from a practical point of view, due to the coarse spatial
resolution of DSC- (the typical voxel size is 2x2x5 mm3) it is difficult to measure the signal
from inside a small artery[58]. Usually in MR-PWI studies suitable AIF voxels are chosen by
inspecting the peak shape characteristics (e.g., arrival time, height, width, etc.) in a region
in and around arteries. The name given to this input function is generally Arterial Input
Function (AIF) [54, 59].

To improve reliability, quality, and reproducibility of the AIF selection several auto-
matic and semiautomatic methods have been proposed [60, 58, 61, 62]. The majority of the
toolboxes preinstalled in MR scanners use either manual, clustering or arterial likelihood
methods for AIF estimation. For manual AIF selection, a trained clinical operator based
on his or her experience and judgement selects a small number of pixels containing region
of one of the principal arterial vessels [63]. Manual location of AIF is not preferred as this
reduces the procedure reproducibility [58]. Low spatial resolution of MR-PWI data also
makes manual selection difficult on contrast-MRI-PWI images [61, 60].

Automatic methods were developed to overcome the shortcomings of the manual AIF se-
lection procedure [60, 63, 62]. The clustering based method uses the middle cerebral artery
(MCA) as a elliptical region of interest (ROI) and then utilizes a recursive cluster analysis
to select the arterial voxels [60]. Inefficient AIF selection usually occurs in the cases where
the elliptical ROI does not segment the MCA precisely and some of the arterial voxels are
left on the boundary or in the vicinity of the elliptical marker.

Some softwares use arterial likelihood methods so as to select the potential AIF to match
the arterial features [61]. This includes minimizing the bolus arrival time, peak width and
maximize the peak height. AIF detection algorithm searches for locations or voxels with sig-
nals of above-average amplitude or height along with below-average width and early bolus-
arrival time using a cost function. Final AIF locations are selected in a region with the
highest sum of the clustered values of cost function. Incorrect or flawed selection in this
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method arises from the weighting factors used as the penalty factor used for peak height is
much lower than the other penalty factors used in calculation of cost function. This results
in selection of an AIF voxel with a shallow or low peak height. Apart from these methods
several studies use different approaches, like a local AIF extraction method was introduced
to replace the global AIF [59, 64, 65]. Despite of the presence of multiple studies to select
AIF, in this study we mainly focus to use to a model to select a AIF with higher amplitude
and early time to peak.

To overcome the limitation of past methods, we propose an improved convex segmenta-
tion model. The PWI images are usually of low contrast which makes detection of edges
difficult [54]. To solve this problem we use a new idea of discrete Total Variation (TV) in
a convex geodesic model. This TV helps in locating the boundary of arterial regions to
separate homogeneous regions or intensity jumps [66]. The modified segmentation model
via minimizing an energy can locate the arterial regions more accurately. After segmenting
the arterial region, we use matrix analysis to find the voxel with maximum peak height
within the contour to overcome the problem associated with shallow or low peak height AIF
selection. Furthermore, to demonstrate better accuracy and arterial features obtained by
the proposed model, a statistical comparison based on PWI dataset of 15 patients is made
between the present method and the previous methods.

4.2 Methods

In the proposed method, we focus on the selective segmentation or specifying the location
of the potential voxels which could be used as AIF in the vicinity of an artery. Initially a
contour representing a region of interest (ROI) is drawn in the surrounding of the arterial
location (Figure 4.2). For this purpose, convex based geodesic selective model is used to
draw the contour on the middle slice of the brain axial images [67]. The advantage with a
contour-based selective segmentation is exclusion of the CSF region as the contour model
segments the ROI region based on homogeneous intensity values. After the segmentation of
the ROI, the matrix analysis is used to find the potential voxel with maximum peak height
within the contour (Figure 4.2). This ensures that the location or pixel with maximum
height within the contour is selected as the potential AIF.

4.2.1 Proposed contour based AIF Segmentation method

The energy functional of convex geodesic selective model differs from initial segmentation
models as it includes intensity fitting terms as well as distance penalty term which uses
geodesic distance from the marker set rather than the Euclidean distance [67, 68, 69]. Here,
we utilise a Total Variation function in the distance term of the model for denoising the
image (cf. [66] for more information on the Discrete TV utilised in the model). The contour
model involves a convex function and is to be minimized to achieve segmentation. The
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Figure 4.2: Model Pipeline used to estimate perfusion parameters after extracting AIF by a
contour based geodesic model.
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minimizer of this function specifies the criteria to segment selective objects. The minimizer
of the function is in the form of partial differential equation. The definition of the function
is -

Let z(x, y) represent the input PWI image, defined on a image domain Ω ⊂ R2 . u
represents the level set of initial contour. c1, c2 are average intensities of z inside and outside
u. The functional is in the following form-

F (u, c1, c2) = µ

∫
Ω

g(|∇z(x, y)|)|∇u|dΩ+

∫
Ω

[λ1(z(x, y)− c1)2 − λ2(z(x, y)− c2)2]udΩ + θ

∫
Ω

DM(x, y)udΩ + α

∫
Ω

νϵ(u)dΩ

(4.1)

θ,µ,λ1, λ2 are non negative parameters. The term g(|∇z|) is the edge detector which is
g(s) = 1/1 + βs2 where β is tuning parameter. The last term is an exact penalty term due
to convex formulation of the functional, where v(u)= max{0, 2|u− 1

2
| − 1}. This is done to

achieve unconstrained minimization as this encourages the minimizer to be in range [0,1].
We refer the reader to [68, 67, 70] for more information on the model. Next we illustrate the
calculation of Geodesic term DM [67].

The geodesic distance from the marker set M is given by DM(x, y) = 0 for (x, y) ∈M and

DM(x, y) =
D0

M (x,y)

||D0
M ||L∞

for (x, y) ̸∈M , where D0
M(x, y) is the solution of the following PDE:

|∇D0
M(x, y)| = f(x, y), D0

M(x0, y0) = 0, (x0, y0) ∈M. (4.2)

To improve noise robustness and qualitative nature of segmentation results, we considered
TV denoising by utilising the new definition of TV. The formulation of the discrete TV to
be used in the geodesic term is [66] -

TV (x) = min{||v↕||1,2 + ||v↔||1,2 + ||v.||1,2 : L∗
↕v↕ + L∗

↔v↔ + L∗
. v. = Dx} (4.3)

Here, v is the whole gradient field, which is the concatenation of v↕, v↔, v. vector fields
solution to above equation. Its elements v↕(n1, n2), v↔(n1, n2), v.(n1, n2) are vectors located
at positions (n1 +

1
2
, n2), (n1, n2 +

1
2
), (n1, n2). The proposed TV is the l1,2 norm of the

gradient field v associated to the image x, defined on a grid three times more dense than the
one of x [66]. Defining it on a three times finer grid allow this TV to detect edges in low
contrast regions, when used in segmentation model (cf.[66] for more information). The new
f is formulated as -

f(x, y) = ϵD + βG|TVp(z(x, y))|2 + νDE(x, y) (4.4)

Here TVp (z(x, y)) represents the gradient field achieved after denoising is done with the
new purposed TV and DE is the euclidean distance. We use calculus of variation and solve
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above equation (1) with respect to c1 and c2 with u fixed ( cf.[68] for more information on
solving the equation). This leads to-

c1(u) =

∫
Ω
u.z(x, y))dΩ∫

Ω
udΩ

(4.5)

c2(u) =

∫
Ω
(1− u).z(x, y))dΩ∫

Ω
(1− u)dΩ

(4.6)

Using calculus of variation and solving above equation with respect to u with fixed c1 and
c2 leads to Euler’s equation [68, 70]

µ∇(g(|∇z(x, y)|) ∇u
|∇u|ϵ2

)−[λ1(z(x, y)−c1)2−λ2(z(x, y)−c2)2]−θDG(x, y)−αν
′

ϵ(u) = 0 (4.7)

We also have Neumann boundary conditions δu
δn

= 0 on δΩ where n is the outward unit nor-
mal vector. The Numerical solution of the above equation decides the contour that segments
the arterial region (cf.[67, 53] for information on the numerical solution and the scheme used).

4.2.2 Purposed Matrix analysis to find the potential AIF within
the contour

The steps used to select appropriate AIF voxels inside the segmented region were as following-

1) The coordinates (i, j) of segmented region inside contour represented by u were formed
into an array A.

A =
(
(i1, j1) (i2 j2) ...(in, jn)

)T
(4.8)

2) Matrix C had the information of concentration of contrast agent at each (x, y, z, t) of the
brain images, where x, y were location of coordinates in brain image, z was the slice selected
for AIF extraction and t represented time points.

Conc =
(
x, y, z, t

)
(4.9)

3) For the the n segmented (i,j) coordinates in the A array, we form following 1 × n row
vector C1,C2,..Ck at different time points k.

Ck =
(
Conc(i1, j1, z, k) Conc(i2, j2, z, k) ..............Conc(in, jn, z, k)

)
(4.10)
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This is done to form a final k×n matrix F which represents information of concentration of
contrast agent in all the selected voxels inside contour at different time point in a row wise
manner.

F =
(
C1 C2 .......Ck

)T
(4.11)

4) Maximum of F matrix will be the highest amplitude of concentration curves among
all time points and all the voxels. This purposed analysis is used to trace back the spatial
location of the best potential AIF voxels. Finally, global AIF for perfusion analysis is repre-
sented by the contrast agent concentration of the selected AIF voxel.

4.2.3 Perfusion Data acquisition

During the diagnostic MR procedure, fifteen stroke patients underwent perfusion imaging. A
clinical 1.5 T MR scanner at the Tri-service General Hospital, Taipei (Signa; General Elec-
tric) was used to acquire contrast-enhanced T2*-weighted images. Single-shot gradient-echo
EPI sequence was utilised (TR : 1800 ms, TE : 40 ms). During Perfusion imaging, bolus
injection (Magnevist; gadopentetate dimeglumine, Bayer Health Care pharmaceuticals Inc.)
was injected with the speed of 5 ml/sec and quantity was 20 ml. After the contrast agent
passes through the tissues, the decrease in signal intensity depends on the contrast agent
concentration, which is considered as a proxy for perfusion. The acquired time series data
are then postprocessed to obtain perfusion maps with different parameters. The additional
benefit of using this type of dataset is to accentuate local magnetic homogeneity effects to aid
in the detection of hemorrhage, core and better segmentation [71]. This study was granted
IRB approval from the Tri-Service General Hospital, Taipei, Taiwan.

4.2.4 Statistical analysis and Perfusion parameter estimation

Statistical analysis
AIF location on the brain axial slices was decided by utilising different methods: clustering
method, arterial likelihood method and contour based AIF segmentation method. Due to the
different patient conditions, physical condition, severity of the disease, the contrast injection
time, and due to variable time to start the scan, statistical comparisons are only made by
using the differences of the curve parameters [58]. These curve parameters are amplitude
(peak), the center position of the peak of concentration curve or time to peak, the differ-
ences are represented by ∆ amplitude (a.u), ∆ center (sec). One-way ANOVA statistical
test was used to establish whether there is a significant difference in terms of amplitude of
AIF selected by the different three methods.

Perfusion Parameter estimation
Perfusion DSC model was used to compute the perfusion parameters (CBF and Tmax)
with the global AIFs deduced from different methods: clustering method, arterial likelihood
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method and contour based AIF segmentation method. Perfusion analysis was done once
global AIF was decided by the AIF selection methods. On the lines on past perfusion stud-
ies in ischemic stroke, perfusion analysis was done by deconvolution of the tracer kinetic
equation [55, 72, 9, 73].

Ct = Ca ⊗R(t) (4.12)

All the image analysis were implemented in MATLAB (Mathworks, Natick, MA). Here
Ct(t) denotes the tissue concentration curve at each pixel, Ca(t) is the AIF either using one
of the three AIF selection methods described above, symbol ⊗ represents the convolution
operator and R(t) represents the residue impulse response function. Deconvolution of Eq.
4.12 to estimate CBF, Tmax was done using the singular value decomposition method (SVD)
[74, 55, 75]. Deconvolution of Eq. 4.12 for known values of Ca(t) , Ct(t) at each pixel of axial
slices leads to evaluation of the residue function R(t). CBF is measured as the maximum
of R(t) [61]. Tmax is the time t for which R(t) attains maximum value [61, 73]. After
estimating CBF and Tmax for all brain tissues, CBF and Tmax are represented visually
on axial slices. Tissue at risk was identified by thresholding the Tmax values by Tmax >6
seconds.

4.3 Results

4.3.1 Statistical analysis of Curve Characteristics

Subjectively, the concentration curve of AIF extracted by contour based AIF segmentation
method confirmed to the arterial characteristics, such as large amplitude, small width, fast
attenuation, and gamma-like shape (Figure 4.3). In terms of AIF location, it is visible that
the location selected by contour based AIF segmentation method is quite close or in proxim-
ity of the AIF location selected by arterial likelihood method (Fig. 4.3). In terms of curve
characterstics comparison, contour based AIF segmentation method selects AIF curve with
larger amplitude or higher peak position and with fast attenuation represented by early time
to peak or positive ∆ center (Figure 4.3). We also calculated the similarity of the AIF con-
centration curves. The similarity was calculated by Correlation Coefficient, which indicates
that the curves are positively correlated (Table 4.1, Table 4.2, Table 4.3).

The AIF curve characterstics of all other subjects are represented in the form of statistical
tables (Table 4.1, Table 4.2). We also show the Group mean differences between the con-
tour based peak height AIF method and the previous AIF selection methods to get a group
overview. The group mean differences indicate that overall the AIF selected by contour
based AIF segmentation method has better arterial features of higher peak position (Figure
4.3), and fast attenuation as compared to the other AIF selection methods (Table 4.3 ). A
one-way ANOVA (Figure 4.5) revealed that there was a statistically significant difference in
AIF amplitude (peak) between the three AIF selection methods (F(2, 42) = 5.66, p = .0067).
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73 4.3. Results

Figure 4.3: (a)AIF voxels selected by the contour based AIF (green), arterial likelihood
selection method (yellow) and clustering method (red) (left column) (b) Zoomed in images
of contour (dark red) used for AIF selection demonstrates that the voxels selected for contour
based AIF (green), arterial likelihood selection method (yellow) were very close to each other.
(central column) (c) Concentration curves of the selected AIF voxels (Right column). contour
based AIF segmentation method (green curve) selects AIF curve with larger amplitude or
higher peak position, and fast attenuation represented by early time to peak or positive ∆
center than the latter two methods. Each row demonstrates different patient.

73



74 4.3. Results

Table 4.1: The difference of curve characteristics between the arterial liklihood method and
contour based peak height AIF selection method.

Sample amplitude (a.u) center (s) Correlation
Contour based AIF Arterial likelihood ∆amplitude (a.u) Arterial likelihood Contour based AIF ∆center (s)

1 29 21 8 41.4 39.6 1.8 0.8
2 41.4 41.4 0 17.7 17.7 0 1
3 90.8 27 63.8 27 27 0 0.8
4 46 20 26 43.2 41.4 1.8 0.6
5 80.6 64.3 16.3 33.9 37.5 -3.6 0.8
6 12 4.3 7.7 50.4 45 5.4 0.7
7 36 19.6 16.4 48.6 46.8 1.8 0.9
8 59.7 13.2 46.5 43.2 45 -1.8 0.7
9 39.5 33.7 5.8 45 43.2 1.8 0.9
10 50.1 12.2 37.9 43.2 41.4 1.8 0.9
11 53.8 33.7 20.1 41.4 41.4 0 0.9
12 69.7 64.1 5.6 39.6 37.8 1.8 0.8
13 42.5 16.1 26.4 34.2 34.2 0 0.9
14 109.5 42.8 66.7 36 37.8 -1.8 0.7
15 56.5 10.8 45.7 41.4 36 5.4 0.8

Table 4.2: The difference of curve characteristics between the clustering method and contour
based peak height AIF selection method.

Sample amplitude (a.u) center (s) Correlation
Contour based AIF Clustering method ∆ amplitude (a.u) Clustering method Contour based AIF ∆center (s)

1 29 3.4 25.6 41.4 39.6 1.8 0.8
2 41.4 29.8 11.6 19.5 17.7 1.8 0.8
3 90.8 45.7 45.1 30.6 27 3.6 0.2
4 46 36 10 41.4 41.4 0 0.8
5 80.6 65.2 15.4 37.8 37.8 0 0.8
6 12 60.1 -48.1 50.4 45 5.4 0.7
7 36 61.7 -25.7 50.4 46.8 3.6 0.9
8 59.7 48.9 10.8 39.6 45 -5.4 0.7
9 39.5 10.2 29.3 43.2 43.2 0 0.9
10 50.11 36 14.11 39.6 41.4 -1.8 0.9
11 53.8 46.7 7.1 39.6 41.4 -1.8 0.9
12 69.7 64.1 5.6 41.4 37.8 3.6 0.8
13 42.5 16.1 26.4 36 34.2 1.8 0.8
14 109.5 42.8 66.7 37.8 37.8 0 0.7
15 56.5 10.8 45.7 39.6 36 3.6 0.8
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The clustering method and arterial likelihood methods have the same peak for patients
12-15 (Tables 4.1 ,4.2). The contour-based method uses a matrix based approach to ensure
that out of all the potential AIF voxels in the marked contour the selected AIF voxel has
the maximum peak concentration. In subjects 12-15 the other two methods miss out AIF
with maximum peak which is a feature of utilizing the matrix analysis post selection of ROI
for AIF by contour-based model.

In Figure 4.3 we have shown the cases where the contour method selects AIF with better
arterial features i.e., high peak and early time to peak than the latter two methods. In
Figure 4.4 , both the methods select a similar AIF voxel and this represents that in some
cases both arterial likelihood method and contour-based method may yield the same result
for AIF i.e. in this case arterial likelihood method may not miss out the peak AIF voxel.
In contrast, for all other subjects both the AIF locations are quite close but the arterial
likelihood method misses out the location with highest peak (Figure 4.3). This could be due
to the varying physical conditions, severity of the disease, noise associated with signals and
the variability of contrast injection time among different patients. Although we processed
all the samples, considering the number of samples, we only showed selected AIF location
and corresponding concentration curve of three of them. For a patient, the contour method
yields an AIF curve after 14 s (seconds). Time taken by the clustering method and arterial
likelihood method for the AIF estimation was 9 s and 13 s. (Intel I5/Ram :8gb/ MATLAB
2020(a)).

Figure 4.4: (A)Similar AIF voxel (Green) selected by the contour based AIF and arterial
likelihood selection method (left column) (B) Zoomed in images of contour (dark red) used
for AIF selection demonstrates similar voxel selected for contour based AIF (green) and
arterial likelihood selection method (central column). (C) AIF Concentration curves of the
selected AIF voxel (right column).
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Figure 4.5: Comparison of AIF amplitude for the AIF selected by the three methods in
the patient cohort. A one-way ANOVA revealed that there was a statistically significant
difference in AIF amplitude (peak) between the three AIF selection methods ( F value =
5.66 , P value = .0067).

Table 4.3: Group mean difference between the Contour based peak height AIF method and
the previous AIF selection methods.

Method amplitude (a.u) center (s) Correlation coefficient
Clustering method 16.7 1.08 0.7

Arterial likelihood method 26.1 0.9 0.8
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Table 4.4: Perfusion parameters ( Tmax and CBF ) for different AIF selection methods.

Method Tmax (s) CBF (a.u)
Contour Based AIF Mean 1.87 81.9

SD 2.09 64.7

Arterial Likelihood method Mean 1.6 178.3
SD 3.01 139.9

Clustering method Mean 1.13 296.5
SD 2.8 229.6

4.3.2 Perfusion maps

We derived the perfusion parameters (CBF, Tmax) corresponding to the AIF given by all
three methods in each pixel in each sample. For comparison we used a similar SVD deconvo-
lution method with the optimal standard threshold [74]. The perfusion maps were accessed
by an experienced clinical from veterans hospital. Based on the feedback investigators con-
cluded that perfusion parameter maps could be utilised for diagnosis.

Figure 4.6: Tissue at risk (Red) maps estimated by AIF from (A) clustering (B) arterial
likelihood method and (C) contour based AIF from left to right. (D) Tissue at risk identified
by the commercial software. Tissue at risk is identified by Tmax> 6 sec and is overlaid on
brain masks. Among the three methods, contour based AIF method has the closest prediction
of Tissue at risk (168 mL) with the tissue at risk identified by the commercial software (175
mL) considered as golden standard for perfusion processing outcome.

The distribution of CBF and Tmax maps based on the AIF selected by all three meth-
ods is basically the same, however ischemic regions or tissues at risk can be clearly located
through the perfusion maps given by contour based segmentation method (Figure 4.6, Figure
4.7). The mean and standard deviation of perfusion parameters (CBF and Tmax) over a
cohort of all patients are shown in Table 4.4. The other two AIF selection methods estimate
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Figure 4.7: CBF maps estimated by AIF from (A) clustering (B) arterial likelihood method
and (C) contour based AIF from left to right. CBF values obtained from the contour based
AIF method are lower than the latter two methods due to the larger peak and lower time
to peak of the AIF. This allows to locate the core regions with decreased blood flow more
precisely and accurately.
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lower Tmax and higher CBF values, which misleads us in terms of severity of Ischemia and
the size of tissue at risk. The mean CBF values obtained by our method are in general lower
than those obtained by the other two methods ( Table 4.4). The mean Tmax values obtained
by Contour based AIF selection method are higher than those obtained by the other two
methods (Table 4.4). Higher Tmax and lower CBF values reported are due to the early time
to peak and the larger peak value of the AIF curve.

With the help of a sample example of a stroke patient we illustrate that tissue at risk
was clearly located with improved visual specificity (Figure 4.6). The clustering based AIF
method failed to estimate the tissue at risk in this case (Figure 4.6). Contour based method
estimated the size and volume of tissue at risk similar to the size estimated by a widely used
commercial software considered as golden standard for perfusion processing outcome.

4.4 Discussion

4.4.1 AIF and contour based models

Contour based segmentation models have been widely used for object segmentation in images
with noise and inhomogeneous intensities [67, 76, 46]. They are usually based on a func-
tional and the minimizer of this functional decides the accuracy of segmentation [46, 68, 70].
However, up to date this has not yet been applied for AIF estimation in PWI studies. Ex-
perimental and comparison results suggest that the discussed method performs better in
terms of AIF estimation as compared to earlier methods. The present method has been
proved to be robust to detect voxels with large amplitudes, small width, fast attenuation,
and gamma-like shape as potential AIF. The utilization of discrete TV allows the contour
model to deal with noisy data sets as well as with in homogeneous intensities.

Recent studies utilized a deep convolutional neural network (CNN) to automatically identify
AIFs in computed tomography perfusion (CTP) and perfusion-weighted MRI (PWI) datasets
[77, 58]. These studies concluded that CNN network models could be potentially viable as
the cross-correlation values of manual AIFs with CNN AIFs were observed higher than the
AIF decided by the traditional methods [77]. The CNN-derived AIFs for the PWI data-sets
showed marginally greater peak heights and early time to peak. CNN models require the
choice of ground truth as an input and this ground truth is mainly a manual selected AIF.
Here, to provide ground truth user has to inspect each voxel which is inside the arterial
ROI. This might be time consuming and there are high chances of missing a voxel which
could represent a AIF with better arterial features. Comparatively, the purposed method
is selective and just requires a single click to set a marker point or to localize the arterial
region as region of interest (ROI) and find a suitable AIF voxel.
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4.4.2 Tissue at risk and limitations

Tissue at risk or Ischemic penumbra denotes the stroke region that is at risk of progressing
to infarction but is still salvageable [61, 78]. Ischemic penumbra is usually located around an
infarct core which represents the infarcted or blocked necrotic tissue [79]. Cerebral perfusion
in terms of parameters is the key information that helps to locate the penumbra around the
infract core [58, 79, 80]. AIF plays a central role in cerebral perfusion estimation. PWI
studies proved that AIF measured with a lower amplitude, large width and slow attenuation
could produce a four times blood flow overestimation along with inaccurate ischemic penum-
bra [81]. We could observe that (Figure 4.6) difference in AIF selection makes a substantial
bias in the estimation of ischemic penumbra.

With the help of an example (Figure 4.6) we demonstrate that the accuracy and visual
reliability to identify tissue at risk with our model is promising. Among the three methods,
contour-based AIF method has the closest prediction of the tissue at risk in comparison
to a commercial software. Detection of ischemic infraction is important because of narrow
window of therapeutic efficacy. Inclusion of this fast and efficient AIF selection algorithm
presented in this study in clinical settings may optimise the delivery of stroke care. The
proposed method could potentially be considered as part of the calculation for perfusion
imaging in general.

This study has several limitations. In this study, we used MR-PWI data set of 15 patients.
In clinical settings, collecting the data-sets for a broader patient cohort is challenging due
to the restricted access to urgent MR-PWI and the contraindications (e.g., uncharacterized
metallic foreign bodies) related to MR-PWI acquisition [82]. Recent studies have demon-
strated that Computed Tomography Perfusion (CTP) can provide information related to
treatment decision making at a level similar to MR-PWI [82]. Due to the greater accessibil-
ity of CTP, further CTP studies on a large data set with variability of onset of stroke are
required to demonstrate the consistency of purposed AIF selection method. Also, it would
be worth to see if the proposed model can deal with the noise and in-homogeneity in the CT
perfusion images.

4.5 Conclusion

This chapter proposes a contour-based segmentation model for estimating AIF curves in
brain perfusion images. This segmentation framework worked on perfusion images at levels
superior to the current clinical state of the art. The model estimated AIF curves with higher
amplitude and early time to peak along with a good performance in identifying the tissue
at risk. Inclusion of this improved AIF selection methodology discussed in the study will
facilitate prediction and localization of the ischemic penumbra, which in turn may optimise
the delivery of stroke care and surgical pharmaceutical treatments.
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Chapter 5

Partial Volume Effects correction and
Curve fitted Arterial Input Function
for Core and Penumbra estimation

After optimal Arterial Input Function (AIF) segmentation as purposed in chapter 4, there
are still some artefacts that affect the penumbra and core estimation in stroke patients. In
this chapter, we discuss two key problems associated with the perfusion parameter estima-
tions.

In first section of this chapter, we focus on the partial volume effect correction (PVE)
for AIF. Firstly, we introduce basic notion of PVE. During AIF segmentation or AIF pixel
selection on brain axial slices, most of the times the AIF represents only some fraction of
the arterial blood, known as partial volume effect. In light of the substantial influence of
the PVE on AIF as well as perfusion parameters, we investigate potential approaches for
minimization of the volume averaging artifacts associated with the PVE. If not corrected,
these artifacts generate misleading CBF and Tmax brain images that fail to identify infract
regions as shown by an example (Figure 5.1). This section is based on authors published
paper [6] .

Segmented AIF curves with a distorted baseline, shape-amplitude errors in the first pas-
sage, and non-identical recirculation portions as shown in Figure 5.2 (B), predict incorrect
perfusion parameters [2]. In the second section of this chapter, we use deep learning to
generate a distortion free AIF. An example of distortion free AIF or CNN AIF is given in
Figure 5.2 (C). In this example, predicted AIF combines features of consistent baseline, peak
amplitude, and identical recirculation portions. The utilisation of this CNN based AIF in
perfusion parameter pipeline 1.2 improves volumetric assessment of core and penumbra is
association with clinical scores. This section is based on a published conference paper (Eu-
ropean Congress of Radiology 2023, https://www.myesr.org/congress).

81



82

Figure 5.1: Example of misleading perfusion parameter maps. (A) Apparent diffusion co-
efficient (ADC) image is an indicator of infract region. The dark region on ADC image
thresholded by ADC ≤ 620 × 10−6mm2/s is the infracted core (red arrow). (B) CBF map
(bottom) [mL/100 g/min]. This CBF map does not indicates the infract region as repre-
sented on the ADC map, which is a result of inaccurate quantification of CBF.

Figure 5.2: Curve Fitted AIF for a single dataset (A) AIF location is marked as a red dot.
(B) AIF curve with distorted baseline and shape amplitude errors (C) Predicted curve fitted
AIF curve by CNN model as an output.
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5.1 Partial volume affect correction for Arterial Input

Function (AIF)

As discussed in chapter 4, in perfusion quantification’s, one of the most important function
which is required as input from the perfusion data, is the arterial input function (AIF) [2].
When the voxel or region that has been selected for quantification of AIF has only some
fraction of the arterial blood, the partial volume effect (PVE) arises. During measurement
of AIF, spatial resolution used in perfusion MRI and the average size of major arteries make
a degree of partial volume unavoidable [83, 2, 10]. The arterial and tissue contributions are
complex numbers with amplitude and phase. The magnitude and phase of tissue components
in the selected AIF voxel may decide whether there will either destructive or constructive
contributions by the tissue components [2].

The perfusion model 1.2 uses AIF as an initial input to calculate perfusion parameters
as final output [2]. In the process of calculation of perfusion imaging parameters, the PVE
seriously affects the estimation of Arterial Input Function (AIF) [10, 84, 85, 86, 87, 88] . As
voxels with signals from both artery and surrounding tissues may result in distortion of the
signal loss of the contrastive agent during the passage of blood, this may lead to erroneous
estimation of AIF, which consequently yields misleading brain maps of CBF and Tmax. In
current clinical practices, volumes on brain image with Tmax greater than 6 s are considered
to be the critically hypoperfused region, which is also known as the penumbra, and tissues
with relative CBF < 30 % are considered to be the infarct core [89]. Early and correct as-
sessment of the hypoperfused as well as infract regions are critical for appropriate diagnosis
and treatment decisions in acute stroke [10, 88, 89].

We hypothesize that correct estimation and reasonable perfusion parameters can be
achieved by several rescaling methods of AIF. This enhancement could be evidently seen
from the Tmax and CBF images before and after rescaling. This proposed enhancement
method will use multiplicative rescaling on the multiple AIF voxels to minimize the under-
estimation or overestimation of AIF and CBF values. By increasing the size of the region
from which the AIF is sampled, we will demonstrate the increase in the PVE and the in-
creased distortion of AIF estimation. Three different multiplicative rescaling approaches are
used to rescale the AIF, as follows: (a) scaling using AIF curve; (b) scaling using VOF
curve; (c) scaling by matching peaks. The rescaling factor is decided according to different
rescaling approach and is applied to the AIF concentration curves. Finally, the variation in
CBF value estimated from the reference AIF with minimal PVE and the AIF concentration
curve after rescaling is evaluated. Based on these comparisons, an optimal scaling method
to minimize the PVE is determined and the perfusion parameter maps are generated. It
is anticipated that the scaling approach will generate rational parameters, as it takes into
factor the conservation of the time integral of the tracer concentration curve, C(t), through
the vasculature, which might affect the AIF calculation most.

83



84 5.1. Partial volume affect correction for Arterial Input Function (AIF)

5.1.1 Materials and Methods

Data Acquisition

Fifteen patients suffering from acute ischemic stroke underwent perfusion imaging as a part
of their diagnostic MR procedure. A single-shot gradient–echo EPI sequence (TR/TE/flip
angle/number of slices/voxel size: 1800 ms/40 ms/60/23/1 × 1 × 5 mm) on a clinical 1.5 T
MR scanner (Signa; General Electric) was used to acquire contrast-enhanced T2*-weighted
images from the Tri-Service General Hospital, Taipei. During perfusion imaging, with the
speed of 5 mL s−1, a dose of 20 mL of bolus injection (Magnevist; gadopentetate dimeglu-
mine, Bayer Health Care pharmaceuticals Inc, Berlin, Germany) was injected. The present
study was granted the review board approval by the Tri-Service General Hospital, Taipei,
Taiwan.

Approaches for correction of the Artefacts that arise from the PVE

Voxels containing signal contributions from both the artery and the surrounding tissues are
referred as voxels affected by the PVE [84, 85]. Since the signals come from the artery
and the neighboring tissues, we first define the signals from these regions. Suppose we have
PVE-affected voxels, which are selected for AIF estimation; they are composed of k and t
fractions of arterial blood signal (Sa) and tissue signal (St). The MR signal from the entire
voxel (Sv) then reflects the weighted average of signals Sa and St, as follows:

Sv = kSa + tSt (5.1)

If it is assumed that the tissue contribution is much smaller than the arterial contribution
(kSa > tSt), then multiplicative rescaling can be used to estimate correct arterial signal
from the measured voxel signal by multiplication with the inverse volume fraction of arterial
blood [85] i.e.,

Sa =
Sv

k
(5.2)

A direct evaluation of Sa is not possible since k is unknown. The present study implements
three different criteria to determine the rescaling factor k. The MR signals are converted to
concentration curves based on a traditional nonlinear relationship provided by earlier studies
[5, 2].

S(t) = S0e
−TE

p
C(t) (5.3)
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S0 is the baseline (pre-bolus or pre-contrast agent) MR signal intensity, TE is the echo time,
p is the proportionality constant taken as p = 1 [90], and C(t) represents the concentration
time function. A direct expression for concentration values based on MRI signal data is
derived by inverting Equation 5.3, as follows:

C(t) = −( p

TE
)ln

S(t)

S0

(5.4)

A reference arterial curve derived from a voxel with minimal PVE is manually selected. The
MR concentration from the entire voxel (Cv) reflects the weighted average of concentration
in artery (Ca) and concentration in tissue (Ct), which can be expressed as Cv = kCa + tCt.
Assuming that the concentration in tissue is much smaller than the concentration in the
artery, this can be simplified as Cv = k × Ca. Following this argument, k is estimated from
concentration values, as follows:

∫ ∞

0

Cref (t)dt =

∫ ∞

0

Ca(t)dt =

∫ ∞

0

Cv(t)

k
dt (5.5)

The first two parts of the equation imply that AIF concentration time curve (Ca) has the
same area under the curve (AUC) as any other manually selected reference concentration
time curve (Cref ) [91]. The relationship of conversion of MRI signal to concentration values
is nonlinear (Equations 5.3). In this study, we intend to make use of AUC of concentration
curves rather than the signal curves to derive scaling factor k. So, we assume that during the
calculation of AUC of arterial curve the non-linearity of signal to concentration conversion
will have minimal effect. On the similar pattern of Equation (5.2), AUC of arterial curve
would be ratio of AUC of the concentration curve from multiple voxels to the scaling factor,
this is represented analytically in last two parts of Equation (5.5).

The first rescaling approach referred as scaling by AIF uses concentration curve of a
reference AIF as (Cref ) and concentration curve of selected multivoxel AIF region as (Cv)
in Equation 5.5 to estimate the scaling factor k. The second rescaling approach referred as
scaling by VOF uses concentration curve of a venous output function (VOF) as Cref and
concentration curve of selected multivoxel AIF region as (Cv) in Equation 5.5 to estimate
the scaling factor k. The first two rescaling approaches are based on the principle of conser-
vation of time integral of tracer concentration curve C(t) through the vasculature. The third
rescaling approach, referred to as scaling by peak, estimates the scaling factor k by matching
the peak height of the multi-voxel AIF concentration time curves with the reference concen-
tration time curve. This follows that the multivoxel AIF will have similar characteristics to
any other concentration curve in terms of peak height [85].
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Reference AIF Curve

During PWI-MRI, the internal carotid artery (ICA) is nearly perpendicular to the axial plane
and offers the advantage of easy and reliable manual identification with minimal errors from
volume-averaging artifacts [2]. As demonstrated in Figure 5.3 (a), internal carotid artery
(ICA) is used as Cref in the model Equation 5.5, as it is associated with minimal errors from
volume-averaging artifacts. The increased size of the AIF sampling region represents the
increased degree of the PVE. The AIF concentration was measured from 3, 5, 7, 9, and 11
voxels centered around the reference ICA voxel (Figure 5.3b).

Perfusion Analysis

The reference AIF curve (Cref ) for the rescaling approach, was measured from an ICA voxel
where the concentration curve had the features of large amplitude (peak), small width,
and fast attenuation. The venous output function (VOF) is the concentration–time curve
measured in a vein that drains the organ of interest. Based on practical and theoretical
considerations, manual VOF is often chosen from the sagittal or transverse sinus [2, 85, 89].
To obtain a VOF with peak from the first-pass bolus passage followed by a recirculation
peak, voxel with the maximum signal in the sagittal sinus is chosen as the reference VOF
curve. To reproduce AIFs with an increasing degree of the PVE, we used concentration
curves measured from ROIs of widths 3, 5, 7, 9, and 11 voxels, centered on the reference AIF
voxel for 15 patients. A region of interest (ROI) tissue was manually selected in the grey
matter [92] to evaluate the CBF percentage change (∆CBF ). ∆CBF is the percentage
change of CBF estimated from rescaled AIFs relative to the CBF estimated from reference
AIF curve. When using the VOF approach, the reference AIF concentration curve (width
of 1 voxel) was also rescaled with the reference VOF curve.

Perfusion quantification for CBF was performed by deconvolution of the tracer kinetic
equation (Equation 5.6) [5, 83, 8], implemented using MATLAB scripts (MathWorks, Nat-
ick, MA, USA).

Ct(t) = CBF(Ca(t)⊗R(t)) (5.6)

CBF =
1−Hsv

1−Hlv

1

ρ
max R(t) (5.7)

where Ct(t) denotes the tissue concentration curve of the ROI located in gray matter, Ca(t)
is the AIF either corrected using one of the three rescaling criteria described above or with-
out rescaling, ⊗ symbol represents the convolution operator, and R(t) represents the residue
impulse response function. Deconvolution of Equation 5.6 to estimate CBF was carried out
using the block circulant singular value decomposition method (cSVD) [5, 8, 93]. The block
circulant decomposition method has an advantage of being less sensitive to tracer arrival
timing differences. Deconvolution of Equation 5.6 for known values of Ca(t),Ct(t) leads to
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Figure 5.3: (a) Red colored square represents ICA used for reference AIF determination. (b)
Increased size of the AIF, i.e., AIF concentrations were measured from 3, 5, 7, 9, and 11
voxels centered around the reference ICA voxel shown by black, blue, red, green, yellow, light
blue colored squares, respectively. (c) An example of non-corrected AIFs (3 voxel AIF; blue
curve) and corrected AIFs by all 3 scaling approaches. For a single subject, the unscaled
AIF was derived from a 3-voxel-wide region to include the effect of the PVE. ICA: internal
carotid artery; PVE: partial volume effect.
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evaluation of the residue function R(t). CBF is measured as the maximum of R(t). Further-
more, Hlv and Hsv represent a correction for different levels of hematocrit in large vessels
and small vessels. Here, the values used are Hsv = 0.25, Hlv = 0.45 and ρ = 1.04 g/mL
(density of the brain) [92, 94]. After estimating CBF and Tmax for all brain tissues, CBF
and Tmax are represented visually on axial brain maps.

5.1.2 Results

Figure 5.3 (c) is an example to see the effect of the AIF correction by all the three scaling
approaches. For a single subject, the unscaled AIF was derived from a 3-voxel-wide region
to include the effect of the PVE. After correction, the peak of unscaled multi voxel AIF (3
voxels wide) reduces for all the approaches and there is slight change in the tail (recircula-
tion) part. The VOF approach rescales the AIF to large extent.

Figure 5.4 shows curves of rescaled AIFs with increasing degree of the PVE plotted as
function of time using different scaling approaches. Overall, the deviation of the rescaled
AIFs from the reference AIF increases with increasing PVE (i.e., increased number of voxels
used for measuring AIF). Rescaling of AIFs by using scaling by AIF approach leads to small
deviations at the tail, but large deviations at the peak (Figure 5.4 (A)). Rescaling of AIFs
by matching peak reproduces peak similar to reference AIF for rescaled AIFs. However, this
approach fails to accurately reproduce the tail similar to the tail of reference AIF (Figure
5.4 (B)).

Rescaling of measured AIFs using scaling by VOF approach gives rise to results similar
to the first approach apart from the decrease in the overall peak height estimates of rescaled
AIFs (Figure 5.4(C)). The tail accounts for the recirculation of tracer in the brain vascu-
lature after an initial bolus passage, whereas the peak represents the maximum amplitude
bolus rush through the brain vasculature [2]. The ideal AIF concentration curve has to rep-
resent correct tail and peak in order to reproduce more reasonable perfusion parameter maps.

Rescaled AIFs curves do not coincide with the exact reference AIF curve (Figure 5.4).
Rescaled AIFs match the exact reference AIF curve either at peak height or at tail. The least
percentage change of CBF values estimated using rescaled AIFs from CBF values estimated
using reference AIF may decide the most appropriate scaling approach. The least percentage
change of CBF indicates the approach that will be least affected by the volume-averaging
artifacts.

Deviation of CBF, based on all 15 patients, which is represented as ∆ CBF, was estimated
as percentage difference in CBF estimated using rescaled AIFs and reference AIF. Rescaling
of the AIFs was conducted using the following four approaches: no scaling, scaling by AIF,
scaling by VOF, and scaling by peak height. The increasing degree of the PVE and its
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association with ∆CBF in 15 patients is shown in Figure 5.5. As shown in the Figure 5.5,
∆CBF values estimated from non-rescaled AIFs without any modification increases as the
number of voxels used for measuring AIF increases. This shows that the increased PVE
resulting from the increased number of voxels might seriously affect the estimation of AIF
and consequently the calculation of perfusion parameters. Rescaling of the AIF using either
of the three approach results in the reduced ∆CBF values. Overall, scaling by AIF and
scaling by VOF seemed to achieve the best and similar results as they yield the least ∆CBF
values when the PVE increases maximally among all scaling approaches.

Figure 5.5: Average CBF divergence from reference CBF plotted against increasing number
of voxels. Average CBF divergence for group of 15 patients is plotted according to increased
partial volume effect (PVE) for all four scaling approaches indicated by the legend on right.

The CBF brain map was generated in the absence of scaling of AIF as well as by us-
ing the VOF rescaling approaches (Figure 5.6). In some cases, relative to the CBF map
generated by using non-rescaled AIF, the CBF map generated by rescaled AIF approaches
showed increased CBF values on the slices in the left and right hemispheres (red color) (vis-
ible in Figure 5.6). From Equations (5.5) and (5.6), it follows that the ratio of scaled and
unscaled CBF values should be the scaling factor k. The images of the ratio of scaled and
unscaled maps are expected to show the factor k for every voxel (Figure 5.6 (c)). The mean
CBF values, based on all 15 subjects using non-rescaled (AIF ROI width = 5 voxels) and
VOF approach, were 43.98 and 61.16 mL/100g/min, respectively. The mean CBF values
for AIF-rescaled and peak scaled approach were 57.10 and 47.10 mL/100g/min, respectively.
At individual level, all the fifteen patients in this study did not follow similar pattern of
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Figure 5.4: Rescaled concentration curves of Arterial Input Functions (AIFs) generated using
different scaling methods. The legend in (A) indicates the width (in voxels) of ROI used
for measuring the AIF. (A) Rescaled AIFs generated using scaling by AIF approach. (B)
Rescaled AIFs generated using scaling by matching peak height approach. (C) Rescaled
AIFs generated using scaling by VOF approach. VOF : Venous Output Function.
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underestimated CBF values due to the PVE. To generalize, we need a larger dataset to con-
clude whether the scaling corrects the underestimation of CBF, as this could vary patient
to patient in a small cohort.

Figure 5.6: (a) CBF (mL/100 g/min) map generated by using rescaled AIF (b) and non-
rescaled AIF. CBF map generated using rescaled AIF represents increased CBF values in
the shown axial brain slices. CBF maps from non-rescaled AIF display mostly all the ROIs
with decreased blood flow which makes it difficult to locate the regions which actually have
a decreased flow. CBF images derived using rescaled AIF display ROIs with increased flow
(red color) which helps to segregate the regions with decreased blood flow. This may help
clinicals to identify the infract regions as well as regions with decreased blood flow on visual
brain CBF images. (c) Maps illustrating the ratio between CBF values derived from the
re-scaled and the non-scaled AIF.

The Tmax (seconds) map was generated using the rescaled AIF (VOF approach) (Figure
5.7) (top) and non-rescaled AIF (Figure 5.7) (bottom). The Tmax map generated using the
rescaled AIF showed increased values in the axial brain slices in the left and right hemi-
spheres. The mean Tmax values (range of 0–12 s) based on 15 subjects using non rescaled
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(AIF ROI width = 5 voxels) and VOF approach were 4 s and 7 s, respectively. The derivation
of Tmax is performed from the residue function (R(t)), which is achieved by deconvolution
of Equation 5.6. Tmax is the argument, i.e., t of the maximum of R(t). The deconvolution
utilizes a matrix method called the circulant singular deconvolution, which is sensitive to the
peak amplitudes of AIF (cSVD) [93]. The changed AIF amplitude used in the cSVD algo-
rithm shifts the maximum of R(t) to a higher time points t which accounts for higher Tmax
values. The change in Tmax is consistent with a previous study where different AIFs with
changed amplitudes and similar shape selected by different algorithms resulted in change
of Tmax values [4]. The increased Tmax maps generated by the rescaled AIF may allow
clinicals to visualize the critically hypoperfused regions which are likely to be salvageable.

Figure 5.7: Tmax (seconds) map generated by using (a) rescaled AIF (b)non-rescaled AIF
for one subject. Tmax map generated using rescaled AIF represents increased values in the
shown axial brain slices.

5.1.3 Discussion

In the present chapter, we used multiple AIF rescaling approaches using perfusion imaging
data so as to correct the amplitude falsification of the multi-voxel AIF. This, thorough in-
vestigation, has allowed us to study the effect of the PVE on a multi-voxel AIF, which is a
prerequisite for obtaining accurate CBF measurements using MR bolus tracking [84]. The
significant findings of the study revealed that rescaling AIF using scaling by VOF approach
leads to more reasonable absolute perfusion parameter values, represented by the increased
mean CBF/Tmax values and CBF/Tmax images. This may assure that the core or brain
regions with decreased blood flow will not be overlooked. The present study has shown that
the absence of multi-voxel AIF scaling results in inaccurate and untrue CBF values.
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The spatial resolution typically used in the cerebral DSC-PWI, 1.9× 1.9× 5mm3 makes
it difficult to identify vessels and only voxels placed in the ICA could be selected as reference
AIF, free from partial volume of the tissue [95]. Selecting more voxels or a large region for
AIF estimation can lead to significant PVE. However, PVE-corrected, multi-voxel AIF is
necessary as AIF obtained from a single voxel or a small region is not reliable enough due
to noise in spatial measurements and motion in temporal measurements [4]. In this study,
we intend to make use of scaling as a way out to calibrate a multiple voxel AIF which would
further lead to reduce the effect of the PVE on the quantification of absolute CBF and
Tmax values. The great benefit associated with this type of linear scaling is that predefined
thresholds could be used for evaluation/comparison of perfusion images and parameter val-
ues obtained from different scanners examined at different time points.

For the typical spatial resolution used in DSC-MRI studies, average size of major arteries
and considering that the true AIF as signal is saturated at peak concentrations for a voxel
with 100% blood, a degree of partial volume is in practice unavoidable when measuring the
AIF [2]. The signals from the arterial and tissue contributions are complex numbers (with
amplitude and phase), which makes selection of PVE-free AIF more complicated [2]. The
scaling method used in this study might be a pragmatic way of using a multi-voxel AIF.
Considering the difficulty involved in the selection of PVE-free reference AIF, we can con-
sider that reference AIF in the study is an approximation of the true AIF with minimal PVE.

Clinically, AIF selection depends on the expertise, experience, and skill of experts ac-
companied by time consumption, low reproducibility, and often including tissue signals in
AIF. In the past, perfusion studies utilized AIF selection approaches such as slice-specific
AIF selection, clustering methods that require ROI to be marked manually prior to AIF
extraction [11, 96, 97, 98], and multi stream 3D CNN method [4, 99]. No matter what
selection strategy is taken, the PVE is always present as the voxels selected may exhibit
partial signals. Therefore, a proper approach must be taken to solve the problem. Rescaling
of AIF discussed in the present study can be carried out for PVE correction even if the AIF
selection procedure is slice specific.

The extent of the influence of PVE on the output perfusion parameters has been observed
in previous research. In vivo studies have reported large variations in perfusion parameters
due to the PVE [84, 85, 95, 100]. Past simulation results in DSC MRI proved that un-
corrected AIF measured with a partial volume fraction of about 50% could produce a four
times CBF overestimation along with distortions of AIF frequency characteristics [84]. In-
vestigation of the impacts of the PVE on quantitative perfusion metrics at 1.5 T and 3.0 T
has reported broaden tissue contribution, resulting in fluctuations in the AIF which further
compromises quantitative perfusion estimates in a nonlinear fashion [95].

Inaccurate AIF estimation can be minimized by correction for partial volume effects
by utilizing specific post processing approaches or data acquisition techniques. Past MRI
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research has reported that correction for the PVE was appropriate for arteries that were
parallel to the main magnetic field by estimation and subtraction of the static signal of the
surrounding tissue [100]. However, to measure quantitative input function of vessels that
were not parallel to the main magnetic field was still a challenge [100]. CTP studies suggested
that AIF measurements should be done with smaller section thickness, i.e., small location or
reduced voxel volume, as AIF and VOF measurements from thicker sections would cause an
overestimation of CBV and CBF [101, 102]. In vivo MRI studies have suggested that minimal
impact of the PVE in AIF measurements may be achieved with reduced contrast dosage and
minor adjustments to the pulse sequence [84]. Previous research used linear scaling methods
for the correction of PVE-affected AIF on T1-weighted perfusion imaging datasets as they
allow easy identification of the large arteries [85]. Rescaling using VOF as a reference was re-
ported as most feasible approach [85]. The present study used T2-weighted perfusion imaging
datasets and used rescaling on AIF concentration curves rather than the MR signal curves
and proved to be consistent with past results of PVE correction of T1-weighted datasets [85].

Recent studies in DCE-MRI demonstrate that inter-frame realignment have a huge effect
on parameter mapping [103]. In this study, reference AIF (red colored square represented
on ICA (Figure 5.3a) and ROI used as multivoxel AIF (i.e., AIF concentrations measured
from 3, 5, 7, 9, and 11 voxels centered around the reference ICA voxel shown by black, blue,
red, green, yellow, light blue squares, respectively, in Figure 5.3b) were measured on a same
brain MRI axial slice for all subjects. For the geometrical alignment of axial brain slice
selected for AIF determination, co-registration to a common template for all subjects after
the acquisition was considered. However, in case if multiple axial slices are utilized for AIF
selection across the subjects, then inter-frame realignment has to be considered due to its
impact on parameters. The limitation of the present study is that multiplicative rescaling
can only be used if tissue contribution is much smaller than the arterial contribution. This
condition restricts AIF correction in case when there is ample amount of surrounding signal
contributions to the AIF. The use of scaling factor assumes that any PVE in the AIF can
be represented by linear scaling; however, in the case of large signal contribution from sur-
rounding tissue, the PVE can be very complex and can distort the AIF shape.

5.1.4 Conclusions

In summary, the present study demonstrates that utilizing scaling approach provides more
reasonable absolute perfusion parameter values, represented by the increased mean CBF/Tmax
values and CBF/Tmax images. This will assure that the core, as well as the infract region,
will not be overlooked. Distortions due to the PVE might be still present in AIF after the
scaling as it does not affect the shape of the curve to a large extent. Rescaling AIF by VOF
approach seems to be the robust and adaptable approach for correction of the PVE-affected
multivoxel AIF. Absence of multi-voxel AIF scaling during deconvolution of the tracer ki-
netic equation may lead to inaccurate CBF values.
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5.2 Core and Penumbra estimation using Deep learn-

ing based AIF in association with clinical measures

in Computed Tomography Perfusion (CTP)

5.2.1 Introduction

Deconvolution of two time-dependent functions, Concentration time function Ct(t) and Arte-
rial Input function (AIF) Ca(t), is required for CTP parameter estimation [83]. AIF curves,
in general, have a baseline period, a first passage, and a recirculation part. AIF with a dis-
torted baseline, shape-amplitude errors in the first passage, and non-identical recirculation
portions predicts incorrect perfusion parameters [2]. These inherent errors may lead to the
identification of incorrect core and penumbra volumes [2].

The estimation of the CTP parameters can be improved by curve fitting (CF) of hemo-
dynamic models to the AIF, according to recent studies [104]. Arterial concentration time
curves plotted against time points signify that contrast agent is injected into a blood ves-
sel upstream and dilutes downstream [2]. Curve fitting can assure an AIF with a constant
baseline, a first passage with a peak amplitude, and identical recirculation portions [90, 104].
To achieve this, previous studies modelled arterial concentration time curves by using the
gamma variate function, which has the value [104] :

C(t)GVM = K(t− AT )αexp(−(t− AT )
β

) (5.8)

Here t represents the time points, AT is the bolus arrival time, K the constant scale
factor, and to describe the shape of the curve and are used as arbitrary parameters.

Apart from the thresholded perfusion parameters, medical professionals also refer to the
NIHSS and ASPECT scores to make thrombectomy decisions [105, 106]. Clinical trials re-
quire a severity assessment, NIHSS is considered as the gold standard for stroke severity
rating as it has been shown to be a predictor of both short and long term outcome of stroke
patients [107]. In the NIHSS scale (0-42), score of 1-4 represents minor stroke, 5-15 indicates
moderate stroke, 16- 20 characterizes moderate to severe stroke and a score of 21-42 indicates
that the patient has severe stroke [108].

ASPECTS measures early ischemic changes in anterior circulation hyperacute ischemic
stroke [7]. For ASPECTS, a normal brain has a score of 10 and the score falls as more
brain regions are affected [109]. Patients with ASPECT score 0–5 benefit from mechan-
ical thrombectomy without increasing the risk of symptomatic intracerebral hemorrhage
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[13]. The American Stroke Association recently updated their stroke management guide-
lines, and one of the key selection criteria now includes ASPECTS. Patients with baseline
ASPECTS≥ 6 are advised to receive endovascular therapy [110].

The current study investigates whether curve fitted AIF estimation based on CNN, which
combines features of consistent baseline, peak amplitude, and identical recirculation por-
tions, improves volumetric assessment of core and penumbra. It is hypothesized that core
and penumbra assessment with CNN AIF could be validated with clinical scores such as
NIHSS and ASPECTS. We expect CNN-based AIF to identify core and penumbra in stroke
patients where traditional AIF methods fail. This may aid clinicians in making thrombec-
tomy and reperfusion therapy decisions.

5.2.2 Methods

Patient Population

The current study used CTP datasets of 160 stroke patients with large vessel occlusions
(male = 87, female = 73, median age = 73 years). These datasets were obtained from the
Veterans General Hospital in Taipei and its branch in Hsinchu, Taiwan. The Institutional
Review Boards for human studies gave this study their ethical approval (IRB-TPEVGH
2021-06-016 BC, IRB-2020-02-006B).

Imaging Protocol

A dose of 70 ml of contrast agent (iodine) was injected at a rate of 4 ml per second. Im-
ages were acquired on a clinical CT scanner (Phillips: Ingenuity CT) using a sequenced
acquisition (KVP/X-Ray Tube Current/slice thickness/slices 80 kv/190 mA/5/16) with a
24-hour onset-to-imaging time. Three experienced neuroradiologists scored the NIHSS and
ASPECTS, with the median NIHSS being 10(4-19) and the median ASPECTS being 8 (6-10).

Core and Penumbra estimation from CNN based AIF

CTP datasets were randomly divided into training (128 datasets) and validation datasets
(22 datasets). A widely used clustering algorithm estimated three AIFs for each dataset in
the training and validation sets to generate training and validation AIF curves. To estimate
the AIF, this clustering algorithm employs recursive cluster analysis in the Middle Cerebral
Artery (MCA) region. Training dataset density was improved for model training perfor-
mance using feature augmentation and spline interpolation. Mirroring, rotation, and both
mirroring and rotation were used for data augmentation. Initially, AIFs obtained from the
clustering algorithm on 128 training datasets contain intrinsic errors associated with shallow
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peak, distorted baseline, and non-identical recirculation phase ( Figure 5.8).

Training AIF curves are curve fitted (CF) to Gamma Variate hemodynamic function
(CGVM) (Equation 5.8) by well-known past algorithms in MATLAB and used as labels to
adjust these shape-based errors. Following augmentation, 1152 distorted arterial curves es-
timated by the clustering method were used as input sources, and 1152 curve fitted arterial
curves were used as labelled data for the CNN’s supervised training.

The CNN model architecture was built with Python’s Keras library. The CNN architec-
ture consists of a single input layer that accepts input in the form of an interpolated AIF
curve (500 points), two Convolutional layers (kernel length =2), a pooling layer, a flattening
layer, and two dense layers that are fully connected to the output layer. To connect the
convolutional layer with the average pooling layers, the ReLu activation function was used.
To connect the 36-neuron dense layer to the output nodes, the softmax function was used.
With a batch size of 32 and 17,238 total trainable parameters, the network was trained for
300 epochs. The optimizer was root means square propagation with an initial learning rate
of 0.001. The CNN model training was done on a workstation with hardware: Intel I5/Ram
:16 GB / GPU: 1070 (8 GB).

Validation was performed on 22 datasets following model training. For the testing phase,
distorted AIFs were chosen from a location other than the AIF location of the training
dataset. The CNN model takes as input a distorted AIF curve and outputs a probability
map of gamma variate fitted AIF curve (Figure 5.8). This Gamma variate fitted AIF curve
obtained from trained CNN is referred as CNN AIF. Deconvolution of Concentration time
curves (ct) with the CNN AIF (ca) estimates the residue function R(t) (Equation 4.12), which
further estimates core by thresholding CBF< 30% and penumbra volumes by thresholding
Tmax > 6s. The workflow to estimate perfusion parameters is described in Figure 5.8. The
core and penumbra volumes estimated by using CNN AIF are compared with the volumes
obtained from the AIF selected by the clustering algorithm.

Statistical Analysis

Spearman’s correlation coefficient was used to assess the agreement of the NIHSS and AS-
PECTS with core and penumbra volume. Mean volumetric differences were demonstrated
using Bland-Altman plots. Wilcoxon signed rank test was used at the group level to com-
pare perfusion parameters. MedCalc software (https://www.medcalc.org/) was used for all
statistical analysis.
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Figure 5.8: Workflow to estimate perfusion parameters.

5.2.3 Results

Figure 5.2 depicts the curve fitting performed by the CNN model. AIF location is marked
as a red dot on an axial CTP slice for a single dataset (Figure 5.2 (A)). The raw AIF is the
concentration curve of this arterial location plotted against time (Figure 5.2 (B)). The CNN
model accepts the curve as input after interpolation. As an output, the CNN model predicts
gamma curve fitted AIF (Figure 5.2 (C)).

Volumetric correlation of penumbra and infarct core with NIHSS and ASPECTS

Penumbra volumes calculated with the CNN AIF were positively related to the NIHSS score
(r=0.69; P 0.001) and negatively related to the ASPECTS (r=-0.43; P 0.001) (Figure 5.9(A),
Figure 5.9(B)). Table 5.1 shows that when penumbra volume is estimated using the CNN
AIF, it has a stronger positive correlation with the NIHSS score. When Tmax>4s, 8s, and
10s volumes are calculated using the CNN AIF, they have a higher positive NIHSS corre-
lation (Table 5.1). According to the Bland-Altman plots, the mean volumetric difference
between the tissue at risk estimated by the CNN AIF and without CNN AIF was 12.1 mL.
(Limits of agreement, -311.5 to 335.8 mL; Figure 5.9C).
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Figure 5.9: Volumetric agreement of the penumbra (Tmax >6s) and infract volume (CBF
< 30%) with NIHSS and ASPECTS. (A) Association of Tmax > 6s volume with NIHSS (B)
Association of Tmax > 6s volume with ASPECTS. (C)Bland -Altman plot for penumbra
estimated by CNN AIF and without CNN AIF. (D)Association of CBF < 30% volume with
NIHSS (E) Association of CBF < 30% volume with ASPECTS. (F) Bland -Altman plot for
the Infract core estimated by CNN AIF and without CNN AIF. NIHSS : National Institutes
of Health Stroke Scale, ASPECTS : Alberta Stroke Program Early CT Score.

Tmax volumes CNN AIF Without CNN AIF
r P value r P value

Tmax >10s 0.70 <0.001 0.50 <0.001
Tmax >8s 0.71 <0.001 0.54 <0.001
Tmax >6s 0.68 <0.001 0.54 <0.001
Tmax >4s 0.58 <0.001 0.46 <0.001

Table 5.1: Association between CT perfusion parameters and NIHSS scores (Spearman’s
correlation).

Infarct core estimated by CNN AIF correlated negatively with the ASPECTS (r=-0.49;
P <0.001) (Figure 5.9). Table 5.2 shows that Tmax>6s volumes estimated from CNN AIF
have higher negative correlation with the ASPECT score. Infarct core prediction using CNN
AIF or without it both demonstrate negative and similar correlation to ASPECTS (Table
5.2). Mean volumetric difference for the Infarct region estimated from CNN AIF without
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5.2. Core and Penumbra estimation using Deep learning based AIF in association with

clinical measures in Computed Tomography Perfusion (CTP)

CNN AIF was 4.0 mL (Limits of agreement, -58.5 to 66.4 Ml; Figure 5.9F).

Tmax volumes
CNN AIF Without CNN AIF
r P value r P value

Tmax >8s -0.40 <0.001 -0.45 <0.001
Tmax >6s -0.43 <0.001 -0.39 <0.001
Tmax >4s -0.35 <0.001 -0.25 0.003
CBF< 20 % -0.46 <0.001 -0.47 <0.001
CBF < 30 % -0.49 <0.001 -0.49 <0.001

Table 5.2: Association between CT perfusion parameters and ASPECTS scores (Spearman’s
correlation).

Penumbra and core regions estimation

In some cases, penumbra and core regions estimated without CNN AIF were not rational
for patient symptoms suffering from severe stroke. These patients were typically scored with
higher NIHSS (> 20) and lower ASPECTS (<5). We demonstrate this with examples of
two patients in Figure 5.10 and Figure 5.11. Patient 1 had a NIHSS score of 23 (severe
stroke), ASPECTS of 0 and acute occlusion of the left main coronary artery (LMCA occlu-
sion). Without CNN AIF, penumbra volume was 99 mL along with absence of infarct core
on left side representing flawed estimates. With CNN AIF, penumbra volume was 123 mL
and volume of core region was 10 mL (Figure 5.10).

Patient 2 had a NIHSS score of 23 (severe stroke) and right internal carotid artery (RICA)
occlusion. This patient reported for ischemic region at bilateral brain without CF, which
was not reasonable for his symptoms as ischemia should be on the right side only. Volume
of tissue at risk estimated without CNN AIF was 736 mL along with absence of infarct core
(Figure 5.11). With CNN AIF, volume of tissue at risk was 137 mL and volume of infarct
core was 6 mL along with presence of ischemic and core region mostly on right side (Figure
5.11). With CNN AIF mean core volume for these patients was 5 mL with median of 2 mL.
The ischemic region location could be visually more precisely located through the perfusion
maps derived with CF CNN model.

Group comparison of penumbra and core volume for stroke patients with CNN AIF and
without CNN AIF are demonstrated in Table 5.3. Wilcoxon signed rank test indicated that
the median rCBF< 20%, rCBF< 30%, rCBF< 38%, Tmax >10s, volumes estimated with
CNN AIF were statistically significantly higher. The median infarct core (rCBF< 30%) with
CNN AIF is 12 mL whereas without CNN AIF the median core volume is 0 (Table 5.3). As
these people have stroke, so the median of infarct core volume as zero might not reflect the
hypoperfusion in patients.
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5.2. Core and Penumbra estimation using Deep learning based AIF in association with

clinical measures in Computed Tomography Perfusion (CTP)

Figure 5.10: Comparison of infarct core and penumbra for stroke patients. A) CBF maps
derived with CNN AIF and without CNN AIF. B) Infarct Core estimated with CNN AIF
and without CNN AIF. (C) Tmax maps derived with CNN AIF and without CNN AIF. D)
Penumbra volumes estimated with CNN AIF and without CNN AIF.
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5.2. Core and Penumbra estimation using Deep learning based AIF in association with

clinical measures in Computed Tomography Perfusion (CTP)

Figure 5.11: Comparison of infarct core and penumbra for stroke patients. A) CBF maps
derived with CNN AIF and without CNN AIF. B) Infarct Core estimated with CNN AIF
and without CNN AIF. (C) Tmax maps derived with CNN AIF and without CNN AIF. D)
Penumbra volumes estimated with CNN AIF and without CNN AIF.
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5.2. Core and Penumbra estimation using Deep learning based AIF in association with

clinical measures in Computed Tomography Perfusion (CTP)

Mean (CNN AIF) Mean Median (CNN AIF) Median P value
CBF < 20% 13 10 3 0 < 0.001
CBF < 30% 23 19 12 0 < 0.001
CBF < 38% 32 25 18 0 < 0.001
Tmax >10s 70 50 27 6 0.002
Tmax >8s 86 67 47 27 0.012
Tmax >6s 113 101 64 55 0.386
Tmax >4s 243 213 140 163 0.416

Table 5.3: Mean and Median volume comparison of CT Perfusion parameters (Wilcoxon
signed rank test). CBF < 20% indicates blood flow reduction of 20% as compared to the
normal side.

The deconvolution-based model without CF used in recent stroke studies to estimate
ischemic regions is linear, despite the fact that estimation of core and penumbra depends
on a variety of factors [5, 2, 87]. Certain risk factors for ischemia include distorted CTP
signals, collateral status, and gray/white matter content [109]. Using perfusion thresholds
without correcting for distorted AIF signals may result in negligible core estimates. Fitting
distorted AIF to hemodynamic models greatly reduces distortion in the recirculation and
baseline parts of the AIF curve [90, 104]. The advantage of the CNN-based AIF algorithm is
that it solves the AIF distortion problem and allows for the selection of the best AIF curve
corresponding to distorted data points while ignoring noise or errors.

Conclusion

CNN-based AIF improves the estimation of penumbra and infarct core volumes. Better cor-
relation of penumbra and infarct volume with NIHSS and ASPECT scores were obtained
using the CNN-AIF. This serves as a motivation as well as evidence to include CF prior
to Tmax/CBF estimations. CF AIF could identify patients with core regions likely to be
ignored by conventional approaches. The inclusion of CF AIF can provide physicians with
reasonably accurate and precise perfusion parameter brain images that may aid them to
determine suitable triage, transport, and treatment decisions for stroke patients.
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Chapter 6

Selective Geodesic Variational
Segmentation Model with new Region
force

In this chapter, we focus on developing a segmentation model that can do selective segmenta-
tion on challenging medical images. The used medical images include T2 MRI brain tumour
images (Figure 6.1), where the focus is to segregate/segment the tumour region. Along with
the tumour images, we also test the purposed model on other medical images (Figure 6.1
(D), (F)) to do selective organ segmentation.

Figure 6.1: Medical images for selective segmentation. (A), (B), (C), (F) Brain Tumour T2
MRI images with the bright part being the Tumour region. (D) Abdominal CT image (E)
Joint image.
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We propose a effective framework for selective segmentation by adopting a region force
term along with a geodesic distance penalty based on a discrete TV formulation. The
proposed segmentation model is robust and competitive with the current state-of-the-art,
according to empirical evaluations. We compared the performance of our model to other
testing methods by evaluating segmentation scores of multimodal (MRI, CT) segmented im-
ages. In comparison to previous segmentation models, the proposed model is independent
of user input and allows for segmentation in medical images with high precision scores. This
chapter is based on the author’s submitted paper.

6.1 Introduction

Selective segmentation models extract object of interest from image z after some points in-
side or near the target area are available as marker points [20, 21, 45]. The marker set is
represented as M = {(xi, yi) ∈ Ω, 1 ≤ i ≤ k} , Ω is the image domain. With an initialisa-
tion obtained from marker set, segmentation solution ϕ involves obtaining minimiser of the
functional of the following form -

F = FRegulariser + FFitting + FDistance (6.1)

FRegulariser is a regulariser such as Total Variation (TV) or weighted-TV [28, 19]. The
regulariser considers the geometric properties to ensures that solution has a smooth bound-
ary. The regulariser widely used is the sum of weighted length of boundaries assembled with
a edge detector [20, 15, 44, 41, 23, 111]. The widely used formulation is -

∫
Ω
α(x, y)dΩ =∫

Ω
α(x, y)|∇ϕ|dΩ. Here, α is used as edge detector. The popular choice for edge detector

is α(x, y) = β
1+|∇z(x,y)|2 , with α, β being some properly chosen positive numbers [41]. Addi-

tionally, Gaussian smoothing of image z before computation of edge detector has also been
considered [41, 23].

Except in the vicinity of edges, the fitting term FFitting ensures that the object to be
segmented has homogeneous intensity inside it [38, 41]. The fitting term is defined in most
variational segmentation approaches as the euclidean distance between the data point inten-
sity and the average data point intensity of the marker set [41, 38, 112]. This quadratic region
force penalises the object of interest’s heterogeneity or lack of smoothness in the foreground
and background. This works well when the data points are homogeneous and spread out
over a large smooth region. When image data points have complex geometry and it is dif-
ficult to separate background and foreground, penalising heterogeneity becomes difficult [41].

Recent studies use geodesic distance penalty or Euclidean distance penalty as FDistance

[15]. The distance term penalises the distance between the markers in the set [15, 113, 114,
115]. This is done to encourage the segmented result to be close to some of the marker set’s
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106 6.2. Review of Selective Segmentation Model

points [116]. A recent study confirmed that the edge weighted geodesic distance increases
at edges and is intuitive for images with blurry edges [15]. Prior Total Variation (TV) de-
noising is required for the calculation of geodesic distance. Recent image denoising research
has shown that TV denoising using a more explicit discrete formulation is more robust and
produces sharp edges [19] . This motivates the use of the geodesic distance penalty involving
discrete TV formulation as FDistance in the intended model.

The proposed model is a different approach to the previous convex relaxed models [15, 41],
including a new region force as a fitting term and geodesic distance with discrete TV formu-
lation and as a standalone distance penalty. We use a primal-dual hybrid gradient method to
solve the functional model [33]. This is accomplished by solving a dual problem derived from
the functional of the primal model. It should be noted that the region force was previously
used in the reformulated Potts model for multi-phase segmentation and data clustering with-
out a geodesic distance penalty [41]. The prior denoising required to compute the geodesic
term has also been evaluated using the discrete TV formulation 4.3 [19]. To the best of our
knowledge, no other segmentation study has attempted to combine both region force and
geodesic term in a single segmentation framework.

The contributions of this chapter can be summarised as follows:

• We incorporate (a) new region force term (b) geodesic distance penalty in selective
segmentation framework.

• We improve the geodesic penalty term, with a new TV formulation for noise robustness.

• We use a primal-dual hybrid gradient numerical algorithm to achieve solution from the
dual formulation

• We propose a convex selective segmentation model and compare it with other segmen-
tation models.

The chapter is structured as follows; in section 2, we review some related studies. In
section 3, we discuss the formulation of the purposed model and also address computation of
the region force term and the geodesic distance term. Here, we also discussed the formulation
of a dual problem from the primary problem. Next, we present the numerical algorithm used
to achieve the segmented solution. Section 4 contains numerical results. In this section we
show that along with segmentation superiority, the proposed model is robust to noise and
user input. Finally, we conclude this chapter in section 5.

6.2 Review of Selective Segmentation Model

It would be beneficial to first examine and review some selective segmentation models.
Throughout, the original image is denoted by z(x, y) with image domain Ω ⊂ R2. We
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107 6.2. Review of Selective Segmentation Model

present here some quick thoughts on two previous selective segmentation models [15, 24]. In
next sections, along with our purposed model we will also present reformulated segmentation
models that incorporate region force and discrete total variation in the following models. We
will compare the models discussed here to our purposed model.

Spencer- Chen Selective Model

Spencer and Chen used the ideas from previous segmentation literature to reformulate a
segmentation solution into a convex minimisation problem [24]. Given, a two dimensional
gray scale image z(x, y) : Ω→ R, the Spencer-Chen model performs selective segmentation
by solving the following minimization problem

minu,c1,c2 [F(u, c1, c2)] = µ

∫
Ω

g(|∇z(x, y)|)|∇u|dΩ +

∫
Ω

[λ1(z(x, y)− c1)2 − λ2(z(x, y)− c2)2]udΩ

+θ

∫
Ω

DE(x, y)udΩ + α

∫
Ω

νϵ(u)dΩ

(6.2)

Where µ, λ1, λ2, θ, and α are positive constants and u is the selective segmentation solution.
c1 and c2 are the average image intensities of the foreground and background, respectively.
The edge detector function is denoted by g, and the Euclidean distance term is denoted by
DE. The additional penalty term νϵ = {max0, 2|u− 1

2
|−1} encourages the minimizer to be in

the range [0,1]. The Euclidean distance term is extremely sensitive to the marker set chosen.
The marker points must be evenly distributed in the region of interest to be segmented for
satisfactory segmentation. Even in the segmentation region, the Euclidean penalty is always
present, and it can be very high if there are few marker points. In the following section,
we employ a more robust geodesic distance penalty, which allows us to have small or zero
distance penalties at the edges and within the segmentation region.

Roberts Convex Geodesic Model

Given, a two dimensional gray scale image z(x, y) : Ω → R, the Roberts Convex Geodesic
model [15] performs selective segmentation by solving the following minimization problem -

minu,c1,c2 [F(u, c1, c2)] = µ

∫
Ω

g(|∇z(x, y)|)|∇u|dΩ +

∫
Ω

[λ1(z(x, y)− c1)2 − λ2(z(x, y)− c2)2]udΩ

+θ

∫
Ω

Dg(x, y)udΩ + α

∫
Ω

νϵ(u)dΩ

(6.3)
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Where µ, λ1, λ2, θ, α are positive constants and u is the solution for selective segmentation.
c1 and c2 are average image intensities of the foreground and the background. g is the edge
detector function. This model was an improvement on the Convex Spencer - Chen model. In
this model, the distance penalty term is edge weighted geodesic distance rather than the Eu-
clidean distance penalty. For noise robustness, the geodesic distance term is computed using
the isotropic total variation of image pixels. The geodesic distance increases closer to the
edges, providing a more accurate reflection of the true similarity of pixels in an image from
the marker set. One disadvantage of this model is that the fitting term does not incorporate
any local or statistical information from the marker set. As a result, segmentation results in
images with non-homogeneous, non-smooth, and scraggy boundary edges are unsatisfactory.
In next section, we present the concept of region force term to use local information from
the marker set.

6.3 Purposed Selective Segmentation Model

This work extends Roberts’ model by enforcing a new region force term and a discrete TV-
based geodesic distance penalty term as discussed in 4.3. We consider a problem with two
partitions, one for the region of interest to be segmented and one for the background.

Purposed model = New Region force + Edge detector term + Geodesic term (6.4)

Let ϕk(x) be an indicator function for 1 ≤ k ≤ K. The general representation of indicator
function associated with k-th sub domain can be defined as -

ϕk(x) =

{
1 x ∈ Ωk

0 x /∈ Ωk
(6.5)

We consider the collection of all indicator function represented by a set S = {[ϕk] :
∑K

k=1 ϕk =
1, 0 ≤ ϕk ≤ 1}. For the implementation of model, We shall consider two partitions ϕ1 and
ϕ2 as two indicator functions to from a set S1. Ω1 represents foreground and Ω2 is the
background. The average intensity of Ω1 and Ω2, calculated as mean average intensity is
represented by c1 and c2 respectively.

S1 = {ϕ1, ϕ2 : ϕ1 + ϕ2 = 1, 0 ≤ ϕ1 ≤ 1, 0 ≤ ϕ1 ≤ 1} (6.6)

c1 =

∫
ϕ1.zdΩ∫
ϕ1dΩ

(6.7)

c2 =

∫
(1− ϕ1)zdΩ∫
(1− ϕ1)dΩ

(6.8)
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109 6.3. Purposed Selective Segmentation Model

Region Force

We present a region force term based on the Wei-Yin segmentation model [41]. Under the
Bernoulli model, two region force functions f1 and f2 for the foreground and background
were obtained as negative log-likelihood functions. The probability functions p1 and p2 were
used to define the region force functions. The probability of a pixel (x, y) being part of a
segmented area is denoted by p1, and the probability of a pixel being part of the background
is denoted by p2. The region force functions were created with this purpose in mind.

f1(x, y) = 1− 2p1(x, y)

f2(x, y) = 1− 2p2(x, y)
(6.9)

The proximity of the image intensity z(x, y) to the average intensity of z(x,y) within
Ω1, denoted by c1, is used to calculate p1. A similar expression was used with the average
intensity of z(x,y) inside Ω2 for p2. σ represents the image variance. We assume that
each subdomain’s image intensity follows the Gaussian random model given by z(x) ≈
N(c1, c2, σ

2). p1 and p2 probability functions were computed as -

p1(x, y) =
e

(−|z(x)−c1|)
2σ2

e
(−|z(x)−c1|)

2σ2 + e
(−|z(x)−c2|)

2σ2

p2(x, y) =
e

(−|z(x)−c2|)
2σ2

e
(−|z(x)−c1|)

2σ2 + e
(−|z(x)−c2|)

2σ2

(6.10)

The new region force term is -

Region force term =
f1 − f2

2
= p2 − p1 =

e
(−|z(x)−c2|)

2σ2

e
(−|z(x)−c1|)

2σ2 + e
(−|z(x)−c2|)

2σ2

− e
(−|z(x)−c1|)

2σ2

e
(−|z(x)−c1|)

2σ2 + e
(−|z(x)−c2|)

2σ2

(6.11)

Edge Detector

The edge detector or regularisation term measures the geometry properties of the boundaries
of the region to be segmented out of the image [18, 41]. The sum of the weighted lengths of
each boundary was used as the regularizer in this work i.e

∫
δΩ1

α(x)dx. A popular choice for
the edge detector involves gaussian smoothing of image function z(x) as -

α(x) =
β

1 + γ|∇z(x)2|
(6.12)

Edge detector =

∫
Ω

α(x)|∇ϕ1|dx =

∫
δΩ1

α(x)dx (6.13)
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Geodesic Term with Discrete TV

To calculate Dg, we firstly select a marker set M . We use roipoly in MATLAB to choose
small number of points as marker points (Marker points are the vertices of the polygon
drawn) . Based on the Roberts convex geodesic model [15], geodesic distance (Dg) from the
marker set M is given by-

Dg(x) =

{
0 (x, y) ∈M

D0
g(x,y)

||D0
g(x,y)||L∞

(x, y) /∈M (6.14)

We want (a) small gradients in homogeneous pixels and large gradients at edges for selective
image segmentation, (b) noise robustness, and (c) enhanced qualitative nature of segmen-
tation results. Based on recent works, the authors considered discrete TV denoising [19] as
discussed in 4.3 and a penalty factor to include these aspects [19]. We use a penalty factor
ϵD to compensate for the distance penalty for objects that are far from a marker set with a
low penalty. D0

g(x, y) is derived from:

|∇D0
g(x, y)| = ϵD + βg|∇z|2 + γgDE (6.15)

Here, ϵD is penalty, |∇z| is total variation term calculated by the discrete TV formulation
and DE is the euclidean distance term.

Proposed model and Dual formulation

With the inclusion of region force, edge detector and regularisation term the purposed model
takes the form-

F = infϕ1ϵ{0,1},ϕ1∈S

∫
Ω

µ[p2− p1]ϕ1dx+

∫
Ω

α(x)|∇ϕ1|dx+ θ

∫
Ω

Dg(x, y)ϕ1dx (6.16)

In a past study , Chan, Esedoglu and Nicolova [50] transformed the above functional to a
convex functional by relaxing the binary constraint between 0 and 1. Then Functional F
can be written as -

F = inf0≤ϕ1≤1,ϕ1∈S

∫
Ω

µ[p2− p1]ϕ1dx+

∫
Ω

α(x)|∇ϕ1|dx+ θ

∫
Ω

Dg(x, y)ϕ1dx (6.17)
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Using p1 and p2,

F (ϕ1, c1, c2) = min0≤ϕ1≤1,ϕ1∈S

∫
Ω

µ

[
e

(−|z(x)−c2|)
2σ2

e
(−|z(x)−c1|)

2σ2 + e
(−|z(x)−c2|)

2σ2

− e
(−|z(x)−c1|)

2σ2

e
(−|z(x)−c1|)

2σ2 + e
(−|z(x)−c2|)

2σ2

]
ϕ1dx

+

∫
Ω

α(x)|∇ϕ1|dx+ θ

∫
Ω

Dg(x, y)ϕ1dx

(6.18)
Next, we derive the dual formulation [117] with inclusion of dual variable q1. We utilise
min-max theorem [118] and following proven equality -∫

Ω

α(x, y)|∇ϕ1|dx = max|q1|≤α(x,y)

∫
Ω

ϕ1divq1dx (6.19)

With the above equality the formulation of F reduces to -

min0≤ϕ1≤1,ϕ1∈S max|q1≤α(x,y)|

∫
Ω

[
µe

(−|z(x)−c2|)
2σ2

e
(−|z(x)−c1|)

2σ2 + e
(−|z(x)−c2|)

2σ2

− µe
(−|z(x)−c1|)

2σ2

e
(−|z(x)−c1|)

2σ2 + e
(−|z(x)−c2|)

2σ2

+θDg

]
ϕ1dx+

∫
Ω

ϕ1divq1dx

(6.20)
using min-max theorem the formulation reduces to -

max|q1≤α(x,y)| min0≤ϕ1≤1,ϕ1∈S

∫
Ω

[
µe

(−|z(x)−c2|)
2σ2

e
(−|z(x)−c1|)

2σ2 + e
(−|z(x)−c2|)

2σ2

− µe
(−|z(x)−c1|)

2σ2

e
(−|z(x)−c1|)

2σ2 + e
(−|z(x)−c2|)

2σ2

+θDg + divq1

]
ϕ1dx

(6.21)

We can also write the above equation as a dual problem -

max|q1≤α(x,y)|

∫
Ω

min

[
µe

(−|z(x)−c2|)
2σ2

e
(−|z(x)−c1|)

2σ2 + e
(−|z(x)−c2|)

2σ2

− µe
(−|z(x)−c1|)

2σ2

e
(−|z(x)−c1|)

2σ2 + e
(−|z(x)−c2|)

2σ2

+ θDg + divq1

]
dx

(6.22)
In this work, we use recent primal-dual algorithms [48, 36] to solve the aforementioned

dual problem. For the above min-max problem, we use the primal-dual hybrid gradient
(PDHG) algorithm [33] (12). A projected gradient descent step updates the primal and
dual variables after each iteration. This is a subset of the general primal-dual algorithms.
The convergence analysis of primal-dual algorithms has been extensively researched in the
literature and can be found in [119, 120, 121, 122, 123].
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Algorithm 2 PDHG algorithm

Set β, γ and θ
Compute α(x) = β

1+γ|∇z(x)2|

Compute Dg(x) =

{
0 (x, y) ∈M

D0
g(x,y)

||D0
g(x,y)||L∞

(x, y) /∈M from 6.15

initialize ϕ0
1 arbitrarily

for l =1 to maximum iterations do
Calculate c1 and c2 using 6.7 and 6.8
calculate and update for q1 andϕ1

ql1 = Π|qk≤α(x,y)| (q1 -βl ∇ ϕl
1)

ϕl
1 = ΠS (ϕl

1 -γl (divq
l
1 +( e

(−|z(x)−c2|)
2σ2

e
(−|z(x)−c1|)

2σ2 +e
(−|z(x)−c2|)

2σ2

− e
(−|z(x)−c1|)

2σ2

e
(−|z(x)−c1|)

2σ2 +e
(−|z(x)−c2|)

2σ2

) + θDg))

ϕl+1
1 =θ1 [ ϕl

1 ]+ (1-θ1)[ϕ
l+1
1 ]

end for
ϕ∗
1 ← ϕk

6.3.1 Mathematical analysis

Proposition 6.3.1. The model (??) is convex and there exists a minimiser ϕ ϵ W 1,2(Ω) for
F .

Proof. Using the concept of [124], we first show that 0 ≤ infϕF (ϕ) < ∞. For the lower
bound it can be easily shown by ϕ0 = 0. For the upper bound, we consider ϕ0 = 1 and
obtain the inequality-

infϕF (ϕ) ≤ F (ϕ0) =
∫
Ω
p2 − p1dx+ θ

∫
Ω
Dgdx <∞

We then demonstrate that functional F (ϕ) is convex by checking the convex inequality [125]
for each term of the functional, for ψϵ[0, 1]:

∫
Ω

[p2 − p1](ψϕ1 + (1− ψ)ϕ2)dx = ψ

∫
Ω

[p2 − p1]ϕ1dx+ (1− ψ)
∫
[p2 − p1]ϕ2dx

θ

∫
Ω

Dg(ψϕ1 + (1− ψ)ϕ2)dx = θψ

∫
Ω

Dg(ϕ1)dx+ (1− ψ)θ
∫
Ω

Dg(ϕ2)dx

∫
Ω

α|∇(ψϕ1 + (1− ψ)ϕ2)|dx ≤
∫
Ω

α|∇(ψϕ1)|dx+
∫
Ω

α|∇(1− ψ)ϕ2|dx

= ψ

∫
Ω

α|∇(ϕ1)|dx+ (1− ψ)
∫
Ω

α|∇ϕ2|dx
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So, F is convex. Also, recent study [124] has proved that the second term of F (ϕ) is lower
semi-continuous. The other terms are also lower semi-continuous as ∀ϕ1, ϕ0ϵW

1,2(Ω)-

limϕ1→ϕo inf

∫
Ω

Dgϕ1dx =

∫
Ω

Dgϕ0dx

limϕ1→ϕo inf

∫
Ω

[p2 − p1]ϕ1dx =

∫
Ω

[p2 − p1]ϕ0dx

Now, we can say that our model F (ϕ) is lower semi continuous. F (ϕ) is coercive also
as ϕ1 → ∞ implies F → ∞. With the information that W 1,2(Ω) is a reflexive banach
space, F (ϕ) is convex, lower semi-continuous as well as coercive, it can be concluded that a
minimiser exists in W 1,2(Ω).

6.4 Numerical Results

In this section we will provide the serval results in MATLAB to demonstrate the advantages,
efficiency, and stability of the intended segmentation model over previous and related selec-
tive image segmentation models. We compared the following models -

• M1- the convex Spencer - Chen model

• M2- the Roberts convex geodesic model

• M3- the reformulated Roberts model with inclusion of discrete TV in geodesic distance
penalty

• M4- the reformulated Spencer - Chen model with region force term

• M5- the purposed selective geodesic variational model with new region force term and
isotropic TV based geodesic distance penalty term

• M6- the purposed selective geodesic variational model with new region force term and
discrete TV based geodesic distance penalty

We extend M2-M3 to see if including discrete TV in the geodesic penalty term improves
M2. Specifically, the model M3 [15] is -

minu,c1,c2 [F(u, c1, c2)] = µ

∫
Ω

g(|∇z(x, y)|)|∇u|dΩ +

∫
Ω

[λ1(z(x, y)− c1)2 − λ2(z(x, y)− c2)2]udΩ

+θ

∫
Ω

Dg(x, y)udΩ + α

∫
Ω

νϵ(u)dΩ

(6.23)

113



114 6.4. Numerical Results

Where µ, λ1, λ2, θ, α are positive constants and u is the solution for selective segmentation.
c1 and c2 are average image intensities of the foreground and the background. g is the edge
detector function. Dg is the geodesic distance penalty which is zero for the marker set. For
all other image pixels it is computed as -

|∇Dg(x, y)| = ϵD + βg|∇z|2 + γgDE (6.24)

Here, ϵD is penalty, |∇z| is total variation term calculated by the discrete TV formulation
[19] and DE is the euclidean distance term. For more information on discrete TV, we refer
readers [19]. Similarly, we extend M1-M4 to see if including new region force as a fitting
term in a previous variational segmentation model is preferable. Specifically, M4 [24] is -

minu,c1,c2 [F(u, c1, c2)] = µ

∫
Ω

g(|∇z(x, y)|)|∇u|dΩ +

∫
Ω

λ

[
e

(−|z(x)−c2|)
2σ2

e
(−|z(x)−c1|)

2σ2 + e
(−|z(x)−c2|)

2σ2

− e
(−|z(x)−c1|)

2σ2

e
(−|z(x)−c1|)

2σ2

+e
(−|z(x)−c2|)

2σ2

]
udΩ + θ

∫
Ω

DE(x, y)udΩ + α

∫
Ω

νϵ(u)dΩ

(6.25)
Where µ, λ, θ, α are positive constants and u is the solution for selective segmentation.

c1 and c2 are average image intensities of the foreground and the background. g is the edge
detector function. DE is the Euclidean distance penalty term.

As test images, multi-modal medical images (MRI/CT) are used. After scaling medical
images in the range [0,1], numerical algorithms are applied. The linear -stretch scaling for-
mula is

zs =
z − zmin

z − zmax

(6.26)

Here, z represents the input image, and zmin and zmax represent the minimum and max-
imum pixel values of z. Three different sets of test results are showcased. Models M1-M4
are compared to the two versions of purposed model M5 and M6 in Test 1. The tested
images have (a) average target intensity greater than surrounding intensity and (b) non-
homogeneous, non-smooth, and scraggy boundary edges for the objects to be segmented. In
Test 2, we look at how the position and number of marker points affect the results. In Test
3, we will investigate the impact of noise on our purposed model. Finally, we use widely used
segmentation scores as the gold standard to assess segmentation quality. Experts labelled
the ground truths. The parameters µ and θ used for image segmentation comparison tests
are given in Table 6.1. We set β = 1, γ = 102, ϵD = 103,βg = 103, γg = 0.1 and θ1 = −0.5.
Identical sets of parameters were used across M1-M6 for the comparison results.
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1 2 3 4 5(a) 5(d) 5(g)
µ .225 .35 .25 .23 .23 .20 .25
θ 10 10 100 10 10 20 5
l 100 100 100 100 100 100 100

Table 6.1: Parameters used for the image segmentation comparison tests in Figures 1, 2, 3,
4, 5(a), 5(d), and 5(g).

6.4.1 Test 1

In this subsection, we present the segmentation results for models M1 - M6 for challenging
test images with average target intensity greater than surrounding intensity. The bound-
ary edges of the objects to be segmented are non-homogeneous, non-smooth, and scraggy.
Images are displayed alongside marker sets. Figure 6.2 and Figure 6.3 are T2 MRI brain
scans with tumor region to be segmented. Figure 6.4 illustrates the results of a bone image.
Figure 6.5 demonstrates the segmentation of the liver from a CT abdominal scan. Figure 6.6
shows the segmentation result of a purposed model on T2 MRI tumour scans from different
scanners and a CT image to generalise our model to images from different scanners. In figure
6.7, we display the convergence curve of the used numerical method.

The task of segmentation is difficult due to the high variance in shape and complicated
edges, as shown in figure 6.2 and figure 6.3. We can see that M1, M2, M3 and M4 are
unable to capture the boundaries of the object of interest. In particular, the tumour can be
segmented using the M5 and M6 models, which enforce the new region term. In the case
of M1 and M4, the regularisation term includes a euclidean distance term, which, because
it is negligible, captures fewer details in order to reach the boundaries. In other words, the
distance term is insufficient to offset the effect of fitting term.

The geodesic distance term is used as an additional regularisation term to weight the fit-
ting terms in M2 and M3. The fitting term encourages segmentation of bright objects while
ignoring non-homogeneous edges with low intensity, resulting in poor segmentation. M5 and
M6 utilise region force term along with geodesic distance term with the only difference being
the TV formulation used. Visually, M5 and M6 achieve comparable segmentation quality,
with M6 being able to segment sharp edges. The region force models M5 and M6 outperform
the previous models. The similar performance of M5 and M6 in comparison results suggests
that the region force term has a much significant impact on the segmented solution than the
TV formulation used in the computation of the geodesic distance term.
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Figure 6.2: Segmentation results of Models M1-M6 on brain tumor image
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Figure 6.3: Segmentation results of Models M1-M6 on brain tumor image.
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Figure 6.4: Segmentation results of Models M1-M6 on bone image.
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Figure 6.5: Segmentation results of Models M1-M6 on abdominal CT image.
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Figure 6.6: Segmentation results of M6.
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Figure 6.7: Convergence curve of the used numerical method

6.4.2 Quantitative comparisons

We use the Dice coefficient and the Jaccard coefficient as quantitative measures to evaluate
the performance of segmentation results. The Jaccard score starts at one for a segmenta-
tion that matches the ground label and decreases to zero as the quality of the segmentation
decreases. The dice score, a popular statistic score, assesses the similarity of the segmented
mask and the ground label. The DICE score and Jaccard Score are calculated using a model
segmentation result Σ and a ground truth label GT .

Dice score =
Σ ∩GT
Σ +GT

(6.27)

Jaccard score =
Σ ∪GT

Σ +GT − (Σ ∩GT )
(6.28)

Alongside the above scores we calculate sensitivity of segmentation results by -

Sensitivity score =
correctly classified pixels

correctly classified pixels + incorrect or falsely classified pixels
× 100

(6.29)

We refer sensitivity score as segmentation accuracy (SA) score. The mean and standard
deviation values of the DICE and JACCARD scores are shown in Table 6.2. For further
visualisation, in Figure 6.8 we present box plots of segmentation scores on a dataset of 50
medical images. These higher mean segmentation scores clearly demonstrate that our model
M6 is more effective than the models M1-M5.

121



122 6.4. Numerical Results

Model Dice Jaccard Sensitivity
µ σ µ σ µ σ

M1 0.2121 0.072 0.12 0.0467 0.126 0.0467
M2 0.7517 0.1603 0.6204 0.1894 0.6299 0.196
M3 0.7587 0.1574 0.6287 0.1869 0.6382 0.1929
M4 0.3077 0.1434 0.1888 0.1096 0.1942 0.1183
M5 0.9107 0.0174 0.8364 0.0293 0.8632 0.0406
M6 0.9143 0.0163 0.8424 0.0276 0.8688 0.04

Table 6.2: Segmentation scores (A) Dice score and (B) Jaccard score.

Figure 6.8: Box plot of Segmentation scores for M1-M6.

6.4.3 Test 2

We examine the impact of the number of marker points in this subsection. Different numbers
of marker points (3, 6, and 9 points) are used to segment the same MRI tumour scan in figure
6.9. The proposed Model M6 is unaffected by the number of markers within the segmented
region of interest. M6 generates similar segmentation accuracy in all three cases. According
to recent studies, the number of marker points influences the Euclidean distance term [15, 24].
The geodesic distance map and region force term remains nearly identical regardless of the
number of markers chosen, allowing our selective model to be independent of marker set size.

Second, we investigate the effect of marker point position. To validate position indepen-
dence, we choose four marker points close to the target object from various positions, namely
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all four points inside the boundary, two points inside and two points on the boundary, two
points outside and two points inside the boundary. When two marker points are on the
boundary in Figure 6.10 (d), the model M6 produces the same strict segmentation accuracy
as when all marker points are inside the boundary in Figure 6.10 (a).This is not the case
when the marker points are outside as shown in Figure 6.10 (g). To get better segmentation
results from the purposed algorithm, we conclude that the marker points should be inside
the object or near the boundary.

Figure 6.9: Segmentation results of M6 for different Marker points.
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Figure 6.10: Segmentation results of M6 for different Marker point positions.

6.4.4 Test 3

Finally, in figure 6.11, we examine the impact of noise on our model. The original image
is contaminated by Gaussian noise in MATLAB at various noise levels. A zero mean noise
with a variance of .05, .07, and .09 is added to the tumour image. Our model can achieve
adequate segmentation sensitivity of 92% when the variance is .05. However, in the presence
of excessive noise, the model produces an insufficient level of segmentation with segmenta-
tion accuracy as low as 77%.
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Figure 6.11: Segmentation results for M6 with different noise levels.

6.5 Conclusion

We propose a convex selective segmentation model with a novel region force and geodesic
distance penalty term. We tested the model on some challenging medical images to compare
the segmentation efficiency and effectiveness with the other segmentation models. The model
outperformed competing models in terms of segmentation results and segmentation scores.
The proposed model’s segmentation results are sufficiently robust to user input and noise
levels. To improve future work, we advise readers to incorporate higher-order regularizers and
data-driven new region force terms into the existing model. Application to 3D segmentation
data sets is also worth considering.
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Chapter 7

Deep Learning Segmentation and
Future Work

Although not initially part of the project, but we were curious to see the application of vari-
ational models in unsupervised segmentation. In this chapter, we incorporate a variational
model into a deep learning algorithm in an unsupervised framework. We will use purposed
variational segmentation method in chapter 6 as a loss function in a deep learning architec-
ture. We will also discuss some extensions to the work done in this thesis.

7.1 Unsupervised Segmentation

7.1.1 Introduction

Since the last ten years, deep learning-based segmentation has gained popularity [126, 127].
Deep learning segmentation is frequently regarded as the best method for automatic segmen-
tation [126]. In addition, variational segmentation methods have been extensively researched
for several decades. In this thesis, in chapter 4 and chapter 6 we have seen that variational
methods with objective of minimizing a functional as a segmentation solution are effective
on challenging images with low contrast variability, in-homogeneous intensity and scraggy,
uneven edges.

Deep learning is data driven and require manually marked ground truths [126, 128]. Vari-
ational methods often suffer with local minimums and have not been generalised on a larger
multimodal datasets [24]. This implies that deep learning and variational methods both
have limitations. Using both variational segmentation methods and deep learning based
segmentation in a single framework can help to address some of the previous weaknesses
and provide better segmentation results [128, 129, 130]. The standard learning approach in
deep learning networks is based on adjusting network weights and biases. Typically, a loss
function is minimised via backpropagation, which helps in iteratively updating the weights
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and biases of the convolutional networks [126]. Minimising the loss function encourages the
network’s outputs to be similar to the ground truth [126, 127]. Deep learning networks are
data driven and to achieve satisfactory results, usually thousands of labelled images are used
in the training stage. For tumour segmentation, labelled tumour images are usually marked
manually by multiple clinicians. As a result, labelled images are costly and time-consuming
to obtain.

Usually in variational segmentation methods, we have an energy functional and segmen-
tation results are achieved by minimising this energy functional. This inspires to use the
energy functionals as a loss function in a convolutional neural network [128, 129]. This will
eliminate the need for a substantial amount of labelled data during the training phase and
enable a network to use unlabelled data.

7.1.2 Deep Learning Implementation

U-Net

U-Net [1] is a popular CNN architecture that was first used for semantic image segmentation
in the biomedical field, but it has since shown to be successful in a variety of other image
processing tasks, including denoising, super-resolution, registration, and deblurring. There
are two main parts to the architecture as shown in Figure 7.1. Convolutions, non-linear
activation’s (ReLUs), and max-pooling layers make up the one path, also known as the
contracting path, which minimises the spatial size. The second path, involves more convolu-
tions, non-linear activation’s (ReLUs), and up-sampling to enlarge the spatial domain. Skip
connections help in concatenating early layers with later layers, making it easier to update
parameters in the early layers.

Purposed Network

In order to produce a precise and accurate prediction, UNet is a popular architecture for
semantic segmentation because it can extract both low level information from the initial
layers and high level information from the final layers [1]. For Tumour segmentation task,
we use UNet like architecture as shown in Figure 7.2. The inputs to this network are in form
of image z and geodesic distance penalty Dg as discussed in 6.3. The image and geodesic
distance are subjected to convolutional layers downwards separately. We use a dot product
to combine the two paths at the bottleneck. This creates a single upward path that produces
segmentation results similar to input image size.
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Figure 7.1: U-Net architecture (taken from Figure 1 from [1])

Figure 7.2: Structure of CNN used for tumour segmentation. Network has two downward
paths one for input image z and other for Dg. This network is based on U-Net [1].
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Unsupervised Algorithm

Marker set in form of a user input is usually obtained by a user clicking points on the target
object. This network in Figure 7.2 requires a user input M as it needs to pass through
geodesic distance Dg (6.3) through network and also to evaluate loss function.

Now we donot use ground truth labels for segmentation results. Instead, we implement an
unsupervised approach by using the purposed variational functional 6.18 as a loss function.
In the following loss function, N represents total training images. uΘ(z,M) is the output of
our network with weights Θ and input image as z and marker set as M . We denote the jth
output of the network with jth input as u(j) = uΘ(z(j), D(j)). The input image variance is
σ with µ, θ as positive parameters.

L(Θ) =
∑N

j=1

∫
Ω
|∇uj|dx+

∫
Ω
µ[ e

(−|zj−c
j
2|)

2σ2

e

(−|zj−c
j
1|)

2σ2 +e

(−|zj−c
j
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2σ2
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j
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]ujdx+θ
∫
Ω
Dj

gu
jdx

(7.1)

7.1.3 Predicted Results from Deep learning network

We use BraTS dataset [131, 132] of brain tumour MR images to show the performance of
our trained deep learning model. We used 100 images for training. The predicted results on
testing images are given below in Figure 7.3 and Figure 7.4. In the top row are the input
testing images and the bottom row represents the pixels in the image predicted as tumour.

It is evident that the unsupervised algorithm produces successful lesion segmentation.
Since it can be time consuming and expensive to acquire ground truth labels, the intended
unsupervised algorithm is capable of producing satisfactory results.

7.1.4 Conclusion

We proposed to use the variational segmentation model in chapter 6 as a loss function in a
UNet network. We trained the network in an unsupervised way without marked labels on
tumour images. Visual results represent that a adequate level of tumor segmentation can be
achieved in a automatic manner, once the model is trained.
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Figure 7.3: A collection of results using our test data from the BraTS dataset. The top row
has the input testing images and the bottom row represents the pixels in the image predicted
as tumour.

Figure 7.4: A collection of results using our test data from the BraTS dataset. The top row
has the input testing images and the bottom row represents the pixels in the image predicted
as tumour.
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7.2 Future Work

There are several directions to work for further research, here we discuss some topics for
extension:

• Arterial spin labeling (ASL) for penumbra estimation in stroke patients:
In chapter 4,5 we discuss problems associated with the imaging pipeline in MRP /
CTP for core and penumbra estimation. Another type of technique to measure tissue
perfusion in terms of penumbra and core is Arterial spin labeling (ASL)[133]. ASL
has a number of benefits over other perfusion techniques and is now regularly used
in clinical settings. ASL is perfect for research and clinical studies due to its non-
invasiveness and capacity to sensitively measure tissue perfusion in terms of penumbra
and core [133]. However, certain ASL artefacts (e.g. arterial transit artefact, blurring,
increased venous signal, etc.) lead to diagnostic pitfalls in interpreting ASL CBF,
Tmax maps [134]. Reworking on the ASL image pipeline by correcting ASL artefacts
and comparing ASL results with the perfusion MRI or CTP would be an ideal extension
of the work presented in the thesis.

• Segmentation extensions : The model we have suggested in chapter 6 is for seg-
menting grayscale medical images, but this could be generalised to segment colour
images as well.

• Video Segmentation: The models discussed in chapter 6 and chapter 4 can also be
applied to video segmentation or object tracking. Using the segmentation from one
frame/image slice can provide initialisation for the next frame/image slice, allowing
the tracking of objects over different time points.

• Deep Learning Segmentation for AIF: The model in chapter 4 for AIF segmenta-
tion may have a nice deep learning implementation, similar to that discussed in chapter
7. To identify AIF, CNN network can be trained in a unsupervised way by implement-
ing the variational segmentation as loss function in deep learning architecture.
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Handels, and Dennis Säring. Reference-based linear curve fitting for bolus arrival time
estimation in 4d mra and mr perfusion-weighted image sequences. Magnetic Resonance
in Medicine, 65(1):289–294, 2011.

[91] V.G. Kiselev. On the theoretical basis of perfusion measurements by dynamic suscep-
tibility contrast mri. Magnetic Resonance in Medicine, 46(6):1113–1122, 2001.

[92] K A Rempp, G Brix, F Wenz, C R Becker, F Gückel, and W J Lorenz. Quantification of
regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced
mr imaging. Radiology, 193(3):637–641, 1994. PMID: 7972800.

[93] Ona Wu, Leif Østergaard, Robert M. Weisskoff, Thomas Benner, Bruce R. Rosen,
and A. Gregory Sorensen. Tracer arrival timing-insensitive technique for estimating
flow in mr perfusion-weighted imaging using singular value decomposition with a block-
circulant deconvolution matrix. Magnetic Resonance in Medicine, 50(1):164–174, 2003.

[94] Linda Knutsson, Freddy St̊ahlberg, and Ronnie Wirestam. Absolute quantification of
perfusion using dynamic susceptibility contrast mri: pitfalls and possibilities. Magma
(New York, N.Y.), 23(1):1—21, February 2010.

[95] Birgitte F. Kjølby, Irene K. Mikkelsen, Michael Pedersen, Leif Østergaard, and Va-
lerij G. Kiselev. Analysis of partial volume effects on arterial input functions using
gradient echo: A simulation study. Magnetic Resonance in Medicine, 61(6):1300–1309,
2009.

[96] Guillaume Duhamel, Gottfried Schlaug, and David C. Alsop. Measurement of arterial
input functions for dynamic susceptibility contrast magnetic resonance imaging using
echoplanar images: Comparison of physical simulations with in vivo results. Magnetic
Resonance in Medicine, 55(3):514–523, 2006.

[97] Kenya Murase, Keiichi Kikuchi, Hitoshi Miki, Teruhiko Shimizu, and Junpei Ikezoe.
Determination of arterial input function using fuzzy clustering for quantification of
cerebral blood flow with dynamic susceptibility contrast-enhanced mr imaging. Journal
of Magnetic Resonance Imaging, 13(5):797–806, 2001.

[98] Matthias J.P. van Osch, Evert-jan P.A. Vonken, Chris J.G. Bakker, and Max A.
Viergever. Correcting partial volume artifacts of the arterial input function in quanti-
tative cerebral perfusion mri. Magnetic Resonance in Medicine, 45(3):477–485, 2001.

140



141 Bibliography

[99] Anthony Winder, Christopher D. d’Esterre, Bijoy K. Menon, Jens Fiehler, and Nils D.
Forkert. Automatic arterial input function selection in ct and mr perfusion datasets
using deep convolutional neural networks. Medical Physics, 47(9):4199–4211, 2020.

[100] Matthias J.P. van Osch, Jeroen van der Grond, and Chris J.G. Bakker. Partial vol-
ume effects on arterial input functions: Shape and amplitude distortions and their
correction. Journal of Magnetic Resonance Imaging, 22(6):704–709, 2005.

[101] I.C. van der Schaaf, Evertjan Vonken, Annet Waaijer, Birgitta K. Velthuis, Marcel J.
Quist, and Thijs L J van Osch. Influence of partial volume on venous output and
arterial input function. AJNR. American journal of neuroradiology, 27 1:46–50, 2006.

[102] Angelos Konstas, Gregory Goldmakher, and Micheal Lev. Theoretic basis and technical
implementations of ct perfusion in acute ischemic stroke, part 2: Technical implemen-
tations. American Journal of Neuroradiology, 30(5):885–892, 2009.

[103] Jose Bernal, Maria d.C. Valdés-Hernández, Javier Escudero, Anna K. Heye, Eleni
Sakka, Paul A. Armitage, Stephen Makin, Rhian M. Touyz, Joanna M. Wardlaw, and
Michael J. Thrippleton. A four-dimensional computational model of dynamic contrast-
enhanced magnetic resonance imaging measurement of subtle blood-brain barrier leak-
age. NeuroImage, 230:117786, 2021.

[104] N.D. Forkert, P. Kaesemann, A. Treszl, S. Siemonsen, B. Cheng, H. Handels, J. Fiehler,
and G. Thomalla. Comparison of 10 ttp and tmax estimation techniques for mr
perfusion-diffusion mismatch quantification in acute stroke. American Journal of Neu-
roradiology, 34(9):1697–1703, 2013.

[105] H Tei, S Uchiyama, and T Usui. Clinical-diffusion mismatch defined by nihss
and aspects in non-lacunar anterior circulation infarction. Journal of neurology,
254(3):340—346, March 2007.

[106] Zhe Cheng, Xiaokun Geng, Gary B Rajah, Jie Gao, Linlin Ma, Fenghai Li, Huishan
Du, and Yuchuan Ding. Nihss consciousness score combined with aspects is a favorable
predictor of functional outcome post endovascular recanalization in stroke patients.
Aging and disease, 12(2):415—424, April 2021.

[107] Harold Adams, Patricia Davis, Enrique Leira, Kevin Chang, and Birgitte Bendixen.
Baseline nih stroke scale score strongly predicts outcome after stroke: A report of the
trial of org 10172 in acute stroke treatment (toast). Neurology, 53(1):126—131, July
1999.

[108] Patrick D. Lyden. Using the national institutes of health stroke scale: A cautionary
tale. Stroke, 48:513–519, 2017.

141



142 Bibliography

[109] Maxim Mokin, Christopher T. Primiani, Adnan H. Siddiqui, and A. Turk. Aspects
(alberta stroke program early ct score) measurement using hounsfield unit values when
selecting patients for stroke thrombectomy. Stroke, 48:1574–1579, 2017.

[110] William J. Powers, Colin P. Derdeyn, José Biller, Christopher S. Coffey, Brian L. Hoh,
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