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Abstract

Skin lesions appear in various sizes and forms and can be localised in one place or
spread across the whole body due to different conditions. Dermatologists typically un-
dertake physical examinations to diagnose skin lesions. However, this task costs time
and requires excessive effort and can be inconsistent. Depending on the type of lesion
and whether or not malignancy is present, additional diagnostic testing, such as imag-
ing or biopsy, may be needed. Computer-aided diagnosis (CAD) systems, using clinical
and dermoscopic images, could provide a quantitative assessment tool to help clinicians
identify skin lesions and evaluate their severity. The recent progress in computer vision
and deep learning has encouraged researchers to harness medical imaging data to de-
velop powerful tools which could provide better diagnosis, treatment and prediction of
skin conditions.

By leveraging artificial intelligence techniques, including computer vision and deep
learning, this work introduces intelligent computerised approaches using dermoscopic
and clinical images to analyse and identify two types of skin lesions producing enhanced
medical information. This thesis designed, realised, and evaluated the benefit of features
learned automatically from images through the stacked layers of convolution filters in
the convolutional neural network (CNN) models. The final objective of conducting the
research in this thesis is to benefit patients with skin lesion condition assessment and
skin cancer identification without adding to the already high medical costs. An au-
tomated regression-based method has been developed in this thesis for acne counting
and severity grading from clinical facial images. In addition to the acne lesions, an-
other type of skin lesion has been considered, represented by melanoma-related lesions.
Two pipelines have been presented in this thesis to identify melanoma lesions. The
first framework benchmarks and evaluates several CNN models for melanoma and non-
melanoma classification from only dermoscopic images. While the second developed
model for melanoma detection integrates the seven-point checklist scheme with CNN
using both clinical and dermoscopic images.

The experimental results of the work presented in this thesis manifest improved/-
competitive performance compared to the state-of-the-art skin analysis methods using
several evaluation metrics. The findings of the developed approaches demonstrated ef-
fective analysis of skin lesions with high accuracy, reducing the risk of misdiagnosis,
and providing a more efficient means of detecting melanoma and automated acne lesion
severity grading. Additionally, the application of computational intelligence allows for
cost savings by reducing the need for manual analysis and enabling the automation of
grading support, resulting in a more reliable and consistent process. Overall, the new
automated methods based on computational intelligence demonstrate the benefits of de-
veloping computer vision and deep learning techniques for skin lesion analysis towards
early skin cancer identification and cost-effective and robust grading support.
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Chapter 1

Introduction

1.1 Background and Motivation

Decision-makers in the healthcare sector are constantly subjected to extreme pressure to

provide high-quality treatment with constrained capacity and limited resources. Health-

care providers have a significant difficulty due to the shortage of trained workers. Nowa-

days, cutting-edge technologies in healthcare can provide new means for enhancing

workers’ efficiency and patient diagnosis outcomes. The steadily-increasing digitisation

of healthcare and linking it with data has encouraged researchers to harness the data-

driven methods and potentials of artificial intelligence (AI) for the healthcare industry.

By exploiting data acquired and generated in daily clinical practice, AI-supported ser-

vices could support clinicians in assessing and analysing many medical and clinical

conditions, including skin lesions. A skin lesion can be defined as the abnormal appear-

ance of the skin in comparison to the surrounding skin [1, 2].

Skin imaging tools are a very crucial part of skin-related research. To date, many

popular skin imaging modalities have been developed and designed. Dermatoscopy is

one of the most common examination methods adopted to assess, and screen skin le-

sions by a dermoscopy modality [3, 4]. Recently, several datasets have become publicly

accessible to aid the study and development of automated skin image analysis using a

variety of imaging modalities, including dermoscopic and clinical photographs. These

advancements have sparked a surge of interest in skin image analysis research. With the

1
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advancement of skin imaging technologies and AI techniques, especially computer vi-

sion and deep learning represented by conventional neural networks (CNNs), there is a

genuine need for developing computer-aided diagnosis (CAD) systems to help towards

skin lesion analysis. These automated approaches could provide dermatologists with

means and intelligent assisted schemes to identify skin lesions from dermoscopy and

clinical photographs. The automatic skin lesion analysis methods and CAD systems

could significantly reduce the workload of manual examination and grading and thus

help towards decreasing undesirable costly screening.

1.2 Problem Statement

This thesis deals with two types of skin lesions: facial acne-related lesions and melanoma-

related lesions. The research problem of these two lesion types, both clinically and

technically, is stated as follows.

Facial acne vulgaris is the common form of acne that primarily affects adolescents

and might persist into adulthood, characterised by an eruption of inflammatory and/or

non-inflammatory skin lesions. The psychosocial consequences of acne scars can be ex-

ceedingly detrimental, and they may be a risk factor for major mental issues [5, 6]. The

effectiveness of acne treatment is usually established by the physician’s comprehensive

and valid assessment. For assessment by a physician, different forms of acne lesions

need to be counted and examined independently. On the other hand, manual acne lesion

evaluation can be difficult and time-consuming, considering the limited consultation

time. Autonomous acne identification, counting, and evaluation systems would help

dermatologists achieve a more reliable and consistent examination of acne in clinics,

thanks to the advancement of deep learning, computer vision, imaging technology, and

widespread access to cameras [7].

Generally speaking, developing automated methods for acne detection and severity

grading is significant because it offers several benefits over manual analysis. Firstly,

it is a more efficient and quicker process, reducing the time required for diagnosis and
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treatment. Secondly, automated methods have the potential to be more accurate and

consistent, reducing the risk of misdiagnosis and ensuring that patients receive the ap-

propriate treatment. Additionally, computerised techniques can help reduce the costs

associated with manual analysis, making it a more cost-effective solution for health-

care providers. Furthermore, these methods can help standardise the grading process,

providing a more objective and reliable assessment of acne severity. Ultimately, the de-

velopment of automated acne detection and severity grading methods can significantly

improve the quality of care for patients and help healthcare providers provide more

effective and efficient treatments.

The most common kind of cancer is skin cancer, which can be extremely malig-

nant. Melanoma is the most dangerous type of skin cancer. It grows quickly and has

the ability to spread to any organ. While it is serious skin cancer, it is highly curable

if detected early. Melanoma diagnosis is difficult, even for experienced dermatologists,

due to the wide range of morphologies in skin lesions [8]. The process of automati-

cally recognising melanoma lesions from dermoscopy photographs is challenging due

to various complexities. First, it is difficult to precisely split lesion areas due to the poor

contrast between healthy skin and skin lesions. Secondly, benign and malignant lesions

sometimes have a significant visual similarity, causing both lesions challenging to be

identified. Thirdly, individuals with diverse skin traits, such as natural skin colour, have

different melanoma-related lesions appearance in terms of texture and colour [9].

1.3 Aim and Objectives

The main aim of the research work conducted in this thesis is to develop robust, reliable,

and intelligent computerised approaches based on computer vision and deep learning

algorithms for skin lesion analysis. Developing such automated lesion analysis tech-

niques could help physicians in making their decisions regarding diagnosis and reduce

examination time. Achieving the research aim requires designing various advanced im-

age analysis tasks, including object detection, regression, and classification using deep
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learning algorithms. These techniques have been exploited through the thesis to help

develop automatic feature extraction methods from skin lesion images for skin condi-

tion and cancer identification. The research themes, considering the analysis of two

types of skin lesions, including acne- and melanoma-related lesions, are presented as

follows:

1. Grading of Skin Lesions Related to Acne From Facial Images using Regression-

based Deep Learning Model: Facial acne lesion counting and severity grading

using regression-based deep learning model.

2. Classification of Skin Lesions Related to Melanoma From Dermoscopic Im-

ages: Benchmarking and evaluation of CNN classification architectures for melanoma

lesion detection.

3. Classification of Skin Lesions Related to Melanoma From Dermoscopic and

Clinical Images via Seven-point Checklist Criteria: Integrating Seven-point

checklist with CNN classification architecture for melanoma lesion detection.

1.4 Hardware and Software

The developed systems in this thesis have been built up and designed using a vari-

ety of deep learning frameworks and computer vision libraries. For effective convo-

lutional neural network development and training, these frameworks reduce the time-

consuming procedure of starting learning from scratch and allow parallel computation

in graphical processing units (GPU). The compute unified device architecture (CUDA)

programming model, made available by NVIDIA1, allows for heavy parallel computa-

tions. These heavy computations are typically required by deep learning models. In this

thesis, the experimental work was carried out on a workstation (HP Z440) running the

Linux operating system and equipped with a 3.50GHz Xeon CPU, 12GB GTX TITAN

1https://www.nvidia.com/en-me/geforce/

https://www.nvidia.com/en-me/geforce/
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X GPU, and 16GB RAM. Tensorflow2, OpenCV3, Scikit-Learn4, NumPy5, SciPy6, and

Matplotlib7 are python libraries which are widely used by researchers. In chapters three

and five of this thesis, these libraries were used to implement image processing meth-

ods, deep learning models, and visualisation strategies. Methods developed in chapter

four have been implemented under the MATLAB environment using the same hardware

and GPU specifications used in the rest chapters. Statistics and Machine Learning, Deep

Learning, Image Processing and Computer Vision are the MATLAB toolboxes imported

to develop the work in chapter four.

1.5 Summary of Contributions

In general, the contribution of the presented work can be described as follows:

• An effective automated attention mechanism integrated with dilated UNet regres-

sor for acne counting and severity grading from two-dimensional facial images.

The main contributions of this method can be described as follows:

– Inspired by the scenario of crowed counting from kernel density maps and

leveraging the advances of deep learning models, a new method for acne

counting and severity grading called dilated UNet dense regressor guided

by attention mechanism was developed.

– Modifying the paths of contraction-expanding (encoder–decoder paths) in

the UNet segmentation model by introducing a bounding box encoder that

incorporates the box information generated by Faster R-CNN.

– This embedding adaptation helps to simultaneously handle high- and low-

density regions of acne lesions.

2https://www.tensorflow.org/
3https://opencv.org/
4https://scikit-learn.org/stable/
5https://numpy.org/
6https://scipy.org/
7https://matplotlib.org/

https://www.tensorflow.org/
https://opencv.org/
https://scikit-learn.org/stable/
https://numpy.org/
https://scipy.org/
https://matplotlib.org/
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– The proposed regressor exploits dilated convolutions to aggregate multi-

scale contextual details systematically.

– Experiments on public facial acne image datasets demonstrate the superior-

ity of the proposed method compared with the state-of-the-art techniques.

• Conducting a comprehensive evaluation and benchmark of convolutional neural

networks for melanoma diagnosis. The contribution of this work can be repre-

sented in three-fold:

– The proposed study provides an appropriate and powerful linkage between

the multi-criteria decision-making techniques and the objective performance

evaluation criteria, which are typically used to evaluate the deep learning

models. This integration with decision-making schemes helps rank the learn-

ing models based on multiple conflicting criteria and select the optimal

model in the presented case study.

– This is the first study that introduces the application of a multi-criteria decision-

making approach based on merging entropy and PROMETHEE methods to

help prioritise the deep convolutional neural networks used for melanoma

diagnosis and select the optimal model considering various criteria.

– This study presents a comprehensive evaluation of nineteen convolutional

neural network models with a two-class classifier. The models are trained

and evaluated on a dataset of 991 dermoscopic images considering ten per-

formance evaluation metrics.

• A deep learning-based method has been proposed to predict the 7-point check-

list criteria [10] and diagnose melanoma where the lesion features are designed

automatically. Multiple input convolutional neural networks (CNNs) considering

clinical and dermoscopic images as inputs have been developed. The incorpora-

tion of 7-point checklist criteria with CNN as well as learning the proposed model



Chapter 1. Introduction 7

using difficult and non-standardised images (clinical images), may aid with lever-

aging the reliability of melanoma diagnosis.

1.6 Publications

The results of the research work conducted in this thesis have been published in two

peer-reviewed conferences and two journals, as follows.

1. Saeed Alzahrani, Waleed Al-Nuaimy, Baidaa Al-Bander, “Seven-Points Check-

list with Convolutional Neural Networks for Melanoma Diagnosis ”, in 2019 8th

European Workshop on Visual Information Processing (EUVIP). IEEE, 2019, pp.

211–216.

2. Saeed Alzahrani, Waleed Al-Nuaimy, “Deep Learning Approach for Skin Le-

sion Attributes Detection and Melanoma Diagnosis ”, in 2020 2nd International

Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI).

IFSA, 2020, pp. 222-223.

3. Saeed Alzahrani, Baidaa Al-Bander, Waleed Al-Nuaimy, “A Comprehensive

Evaluation and Benchmarking of Convolutional Neural Networks for Melanoma

Diagnosis ”, Cancers 2021, 13, 4494. https://doi.org/10.3390/cancers13174494.

4. Saeed Alzahrani, Baidaa Al-Bander, Waleed Al-Nuaimy, “Attention Mechanism

Guided Deep Regression Model for Acne Severity Grading ”, Computers 2022,

11, 31. https://doi.org/10.3390/computers11030031.

1.7 Structure of the Thesis

The organisation of this thesis can be described as follows:

Chapter 2 covers an overview of the theoretical background of deep learning mod-

els and relevant clinical and technical skin lesion analysis methods and terminologies.
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Chapter 3 describes the proposed attention-guided UNet dense regressor for ad-

dressing the task of acne counting and severity grading in detail. The developed archi-

tecture incorporates dilated UNet dense regressor for density regression with the infor-

mation of bounding boxes generated from Faster R-CNN network, producing a hybrid

detection–regression framework.

Chapter 4 presents the developed evaluation and the benchmarking system, which

comprises five main stages, including data preparation, designing of CNN models, train-

ing of CNN models, evaluation criteria establishment, and benchmarking of CNN mod-

els using Multiple Criteria Decision Making (MCDM).

Chapter 5 proposes a new technique for skin lesion detection and melanoma diag-

nosis from dermoscopy and clinical images by combining seven-point checklist criteria

with convolutional neural networks.

Chapter 6 discusses and concludes the research work presented in this thesis, and

provides suggestions for potential future research themes.



Chapter 2

Literature Review

2.1 Skin Lesions

The biggest organ in the body is the skin. It offers defence against diseases, light, heat,

and cold. The epidermis and dermis, two primary skin layers and other cell types, make

up the skin. The epidermis, which is the top layer of skin, is made up of three kinds

of cells: melanocytes, which give skin its colour and defend against abrasion; round

cells called basal cells; and flat, rough surface cells called squamous cells. The nerves,

blood vessels, and sweat glands are located in the dermis, the skin’s innermost layer

[11]. The area of medicine that deals with both medical and surgical aspects of skin is

called dermatology. Figure 2.1 depicts the skin structure and layers.

FIGURE 2.1: The layers of human skin [11].

9
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A skin lesion is any area of skin that differs in size, colour, shape, or texture from

the surrounding area of skin. Skin lesions are relatively prevalent and frequently de-

velop from a localised skin injury, such as contact dermatitis or sunburn. While others,

including diabetes, infections, and autoimmune or genetic illnesses, might be symptoms

of underlying conditions. Most skin lesions are benign and painless, but some have the

potential to become malignant or pre-malignant, which means they might turn into skin

cancer [12].

2.1.1 Primary Skin Lesion Types and Causes

There are two basic types of skin lesions, primary and secondary lesions. The first

type, primary skin lesion, develops on initially healthy skin and has a known aetiology.

Freckles, acne, rashes, nodules, pustules, moles, and blisters are a few examples of

primary skin lesions that are frequently seen [13]. On the contrary, secondary skin

lesions emerge from a primary skin lesion as it progresses or as a result of traumatising

manipulation, such as scratching or rubbing. Crusts, sores, skin atrophy, ulcers, and

scars are a few examples of secondary skin lesions [12, 14].

Many conditions can cause different types of skin lesions. Primary skin lesions can

be seen as tumours or non-tumours (for instance, acne lesions). Common skin tumour

growths can either be non-cancerous, also called benign (typically very slow growing

and without spreading to other places) or cancerous, also called malignant (generally

growing extremely fast and potentially invading surrounding tissues). Both types are

described as follows:

1. Tumours

• Benign Skin Lesions

An irregularity, growth, or tumour of the skin that is not malignant is re-

ferred to as a benign skin lesion. Depending on its aetiology, benign lesions

can present in a variety of ways. Most melanocytic nevi, also known as
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moles, skin tags, seborrheic keratoses, lipomas, and cherry angiomas, are

examples of common benign skin lesions. When these lesions do not cre-

ate symptoms like discomfort or itching, they are often not harmful and

do not need treatment. It is typical for benign skin lesions to be symmetri-

cal, well-circumscribed, consistent in appearance, stable, or slowly growing.

Although it can be challenging to discern between benign and malignant le-

sions in some situations, in those contexts, a biopsy or surgical excision of

the afflicted region can be done to verify malignancy. [12]

Additionally, premalignant lesions like actinic keratosis and lentigo ma-

ligna, which have a higher chance of turning into various forms of skin can-

cer, should be differentiated from benign lesions. Lentigo maligna and ac-

tinic keratosis are brought on by prolonged, excessive sun exposure. While

lentigo maligna shows as localised dark-brown or black lesions, often on

the face and trunk, actinic keratosis manifests as dry, scaly patches of skin

across sun-exposed regions, such as the nose and forehead [12].

• Malignant Skin Lesions

A malignant skin lesion is, by definition, skin cancer. Melanoma and ker-

atinocyte carcinoma (non-melanoma) are the two primary kinds of skin can-

cer. While each kind of skin cancer has its own features, typical indica-

tions include lesions on the skin that are developing quickly, changes in the

colour or size of an existing lesion, or scabbing sores that do not heal over

time. Basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are

two kinds of keratinocyte carcinoma that develop from skin cells called ker-

atinocytes. A skin lesion with pearly, flesh-coloured skin and telangiec-

tasias—superficial blood vessels— may seem to be basal cell carcinoma.

Basal cell carcinoma might appear as a crusted or bleeding non-healing sore

or as a superficial scaling plaque. Squamous cell carcinoma, on the other

hand, typically presents as a thick, crusty sore with a reddish, inflammatory



Chapter 2. Literature Review 12

base that can ulcer (look like an open sore) and bleeds. Melanocytes, which

are skin cells, lead up to melanoma. Melanoma often has an unusual or

uneven appearance [12].

Skin cancer is the most frequent type of cancer and can be highly truculent

[8]. In the UK, more than 100,000 new cases of skin cancer are reported

each year [15]. In 2016, 1319 death cases from non-melanoma skin cancer

and 2285 death cases from melanoma skin cancer were reported [16, 17].

Non-melanoma skin cancer, including squamous cell carcinoma (SCC) and

basal cell carcinoma (BCC), are the vast majority of skin cancers. These are

unlikely to spread to the remaining parts of the human body; however, they

may be locally disfiguring if not diagnosed and treated early. In contrast,

malignant melanoma is a minor skin cancer type but a fetal and highly ag-

gressive, which tends to spread to the other parts of the body, causing death

if it is not diagnosed and treated early [18, 19].

2. Acne Vulgaris

Acne vulgaris, or acne, is a skin condition in which dead skin cells and oil

from the skin block hair follicles. This skin condition is clinically featured by

blackheads and whiteheads (open and closed comedones), small and tender red

bumps (papules), white or yellow squeezable spots (pustules), cyst-like fluctuant

swellings (cysts), and large painful red lumps (nodules), as shown in Figure 2.2.

It usually affects areas of skin with a high number of oil glands, such as the face,

chest, back and shoulders [20, 21]. Facial acne is most common during adoles-

cence, but it can persist into adulthood. After severe inflammatory acne, scarring

inevitably occurs. The scarring might lead to significant psycho-social conse-

quences and potential risk factors for serious mental health issues. The resultant

facial appearance can cause anxiety, low self-esteem, and, in the worst-case sce-

nario, depression or suicidal thoughts [5, 6]. Treatments include medications, and

sometimes laser or light therapy [22].
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FIGURE 2.2: Image example shows acne lesion types [23].

2.2 Imaging in Dermatology: Skin Imaging Modalities

Imaging technology has been used extensively in medicine ever since x-rays were first

developed. Different imaging modalities have been created as a result of technological

advances, the majority of which have been utilised to examine organs located deep

inside the body. Recently, the use of imaging technologies for skin examination has

attracted a lot of interest. Specialised photography, ultrasound, surface microscopy,

optical imaging, confocal microscopy, laser Doppler perfusion imaging, and magnetic

resonance imaging are among the methods now being utilised to investigate the skin.

These techniques can give insights that can help in the treatment of skin issues [24].

Optical imaging, a non-invasive imaging technology for skin cancer detection, is one

of the newest medical technologies. The use of technology to examine bodily structures

using visible light and photons is known as optical imaging. Because optical imaging

employs non-ionizing radiation, the patient is exposed to considerably less radiation.

Due to the non-invasive nature of the technology, there is no need for biopsies or surgi-

cal incisions to obtain the outcome of the diagnosis. This technique could distinguish

between soft tissues that are likely to be cancerous and those that are healthy. In addi-

tion to helping identify various skin disorders and lesions, these new approaches could
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be very useful for the early diagnosis of skin cancer [25, 26]. Several distinct optical

imaging methods are now being employed or explored for their potential application in

the detection of skin cancer [25, 27], including:

• Dermoscopy: it produces microscopic images in a realistic scenario that can iden-

tify an abnormality in the skin’s superficial dermis and epidermis layers using po-

larised light and a high-quality magnifying lens. Dermoscopy has been shown to

be useful in diagnosing many lesions, including squamous cell carcinoma, basal

cell carcinoma and actinic keratosis.

• Optical coherence tomography (OCT): real-time scans of the structures below

the skin are produced using optical coherence tomography (OCT) technology.

Squamous cell carcinoma, basal cell carcinoma and actinic keratosis can all be

diagnosed using optical coherence tomography (OCT), which has been utilised in

ophthalmology since 1991.

• Florescence photography: doctors can use cross-polarised light and florescence

photography to detect lesions like actinic keratosis and basal cell carcinoma that

can be invisible to the naked human eye.

• Confocal microscopy: produces a real view of the intra-cellular components of

several skin layers using a strong microscope and light from a laser. The confocal

microscope, despite its high cost, is becoming increasingly popular because of

its capacity to identify skin conditions non-invasively. Confocal microscopy is

particularly helpful in identifying squamous cell carcinoma, basal cell carcinoma

and actinic keratosis, as well as distinguishing between atypical moles (nevi) and

melanoma.

• High-frequency ultrasound: for skin lesion identification purposes, including be-

nign tumours, high-frequency ultrasound utilises ultrasonic signals which pass

across the skin layers and reflect an image, enabling clinicians to examine the

various layers and underlying structures.
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2.3 Skin Condition Diagnosis

2.3.1 Melanoma and Non-Melanoma Diagnosis

The initial stage in melanoma diagnosis is usually a visual assessment of the skin le-

sions. In comparison to inspection with the naked eye, dermatoscopy is one of the der-

matologists’ most popular imaging procedures, and a frequently used diagnostic tool

that enhances and improves the diagnosis of malignant and benign pigmented skin le-

sions [28]. Contrary to dermoscopy images, clinical images are produced by capturing

a direct snapshot of the skin disease location using a camera. They can act as an ad-

ditional patient’s medical record and offer various perspectives on dermoscopy images

[29]. Because of the impact of various imaging conditions (i.e. illumination and angle

of capturing), clinical images used for skin cancer identification have some drawbacks

of providing poor morphological information while simultaneously bringing flaws into

the diagnostic conclusions [30]. Figure 2.3 shows an example of a clinical image versus

a dermoscopic image.

FIGURE 2.3: Clinical image (left) versus dermoscopy image (right). Adapted from
[31].

A dermoscopy magnifies the surface of the skin lesion, allowing better visualisa-

tion of deeper skin structures. It provides improved diagnostic accuracy of skin lesions,

enabling the dermatologist to examine them more thoroughly. There are two main der-

moscopy modes: non-polarised dermoscopy (NPD) and polarised dermoscopy (PD).
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Non-polarised dermoscopy (NPD) is integrated with a magnification lens and light-

emitting diodes to provide illumination, enabling the visualisation of subsurface struc-

tures in the epidermis. Non-polarised dermoscopy (NPDs) require direct contact of the

glass plate with the skin surface and the presence of a liquid interface such as alcohol,

liquid paraffin, water, or ultrasound gel. Interface fluid dramatically increases the pen-

etration of light, reduces scattered radiation, and produces a clear, low-reflection image

which allows excellent visualisation of the superficial layers of the skin from the epi-

dermis to the dermal-epidermal junction (DEJ). Like NPD, Polarised dermoscopy (PD)

contains light-emitting diodes to provide illumination and are equipped with a magnifi-

cation lens. However, PDs use two polarised filters to achieve cross-polarisation. NPD

does not require direct contact with the skin and does not require the use of immersion

liquids. PD allows the visualisation of subsurface structures located at the dermal-

epidermal junction (DEJ) or superficial dermis. PD nearly blinds to the skin’s surface

and structures in the superficial epidermis. Hence, non-polarised dermoscopy reveals

superficial features while polarised dermoscopy shows deeper structures, inferring that

the use of both methods can provide complementary information [32, 33].

Melanoma is diagnosed in two ways: visual inspection and biopsy. ABCDE (Asym-

metric, Shape, Border, Color, Diameter, and Evolution) [34] are the main criteria used

for the visual screening of melanoma lesions based on a geometric description. Because

the ABCDE approach is entirely dependent on the practitioner’s visual acuity and expe-

rience, this approach can be performed efficiently only by trained dermatologists [35].

Seven-point checklist method [10] is also one of the most commonly recommended

and accepted skin cancer visual-based assessment strategies [36]. Seven-point checklist

method was established by Argenziano et al. [10] for the dermoscopic differentiation

between benign and malignant lesions.
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2.3.2 Acne Diagnosis and Severity Assessment

Acne vulgaris is simple to diagnose; however, its polymorphic structure makes it diffi-

cult to assess its severity. As the number of acne lesions varies during the course of the

condition, numerous evaluation criteria based on clinical screening and photographic

documentation have been established. Grading based on clinical examination, lesion

counting, and approaches requiring instruments, such as photography, fluorescent pho-

tography, polarised light photography, video microscopy, and sebum production mea-

surement, are developed to assess the severity of acne vulgaris. Clinical examination

(grading) and lesion counting are two widely used methods for acne severity assess-

ment [21, 37]. Clinical grading is a subjective approach that entails analysing the dom-

inating lesions, assessing the occurrences of inflammation, and measuring the degree

of involvement to determine the severity of acne. On the other hand, the acne lesion

counting-based method involves counting the number of a certain kind of acne lesion

and then evaluating the overall severity [37].

Acne severity has also been measured via photography, which involves compar-

ing patients to a photographic standard. This method has many disadvantages, includ-

ing the inability to palpate the depth of involvement and the difficulty of visualising

small lesions. When it comes to determining the density of comedones, fluorescence

and polarised light photography can offer some advantages over standard photography.

However, there are some shortcomings, such as a substantial time commitment and the

necessity for more complicated types of equipment [38]. In 2008, Hayashi et al. [39]

presented a grading method to classify acne lesions into four types using standard pho-

tographs and lesion counting. On half of each patient’s face, they counted the number of

open and closed comedones, papules, pustules, cysts, and nodules. They categorised the

eruptions into three groups: comedones, inflammatory eruptions (including papules and

pustules), and severe eruptions (including cysts and nodules). They graded the severity

of acne as (i) mild when the acne count is (0–5), (ii) moderate when the acne count

is (6–20), (iii) severe when the acne count is (21–50), and (iv) very severe when the
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acne count is more than 50, based on the number of inflammatory eruptions (papules,

pustules) or lesions on half of the face.

2.4 Artificial Intelligence: Computer Vision and Deep

Learning

The study of computer science that emphasises developing algorithms for carrying out

activities typically thought to need human cognition and intellect is known as artificial

intelligence (AI). Through the usage of intelligent technology, the industry has been

developing and integrating into daily life. Numerous AI research fields, such as com-

puter vision, machine learning and deep learning, natural language processing (NLP),

robotics, expert systems, and fuzzy logic, have had practical applications for various sci-

entific fields [40].

2.4.1 Computer Vision

In order to comprehend the concept of computer vision, it is imperative first to examine

the definition of machine vision. Machine vision refers to the capability of machines,

typically computers, to interpret and understand visual information in the same way

humans do. It involves the use of cameras, algorithms, and software to process im-

ages or videos and extract meaningful information from them. Robotics, a branch of

AI, is an example of a field that uses machine vision widely. An example of a robot

that was designed based on machine vision systems is Sophia [41], one of the world’s

most well-known robots due to its advanced artificial intelligence and human-like ap-

pearance. Sophia has a realistic face with expressive eyes, eyebrows, and a mouth that

can move and change expression, making it capable of mimicking human gestures and

emotions. A camera is typically used in a machine vision system to capture images.

Computer vision, the field of study within computer science and artificial intelligence

and the software part of the vision system, then analyses and interpret the images by
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applying certain algorithms before guiding other system components to respond to the

provided information. It aims to develop algorithms and technologies that enable com-

puters to recognise and understand visual content, including images, videos, and 3D

scenes [42, 43].

Self-driving cars, which employ several cameras, radar, lidar, and sensors to scan

the visual field around the vehicle and make driving judgments, are a common use of

machine and computer vision. The use of machine and computer vision in healthcare is

another significant application. Machine and computer vision helps healthcare profes-

sionals to detect disease symptoms significantly earlier and develops preventative strate-

gies for maximising medical service outcomes. Applications of machine and computer

vision in healthcare range from image analysis to surgical intervention and guidance.

Automatic image processing, including medical images, is an interdisciplinary area that

discusses how computers can interpret visual images or videos. Popular tasks involving

the study of images involve classification, detection and segmentation. The algorithm

aims at classifying images into two or more groups within the classification function.

The algorithm seeks to localise structures in 2D or 3D image space within the detection

task. In the segmentation function, the algorithm attempts to give an organ a pixel-wise

delineation [42, 43].

2.4.2 Machine Learning and Deep Learning

Recent advances in science have made Machine Learning (ML) and Deep Learning

(DL) well-known terms in artificial intelligence. An AI subclass called machine learn-

ing enables computers to learn without explicit programming. In conventional machine

learning models, statistical approaches are employed to identify the category (class)

information based on attributes extracted from data. Human scientists typically seek to

find and extract the image features that best reflect the visual data.

In general, there are four categories of deep learning and machine learning algo-

rithms: reinforcement learning, unsupervised learning, semi-supervised learning, and
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supervised learning strategies. In the supervised learning scenario, data professionals

provide algorithms with labelled training data as well as parameters to compute the cor-

relations and discrimination in data samples. The algorithm’s input and output used

for training are pre-defined. In an unsupervised learning scenario, algorithms that learn

from unlabelled data are built to infer or correlate significant correlations among data

samples. Clustering algorithms using exploratory data analysis techniques are applied

to find hidden patterns or groupings in datasets. In semi-supervised learning, semi-

labelled datasets serve as the foundation for the learning process. This method has the

benefit of utilising the least amount of labelled data available. In addition, this approach

has certain drawbacks, including the potential for inaccurate outcomes due to irrelevant

input features in training data. For the purpose of training a computer programme to

complete a multiple-step procedure for which there are rules, a reinforcement learning

scheme is used. Here, the learning model is designed to run a specific task and provide

feedback (positive or negative) so that the algorithm responds to accomplish the task.

The algorithm can decide what to do next to approach the final goal of the assigned job

[44].

The way data is handled, analysed, and modified has altered due to recent develop-

ments in ML, particularly the newly developing topic of deep learning. The enthusiasm

around deep learning, a cutting-edge field of artificial intelligence and a sub-type of

machine learning results from the most representative and discriminative data attributes

being hierarchically learned in an end-to-end fashion [45]. In deep learning techniques,

a type of representation learning, no manually extracted feature set is used. The deep

learning algorithm discovers on its own which attributes are most effective in categoris-

ing the data. Representation learning schemes in deep learning algorithms may out-

perform manually created features (also called hand-designed or hand-crafted features),

providing sufficient training data. Figure 2.4 shows how the deep learning concept dif-

fers from machine learning and how they work. Deep learning techniques have greatly
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succeeded in several real-world applications, including target detection and identifi-

cation and robotics [46]. These techniques have significantly outperformed state-of-

the-art methods in various disciplines and have gained significant attention from both

the academic and industrial worlds [47]. The most popular deep learning models are

Convolutional Neural Networks (CNNs) [48], Recurrent Neural Networks (RNNs) and

Long Short Term Memory Networks (LSTMs) [49], Generative Adversarial Networks

(GANs) [50], Deep Belief Networks (DBNs) [51], Restricted Boltzmann Machines

(RBMs) [52], and Autoencoders [53].

Convolutional Neural Networks (CNNs) algorithm [48] is the most common deep

learning model applied to solve several computer vision tasks, including classification

[54], detection and localisation [55], segmentation [56]. They are well suited for im-

age classification and recognition tasks due to their ability to capture local and spatial

features. Recurrent Neural Networks (RNNs) [49] are good at handling sequential data

such as time-series and speech recognition. However, they tend to struggle with cap-

turing long-term dependencies. Long Short-Term Memory Networks (LSTMs) [49]

address this limitation of RNNs and are commonly used in speech and language pro-

cessing. Generative Adversarial Networks (GANs) [50] are used for generating new

data similar to existing data. They consist of two parts: a generator and a discrimi-

nator. The generator generates data and the discriminator evaluates it. GANs can be

used for image generation and super-resolution. Deep Belief Networks (DBNs) [51]

are generative models that learn a probability distribution over the input data. They

are mainly used for dimensionality reduction and feature learning. Restricted Boltz-

mann Machines (RBMs) [52] are shallow, two-layer generative models used for feature

learning and dimensionality reduction. Autoencoders [53] are neural networks used for

unsupervised learning and dimensionality reduction. They learn a compressed repre-

sentation of the input data. CNNs have proven to be effective in medical image analysis

and have shown promising results in identifying lesions, particularly in identifying ab-

normalities and detecting diseases [43, 57, 58]. Consequently, in the present work, it

has been elected to concentrate on utilising Convolutional Neural Networks (CNNs) to
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analyse medical image data. The concept and components of the CNNs are explored in

the next section.

FIGURE 2.4: Machine learning and deep learning concepts [59].

2.4.3 Convolutional Neural Networks

Artificial convolutional neural networks (CNNs) are the most popular, well-established

and often utilised technique for carrying out computer vision tasks in the domain of deep

learning (DL), according to [60]. The fundamental advantage of CNN over its forerun-

ners, such as artificial neural networks (ANNs), is the identification of the pertinent

attributes automatically without human intervention. They have been widely used for a

variety of industries and applications, including audio and speech processing [61] and

computer vision [62, 63]. They are composed of a structure resembling traditional arti-

ficial neural networks, which were modelled to mimic the brain neurons of both animals

and humans. Particularly, the CNNs simulate the complicated cell pattern that creates

the visual cortex in a cat’s brain [64]. According to Goodfellow et al. [65], ”parameter

sharing,” ”sparse interactions,” and ”equivalent representations” are the three main ad-

vantages of CNN. Contrary to fully connected networks (FC) that handle 1D input data,

CNNs exploit the local connections and shared weights from 2D data structures, such as
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image and video data. CNNs target to utilise a relatively small number of parameters,

which boosts the speed of the model’s convergence and makes training easier. There are

multiple convolution layers stacked before pooling layers in a typical form of CNNs,

analogous to the multi-layer perceptrons (MLPs), followed by fully connected (FC) lay-

ers attached to the top layers of the CNNs. The fully connected (FC) layers located on

the top of the CNNs are typically represented by artificial neural networks (ANNs) to

produce the class label of the input sample. Figure 2.5 depicts a simple structure of a

CNN, illustrating its main components.

FIGURE 2.5: Simple structure of a CNN model, illustrating its main components. An
example of typical CNN architecture with 2 convolutional layers, 2 pooling layers, and
a fully connected layer (FC), which provides the final outcome of classification into

one of the binary/multiple classes [66].

Artificial neural network (ANN), also called Multi-layer Perceptrons (MLPs), is

composed of artificial units of neurons, often referred to as network nodes, designed to

mimic the human brain. Three layers of these neurons are arranged next to each other:

the input, hidden, and output layers, as shown in Figure 2.6. Each node receives infor-

mation from data in the form of inputs x, multiplies them using random weights w, and

then adds a bias b. Finally, to compute which neuron to be activated, nonlinear func-

tions f (sometimes referred to as activation functions) are used [66]. Linear operations

between the input x from the input layer with the parameters w, b are first computed,

and an element-wise non-linearity is then applied as follows:

f = η
(
wtx + b

)
(2.1)
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where η refers to a non-linear activation function. Thus, the basis of the CNNs is an

MLPs ANN.

FIGURE 2.6: Artificial neural network (Multi-layer Perceptrons (MLPs)) [66].

Convolutional neural network (CNN) models have demonstrated superior evalua-

tion performance since they can extract features from the data without needing hand-

designed attributes. These models include, but not limited to, AlexNet [48], GoogLeNet

(Inceptionv1) [67], VGG [68], InceptionResNetV2 [69], Inception3 [70], DenseNet

[71], ResNet [72], MobileNet [73], Xception [74], ShuffleNet [75], NASNetMobile

and NASNetLarge [76], Darknet-19 [77], EfficientNetB0 [78], Darknet-53 [79], and

SqueezeNet [80]. Figure 2.7 shows the relative processing times and accuracy of pop-

ular CNN models for image classification, utilising an NVIDIA Tesla P100 GPU and a

batch size of 128. Each blue marker in the graph represents the size of model [81].

The utilisation of graphics processing units (GPUs) to train the deep learning mod-

els was one of the essential aspects. The first applications for GPUs were in computer

gaming. Yet, to construct the back-propagation technique in deep learning algorithms,

researchers took advantage of the computing power of GPUs. Due to the acceleration

provided by GPUs, researchers were able to train deeper convolutional neural networks,

which reduced error rates. Researchers have maintained improving deep learning per-

formance because of theoretical advancements in the field, the use of GPUs, and the

accessibility of massive labelled datasets. The usage of GPUs is demonstrated in Fig-

ure 2.8 by depicting the percentage of ImageNet entries over time for the image classi-

fication task, utilising graphic processor units (GPUs). Through platforms like Kaggle
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FIGURE 2.7: Most commonly used convolutional neural network models [81].

[82] that provide data and an environment for running deep learning algorithms using

GPUs, public data is becoming more conveniently available for analysis [83]. Deep

learning, especially CNNs, has become more feasible for challenging computer vision

applications due to these breakthroughs.

FIGURE 2.8: Percentage of ImageNet entries over time for the image classification
task, utilising graphic processor units (GPUs) [84].

In this section, the main architecture of the CNN model is described as follows [85]:
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1. Convolutional Layer: the fundamental building units of convolutional neural

networks (CNNs) are convolutional layers. The convolution operation is the pro-

cess of applying a pre-defined filter to an input image to produce feature maps.

Feature maps highlight the locations and intensity of identified features in an im-

age created by applying the convolutional filter. CNNs are distinctive in their

ability to apply several parallel filters on a training dataset, producing significant

and representative feature set [86]. The convolution operation is illustrated in

Figure 2.9.

FIGURE 2.9: Explanation of Convolution operation [87].

The convolutional layer needs three hyper-parameters to be predefined. These

hyper-parameters are the filter number and size, stride, and zero-padding style.

The number of convolutional filters employed in a certain layer is indicated by

the filter number. The filter size is the size of the filter’s receptive field, typically

odd dimensions like 3 × 3, 5 × 5, etc. The motion distance of the filter across the

image is called stride. The filters slide over the input image 1 pixel at a time if

the value of stride is 1. When the stride is two, the filters slide while jumping two
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pixels at a time. Padding the input volume with zeros at the edge of the image is

a common practice called zero-padding. Zero padding enables adjustment of the

spatial output size. The mathematical representation of the convolution operation

using k filter weights is given as follows:

yi = f(b +
∑

i

xi ∗ ki) (2.2)

Where f refers to a non-linear activation function, xi ∗ ki is a convolution opera-

tion between the input x with the convolutional filter (kernel) ki at position i, and

b represents the bias of the model.

2. Pooling Layer: downsampling typically referred to as pooling layers, carries

out dimensionality reduction and minimises the number of parameters in the in-

put data. The pooling operation slides a filter over the whole input similarly to

the convolutional layer, with the exception that this pooling filter lacks weights.

Alternatively, the kernel (filter) populates the output array by applying an aggre-

gation function to the values covered by the filter’s receptive field. This layer is

typically added after the convolution layer. As shown in Figure 2.10, there are

two primary forms of pooling operation: maximum pooling (max) and average

pooling. The pixel with the highest value is placed in the feature map’s output

array as the max pooling filter slides over the input image. This method is applied

more frequently than average pooling. Sliding over the input, average pooling de-

termines the average value covered within the receptive field and passes it to the

resulting output array. Both window size and stride are hyper-parameters for the

pooling layer. The pooling layer is a lossy layer that loses information provided

in the feature map but offers CNN several advantages. This layer assists in reduc-

ing the complexity and dimensions of the feature map and lowering the danger of

overfitting [88].
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FIGURE 2.10: Explanation of pooling operations: Average and Max pooling layers
[89].

3. Fully-Connected Layer: in convolutional neural networks, the convolutional and

the pooling layers together make up a block. Depending on the task’s complexity,

the number of these layers could be expanded to capture finer attributes (fea-

tures) at the expense of additional computation power. The resulting feature rep-

resentation is flattened and given to a typical fully-connected neural network for

image classification/regression. FC layers are typically used to optimise objec-

tives like class scores and are often attached to the top of the CNN layers [90].

4. Activation Functions: a neural network’s activation function describes convert-

ing the weighted sum of the input image into one neuron or multiple neuron out-

puts. A ”transfer function” is another name for the activation function. It may

be referred to as a ”squashing function” if the output range of the function is

constrained. Numerous activation functions have nonlinear behaviour, known as

”nonlinearity”. Various activation functions may be employed in different lo-

cations (layers) of the network architecture. The selection of activation func-

tions significantly influences the network’s performance. It is also common for

activation functions to be differentiable, which enables the computation of the

first-order derivative for a provided input value. Given that the CNN is typically
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trained using the back-propagation, which needs the derivative of the estimated er-

ror to update the model’s weights, the activation function should be differentiable.

Although CNN uses many different kinds of activation functions, only a few of

them are performed for real-world scenarios. Examples of activation functions

utilised in the CNN are Tanh, Sigmoid, ReLU, Leaky ReLU, and Noisy ReLU

[91]. ReLU is the most commonly utilised function in the CNN context, which is

defined as follows:

θ : x → max(0, x) (2.3)

5. Loss Functions: the disparity between the output generated by the CNN and the

true (target) value is measured by the loss function. The gradients needed to up-

date the weights can be derived from the loss function. The cost is determined by

taking the average of all losses over training data fed to the network during the

training phase. Several loss functions, such as Binary Crossentropy (BCE), Cat-

egorical Crossentropy(CCE), and Mean Square Error (MSE), can be utilised to

achieve the objective of the learning process. The probability for each class of the

data used for training is produced by Softmax, where the sum of these probabili-

ties should be equal to one. A Softmax activation function with a Cross-Entropy

loss makes up Softmax loss. The binary classification applications typically em-

ploy BCE loss. When utilising the BCE loss function, only one neuron unit in

the output layer is needed to classify the dataset into two categories. In CCE,

for multi-class classification problems, the number of (nodes) neuron units on

the output layer must be equal to the number of classes provided in the train-

ing dataset. Additionally, a softmax activation should be used within the final

layer such that the output of each neuron maintains a probability score between

(0–1). Regression tasks usually employ MSE loss. As the name implies, this loss

is determined by averaging the squared discrepancies between ground truth (real

value) and predicted outcomes. For instance, BCE can be defined as follows:
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Hd̂(d) = −d log(d̂) − (1 − d) log(1 − d̂) (2.4)

Where d̂ represents the estimated outcome from the network and d refers to the

target value.

6. Over-Fitting and Regularisation: model over-fitting is a serious problem and

can cause the model to produce misleading information. When the CNN al-

gorithm works exceptionally well on training data but keeps failing on unseen

test data, this condition is referred to as over-fitting. In contrast, the under-fitted

models do not learn enough from the provided training dataset and subsequently

do not train well. The models are deemed to be ”appropriate-fitted” if they work

well on both the training and unseen testing sets of data. Figure 2.11 shows the

phenomena of over-fitting, under-fitting, and the correct fit.

FIGURE 2.11: Over-fitting, under-fitting, and the correct fit in a model.

The most common technique typically used to overcome over-fitting is regulari-

sation. Regularisation, in general, penalises the coefficients that cause the over-

fitting of the model. Deep learning researchers use many concepts and techniques

to help reduce the model regularisation, including weight decay (L1 regularisa-

tion (LASSO) and L2 regularisation (Ridge)), dropout, data augmentation, trans-

fer learning, early stopping, and batch normalisation. These techniques are de-

scribed as follows [85]:
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• Weight decay: the names L1 and L2 regularisation come from a vector’s

corresponding L1 and L2 norms. When computing the cost using a loss

function, an auxiliary term known as regularisation is introduced to penalise

complicated CNN models. Both L1 and L2 might apply a penalty to the

cost function considering the CNNs’ complexity.

• Early stopping: automatically halt the training process when a particular

performance metric (such as accuracy/validation loss) stops progressing.

• Data augmentation: it is a method for producing new data from the existing

set to artificially increase the size of the data used for training. Using data

augmentation to reduce the over-fitting is a reasonable solution if the size of

the training dataset is not enough to achieve improved performance from the

CNN model. Geometric transformation, which allows to flip, rotate, crop, or

translate images arbitrarily, is one example of data augmentation strategies.

Changing the colour channels of images or enhancing colour are examples

of colour space transformation which target increasing the image data based

on the data augmentation concept. Furthermore, applying sharpening and

blurring filters on images is also a data augmentation technique.

• Transfer learning: in the transfer learning scheme, a previously trained model

is used as the foundation for a new model on a similar computer vision task.

Simply said, a model developed for a certain task is used for another similar

task to facilitate optimising and training the second task easily and quickly.

Transfer learning enables to utilise of data from bigger datasets to reduce

over-fitting brought on by small datasets.

• Batch normalisation: every layer of the network may learn more indepen-

dently thanks to the layer of batch normalisation. The output of the earlier

layers is normalised using batch normalisation. Normalisation is a pre-

processing method applied to normalise data. Normalisation helps to pro-

cess data from different resources and adapt it to belong to the same range.
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CNN may experience issues, making it significantly more challenging to

train and slowing down its learning if the data is not normalised. Instead of

applying normalisation on the raw data, a CNN does it between the layers

using a batch normalisation layer. Rather than using normalising the entire

dataset, the normalisation is performed in mini-batches.

• Dropout: is a deep learning approach where nodes (neurons) in CNN are

removed or dropped out to mimic training many architectures at once. No-

tably, dropping out can significantly lower the over-fitting occurrence. When drop-

out is performed, a ”thinned” model is produced with distinct combinations

of the network nodes being deleted at random intervals throughout the train-

ing process. According to a probability hyper-parameter p, a new thinning

CNN model is generated every time the model’s gradient is adjusted. It

is possible to think of training a network using the dropout technique as

training many individual thinned networks and combining them into one

model that inherits the salient features of each thinned model.

7. Weight Initialisation, Optimiser Selection and Model Learning: typically, to

develop a deep learning algorithm, the network architecture should be initially

established, and then training is performed to learn the parameters. The typi-

cal learning procedure in the CNN includes: (1) weight parameter initialisation,

(ii) establishment of an optimisation strategy, and (iii) carrying out the follow-

ing steps iteratively: (a) propagating an input in forwarding pass, (b) the cost

function is computed, (c) the gradients of the cost are computed using back-

propagation, and (d) the parameters are updated using the gradients based on the

optimisation technique. Initialising the network parameters is the fundamental

step that must be taken into account while creating the network. If the initial-

isation is performed correctly, optimisation will be accomplished in the shortest

time; otherwise, utilising gradient descent to converge to the minima would not

be feasible. One of the most commonly employed weight initialisation techniques
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can be given in Eq. ( 2.5) [88]:

w ∼ α.υ[−δ, δ] + β.η(0, δ) + γ with α, β, γ ≥ 0 (2.5)

”Where the term η(0, δ) represents the normal distribution with mean zero and

variance of δ and the term υ[−δ, δ] represents the uniform distribution” [88]. The

values of delta, alpha, and beta parameters have all been defined using a vari-

ety of techniques such as Xavier/Glorot (uniform) [92], Xavier/Glorot (normal)

[92], and He [93]. The learning process in deep learning algorithms is itera-

tive. Thus, it is crucial to rapidly train the model to finish the iterative cycle

as soon as possible because there are many parameters that need to be adjusted

and optimised. Stochastic Gradient Descent (SGD) is a popular optimisation ap-

proach in CNN models. A number of optimisation methods including, Momen-

tum [94], AdaDelta [95], AdaGrad [96], Adam [97], and RMSProp [98], were

proposed based on SGD. All these techniques enable learning of the network,

but in terms of speed, some techniques outperform others.

2.5 Computer-Aided Diagnosis Systems: An Overview

of Automated Skin Lesion Image Analysis Methods

Computer-aided diagnosis (CAD) systems are frequently used to identify and categorise

skin diseases. Such systems, which have high detection results, greatly minimise the

time and effort spent by clinicians. There are some difficulties involved in putting up

such systems. Two sorts of techniques are suggested in the literature, and they are

directly correlated with the dataset size of skin lesion images. As a result, machine

learning-based algorithms (ML-based) are frequently utilised for small datasets, be-

ginning with the identification of the lesion region because the areas under analysis
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may include noise. An accurate lesion diagnosis will enable the extraction of perti-

nent features and attributes, ultimately leading to a high recognition rate. On the other

hand, where numerous architectures have been presented, deep learning-based tech-

niques (DL-based) are the most popular and effective for handling large datasets. The

strengths of machine learning-based algorithms (ML-based) and deep learning-based

algorithms (DL-based) models have recently been combined in several interesting hy-

brid concepts. This section presents the skin lesion analysis methods developed for

different computer vision tasks, including classification, segmentation, and detection.

2.5.1 Machine Learning Based Approaches

The most promising basis for an automated computer-aided lesion diagnosis is digital

dermoscopic images [99]. The two basic goals of automatic dermoscopy image analysis

are to recognise dermoscopic characteristics in each image and link those feature find-

ings to the diagnosis. A typical automated dermoscopy image analysis pipeline includes

preprocessing, lesion segmentation, feature extraction, and, finally, classification. The

following is a short description of these steps:

1. Preprocessing: dermoscopy images undergo various preprocessing steps, such as

image enhancement (i.e. shading removal, colour correction, and contrast adjust-

ment), the transformation of colour space, and artefact removal. The artefact re-

moval may include removing ruler markings, hairs, black frames, air bubbles, and

ink markings [100–102].

2. Lesion segmentation: includes separating skin lesions from the surrounding

healthy skin. There are two reasons why lesion segmentation is crucial. The

lesion border, in the first place, offers critical information for a precise diagno-

sis. For instance, irregularity or asymmetry at the border might indicate cancer.

Second, it is standard procedure to exclude the healthy skin around the lesion by

doing feature extraction solely on the lesion. Therefore, the precision of the seg-

mentation determines how representative an image’s attributes are. For various
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reasons, including the existence of artefacts and the lack of contrast between the

lesion area and its surroundings, lesion segmentation imposes many challenges

making it one of the most investigated topics. To obtain insight into the lesion

segmentation methodologies, the segmentation techniques can be categorised into

two kinds, low-level and high-level strategies. Low-level strategies are standard

and classical methods that necessitate post-processing. They are also faster and

simpler computationally, such as threshold based methods [103, 104], region

based approaches [105], and edge based approaches [106]. High-level segmenta-

tion methods combine low-level methods to develop more comprehensive and so-

phisticated segmentation techniques, eliminating the need for postprocessing and

handling poor-contrast borders such as soft computing based approaches [107],

fusion based techniques[108], and deformable models [109].

3. Feature extraction: entails the recognition, characterisation, and interpretation

of visual features in an image. Although the term ”image feature” has a fairly

broad definition, it may be perfectly described as generating abstractions of infor-

mation from an image that is significant for diagnosis. Depending on how the al-

gorithms function, these features are generally handled at various levels, which

are low-level features and high-level features. For instance, the distribution of

image intensity, colour, or texture might be employed as a low-level feature to

solve a computational problem directly tied to diagnosing a health condition. The

features extracted from the dermoscopic images include ABCDE rule-based fea-

tures [110], seven Point checklist based features [111], CASH algorithm based

features [112], shape features [113], colour features [114], texture features [115],

and high-level features [116].

4. Classification: the final phase is often classification. Lesion classification pro-

duces various results depending on the application, but frequently it yields an

estimation of the likelihood of malignancy. A common strategy for achieving

this goal is typically harnessing the traditional scheme of a supervised learning
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fashion, which relies on training data. Choosing a subset of pertinent character-

istics (features) is sometimes used in the model building before the classification

phase, which is typically called feature selection. There are several well-known

classifiers adopted in melanoma diagnosis CAD systems including, KNN based

methods [117], support vector machines (SVM) [118], decision trees [119], en-

semble classifiers [120], logistic regression [121], Bayesian network [122], and

artificial neural networks (ANN) [123].

2.5.2 Deep Learning Based Approaches

It is evident that deep learning, particularly convolutional neural networks (CNNs), has

taken the lead in solving many computer vision applications [124] since Krizhevsky et

al. [48] achieved the top rank in ImageNet competition held in 2012. With an ever-

growing number of applications that employ deep learning technology (DL) to assess

medical conditions using images captured from different modalities, the field of medi-

cal imaging has also adopted this concept [43]. To the best of my knowledge, Codella

et al.’s publication in 2015 [54] was the first article that adopted CNNs for dermoscopic

image data analysis. In recent years, researchers have widely investigated DL models

to discover appropriate features and obtain precise diagnostic performance [125]. The

ISIC challenge held in 2017 [126], in which twenty-two out of twenty-three submis-

sions employed the CNN models, provides evidence of the prominence of DL in the

dermoscopy discipline.

Dermoscopic image datasets have been widely used in several deep learning-based

research studies for lesion diagnosis and identification. In [127], a deep learning al-

gorithm, InceptionV4 CNN, was trained on a large dataset made up of (100,000) der-

moscopic image samples of two classes: melanoma and benign tumours. Haenssle et

al. [127] compared their results with 58 dermatologists. Dermatologists achieved an

average specificity score of 71.3 % and a sensitivity score of 86.6 % on (100) der-

moscopic images (25% melanoma and 75% benign). In contrast, the CNN approach
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attained a specificity score of 63.8 % and a sensitivity score of 95 %. Tschandl and

his colleagues [128] assessed the average performance of 511 human readers and AI

systems on 1511 test images. A total of 139 AI algorithms were developed by machine

learning labs that took part in the ISIC 2018 competition. In terms of outcomes, AI sys-

tems outperformed human readers in terms of correct assessment and lesion diagnosis.

To diagnose non-pigmented skin malignancies, Tschandl and his colleagues [129] ap-

plied the well-known deep learning models ResNet50 and InceptionV3 CNNs to 7895

dermoscopy images. Ninety-five dermatologists are grouped into three teams of experts

depending on their experience to compare performance. With novice and intermediate

group levels, the CNN models outperformed human groups in terms of accuracy and

were on a level with human specialists.

A deep learning model, ResNet50 CNN, was used by Brinker et al. [130] and

its performance was compared to 157 dermatologists at twelve University hospitals

in Germany using 100 dermoscopy images, which included 80 nevi and 20 instances

of melanoma. On the dermoscopic dataset, dermatologists obtained a sensitivity score

of 74.1% and a specificity score of 60.0%, while the CNN model obtained a sensitivity

score of 84.2% and a specificity score of 69.2%. Maron et al. [131] tested the specificity

and sensitivity of the ResNet50 CNN model against 112 dermatologists for the multi-

class identification of skin diseases, including nevi, melanoma, SCC, BCC, and benign

keratoses. The deep learning technique significantly outperformed dermatologists. Der-

matologists and the InceptionV4 CNN model were compared by Haenssle et al. [132]

using 100 instances (40 malignant and 60 benign samples). The dermatologists’ aver-

age specificity and sensitivity scores were 80.7% and 89%, respectively, compared to

the deep learning algorithm’s 76.7% and 95%. According to [133], other deep learning

methods, including the MobileNet and Long Short-Term Memory (LSTM), have also

been proven to be efficient for skin lesion identification. Authors of [134] introduced

DUNEScan (Deep Uncertainty Estimation for Skin Cancer). This web server examines

the uncertainty in widely used convolutional neural network-based skin cancer iden-

tification models (CNNs). Recently, the authors of [135] presented a comprehensive
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survey of the latest DL algorithms applied for analysing skin lesions and diagnosing

skin cancer.

To segment the lesions and extract areas of interest, existing segmentation mod-

els are modified to achieve desirable performance. The authors of [136] suggested

a tweaked U-Net variant. The performance of U-Net in lesion segmentation was en-

hanced by fusing DenseNet and ResNet. Context modules with dense connections are

intercalated between the encoder’s convolutional layers. Similar to this, localised mod-

ules are intercalated between the upsampling layers of the decoder. 3D CNN is a new

trend in segmentation architectures that is able to produce more reliable lesion seg-

mentation findings. For instance, to obtain a more precise lesion segmentation for

the identification of melanoma from hyper-spectral pathology images, the authors of

[137] presented a 3D CNN called HyperNet. The conventional convolution and the

dilated convolutional filters for multiple-scale features were merged in their proposed

architecture. A fusion path is established between the blocks of the encoder and de-

coder. A residual learning scheme was developed to improve training effectiveness and

was motivated by V-Net [138].

Additionally, there has been a range of deep learning-based research on lesion iden-

tification utilising clinical images that are frequently taken with mobile cameras of var-

ious skin lesions for examination and integration into patients’ medical records. Yang

et al. [139] accomplished skin lesion identification clinically based on the ABCDE

rule. They evaluated how well the suggested strategies performed compared to deep

learning techniques and dermatologists. In terms of accuracy, it scored 57.62%, beating

out ResNet, the top-performing deep learning technique, which scored 53.35%. Only

senior physicians with extensive expertise in skin conditions outperformed in terms of

accuracy, topping at 83.29% on average. On several publicly available datasets and

twelve skin conditions, Han and his colleagues [140] learned the DL model (ResNet-

152 CNN) to categorise the images into multi-class labels (twelve conditions). Using

480 randomly selected images, the algorithm performed equally with the team of 16

dermatologists while outperforming them in diagnosing BCC. On 100 clinical images
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made up of 20 melanoma and 80 nevi samples, Brinker et al. [141] assessed the perfor-

mance of the ResNet50 CNN against 145 doctors. The deep learning approach obtained

the same sensitivity and a higher specificity value of 69.2% compared to dermatologists,

who had an average specificity score of 64.4% and a sensitivity score of 89.4%. Using

6009 clinical image data of 14 skin conditions, covering both malignant and benign

pathologies, Fujisawa et al. [30] explored a DL approach. Using 140 test images, the

deep learning model outperformed 9 dermatology trainees (reported accuracy of 41.7%)

and 13 senior dermatologists (reported accuracy of 59.7%), achieving a diagnostic ac-

curacy of 76.5%.

2.6 Summary

In this chapter, an overview of skin lesions was reported by highlighting the skin lesion

types and causes (covered in Section 2.1). Furthermore, skin lesion modalities present-

ing the imaging techniques in dermatology were described in Section 2.2. The diagnosis

techniques of skin lesions clinically were reported in Section 2.3. Moreover, Section 2.4

provided a review of artificial intelligence, learning methods, deep learning, computer

vision, CNN layers and models. Finally, existing computer-aided diagnosis systems,

including an overview of automated skin lesion analysis methods, were described in

Section 2.5. It is abundantly apparent from the earlier research studies discussed in this

chapter that deep learning and computer vision have been shown to perform well when it

comes to analysing skin lesions. The inspiration to employ Convolutional Neural Net-

works (CNNs) in the analysis of skin images to design computer-assisted diagnostic

systems, leveraging various deep learning techniques and skin imaging modalities, has

been fostered in this thesis. The next Chapter, Chapter 3, presents a regression-based

method for grading skin lesions related to acne from facial images. The following two

chapters, Chapter 4 and Chapter 5, present automated methods developed for detecting

and classifying the skin lesions related to melanoma.



Chapter 3

Grading of Skin Lesions Related to

Acne From Facial Images using

Regression-based Deep Learning

Model

The work presented in this chapter describes a regression-based deep learning model

developed to assess and grade the severity of acne lesions using facial images. The

developed model reported in this chapter was published in Alzahrani et al. [142]. The

contribution of the first author to work presented in this chapter is the conceptualisation

of the idea, proposing the methodology, development of the model, data and results

analysis and writing up. The labelled dataset used for training and testing was provided

by the author of [143].

3.1 Introduction

Acne vulgaris is simple to diagnose; however, its polymorphic structure makes it dif-

ficult to assess its severity. A physician’s validated assessment generally determines

the effectiveness of acne treatment. For assessment by the physician, the different acne

40
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lesion types involve being counted independently. Acne affects about 80% of adoles-

cents [144], with 3% of men and 12% of women experiencing symptoms even through

adulthood [145]. As a result, there are a large number of acne patients who require

immediate treatment, as acne can cause scars and pigmentation as well as a sense of

inferiority and depression [146]. Dermatologists need to know the severity of acne

to make a precise and appropriate treatment selection [39]. However, due to the lim-

ited time available for consultation, the manual validated evaluation of acne might be

difficult and time-consuming. Additionally, junior dermatologists need a reference di-

agnosis that is objective and trustworthy. With the development of imaging modalities,

widespread availability of digital cameras, and deep learning (DL) techniques, auto-

matic acne detection and severity evaluation systems from photographs would help der-

matologists attain a more reliable and consistent assessment of acne in clinical practice

trials [43, 47, 147].

3.2 Related Work

Remarkable progress has been made for automated acne lesion analysis in recent years

covering several acne lesion analysis tasks such as acne classification [148–151], seg-

mentation [152–155], detection and localisation [150, 153, 154, 156, 157], and sever-

ity grading [143, 154, 158–161]. The analysis of acne lesions was accomplished by

image processing techniques [153, 155], extracting hand-crafted features and passing

them into a classier model [150, 154], and automated feature learning using CNNs

[149, 157, 160]. In this work, we address the problem of acne severity grading from

facial images.

Several methods have been proposed in the literature targeting the automated sever-

ity grading of acne lesions. In [154], hand-engineered features were extracted from

segmented acne areas and passed into an SVM model to classify the severity of acne

lesions into four levels following the criteria established by Ramli [162]. Their method

was assessed on a private dataset composed of 35 images. Alternatively, the authors
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in [158–161] exploited CNNs to extract the features automatically and subsequently,

graded the severity of acne lesions following the criteria established by IGA (three lev-

els) [163], Hayashi (four levels) [39], GEA (five levels) [164], and IGA (five levels)

[163], respectively. Those developed systems were trained and evaluated on private

datasets consisting of 472, 4700, 5972, and 479 images, respectively. The authors in

[143] presented acne counting and grading method based on the label distribution learn-

ing paradigm (LDL) with CNN to classify the acne severity into four levels following

Hayashi assessment criteria [39]. They evaluated the performance of the developed

method on a public dataset of 1457 images. However, the performance of these de-

veloped approaches has limitations and experiences challenges. The performance of

handcrafted feature regression-based methods highly depends on the type of features

extracted from a specific dataset. Furthermore, those features might be applicable in

a particular dataset but may not generalise well on other datasets. On the other hand,

CNN regression-based methods globally estimate outcomes from features without con-

cerning the detailed location of understudied acnes that should be considered following

the grading criteria.

To tackle the aforementioned limitations, we developed a new computer-assisted

image analysis approach to grade the severity of acne lesions called dilated UNet dense

regressor guided by an attention mechanism. Inspired by the scenario of crowed count-

ing from kernel density maps [165, 166], region of interest density maps for acne lesions

are generated to produce the count of lesions within a particular area of interest. Thus,

we propose a method to count objects of interest, represented by acne lesions, and,

subsequently, grade the severity of acne in facial images. Following [167], we adopt

a fully convolutional UNet, which is originally used for segmentation, to construct the

regressor responsible for generating the density maps. In addition, following [168], we

exploit the multi-scale dilated filters to implement the bottleneck convolutional filters

of UNet. Accordingly, we developed a multi-scale dilated UNet regressor for density

map generation. The proposed convolutional network module uses dilated convolution

filters to systematically aggregate multi-scale contextual information trying to mitigate
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the loss in resolution. On the top of the multi-scale dilated UNet regressor, we embed

the prior information of bounding boxes as an attention mechanism generated by Faster

R-CNN [169], which was originally developed for object detection. In this fashion, we

merge the dilated UNet dense regressor with the Faster R-CNN network for density map

regression, allowing us to determine the count of acne lesions and subsequently grade

the severity.

Beyond the bounds of acne lesion counting, the concept of object counting has

been widely applied in a variety of scenarios, including cell counting in microscopic

images [170], tree counting [171], animal counting [172], vehicle counting [173], and

crowd counting [174]. Generally, estimating the number of any objects in a still image

or a video is typically defined as a counting problem. The object counting methods

can be broadly divided into two categories: detection and regression-based techniques.

The counting-by-detection approaches, which use detectors to detect each object in an

image or video, were widely used in early efforts addressing the object counting topic.

To extract low-level features, these approaches require well-trained classifiers such as

HOG, histogram-oriented gradients [175], and Haar wavelets [176]. Recent approaches

leveraging CNN-based object detectors to achieve end-to-end learning paradigms, such

as YOLO3 [79], SSD [177], and Faster R-CNN [169], have considerably improved

counting accuracy.

Different from counting by detection, regression-based approaches obtain the count

without explicitly detecting and localising each object. Global regression and density

estimation are the two types of regression-based counting techniques. Global regression

methods [143, 156] explicitly predict the final count from images by learning the map-

ping between image features. In contrast, density estimation-based methods [165, 178]

first estimate a density map, which is then integrated (summed) to produce the final

count. Density estimation typically outperforms global regression because it makes use

of more spatial information about objects in an image. However, acne lesion counting

based on either regression or detection approaches is insufficient to handle both high-
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and low-density regions of acne lesions simultaneously. When counting using regres-

sion solely, there is a risk of overestimation when there are low densities of objects

(sparse regions). Similarly, counting by purely detection methods would result in the

underestimation problem on occasions with high densities of objects (dense regions).

Thus, counting by detection performs comparably better in the sparse regions; on the

other hand, counting by regression performs comparably better in the dense areas [179].

This motivated us to establish a system that takes advantage of regression (Dilated UNet

Regressor) potentials and impressing attention to the acne lesion positions detected by

the detecter (Faster R-CNN), inspired by [180, 181].

3.3 Materials and Methods

3.3.1 Materials

To conduct the experiments in this research work, a publicly available dataset named

ACNE04 is used [143]. The number of lesions and global acne severity are annotated

in the ACNE04 dataset by specialists. Images of acne lesions are collected using a

digital camera with patients’ consent when physicians are making a diagnosis. Images

are taken at a 70-degree angle from the front of patients to meet the requirements of

the Hayashi grading criteria [39]. The specialists then manually annotate the images

using the annotation tool provided. The ACNE04 contains 1457 images of lesions with

18,983 bounding boxes.

3.3.2 Methods

In this section, we describe the proposed attention-guided UNet dense regressor for

addressing the task of acne counting and severity grading in detail. The developed

architecture incorporates dilated UNet dense regressor for density regression with the

information of bounding boxes generated from the Faster R-CNN network, producing

a hybrid detection–regression framework. Figure 3.1 presents the abstract level of the
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proposed architecture for acne severity grading. In the following sections, we will de-

scribe the phases of the proposed model, including the ground truth generation of kernel

density maps, bounding boxes generation by Faster R-CNN, and the construction details

of the dilated UNet dense regressor guided by the attention mechanism.

FIGURE 3.1: Block diagram of proposed acne counting and grading system.

Generation of Ground Truth Kernel Density Maps

Due to severe overlapping and variation in the size of the acne, individual acne detectors

might encounter problems in locating facial skin lesions in dense regions. Hence, the

challenge of acne counting is handled as estimating a kernel density function whose

integral over each image region yields the number of acne in that image. Thus, the

resulting density map would preserve information indicating the presence of lesions

in a specific area. To estimate the acne density map from an input facial image, the

UNet density map regressor is first trained on training facial images along with their

ground truth density maps. The quality of generated ground truth density map for a

given training image determines the performance of the developed method. To generate

a map of acne density for training data, it is required to provide point annotations for

acne lesions. As the data used in this study were provided with bounding boxes around

each acne, we first determined the centre point value of each bounding box around

acne lesions producing dot-annotation pixels in an image. The centre point coordinates
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(cx, cy) are formulated by the value of the top left corner of the boxes (xmin, ymin) and

bottom right corner (xmax, ymax). The centre point coordinate of a bounding box in an

image is introduced using the following formula:

[cx, cy] = (xmin + xmax − xmin

2 , ymin + ymax − ymin

2 ) (3.1)

To generate the density map F (x) given a point value of pixel xi located at [cx, cy]

from total R point-annotation acne lesions in an image, the method for generating den-

sity maps used in [165] was followed. This can be achieved by convolving δ(x − xi)

with Gaussian kernel Gσ. The Gaussian kernel is set with a fixed spread parameter σ of

4 and kernel size of 15 by blurring each acne annotation point as follows:

F (x) =
R∑

i=1
δ(x − xi) ∗ Gσ(x) (3.2)

The choice of a Gaussian kernel with a standard deviation of 4 and kernel size of 15

for generating density maps in counting is often used due to its desirable properties [165,

174, 178, 182]. The Gaussian kernel is used because it is a smooth, bell-shaped function

that models the spread of objects in a crowded region. The standard deviation of 4

determines the spread of the Gaussian, and a larger standard deviation results in a wider

and smoother density map, while a smaller standard deviation results in a narrower

and more focused density map. A standard deviation of 4 is often used because it

provides a good balance between accuracy and robustness, allowing the density map to

capture the general distribution of objects in a region while ignoring small variations

and noises in the image. The kernel size of 15 determines the size of the Gaussian

kernel in pixels, and a larger kernel size results in a larger and more blurred density

map, while a smaller kernel size results in a smaller and sharper density map. A kernel

size of 15 is often used because it provides a good balance between spatial resolution

and accuracy, allowing the density map to capture the general distribution of objects in a

region while preserving enough detail to accurately estimate the number of individuals

in the image. In summary, the choice of a Gaussian kernel with a standard deviation of
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4 and kernel size of 15 for generating density maps is often used because it provides

a good balance between accuracy and robustness, and between spatial resolution and

detail preservation, making it a suitable choice for object counting.

Bounding Boxes Generation by Faster R-CNN

Faster R-CNN [169] adopted in this work for generating bounding boxes of acne lesions

has two networks: a region proposal network (RPN) for generating region proposals and

a network that uses the generated proposals to detect objects. There are two heads on

the top of the Faster R-CNN, one for object classification and another for bounding

boxes regression. ResNet50 model [72] is used as a backbone of the Faster R-CNN

detector for feature extraction. The block diagram of Faster R-CNN is illustrated in

Figure 3.2. The principle work mechanism of the adopted detector is as follows: i) the

RPN network generates region proposals, ii) for all region proposals resulting in the

image, a fixed-length feature vector, features extracted by ResNet50, is obtained from

each region using the ROI Pooling layer and then classified as object or non-object, and

finally, iii) the class scores of the predicted objects in addition to their bounding boxes

(BB) are given.

FIGURE 3.2: Block diagram of Faster R-CNN.

Dilated UNet Dense Regressor Guided by Attention Mechanism

The overall structure of the proposed dilated UNet dense regressor architecture with

attention module is shown in Figure 3.3. The UNet encoder–decoder segmentation

model has been adapted by integrating bounding box information at the level of the

skip connections. The outcome of the bounding boxes acts as an attention assistant
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module. Using element-wise multiplication of the elements located inside the region

of interest of the bounding boxes, feature maps extracted at different scales from the

contraction path are fused with features extracted from bounding boxes and then passed

to the expanding path.

When it comes to adding attention blocks at the skip connection level, the Attention-

UNet developed in [183] is similar to the proposed model by inserting convolutional

filters in the middle of the encoder and decoder paths. However, the structure of at-

tention models used to focus on relevant features as well as the strategies to which

each model establishes the constraints differ considerably. While bounding boxes were

utilised in the proposed dilated UNet dense regressor architecture to guide the network

on where to seek through the network until reaching the bottleneck, Attention-UNet

[183] employs inputs provided by the bottleneck output and moves upward through the

skip-connections. Inserting the convolutional filters in the middle of the encoder and

decoder paths in the dilated UNet dense regressor model helps the model adjust what

it learns by concentrating on the attention areas. This results in the enhancement of

feature detection within specific regions of the facial image.

The details of the proposed dilated UNet dense regressor architecture is shown in

Table 3.1. UNet [167] is a segmentation network architecture built upon fully convolu-

tional neural networks (FCNs). Unlike FCNs, UNet adopts the symmetry structure of

encoder and decoder (contraction and expanding paths). The UNet architecture consists

of three sections: the contraction, the bottleneck, and the expansion section. UNet’s

contracting path (shown on the left in Figure 3.3) is similar to that of a standard CNN,

with a combination of convolutional and max-pooling layers. It gradually decreases

the size of feature maps while increasing the number of feature channels, allowing the

model to learn both global and local features. The output size of the encoder path (con-

tracting path) passing to the bottleneck is 1/16 of the original input size. If convolutional

and pooling layers have been kept adding to the bottleneck, the output size would be

further downsized, making it difficult to produce high-quality density maps. Inspired

by the work [168], dilated convolutional layers are deployed in the bottleneck to extract
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more salient information while preserving the output resolution. A small-size kernel

with a k × k filter is typically enlarged to k + (k − 1)(r − 1) with a dilated stride

parameter r in dilated convolution scheme. As a result, it enables flexible aggregation

of multi-scale contextual information while maintaining the same resolution. A 2-D

dilated convolution can be formulated as follows:

y(m, n) =
M∑

i=1

N∑
j=1

x(m + r × i, n + r × j)w(i, j) (3.3)

where y(m, n) is the resulted dilated convolution from input x(m, n) and filter weights

w(i, j) with the dimensions M and N , respectively. The parameter r represents the

dilation rate. If the dilation rate r = 1, a dilated convolution returns back into a standard

convolution. The third section of UNet, the expanding path (the right part in Figure 3.3),

contains a succession of convolution and deconvolution components that can step-wise

up-sample the feature maps to their original size and minimise the feature channels. The

skip connections between the contracting and expanding paths combine and concatenate

features from both sides, forcing the model to collect both local and global information.

This dilated UNet dense regressor is augmented with features of the parallel bound-

ing boxes generated by Faster R-CNN in the skip connections between the encoder and

decoder segmentation model. This helps to embed bounding box information as an

attention mechanism for acne lesions at different scales in the model. The regression-

based model (UNet) works well on dense acne lesions on the facial images, whereas

the detection-based model (Faster R-CNN) provides better detection of sparse acne le-

sions. Thus, integrating the detection attention model in one framework with a regres-

sion model helps guide and bring the attention of the regressor to the sparse acne lesions

that the dense regressor could miss. The bounding boxes are fed to two convolutional

layers (attention module) for location feature extraction. The bounding boxes provided

to the attention model are a binary map representing the attention region that corre-

sponds to the location of the acne lesions. The intersection of the un-pooled map from a

level contracting layer and the feature map of acne lesions from the attention module is
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produced and concatenated with the features from the up-sampling layers within each

skip connection. Finally, a 1 × 1 convolutional layer is applied to map the resultant fea-

ture vector to the density maps. The difference between the predicted density map and

the ground truth is estimated using Euclidean distance. The following is the definition

of the loss function:

L(Θ) = 1
2B

B∑
i=1

∥Z(Xi; Θ) − ZGT
i ∥2

2 (3.4)

where B refers to the training batch size and Z(Xi; Θ) refers to the output produced in

the proposed model with Θ learnable parameters. Xi denotes the input image, and ZGT
i

is the ground truth of the input image Xi.
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FIGURE 3.3: Block diagram of proposed dilated UNet dense regressor with attention
module.

3.4 Results and Discussion

In this section, the experimental results of the proposed acne severity grading method

are presented and discussed. The public dataset [143] used for assessment of the pro-

posed model is split into 80% for training and validation (1165 images) and 20% for

testing (292 images). The resolution of the facial images is fixed with 512 × 512 pix-

els. The best performance of the proposed attention-guided regressor was obtained after
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TABLE 3.1: Architecture of dilated UNet layers.

Layer Description Size
2 Blocks-Conv Number of filters: 64, Convolutional filter

size: (3,3)
(512, 512, 64)

Max-Pool1 Max-Pool size: (2,2) (256, 256, 64)
2 Blocks-Conv Number of filters: 128, Convolutional fil-

ter size: (3,3)
(256, 256, 128)

Max-Pool2 Max-Pool size: (2,2) (128, 128, 128)
2 Blocks-Conv Number of filters: 256, Convolutional fil-

ter size: (3,3)
(128, 128, 256)

Max-Pool3 Max-Pool size: (2,2) (64, 64, 256)
2 Blocks-Conv Number of filters: 512, Convolutional fil-

ter size: (3,3)
(64, 64, 512)

Max-Pool4 Max-Pool size: (2,2) (32, 32, 512)
Dilated-Conv Number of filters: 1024, Convolutional

filter size: (3,3), Six cascade blocks with
dilation rates: 1, 2, 4, 8, 16, 32

(32, 32, 1024)

Up-Sampling1 Up-sampling: (2, 2) (64, 64, 1024)
2 Blocks-Conv
and Concat.

Number of filters: 512, Convolutional fil-
ter size: (3,3)

(64, 64, 512)

Up-Sampling2 Up-sampling: (2, 2) (128, 128, 512)
2 Blocks-Conv
and Concat.

Number of filters: 256, Convolutional fil-
ter size: (3,3)

(128, 128, 256)

Up-Sampling3 Up-sampling: (2, 2) (256, 256, 256)
2 Blocks-Conv
and Concat.

Number of filters: 128, Convolutional fil-
ter size: (3,3)

(256, 256, 128)

Up-Sampling4 Up-sampling: (2, 2) (512, 512, 128)
2 Blocks-Conv
and Concat.

Number of filters: 64, Convolutional filter
size: (3,3)

(512, 512, 64)

Conv-
DensityPrediction

Number of filters: 1, Convolutional filter
size: (1,1)

(512, 512,1)

training the network for 200 epochs using the Adam optimisation method on a batch size

of 4 and a learning rate of 0.0001. Data augmentation is applied to avoid over-fitting.

Table 3.2 presents the resulted in confusion matrix from the proposed model archi-

tecture, where L0, L1, L2, and L3 refer to the four severity grading levels introduced

as mild, moderate, severe, and very severe labels, respectively, based on the number of

inflammatory eruptions (papules, pustules) and lesions. It can be noticed that images

with L0, i.e., acne count is ≤5, are accurately diagnosed and graded. The remaining

grading levels, L1 (6–20), L2 (21–50), and L3 (>50), show that the misclassification in
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the label prediction always occurs between two successive labels. For instance, L1 is

only falsely predicted as L0. Similarly, L2 is falsely predicted L1, and L3 is misclas-

sified as L2. This is a foreseen prediction due to the overlapping and similarity of the

appearance of acne lesions with a close severity level [143].

To elaborate on the performance of the proposed method in terms of the identifi-

cation of each severity level, Table 3.3 exhibits the performance evaluation in terms of

precision, recall (sensitivity), specificity, accuracy and F1-Score. Unlike the default bi-

nary class confusion matrix, which considers only two classes, this problem deals with

four classes producing a multi-class task. To calculate the true positive TP , true neg-

ative TN , false positive FP , and false negative FN in a multi-class task, the task is

handled as a series of binary classification problems using either a One-vs-Rest (OVR)

scheme or One-vs-One (OVO) scheme. Figure 3.4 illustrates the confusion matrix of

the multi-class classification problem, where C0, C1, C2, . . . , Cn represent the classes.

FIGURE 3.4: Confusion matrix of multi-class classification.

In OVR, also called macro-averaging, the performance metric for each class is com-

puted individually, and then the average over classes is computed. In OVO, also called

micro-averaging, the decisions for all classes (true positives, true negatives, false posi-

tives, and false negatives) are gathered into one binary-class confusion matrix. Then the

evaluation metric is calculated from this binary-class confusion matrix. Thus, micro-

averaging is dominated by the majority classes since the decisions for all classes are
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pooled in a binary-class confusion matrix. Whereas the macro-averaging better reflects

the statistics of the minority classes. In this work, the macro-averaging (OVR) scheme

is adopted. The mathematical formulas used to compute the average precision (Pre),

sensitivity (Sn), specificity (Sp), accuracy (Acc) and F1-Score for four lesion classes

(M = 4) are defined as follows:

Pre =
∑3

n=0 PreLn

M
(3.5)

Sn =
∑3

n=0 SnLn

M
(3.6)

Sp =
∑3

n=0 SpLn

M
(3.7)

Acc =
∑3

n=0 AccLn

M
(3.8)

F1 − Score = 2 × Pre × Sn

Pre + Sn
(3.9)

The last column of Table 3.3 shows the number of existing examples per each class

label. In terms of precision, L3 attains the best performance achieving a precision of

100%, followed by L1, L2, and L0, respectively. The images with severity level L0 are

identified with 100% sensitivity, proving the superiority of detection in terms of true

positive detection over other severity levels. Otherwise, L1 is predicted with the lowest

sensitivity, reporting only 69%. According to the true negative rate, the severity level

L3 yields the best performance with specificity 100%, whereas the severity level L0

produces the lowest results achieving a specificity of 79%. The images with severity

level L3 (26 images) gain an accuracy of 99%, whereas the images with severity level

L1 show an accuracy of 84% (127 images). However, due to the imbalanced label

distribution, the accuracy metric solely could be misleading in measuring the model

performance [184].
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TABLE 3.2: Confusion matrix of the proposed attention mechanism guided dilated
UNet dense regressor.

Predicted

L0 L1 L2 L3

L0 1 0 0 0

L1 0.31 0.69 0 0

L2 0 0.22 0.78 0

L3 0 0 0.15 0.85

TABLE 3.3: Performance evaluation of each class detection in the proposed attention
mechanism guided dilated UNet dense regressor.

Class Pre Sen Spe Acc F1 Support

L0 0.73 1 0.79 0.87 0.84 103

L1 0.92 0.69 0.95 0.84 0.79 127

L2 0.88 0.78 0.98 0.96 0.83 36

L3 1 0.85 1 0.99 0.92 26

Table 3.4 displays a comparison of the performance of the proposed acne grading

method against methods existing in the literature. In addition to precision, sensitivity,

specificity, accuracy, and F1-Score evaluation metrics; Mean Absolute Error (MAE)

and Mean Square Error (MSE) are also used. These metrics can be defined as follows:

MAE = 1
K

K∑
i=1

∣∣∣Ci − CGT
i

∣∣∣ (3.10)

MSE =

√√√√ 1
K

K∑
i=1

|Ci − CGT
i |2 (3.11)

where K refers to the number of test images, CGT
i represents the ground truth count of

acne lesions, and Ci is the estimated count of acne, which is resulted from calculating

the total pixel values corresponding to acne lesions in the density map.
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The number of acne lesions in an image can be counted by integrating the densities

over the image region [185]. The concept of object counting from a density map was

originally introduced in [185], where the integral (sum) over a region yields the number

of objects in that region. A popular example of the utilisation of density maps to produce

the count of objects in a region is crowd counting [165, 174, 178, 182]. Density maps

in crowd counting using deep learning refer to a two-dimensional representation of

the crowd distribution, where each pixel value represents the number of individuals

in a local region. This representation is generated by mapping an input image of a

crowd scene to a density map, where the intensity of each pixel reflects the number

of individuals in that region. As explained earlier in Section 3.3.2, the ground truth

density map is usually generated by applying a Gaussian kernel to the coordinates of

acne lesions in the image. The summing of contributions from all acne lesions is then

summed to obtain the final density map. During the model training, predicted density

maps are typically created through regression, where a deep learning network is trained

to predict the density map from an input image. Ultimately, the count of acne lesions

from density maps can be defined using the following formula:

Ci =
L∑

l=1

W∑
w=1

Zl,w (3.12)

where Zl,w refer to the pixel values of density map; L and W are the dimensions of

density map.

For comparison purposes, results reported from state-of-the-art acne grading models

summarised in Table 3.4 are broadly classified into regression-based machine learning

approaches [175, 186, 187], regression-based deep learning approaches [68, 70, 72],

detection-based approaches [79, 169], and label distribution learning approach [143]. In

the regression-based machine learning approaches, including SIFT-Hand Crafted Fea-

tures [186], HOG-Hand Crafted Features [175], and GABOR-Hand Crafted Features

[187], the features SIFT, HOG, and GABOR, respectively, are extracted manually from
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facial images and classified by an SVM model into four severity levels. Regression-

based machine learning approaches show poor performance in all evaluation metrics. In

regression-based deep learning approaches, including VGGNet [68], Inceptionv3 [70],

and ResNet [72], the features are extracted automatically and fed to a fully connected

neural network for classifying the severity into four levels. Contrary to the regression-

based machine learning approaches, regression-based deep learning approaches achieve

substantially improved performance, where ResNet [72] attains a precision of 75.81%,

specificity of 91.85%, a sensitivity of 75.35%, an accuracy of 78.42% and F1-score of

75.58%. MAE and MSE metrics do not apply to regression-based methods because they

use a classifier to identify the levels of acne lesion severity rather than grading based on

counting the acne lesions.

TABLE 3.4: Comparison with the existing acne lesion detection and grading methods
on the same dataset. NP: Not Applicable, R-ML: Regression-based Machine Learning
(SVM), R-DL: Regression-based Deep Learning, D: Detection, and LD: Label Distri-

bution.

Method/Criteria Method De-
scription

MAE MSE Pr Sp Sn Acc F1

SIFT-Hand Crafted
Features [186]

R-ML NA NA 42.59 78.44 39.09 45.89 40.77

HOG-Hand Crafted
Features [175]

R-ML NA NA 39.1 77.91 38.1 41.3 38.59

GABOR-Hand
Crafted Features
[187]

R-ML NA NA 45.35 79.89 41.78 48.22 43.49

VGGNet [68] R-DL NA NA 72.65 90.6 72.71 75.17 72.68
Inceptionv3 [70] R-DL NA NA 74.26 90.95 72.77 76.44 73.51
ResNet [72] R-DL NA NA 75.81 91.85 75.35 78.42 75.58
YOLOv3 [79] D 6.69 11.35 67.01 85.96 51.68 63.7 58.35
F-RCNN [169] D 6.7 11.51 56.91 90.32 61.01 73.97 58.89
LDL [143] LD 2.93 5.42 84.37 93.8 81.52 84.11 82.92
Proposed Method Attention

Guided
Regressor

1.76 3.57 88.25 93 83 91.5 85.54

Moreover, detection-based methods, including YOLOv3 [79] and F-RCNN [169],

perform well in a sparse region where the acne lesions are not dense. However, they

fail to detect when the size of the acne lesions is small and overlapped. For instance,

F-RCNN [169] yields MAE of 6.7, MSE of 11.51, a precision of 56.91%, specificity of
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90.32%, a sensitivity of 61.01%, an accuracy of 73.97%, and F1-score of 58.89%. In the

most recent acne severity grading method named LDL [143], the acne severity grading

was realised following the scheme of label distribution learning (LDL) that considers

the ambiguous information among levels of acne severity. The authors reported MAE,

MSE, precision, specificity, sensitivity, accuracy and F1-score of 2.93, 5.42, 84.37%,

93.8%, 81.52%, 84.11%, and 82.92%, respectively. The proposed attention-guided re-

gressor model surpasses the state-of-the-art methods in all evaluation metrics except

specificity, where LDL [143] achieved better performance. The developed method

shows an MAE of 1.76, MSE of 3.57, a precision of 88.35%, specificity of 93%, sen-

sitivity of 83%, an accuracy of 91.5% and an F1-score of 85.54%. It is noteworthy to

mention that the comparison depicted in Table 3.4 has been conducted using acne lesion

detection and grading techniques evaluated on the same dataset utilised in the present

study’s developed system. This has been done with the intention of achieving a fair

comparison. The performance metrics of the methods, as presented in Table 3.4, have

been drawn from the referenced literature and/or reported by the authors in [143].

In terms of subjective evaluation, an example of images shown in Figure 3.5 illus-

trates the correct acne lesion detection and severity grading in the resulted in attention

density maps using the attention mechanism guided regression model, whereas Fig-

ure 3.6 depicts the misprediction of acne lesions in the resulted in attention density

maps. The Figures illustrate the attention density maps through the four levels of acne

severity. These results show that the proposed model contributes to significantly esti-

mating improved density and localisation maps. It can also be noticed the misprediction

that occurred in the resulting maps is not substantial and can be tolerated. The mispre-

diction in the density maps could be improved when training the model on a larger

dataset. The presented objective and subjective performance indicate the importance of

properly integrating regression and detection methods in one framework. It also reveals

the significance of embedding prior knowledge into the model architecture while train-

ing. Hence, the proposed attention mechanism incorporated into regressor architecture

would help to highlight salient features that are passed through the skip connections.
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This leads us to believe that the proposed model is a viable solution when dealing with

diverse object distribution in specific regions. Furthermore, the dilated convolution is

shown to be a good choice, which uses sparse kernels to replace implementing sev-

eral layers of the pooling and convolutional filters. In summary, this chapter presents

an improved deep-learning method based on integrating regression and detection-based

approaches for acne severity grading from facial images. As a result, the acne lesions

are correctly counted, and the severity is accurately graded by the proposed method.
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(e)

(f)

(g)

(h)

FIGURE 3.5: Image examples show correctly acne lesion detection and severity grad-
ing in the resulting attention density maps using attention mechanism guided regression
model. From left to right: image, ground truth, and predicted attention density map of
acne lesions. (a) Level 0: Example 1. (b) Level 0: Example 2. (c) Level 1: Example 1.
(d) Level 1: Example 2. (e) Level 2: Example 1. (f) Level 2: Example 2. (g) Level 3:

Example 1. (h) Level 3: Example 2.
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(a)

(b)

(c)

(d)

FIGURE 3.6: Image examples show misprediction of acne lesions in the resulting at-
tention density maps. From left to right: image, ground truth, and predicted attention

density map of acne lesions. (a) Level 0. (b) Level 1. (c) Level 2. (d) Level 3.
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3.5 Conclusions

The work in this chapter proposed an attention mechanism integrated with dilated UNet

regressor for acne counting and severity grading from two-dimensional facial images.

By incorporating the attention mechanism represented by bounding boxes generated by

Faster R-CNN with a density map generated by a dense regressor, following a fully

supervised learning scheme, the proposed method yielded better acne grading perfor-

mance than the state-of-the-art methods. Integrating bounding box information guides

the proposed method to simultaneously locate the sparse and dense acne lesion regions

for the density map regression task, targeting towards improving its robustness to di-

verse distributions of facial acne lesions.



Chapter 4

Classification of Skin Lesions Related

to Melanoma From Dermoscopic

Images

Unlike the regression-based model presented in the previous chapter and targeted to

assess and grade the severity of acne lesions from facial images, this chapter handles

another type of skin lesion, which are melanoma-related lesions. Contrary to the model

developed in the previous chapter, the systems developed and investigated in this chap-

ter are classification-based deep learning models for melanoma-related lesion diagnosis

from dermoscopic images. Given the rapid development of deep learning algorithms

for melanoma-related lesion diagnosis, it has become crucial to validate and bench-

mark these models, which is the main challenge of the work presented in this chapter.

The outcome of the research reported in this chapter was published in Alzahrani et al.

[188]. The contribution of the first author to work presented in this chapter is the con-

ceptualisation of the idea, proposing the methodology, development of the models, data

and results analysis and writing up. The labelled dataset used for training and testing

was collected from the openly available International Skin Imaging Collaboration (ISIC

2017) dataset [126].

64
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4.1 Introduction

The initial stage in melanoma diagnosis is usually a visual assessment of the skin le-

sions. In comparison to inspection with the naked eye, dermatoscopy is one of the der-

matologists’ most popular imaging procedures, and a frequently used diagnostic tool

that enhances and improves the diagnosis of malignant and benign pigmented skin le-

sions [28].

However, manual review by dermatologists is a time-consuming, controversial, and

error-prone task. The number of required dermatologists comparing the size of the pop-

ulation in the United States, Australia, and the UK is considerably low [189–191]. In

the USA, the required number of dermatologists should be more than 4 per 100000

individuals, which is the number that has been suggested to care for a population ad-

equately. However, it is currently estimated at 3.4 per 100000 individuals. Similarly,

there are just 550 practising dermatologists in Australia, which is almost 15 % less than

what is required to meet the needs of the population [190]. In the UK, the Royal Col-

lege of Physicians (RCP) [192] recommends one full-time equivalent (FTE) consultant

per 62,500 population. The RCP recommends 989 FTE consultant dermatologists. The

British Association of Dermatologists (BAD) [193] found there were 813 dermatology

specialists in the UK. Compared to the RCP’s recommendations, the BAD show a short-

fall in the region of 250 consultants [191]. Hence, melanoma patients may not be aware

of the severity of their disease if they do not have the inspection by skilled specialists in

the early stage of the disease and thus miss the ideal time to treat their conditions.

These obstacles encourage and inspire researchers to create automated melanoma

diagnosis methods using computer-aided diagnosis (CAD) systems. For non-experienced der-

matologists, the CAD tool could provide a user-friendly environment used as a second

opinion in melanoma cancer diagnosis [194, 195]. A large volume of skin images has

been collected in recent years, and sophisticated deep learning-based models [196] have

been successfully trained to perform automatic analysis of these skin images due to the
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industrial advancement of both computer hardware represented by graphics card ca-

pabilities and software technologies. These breakthroughs prompted expectations that

automated diagnostic tools will be available in the near future to examine and diagnose

all types of skin lesions without the requirement for human experience [126].

Many automated melanoma diagnosis systems based on deep learning techniques,

especially deep convolutional neural networks (CNNs), have been recently developed.

The new methods have significantly advanced the state-of-the-art in skin lesion analysis.

The CNN can automatically extract and learn high-level features, increasing the robust-

ness of melanoma images’ inter-and intra-class variability [197, 198]. With the rapid

increase in the number of automatic recognition of melanoma from dermoscopy images

using CNNs, comparing results among pieces of work and evaluation has become an

awkward task. This limitation is due to methodological constraints and the absence of

some of the standard metrics used to evaluate the performance of the models in terms

of sensitivity, specificity, accuracy, etc. To overcome these limitations, the deep learn-

ing models applied for melanoma diagnosis have been assessed and benchmarked by

considering similar methodological constraints, similar experimental settings and pa-

rameters setup, and similar evaluation criteria for all the deep learning models used in

this study. Due to the existence of trade-offs and conflict among performance evaluation

criteria during the evaluation process, the benchmarking of DL models is dealt with as

a multiple criteria problem [199]. Accordingly, multi-criteria decision-making schemes

(MCDM) can be exploited to benchmark the convolutional neural network models used

for melanoma diagnosis.

Multi-criteria decision-making methods (MCDM) are an application of decision

theory that handles multi-objective choice. It’s a strategy for assessing and compar-

ing multiple solutions (alternatives) considering competing criteria. It is a widely used

decision-making approach in the field of operational research that deals with several

criteria to find an optimal solution for decision-makers. MCDM techniques find the

optimal selection by ranking the performance of the alternatives where the highest rank

is assigned to the best feasible alternative (solution) [199–201]. Two key problems
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could be arisen during the evaluation and benchmarking of deep convolutional neural

network models for melanoma detection. First, what are the suitable criteria for the

evaluation? And second, what is the proper benchmarking approach for selecting the

optimal model considering the provided criteria? Thus, the motivation of this work is to

present a framework for evaluating and benchmarking multiple deep-learning models

for melanoma detection using various evaluation criteria.

In light of the concerns mentioned above and given the rapid development of deep

learning algorithms for melanoma diagnosis, it is crucial to validate and benchmark

these models, which is the main challenge of this work. This research direction aims to

conduct a comprehensive evaluation and benchmark of convolutional neural networks

for melanoma diagnosis. The benchmarking is accomplished by prioritising the convo-

lutional network architectures and then selecting the optimal architecture given specific

criteria.

4.2 Materials and Methods

4.2.1 Materials

To carry out our experiments, dermoscopic images were collected from the openly avail-

able International Skin Imaging Collaboration (ISIC 2017) dataset [126]. Melanoma,

seborrheic keratosis, and nevus, shown in Figure 4.1, are the three types of lesions rep-

resented in the dataset. Melanoma is a cancerous skin tumour with a high mortality rate.

Seborrheic keratosis and nevus, the other two types of lesions, are benign skin tumours

formed from different cells. Despite the ISIC Challenge 2017 included three subtasks

with annotations for three classes (nevus, seborrheic keratosis, and melanoma), the

melanoma subtask versus the remaining classes is only considered, producing a two-

class classification task. The ISIC (2017) dataset comprises 2000 training images and
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600 test images. In the training set, there are 374 melanoma images and 1626 non-

melanoma. The test set contains 117 melanoma images and 483 non-melanoma im-

ages. In total, both training and test data comprise 491 melanoma images and 2109

non-melanoma images. The percentage of melanoma images in the dataset is 19%.

This ratio shows a highly imbalanced data distribution between the two classes. The

presented study does not target to develop a new method for melanoma diagnosis com-

peting with other methods in which particular strategies are designed to remedy and

alleviate the effect of imbalanced data. Instead, this study aims to evaluate and bench-

mark the existing CNNs architectures considering multiple conflicting criteria. The

condition of benchmarking in this study is set for balanced data. Thus, to maintain the

balance of class distribution, all the melanoma images (491) in the dataset are collected,

whereas only the first 500 non-melanoma images are gathered, producing 991 dermo-

scopic images in total. The data has been split into five folds for training and testing.

In each of the five training cycles, four folds are used for training and the hold-out set

is used for testing the network performance. Thus, in each training process, this will

generate 393 images (melanoma) and 400 images (non-melanoma) for training, and 98

images (melanoma) and 100 images (non-melanoma) for testing.

FIGURE 4.1: Example of images used to conduct this study. Both nevus and sebor-
rhoeic keratosis are classified as non-melanoma in the conducted experiments

.
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4.2.2 Methods

The developed evaluation and the benchmarking system illustrated in Figure 4.2 com-

prises five main stages, including data preparation, designing of CNN models, training

of CNN models, evaluation criteria establishment, and benchmarking of CNN models

using MCDM. In the first and second phases of the proposed framework, depicted as

red and orange blocks in Figure 4.2, the data is prepared, and deep convolutional neural

networks are implemented (different versions of a specific CNN architecture are con-

sidered, for instance; VGG16, VGg19). In the third phase, depicted as a grey block,

the CNN models are trained. The key evaluation criteria are identified and measured by

evaluating the trained models on test data. In the final phases, shown as blue and green

blocks, MCDM methods are employed to prioritise the alternatives (i.e., CNN models).

The blue block shows the construction of the decision matrix (models as rows and crite-

ria as columns), then applies the entropy method to calculate and generate the weights

of criteria. Finally, the MCDM methods (PROMETHEE and VIKOR) are exploited to

rank CNN models and report the optimal CNN architecture considering the provided

decision matrix and the weights of criteria. Although PROMETHEE and VIKOR are

different statistical methods, the input data of these methods is the same, which are the

weights of criteria and the decision matrix. These methods are independent; therefore,

they were applied to the given input data separately. In this section, each phase of the

proposed framework is described as follows:

FIGURE 4.2: The block diagram of the proposed framework used to benchmark CNN
models for melanoma diagnosis. M refers to malignant (melanoma) and B refers to

benign (non-melanoma).
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Pre-trained convolutional neural network models (CNNs)

The key CNN baseline architectures that have been applied in this study are summarised

below:

• AlexNet: In 2012, AlexNet [48] substantially surpassed all previous classifica-

tion methods, winning the ImageNet Large Scale Visual Recognition Competition

(ILSVRC) by reducing top-5 error from 26% to 15.33%. The network’s design

was similar to the LeNet network developed by Yann LeCun et al. [86], but it

was deeper, with more filters per layer and layered convolutional layers. 11 × 11,

5 × 5, 3 × 3 convolutions filters, max pooling, dropout, data augmentation, ReLU

activations, and SGD with momentum were all part of it. After each convolu-

tional layer, it added ReLU activations. AlexNet was trained using two Nvidia

Geforce GTX 580 GPUs for six days, which is why their network is divided into

two pipelines.

• VGG16,19: Simonyan and Zisserman presented the VGG architecture in 2014

[68]. It is a straightforward design, with only blocks made up of an incremen-

tal number of convolution layers and 3x3 filters. Furthermore, max-pooling blocks

follow convolution blocks to reduce the size of the activation maps obtained. Fi-

nally, a classification block is employed, consisting of two dense layers and a fi-

nal output layer. The numbers 16 and 19 refer to how many weighted layers each

network includes. On the other hand, this network has a couple of drawbacks: it

takes too long to learn and has a lot of parameters.

• InceptionV1,V3: Goole implemented inception building blocks in GoogLeNet

(Inceptionv1) [67]. These blocks function well together and result in a model

that is easy to generalise. GoogLeNet is made up of nine Inception modules that

are stacked one on top of the other. There are a total of 27 layers, 5 of which

are pooling layers. The total number of layers used in the network design is
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about 100. New revisions of the model appeared as the model was updated regu-

larly. Inception-v2 and Inception-v3 [70] were released within a short time gap in

2015. Except for a few features, Inception-v2 integrates all of GoogLeNet’s fea-

tures. Filter banks were increased in width in Inception-v2 to eliminate the ”rep-

resentational bottleneck”. All of the changes from Inception-v2 were included

in Inception-v3. Furthermore, Inception-v3 were undergone additional changes,

such as the use of a higher resolution input and the use of the RMSProp optimiser,

which significantly reduced the cost function.

• InceptionResNetV2: Inception V4 was launched in 2016 by Google researchers

in conjunction with Inception-ResNet. By implementing Inception -V4, the main

goal of this network architecture was to reduce the complexity of the Inception V3

model, which provided state-of-the-art accuracy on the ILSVRC2015 challenge.

This architecture also investigates the use of residual networks on the Inception

model [69].

• ResNet18,50,101: The ResNet architecture, founded by He et al. in 2015 [72],

was a major turning point in the introduction of an extraordinary form of archi-

tecture focused on ”modules” or ”networks within networks”. The principle of

residual connections was first implemented in these networks. ResNet comes in

various sizes and numbers of layers, like ResNet18, RerNet50, and RerNet101,

but the most common is ResNet50, which has 50 layers with weights. Despite

having many more layers than the VGG, ResNet50 needs nearly five times less

memory. This is because, instead of dense layers, this network uses a layer called

GlobalAveragePooling in the classification stage, which transforms the 2D fea-

ture maps of the last layer in the feature extraction stage into an n-classes vector

that is used to measure the likelihood of belonging to each class.

• DenseNet201: DenseNet [71] is very similar to ResNet, but there are a few

key differences. DenseNet concatenates the output of the previous layer with
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the output of the next layer. At the same time, ResNet follows an additive ap-

proach that combines the previous layer (identity) with the next layer. DenseNet

model was founded mainly to address the vanishing gradient’s impact on high-

level neural networks’ layers. Using the composite function operation, the pre-

vious layer’s output becomes the second layer’s input. Convolution, pooling,

batch normalisation, and non-linear activation layers form this composite process.

DenseNet comes in a variety of types, including DenseNet-121, DenseNet-169,

and DenseNet-201. The numbers represent the number of the neural network’s

layers.

• Xception: Xception [74] is an extension of the Inception architecture that uses

depthwise separable convolutions to replace the regular Inception modules. The

mapping of cross-channel and spatial correlations in the feature maps of convolu-

tional neural networks can be fully decoupled in this network. The authors called

their proposed architecture Xception, which stands for ”Extreme Inception,” since

this hypothesis is a stronger version of the hypothesis that underlies the Inception

architecture. In a nutshell, the Xception architecture is a depthwise separable

convolution layer stack with residual connections. This makes it very simple to

establish and change the architecture.

• MobileNet: MobileNet [73] is a convolutional neural network designed for mo-

bile and embedded vision uses. They are based on a streamlined architecture that

builds lightweight deep neural networks with low latency for mobile and embed-

ded devices using depthwise separable convolutions. The Width Multiplier and

Resolution Multiplier parameters are added to make it easier to tune MobileNet.

The depthwise convolution in MobileNets applies a single filter to each input

channel. After that, the pointwise convolution applies a 1 × 1 convolution to

combine the depthwise convolution’s outputs. A separate layer for filtering and a

separate layer for combining are used in depthwise separable convolution. This

factorisation has the effect of reducing computation and model size drastically.
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• NASNetMobile and NASNetLarge: Google Brain built Neural Architecture Search

(NASNet) [76]. The authors suggested that an architectural building block be de-

tected on a small dataset and then transferred to a larger dataset. They generally

look for the best convolutional layer or cell on a small dataset first, then stack to-

gether more copies of this cell to extend to the larger dataset. Besides, a new reg-

ularisation technique called ScheduledDropPath is proposed, which significantly

enhances the generalisation of NASNet models. With a smaller model size and

lower complexity, the NASNet method achieved state-of-the-art results. While

the overall architecture of NASNet is predefined, the blocks or cells are not. Al-

ternatively, a reinforcement learning search technique is used to find them. The

authors developed different versions of NASNets with different computational re-

quirements. The larger model, NASNetlarge, is a convolutional neural network

trained on over a million images from the ImageNet database, while the smaller

model, NASNetMobile, is optimised for mobile devices.

• ShuffleNet: ShuffleNet [75] is a convolutional neural network optimised for mo-

bile devices with minimal processing capacity developed by Megvii Inc (Face++).

The network architecture design considers two new operations to lower compu-

tation costs while retaining accuracy: pointwise group convolution and channel

shuffle. It specialises in common mobile platforms such as drones, robots, and

smartphones and aims for the best accuracy in minimal computational resources.

• DarkNet19,53: The backbone of YOLOv2 is a convolutional neural network

called Darknet-19 [77]. It generally employs 3 × 3 filters and twice the num-

ber of channels after each pooling phase, similar to VGG models. It leverages

global average pooling to produce predictions and 1 × 1 filters to compress the

feature representation among 3 × 3 convolutions, identical to the work on Net-

work in Network (NIN). Batch normalisation is a technique for stabilising train-

ing and accelerating convergence. Darknet-53 [79], on the other hand, is a con-

volutional neural network that serves as the backbone for the YOLOv3 object
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detection method. The utilisation of residual connections and more layers is an

enhancement over its predecessor, Darknet-19.

• EfficientNetB0: EfficientNetB0 [78] is a convolutional neural network that scales

depth, width, and resolution dimensions using a compound coefficient. Unlike

the traditional methodology, which arbitrarily scales network dimensions, the Ef-

ficientNetB0 scaling strategy scales network dimensions with a set of predeter-

mined scaling coefficients. According to the compound scaling approach, if the

input image is larger, the network needs more layers and channels to widen the

receptive field and catch more fine-grained patterns on the larger image. In ad-

dition to squeeze-and-excitation blocks [202], the base of EfficientNet is built on

MobileNetV2’s inverted bottleneck residual blocks [73].

• SqueezeNet: DeepScale, UC Berkeley, and Stanford University collaborated to

develop SqueezeNet [80]. With 50x fewer parameters, SqueezeNet reaches AlexNet-

level accuracy on ImageNet. Additionally, the authors were able to compress

SqueezeNet to less than 0.5MB using model compression approaches (510x smaller

than AlexNet). Smaller Convolutional Neural Networks (CNNs) require less

communication across servers during distributed training and less bandwidth.

They are also more feasible to be deployed on FPGAs and hardware with re-

stricted computational resources and limited memory.

Benchmarking Criteria

This section presents an elaboration on the criteria taken into consideration in this study.

The choice of criteria in MCDM methods is highly dependent on the decision-making

context, and the problem handled. As the problem targeting to deal with here is a clas-

sification task, the presented study has established the most popular measurements typ-

ically used for classifiers’ evaluation as criteria. The performance of each CNN model

was evaluated in this stage using ten evaluation metrics. The test accuracy, F1-score,

sensitivity, specificity, precision, false-positive rate and false-negative rate, Matthews
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correlation coefficient (MCC), classification error, and network complexity have been

utilised to evaluate each of the models targeted for study in this research.

• Accuracy: this metric measures how close the predicted value is to the actual data

values. It can be defined using the following formula:

Accuracy (Acc) = tp + tn

tp + tn + fp + fn
(4.1)

tp: True Positive, tn: True Negative, fp: False Positive, fn: False Negative

• Classification Error: refers to the number of samples incorrectly classified (false

positives and false negatives). It can be defined as follows:

Classification Error (Err) = 1 − Acc (4.2)

• Precision: the precision metric tests the ability of the classifier to reject irrelevant

samples. The formula of this metric can be defined as follows:

Precision (Pre) = tp

tp + fp
(4.3)

• Sensitivity: the sensitivity metric measures the proportion of the correctly de-

tected relevant samples. It can be represented as follows:

Sensitivity (Sn) = tp

tp + fn
(4.4)

• F1-Score: the F1-score can be obtained by the weighted average of sensitivity

(recall) and precision, where the relative contribution of both recall and precision

to the F1-score are equal. The F1-Score can be defined as follows:

F1 Score = 2(Precision × Recall)
Precision + Recall

(4.5)
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where Recall = Sensitivity

• Specificity: it describes the ability of the classifier to detect the true negative rate.

The formula of specificity can be defined using the following equation:

Specificity (Sp) = tn

tn + fp
(4.6)

• False-Positive Rate (FPR): is the proportion of negative examples wrongly cate-

gorised as positive. This metric is also known as the miss rate and is represented

as:

False − Positive Rate (FPR) = fp

fp + tn
(4.7)

• False-Negative rate (FNR): is the proportion of positive examples wrongly cate-

gorised as negative. This metric is also known as the fall-out rate. This evaluation

criterion is introduced as follows:

False − Negative Rate (FNR) = fn

fn + tp
(4.8)

• Matthews Correlation Coefficient (MCC): The MCC is a correlation coefficient

that yields a value between −1 and +1 for actual and estimated binary classifica-

tions. A coefficient of +1 shows ideal prediction, 0 shows random prediction, and

−1 indicates complete disagreement between predictions and the ground truth.

MCC can be defined as:

MCC = (tp × tn − fp × fn)√
(tp + fp) (tp + fn) (tn + fp) (tn + fn)

(4.9)

• CNN Complexity: refers to the number of parameters existing in the pre-trained

CNN.
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Multi-Criteria Decision Making (MCDM)

Multi-criteria decision-making typically involves six phases: (i) problem formulation,

(ii) identification of requirements, (iii) goal setting, (iv) identification of alternatives, (v)

development of criteria, and (vi) identification and application of decision-making tech-

niques. This process can be carried out using various mathematical procedures chosen

based on the problem at hand, and the level of complexity ascribed to the decision-

making process [203, 204]. This study has formulated the CNN models benchmarking

as the research goal, considering nineteen CNNs as alternatives and ten criteria. For

decision-making, Preference Ranking Organization Method for Enrichment Evaluation

(PROMETHEE) [205], an MCDM method, is adopted to generate the ranking list and

to produce the optimal model selection using the criteria’s weights computed by the

Entropy method. For validating the optimal model selection, another MCDM method

called VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) in Serbian

[206], which means multi-criteria optimisation and compromise solution, is also ap-

plied. This section describes the MCDM methods exploited to rank the CNN models

and select the optimal model given the criteria mentioned earlier using data in the pre-

sented case study.

• Entropy: This method computes relative weights by objectively interpreting the

relative intensities of the criteria significance based on data discrimination [207].

MDCM’s generated decision matrix DM is defined by m alternatives (nineteen

CNN models) and k criteria (ten criteria), which are represented as follows:

DM = [xij]m×k (4.10)

From the constructed decision matrix DM , the procedure of entropy weighting

method described in [207] is followed to measure the weights wj . xij refers to

each entry in the DM , where i = 1, . . . , m, j = 1, . . . , k. The steps of entropy
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weighting method [207] is described as follows:

Step1: Normalising the decision matrix using the following equation:

pij = xij∑m
i=1 xij

, (1 ≤ i ≤ m, 1 ≤ j ≤ k) (4.11)

Step2: Measure the entropy of criteria:

ej = −g
k∑

j=1
pij ln pij, (g = 1/ ln m, 1 ≤ i ≤ m, 1 ≤ j ≤ k)

.

(4.12)

Step3: Determine the inherent contrast intensity:

di = 1 − ej, (1 ≤ j ≤ k) (4.13)

Step4: The entropy weights of criteria are then defined as follows:

wj = dj/
k∑

j=1
dj, (1 ≤ j ≤ k) (4.14)

• PROMETHEE: The PROMETHEE is an outranking approach for ranking and

selecting a finite collection of alternatives based on often competing criteria.

Compared to other multi-criteria analysis methods, PROMETHEE II is an un-

complicated complete (not partial) ranking method in terms of conception and

application. The stepwise procedure of PROMETHEE II can be defined as fol-

lows, giving the provided decision matrix and the weights of criteria:

Step 1: Determining of deviations based on pairwise comparisons as follows:
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dj(a, b) = gj(a) − gj(b) (4.15)

where dj(a, b) refers to the difference between the evaluations of a and b on each

criterion.

Step 2: Preference function application:

Pj(a, b) = Fj [dj(a, b)] j = 1, . . . , k (4.16)

Where Pj(a, b) denotes the preference of alternative a with regard to alternative b

on each criterion, as a function of dj(a, b).

Step 3: Calculating an overall or global preference index using the following

formula:

π(a, b) =
k∑

j=1
Pj(a, b)wj (4.17)

Where π(a, b) of a over b represents the weighted sum p(a, b) for each criterion,

and wj is the weight wj related to the j th criterion.

Step 4: Calculating the partial ranking PROMETHEE I (outranking flows) using

the following equations:

ϕ+(a) = 1
m − 1

m∑
b=1

π(a, b) (4.18)

ϕ−(a) = 1
m − 1

m∑
b=1

π(b, a) (4.19)

Where ϕ+(a) and ϕ−(a) represent the positive outranking flow and negative out-

ranking flow for each alternative, respectively.
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Step 5: Calculating the complete ranking PROMETHEE II (outranking flows)

using the following equations:

ϕ(a) = ϕ+(a) − ϕ−(a) (4.20)

Where ϕ(a) represents the outranking flow for each alternative.

• VIKOR: The VIKOR approach [206] was initially developed to optimise com-

plex systems that involve various parameters. Using the predefined weights, the

VIKOR provides a compromise ranking list and suggests a compromise solution.

VIKOR creates a multi-criteria rating index based on a specific ”closeness” metric

to the ”ideal” solutions [206]. The VIKOR methodology’s compromise ranking

algorithm can be described as follows, giving the provided decision matrix and

the weights of criteria:

Step1: Determining the best value as xj
∗ and the worst value as xj

− of the crite-

ria as j = 1, 2, ..., k. This also leads to configuring the criteria as beneficial and

non-beneficial values. The beneficial attributes require to be maximised while the

non-beneficial need to be minimised, which are identified as follows:

Rule1: Best value for beneficial criteria is xj
∗ = maxxij , and for non-beneficial

is xj
∗ = minxij ,

Rule2: Worst value for beneficial criteria is xj
− = minxij , and for non-beneficial

is xj
− = maxxij .

Step2: Determining the values of Si and Ri, where i = 1, 2, ..., m using the

following equations:

Si =
k∑

j=1
wj

(
x∗

j − xij

)
/

(
x∗

j − x−
j

)
,

Ri = max
j

wj

(
x∗

j − xij

)
/

(
x∗

j − x−
j

)
,

(4.21)
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where wj are the weights of criteria computed using the entropy method.

Step3: Determining the values of S∗ and R∗ as follows:

S∗ = min
i

Si, R∗ = min
i

Ri,

S− = max
i

Si, R− = max
i

Ri

(4.22)

Step4: Determining the values of Qi; where i = 1, 2, . . . , m and v is defined as

the weight of the scheme of “the majority of criteria” using the following equa-

tion:

Qi = v (Si − S∗) /
(
S− − S∗

)
+ (1 − v) (Ri − R∗) /

(
R− − R∗

)
(4.23)

Step5: Ranking the alternatives by sorting the values of Qi in ascending order.

4.3 Experimental Results and Discussion

4.3.1 Experimental Setup and Training

During the experimental process, nineteen CNN models pre-trained on ImageNet dataset

[208] were modified and re-trained using transfer learning and fine-tuning strategies to

classify the skin lesion into two classes: cancerous (melanoma) or non-cancerous (non-

melanoma). The characteristics of the CNN architectures in terms of the number of total

layers, the number of learnable layers, the size of CNN, the size of the input image, and

the number of parameters in each network architecture are described in Table 4.1. In

the training of models, binary cross-entropy was preferred as a cost function, and the

stochastic gradient descent with momentum (SGDM) optimiser was used to minimise

the cost function. The softmax activation function was used in the output layer of the

models. Each model was trained through six epochs, and the training was repeated a
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total of five times. The batch size is set to 10, providing 79 iterations per epoch and 474

iterations for six epochs. The learning rate value was set to 0.0003 and momentum to

0.9.

The learning curves (i.e. training and validation curves) of nineteen CNN models

are presented in Figure 4.3. These curves provide insight into how the model is learning

and how well it is performing during training. The training curve shows the accuracy

or loss of the model on the training data over the course of training epochs. The goal is

for the training accuracy/loss to increase/decrease over time, indicating that the model

is learning from the training data and improving its predictions. If the training accu-

racy/loss starts to decrease/increase, it may indicate overfitting, where the model has

memorised the training data and is not generalising well to new data. The validation

curve shows the accuracy or loss of the model on a validation set, which is a separate

set of data that is used to evaluate the model’s performance during training. The valida-

tion accuracy/loss provides a measure of the model’s ability to generalise to new, unseen

data. It is important to monitor the validation accuracy/loss during training to ensure

that the model is not overfitting the training data. This information can help diagnose

issues such as overfitting, underfitting, or convergence problems, and make adjustments

to the model or training process as needed.

To provide fair performance evaluation and benchmark among the nineteen mod-

els, a fixed number of epochs for all models is opted to use. Figure 4.3 shows that all

the models stopped training at the same endpoint, and the trained models have been

deployed from this endpoint to conduct the testing phase. It is aimed to compare the

performance of the networks under the same constraints and conditions. So, choos-

ing the optimal number of epochs to train a particular model has not been considered.

Considering learning the models under the same conditions, if one model encountered

overfitting and subsequently failed to achieve good accuracy on the unseen test set,

whereas another model has not undergone overfitting, the later model is preferred over

the first model. However, in Figure 4.3, it can be noticed that the training and validation

curves show a steady learning behaviour, and there is no indication of overfitting.
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In order to prevent potential overfitting during the training, the online data augmen-

tation was applied by using various image transformation methods such as vertical and

horizontal flipping, random translation in the range of [−30, 30], and random scaling

in the range of [0.9, 1.1]. In most of the CNN models, the last layer is the learnable

weights of fully connected layers. Thus, to apply the transfer learning and fine-tune

the network using the provided data, these completely connected layers are replaced

with a new fully-connected layer comprising two neurons adhering to the two classes in

the presented study. Instead of fully connected layers, the last learnable layer in some

networks, such as SqueezeNet, is a 1 × 1 convolutional layer. In this scenario, the old

convolutional layer is replaced by a new convolutional layer with the same number of

filters as classes.
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(k) (l)

(m) (n)

(o) (p)

(q) (r)

(s) (t)

FIGURE 4.3: The performance of the CNN models visualising training
(accuracy/loss) and validation (accuracy/loss) curves. (a) AlexNet. (b) Dark-
Net19. (c) Darknet53. (d) DenseNet201. (e) EfficientNetb0. (f) Inceptionv1. (g)
Inceptionv3. (h) InceptionResv2. (i) MobileNetv2. (j) NasnetLarge. (k) NasnetMo-
bile. (l) ResNet18. (m) ResNet50. (n) ResNet101. (o) ShuffleNet. (p) SqueezeNet.

(q) Vgg16. (r) Vgg19. (s) Xception. (t) Legends.
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TABLE 4.1: Characteristics of the pre-trained CNN architectures adopted in the study.
∗: the NasnetLarge and NasnetLarge networks do not contain of a linear sequence of

modules.

Network #Layers #Learnable
Layers

Network
Size (MB)

Input Image
Size

#Para.(M)

AlexNet [48] 25 8 227 227 × 227 61
Vgg16 [68] 41 16 515 224 × 224 138
Vgg19 [68] 47 19 535 224 × 224 144
GoogleNet (In-
ceptionv1) [67]

144 22 27 224 × 224 7

Inceptionv3 [70] 315 48 89 299 × 299 23.9
ResNet18 [72] 71 18 44 224 × 224 11.7
ResNet50 [72] 177 50 96 224 × 224 25.6
ResNet101 [72] 347 101 167 224 × 224 44.6
InceptionResv2
[69]

824 164 209 299 × 299 55.9

Xception [74] 170 71 85 299 × 299 22.9
DenseNet201
[71]

708 201 77 224 × 224 20

MobileNetv2
[73]

154 53 13 224 × 224 3.5

ShuffleNet [75] 172 50 5.4 224 × 224 1.4
NasnetMobile
[76]

913 * 20 224 × 224 5.3

NasnetLarge [76] 1243 * 332 331 × 331 88.9
DarkNet19 [77] 64 19 78 256 × 256 20.8
DarkNet53 [79] 184 53 155 256 × 256 41.6
EfficientNetB0
[78]

290 82 20 224 × 224 5.3

SqueezeNet [80] 68 18 5.2 227 × 227 1.24

Results of the Experiments and Discussion

To examine the classification performance of the models, nine evaluation metrics widely

used in classification tasks are used, including, accuracy, classification error, precision,

sensitivity, specificity, f1-score, false-positive rate, false-negative rate, and Matthews

correlation coefficient. Table 4.2 depicts the evaluation performance of the nineteen

CNN models describing the average value and the standard deviation of a specific crite-

rion over the five folds. This study reveals the high evaluation performance of the CNN

models for melanoma diagnosis employing a balanced number of dermoscopic images

through a thorough analysis of nineteen pre-trained CNNs using specific parameter con-

figuration and learning techniques for the networks.
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As shown in Table 4.2, the ResNet101 model reported the best average test accu-

racy and MCC with 94.34% and 88.96%, respectively, compared to other CNN mod-

els. The highest F1-score with a value of 93.96% has been attained by Densenet201,

followed by ResNet101 with a value of 93.89%. Furthermore, Inceptionv3 achieved

the highest specificity and precision values with 96.8% and 96.11%, followed by 96%

specificity achieved by MobileNetv2 and 95.36% precision achieved by ResNet101.

DenseNet201 produces the highest sensitivity of 93.47%, followed by 92.86% reported

in ResNet101. It can also be noticed that Inceptionv3 attained the lowest FPR of 3.2%,

while DenseNet201 revealed the lowest FNR of 6.53%, and the smallest error, 5.66%, is

reported by ResNet101. According to the minimum number of parameters, SqueezeNet

has 1.24 million parameters which is the optimal number compared to other CNN mod-

els. Table 4.2 also explores the deviation among the accuracy reported from the five

folds, exposing the difficulty of recognising the best model based on the variation of

the accuracy in the five folds. Likely, Table 4.3 and Figure 4.4 show that there is no

superior CNN model over others due to the lack of a CNN model that achieves the best

accuracy through the five folds. This would lead to difficulty in selecting the best model

while considering other criteria.

Figure 4.5 exhibits the trade-off and conflict among the evaluation criteria of the

nineteen CNN models. For instance, a trade-off between sensitivity (true positive rate)

and specificity (true negative rate) should be considered, where DenseNet201 reports

the highest sensitivity, whereas Inceptionv3 attains the highest specificity. Precision is

also independent and has a trade-off with accuracy. Accuracy is the degree of veracity,

while precision is the degree of reproducibility. That means it is possible to be very

precise but not very accurate, and it is also possible to be accurate without being pre-

cise. The best quality detection is both accurate and precise. Inceptionv3 achieves the

highest precision, whereas Resnet101 reveals the best accuracy. It should also produce

a trade-off between FNR and FPR, where Inceptionv3 reported the lowest FPR, while

DenseNet201 reported the lowest FNR. Thus, it is crucial to make a trade-off between

the models that could achieve the optimal diagnosis by reducing the number of negative
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cases falsely diagnosed positive and the models that could reach the optimal diagnosis

by reducing the number of positive instances falsely diagnosed negative. F1-Score is

also needed to achieve a balance between precision and sensitivity, where Densenet201

provides the best F1-Score, followed by Resnet101. For the number of parameters

required to determine the network complexity, SqueezeNet has the lighter network ar-

chitecture compared to VGG19, which has the largest network architecture. Although

SqueezeNet is optimal in terms of network complexity, it still shows a moderate-low

accuracy performance through the five folds shown in Figure 4.4. Also, there is a con-

flict between the criteria that are required to be minimised (such as FNR, FPR, Err, and

the number of parameters) and the criteria targeted to be maximised (such as Acc, Sen,

Spe, Pre, F1-Score, Mathew).

From Figure 4.5, it can also be noticed that there is no superior CNN model due

to the conflict among evaluation criteria and the difficulty to optimise all criteria si-

multaneously. Hence, selecting the best deep learning model for automated melanoma

diagnosis considering multiple conflicted criteria is a difficult task due to the variance

of the criteria’s significance, the conflict among these criteria, and the trade-off among

them. Therefore, benchmarking CNN architectures for melanoma detection is crucial

for selecting the optimal model, and achieving the trade-off among the ten pre-defined

evaluation criteria. Multiple Criteria Decision-Making method (MCDM) [205, 206] is

targeted to apply and rank the nineteen models according to their performance consid-

ering the trade-off among the criteria. Thus, the best-selected networks could be easily

adopted to construct an ensemble learning system for melanoma diagnosis or even use

the optimal network to construct a system using a single model.
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TABLE 4.3: The obtained accuracies over five folds in the nineteen CNN models.

Model Fold1 Fold2 Fold3 Fold4 Fold5
AlexNet 78.28 89.9 86.87 90.4 89.9
Vgg16 82.32 86.87 86.87 95.96 96.46
Vgg19 79.8 80.81 90.4 89.39 96.46

Inceptionv1 82.32 84.85 83.84 91.92 95.96
Inceptionv3 79.8 90.91 96.97 99.49 97.47
ResNet18 82.83 85.35 92.93 92.42 96.46
ResNet50 81.31 90.91 92.93 97.98 98.99

ResNet101 81.82 94.44 96.97 98.99 99.49
InceptionResv2 77.27 88.89 93.43 93.94 97.98

Xception 78.28 86.87 90.91 93.43 95.45
DenseNet201 86.36 91.94 96.46 97.98 97.47
MobileNetv2 81.31 86.87 89.9 97.47 98.48

ShuffleNet 77.27 83.84 84.85 88.38 95.96
NasnetMobile 78.28 86.36 85.86 85.86 96.46
NasnetLarge 80.3 88.89 92.93 96.46 97.98
DarkNet19 81.31 85.86 84.85 90.91 90.91
DarkNet53 79.29 87.37 91.41 93.94 93.94

EfficientNetB0 84.34 83.84 85.35 88.89 91.92
SqueezeNet 82.32 84.85 82.32 85.86 87.88

FIGURE 4.4: The obtained accuracies over five folds in the nineteen CNN models.
It shows that there is no superior CNN model over others due to the lack of a CNN
model that achieves the best accuracies through the five folds. This would lead to
difficulty selecting the best model while considering another conflicting criterion like

the network complexity.
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FIGURE 4.5: The mean value over the five folds for specific evaluation criteria, along
with the number of parameters (the network complexity). No single model achieves the
best performance in all evaluation criteria. If a CNN model achieves the best evaluation
performance in some evaluation criteria, it may fail to gain superior performance in the

remaining criteria.

To achieve the goal of the presented study by generating a ranking list for CNN

models and selecting the optimal solution, the PROMETHEE method [205] is applied

considering the nineteen alternatives (CNN models) and ten criteria. To further validate

the decision made by PROMETHEE, the VIKOR approach [206] is also applied using

the same data setting and configuration. First, the decision matrix DM is constructed

using m alternatives, in this case study is 19, and k criteria, in this case study is 10 pro-

ducing DM of size 19×10. The criteria are then classified into two categories according

to the required optimisation strategy. The first category includes the criteria that require

minimisation, including classification error, false-positive rate, false-negative rate and

the number of parameters, known as non-beneficial criteria. Unlikely, the second cat-

egory includes the criteria that require maximisation, including accuracy, sensitivity,

specificity, precision, F1-score and MCC, known as beneficial criteria. The equations

4.24 and 4.25 defined below are used to normalising the non-beneficial and beneficial

criteria, respectively. The normalised criteria are shown in Table 4.4.
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x̄ij =
xmin

j

xij

(4.24)

x̄ij = xij

xmax
j

(4.25)

xij refers to the entries of the decision matrix DM , where i = 1, . . . , m, j = 1, . . . , k, k

represents the number of alternatives (nineteen CNN models), and m defines the number

of criteria (ten criteria).

To measure the weights of criteria, the entropy method [207] is exploited and applied

on the normalised DM producing the weight values of 0.964825438, 0.804398756,

0.985470611, 0.951881312, -1.420375792, -1.473036988, 1.02152041, 0.49110277, -

1.294287661, -0.031498856 for accuracy, sensitivity, specificity, F1-score, FNR, FPR,

precision, MCC, classification error and the number of parameters, respectively. The

obtained weights, along with the normalised DM , are used to make the optimal selec-

tion using the PROMETHEE method [205]. The equations used to measure the ranking

list are described earlier in Section 4.2.2. The threshold function has been used as a

preference function (0 if d ≤ 0 and 1 if d ≥ 0), which is required in Step 2 in the

stepwise procedure of PROMETHEE. To calculate the complete ranking list, ϕ(a) rep-

resents the outranking flow for each alternative, as shown in Table 4.5. The highest

ϕ(a) value indicates the compromised solution, which could be chosen as the optimal

model. PROMETHEE reports a value of 150.84, the highest ϕ(a) for the ResNet101

CNN model and 133.24 as the second-best value for the DenseNet201 model.

To validate the model selection made by PROMETHEE, VIKOR [206] method is

also applied considering the same weights and the same DM . Unlike PROMETHEE,

the lowest Q value in VIKOR indicates the compromised solution, which could be

chosen as the optimal model, shown in Table 4.5. VIKOR reports a value of 0, the

lowest Q for the ResNet101 CNN model and 0.079 as the second-lowest value for the

DenseNet201 model. Thus, the mathematical consistency of the judgements coming

out of PROMETHEE II has been tested and proven. Hence, the effectiveness of the
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model ranking produced by PROMETHEE II has been validated by demonstrating the

agreement between two different statistical methods, considering the same conflicting

criteria.

To provide a direct and explicit comparison between the two decision-making meth-

ods, PROMETHEE and VIKOR, Table 4.6 elaborates the optimal CNN model selection

in both approaches. It can be noticed that until the seventh rank, the two methods have

a similar decision for the optimal CNN model selection. Likewise, the ranks 10, 11, 12,

13, 15, 18 and 19 provide the exact model recommendation by both approaches. On

the other hand, the decision made by methods has slightly different priorities in the 8,

9, 14, 16 and 17 levels. The suggested framework’s findings show that the best model

selection decision based on numerous conflict factors is robust and reliable.

This work developed a new multi-criteria decision-making methodology that aids

in assessing the criteria that influence the decision to choose a specific CNN model,

prioritising the models, and selecting the best model. When software developers need

to find an effective CNN model that meets specified requirements for constructing a

robust CAD system, the proposed approach of revealing the CNN models’ priorities

would be beneficial and valuable. Finally, the case study presented here may provide

and draw a new line in the evaluation and benchmark of the deep learning models for

various diseases. Although the proposed benchmarking framework has made progress

in benchmarking the models used for melanoma diagnosis from dermoscopy images,

there is still space for improvement in research work. In future work, studying the ef-

fect of model selection considering different criteria is aimed. The criteria that are to be

considered include i) training the models under several transfer learning scenarios and

data augmentation strategies, ii) exploring the impact of several optimisation schemes,

and iii) testing various class balancing and weighting techniques. Training the mod-

els on several datasets targeting the effect of variation among datasets could also be

considered.
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TABLE 4.5: Ranking for decision making represented by the values of ϕ in
PROMETHEE and Q in VIKOR. The highest ϕ value is the best, whereas the low-

est Q is the best.

Model ϕ: PROMETHEE Q: VIKOR PROMETHEE VIKOR
AlexNet -86.54004365 0.78423285 15 15
Vgg16 16.31877628 0.51048488 8 9
Vgg19 -63.8124359 0.74766659 13 13

Inceptionv1 -57.19966687 0.68096691 12 12
Inceptionv3 132.2050634 0.18466346 3 3
ResNet18 15.25546934 0.4614654 9 8
ResNet50 115.1633097 0.21251132 4 4

ResNet101 150.8418215 0 1 1
InceptionResv2 28.425464 0.4496109 7 7

Xception -29.98203689 0.60787425 11 11
DenseNet201 133.2355605 0.07998389 2 2
MobileNetv2 72.89230795 0.42167181 6 6

ShuffleNet -106.9819714 0.8594925 18 18
NasnetMobile -89.20093646 0.84854 16 17
NasnetLarge 73.3193101 0.33461685 5 5
DarkNet19 -76.30565263 0.81073772 14 16
DarkNet53 1.456682009 0.56957337 10 10

EfficientNetB0 -95.9301979 0.78239429 17 14
SqueezeNet -133.1608231 1 19 19

TABLE 4.6: Optimal CNN model selection in PROPMETHEE versus VIKOR ap-
proach.

Model Rank PROPMETHEE VIKOR
1 ResNet101 ResNet101
2 DenseNet201 DenseNet201
3 Inceptionv3 Inceptionv3
4 ResNet50 ResNet50
5 NasnetLarge NasnetLarge
6 MobileNetv2 MobileNetv2
7 InceptionResv2 InceptionResv2
8 Vgg16 ResNet18
9 ResNet18 Vgg16
10 DarkNet53 DarkNet53
11 Xception Xception
12 Inceptionv1 Inceptionv1
13 Vgg19 Vgg19
14 DarkNet19 EfficientNetB0
15 AlexNet AlexNet
16 NasnetMobile DarkNet19
17 EfficientNetB0 NasnetMobile
18 ShuffleNet ShuffleNet
19 SqueezeNet SqueezeNet
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4.4 Conclusions

Medical diagnostics tools based on deep learning of medical images are becoming more

widely recognised as clinically relevant AI-based solutions. However, developing ap-

propriate deep neural network models and training strategies for clinical uses is a re-

search area that needs to be investigated. The inaccurate selection of melanoma diagno-

sis models could be costly to medical organisations, especially when more accurate and

efficient diagnosis models are urgently needed. This study investigated the performance

of some of these networks for melanoma diagnosis utilising dermoscopic images after

a thorough evaluation of nineteen pre-trained CNNs using particular evaluation criteria,

parameter settings and training strategies. An MCDM-based methodology is presented

for evaluating, benchmarking, and ranking melanoma diagnostic models and selecting

the most optimal model. The study findings would help in the model selection, de-

signing quick and reliable diagnostic tools based on image data, and contributing to the

development of more accurate and efficient point-of-care diagnostic systems.



Chapter 5

Classification of Skin Lesions Related

to Melanoma From Dermoscopic and

Clinical Images via Seven-point

Checklist Criteria

Following the models reported in the previous chapter, which are developed to detect

melanoma-related lesions from only dermoscopic images, this chapter studies melanoma

detection using a classification-based deep learning technique via seven-point checklist

criteria from both clinical and dermoscopic images. The deliverables of the research

work reported in this chapter were a full paper published at European Workshop on

Visual Information Processing conference (EUVIP) in Alzahrani et al. [194], and a

two-page short paper presented as a poster at International Conference on Advances in

Signal Processing and Artificial Intelligence (ASPAI) in Alzahrani et al. [209]. The

contribution of the first author to work presented in this chapter is the conceptualisation

of the idea, proposing the methodology, development of the model, data and results

analysis and writing up. The labelled dataset used for training and testing was provided

by the authors of [210].

97
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5.1 Introduction

In clinical practice, dermatologists typically assess skin lesions using the seven-point

checklist method [10] or the ABCDE rule [110]. These methods are considered the

most commonly recommended and accepted skin assessment strategies [36]. In the

seven-point checklist rule, melanoma suspicion is greater for lesions scoring 3 points or

exceeding 3, while low-suspicion lesions should be carefully screened and monitored

for changes for eight weeks. The seven-point checklist was established by Argenziano

et al. [10] for the dermoscopic differentiation between benign and malignant lesions.

The definition of the seven-point checklist criteria can be briefly described as follows:

1. Atypical Pigment Network (PN): Reticular lines, heterogeneous for colour and

thickness, asymmetrically distributed within the lesion.

2. Blue Whitish Veil (BWV): Structureless blue blotches with an overlying whitish

haze.

3. Vascular Structure (VS): Linear, dotted globular vessels (polymorphic vessels),

irregularly distributed.

4. Irregular Pigmentation (PIG): Structureless area different in size and colour

(black, brown or gray) irregularly distributed.

5. Irregular Streaks (STR): Radial streaks and pseudopods located at the lesion

edge due to the melanoma radial growth phase.

6. Irregular Dots and Globules (Dag): Dots (less than 0.1 mm) and globules

(larger than 0.1 mm), irregular in colour, size, shape and distribution.

7. Regression Structures (RS): White scar-like depigmentation or peppering (mul-

tiple scattered blue-gray granules within a hypo-pigmented background).

The principle of this method [10] establishes three major dermoscopic criteria (2

points each) and 4 minor criteria (1 point each) for lesions assessment as shown in
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Table 5.1[10]. Image examples which are diagnosed using seven-point checklist criteria

can be shown in Figure 5.1.

TABLE 5.1: Seven-point checklist criteria

Criteria Classes 7-Point Score
Major Criteria

Pigment Network (PN) absent (0), typical (0), atypical (2) 2
Blue Whitish Veil (BWV) absent (0), present (2) 2
Vascular Structure (VS) absent (0), regular (0), irregular (2) 2

Minor Criteria
Pigmentation (PIG) absent (0), regular (0), irregular (1) 1

Streaks (STR) absent (0), regular (0), irregular (1) 1
Dots and Globules (Dag) absent (0), regular (0), irregular (1) 1

Regression Structures (RS) absent (0), present (1) 1

5.2 Related Work

Computer-Aided Diagnosis (CAD) systems are introduced in clinical practice for der-

moscopic images to provide an automatic and quantitative assessment of the skin lesion

to help clinicians with diagnosis. Many automated skin lesion detection methods in

the literature considered detecting a single criterion from the 7-point checklist. Mirza-

alian et al. [211] presented a method to detect only streaks by enhancing streaks using

Hessian-based tubular filters from 99 images. Moreover, Madooie et al. [212] proposed

a system to detect the presence of blue-white veils by converting image regions to a dis-

crete set of Munsell colours. Furthermore, Fabbrocini et al. [213] developed a machine

learning-based system to detect all 7-point checklist criteria by implementing a sepa-

rate pipeline which considers each criterion’s characteristics separately. However, each

pipeline introduces complexity and requires tuning of hyperparameters. In addition,

Wadhawan et al. [214] proposed a machine learning-based method to detect all 7- point

checklist criteria by engineering image features manually, which is a time-consuming

and complicated task.
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(a)

(b)

FIGURE 5.1: (a) Image example is diagnosed with Melanoma given 7-points score
= 7 (b) Image example is diagnosed with Non-Melanoma given 7-points score = 1.

Adapted from [10]
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Many deep learning (pattern analysis) methods have been reported in the literature

to analyse skin lesion images. The pattern analysis methods do not consider the seven-

point checklist criteria or ABCDE rule; instead, these methods work on extracting the

features of lesions automatically and use the extracted features to infer melanoma diag-

nosis. Codella et al. presented a hybrid method, integrating sparse coding, convolutional

neural network (CNN) and support vector machines (SVMs) to detect melanoma [54].

Recently, Codella et al. established a method combining recent developments in deep

learning and machine learning approaches for skin lesion segmentation and classifica-

tion [215]. Kawahara et al. used a fully convolutional network to extract multi-scale

features for melanoma detection and recognition [216]. Yu et al. applied a very deep

residual network to distinguish melanoma from non-melanoma lesions [217]. Esteva

et al. [125] adopted a pre-trained GoogleNet Inception v3 CNN model to classify skin

cancers. Haenssle et al. [127] utilised a deep convolutional neural network to classify

a binary diagnostic category of dermoscopy images of melanocytic images. Dorj et

al. [218] developed SVM with a deep convolutional neural network approach for the

classification of four diagnostic categories of clinical skin cancer images. Han et al.

[140] used a deep convolutional neural network to classify the clinical images of 12

skin diseases.

From literature, it has been found by experienced dermatologists that the 7-point

checklist gives higher sensitivity but lower specificity than some pattern analysis meth-

ods [219, 220]. This indicates the limitations in both approaches and reports a trade-off

between the two assessment strategies, thereby motivating more investigation and anal-

ysis of both approaches. Furthermore, although the pattern analysis and seven-point

checklist criteria diagnostic procedures are different, the seven criteria are basically

based on the criteria exploited in the process of pattern analysis and interpretations

[221]. In addition, detecting and localising these criteria can help with more under-

standable and interpretable diagnostic procedures, such as recognising the presence of

malignant features and retrieving images that satisfy specific criteria.
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In this research work, a deep learning-based method has been proposed to predict

the 7-points checklist criteria and diagnose melanoma where the lesion features are

designed automatically. Multiple input convolutional neural networks (CNNs) consid-

ering clinical and dermoscopic images as inputs have been developed. Incorporating

7-point checklist criteria with CNN and learning the proposed model using difficult and

non-standardised images (clinical images) may aid with leveraging the reliability of

melanoma diagnosis.

5.3 Materials and Methodology

5.3.1 Materials

A publicly available dataset [210] for evaluating computerised image-based prediction

of the 7-point skin lesion malignancy checklist has been used in the experiments. The

dataset includes over 2000 clinical and dermoscopy colour images for training and eval-

uating computer-aided diagnosis (CAD) systems. Dermoscopic images are taken with

a dermatoscope and offer a standardised field of view. The dermoscopic images are

captured under controlled conditions like standard illumination, lighting and contrast.

Clinical image acquisition is carried out under less standardised conditions, such as

various fields of view and containing image artefacts.

5.3.2 Methodology

Convolutional neural networks (CNNs) can be adopted as feature learning algorithms

because the convolutional neural layers have a credible ability to detect good features

in the images and form hierarchies of nonlinear features where their complexity grows

while going deeper through the network. The main idea of CNN is stacking such deep

hierarchies of nonlinear features. For images, it can be mathematically shown that edges

and blobs are the best features that can be extracted in the earlier layers. To generate

features containing more information, earlier features (edges and blobs) are transformed
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again to obtain more complex features that consist of more information to discriminate

among the classes.

The Block diagram of the proposed method is shown in Figure 5.2. The upper sub-

figure shows the abstract level of the developed system, while the lower subfigure shows

the details of each classification block. The diagram has seven classification blocks, one

for each lesion attribute, to predict the attribute label. The predicated attribute label is

taken into consideration along with the other labels, and their weights are summed up to

produce the diagnosis score according to 7- point checklist criteria. If the obtained score

is equal to or greater than three, then the decision taken by the network results in class

1, indicating to melanoma case; otherwise, results in class 0 indicating non-melanoma.

The architecture of the implemented convolutional network of each classification

block is described in Table 5.2. The last column shows the filters’ size and the max-

pooling window size in each layer. Both networks have the same architecture consisting

of two convolutional layers, each followed by a max-pooling layer. The extracted fea-

tures from two networks are concatenated together and passed into dense layers (fully

connected layers) in order to identify the lesion attribute from the input image. The deep

network was trained through 300 epochs with a cross-entropy loss function. The train-

ing of the model is set to 300 epochs where the validation error stops improving after

this epoch, and the best weighting values are maintained. Stochastic gradient descent

(SGD) with a momentum optimisation algorithm having a learning rate of 0.001 and a

momentum parameter of 0.9 is used to train the networks by updating the weights.

5.4 Results and Discussions

The data are randomly divided into 60% training and the remaining for testing. All

images were resized to 256 × 256 × 3. The performance of the proposed method for le-

sion identification and melanoma diagnosis, when compared with the ground truth, was

evaluated using many evaluation metrics, including accuracy, sensitivity, and specificity.
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(a)

(b)

FIGURE 5.2: (a) Block diagram of proposed skin lesion attribute classification. PN:
Pigment Network, BWV: Blue Whitish Veil, VS: Vascular Structure, PIG: Pigmenta-
tion, STR: Streaks, Dag: Dots and Globules, RS: Regression Structures. (b) Details of

each skin lesion classification block shown in (a).



Chapter 5. Classification of Skin Lesions Related to Melanoma From Dermoscopic and
Clinical Images via Seven-point Checklist Criteria 105

TABLE 5.2: Convolutional neural network architecture and its parameters

Layer Output Shape Connection Size
Dermoscopy input1
image

(256, 256, 3) - -

Clinical input2 image (256, 256, 3) - -
Conv1 (253, 253, 32) Dermoscopy input1

image
filter size = (4,4)

Conv2 (253, 253, 32) Clinical input image2 filter size = (4,4)
MaxPooling1 (127, 127, 32) Conv1 Maxpool size = (2,2)
MaxPooling2 (127, 127, 32) Conv2 Maxpool size = (2,2)
Conv3 (124, 124, 16) MaxPooling1 filter size = (4,4)
Conv4 (124, 124, 16) MaxPooling2 filter size = (4,4)
MaxPooling3 (62, 62, 16) Conv3 Maxpool size = (2,2)
MaxPooling4 (62, 62, 16) Conv4 Maxpool size = (2,2)
Flatten1 (1,61504 ) MaxPooling3 -
Flatten2 (1,61504 ) MaxPooling4 -
Concatenation (1,123008 ) Flatten1 and Flatten2 -
Dense1 (1,100 ) Concatenation -
Dense2 (1,100 ) Dense1 -
Output (N) Dense2 N= 2 or 3

5.4.1 Baseline

The proposed method has been trained and evaluated on the same dataset used in the

state-of-the-art method presented by Kawahara et al. [210], where a multi-model deep

learning method to predict 7-point checklist criteria using metadata was developed. The

baseline results obtained from the proposed system for lesion detection and melanoma

diagnosis are presented in Table 5.3.

TABLE 5.3: Baseline results of skin lesion attribute detection and melanoma diagnosis.

Lesion Accuracy Sensitivity Specificity
Pigment Network (PN) 0.6278 0.5957 0.8092

Blue Whitish Veil (BWV) 0.8051 0.8750 0.5067
Vascular Structure (VS) 0.7316 0.5620 0.8156

Pigmentation (PIG) 0.6278 0.5663 0.7848
Streaks (STR) 0.6759 0.5807 0.7808

Dots and Globules (Dag) 0.5038 0.4832 0.7475
Regression Structures (RS) 0.7190 0.8097 0.4717
Lesion detection-average 0.6701 0.6387 0.7023

Melanoma diagnosis 0.6430 0.5537 0.8926
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Madooie et al. [212], who proposed a system to detect the presence of blue-white

veils (BWV) based on colour analysis, reported a sensitivity of 71%, while the proposed

system is able to detect BWV lesions, achieving a sensitivity of 87.5%. Furthermore,

Wadhawan et al. [214], who proposed a method based on hand-crafted feature extrac-

tion, reported a sensitivity of 79.5% and 64.2% on detecting BWV and RS, respec-

tively. In contrast, the proposed method achieves a sensitivity of 87.5% and 80.79%

for identifying the same lesions. Moreover, Kawahara et al. [210] reported results bet-

ter than the baseline results of the proposed method achieving a sensitivity of 60.4%

and specificity of 91% for melanoma diagnosis compared to the proposed system that

shows a sensitivity of 55.37% and specificity of 89.26%. However, the baseline results

have been achieved without considering label imbalance problems or parameter tuning,

which have been carefully addressed in their developed system.

5.4.2 Improved Results

This section presents the extended work of the system developed and presented in [194].

The development and improvements carried out on the proposed lesion detection and

melanoma diagnosis system are explored as follows. The proposed lesion detection and

melanoma diagnosis comprises seven lesion attributes (L1, L2, . . . , L7). Each lesion is

passed into four different models (M1, M2, M3, M4), in addition to Alexnet reported

as a baseline, to detect a lesion from the seven-point checklist. Along with the other

labels, the predicated lesion attribute label (P1, P2, . . . , P7) is taken into consideration,

and their weights are summed to generate the diagnosis score according to the criteria of

the 7-point checklist. If the score obtained is equal to or greater than three, the decision

taken by the network will result in class 1, indicating the case of melanoma; otherwise,

it will result in class 0, indicating non-melanoma. Figure 5.3 shows the abstract level

block diagram of the proposed system.

The proposed system has been built using five backbone network models, pre-

trained over ImageNet [48] dataset. The five convolutional neural network models are
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FIGURE 5.3: Block diagram of the proposed melanoma diagnosis system.
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AlexNet (as baseline) [48], VGG16 [68], ResNet101 [72], DenseNet201 [71], and In-

ception V3 [70]. The models are retrained on the dermoscopic and clinical images,

where the weights are fine-tuned. Alexnet architecture [48] is adopted as a baseline

model. Augmentation is applied to the training images in real-time with horizontal

and vertical flipping, rotations, zooms, and random translations. As the data has an

imbalanced distribution of positive and negative labels, this issue is addressed by over-

sampling the minority classes in each batch of training data. The classification is further

penalised by imposing an additional cost and weighing up on the minority class during

model training. Figures 5.4, 5.5, 5.6, 5.7, and 5.8 depict the performance of the

developed system for lesion detection and melanoma diagnosis.

FIGURE 5.4: Seven lesions detection performance in melanoma diagnosis system us-
ing Alexnet as the backbone.

FIGURE 5.5: Seven lesions detection performance in melanoma diagnosis system us-
ing VGG16 as the backbone.

Tables 5.4 and 5.5 show the performance of the proposed pipeline system for skin

lesion and melanoma detection in terms of accuracy, sensitivity and specificity. Best
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FIGURE 5.6: Seven lesions detection performance in melanoma diagnosis system us-
ing Resnet101 as the backbone.

FIGURE 5.7: Seven lesions detection performance in melanoma diagnosis system us-
ing Densenet201 as the backbone.

FIGURE 5.8: Seven lesions detection performance in melanoma diagnosis system us-
ing Inception V3 as the backbone.
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results are obtained from the Inception v3 backbone, producing average accuracy, sen-

sitivity and specificity of 0.7250, 0.6576, and 0.7705; respectively, for lesion detection

and 0.7253, 0.6023, and 0.9071; respectively, for melanoma diagnosis.

TABLE 5.4: Average lesion detection performance.

Network Accuracy Sensitivity Specificity
Baseline (AlexNet) 0.6701 0.6387 0.7023

VGG19 0.6931 0.6473 0.7324
ResNet101 0.7067 0.6519 0.7469

DenseNet201 0.717 0.6566 0.7616
Inception V3 0.725 0.6576 0.7705

TABLE 5.5: Average melanoma diagnosis performance.

Network Accuracy Sensitivity Specificity
Baseline (AlexNet) 0.643 0.5537 0.8926

VGG19 0.6722 0.5696 0.8978
ResNet101 0.6989 0.582 0.9003

DenseNet201 0.7121 0.5914 0.9055
Inception V3 0.7253 0.6023 0.9071

Kawahara et al. [210] presented a multi-task system for lesion detection and melanoma

diagnosis, achieving an average accuracy of 0.7370, a sensitivity of 0.6620 and speci-

ficity of 0.8060 for lesion detection and average accuracy, sensitivity and specificity of

0.7420, 0.6040, 0.9100; respectively for melanoma diagnosis on the same dataset used

to evaluate the proposed system. The results of the developed separate pipelines for pre-

dicting eight different categories (melanoma diagnosis and seven-point checklist) reveal

a close and comparable performance with the multi-task system proposed by the authors

of [210]. However, the authors of [210] claimed that the labels of eight categories are

not mutually exclusive. Yet, they defined a multi-task loss function with eight terms

for eight tasks without considering the dissimilarity among tasks. The dissimilar tasks

could affect badly on the generalisation performance of the multi-task system if tested

on different unseen datasets. Their method treats all eight tasks with equivalent impor-

tance, and therefore it becomes crucial to find a robust strategy to choose the weighting
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scheme for each task in the loss function. Moreover, unlike the proposed method here,

they considered the lesion detection task as a targeted task instead of an auxiliary task

to achieve the final goal, which is melanoma diagnosis.

It is worth mentioning that the studies presented in Chapters 4 and 5 of the analysis

aim to examine skin lesions related to melanoma. However, the research questions ad-

dressed in these studies differ significantly. Chapter 4 focuses on evaluating and bench-

marking nineteen convolutional neural network architectures for melanoma diagnosis

through the analysis of dermoscopic images. The goal is to prioritise the convolutional

network architectures and select the optimal one based on specific criteria. On the other

hand, Chapter 5 aims to determine the potential impact of incorporating seven-point

checklist criteria with CNN models and training the models using both clinical and

dermoscopic images on the reliability of melanoma diagnosis. Thus, while Chapter 4

endeavours to develop a new benchmarking approach for selecting the optimal architec-

ture for melanoma diagnosis, Chapter 5 aims to develop a new method for the diagnosis

of melanoma. It is important to note that the public dataset used in Chapter 4 [126] does

not contain the ground truth of the seven-point checklist criteria, making it unsuitable

for training and validating the method proposed in Chapter 5. As a result, the results

from Chapters 4 and 5 cannot be directly compared due to the differences in research

questions and data.

5.5 Conclusions

A new technique for skin lesion detection and melanoma diagnosis from dermoscopy

images by combining seven-point checklist criteria with convolutional neural networks

has been proposed and implemented successfully. The proposed models have been

realised by incorporating automated lesion feature extraction achieved by multi-input

CNN considering standardised images (dermoscopy) and non-standardised images (clin-

ical). It is demonstrated that the proposed method performs well in terms of accuracy,

sensitivity, and specificity.



Chapter 6

Conclusions and Future work

This chapter presents a summary of the proposed skin lesion analysis methods, the main

findings and limitations of the research work, and some potential future research work

directions. A summary of the proposed methods is presented in Section 6.1. The main

findings and research limitations are reported in Section 6.2. Finally, the further possible

research directions are given in Section 6.3.

6.1 Detailed Conclusions

In this thesis, three distinct skin lesion analysis methods based on image classification

and regression approaches were proposed and applied to facial, dermoscopic, and clin-

ical images to detect melanoma-related lesions and assess the severity of acne-related

lesions. The proposed methods’ performance evaluation using several metrics demon-

strated that the presented techniques work well in both classification and regression

tasks. The utilised public labelled datasets helped to conduct the training and testing

of the developed systems, allowing for a fair comparison with the performance of the

state-of-the-art methods evaluated on the same public datasets. All of the images used

to train the models presented in this thesis were augmented, targeting to artificially in-

crease the samples of image data. The CNNs were adopted to automatically extract and

112
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learn high-level features in the proposed methods, feeding these features to the fully

connected layers for a final decision of class prediction.

The first theme of the research presented the acne lesion analysis method using a

regression-based deep learning algorithm. Acne vulgaris is the common form of acne

that primarily affects adolescents, characterised by an eruption of inflammatory and/or

non-inflammatory skin lesions. Accurate evaluation and severity grading of acne plays

a significant role in precise treatment for patients. Manual acne examination is typically

conducted by dermatologists through visual inspection of the patient skin and counting

the number of acne lesions. However, this task costs time and requires excessive effort

by dermatologists. Thus, this work presented automated acne counting and severity

grading method from facial images. To this end, a multi-scale dilated fully convolu-

tional regressor integrated with an attention mechanism for density map generation is

developed. The proposed fully convolutional regressor module adapts UNet with di-

lated convolution filters to systematically aggregate multi-scale contextual information

for density map generation. An attention mechanism represented by prior knowledge of

bounding boxes generated by Faster R-CNN is incorporated into the regressor model.

This attention mechanism guides the regressor model on where to look for the acne

lesions by locating the most salient features related to the understudied acne lesions,

therefore improving its robustness to diverse facial acne lesion distributions in sparse

and dense regions. Finally, integrating over the generated density maps yields the count

of acne lesions within an image, and subsequently, the acne count indicates the level of

acne severity. The obtained results demonstrated improved performance compared to

the state-of-the-art methods in terms of regression and classification metrics.

The second skin lesion analysis method was considered to study melanoma-related

lesions from dermoscopic images using classification-based deep learning methods.

Melanoma is the most invasive skin cancer with the highest risk of death. While it

is serious skin cancer, it is highly curable if detected early. Melanoma diagnosis is

difficult, even for experienced dermatologists, due to the wide range of morpholo-

gies in skin lesions. Given the rapid development of deep learning algorithms for
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melanoma diagnosis, it is crucial to validate and benchmark these models, which is

the main challenge of this work. Thus, the research presented a new benchmarking

and selection approach based on the multi-criteria analysis method (MCDM), which

integrates entropy and Preference Ranking Organization Method for Enrichment of

Evaluations (PROMETHEE) methods. The experimental study was carried out in four

phases. Firstly, nineteen convolution neural networks (CNNs) were trained and eval-

uated on a public dataset of 991 dermoscopic images. Secondly, to obtain the deci-

sion matrix, ten criteria, including accuracy, classification error, precision, sensitivity,

specificity, F1-score, false-positive rate, false-negative rate, Matthews Correlation Co-

efficient (MCC), and the number of parameters were established. Third, entropy and

PROMETHEE methods were integrated to determine the weights of criteria and rank

the models. Fourth, the proposed benchmarking framework was validated using the

VIKOR method. The obtained results revealed that the ResNet101 model is selected as

the optimal diagnosis model for melanoma in the case study data.

Finally, another approach was presented to study melanoma-related lesions from not

only dermoscopic images but also clinical images using the classification-based deep

learning method. Reliable skin lesion detection is an important prerequisite for the di-

agnosis of melanoma and other skin diseases. Existing melanoma assessment models

consider either pattern analysis methods or seven-point checklist criteria to investigate

skin lesions. However, automatic and accurate detection of the skin lesion and, subse-

quently, melanoma diagnosis remain an unresolved challenge. Furthermore, there are

limitations in both approaches and a trade-off between the two assessment strategies.

Thus, the research proposed a pattern analysis method incorporated with a seven-point

checklist exploiting a convolutional neural network for melanoma diagnosis where the

lesion features are extracted automatically. The benefit of features learned automatically

from the dermoscopic images through the stacked layers of convolution filters was de-

signed, realised and evaluated. Both clinical and dermoscopic images were considered

as input to the developed multiple-input convolutional neural networks (CNNs), where

a separate feature extraction model is implemented for each image type. The features
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produced from both models are concatenated for interpretation and final lesion-type pre-

diction. The sum of the weight for predicated lesions, which was calculated according to

seven-point checklist criteria and then passed into a threshold model to decide whether

the image is normal or abnormal (melanoma or non-melanoma). The performance of

the developed algorithm is assessed using a dataset of 2000 dermoscopic and clinical

images. The results obtained from the proposed system show a convincing and promis-

ing ability for lesion detection and automated melanoma diagnosis from dermoscopy

and clinical images.

6.2 Summary of Main Findings

In addition to the details of the research contribution presented in Section 1.5 in Chap-

ter 1, this section summarises the main findings of the research theme presented in this

thesis as follows:

• The developed computer-based diagnosis tool would greatly benefit and support

automated acne lesion severity grading, significantly reducing the manual assess-

ment and evaluation workload.

• The presented benchmarking framework was proven to be useful in exposing the

optimal melanoma diagnosis model targeting to ease the selection process of the

proper convolutional neural network architecture.

• The findings of conducted evaluation and investigations on various CNN models

for melanoma detection would aid and expedite the deployment of artificial in-

telligence (AI) assisted CAD systems to clinics and hospitals with regard to ease

model selection under different criteria.

• Learning the proposed CNN model using clinical features, i.e. 7-point check-

list criteria, and automatic features extracted by convolutional filters in the CNN
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on difficult and non-standardised images (clinical images) may aid with leverag-

ing the reliability of melanoma diagnosis systems by exposing the model to the

challenging data image examples and complex clinical features.

6.3 Limitations and Future Work

The limitations of the presented research and possible future research directions are

described as follows:

• Lack of large labelled dataset: it is suggested to implement and train the de-

veloped models for acne severity assessment within weakly-supervised or semi-

supervised frameworks, pushing forward to weakly supervised learning fashion

due to the unavailability of large amounts of annotated data within the medical

domain and the fact that partial annotations are more common.

• Deployment of optimal model: other image modalities, such as non-dermoscopic

(clinical) images, can also be used to train and test the network architecture of the

pre-trained models developed for melanoma detection. It is also recommended

to expand the number of training samples and investigate other untested deep-

learning training methodologies.

• Multi-task learning scheme: extend experiments conducted in Chapter 5 by de-

veloping a model composed of a common feature-pool providing task-shared fea-

tures for eight tasks. These task-shared features are integrated with task-specific

models designed for each individual task, allowing for learning from both types

of features (specific and shared) and providing a suitable balance among those

tasks.

• Salient clinical features: detecting the area of interest of lesions by localising the

seven lesion attributes would help the CNN extract the salient lesion feature from

images. Developing a framework composed of a multi-stage learning scheme
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for salient feature localisation and then feature extraction and classification could

produce an improved system for melanoma diagnosis.

• Validation: a clinical evaluation would need to be conducted in order to confirm

the effectiveness of the deep learning techniques described in this thesis. This

would make it possible to assess how well the models might work in a clinical

setting. Additionally, varying the quality of the data and the number of patients

in various clinical contexts would assess the algorithms’ robustness.
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[159] S. Seité, A. Khammari, M. Benzaquen, D. Moyal, and B. Dréno, “Development
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