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A B S T R A C T

A novel Bayesian Augmented-Learning framework, quantifying the uncertainty of spectral
representations of stochastic processes in the presence of missing data, is developed. The
approach combines additional information (prior domain knowledge) of the physical processes
with real, yet incomplete, observations. Bayesian deep learning models are trained to learn
the underlying stochastic process, probabilistically capturing temporal dynamics, from the
physics-based pre-simulated data. An ensemble of time domain reconstructions are provided
through recurrent computations using the learned Bayesian models. Models are characterized
by the posterior distribution of model parameters, whereby uncertainties over learned models,
reconstructions and spectral representations are all quantified. In particular, three recurrent
neural network architectures, (namely long short-term memory, or LSTM, LSTM-Autoencoder,
LSTM-Autoencoder with teacher forcing mechanism), which are implemented in a Bayesian
framework through stochastic variational inference, are investigated and compared under many
missing data scenarios. An example from stochastic dynamics pertaining to the characterization
of earthquake-induced stochastic excitations even when the source load data records are
incomplete is used to illustrate the framework. Results highlight the superiority of the proposed
approach, which adopts additional information, and the versatility of outputting many forms
of results in a probabilistic manner.

. Introduction

Stochastic processes are widely adopted in many domains to deal with problems which are random in nature and involve
trong nonlinearities, non-stationary processes, and uncertain system parameters [1,2]. For instance, stochastic dynamics involves
nalyses of engineering systems subject to random environmental processes, such as earthquake motions or winds, requiring realistic
haracterization and simulation of these stochastic excitations to ensure robust design [3,4]. Spectral representations of stochastic
rocesses, notably evolutionary power spectral density function (EPSD), play a central role in the characterization and modelling of
hese environmental processes, capturing key inherent properties (e.g. nonstationarity) and empowering probabilistic engineering
imulations for stochastic dynamic analyses and safety assessment of engineering facilities [5–7].
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However, in practice, the uncertainties of spectral representations due to some data problems are not typically acknowledged:
i) limited data: a large number of data samples are needed for a predefined degree of accuracy in power spectral estimation [8];
ii) incomplete or non-uniformly sampled data: a ubiquitous problem in virtually any discipline where in situ measurements are

collected and transferred [8,9]; (iii) uncertain data: inherent statistical differences that exist across multiple source datasets [10].
Specifically, this study focuses on the incomplete data problem as it is deemed both universal and consequential in various
fields, e.g. geophysical [11,12], meteorological [13], astronomical [14,15] and seismological [16,17], in which missing data in
measurements is frequently an unavoidable issue, with various reasons causing intermittent failure, including equipment failure
(e.g. temporary sensor in harsh conditions), equipment incompetence (old mechanical instrument for high-velocity vibration,
broadband sensors vulnerable to clipping in strong motions), temporary transmission loss for real-time data, plus numerous other
reasons including sensor maintenance, usage, data acquisition restrictions and or data-corruption [8,17,18]. This problem also turns
out to have significant consequences since incompleteness may lead to false interpretations (e.g. artefacts) if not properly dealt
with [16], or render the data unusable, hence breaking existing work pipelines as re-observe the considered physical/environmental
phenomenon is generally not possible.

In many studies and applications, data records contain considerable information towards the understanding of the physical
phenomenon/event/scenario (e.g. spectral structure), and towards the development and calibration of empirical models of the
physical processes (e.g. spectral models for characterizing seismic stochastic excitations), possibly for a certain condition or scenario,
or a specific region. A frequent dilemma is that available observed data are scarce and limited in the first place to justify the
formulation and calibration of models accordingly developed [19]. As such, in response to limited data, a method to harness the
most of existing data (even if incomplete or nonequidistantly-sampled) is considered essential for a variety of practical applications.
Facilitating such uses would then ensure the user to continue with the ensuing analyses, enrich the database, and progressively
obtain better informed models, which is of great importance to ensuring robust analyses against data problems in practice.

With varying assumptions, many attempts in tackling incomplete data have been proposed over the years. Various parametric
models, assuming certain structures of the underlying process, e.g. AR (autoregressive) or ARMA (autoregressive moving-average)
models (see [20–22] for details), involve fitting a parameterized formulation of the spectral density to the available observation
using specific estimators. In [17], a domain specific parameterized formulation, based on the physics-driven earthquake source
spectrum of ground motion, is fitted with a maximum likelihood estimator. Sparse methods [23–26] (e.g. compressive sensing),
with additional assumption of the sparsity, for instance, in frequency domain, have been proposed for spectral density estimation
where multiple records compatible with a stochastic process are available [9]. Furthermore, a number of nonparametric spectral
estimators work in an iterative manner to progressively approximate the target spectral density, see e.g. [16,27,28] among others.
However, there exists an additional barrier that many of these spectral estimators are only valid for stationary processes and cannot
be straightforwardly extended to nonstationary data [29]. Alternatively, a number of approaches explicitly or implicitly convert
the spectral analysis involving missing data into a process of iterative imputation, followed by well-established full-data spectral
analysis techniques. Beyond simple interpolation methods (see e.g. [30] for a review), more sophisticated models stand out by
utilizing temporal dependency. Notably, neural network models, known for learning complex and nonlinear relations, are seen
prospects in learning the underlying process [18,31,19] and thereby imputing the missing values [32].

However, despite recent progress, there still exist three main challenges in the spectral analysis of non-stationary process with
missing observations: (i) mostly current approaches fail to properly address the uncertainties related to the missing data [33,8].
Inaccuracies of an imperfect time-history reconstruction will be propagated to spectral estimates. Similarly, for parametric modelling
approaches, parameter uncertainties due to the incomplete data are not adequately captured. (ii) many current approaches are
developed on the stationary assumption hence inadequate to reflect the spectral nonstationarity; (iii) More importantly, in spite of
approaches that handle uncertainties (e.g. Bayesian spectral analyses [34,35] or interval discrete Fourier transform [36]), most of
current approaches are still significantly bounded by a ceiling in performance since they merely base on the very limited information
contained in the incomplete data (i.e. available observations).

Therefore, in relation to these challenges, we propose an Augmented-Learning framework that (i) takes advantage of a-
priori knowledge of the underlying process, enabling to incorporate additional information (physics-based knowledge) into the
modelling. (ii) accounts for uncertainty throughout the framework, allowing to provide a host of outputs in a probabilistic manner
(e.g. reconstructions, spectral representations, and stochastic-process sample generations). (iii) applicable to nonstationary processes.
The present study builds upon a previous work [19] which merely addresses missing data in a stationary setting, whereas this study
provides a robust solution to the more general and complex case of arbitrary missing pattern anywhere in a non-stationary setting
with significant incompleteness. Such versatility therefore enables its domain-independent feasibility. This paper is structured as
follows: in Section 2, we begin with a concise review of the theoretical context on which we build our framework. Section 3
then elaborates the main procedures of our proposed framework, followed by a discussion regarding one key component (Bayesian
modelling of sequential data) in Section 4. An example application from stochastic dynamics is used to illustrate the framework in
Section 5, where we present a comprehensive performance comparison of three Bayesian deep learning models, under a range of
missing data scenarios, using quantitative uncertainty metrics.

2. Spectral representations of stochastic processes

In this section, a brief review of the theory of the spectral representation of stochastic processes (stationary and non-stationary)
is outlined, providing a basis for the proposed framework. In particular, focus is on power spectral estimation and simulation of
2



Mechanical Systems and Signal Processing 200 (2023) 110573Y. Chen et al.
Fig. 1. Flowchart of the Augmented Bayesian Learning framework. Main components of the framework include a. generating simulations of the physical process
with a-priori knowledge; b. learning model representations of the underlying process with Bayesian recurrent models; c. imputing probabilistically the missing
values with the learned Bayesian models; d. quantifying the uncertainty on spectral representations (e.g. evolutionary spectrum) of the underlying stochastic
process e. simulating sample realizations of stochastic process as inputs to downstream tasks of random nature (e.g. stochastic dynamics).

the corresponding processes. A general non-stationary random process, with respect to a family of oscillatory functions, can be
represented in the form [37]:

𝑋𝑡 = ∫

∞

−∞
𝐴(𝜔, 𝑡)𝑒𝑖𝜔𝑡d𝑍(𝜔) (1)

where 𝜙𝑡(𝜔) = 𝐴(𝜔, 𝑡)𝑒𝑖𝜔𝑡 represent the oscillatory functions, of which 𝐴(𝜔, 𝑡) suggests a slowly varying and frequency-dependent
modulating function and 𝑍(𝜔) is an orthogonal process; {𝑋𝑡} is termed as oscillatory processes whose (two-sided) evolutionary
power spectral density is further given as:

𝑆(𝜔, 𝑡) = |𝐴(𝜔, 𝑡)|2𝑆(𝜔) (2)

where 𝑆(𝜔) represents the power spectral density function in the case of a stationary process with a family of complex exponentials,
i.e., 𝜙𝑡(𝜔) = 𝑒𝑖𝜔𝑡. The semi-stationary property [2] due to the slowly-changing spectra premise facilitates the practical estimation of
the evolutionary spectra given a realization record via non-stationary time–frequency methods, e.g. wavelet transforms [7,38,39].
Inversely, a versatile formula for generating sample realizations compatible with the stochastic process is given by spectral
representation method (SRM) [39]:

𝑥(𝑖)(𝑡) =
√

2
𝑁−1
∑

𝑛=0

√

2𝑆(𝜔𝑛, 𝑡)𝛥𝜔 cos(𝜔𝑛𝑡 +𝛷(𝑖)
𝑛 ) (3)

where 𝑥(𝑖)(𝑡) is a sample simulation, 𝛷(𝑖) is the set of independent random phase angles, distributed uniformly over the interval
[0, 2𝜋], for the 𝑖th sample realizations; 𝑁 and 𝛥𝜔 relate to the discretization of the frequency domain.

3. Augmented Bayesian learning framework

A large ensemble of complete data samples are often required for stochastic-process spectral density estimation for attaining a
predefined adequate degree of accuracy, while we often only have one observed realization in practice [40]. The estimation becomes
even more challenging when only partial data is available. Limited information in the partially observed data imposes a ceiling in
performance for those accordingly developed methods. To robustly exploit additional information into modelling and break the
performance ceiling, a Bayesian Augmented-Learning framework is established. Fig. 1 shows a flowchart of the key procedures of
the proposed framework.

We build on the premise that a priori knowledge could provide general yet insightful prior expectations of the observation (with
variability) of the physical process. The a-priori information is addressed by generating simulations based on the domain knowledge
represented by 𝜽𝑔 .

 = 𝑔(𝜽 ) (4)
3
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specifically, 𝜽𝑔 = (𝜃1,… , 𝜃𝑛) represents a random vector of relevant physical parameters, each component of which stands for
random variable. 𝑔(⋅) represents a generator function, which may just be a model with physics aspects capable of generating

tochastic simulations accordingly. Collectively the corresponding probability distribution 𝑝(𝜽𝑔) would reflect the variability of the
imulations embedded in our prior belief.

Given the data represented by those physics-informed simulations, Bayesian recurrent neural network models  are trained as
robabilistic model representations of the underlying process, whereby the imputation of missing data is conducted as predictions
n a recursive manner. Importantly, the epistemic uncertainties of the learned model representations are addressed by putting
robability distributions over the model parameters 𝝎 of neural nets, thus giving rise to the posterior distribution 𝑝(𝝎| ,) through
he Bayesian inference, as given below:

𝑝(𝝎| ,) =
𝑝(|𝝎,)𝑝(𝝎|)

𝑝(|)
∝ 𝑝(|𝝎,)𝑝(𝝎|) (5)

This marks a key step of the proposed framework, where a probabilistic representation of the underlying process is learned by
ecurrent neural network models and further used to reconstruct the incomplete observations. Besides, in this study we also present
nvestigations and comparisons of a few neural network architectures in this regard. With the posterior distribution, an ensemble
f recurrent imputations can be obtained by marginalizing out the parameter space, as follows:

 = ∫ 𝑝(�̃�|�̃�,𝝎)𝑝(𝝎|)d𝝎 (6)

here �̃� represents the missing samples in a specific recording;  denotes the reconstructed process, practically through an ensemble
of reconstructions, which contain both the recurrent imputations �̃� and existing observations. Subsequently, uncertainties over
spectral representations of the underlying stochastic process (e.g. evolutionary power spectral density) can further be quantified,
using any established spectral estimators, non-parametric or parametric, stationary or non-stationary. Importantly, the evolutionary
spectral density with respect to a certain time and frequency 𝑆𝑓𝑡 is represented by a probability distribution, as opposed to a
eterministic value.

Closely related to the notion of evolutionary power spectrum is the application of Monte Carlo simulations of compatible sample
unctions for numerical engineering analyses of stochastic nature [1,2,6,7], for instance conducting stochastic response and reliability
ssessment for engineering structures subject to stochastic excitations. Corresponding to Eq. (3), our framework maintains the ability
o characterize the underlying stochastic process and generate associated sample realizations, even with the source data record is
ncomplete.

. Bayesian modelling of sequential data

Bayesian recurrent neural network (BRNN) models are utilized to probabilistically learn the temporal dependency and provide
ecurrent imputations for the missing data in the measurements. Specifically, three network architectures (namely long short-term
emory, or LSTM, LSTM-Autoencoder, LSTM-Autoencoder with teaching forcing mechanism) are investigated. For completeness, we

irst provide a concise review of the sequential modelling strategies using RNNs and extend these models into Bayesian counterparts
o further consider epistemic uncertainty.

.1. Sequential modelling with LSTM

RNNs are specialized dynamic models that capture temporal patterns in the sequential data (e.g. time series), by maintaining
idden states at each time step [41,42], see Eq. (7). They feature the recursive structure that consumes the time ordered data one
t a time. Its structure is deemed as a deep network once unfolded in time.

𝐡𝑡 = (𝐡𝑡−1, 𝐱𝑡;𝝎) (7)

where 𝐡𝑡 and 𝐱𝑡 represent, respectively, the hidden states vector and the input sequence 𝐱𝑡 ∈ R𝐷, at time stamp 𝑡;  denotes a
idden layer function, which could represent any sophisticated RNN variant (e.g. long short-term memory, LSTM) parameterized
y weights and biases 𝝎. Notably, the LSTM architecture [43], acknowledged for alleviating vanishing or exploding gradients and
earning long range temporal dependencies, are found to give state-of-the-art results for a variety of prediction problems of sequential
ature [41,42,32]. Fig. 2 depicts the diagram of a LSTM unit, which encapsulates the flow of states through three gate functions
namely: forget gate 𝑓 , input gate 𝑖, output gate 𝑜) plus a cell update 𝑐, controlling the flow of information, as shown by following
quation [44]:

𝐟𝑡 = 𝜎(𝐖𝑥𝑓 𝐱𝑡 +𝐖ℎ𝑓𝐡𝑡−1 + 𝐛𝑓 )
𝐢𝑡 = 𝜎(𝐖𝑥𝑖𝐱𝑡 +𝐖ℎ𝑖𝐡𝑡−1 + 𝐛𝑖)
𝐨𝑡 = 𝜎(𝐖𝑥𝑜𝐱𝑡 +𝐖ℎ𝑜𝐡𝑡−1 + 𝐛𝑜)
�̃� = tanh(𝐖𝑐𝑥𝐱𝑡 +𝐖𝑐ℎ𝐡𝑡−1 + 𝐛𝑐 )

𝐜𝑡 = 𝐟𝑡 ∗ 𝐜𝑡−1 + 𝐢𝑡 ∗ �̃�𝑡−1 (8)
4
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Fig. 2. Diagram of a LSTM unit. Three gate functions 𝑓, 𝑖, 𝑜 control
information passage.

Fig. 3. A simplified diagram of the LSTM Autoencoder architecture
where a univariate case is illustrated (modified from [46]). The dashed
arrow indicate the optional information employed by the teacher forcing
mechanism.

here 𝜎 stands for the sigmoid function, tanh denotes the hyperbolic function, ∗ is the element-wise multiplication. 𝝎 collectively
epresent the weight matrices (including biases terms) aforementioned as 𝝎 = {𝐖𝑥𝑓 ,𝐖ℎ𝑓 ,𝐛𝑓 ,… ,𝐖𝐲 ,𝐛𝐲}, which represent the input-

to-hidden connections, hidden-to-hidden recurrent connections, and also hidden-to-output connections. With the hidden states at
time 𝑡 sequentially updated as 𝐡𝑡 = 𝐨𝑡 ∗ tanh(𝐜𝑡), the associated prediction is given by [45]:

𝑦𝑡 = 𝑓𝐲(𝐡𝑡) = 𝐡𝑡𝐖𝐲 + 𝐛𝐲 (9)

4.2. LSTM-based AutoEncoder

LSTM-based AutoEncoder stands for a specified architecture that concerns a sequence-to-sequence inference problem where a
variable length of predictions are desired (often referred as horizon), using an encoder–decoder structure. It consists of an encoder
LSTM network that encodes the input data sequence into a context vector 𝝂, whereby a decoder LSTM network is conditioned upon
to iteratively generate the output sequence of arbitrary length given the hidden states, as suggested by Eq. (9). Fig. 3 provides a
simplified diagram illustrating the encoder–decoder network structure. The context vector, in the latent space, is deemed to have
summarized the hidden states sequentially learned from the input data.

From a probabilistic perspective [47] which deems the model as the probabilistic procedure generating the observed data, the au-
toencoder architecture formulates the conditional distribution of an output sequence given the input sequence, 𝑝(𝑦1,… , 𝑦𝐻 |𝑥1,… , 𝑥𝐿),
as given below:

𝑝(𝐲𝐻 |𝐱𝐿) =
𝐻
∏

𝑡=1
𝑝(𝑦𝑡|𝝂, 𝑦1,… , 𝑦𝑡−1) (10)

In the predictive setting of a univariate time series, these sequence pairs (𝐿,𝐻) correspond to a past lagged window as input
and future horizon steps as the output, under an autoregressive manner [48]. Note that a univariate case, characterized as 𝑦𝑡 = 𝑥𝐿+𝑡
is shown herein, but such an architecture is not limited to univariate cases but also excel in modelling input sequences of high
dimensions [46] (i.e. 𝐱𝑡 ∈ R𝐷 where covariates are available), or even sequences of different domains (such as statistical machine
translation [42]). We omit the covariates herein for notation simplicity, but it applies to a multi time-series setting as well when
there exist extra features (e.g. relevant physical or geological factors) contributing to the modelling of the physical processes.

During training, the encoder–decoder networks are jointly optimized (e.g. by stochastic gradient descent) to maximize the
likelihood of seeing the observed data.

𝝎𝑀𝐿𝐸 = argmax
𝝎

1
𝑁

𝑁
∑

𝑖=1
log 𝑝(𝐲(𝑖)𝐻 |𝐱(𝑖)𝐿 ,𝝎) (11)

where MLE stands for the maximum likelihood estimation procedure. 𝝎 collectively represents the model parameters and (𝐱(𝑖)𝐿 , 𝐲(𝑖)𝐻 )
denotes the window-horizon pairs for the 𝑖th data point. Fig. 3 illustrates the architecture of the LSTM Autoencoder, where the
encoder and decoder can be composed of stack of LSTM layers. In particular, Fig. 3 also depicts a variant of the LSTM Autoencoder
which characterizes the teacher forcing mechanism [42], (i.e. besides conditioning on the context vector, the decoder additionally
takes in target sequence but offset by one time-step 𝐲𝐻 [𝑡 − 1]). Effectively, it reinforces the learning of the data generating process
by feeding more information (ground-truth information) where available. It should be thus noted the decoding procedures would
differ at inference stage due to the lack of this additional information, while the prediction from the last time step will instead be
used.
5
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Fundamentally, LSTM-based models are specialized structures trained to learn temporal patterns. Once learned, disregard of the
odel architecture, it can be exploited for sequence generation [41], time series forecasting [48], stochastic signal simulation [18],

nd also missing data imputation [32].

.3. Bayesian deep learning

Implicit in the above MLE procedure is the ignorance of model uncertainties. Significant uncertainties may exist on the
odel configurations that could have generated the data. Especially in the context of limited data, deterministic models, unless
roperly regularized, are prone to learn too much noise (overfitting) and become overconfident due to the unawareness of model
ncertainties [49,50]. Therefore, in accounting for the model uncertainty (epistemic uncertainty) in neural network models,
robability distributions are assigned to model parameters 𝝎 [47]. Particularly, by formulating the uncertainty, Bayesian models

achieves a regularizing effect against overfitting [49], which may otherwise be a serious problem in terms of limited and noisy data.

4.3.1. Variational Bayesian learning
To efficiently approximate the true posterior distribution, under the condition of the huge dimensions of a deep neural network

model, stochastic variational inference (see e.g. [51–53]) involves in optimizing an approximate to the intractable true posterior.
It optimizes the parameters of a proposed variational distribution 𝑞(𝐰|𝜃) such that the Kullback–Leibler (KL) divergence between
the approximate distribution and the true posterior after seeing data  is minimized: 𝜃∗ = argmin𝜃 KL[𝑞(𝐰|𝜃) ∥ 𝑝(𝐰|)]. It thus
eads to the minimization of a general stochastic objective function for neural network models in the Bayesian supervised learning
etting [49]:

 (, 𝜃) = KL[𝑞(𝐰|𝜃) ∥ 𝑝(𝐰)] − E𝑞(𝐰|𝜃) log 𝑝(|𝐰) (12)

hich stands for the negative lower bound of the evidence term log 𝑝(), i.e. negative ELBO (see Appendix B for details). The
ormulation of Eq. (12) is interpreted as a tradeoff between the two composing terms: the variational distribution needs to both
xplain the observed data well, while be close to the prior.

.3.2. Variational Bayesian inference in RNNs with stochastic regularization techniques
Evaluation of the stochastic objective and further gradients is challenging and several Monte Carlo estimators are adopted as

pproximate solutions [53]. Additional difficulty comes with the complexity of the architectures of deep learning models (e.g. LSTM
n this analysis) than the regular fully-connected networks. With the recurrent network architecture (as in Eq. (7)), correspondingly,
he negative ELBO in the case of RNN, can be written as [45]:

𝑅 = E𝑞(𝝎) log 𝑝
(

𝐲|𝑓𝝎
𝐲 (𝑓

𝝎
𝐡 (𝐱𝑇 , 𝑓

𝝎
𝐡 (… 𝑓𝝎

𝐡 (𝐱1,𝐡0)… )))
)

+ KL[𝑞(𝝎) ∥ 𝑝(𝝎)] (13)

where 𝝎 collectively represents all the parameters in a LSTM model. Corresponding to Eq. (8) these parameters are modelled as
random variables. Specifically, a Bernoulli variational distribution for each matrix row 𝝎𝑘 is proposed on the basis of a mixture of
Gaussians with small variance 𝜎2 [45]:

𝑞(𝐰𝑘) = 𝑝 (𝐰𝑘; 𝟎, 𝜎2𝐈) + (1 − 𝑝) (𝐰𝑘;𝜙𝑘, 𝜎
2𝐈) (14)

where the random weight matrix is factorized over the rows as 𝝎𝑘 = 𝑔(𝜙𝑘, 𝝐) = 𝜙𝑘 ⋅ diag(𝝐𝑘); 𝜙𝑘 represent the variational
parameters; diag means the diagonal matrix operation. Following the idea of Monte Carlo estimator to approximate expectation and
reparameterization to remove the dependence of 𝑞(⋅) in the integral (see a Gaussian case in [52] for details), a further approximation
of the stochastic objective function [45]:

𝑅 ≈ −
𝑁
∑

𝑙=1
log

(

𝐲|𝑓𝝎(𝑙)
𝐲 (𝑓𝝎(𝑙)

𝐡 (𝐱𝑇 , 𝑓𝝎(𝑙)

𝐡 (… 𝑓𝝎(𝑙)

𝐡 (𝐱1,𝐡0)… )))
)

+ 𝜆‖𝝓‖22 (15)

𝝎(𝑙) = 𝑔(𝝓, 𝝐(𝒍)) with 𝝐(𝒍) ∼ 𝑝(𝝐) (16)

where 𝑝(𝝐) denotes a Bernoulli distribution with parameter 𝑝 given in advance as hyperparameters; 𝜆‖𝝓‖22 suggests a further
approximation of the second term in Eq. (13) by L2 regularization with weight decay 𝜆 and variational parameters 𝝓 to be solved,
see [50] for more details. In minimizing Eq. (15), for efficiency a new realization 𝝎(𝑙) is sampled for each input data point 𝐱𝑖.
In particular, note that the weight sharing mechanism in RNN requires the same weight realizations being used at each time step,
suggesting the same (but random) masking given by the Bernoulli distribution is passed throughout time steps. Particularly, the above
variational Bayesian optimization procedures suggest a large deal of conceptual similarity (but distinct implementation differences)
with the dropout mechanism [54], which approximates model averaging of exponentially many different neural nets efficiently.

Corresponding to Eq. (6), substituting the Bernoulli variational distribution for the true posterior then approximates the predictive
distribution for each missing point, as given below:

∫ 𝑝(�̃�|�̃�,𝝎)𝑞(𝝎)d𝝎 ≈ 1
𝑇

𝑇
∑

𝑡=1
𝑝(�̃�|�̃�,𝝎(𝑡)) (17)

where �̃� represents the missing samples and �̃� the recurrent imputations. It yields a predictive distribution for each missing time point.
(𝑡) 𝑇
6

Effectively, it amounts to implement 𝑇 stochastic forward passes {𝝎 }𝑡=1 ∼ 𝑞(𝝎), obtained from 𝑇 realizations of the variational
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Bernoulli distribution parameterized by the parameter 𝑝, through the network model and average the results. Iteratively sampling
rom the model’s predictive distribution at each step, coupled with the accordingly updated hidden states, produces an ensemble of
econstructions.

. Application example

In this paper we demonstrate the procedures and advantage of the proposed framework with an application example. We extend
he analysis of characterizing earthquake-induced stochastic excitations based on records subject to missing data [4] by specifically
sing a real accelerogram from the European Engineering Strong Motion (ESM) database [55], illustrating how physics-based a-priori

knowledge can be harnessed to facilitate the estimation (and also uncertainty quantification) of the evolutionary power spectral
density (EPSD) of the underlying stochastic process. It is of great importance to stochastic dynamic response and reliability analyses
when the associated earthquake scenario is of interests to the seismic hazard/risk assessment of the engineering facility, especially
in a data scarce region.

Compared with previous studies (e.g. [18,9,4]) which jointly employ multiple incomplete realizations artificially created towards
the spectral density estimation of a single process, this study, however, tackles with the empirical recording. It should be noted
that when working with empirical recordings, there is generally a single observed seismic recording available as a realization of a
stochastic process, plus the true power spectrum of the underlying process being unknown [56]. As such, it increases the difficulty
in obtaining accurate spectral representation and motivates the uncertainty to be appropriately accounted for. A seismic record of
magnitude 𝑀𝑤 = 6.5, normal faulting, epicentral distance 𝑅 = 18.6 km, recorded at a class A site in Italy is adopted in this analysis,
whereby a range of missing scenarios upon this target recording will be created and investigated. The spectral estimates from the
otherwise full recording would then serve as the reference or target for comparison. In computing the uncertainty of the stochastic
process spectral estimates, this study further considers three Bayesian recurrent model architectures with various windowing settings.

5.1. Data generation based on a-priori information

Physics-based simulations for training the Bayesian neural network models are generated from a nonstationary stochastic
ground-motion model [57,58], which contains a-priori seismological knowledge well-calibrated for the region compatible with
the target recording. Importantly, these nonstationary simulations are produced through a model formulation that encapsulates
physical components (discretized finite-fault comprised of Brune’s earthquake point-source model, realistic time envelope function,
non-stationarity in frequency, ground-motion variability) [59,60], using parameters with physical meanings, 𝜽𝑔 = [𝐼𝑎, 𝐷𝑣, 𝐹𝑐 , 𝐹𝑏],
which represent Arias intensity, significant duration, central frequency and frequency bandwidth respectively. These parameters
are empirically related to earthquake characteristics, namely [𝑀𝑤, 𝑅𝑒𝑝𝑖, 𝑉𝑠30, 𝐹𝑠], which respectively represent magnitude, epicentral
distance, 30 m average shear wave velocity and fault type, via a regressive relationship that entails the contribution of the source,
path, and site effects. This model has been validated with the strong motion data of the region of interest to reflect the seismological
knowledge of the given region [61].

5.2. Missing data at random locations

For generality, we consider missing data of arbitrary patterns, which are commonly referred to as irregularly-sampled records
and widely studied in the literature [14,15,13,11,12]. Missing data are created following the setting of MCAR (missing completely
at random) [62]. We denote the occurrence of missing samples by a binary masking vector 𝐦𝑡 ∈ {0, 1} where 𝑚𝑡 = 1 represents the
missing observation at random time index 𝑡, drawn from a uniform distribution [18]. We deem this strategy to have simulated well
an unevenly sampling pattern. In fact, as with the increase of missing percentage, missing values are more likely to group together,
transitioning into a gapped missing pattern.

5.3. Detailed results for one missing scenario by one Bayesian recurrent model

In this section, detailed results are demonstrated for the performance regarding the Bayesian Autoencoder model with teacher-
forcing mechanism (abbreviated as BtfAutoencoder), under a serious scenario of 70% randomly missing data (see Figs. 4–8). Note
that only one Bayesian recurrent neural network model with respect to one missing scenario is shown herein for conciseness, whereas
a comprehensive comparison of various model settings and missing scenarios will follow shortly in Section 5.4.

In this study, 100 physics-based simulations are generated to train the Bayesian recurrent models, which all consist of 4 layers
of 128 LSTM units followed by a fully connected layer for prediction purpose. In the case of the two models with Autoencoder
architecture, each encoder/decoder model will then be composed of half of these layers, with the final fully-connected layer
appended to the decoder model. An ensemble of time domain reconstructions are provided through recursive predictions of
the BtfAutoencoder model. Fig. A.14 shows the example incomplete recording with 70% missing data (i.e. missing percentage
𝜖𝑀𝑃 = 70%), while Fig. A.15 displays the ensemble of reconstructed time-history (ensemble size as 500). Collectively it can be
observed that those imputations closely match the target values from the otherwise complete record and well contained by the 95%
credible intervals.

Estimation of the spectral representation of the underlying stochastic excitation plays a central role in stochastic dynamic analyses
7

to accurately capture the system behaviour [2,3,7,63]. Importantly, Fig. 4(a) displays the uncertainty over the power spectral density
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Fig. 4. Uncertainty over estimated power spectral density (PSD) with 70% missing data (𝜖𝑀𝑃 = 0.7) based on the Bayesian Autoencoder model with teacher
forcing.

estimated from the ensemble reconstructions, with each frequency component corresponding to a probability distribution. These
distributions can better be seen in Fig. 4(b), which illustratively shows the distribution shape of spectral density values as well
as the target PSD (as marked) from the otherwise complete recording at selected frequencies. Despite 70% of data being missing,
the ensemble-averaged PSD estimate agrees well with the target PSD from the complete recording, whose spectral peaks follow
closely with the ensemble average. Also, the target spectral values across the whole frequency range are well captured by the 95%
credible interval bounds, except only for the range higher than 15 Hz. But it should be noted that by plotting in decibel scale, which
implicitly reflects results in log scale, the differences in the higher frequency ranges are indeed very small (i.e. in the range of 10−3

in linear scale). Therefore, the target PSD is well approximated across whole frequency range by the ensemble average. The cutoff
at 20 Hz is due to the little contribution to the signal power thereafter. By comparison, a baseline approach that simply fills in zeros
for missing points suffers a significant power loss, especially in the peak ranges (e.g. 0–5 Hz).

The stationary (global) PSD estimates are inadequate in reflecting the nonstationary characteristics of seismic motions for giving
spectral decomposition in an average sense. These time-varying properties are of particular importance to nonlinear response analysis
of engineering structures due to the evolving resonant effect [64]. Therefore, an ensemble of estimates of the evolutionary power
spectrum are computed by wavelet transform (Morlet wavelet) [38] in this analysis, with the averaged EPSD shown in Fig. 5. In
terms of uncertainty, the probability distribution of EPSD values, 𝑆(𝑓, 𝑡), at selected time instants and frequency bin are displayed
in Fig. 6 for illustration, where 3 representative time instants are selected to show the evolution of spectral estimates. Vertical lines
in purple indicate the target spectral values without missing data, which are well captured by the corresponding distribution.

Relying on the Monte Carlo simulation approach [2] powered by the spectral representation method [6] (see Eq. (3)), sample
realizations compatible with the underlying stochastic process characterized by the evolutionary spectra are simulated. These
synthetic generations could further be employed for stochastic nonlinear dynamic analyses (see e.g. [65,3,66,67]). As seismic
excitations are also frequently characterized by response spectra, Fig. 7 shows the pseudo-acceleration response spectra (5% damped)
of these sample realizations in light grey, compared to the target response spectrum of the seismic record as highlighted by the thick
line in red. It can be seen that, even with a missing rate as high as 70%, the target response spectrum is largely captured by the
range of those from our sample realizations, except for longer periods higher than 3 s where a bias can be spotted. Notice that such
bias is systematically less significant with less missing data, as indicated by Fig. 7 where response spectra associated with missing
percentage of 10%, 30%, 50% are shown. This bias has also been found with other stochastic simulation models (see e.g. [64]) in
situations where no missing data exist and can be sufficiently mitigated by a high frequency filter. In addition, Fig. 8 shows, side by
side, one of the sample realization based on the ensemble-averaged EPSD estimate (at the bottom), along with one of the ensemble
reconstructions directly from our BtfAutoencoder model (in the middle), compared with the otherwise full target recording (top).

In summary, it has been shown the applicability of the proposed method in characterizing the stochastic excitations and spectral
uncertainty quantification based on incomplete record with 70% of missing data. It allows to provide a host of probabilistic
representations, e.g. reconstructed time-history, evolutionary spectral estimates, response spectra, and additionally Monte Carlo
sample simulations of the underlying stochastic process.

5.4. Comprehensive performance comparison of considered models and missing scenarios

Bayesian recurrent models play a central role in learning the temporal dependency and probabilistically represent the data
generating process. This study further investigates the performance of spectral estimation and uncertainty quantification regarding
the three specialized recurrent architectures. Besides this, a range of missing percentages (𝜖 ) are additionally experimented to
8
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Fig. 5. Ensemble-averaged evolutionary spectrum (EPSD) by Morlet wavelet transform with 70% missing data (𝜖𝑀𝑃 = 0.7) based on the Bayesian Autoencoder

odel with teacher forcing.

Fig. 6. Probability density of estimated evolutionary spectrum (EPSD) shown at selected time instants based on the Bayesian Autoencoder model with teacher
forcing (𝜖𝑀𝑃 = 0.7). Vertical lines suggest the target spectral value without missing data.

encompass various situations with different missing data patterns and missing degrees (up to 70%). Higher 𝜖𝑀𝑃 will naturally lead
to gaps in the data.

Fig. 10 shows the comparison of PSD estimates, by the BtfAutoencoder model, under 3 different missing levels. It can be seen
that the ensemble-averaged estimation closely follows the target in all 3 scenarios, especially in identifying spectral peaks. It has
previously been noted in Fig. 4 that the discrepancies after 15 Hz are exponentially exaggerated by the implicitly suggested log
scale. These discrepancies are indeed very small (i.e. in the range of 10−3 in linear scale). With more missing data, the uncertainties
9

of PSD estimates are accordingly increasing as indicated by the 95% credible interval, and the power loss by the zero-filled method
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Fig. 7. Pseudo-acceleration response spectra (5% damped) of sample realizations of the underlying stochastic process by SRM from the estimated EPSD based on
Bayesian Autoencoder model with teacher forcing. Thick line suggests the target response spectrum without missing data. Varying missing levels up to 𝜖𝑀𝑃 = 0.7
are shown through (a) to (d).

is even stronger, making it an insufficient choice when a significant amount of data missing. In Fig. 7, the response spectra of sample
generations contain the target response spectrum fairly well, with some amount of variability desired around the target, in order
for characterizing random excitations for further stochastic response analyses.

In comparing the spectral estimation of different Bayesian recurrent models, as an example, Fig. 9 shows a comparison
of probability distribution between the three Bayesian models, namely Bayesian LSTM, Bayesian AutoEncoder, and Bayesian
AutoEncoder with teacher-forcing mechanism, with respect to the scenario of 𝜖𝑀𝑃 = 0.2 and 𝑓 = 1.4 Hz. Importantly, it indicates
that uncertainty on the spectral estimate with respect to any frequency or time stamp, under a certain missing scenario, across the
Bayesian models of choice, can be accounted for within our framework.

In order to facilitate the quantitative comparison of the performance with respect to missing scenarios and neural network model
settings, several measures of uncertainty are designed and reported in both time domain and frequency domain, reflecting the effects
on the characterization for both the excitation process and engineering responses. In particular, the spectral dissimilarity is computed
by the Wasserstein distance (𝑊𝐹 , see Eq. (18)) between (normalized) power spectral densities [68], reflecting the differences of
spectral energy distribution. 𝑃95 corresponds to an interval coverage probability measure [69] that reflects the percentage of the
target values (eg. PSD) being captured by the estimated 95% credible intervals. In addition, 𝛿95 denotes the width between the lower
bound 𝑦𝑈 and upper bound 𝑦𝐿 of the credible intervals, which illustrates the magnitude of uncertainty levels in the estimates. It
should be noted that these two measures 𝑃95 and 𝛿95 should be evaluated together as a desired high quality interval will be narrow
while capturing a certain portion of data. An extremely wide interval, despite capturing all the ground truth, will instead be of little
practical use. Furthermore, 𝑒 denotes the mean absolute error of time domain reconstructions, which evaluates the accuracy of the
10

imputation. Note that the uncertainty measures, 𝑃95 and 𝛿95, are reported both in time domain and frequency domain, whereas 𝑊𝐹



Mechanical Systems and Signal Processing 200 (2023) 110573Y. Chen et al.

a

w
𝜇

Fig. 8. Target recording (top) compared with a direct reconstruction from the Bayesian Autoencoder model with teacher-forcing mechanism (middle) and, as
an example of subsequent simulation based on the underlying stochastic process, a sample generation from the ensemble-averaged EPSD using the spectral
representation (SRM) method (bottom) 𝜖𝑀𝑃 = 0.7.

Fig. 9. Probability distributions of power spectral density (PSD) for three Bayesian recurrent network models with respect to the scenario 𝑓 = 1.4 Hz, 𝜖𝑀𝑃 = 0.2.

nd 𝑒 are responsible for denoting the discrepancy in spectral estimates and imputations respectively.

𝑊𝑝(𝜇, 𝜈) =
(

∫

1

0
|𝐹−1

𝜇 (𝑞) − 𝐹−1
𝜈 (𝑞)|𝑝d𝑞

)1∕𝑝
(18)

here 𝐹−1 denote the inverse cumulative distribution (also known as quantile function of 𝑞) of two probability measures of interest
, 𝜈, as in the normalized power spectral density [68].

𝑃95 = 𝑐𝑓∕𝑛𝑓 , with 𝑐𝑓 =
𝑛
∑

𝑖=1
𝑐𝑖 (19)

𝑐𝑖 =

{

0, 𝑦𝑖 ∈ [𝑦𝑈𝑖
, 𝑦𝐿𝑖

]
1, 𝑦𝑖 ∉ [𝑦𝑈𝑖

, 𝑦𝐿𝑖
]

(20)

𝛿95 =
1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑈𝑖

− 𝑦𝐿𝑖
) (21)

𝑒 = 1
𝑛

𝑛
∑

𝑛=1
|𝑦𝑖 − 𝑦𝑖| (22)

where 𝑐𝑓 is defined by a vector of length 𝑛𝑓 (total number of frequency bins), whose element 𝑐𝑖 indexes a frequency value captured
by the estimated credible interval.

As a result, Fig. 11 shows the accuracy of time-history reconstructions across the Bayesian recurrent models in the time
11

domain. The shaded region specifically reflects the effects of varying windowing choices considered for each Bayesian model as
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Fig. 10. Comparison of estimated PSD under varying missing level based on the Bayesian Autoencoder model with teacher forcing.

Fig. 11. Mean absolute error (𝑒) of the time domain imputations by the Bayesian recurrent neural network models with various windowing choices under a
range of missing levels.
12
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Fig. 12. Spectral power density estimates across a range of missing percentages and three Bayesian recurrent models with varying windowing choices.

Fig. 13. Prediction interval probability coverage (𝑃95) results for both recurrent imputations in the time domain and spectral power density estimates in the
frequency domain across a range of missing percentages and three Bayesian recurrent models with varying windowing choices.

suggested by Eq. (10). Note that, in working with univariate time series data, the LSTM based models are implemented in an
autoregressive fashion. In comparison with an ordinary AR model with linear fixed coefficients, LSTM-based models manifest
as dynamic models that can additionally model complex and nonlinear relations. The choices of window pairs, which could
be considered as hyperparameters, are specifically tuned and compared in this analysis, as partly shown in Table 1, where the
uncertainty evaluations under various missing percentages, by metrics developed in Eqs. (18)–(22), on both spectral density estimates
and time domain imputations is listed. Note that abundant windowing settings in terms of (𝐿,𝐻) (in total 250) according to a grid
search scheme are tested within the framework, but only a few of them are tabulated in Table 1 due to the limit of space. Their
effects are displayed in Figs. 11 and 12, where the size of shading suggests the variance of performances between the same model
but with varying windowing choices. These shading are shown as 95% credible interval encompassing all the windowing choices
considered.

In the frequency domain, Fig. 12(a) shows the dissimilarity of spectral estimates using the Wasserstein distance, while Fig. 12(b)
shows the degree of spectral uncertainty for the three Bayesian models with respect to each missing percentage. The markers (eg.
𝑒 in Fig. 11, 𝑊𝑓 in Fig. 12(a), 𝛿95 in Fig. 12(b)) then indicate the mean results in three aspects: (i) the metric is a global measure
across the frequency domain or time domain (ii) it is computed as ensemble-average for the ensemble of reconstructions by a certain
Bayesian model under a missing scenario; (iii) it is the mean of a Bayesian model with abundant windowing choices. In terms of
the accuracy of imputation and spectral estimates (see Figs. 11 and 12(a)), The Bayesian Autoencoder model with teacher forcing
outperforms the other two by achieving the lowest discrepancy, while the Bayesian LSTM and Bayesian Autoencoder model have
very similar performance. The variability increases as with the missing percentage for all three models, but BtfACDER still has the
13
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Table 1
Results of uncertainty metrics for a range of missing scenarios with respect to Bayesian models of varying windowing settings. A subset of results are listed here
due to the limit of space.

Bayesian LSTM Bayesian autoencoder Bayesian tfAutoencoder

𝐿 𝐿,𝐻 𝐿,𝐻

𝜖𝑀𝑃 5 10 15 20 30 (5, 3) (10, 3) (15, 3) (20, 3) (30, 3) (5, 3) (10, 3) (15, 3) (20, 3) (30, 3)

0.1 𝑒 0.015 0.014 0.015 0.015 0.015 0.014 0.013 0.013 0.013 0.013 0.010 0.011 0.011 0.011 0.011
𝑃 𝑡
95 0.848 0.904 0.888 0.888 0.880 0.888 0.944 0.936 0.912 0.904 0.808 0.824 0.816 0.824 0.840

𝑊𝑓 1.010 0.989 1.033 0.984 1.036 0.963 0.949 0.961 0.934 1.003 0.732 0.757 0.804 0.793 0.788
𝛿95 0.009 0.009 0.009 0.009 0.009 0.009 0.010 0.010 0.010 0.010 0.008 0.007 0.007 0.008 0.008
𝑃 𝑓
95 0.845 0.893 0.864 0.845 0.864 0.903 0.961 0.932 0.913 0.932 0.913 0.903 0.864 0.922 0.913

0.2 𝑒 0.035 0.034 0.035 0.036 0.037 0.033 0.032 0.031 0.032 0.032 0.025 0.025 0.026 0.026 0.025
𝑃 𝑡
95 0.860 0.936 0.916 0.908 0.892 0.900 0.956 0.948 0.952 0.940 0.844 0.816 0.836 0.848 0.868

𝑊𝑓 1.873 1.869 1.892 1.980 2.069 1.832 1.967 1.926 1.977 2.095 1.316 1.376 1.362 1.385 1.377
𝛿95 0.015 0.016 0.015 0.016 0.017 0.016 0.018 0.017 0.018 0.018 0.013 0.012 0.013 0.013 0.013
𝑃 𝑓
95 0.806 0.854 0.835 0.816 0.835 0.854 0.864 0.854 0.854 0.854 0.845 0.845 0.845 0.864 0.854

0.3 𝑒 0.063 0.061 0.062 0.063 0.065 0.059 0.057 0.056 0.057 0.056 0.045 0.045 0.046 0.047 0.045
𝑃 𝑡
95 0.88 0.936 0.901 0.907 0.888 0.904 0.944 0.944 0.939 0.944 0.853 0.861 0.856 0.893 0.888

𝑊𝑓 3.222 3.35 3.384 3.589 3.748 3.186 3.619 3.723 3.798 3.883 2.144 2.144 2.189 2.253 2.221
𝛿95 0.023 0.025 0.024 0.025 0.026 0.023 0.028 0.029 0.028 0.03 0.021 0.021 0.023 0.023 0.023
𝑃 𝑓
95 0.777 0.845 0.825 0.786 0.767 0.816 0.835 0.825 0.835 0.864 0.874 0.854 0.864 0.854 0.854

0.4 𝑒 0.091 0.09 0.091 0.093 0.096 0.088 0.087 0.085 0.088 0.087 0.071 0.07 0.072 0.072 0.069
𝑃 𝑡
95 0.878 0.936 0.918 0.928 0.918 0.914 0.946 0.948 0.952 0.956 0.868 0.888 0.87 0.908 0.918

𝑊𝑓 4.807 5.142 5.204 5.505 5.851 4.886 5.836 6.048 6.031 6.115 3.392 3.45 3.476 3.421 3.366
𝛿95 0.031 0.036 0.032 0.033 0.034 0.033 0.04 0.041 0.04 0.041 0.032 0.032 0.033 0.034 0.036
𝑃 𝑓
95 0.786 0.835 0.777 0.777 0.757 0.777 0.806 0.777 0.777 0.777 0.835 0.854 0.845 0.874 0.864

0.5 𝑒 0.124 0.124 0.128 0.128 0.135 0.119 0.122 0.121 0.120 0.121 0.096 0.097 0.099 0.099 0.095
𝑃 𝑡
95 0.891 0.941 0.930 0.939 0.930 0.915 0.954 0.960 0.954 0.965 0.877 0.904 0.894 0.931 0.938

𝑊𝑓 6.660 7.242 7.381 7.799 8.261 6.676 8.182 8.472 8.430 8.629 4.259 4.675 4.592 4.590 4.646
𝛿95 0.037 0.044 0.039 0.041 0.043 0.039 0.050 0.051 0.050 0.054 0.040 0.041 0.043 0.044 0.046
𝑃 𝑓
95 0.748 0.767 0.738 0.728 0.699 0.738 0.757 0.738 0.728 0.718 0.825 0.825 0.825 0.854 0.806

0.6 𝑒 0.163 0.163 0.167 0.169 0.176 0.157 0.164 0.164 0.159 0.162 0.131 0.130 0.136 0.137 0.131
𝑃 𝑡
95 0.911 0.947 0.928 0.945 0.924 0.923 0.957 0.963 0.961 0.964 0.903 0.928 0.932 0.937 0.959

𝑊𝑓 8.323 9.126 9.200 9.641 10.082 8.463 10.188 10.360 10.220 10.317 5.935 6.330 6.019 6.191 6.029
𝛿95 0.045 0.054 0.049 0.049 0.052 0.047 0.063 0.066 0.061 0.068 0.052 0.054 0.055 0.059 0.061
𝑃 𝑓
95 0.709 0.689 0.680 0.680 0.650 0.689 0.738 0.718 0.709 0.718 0.757 0.738 0.767 0.757 0.777

0.7 𝑒 0.207 0.203 0.208 0.211 0.216 0.203 0.205 0.212 0.203 0.201 0.175 0.174 0.180 0.176 0.172
𝑃 𝑡
95 0.907 0.950 0.938 0.937 0.933 0.918 0.949 0.966 0.957 0.968 0.909 0.927 0.925 0.954 0.954

𝑊𝑓 9.853 10.672 10.934 10.966 11.360 10.204 11.542 11.453 11.450 11.188 7.657 8.198 7.597 7.581 7.626
𝛿95 0.049 0.062 0.054 0.058 0.059 0.052 0.072 0.079 0.072 0.081 0.060 0.063 0.064 0.071 0.075
𝑃 𝑓
95 0.650 0.728 0.689 0.660 0.621 0.689 0.650 0.660 0.660 0.670 0.757 0.728 0.728 0.728 0.699

𝜖𝑀𝑃 missing percentage, 𝑒 mean absolute error, 𝑃 𝑡
95 interval coverage probability for time domain reconstructions, 𝑊𝑓 Wasserstein distance for PSD estimates,

95 credible interval bounds width for PSD estimates, 𝑃 𝑓
95 interval coverage probability for PSD estimates.

east variance regarding the windowing settings. In terms of spectral uncertainty (Fig. 12(b)), all three models have small differences
t each missing percentage. But BACDER has the largest the variability.

Fig. 13 displays the prediction interval coverage for both imputations and spectral estimates (PSD). As discussed earlier, when
e associate 𝑃95 with the 𝛿95 metric, it is observed that the coverage probability for imputations for all the missing percentages have
igh coverage probability (over 80%), though at the cost of wider interval bounds for large percentage of missing data. The error
ar suggests the variance of varying windowing choices for each Bayesian model. While BtfACDER achieves the highest coverage
robability for spectral estimates, it has the lowest coverage probability in imputation compared to the other two models, though
he difference is fairly small.

. Conclusion

Missing data is a ubiquitous problem in various disciplines, where data observations are crucial for the understanding and model
evelopment of the underlying physical process. In this paper, a novel Bayesian Augmented-Learning framework for quantifying the
ncertainty in spectral density estimation of stochastic process in the presence of missing data is developed. Many existing spectral
stimators accounting for missing data are driven merely from the limited available observations and ignore the uncertainty, hence
mposing a ceiling in performance and reliability. This paper, therefore, presents a framework that (i) accounts for uncertainty
hroughout the framework (ii) takes advantage of prior domain knowledge (iii) applicable to nonstationary processes. It allows to
ecover the spectral representation of the underlying stochastic process by probabilistically reconstructing the incomplete recording
ith additional information available (though imperfect) about the underlying physical phenomenon. The proposed method provides
14
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a host of characterizations in a probabilistic manner (e.g. reconstructed time-histories, spectral representations, and compatible
Monte Carlo sample generations), facilitating the uses in various applications, either spectral-based or waveform-based.

Within the proposed framework, this paper presents a comprehensive performance comparison of three Bayesian deep recurrent
odels with various model settings, under a range of missing data scenarios, using quantitative uncertainty metrics. While the results

uggest efficacious of all the models even with a significant amount of data missing, the LSTM Autoencoder with teacher forcing
rovides the most accurate power spectral density estimates. Particularly noteworthy, is the ability of the proposed framework to
emain effective even when 70% of data are missing. This robustness under significant incompleteness is largely attributed to the
apacity of long-range memory (modelling long-range temporal dependency) and the mechanism of dynamic hidden states benefited
rom the LSTM architecture. In addition, the combination of teacher-forcing mechanism of the Autoencoder improves information
xtraction in learning complex temporal relations. By contrast, a classic dense architecture neglects the temporal relation and thus
an be unstable (yielding huge spikes) in long-range predictions under a nonstationary setting.

This framework provides a robust solution to the general arbitrary missing data pattern in a non-stationary setting, even under
ignificant incompleteness. Of particular note is the versatility of the framework enabling potential uses in other domains and
ndependence of domain-parameters. While we show a successful example in characterizing stochastic excitation in engineering
ynamics, the framework can be adopted in other fields of processes or statistical signals, where some a priori knowledge about the

underlying process is available, which may typically be in the forms of theories on the governing PDE (partial differential equation),
numerical models of complex physical systems, or parameterized stochastic model formulation involving physical variables or
parameters.

Importantly, such prior knowledge provides considerable information regarding the data generating mechanism than merely
the remaining incomplete observation. The similar issue of missing observation in the data series of various physical processes,
and the typical existence of prior studies (i.e. physical models) of relevant physical processes, as well as the versatility of the
proposed framework in modelling arbitrary missing data in a nonstationary setting, suggest the generalized feasibility of the proposed
framework.

Another noteworthy aspect in accounting for uncertainty within the framework is that we focused on the epistemic uncertainty
in learning model representations of the underlying process. But still, the aleatoric uncertainty led by the data noise, which may
be more concerning for a less strong motion from long distance, contributes to the uncertainty of reconstruction. However, the
estimation of heteroscedastic aleatoric uncertainty in the recurrent prediction during temporal propagation is a nontrivial task,
which we will address in the future study.
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Appendix A. Time domain reconstructed time-history

See Figs. A.14 and A.15.

Appendix B. Stochastic variational inference

Bayesian inference in Deep Learning concerns learning the posterior distribution after seen the data. However, the true posterior
is generally intractable due to the complexity of the model (eg. huge dimensions of parameters space). Consider a regression task
of learning a model with parameters 𝐰 of the conditional distribution 𝑝(𝐲|𝐱,𝐰) from a dataset  ∶ (𝐱𝑖, 𝐲𝑖)𝑁𝑖=1, stochastic variational
inference finds a variational distribution, parameterized by 𝜽, that minimizes the Kullback–Leibler divergence between the proposed
variational distribution and the true posterior:

𝐷𝐾𝐿[𝑞(𝐰|𝜽) ∥ 𝑝(𝐰|)] = E𝑞(𝐰|𝜽) log
𝑞(𝐰|𝜽)

𝑝(|𝐰)𝑝(𝐰)
𝑝()

= E𝑞(𝐰|𝜽)[log 𝑞(𝐰|𝜽) − log 𝑝(|𝐰) − log 𝑝(𝐰)] + log 𝑝()

= 𝐷𝐾𝐿[𝑞(𝐰|𝜽) ∥ 𝑝(𝐰)] − E𝑞(𝐰|𝜽) log 𝑝(|𝐰) + log 𝑝() (B.1)
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Fig. A.14. Example incomplete recording with 70% data randomly missing (𝜖𝑀𝑃 = 70%).

Fig. A.15. Uncertainty over the recurrent imputations in the time domain with an ensemble size of 500 based on the Bayesian Autoencoder model with
teacher-forcing (𝜖𝑀𝑃 = 70%).

Rearranging terms could further obtain the evidence lower bound (,𝜽) as suggested by Eq. (B.2). Importantly, as the marginal
log likelihood log 𝑝() is constant with respect to 𝜃, maximizing the ELBO will equivalently minimize the original KL divergence.

(,𝜽) = E𝑞(𝐰|𝜃) log 𝑝(|𝐰) − KL[𝑞(𝐰|𝜃) ∥ 𝑝(𝐰)]

(,𝜽) = log 𝑝() − KL[𝑞(𝐰|𝜽) ∥ 𝑝(𝐰|)] ⩽ log 𝑝() (B.2)

Appendix C. List of symbols

𝜔 Angular frequency
𝐴(𝜔, 𝑡) Time and frequency dependent modulating function
𝑍(𝜔) Orthogonal process
𝑆(𝜔, 𝑡) Evolutionary power spectral density function
 A priori data
𝜽𝒈 Physical parameters characterized with a priori knowledge
 Bayesian recurrent neural network models
 Ensemble of reconstructions
𝝎 Weights and bias of a neural network model
�̃� Missing data
�̃� Recurrent imputations by the Bayesian recurrent models
𝐡𝑡 Hidden states at time 𝑡
16
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 Hidden layer function of a recurrent network
𝑓 Forget gate
𝑜 Output gate
𝑖 Input gate
�̃� Cell update
𝝂 latent vector from encoder
𝝐 Bernoulli sample vector
𝐼𝑎 Arias intensity
𝐷𝑣 Significant duration
𝐹𝑐 Central frequency
𝐹𝑏 Frequency bandwidth
𝑀𝑤 Earthquake magnitude
𝑅𝑒𝑝𝑖 Epicentral distance

𝑉𝑠30 Shear wave velocity
𝐹𝑠 Fault type
𝐦 Masking vector for missing data
𝐿 Lagged window size
𝐻 Horizon size
𝑒 Mean absolute error
𝑃95 Interval coverage probability measure
𝑊𝑓 Wasserstein Fourier distance
𝛿95 Width between the upper bound and lower bound
𝐹−1 Inverse cumulative distribution
 Loss objective
𝐲𝐿 Lower bound of the credible interval
𝐲𝑈 Upper bound of the credible interval
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