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A B S T R A C T   

With the growing demand for offshore wind energy and the continued drive for reduced levelised cost of energy, 
it is necessary to make operation and maintenance activities more effective and reduce related costs. A key factor 
in achieving this aim is to more representatively model operation and maintenance activities, and to do this, 
simulation models should include more accurate weather forecasting algorithms. In this paper, three weather 
forecast modelling methods are used to generate projections of wind and wave values which are then used as 
inputs in an operation and maintenance simulation model. These methods include Markov Chains, gradient 
boosting and a novel hybrid regression/statistical approach which has been developed and is presented herein. 
The change in key performance indicators after the wind farm lifespan is simulated using the forecasting methods 
and then compared to one another. It is shown that the Markov Chain and hybrid models numerically perform 
similarly, although the hybrid method has some additional desirable features. Finally, it is shown that the effect 
of this type of modelling uncertainty leads to significantly differing performance estimates through the operation 
and maintenance model.   

1. Introduction 

Offshore wind energy constitutes a significant portion of the expo-
nentially growing European Union (EU) renewable sector. The offshore 
wind energy market has grown substantially due to factors such as the 
EU’s increasingly competitive electricity production costs, the use of 
advanced technologies and limited lifecycle carbon emissions. In the EU, 
both the United Kingdom (UK) and Germany have taken the lead by 
accounting for 85% of all installations: 1.3 GW and 969 MW, respec-
tively, in 2018. For example, European wind energy recorded 2649 MW 
of net additional capacity by connecting 409 new offshore wind turbines 
(OWTs) to the grid across 18 projects in 2018 (Wind Europe, 2019). 
According to the ‘Offshore Wind in Europe Key Trends and Statistics’ 
report published in 2019, Europe now has a total installed offshore wind 
capacity of 18,499 MW which is produced by 4543 grid-connected 
OWTs across 11 countries. As per the ‘Wind Europe Outlook to 2023 
report’ (Fraile et al., 2018), the EU could install 90 GW of new wind 
energy capacity over the next five years. This projection suggests that 
clear government policy on National Energy & Climate Plans will be 
adopted and current issues concerning Operation & Maintenance 
(O&M), grid infrastructure and wind farm permitting will be resolved. 

Addressing these issues may allow the installation, combined onshore 
and offshore, of 277 GW of installed wind capacity in the EU by 2023. 

Costs related to O&M constitute a significant part of the overall 
levelised cost of energy (LCoE) of wind energy (Ioannou et al., 2018), 
(Pandit et al., 2020). According to the European Wind Energy Associa-
tion (EWEA) (European Wind Energy Association), O&M costs typically 
account for 20%–25% of the total LCoE of current wind power, assuming 
a twenty-year life span. Moreover, it is worth noting that the O&M costs 
are not evenly distributed over time; in fact, they fluctuate considerably 
over time, even more so towards the end of the service life. Offshore 
maintenance activities can be planned, condition-based or corrective 
(British Standards, 2010), (Scheu et al., 2019); hence, the O&M costs can 
be divided into fixed or variable types. Although both fixed and variable 
O&M costs contribute to a significant proportion of LCoE, the variable 
O&M costs (unexpected failures and unplanned maintenance) constitute 
the largest share of the O&M cost (Morthors and Awerbuch, 2009). 

Offshore wind turbines can be installed in locations with harsh ma-
rine environmental conditions, which increases O&M costs due to the 
challenge of accessing and conducting maintenance activities on the 
OWTs, especially for cabling and towers (Ioannou et al., 2019), (Myti-
linou and Kolios, 2019). Although turbine design and manufacturing 
processes have improved significantly over the last decade, severe sea 
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environments and increasing rotor blade size continue to pose a threat to 
the reliability of offshore wind assets and their operations (Carroll, 
McDonald, McMillan). Multiple factors influence offshore 
maintenance-related activities. These factors are restrictive and random 
maintenance windows due to weather conditions, transport and logistic 
issues, poor and restricted reliability-oriented field data, the massive 
scale of offshore deployment, and the assessed probability of different 
component failures (Carroll, McDonald, McMillan), (Pandit and Infield, 
2018). 

Regarding severe weather conditions (e.g., hurricanes), offshore 
O&M activities can be life-threatening, and they cause, such as unex-
pected catastrophic failures, unavailability and harsh weather condi-
tions that significantly delay the access of the turbine for inspection and 
maintenance purposes, leading to revenue loss (Cevasco et al., 2021) 
(Stetco et al., 2019). For the given reasons above, offshore maintenance 
& reliability activities are more challenging than onshore; hence, they 
are more costly, which can cause significant financial loss to the turbine 
manufacturer (Horn, Leira). Nevertheless, more accurate prediction 
models of these factors can substantially reduce offshore O&M costs 
(Koukoura et al., 2021), (Pandit et al., 2020). 

It is vital to direct the research efforts on optimising offshore main-
tenance strategies by developing robust weather forecasting tools 
enabling further O&M cost reduction. Consequently, O&M cost reduc-
tion also helps the cost-effectiveness of wind turbine technology. To this 
end, considerable research has been carried out in recent years in order 
to address the most pressing O&M issues (Leimeister, Kolios), which 
promises significant cost reduction and higher return on investment. The 
most relevant works are briefly reviewed below. 

In the past, several data-driven models for time-series forecasting 
techniques have been proposed for prediction-related issues of OWTs, 
such as deep learning (Torres, Aguilar, Zuñiga-Meneses), autoregressive 
(AR) (Cavalcante et al., 2017), autoregressive integrated moving 
average (ARIMA) (Shukur and Lee, 2015), support vector machine 
approach (SVM) (Mohandes et al., 2004), and artificial neural 
networks-based approaches (Chang et al., 2017). Based on these 
fundamental approaches, many hybrid approaches have also been pro-
posed in recent years (Yan et al., 2016), (Shi, Guo, Zheng). However, 
OWT data, like wind speed, power, and wave height, are generally 
non-linear and can also be non-stationary, which jeopardise the validity 
of these forecasting techniques. 

One of the most prominent limitations of these techniques is 
extracting enough sequence data features to obtain accurate time series 

forecasting results (Pandit et al., 2019). These data are stored in SCADA 
systems and are critical for offshore wind in improving condition 
monitoring, optimisation and uncertainty (Pandit, Kolios 2020; Marti-
nez-Luengo et al., 2016; Pandit et al., 2019). Furthermore, some appli-
cations specific to O&M models have included regression-based 
approaches, predicting values using gradient boosting as well as pre-
dicting direction using clustering regression (Gilbert et al., 2021). A key 
aspect of O&M is the vessel’s operating condition, and it is critical to 
predict the short-term wind and wave conditions so that well-informed 
decisions can be made regarding marine operations. In this regard, Wu 
et al. (2019) employed an adaptive network-based fuzzy inference sys-
tem to predict short-term wind and wave conditions for marine opera-
tions, whilst Taylor et al. (Taylor and Jeon, 2018) suggested using 
ARMA-GARCH to decide whether the vessels should be dispatched or 
not. 

Emmanouil et al. suggested that the Bayesian Network model can 
improve the accuracy and precision of the wave height predictions, 
leading to better weather window characterisation. The performance of 
the Bayesian Network models was found satisfactory in comparison to 
the well-known wind-generated wave model SWAN given that the 
model gave valuable information about the uncertainty and the re-
lationships between the considered variables (Emmanouil et al., 2020). 
Loake et al. also acknowledged the modelling uncertainty associated 
with physics-based weather modelling and employed a Bayesian (hier-
archical) model. The model offered an update on numerical forecasts of 
met ocean conditions and examined the corresponding error. The hier-
archical model involved a linear regression to remove systematic fore-
cast biases and generalised autoregressive conditional 
heteroscedasticity models to remove residual error structure evolving in 
time (Loake et al., 2022). 

Time-series analysis and forecasting are major subjects within the 
ship and offshore industry. The prediction models developed over the 
years were applied to deal with different issues. For instance, Papan-
dreou and Ziakopoulos predicted the fuel oil consumption of a very large 
crude oil carrier based on different machine learning techniques using 
data from sensors and simple weather data. The study compared the 
predictive accuracy of Multivariate Polynomial Regression (MPR), 
Artificial Neural Networks (ANN) and eXtreme Gradient Boosting 
(XGBoost) regression models, whilst XGBoost demonstrated the best 
performance with a high accuracy rate of 86% (Papandreou and Zia-
kopoulos, 2022). Pandit et al. also compared three sequential 
data-driven weather forecasting models, namely, data-driven models 

Nomenclature 

EU European Union 
UK United Kingdom 
EWEA European Wind Energy Association 
OWT Offshore Wind Turbine 
LCoE Levelised Cost of Energy 
O&M Operation and Maintenance 
SCADA Supervisory Control and Data Acquisition 
SVM Support Vector Machine 
AR Autoregressive 
MPR Multivariate Polynomial Regression 
ANN Artificial Neural Networks 
ARIMA Autoregressive Integrated Moving Average 
XGBoost eXtreme Gradient Boosting 
LSTM Long Short-Term Memory 
BiLSTM Bidirectional LSTM 
GRU Gated Recurrent Units 
MC Markov Chain 
LightGBM Light Gradient-boosting Machine 

IEC International Electrotechnical Commission 
ABS American Bureau of Shipping 
API Application Programming Interface 
PoF Probability of Failure 
in State i at time n 
in-1 State i at the previous time n-1 
Pij Probability of a certain state i at time j 
Fm (X) New iterated model for gradient boosting 
Fm-1 (X) Previous model for gradient boosting 
L( ) Loss function 
h(X,am) constrained negative gradient 
ρ Line search along the direction of the gradient 
u10 Wind speed at 10 m distance from the surface 
Hs Significant wave height 
mean, μ Mean value 
std, σ Standard deviation 
NPV Net Present Value 
CTV Crew Transfer Vessel 
JUV Jack-up Vessel 
KPI Key Performance Indicators  
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long short-term memory (LSTM), bidirectional LSTM (BiLSTM) and 
gated recurrent units (GRU) for long-term weather forecasting. The 
performance of these sequential machine learning techniques was 
satisfactory, and the difference between the trained models was not 
found to be statistically significant (Pandit et al., 2022). 

Just like O&M operations, the offshore wind installation is impacted 
by the uncertainty in weather forecast and time-domain numerical 
model. Wu et al. and Wu and Gao showed that the sea states allowing 
safe operation differed significantly when considering weather forecast 
uncertainty (Wu et al., 2022), (Wu and Gao, 2021). As expected, it was 
stated that allowable sea states decreased as the forecast lead time 
increased. A case study of an offshore wind turbine transition piece 
installation was reported by Guachamin-Acero and Li, where the un-
certainty related to the frequency domain energy content of a sea state 
was considered for the assessment of operational limits (Guachami-
n-Acero and Li, 2018). 

Regarding the O&M activities, the operation threshold is generally 
stated by the characteristic of the sea states, such as significant wave 
height. Tomaselli et al. presented an alternative to this commonly used 
operation threshold: the significant vertical displacement of the vessel 
bow and motion sickness incidence; the study was conducted using an 
agent-based model framework (Tomaselli, Dixen, Bolaños Sanchez, 
Sørensen). Another simulation-based model offering an opportunistic 
maintenance strategy was reported by Papadopoulos et al. A two-stage 
stochastic mixed-integer linear program was developed to account for 
the uncertainties originating from weather and on-site maintenance 
resources (Papadopoulos et al., 2023). Such high-fidelity development 
cannot be seen as competition for the data-driven predictive models; 
instead, they should be considered complementary. 

It is worth noting that the main goal of physics-based and data-driven 
models is to minimise financial loss that might occur due to weather 
window misprediction. One can argue that the accuracy of such pro-
posed models is a key performance metric; however, the economic 
impact of an incorrect forecast above or below critical wave height 
boundaries can also be a key performance metric, according to Catterson 
et al. It is only reasonable to expect more research to be conducted 
adopting such a key performance metric. However, one should also be 
careful with calculating economic consequences (opportunity cost and 
maintenance costs) (Catterson et al., 2016). 

In light of the studies given above, it can be deduced that there is a 
growing interest in developing physics-based and data-driven predictive 
models to make O&M activities more efficient, in turn, reduce O&M 
costs. However, the functional differences between the possible simu-
lation methods lead to a numerical difference in the weather predictions, 
thus leading to considerable differences from an operations perspective. 
This difference cannot be neglected as it can add up, resulting in a sig-
nificant financial loss. The present paper aims to address this issue by 
comparing different numerical weather simulation methods aiming to 
find the most cost-effective simulation method yielding accurate results. 
Another significant aspect of this study is that it shows how the choice of 
method impacts key performance indicators from an O&M standpoint. 
As it is shown in the current study, the consequence of model choice can 
easily result in tens of millions of revenue differences over the project 
lifecycle. 

Furthermore, the present work proposes a novel method for simu-
lating weather, which is a hybrid regression and statistical approach, 
combining existing ideas and tailoring them for this use case. Fig. 1 il-
lustrates diagrammatically the approach used to carry out this study. 
The present study aims to tackle the variability resulting in time-series 
weather model choice using the lifecycle model that has already been 
presented and validated in (Kolios et al., 2019). To this end, outcomes 
should be interpreted mostly through the difference between the 
calculated key performance indicators through different forecasting 
models. The lifecycle model in this figure is a simplification of the dia-
gram shown in Section 5.2. 

The outcome of this study can be especially beneficial for those 

developing O&M models, whether in industry or academia, aiming to 
decide which weather time-series input model to use. The new time 
series method can be of value to wind and wave time-series forecasting 
as well as other time-series applications. 

The present paper is divided into six sections. Following the intro-
duction, the paper continues in Section 2 with a literature review of the 
methods chosen, presenting how they have been previously used. The 
methods are then discussed in Section 3 in detail, including the specifics 
used for the current work. Section 4 presents the O&M assessment tool 
used for this study, explaining the individual modules and model out-
puts. The results are discussed in Section 5 by initially looking at the 
numerical differences between the forecasting method results, followed 
by the output from the simulation tool and a critical discussion. Finally, 
conclusions and future work are given in Section 6. 

2. Literature review 

2.1. Markov Chains 

Markov chain (MC) is a widely accepted statistical tool for modelling 
a variety of natural phenomena, time-variant systems and signals 
(Grinstead and Snell, 1988), which makes it suitable for solving 
sequential time-series-related problems such as wind speed prediction 
(Pandit, Kolios, Infield). Long-term weather forecasting involves many 
datasets that lead to high computational and pre-processing costs. For 
example, in (Pandit, Kolios, Infield), LSTM (a deep learning method) and 
the Markov chain were compared, and it was found that the Markov 
chain technique is effective and fast in forecasting long-term weather 
conditions. In addition to that, environmental factors such as seasonality 
can easily be represented by a Markov model. However, representing 
such environments with decision trees would be confusing or intrac-
table, if possible, and require major simplifying assumptions. 

All these features given above make the Markov chain technique a 
suitable choice for this research. Other studies have also used Markov 
chains for both on and offshore wind (Tagliaferri et al., 2016), (Carpi-
none et al., 2015) and discussed the uses in reliability forecasting (Scheu 
et al., 2017), (Chen et al., 2009). There are some limitations to using 
Markov chains for wind speed prediction. It has been found that the 
autocorrelation plots for short intervals are often inaccurate due to a 
lack of persistence in the real data. Consequently, they do not perform 
well in ranges from 15 to 40 min, and it was found that the synthetic 
wind data fluctuated more rapidly in the first order MCs than the real 
data for these time scales (Brokish and Kirtley, 2009). 

Nevertheless, modifications for Markov chains have been devised, 
which improve upon this aspect and others. For example, the afore-
mentioned limitation was addressed by incorporating a second lag as 
well as a running-average filter (Pesch et al., 2015). Other 

Fig. 1. Flowchart of study illustrating how weather forecasting models inte-
grate into the lifecycle model. 
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improvements include nested Markov Chains, which can better capture 
the temporal self-dependence in wind speed (Tagliaferri et al., 2016). 
Moreover, another way to further improve is related to accounting for 
the uncertainty in the transition matrix through Bayesian inference, 
which in a case study, was found to outperform traditional Markov 
Chains in a credible interval criterion. Another interesting approach is 
first to cluster the wind data as a method of discretisation, which was 
done on two-dimensional anemometer data and found to show the 
‘characteristic’ wind behaviour of the site (Sánchez-Pérez et al., 2016). 

There is a wide range of applications of Markov Chains in short-to- 
medium-term maintenance planning. The predictive models do not 
need to be limited to weather forecasting. However, instead, they 
incorporate future vessel costs and availability and the current condition 
of the turbine, which do not necessarily have to be a Gaussian and sta-
tionary process (Dawid et al., 2016). 

It is essential to note that the key aspect of the present paper is 
seasonality. There is seasonality in the real wind data, which is to be 
represented in the model. Chen et al. (2009) trained separate models for 
summer and winter in order to incorporate seasonality. With only one 
year of training data, Karatepe et al. (Karatepe and Corscadden, 2013) 
trained a separate Markov Chain for each month. Not only did they find 
that this captured the seasonality present in the wind speed data, but 
they also found that one month of data per model was sufficient to 
capture the statistical properties. 

2.2. Gradient boosting and trees 

Gradient boosting is often used in stochastic value prediction 
(Esteoule et al., 2019). The method has been used to win two Global 
Energy Forecasting competitions (Hong et al., 2014), (Hong et al., 2016) 
where it was required to forecast the future and back-cast missing data. 
The method works well at forecasting at different time scales. In some 
research, it has been used to predict 1–6 h ahead (Persson et al., 2017), 
others up to one day (Verbois et al., 2018), and others have used it for 
even longer time scales (Browell et al., 2017); however, all found the 
method to perform very well compared to other methods tested in those 
studies. Boosted regression trees have also been used to predict 
maximum wind speed based on geographical considerations; though this 
is not forecasting, it shows the diversity of the approach (Fischer et al., 
2015). 

Developments have been found to improve upon the gradient-based 
boosting method for specific problems. For example, Cai et al. (Pesch 
et al., 2015) could incorporate related data sources into their training by 
incorporating instance-based transfer learning and improving against a 
benchmark approach. Chen et al. (2015) improved Gradient boosting by 
incorporating the Markov chain mixing rate to derive upper bounds in 
the loss function, enhancing the problem’s convergence. 

2.3. Probabilistic methods 

Typically, statistical distributions are used for estimating sea states 
and wind speeds, which is the recommended practice in engineering 
standards as well. For instance, the prediction of annual energy pro-
duction recommended by the International standards IEC 61400-12 is to 
be conducted with a two-parameter Weibull distribution (International 
Energy Agency, 1994). Similarly, the American Bureau of Shipping 
(ABS) recommends a two-parameter Weibull distribution for mean wind 
speed estimation; however, it finds that sometimes a Rayleigh distri-
bution is appropriate (American Bureau of Shipping, 2011) for 
short-term sea states. Researchers have used a range of distributions to 
model significant wave height and mean wind speed, particularly for 
investigations at the design phase. In literature, various distributions 
have been used, including Weibull (Prevosto et al., 2000), (Satheesh 
et al., 2005), mentioned before, as well as Gumbel (Persson, 2010), (van 
Gelder and Vrijling, 2000), Lognormal (Teng and Palao, 1996), (Bur-
rows and a Salih, 1982) and many other distributions. 

Seasonality has been incorporated into the use of statistical distri-
butions for wind speed. Jaramillo et al. (Jaramillo and Borja, 2004) 
fitted distribution for winter, spring, autumn and fall for a site in Mexico. 
This is the same approach used in numerous other works in which wind 
speed at sites is characterised using a Weibull distribution (Bilir et al., 
2015), (Perea-Moreno et al., 2019). A challenge in addressing season-
ality was discussed by Erikson et al. (Erickson and Taylor, 1989), who 
found that much of the wind speed can exhibit non-Weibull behaviour at 
different times of the year. To address this, Drobinski et el. (Drobinski 
et al., 2015). proposed an alternative that better fits both the diurnal and 
seasonal variability. 

3. Weather forecasting methods 

The methods in this study are trained using wind, wave and wind 
direction data recorded from 1992 to 2016 (24 years). These values are 
averages for each 3-h observation. 

3.1. Markov Chains 

A Markov Chain is a stochastic process which defines a set of prob-
abilities for the next possible set of states, given the current state. The set 
of probabilities for moving from one state to the next is called transition 
probabilities and depends only on the state being moved from. Each 
possible discretised numeric value can be defined as a state in a 
regression problem. In the Markov chains method, the probability of any 
state at time tn for a state, i, within a countable set of states, S, is inde-
pendent of all previous states except for the last one, as shown (Tolver, 
2016): 

P{X(tn) = in|X(t1) = i1, …X(tn−1) = in−1} = P{X(tn) = in|X(tn−1) = in−1} (1) 

Forecasting into the future is accomplished as a series of steps, and 
any state in the future depends on all the probabilities between those 
states. With a given start time i, the probability of a certain state at time j 
which is r steps from the value, is provided in the Chapman-Kolmogorov 
equation (Grinstead and Snell, 1988): 

Pij =
∑r

k=1
PikPkj (2) 

Markov chains are described more in-depth in (Grinstead and Snell, 
1988), (Tolver, 2016), (Serfozo, 2009). In this study, the Markov Chain 
model used is a first-order, observation-driven model which generates a 
probability vector of wave height given the previous (tn−1) wave height, 
with a separate matrix for each month. A probability matrix of wind 
speed given for a wave height and a matrix of wind direction given for a 
wave height are constructed. These are constructed by counting the 
number of occurrences within each matrix position and then normal-
ising them by the total number. In order to determine each next itera-
tion, the model samples from the probability matrixes given the current 
state. 

3.2. Gradient boosting - LightGBM 

Gradient boosting is applied in this study using LightGBM, which is 
an API for Python (Microsoft Corporation, 2020a). Gradient boosting is 
an ensemble of weak learners where new learners are added sequentially 
in such a way as to minimise the gradients of the loss function. A new 
model is added at each iteration, aiming to correct the previous model’s 
error. Each new term fits the residual of the previous model, 
R = y − Fm(x). By identifying this as the gradient of the squared error 
loss function, the method can be generalised with other loss functions. 
Each new iterated model, Fm(x), is defined from the previous model, 
Fm−1(x), in the following equations (Friedman, 1999): 

Fm(x) = Fm−1(x) + ρmh(x; am) (3) 
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where h(x; am) is the constrained negative gradient. The ‘line search’, ρm, 
along the direction of the gradient is defined as: 

ρm = arg minρ
∑N

i=1
L(yi, Fm−1(xi) + ρh(xi; am)) (4) 

L() is the loss function between the value yi and the previous model 
plus the new term. 

In applying this method, the time variable, t, needs to be converted to 
lag variables. A starting point is variables of ‘month’, ‘day’, and ‘hour’. 
However, this was found not to be enough to capture the time-series 
behaviour. In the same concept, generic lag variables were also 
created where a repeated duration is subdivided into a set of intervals. 
These durations were chosen from the optimised time lengths found 
through the hybrid statistical method discussed in the next section. 

There are many parameters which can be set when implementing a 
LightGBM model (Microsoft Corporation, 2020b). A Gradient Boosting 
Decision Tree is used for training with the loss metric of mean absolute 
percentage error. 

3.3. Hybrid probabilistic method 

The fundamental premise of the proposed concept in terms of time- 
series forecasting is that any time series comprises three components: 
trend, seasonality and randomness. The trend is the gradual change over 
time, seasonality is repeated patterns expected to continue, and 
randomness is behaviour that cannot be fully explained based on past 
patterns. To an extent, trend and seasonality can be removed from time- 
series data by various approaches, leaving only the randomness of the 
data. This randomness can be parameterised and replicated through 
distribution fitting and sampling. This is insufficient if one is interested 
in predicting accurate values for any given observation. However, when 
the objective is to simulate rather than predict, then this can be appro-
priate, as shown in the current study. 

The hybrid statistical/regression method proposed here combines 
sampling from statistical distributions with regression of parameters. 
The distribution parameters are fitted to the time series data through 
repeated polynomial regression. In the case of a univariate model, these 
parameters are the mean and standard deviation as they vary with time 
and are used to fit a normal distribution. In the case of a multivariate 
model, this is the mean and the covariance between the training data 
arrays, and this is used to fit a multivariate normal distribution. Both of 
these distributions are widely used in the literature (Gut, 2009). For 
wind speed prediction, normal distributions tend not to be used, and 
others are more common (Carrillo et al., 2014)– (Cakmakyapan, Kadi-
lar). However, the data are much closer to being described by a normal 
distribution than when the seasonality is removed, and the needing a 
few parameters makes the normal distribution appealing. 

The seasonality and trend are first removed from the data by the 
iterative fitting of polynomial regression curves, where the curve is 
subtracted from the training data before the next iteration is conducted. 
The first curve is a first-order polynomial to remove the trend, and the 
following sets of polynomials are all fourth order as this appears to fit the 
trends well. A fitting approach based on the least-squares-estimate is 
used. 

The regression fitted to seasonality should cover each time span for 
which there is a significant repeated pattern. This may initially be taken 
as each year, each month, and each day; however, this is insufficient. 
The process for selecting the seasonality time spans is automated in this 
approach. At each iteration, a curve for all time lengths below a set value 
is fitted to and then subtracted from the data. The time span leading to 
the lowest standard deviation in the rolling average for the new, de- 
trended data is then used, and another iteration is conducted. The new 
maximum time length for the next iteration is a value just under the 
previously selected time length. The reduction in the error metric is 
shown in Fig. 2. These parameters can be visualised over the measure-
ment values, as in Fig. 3. 

A curve for the standard deviation (for a univariate model) or the 
covariance (for a multivariate model) is then fitted to the de-trended 
data using only an annual time scale. Afterwards, these fitted curves 
can be extended into the future. This whole process is shown diagram-
matically in Fig. 4. One standard deviation is shown in Fig. 4 to represent 
the model, yet not how values are predicted. Further, quantiles are often 
used for such presentations; however, it opts not to use them here as they 
could imply some other behaviour of the model. 

The model can be expressed by a probability density function f(t) as 
in Eq. (5) (univariate) or Eq. (6) (multivariate). 

f (t) =
1

σ(t)
̅̅̅̅̅
2π

√ e
−1

2

(
z−μ(t)

σ(t)

)2

(5)  

f (t) =
1

(2π)
n
2|Σ(t)|

1
2
e−1

2(z−μ(t))T Σ−1(z−μ(t)) (6)  

where the parameters are time-dependent and are calculated in this 
model as follows: 

μ(t) =
∑N

n=0

∑K

k=0
aktk (7)  

σ(t) or Σi,j(t) =
∑K

k=0
aktk (8)  

where N is the number of optimised timescales, i.e. the number of 
curves, and K is the polynomial order of each curve. The items i and j are 

Fig. 2. Reduction in error metric, the standard deviation of the rolling mean, for the de-seasoned data at each iteration. (a) u10, (b) Hs.  
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indices in the covariance matrix. To match the rate of change of the real 
measurements, samples are taken every five intervals and linearly 
interpolated between these. 

3.4. Strengths and weaknesses of methods 

Table 1 presents the strengths and weaknesses of the methods 
introduced in Section 3. 

4. O&M simulation model 

A time-domain simulation model based on the Monte Carlo theory 
has been developed and deployed for offshore wind farm lifecycle O&M 
simulation and operational activity assessment. The model has been 
programmed by the authors, and its initial version has been used to 
assess the availability of various operating scenarios of current large- 

scale offshore wind farms (Chiachío-Ruano, Hermile, Kolios), (Kolios 
et al., 2019). A brief explanation of the tools’ structure and individual 
modules is provided in the following and illustrated in Fig. 5. The tool is 
modular, consisting of a weather module, a power module, a reliability 
module and a maintenance module. 

4.1. Weather module 

The weather module aims to provide a forecast for wind and wave 
conditions, which is utilised in the power estimation and maintenance 
modules to assess accessibility constraints. Historic metocean data 
representative of local conditions can be obtained, and time-series 
forecasting models are trained. The different models utilised in this 
study have been presented in Section 3. 

Fig. 3. Mean curve and the mean+/-1 standard deviation over the measured values for wind speed for 2016.  

Fig. 4. Hybrid method process diagram showing the approach used to fit curves for distribution parameters from time series data.  
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4.2. Power module 

The actual power output in each time step is calculated based on the 
wind speed, wind turbine hub height and power curve. Met mast mea-
surements provide wind speed, which is extrapolated at hub height 
using the power law (Gualtieri and Secci, 2012). The produced power is 
calculated using the respective wind turbine power curve for wind 
speeds higher than the cut-in and lower than the cut-out. 

4.3. Reliability module 

As regards the distribution of unforeseen failures in time, this in-

formation is modelled from the reliability module based on the reli-
ability data from the literature. The input failure rates are grouped into 
minor repair, major repair and major replacement, according to the 
material cost reported by Carroll et al. (Carroll, McDonald, McMillan). 
When a failure occurs, the turbine status varies depending on the failure 
type. In minor repairs, the turbine is assumed to continue operation even 
after the failure detection, shutting it down only during the repair time. 
For major repairs and replacements, the turbine is stopped after 
detecting a fault, returning to service only after the fault is restored. The 
time to failure associated with each failure mode for a particular sub-
system i is assumed to be distributed by an exponential probability 
density function f(t), reported in Eq. (9), with parameter λi,mode being the 
failure rate for subsystem i under a particular failure mode. 

f (t) = λi,mode e−λi,mode t (9) 

The cumulative distribution function is the probability of failure 
(PoF) of the subsystem according to the exponential reliability theory 
and is given in Eq. (10). PoF of the whole wind turbine covers all sub-
systems considering all failure mode classifications, as explained more 
in-depth in (Kolios et al., 2019). The probability of a subsystem failing is 
randomly generated. 

PoF = 1 − e−λi,mode t (10)  

4.4. Maintenance module 

The maintenance module takes into account the basic technical data 
of the wind turbine and the farm that the simulation uses in the analysis. 
The lifetime corresponds to the number of simulated years, and the final 
availability is calculated as an average over the entire lifetime. The 
number of vessels, their crew capacity and their wave-bearing capacity 
are included in the available means of transport considerations. If any 
requirements are not met, maintenance work is not completed, and all 
remaining work is planned for the next suitable weather window. There 
are two types of maintenance activities considered in this model: plan-
ned and unplanned. 

Planned maintenance is a scheduled service, whereas unplanned 
maintenance takes place as soon as a failure occurs. Downtimes are 
calculated accordingly, based on the maintenance duration, the weather 
conditions and the resource availability. Workboats are assumed to be 
filled to their maximum capacity for planned maintenance, as they can 
simultaneously perform operations on multiple turbines. 

For unplanned maintenance, the O&M tool differentiates between 

Table 1 
Comparison of Markov Chains, Gradient Boosting, and the hybrid regression 
method.  

Method Strengths Weaknesses 

Markov Chains  • Accurately replicates the 
probability distribution 
(Brokish and Kirtley, 2009).  

• Can be generated with limited 
data (e.g. one year) (Karatepe 
and Corscadden, 2013)  

• Well developed with 
improved implementations. 
(Tagliaferri et al., 2016)  

• Seasonality accomplished 
by having separate models, 
not unified in one, 
therefore limited. 
(Karatepe and Corscadden, 
2013)  

• Persistence dependent on 
prediction rate and limited 
to certain timescales. 
(Brokish and Kirtley, 
2009) 

Gradient 
Boosting 
(LightGBM)  

• Very low computational 
requirement and quick to 
train.  

• Can be useful at a range of 
timescales. (Persson et al., 
2017)– (Browell et al., 2017)  

• Flexible and suitable for 
various problems (Hong et al., 
2014), (Hong et al., 2016).  

• Not a statistics-based 
method, so it will not 
inherently capture statisti-
cal distribution.  

• Deterministic method and 
so cannot be used as a 
stochastic input without 
modification. 

Hybrid 
Regression  

• Captures trends at all 
significant timescales.  

• Level of persistence is a 
tuneable parameter.  

• Uses statistical distributions 
and is therefore closer to 
recommendations from 
standards. (American Bureau 
of Shipping, 2011), (BSI 
British Standards Wind 
turbines, 2009)  

• Slow to train in its current 
form as the code is not 
optimised.  

• Depends on linear 
interpolation between 
sample points.  

• New idea and so not 
developed yet.  

Fig. 5. O&M lifecycle assessment model flowchart.  
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failures requiring a JUV (jack-up vessel) and those requiring a CTV 
(crew transfer vessel). In order to decrease downtimes, respective 
maintenance campaigns are implemented, which do not only repair one 
turbine but store different maintenance tasks on a campaign list and 
follow this list during the campaign. While in one JUV campaign, all 
turbines are maintained for which a failure occurred within the lead 
time of ordering a JUV, the CTV campaign repairs all failures which 
occurred during the night when technicians rest. This difference is due 
to the usage of vessel type. A JUV is costly and needs to be ordered at the 
market, which takes time. Instead of just repairing one failure and 
ordering a JUV for another failure again, all pending turbines which 
need maintenance are served. 

Moreover, JUV campaigns are performed in shifts to utilise the JUV 
to capacity. In comparison, CTV campaigns are only conducted during 
day shifts as no accommodation is available on this vessel type. All 
failures that occurred during the night are scheduled for the next day 
shift. In case not all turbines can be served, the campaign continues the 
next day. 

The O&M strategy is based on a decision tree (as shown in Fig. 6) that 
follows a system failure in one or more wind turbines. In the event of a 
failure, it is first checked whether a crew and a ship suitable for the type 
of required repair are already on site. Component replacements are 
considered to require a crane vessel - all other system repairs are 
assumed to require a crew transfer vessel. The absence of a suitable 
crew-ship combination on-site leads to activating a ship or crane ship in 
port, if any are available. The activated vessel or barge will continue its 
transfer to the failed OWT as soon as weather conditions permit; envi-
ronmental restrictions are limited to a certain wave height limit. 

As soon as a failed system is put back into operation (status reached 
as soon as a crew ship combination has been placed on the failed OWT 
for the assigned repair duration), the subsequent failure for this system 
is determined similarly to how the original time-to-failure was 

generated. This process is repeated accordingly if a failed component is 
repaired or replaced. 

4.5. Cost module 

The cost module is a subset of the maintenance module, and it cal-
culates all monetary flows during the offshore wind farm lifecycle. The 
costs for each maintenance activity take into account the material costs 
of the replaced parts, the repair costs, the vessel’s rent, fuel costs and the 
crew salaries based on their shifts. The revenue from the energy 
generated and sold is also calculated. The aforementioned cost estima-
tions and revenue are integrated into cashflow analysis to calculate Net 
Present Value (NPV) as: 

NPV =
∑n

r=1

R
(1 + i)r # (11)  

where R is the net cash inflows-outflows during a period r and i is the 
discount rate. 

4.6. Outputs 

Maintenance activities are carried out until the end of the lifetime of 
all wind turbines in the wind farm. Various key performance indicators 
(KPI) are calculated thereafter. First, the downtimes of each turbine are 
added up, and the total wind farm availability is calculated, as shown 
below. 

A =
Lifetimewf − Downtimewf

Lifetimewf
(12)  

where A is the calculated wind farm availability, Lifetimewf is the cu-
mulative lifetime of all wind turbines in the wind farm and Downtimewf is 
the cumulative downtime. Other key performance indicators calculated 
include the energy E generated from the wind farm as follows: 

E = P × t (13)  

where t is the time given in hours, and P is the power. 
Other indicators are related to costs, such as the direct costs involved 

with operational activities, the indirect costs involved with lost power 
production and the revenue from the energy sold to the grid. Table 2 
summarises the input data for the O&M simulation model. 

5. Results and discussion 

The present section presents and discusses the results of the three 
simulation methods. Section 5.1 evaluates the time series forecasts from 
a numerical perspective, describing how similar the synthetic forecasts 
can be to the real data in terms of several statistical summary parame-
ters. Section 5.2 presents the differences between the three methods 
regarding the KPIs predicted from the lifecycle model. These KPIs are 
availability, energy production and revenue. Final remarks are given in 
Section 5.3, discussing the results and why different methods lead to 
different KPIs. 

5.1. Forecasting models 

The time-series forecasting methods are compared here in terms of 
their numerical similarity to the real time series. This is to show which is 
a closer approximation of the real data as well as to help explain dif-
ferences which will be seen in the operational KPIs. The methods are 
compared for the year 2016, which is the last year that real data is 
available. There is a large amount of scatter in the real wind and wave 
values, so it is unreasonable to compare individual 3-h observations. 
Instead, the results are compared on a monthly basis. 

Fig. 7 shows box plots of the real as well as predicted values for the Fig. 6. Unplanned maintenance decision tree.  
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year 2016. This indicates that the general results of all models are 
similar and roughly comparable with the real values. However, there are 
months when the mean values of predictions and the standard deviation 
level do not match as closely with the real data, particularly in 
December, whilst all methods overestimate the mean value. To inves-
tigate this further, the difference in mean and standard deviation are 
calculated. 

Fig. 8 shows this difference, from the real measurements, in monthly 
mean values for wind speed and significant wave height for 2016. In 
both u10 and Hs the methods all underpredict the early months and 
overpredict the later months. There are a few months where all but one 
method shows a low difference. For instance, Markov Chain under-
predicts the mean values for the month of October, whilst all other 
methods slightly overpredict. These discrepancies are typically minor, 
roughly 10% of the mean values for the month. These differences are 
summarised in the following table. 

The results presented in Table 3 conclude that the tree-based 
approach in LightGBM gives predictions with mean values furthest 
from the real mean and comparatively significant maximum differences. 
Markov Chains and the two hybrid methods provide the closest monthly 
mean values, with the hybrid multivariate approach yielding slightly 
better results. However, it is not close enough to say definitively that the 
hybrid methods outperform Markov Chains in this, only that they are all 
similarly good. 

With a few exceptions, all methods underestimate the level of devi-
ation in each month, as shown in Fig. 9. LightGBM particularly under-
predicts the level of deviation, which is to be expected as tree-based 
approaches use an average of a leaf, so some level of scatter in the 
measurements is averaged out. All methods are closest to the real value 
of standard deviation during the mid-months, such as 4 and 6; this can 
simply be due to the fact that there is much less deviation in the real 
values for these months. These differences in standard deviation are 
summarised in the following table. 

The conclusion from Table 4 is that LightGBM shows the largest 
difference from the real standard deviation. In contrast, Markov chains 
result in the smallest with the Hybrid multivariate values very close to 
the Markov Chain values. The values for Markov Chains and the two 
hybrid methods are very close; therefore, it can only be concluded that 
Markov Chains perform slightly better (see Table 5). 

The final value which is essential in replicating the forecasts 

compared to the real values is the level of correlation between the wind 
speed and the significant wave heights. This level of correlation is 
important for O&M modelling as some activities depend on both values. 
The Pearson correlation coefficients are given in the following table. 
This coefficient shows the level of linear correlation between two sets of 
variables in both magnitude and direction. A value of +1 indicates a 
perfect positive correlation, a value of −1 indicates a perfect negative 
correlation, and 0 indicates no relationship between the two variables. 

The level of correlation in the real observations between u10 and Hs 
is roughly 0.8, which is also accomplished in Markov Chains and the 
hybrid multivariate approach. The tree-based LightGBM shows some 
level of correlation, and the hybrid univariate shows no correlation. 

Based on the previous metrics, Markov chains and the hybrid 
multivariate approach appear to produce comparable estimates. How-
ever, looking within one month shows this not to be the case. There are 
several distinctions that can be seen in the plots for January 2016, as 
shown in Fig. 10. 

The Markov Chain shows a higher persistence; it remains around a 
value for longer than the hybrid method. The persistence in Markov 
Chains is a fundamental quality of the model and is dependent on the 
training data. The hybrid method’s persistence is determined by how 
frequently predictions are made, and so is a changeable parameter. 

The Markov Chain captures seasonality within a year by training a 

Table 2 
Input data to the O&M simulation assessment model.  

Input Data 

Failures  • Failure rate data  
• Subsystems  
• Failure categories 

Weather  • Wind speed  
• Wave height 

Cost  • Energy price  
• Interest rates  
• Material costs  
• Vessel costs  
• Crew costs 

Planned Maintenance  • Maintenance times  
• Subsystem grouping  
• Required crew  
• Required main vessel type  
• Required support vessel type 

Unplanned Maintenance  • Repair times  
• Required crew number  
• Required main vessel type  
• Required support vessel type  
• Spare stock initial  
• Spare stock minimum  
• Spare wait time  
• Mission organization time  

Fig. 7. Comparison of real monthly values with the predicted monthly values 
for wind speed (a) and significant wave height (b) for 2016. 
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separate model for each month. However, this approach does not cap-
ture any trend that occurs within a month. Conversely, the hybrid 
approach fits the parameters to trends at multiple timescales and shows 
trends within a month. This point about shorter trends is evident in 
Fig. 10, where the general movement of the hybrid method follows the 
real data more deliberately than the Markov Chains. 

5.2. Availability assessment 

The forecasting methods presented are compared using the lifecycle 
assessment model presented in Section 4. The comparison is based on 
the effects of each forecasting method on the respective KPIs calculated 
from the model. 

Failure rates are based on the DTU 10 MW reference turbine (Bak 
et al., 2013). The components considered are the gearbox, generator, 

Fig. 8. Difference in mean, for each month, compared to the real data for 2016. 
(a) Wind speed, u10 and (b) Significant wave height, Hs, showing deviation 
from the real average. 

Table 3 
Summary of the difference between the mean of real and forecast monthly values for 2016. 

Fig. 9. Difference in standard deviation for each month compared to the real 
measurement values. (a) wind speed u10 and (b) significant wave height, Hs. 
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electrical system, pitch system, yaw system, blades and main shaft. More 
details on the wind farm layout can be found in (Carroll, McDonald, 
McMillan), whilst the repair information, including times and resources 
needed, is based on the data reported in (Bak et al.). 

The O&M simulation model is run for the different weather predic-
tion models, i.e., the decision trees, the multivariate hybrid and the 
Markov Chains. In total, 100 simulations were run for each of the three 
examined cases. The results are compared for the KPI outputs of each 
simulation. The KPIs examined are availability (as defined in Eq. (12)), 
the energy produced, calculated in the power module, and revenue, 
calculated in the cost module based on the energy sold. The effect of the 
various weather time-series prediction modelling methods presented on 
some KPIs is shown in the boxplots in Figs. 10–12. Each point of the 
boxplot represents a Monte Carlo simulation. Fig. 11 shows the avail-
ability, Fig. 12 the energy produced by the wind farm and Fig. 13 the 
revenue gained from the electricity generation. 

5.3. Final remarks 

Based on the results regarding the availability, tree-based methods 
result in the highest availability, followed by multivariate hybrid and 
Markov Chains. The tree-based approach captures the general trend 
reliably; however, it does not predict the extremely high values that 
sometimes occur. Tree-based algorithms are based on leaf averaging. As 
discussed earlier, the tree-based approach gives predictions with mean 
values farthest from the real mean value in the forecasting model results 
section. On the other hand, the hybrid approach manages to capture the 
level of scatter more realistically and sometimes predicts extremely high 
values. Even though Markov Chains and hybrid methods perform simi-
larly in mean value and standard deviation, the difference in availability 
can be attributed to the difference in the level of persistence in the time 
series. Markov-Chains appear to change more slowly than the hybrid 
method, whilst the hybrid method is closer to the real data in terms of 
persistence. 

Regarding the limitations of the study, it is worthwhile pointing out 
that the high availability of some methods might not sometimes be re-
flected in energy production since the energy produced on each simu-
lation depends on a combination of factors, especially the randomness of 
failure simulations. Additionally, the hybrid method presented is new 
and should be developed further in future studies. 

6. Conclusion 

This paper compared numerical weather forecasting methods and 
their effect on lifecycle modelling. Three numerical methods were used: 
Markov Chains, gradient boosting and a proposed hybrid regression/ 
statistical method. The forecasts from these methods were used as inputs 

Table 4 
Summary of the difference between the standard deviation of real and forecast monthly values for 2016. 

Table 5 
Pearson correlation coefficients between wind speed, u10, and significant wave 
height, Hs, for the real measurement observations and the forecasts.  

Real LightGBM Markov 
Chains 

Hybrid, 
univariate 

Hybrid, 
multivariate 

0.829 0.579 0.807 0.120 0.810  

Fig. 10. Time series plots within the month of January 2016 comparing real 
values to predictions. The recorded wind speed time series is plotted in grey. (a) 
- prediction from the hybrid multivariate approach for that month, (b) - pre-
diction from Markov Chain. 
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into a lifecycle assessment tool which models turbine performance, 
failure rates, and operational variables to determine key performance 
indicators in a Monte Carlo analysis. These key performance indicators 
are energy production, availability and revenue. The methods are 
compared both in terms of their numerical similarity to the measure-
ment data and the difference in the results of the lifecycle model. 

The O&M costs of offshore wind farms make up a significant portion 
of the total lifecycle cost, and unplanned maintenance activities O&M 
costs due to harsh marine environmental conditions. The predictive 
models, as described in the present study, allow for better-informed 
decision-making for these unplanned maintenance activities, which 
means significantly better returns from the offshore wind farm as well as 
safer operation. However, the precision of these predictive models is as 
important as the accuracy, as imprecise models can also lead to sub-
stantial differences in the availability of offshore wind assets, which is 
somewhat overlooked in the literature or has not been explicitly 
demonstrated using the relevant key performance indicators. The pre-
sent study addresses this neglected yet vital issue described above by 
studying the uncertainties associated with these predictive models and 
their impact in monetary terms to support decision-making. 

The results showed that the choice of weather forecasting method 
could easily lead to a difference in availability of nearly 2 per cent, in 
turn, a difference in revenue of tens of millions of revenue. Numerically, 
both Markov Chains and the hybrid method performed similarly to the 
measurement data. Markov Chains and the hybrid method are roughly 
equal in terms of prediction of monthly mean and deviation values as 
well as the correlation between wind and wave vectors. The most 
considerable difference numerically resulted from the gradient boosting 
method. The difference between Markov Chains and the hybrid method 
comes down to the level of persistence in the two methods and capturing 
trends at multiple timescales, where the hybrid method excels. The 
consequence in the lifecycle model is that Markov Chains predict the 
lowest availability, whilst the hybrid method predicts the lowest 
revenue. 

The novelty of the present work comes from the fact that it calculates 
the consequence of numerical weather model choice on lifecycle 
modelling prediction. Such knowledge is a significant contribution to 
the literature because the prospective modeller may initially assume 
that two forecasting methods predicting the same monthly mean value 
and standard deviation would have the same key performance indicator. 
However, the present shows that this assumption does not necessarily 
have to be the case. 

Moreover, this study also presented a novel hybrid forecasting 
approach that combines existing ideas tailored to this problem. The 
novel hybrid forecasting approach validated by the measurement data 
showed a strong predictive power. Future work will further focus on 
developing numerical forecasting models and advancing other aspects 
such as uncertainty propagation over the course of service life, which is 
critical for offshore wind lifecycle modelling. This work will be of value 
to practitioners who are developing maintenance strategies for offshore 
wind farms, as contractual relationships between developers/operators 
and the grid often depend on ensuring adequate levels of availability; 
accurate prediction of such value is critical towards reducing risks of 
such agreements. Further, the study can be of value to researchers and 
developers of numerical tools that utilise forecasting algorithms as it 
shows how different algorithms can be modelled and simultaneously 
discusses performance characteristics for each method applied. 
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Perea-Moreno, A.J., Alcalá, G., Hernandez-Escobedo, Q., 2019. Seasonal wind energy 
characterization in the Gulf of Mexico. Energies 13 (1), 1–21. https://doi.org/ 
10.3390/en13010093. 

Persson, K., 2010. Exponentiated Gumbel distribution for estimation. J. Environ. Stat. 1 
(3), 1–12. 

Persson, C., Bacher, P., Shiga, T., Madsen, H., 2017. Multi-site solar power forecasting 
using gradient boosted regression trees. Sol. Energy 150, 423–436. https://doi.org/ 
10.1016/j.solener.2017.04.066. 
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