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Abstract

Machine learning has received considerable attention in recent decades in data-

driven modelling systems and methods. Machine Learning focuses on applied

maths and computing algorithms for creating ‘computational machines’ that

can learn to imitate system behaviours automatically. Unlike traditional system

modelling methods (physics-based, numerical etc.), machine learning does not

require a dynamic process model but sufficient data, including input and output

data of a specific system. It thus could get high prediction accuracy but lack

interpretability.

A method to add transparency to deep CNNs is adding a fuzzy logic radius

basis function to specific CNN structures named RBF-CNN. With the deletion

of the defuzzy layer, a more generalised form was introduced, namely ND-RBF-

CNN.

Both RBF-CNN and ND-RBF-CNN were benchmarked for linguistic fuzzy

rules’ prediction accuracy and interpretability. Both structures demonstrated

good interpretability at a small cost of prediction accuracy. To improve

the prediction accuracy, a general RBF layer initialisation methodology was

explored.
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1 Introduction

Machine learning, as a research discipline, has been developed in multiple

directions for decades, which can be defined as a set of methods that can

automatically detect patterns in data and then use uncovered patterns to

predict future data, and to study self-improvement methods of computers

that to obtain new knowledge and new skills, identify existing knowledge,

and continuously improve the performance and achievement [51]. In terms of

data-driven modelling systems and methods, machine learning has received

considerable attention in recent decades. Machine Learning focuses on applied

maths and computing algorithms for creating ‘computational machines’ that can

learn to imitate system behaviours automatically [69]. As a subarea of Artificial

Intelligence (AI), using Machine Learning (ML) one could also construct

computer systems and algorithms to improve performance based on what has

already been experienced (empirical-based, learning from examples) [69, 34].

As a core subarea of AI, ML has much flexibility. After development over

two decades, machine learning has emerged as a choice for models used in

natural language processing, speech recognition, computer vision, robot control,

and other applications [69, 34, 43].

1



1 Introduction

Unlike traditional system modelling methods (physics-based, numerical etc.),

machine learning does not require a dynamic process model but sufficient

data, including input data and output data of a specific system, hence a class

of machine learning algorithms can be considered as data-driven modelling

methods that are able to capture static or dynamic process behaviour in areas

such as manufacturing and biomedical systems among others. Gong et al.

introduced a way to analysis time series signals and to create a human body

model using CNNs [25]. Segreto et al. evaluated the correlation between

wavelet processed time series signals and the machining conditions using neural

networks [72]. Based on the type of modelling structures used, machine learning

could be broadly viewed in two parts with — to a certain extent — unclear

boundaries, which are statistical modelling and learning, and neural and other

hybrid network structures [34].

1.1 Problem statement

Machine Learning has been widely used in computer vision, speech recognition,

and natural language processing. In particular, Machine Learning in image

recognition has been very successful in certain class of problems. Research

developments in Machine Learning have enabled the wider use of neural-network

type computational structures.

CNNs are considered as black-boxes, which means hard to understand, so

more methods are created. Integrated gradients [82] and LIME [65] could spot

out the potential regions of interest. Gradient SHAP [46], KernelSHAP [46]

2



1 Introduction

DeepLIFT [75], and DeepLIFT SHAP [46] could figure out the importance of

variety features. Guided Backpropagation [79] with Deconvolution [95] could

visualise features learnt by CNNs.

In the manufacturing literature, machine learning in general is widely applied.

Machine learning methods are used in advanced manufacturing systems and

processes, including in product-process design, quality monitoring and control,

job shop scheduling, thermo-mechanical manufacturing process, and other

related applications [56, 11].

The first challenge relates to the fact that deep learning requires large datasets

to train networks, and in general more complex/advanced networks require even

larger databases - these are not always available in manufacturing systems. The

second challenge is that in manufacturing, fundamental process understanding

and ease of application are very important for adopting any computation

method as part of the manufacturing workflow. The high complexity associated

with deep learning networks limits their interpretability and implementation

(towards adoption of the methodology in a manufacturing setting) [62].

However, there are still challenges in the applications of deep learning, in par-

ticular when one considers manufacturing processes. In DL large datasets/samples

often is needed to train networks, and more complex networks require larger

sample size. The second aspect, is that the additional complexity coming with

DL structures, often prevents researchers using such structure, not due to lack

of performance, but due to lack of fundamental understanding relevant to the

process at hand — this is very prominent in manufacturing applications.

Adding interpretability features in machine learning structures could benefit

3



1 Introduction

certain applications of machine learning, where interpretability can be of benefit.

For example, in advanced manufacturing systems, where understanding and

modelling images and videos of complex processes are critical tasks. A process

model (or classifier) based on CNNs could be developed to take advantage of

processing data in array forms [43] which has already been proven to be very

effective [80, 83] in a number of applications.

1.2 Research aims

For complex manufacturing processes it is very challenging to generate accurate

and meaningful process models based on physical models alone. The main

difficulties often arise due to lack of fundamental process understanding, high

non-linear processes as well as the various process uncertainty sources. Data-

driven modelling methods, have therefore received significant attention in

manufacturing, and in particular Machine Learning methods. Data/information

generated in manufacturing often is scarce and in general is only limited to a

few samples/trials for high value manufacturing components. Not many ML

methodologies address the low sample size problem with success. In addition,

there is a rise in demand in interpretable models and algorithms, that non-

experts can easily interact with. Towards this vision, this PhD will be focusing

on interpretable Artificial Intelligence, in the form of research in Deep Learning

methodologies, augmented by interpretable computational structures such as

the ones offered by Fuzzy Logic, Rough Sets, Granular Computing etc.

In general, modelling methods that aimed at industrial/manufacturing use,

4



1 Introduction

may contain the following attributes:

• Data-driven;

• Capable of dealing with small data sets;

• Capable of dealing with high uncertainty and complexity;

• Transparent and interpretable.

Therefore, the major aims of this research work can be list as follows:

• The first study aim is to classify images with machine learning based on

a large dataset. Hence, a Convolutional Neural Network (CNN) model is

suggested to solve this problem.

• Secondly, an Radial Basis Function (RBF) network is suggested to com-

bine with existing CNN models in order to create interpretability and

improve transparent.

• Finally, this research work aims to dealing with small datasets. As

the difficultness existing in training small datasets, transfer learning is

suggested to solve the initilastion of an Radial Basis Function (RBF)

model.

1.3 Achievements

The main contribution of this research work is to provide a number of method-

ologies for interpretation image classifications in linguistic fuzzy rules. As

5



1 Introduction

the auxiliary of development such a system, a vision interpretation of fuzzy

rules has also been discovered. For the better compatibility to other deep

convolutional neural networks, an improved model was invested, and proved

that the improved model still has the linguistic fuzzy rule interpretability.

The work in this thesis has contributed in part or full to the following

publications:

- Zhen Xi and George Panoutsos. “Interpretable Machine Learning: Con-

volutional Neural Networks with RBF Fuzzy Logic Classification Rules”. In:

2018 International Conference on Intelligent Systems (IS). 2018 International

Conference on Intelligent Systems (IS). Sept. 2018, pp. 448–454. - Zhen Xi

and George Panoutsos. “Interpretable Convolutional Neural Networks Using

a Rule-Based Framework for Classification”. In: Intelligent Systems: Theory,

Research and Innovation in Applications. Ed. by Ricardo Jardim-Goncalves

et al. Studies in Computational Intelligence. Cham: Springer International

Publishing, 2020, pp. 1–24.

1.4 Outline of the thesis

The structure of this thesis is organised in 8 chapters and one appendix. In

this chapter the basic background and contributions was introduced. The next

7 chapters describe the current contributions and the conclusion of this thesis.

Chapter 2, covers the main components and techniques of convolutional

neural networks, which may be useful to implement image processing systems.

Chapter 3 includes an first attempt combining fuzzy logic radial basis function

6



1 Introduction

network with convolutional neural networks, namely RBF-CNN. In this chapter

it was proved the combination of such two systems would not affect prediction

performance significantly on a simple but popular benchmark dataset MNIST.

Chapter 4, as the continuous part of Chapter 3, introduced the linguistic

fuzzy rule analysis methodology. Besides, this chapter also applied RBF-CNN

on a more complex dataset Fashion-MNIST, and acquired good prediction

accuracy as expectations.

Chapter 5 aims on removing a component, defuzzy layer, from RBF-CNN.

The new model contains no defuzzy layer, hence named as No Defuzzy RBF-

CNN (ND-RBF-CNN). With benchmarks, it was proved that ND-RBF-CNN

can still acquire acceptable prediction accuracy.

Chapter 6 follows the previous chapter, explored the interpretability of

linguistic fuzzy rules applied on ND-RBF-CNN. Furthermore, the benchmark

was completed with a small manufacturing dataset EBM-XCT.

Chapter 7 aim on solving the initialisation problem, which companies to all

FL RBF system. The accuracy of ND-RBF-CNN could reach a higher level

with the actions provided in this chapter.

7



2 A background to machine

learning techniques

The main objective of this chapter is to provide an insight about the existing

techniques developed in machine learning.

2.1 Convolutional neural networks

In deep learning in particular [34], CNNs have been widely used [83, 40, 42].

CNNs are a kind of feed-forward neural network using convolutional cores

to process data in multiple arrays. Multiple arrays could be in the form of

variable data modalities: 1D for time-domain signals, 2D for images, and 3D

for videos [43].

Backpropagation is a computational method to calculate the error contribu-

tion of every weight in neural networks after processing a batch of data. It can

be applied to a variety of modelling structures, including neural networks and

fuzzy logic systems [88]. For neural networks, backpropagation procedure could

compute gradients for all modules constructed by relatively sooth functions of

8



2 A background to machine learning techniques

their internal weights and of their inputs [43].

In following equations, a notation as wl
jk is used, which means the weight from

k-th neuron in the (l − 1)-th layer to the k-th neuron in l-th layer. Specially,

upper label L in wl
jk presents for the last layer of a neural network. In [52],

Nielson provided four equations for a neural network containing layers as defined

as al = σ(zl) ≡ σ(wlal−1 + bl):

δLj =
∂C

∂aLj
σ′(zLj ), (2.1)

δl = ((wl+1)
⊺
δl+1)⊙ σ′(zl), (2.2)

∂C

∂blj
= δlj, (2.3)

∂C

∂wl
jk

= al−1
k δlj, (2.4)

where C is cost of the neural network, function f(x) = σ(x) is the activation

function, and ⊙ denotes Hadamard product.

2.1.1 Wide-used methods

Neural networks are a kind of mathematics model which could be expressed as

a combination of layers. In this research project, the most of data was images,

hence only CNNs were focused on.

Both advantages and disadvantages of CNNs are important to review. Unlike

statistical models, a CNN can extract features automatically, and this feature

extraction could be transferred to any other un-trained CNNs. However, a

9



2 A background to machine learning techniques

well trained CNN requires large datasets to support effective training, hence

the training process is computational expensive [40].

2.1.2 Components

A typical CNN for image classification would contain several layers, grouped in

a way to perform specific tasks. These components could be mainly classified

into five types, which are

• Convolution layer;

• pooling layer: max-pooling, average-pooling, etc.;

• Non-linear components: ReRU [24], leaky ReLU [31], tanH [26], etc.;

• Dense layer;

• Utility layer: padding layer, dropout [80], etc.

A more comprehensive list of usual components could be found in [85].

A typical CNN structure would start with multiple pairs of a convolution

layer and a max pooling layer, these are used for feature extraction. The size

of these convolution windows can be different, which ensure convolution layers

can extract features in different scales. Fully connected layers would also be

used in typical CNNs, in which neurons are fully connected to all outputs

from the previous layer. Usually, a Rectangular Linear Unit (ReLU) would

be the activation function of convolution layers and fully connected layers

because ReLU could provide non-linear property to those layers and is easy to

10



2 A background to machine learning techniques

calculate in backpropagation [24]. In order to avoid overfitting, dropout layers,

which would drop out several neurons in each iteration randomly,are added

before fully connected layers as a simple way [80]. In case of exploding and

vanishing gradients in deep networks, batch normalisation could be applied in

every layer [33].

Initialisation

CNNs are considered as non-convex function, hence the initial value of pa-

rameters would affect the training result significantly. In the practical side,

multiple initialisation methods were raised and benchmarked. Xavier normal

distribution and uniform distribution rely on both of the input dimension and

the output dimension [23], while Kaiming normal and uniform distribution

were created and benchmarked with a better performance, which rely on one

of the input dimension or the output dimension [31]. While from theoretical

side, orthogonal initialisation was derived [68], and was proved that drawing

the initial weights from the orthogonal group speeds up convergence relative to

the standard Gaussian initialization for deep linear networks [32].

Optimisation

Because of the non-convexity, the optimisation methods of CNNs’ losses

were also focused on. Stochastic Gradient Descent (SGD) are generally used

in backpropagation [3]. In order to improve stability and convergence of

regular gradient descent, Nesterov momentum was applied [6]. SGD with

Nesterov momentum introduced learning rate as the first-order momentum

11



2 A background to machine learning techniques

of the optimisation point. Adagrad [21] changes learning rate for different

parameters with variety update frequency, which could be regard as providing

the second-order momentum of the optimisation point. Adadelta [94, 70]

improved Adagrad and avoid the un-wanted early-stopping. Adam [39] combines

the first-order and the second-order momentum of the optimisation point.

2.2 Applications

Using CNN deep learning structures has been very successful for certain class

of applications, for example Szegedy et al. proved a deep enough network can

classify ImageNet [17] efficiently [83], and He et al. provided a model structure

to build deep neural networks without considerable gradient loss [30]. Simonyan

and Zisserman show that CNNs could be designed as even ‘deeper’ structures,

and perform even better in ImageNet classification problems [78].

Deep learning is a subset of machine learning, with special focus on complex

(deep) neural structures. As discussed above, machine learning systems are

used widely in a variety of applications. The boundary between the concept

of ‘deep learning’ and ‘shallow learning’ is not clear, while often it is assumed

that problems whose depth of Credit Assignment Paths > 10 require deep

learning [71].

Same as some ordinary neural networks, deep learning systems usually

use backpropagation to adjust parameters throughout whole networks [34].

However, backpropagation for very deep networks may not work efficiently,

hence these require adjustments to make them work effectively [83].

12



2 A background to machine learning techniques

There are three types of learning methods that have been addressed by deep

learning, depending on the way that datasets are utilised, namely: supervised

learning, unsupervised learning, and reinforcement learning.

Firstly, supervised learning is the most common, and most widely used

machine learning form [43, 34]. The datasets for supervised learning would

be labelled [43, 34]. A famous example of this kind of machine learning is

GoogLeNet, which achieved 6.67% top-5 error rate in a 1000-label task [83].

Secondly, unsupervised learning usually utilise unlabelled data under assump-

tions about structural properties [34]. A Generative Adversarial Net (GAN)

would generate a new dataset from a given unlabelled dataset [27]. Thirdly, re-

inforcement learning may describe a model trained by a dataset, whose available

information is intermediate between unsupervised and supervised learning [34].

DeepMind made two models, which are Deep Q-Networks (DQNs) [48] for

video game playing and AlphaGo [77, 76] for Go competition.

2.3 Radial basis functions

A radial basis functions (RBF) ϕ is a real-value function whose outputs depend

on distance between the input x⃗ and fix points c⃗, so that ϕ(x⃗) = ϕ(∥x⃗ −

c⃗∥). RBFs can be applied as a kernel function in multiple machine learning

methodologies, for example in Support Vector Machines (SVMs) in order to

solve non-linear classification problems [49]. Broomhead et al˙ [8] formed an

13



2 A background to machine learning techniques

interpolating function with RBFs as

s(x⃗) =
m∑
j=1

wjϕ(∥x⃗− c⃗j∥) x⃗ ∈ Rn, (2.5)

which can be expressed in network forms equivalently. RBF networks can also

be implemented in FL-based systems as SVM [56].

A RBF ϕ can be a symmetric convex function. For FL interpretability,

Gaussian functions was chosen in several models [10, 56, 91], and the RBF

network is summarised in Fig. 2.1.

...
...

X1

X2

Xn

m1

m2

mn

y

z1

z2

zn

Input
layer

RBF
layer

Ouput
layer

Figure 2.1: RBF network structure

RBF networks were formulated in [8] as a learning network structure. RBF

networks can also be used efficiently as as a kernel function for a variety of

machine learning methodologies, for example in Support Vector Machines to

solve non-linear classification problems [49]. Similar to SVM, RBF networks

could be implemented as FL-based systems [56].

In this section, for the benefit of the reader, the RBF-NF network is sum-

marised (Fig. 2.1), and its relevance to the deep learning structure is shown,
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2 A background to machine learning techniques

while full details of the fundamental RBF network as a data-driven model can

be found in [10, 56].

Equation (2.6) represents a multiple-input and single-output (MISO) FL

system with m system inputs and p number of rules, where µij(xj) defined

in (2.7) is the Gaussian membership function of input xj belonging to the i-th

rule and cij and σij are the centre and width of the Gaussian membership

function respectively [56]. The overall function z(x⃗) could be adjusted to

represent one of the following three forms of FL-based systems:

• Singleton;

• Mamdani;

• Takagi-Sugeno.

In the proposed work, the overall system function z(x⃗) will be considered as

a Singleton model. Fig. 2.1 depicts the structure of the RBF network, where

Xn are the system’s inputs, µij is the membership function of each rule-input

combination, mn is the membership function vector of each input, zn is the

Tagaki-Sugeno polynomial function for each rule, and y is the overall output

of the system. Hence the output function takes the mathematical form shown

in (2.8).

y =

p∑
i=1

zi

[ ∏m
j=1 µij (xj)∏p

i=1

∑m
j=1 µij (xj)

]
, (2.6)

=

p∑
i=1

zigi(x),
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µij(xj) = exp

(
−(xj − cij)

2

σ2
ij

)
, (2.7)

zi =

p∑
i=1

bixi (2.8)

Equation (2.7) could be expressed in vector form, as follows (which is also

the expression for a RBF in i dimensions):

mi (x⃗) = exp
(
−∥x⃗− c⃗i∥2/σ⃗2

i

)
, (2.9)

thus this FL system could be written as:

y =

p∑
i=1

zimi (x) /

p∑
i=1

mi (x) , (2.10)

=

p∑
i=1

zigi(x), (2.11)

where

gi =

[ ∏m
j=1 µij (xj)∏p

i=1

∑m
j=1 µij (xj)

]
,

= mi (x) /

p∑
i=1

mi(x). (2.12)

Following from equations (2.9) and (2.12), the activation function becomes:

mj = exp
(
−∥x⃗− c⃗i∥2/σ⃗2

i

)
, (2.13)

gj = mj
j/

p∑
j=1

mj, (2.14)
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therefore, for the convenience of computing, gj could be denoted as

gj = s
(
−∥x⃗− c⃗i∥2/σ⃗2

i

)
, (2.15)

where s(x) is a softmax function.

In the defuzzification layer, there would be

y = z⃗ · g⃗. (2.16)

2.4 Interpretability for deep learning

In the manufacturing literature, machine learning in general is widely applied.

Machine learning methods are used in advanced manufacturing systems and

processes, including in product-process design, quality monitoring and control,

job shop scheduling, thermo-mechanical manufacturing process, and other

related applications [56, 11].

Process monitoring is an essential part of manufacturing, while monitoring

data would occupy great space. In order to reduce data size without affect

monitoring, a system based on deep learning and fuzzy classification were

introduced in [50]. Using a deep convolutional autoencoder, an image could

be compressed from resolution of 120× 120 to 15× 15 without affecting the

overall performance of the fuzzy classification methodology.

In the steel industry, weight percentage of composite materials of steel and

heat treatment regimes are two of main affections of steel quality. A linguistic

rule based fuzzy logic optimisation model was introduced to this non-linear
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2 A background to machine learning techniques

processing in [56]. With granular computing (GrC) processed data, the model

achieved elongation with RMSE of 1.43.

On the other hand, fuzzy models are still developed into deep with inter-

pretability. Deep Rule Based (DRB) models [4, 28] combine massive fuzzy rules

with deep neural networks, in order to achieve a similar accuracy comparing

with deep CNNs. SetSVM [44] can classify specific cancer images with high

accuracy and good visual interpretation. Incremental Neuro-Fuzzy Gaussian

mixture network (INFGMN) [47] focuses on building precise models with a

good trade-off between accuracy performance and interpretability.

Fuzzy Logic (FL) is also mixed with CNNs for various purposes. Price et al.

inserts fuzzy layers between convolutional layers in a CNN and achieved higher

accuracy [60]. Fuzzy pooling layers [74] are also been found and benchmarked.

Yeganejou and Dick [93] introduces a fuzzy clustering model training with

features extracted with a pre-trained ResNets [30], and gains a good accuracy

with visual interpretation.

There are existing attempts in the literature to combine FL with deep learn-

ing. Muniategui et al. designed a system in spot welding monitoring [50]. In

this approach the authors use the deep learning network only as a method for

data pre-processing, followed by the FL classifier as a separate process step.

In an attempt to reduce data size without affect monitoring performance, a

system based on deep learning and FL classification was introduced. Using a

deep convolutional autoencoder, an image could be compressed from resolution

of 120× 120 to 15× 15 without affecting the overall performance of the fuzzy

classification methodology. Deng et al. introduced a FL-based deep neural
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network (FDNN) which extracts information from both neural representation

and FL simultaneously [19]. It was shown that the FDNN has higher classifica-

tion accuracy than networks based on NN or FL separately and then fusions

the results from the two kinds of networks. The current gap in the research

literature is in that the deep learning methodologies, when combined with FL,

are not integrated together as a single system, which means the gap between

systems may cause the interpretability broken. For example, a CNN model

could extract features from images, and an interpretable system could classify

the input image with only the features. Although the interpretable classifier is

a white box, the CNN part still remains as a black box.
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3 Convolutional Neural Networks

with RBF Fuzzy Logic

Classification Rules

In [43], LeCun states the usage of convolution layers of CNNs is to extract

different scale features. In this research work, it is proposed that a deep learning

network, which includes a convolution layered structure, and for the first time

in the literature include a FL layer (RBF) to perform the classification task. An

extra layer was proposed here, which is an RBF layer to maintain the rule base

of the system. To defuzzify the FL statements into crisp classification labels, a

normalised exponential function (softmax) is used. Due to the addition of the

FL layer one has to consider the credit assignment and error back-propagation

for these layers which is not a trivial task.

There are some research studies on the similar topic published, but no one

demonstrates linguistic interpretability, which could be described in the form

of ‘IF . . . THEN . . . ’. Su and Cao [81] provides a method using fuzzy logic to

detect multiple changes between and but without any CNN part. Sharma et
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al. [74] invented a fuzzy pooling layer which could be combined with CNNs

while the pooling layer would not provide linguistic interpretability and their

purpose of the fuzzy pooling layer was to increase classification accuracy not

the interpretability. Price et al. [60] introduced a method combines fuzzy logic

layers with VGG-16 [96] to improve the classification accuracy.

This chapter provides a new methodology based on FL and CNNs in order to

improve linguistic interpretability of deep CNNs applied for image classification

tasks. For the interpretability, a FL-based layer (in the form of a hybrid Neural-

Fuzzy network) is introduced as an integral part of the overall CNN structure,

which acts as the main classification layer (fully connected) of the deep learning

structure. Consequently, one could extract directly from the deep learning

structure linguistic rules in the form of a FL rule-base. Via simulation results

based on a popular benchmark problem/dataset it was shown that the proposed

network structure performs as well as state-of-the-art CNN-based structures,

hence there is no significant loss of performance by introducing the FL layer as

part of the deep learning structure. In addition, the robustness of the learning

process is also assessed by consecutively reducing the sample size.

The motivations for developing this new layer structure is to interpret deep

CNNs, which lack any significant interpretation, and act as ‘black boxes’

that predict/classify data well. There is an opportunity therefore, to use

the paradigm of FL theory, and attempt to add linguistic interpretability

to neural-based structures [56, 57, 53] and achieve the same effect on deep

learning structures. Successful implementation would be beneficial to a variety

of problems, in particular in cases where there is a need for human-machine
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interaction, such as in decision support systems for critical applications (health-

care, biomedical, high-value manufacturing etc.). For example, one could use

FL theory to provide linguistic interpretation to classification tasks performed

by deep learning networks.

3.1 Mathematical model for FL-RBF layers

In Chapter 2, a p-rule RBF model was described as following:

y =

p∑
i=1

zi

[ ∏m
j=1 µij (xj)∏p

i=1

∑m
j=1 µij (xj)

]
, (3.1)

=

p∑
i=1

zigi(x⃗),

µij(xj) = exp

(
−(xj − cij)

2

σ2
ij

)
,

where zi is the i-th Tagaki-Sugeno polynomial function, µij(xj) is the j-th

Gaussian membership function corresponding to j-th input, and cij and σij are

the centre and width of the Gaussian membership function respectively.

For the convinence, the RBF model could be seperated into two parts, which

are named as the RBF layer and the defuzzyfication layer.

3.1.1 RBF layer

As introduced with details in Chapter 2, the equations describing RBF layer are

also using p as number of rules. Following from (2.9) and (2.12), the activation
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function becomes:

mj = exp
(
−∥x⃗− c⃗i∥2/σ⃗2

i

)
, (3.2)

gj = mj
j/

p∑
j=1

mj, (3.3)

therefore,

gj = s
(
−∥x⃗− c⃗i∥2/σ⃗2

i

)
, (3.4)

where s(x) is a softmax function.

For this layer, the vector x⃗ is the input, and the vector g⃗ = (g1, g2, . . . , gp) is

the layer output. Both the Gaussian membership function centre matrix c⃗ and

the width matrix σ⃗ could be used as parameters during training.

3.1.2 Defuzzyfication layer

In a defuzzy layer, using g⃗ to denote the output from RBF layer as a vector in

the shape of p-by-1, there would be a singleton defuzzy equation

y(g⃗) = z⃗ · g⃗, (3.5)

where y is the prediction label in the range of [0, N) if there are N labels, z

is a defuzzy vector whose shape is 1-by-p.

Noteworthily, the outputs of a RBF layer would be continuous floating

numbers rather than discrete integers. Rounding the output of this layer to the
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nearest integer (based on a predetermined threshold) would give the integer

class. Therefore, the final prediction

ŷ = Round(y), y ∈ R. (3.6)

3.2 Proposed CNN-FL modelling structure

Adding interpretability in a CNN deep learning structure could be achieved

by performing the final classification task using a FL-based structure. With

an FL-RBF layer and a defuzzy layer at the end of CNN rather than one fully

connected layer, it is possible to interpret how the features of one image trigger

a set ‘IF . . . THEN . . . ’ form linguistic rules.

In this section, the integration of a Radial-Basis-Function Neural-Fuzzy layer

was described into the deep learning structure, that provides the mechanism to

extract a linguistic rule base from the CNN.

3.2.1 A respective CNN structure

A representative CNN structure for image classification would contain several

layers, grouped in a way to perform specific tasks. Fig. 3.1 demonstrates a

typical CNN architecture. The first few layers would be multiple pairs of

convolution layers and pooling layers. The size of these convolution windows

can be different, which ensure convolution layers can extract features in different

scales. The pooling layers are proposed to subsample features into a smaller size,

where a max pooling method is generally used. Then, fully connected layers
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Figure 3.1: Representative CNN structure

would also be used, in which neurons are fully connected to all outputs from

the previous layer. These layers also convert the data structure from a multiple-

layer structure to a vector form. Rectangular linear units (ReLUs) would

normally be the activation function of the convolution layers as well as in the

fully connected layers as these can provide non-linear properties to those layers

and are also convenient for the calculation of the error backpropagation [24]. To

avoid exploding and vanishing gradients in deep networks, batch normalisation

can also be applied in every layer [33]. CNNs are not considered as convex

functions, which means parametric optimisation for CNNs is challenging, hence

numerous optimisation strategies have been developed [70], such as SGD,

Nesterov momentum [6], and adaptive subgradient (Adagrad) methods [21].

This model was designed to use 28 × 28 pixel grey-scale images as input.

After two convolutional layers which have 32 3x3 filters and 64 3x3 filters,

a max pooling layer whose pooling size is 2x2 was added. Afterwards, the

dropout layers were applied to avoid overfitting. Finally, the Flatten layer was

added to convert data structure into vectors, and two Dense layers are a fully

connected layer with x (x ∈ {16, 32, 64}) hidden units, and a fully connected

output layer with 10 neurons. For the convenient, this model could be described
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Table 3.1: Basement CNN architecture

type patch size/stride output size parameters

convolution 3× 3/0 26× 26× 32 320
convolution 3× 3/0 24× 24× 64 18496
maxpooling 2× 2/0 12× 12× 64 0

dropout (25%) 12× 12× 64 0
flatten 9216 0
linear 64 589888

dropout (50%) 64 0
linear 10 1290
softmax 10 0

as 1x28x28-32C3-64C3-MP2-xN-10N. Fig. 3.2 depicts the overall structure of

the CNN deep network.

All activation functions in this model were ReLUs. The loss function of this

model was cross entropy loss function, which is widely used in CNNs [40, 83].

In the proposed research work, the SGD optimisation method was applied to

perform the learning task, to take advantage of its fast convergence properties.

The loss function was calculated with mean square error (MSE). In order to

achieve a good balance between training speed and avoidance of overfitting the

batch size was chosen as 128. Table 3.1 shows the architecture of the designed

CNN.

3.2.2 Convolutional neural network with an RBF fuzzy logic

rule-base classification layer

In this section, the main CNN structure is summarised, and it is shown how

the RBF-NF layer is integrated into the overall network structure and learning
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Figure 3.2: basic CNN structure
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Table 3.2: FL RBF-CNN architecture

type patch size/stride output size parameters

convolution 3× 3/0 26× 26× 32 320
convolution 3× 3/0 24× 24× 64 18496
maxpooling 2× 2/0 12× 12× 64 0

dropout (25%) — 12× 12× 64 0
flatten — 9216 0
linear — feature size 9216×feature size

dropout (50%) — feature size 0
RBF — rule size 2×rule size

defuzzy — 1 rule numbers

methodology.

Fig. 3.3 depicts the architecture of the FL Radial Basis Function-Convolutional

Neural Network (RBF-CNN), and Table 3.2 shows parameter setting of

the FL RBF-CNN. Similarly, the RBF-CNN model structure could be de-

scribed as 1x28x28-32C3-64C3-MP2-xN-yF-1DF, where x ∈ {16, 32, 64}, y ∈

{3, 5, . . . , 15}. The difference between the RBF-CNN model and the reference

model is the ‘yF’ layer and ‘1DF’ layer at the very end of the model, which

means a RBF layer with y rules and a De-Fuzzy layer with 1 single output. In

the following section, a set of trials using variety rule size would demonstrate

the affect of the rule size in RBF-CNN models.

Similar to FL RBF networks, FL RBF-CNNs will also be sensitive to initial

conditions (initial model structure and parameters) of the RBF and defuzzi-

fication layers, and the initial parameters could not be determined since the

features from CNN layers have not been extracted before training. Therefore,

one has to establish some initial conditions for the FL rule base for successful

model training.
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Figure 3.3: FL RBF-CNN structure
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The overall training would rely on a square error loss function as the loss

function and it would be performed as in the following section.

3.3 Simulation results

Simulation results were created to assess the performance of the developed deep

learning structure. This is done in two parts, first the learning performance

on a popular benchmark data set is assessed. This is achieved by comparing

the proposed learning structure against a classical and state-of-the art CNN

structure. On the second part, the robustness of the learning ability of the

proposed system is assessed by reducing consecutively the sample size and

evaluating the learning and recall performance.

3.3.1 MNIST dataset

The modified National Institute of Standards and Technology (MNIST) database,

which was introduced in [42], was chosen as a case study; the MNIST database

is a labelled handwriting digits dataset containing 60000 training images and

10000 testing images. This dataset was chosen as a benchmark dataset for vari-

able classification methods, such as linear classifier [42], K-Nearest Neighbors

(KNNs) [42, 37, 5], boosted stumps [36], SVMs [42, 16], neural networks [42,

67, 14, 18], and CNNs [42, 41, 12, 13, 15]. The highest accuracy achieved on

MNIST based on linear classifiers as 92.4% [42], KNNs as 99.37% [5], boosted

stumps as 99.13% [36], non-linear classifiers as 96.4% [42], SVMs as 99.44% [16],

neural networks as 99.17% [18], and CNNs as 99.77% [15].
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The MNIST data set has 60000-sample of training images and 10000-sample

of testing images as shown in Fig. 3.4. The training images were further split

into two parts randomly, as 50000-samples for training set and 10000-samples

for validation (to avoid overfitting).

Figure 3.4: Several examples from MNIST dataset

The results were generated on a computer whose CPU was Intel i7–6700k

and GPU was Nvidia GTX 1080. The computer was setted up as a TensorFlow

r1.10 and Keras 2.1.2 platform based on Python 3.6.

3.3.2 MNIST training and testing simulation results:

baseline CNN

The presented results include the mean classification accuracy as well as the

standard deviation in each case. Each set of simulation results shows the loss

function during training and validation as well as the classification accuracy

for training and validation. This is presented for a number of different rules,

for the rule base of the Fuzzy-Logic-based classification layer (varying from

3 — simpler — to 15 rules — more complex). The learning model makes

use of Adadelta, an adaptive learning rate optimise method to optimise the
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model to optimise the model weights. The model is trained for 50 epochs,

but also includes an early stopping criterion, to stop earlier if the validation

performance is not improved, with an improvement window of 10 epochs. As

shown in Fig. 3.5, the training of this network with 64 features converges

within the first 30 epochs. The mean training accuracy (for 10 repeats) of

this model was 99.80%, and both the validation and test accuracy of this

model are at around 99% which is comparable with other state-of-the-art CNN

classification structures. As an example comparison, LeNet-5 [42], which has a

similar structure (1x32x32-6C5-MP2-16C5-MP5-120C5-84N-10N, containing 84

features), achieves an accuracy of 99%. A higher test classification accuracy

(99.77%) is achieved in [15], however this is achieved with a more complex

structure (1x29x29-20C4-MP2-40C5-MP3-150N-10N, containing 150 features).

One can therefore conclude that the proposed structure does not sacrifice

significant performance in this case study, despite the much simpler overall

structure that aims at enhancing the interpretability of the model rather than

its accuracy showing in the following section.

3.3.3 Fuzzy logic RBF model results: with variable rules

While in some cases, the interpretability of models would be the key part

to understand the processing. For example in real industrial/manufacturing

processes, the conditions causing faults and defects are eager for understanding.

In this section, the initial values of RBF weights were generated randomly by

uniform distribution in the range of [0, 1]. The initial values of RBF variance

were selected as 0.3 and would be clipped in the range of [0.22, 0.62] = [0.04, 0.36]
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Figure 3.5: Origin CNN model with 64 features result using 10 MNIST data
sets

during training.

The performance of this FL RBF-CNN is further assessed via reducing

the number of classification features from 64, to 32 and to 16. The same

algorithmic approach was followed, as presented in the previous section. Ta-

bles 3.3, 3.4, and 3.5 were generated with using the raw simulation results

(10 repeats per training case). In each of these three tables, there are two

columns whose values are average accuracy and standard variance for training,

validation, and test case respectively, and every feature case were trained from

3 to 15 rules as listed in with a reference CNN network result (labelled as REF).

As shown in Table 3.3, the mean accuracy has a trend that would reach the best
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3 Convolutional Neural Networks with RBF Fuzzy Logic Classification Rules

Table 3.3: Accuracy mean and 95% confidence intervals of the FL RBF-CNN
model using 64 features

Rule Training Validation Test

3 96.64± 0.033% 94.79± 0.035% 94.67± 0.032%
5 98.41± 0.020% 96.79± 0.021% 96.69± 0.020%
7 98.48± 0.030% 96.89± 0.030% 96.92± 0.031%
9 97.78± 0.065% 96.16± 0.062% 96.28± 0.062%
11 94.14± 0.179% 92.55± 0.176% 92.63± 0.174%
13 95.48± 0.089% 94.03± 0.088% 93.97± 0.090%
15 94.90± 0.102% 93.43± 0.101% 93.44± 0.099%

REF 99.75± 0.001% 98.97± 0.003% 99.06± 0.001%

Table 3.4: Accuracy means and 95% confidence intervals of the FL RBF-CNN
model using 32 features

Rule Training Validation Test

3 87.17± 0.220% 85.54± 0.217% 85.76± 0.217%
5 94.50± 0.083% 92.91± 0.080% 93.11± 0.080%
7 92.19± 0.103% 90.81± 0.098% 91.02± 0.099%
9 91.48± 0.152% 90.12± 0.149% 90.33± 0.148%
11 90.90± 0.106% 89.58± 0.106% 89.67± 0.102%
13 86.38± 0.147% 85.00± 0.146% 85.32± 0.146%
15 73.84± 0.676% 72.72± 0.665% 73.01± 0.665%

REF 99.59± 0.002% 98.84± 0.003% 98.98± 0.002%

performance when fuzzy rules equals to 5 or 7, and the standard deviation also

shows a similar trend. However, to a certain extent, in spite of the good perfor-

mance, a model having 64 features may not be very interpretable, hence models

with 32 and 16 features were also simulated to ‘stress-test’ the performance of

the proposed structure. When the size of the classification features decreases,

the neurons of the last fully connected layers also gets reduced. It is expected

to observe a reduced classification power due to the fewer model parameters
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3 Convolutional Neural Networks with RBF Fuzzy Logic Classification Rules

Table 3.5: Accuracy means and 95% confidence intervals of the FL RBF-CNN
model using 16 features

Rule Training Validation Test

3 66.61± 0.175% 65.35± 0.170% 65.56± 0.174%
5 62.93± 0.261% 62.03± 0.258% 62.32± 0.257%
7 68.74± 0.186% 67.53± 0.178% 67.90± 0.179%
9 65.48± 0.196% 64.61± 0.194% 65.04± 0.187%
11 60.60± 0.121% 59.88± 0.120% 59.88± 0.116%
13 59.98± 0.382% 59.06± 0.375% 59.51± 0.377%
15 56.49± 0.496% 55.86± 0.489% 56.08± 0.491%

REF 99.27± 0.002% 98.56± 0.003% 98.66± 0.002%

available to capture the classification problem. In general, the classification

accuracy is reduced, as demonstrated in Table 3.4 and Table 3.5. Similarly,

as in the case with 64 features, the best performance is observed between 5

and 7 rules. In the case of 32 features, the test accuracy of 93.11% could be

considered as acceptable, however the test accuracy of 67.90% in the case with

16 features demonstrates that there is a significant performance loss when the

number of features is very low.

It can be observed that the FL RBF-CNN is more robust to less training

data, as in the training performance for up to 200 samples is outperforms the

classic CNN structure. It is however observed that both versions of the network

deteriorate significantly with less training samples, only achieving 70% to 80%

accuracy which is far from the nearly perfect accuracy of > 99% of the networks

trained with the full dataset. Similar observation can be concluded from the

training loss of each network. In terms of each model’s testing performance

(recall) similar conclusion can be reached, however the differences between the

two structures are less prominent. In the testing simulation (on unseen data),
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3 Convolutional Neural Networks with RBF Fuzzy Logic Classification Rules

the drop-off in performance is observed at an earlier stage, when the equivalent

data samples for training become less than 500. In other words, the networks

cannot generalise well on unseen data when the training samples are 500 or

less, where the classification accuracy drops significantly.

3.3.4 Model interpretability

With the fully connected layer of the CNN structure being a Fuzzy Logic

based layer, one can enhance the interpretability of the classification task,

by extracting Fuzzy Logic rules directly from the classification layer. Such

information can be, for example, further used to aid decision making, or to

create human-machine interfaces. Fig. 3.6, as an example, depicts two different

rules from the rule base of the 32-feature FL RBF-CNN model; just four inputs

(features) and one output (classification weight) are shown for simplicity. Rule

1 for example, translates into the following Singleton-based Fuzzy rule:

‘IF Feature 1 is A1, and Feature 2 is B1, and Feature 3 is C1, and . . . etc,

THEN the Output class is O1.’

There is no standard measure to assess how good interpretability is [22]. In

this situation, the interpretability is measured by the number of features and

the number of fuzzy rules utilised. Considering the accuracy, a 32-feature 5-rule

RBF model was chosen.

In the example of Fig. 3.6, there were 32 features for each rule. For an image

processed by the CNN part, which could be called as feature extractor, a

32-by-1 vector would be calculated as the feature vector x⃗. This feature vector

x⃗ would be used as the input of the RBF layer. The output of fuzzy rule
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3 Convolutional Neural Networks with RBF Fuzzy Logic Classification Rules

O1 = A1(x1) + B1(x2) + . . . . Because there were five rules, we would have a

fuzzy output vector O⃗ ∈ R5 where O1 = O1.

The defuzzy layer would calculate the class label with input as the fuzzy

output vector O⃗. Using the output vector O⃗ as the input of Eq. (3.5) and

Eq. (3.6), we would get the prediction ŷ of the given image.

As the feature vector x⃗ is the output of CNN, the sequence of these features

would be sorted randomly after every training process, and hence there is no

fix linguistic meaning of each feature. In order to illustrate the meanings, a

feature trackback methodology would be introduced in the next chapter.

3.4 Conclusion

In this research work, an interpretability-oriented deep learning network is

presented, based on a CNN structure combined with a Fuzzy Logic structure to

perform the classification task and also provide the capability to linguistically

interpret the structure’s rule base. By combining the good feature extraction

property of CNNs and the classification and generalisation ability of FL based

systems, a FL RBF-CNNs was developed. The proposed structure relies on

a Radial Basis Function realisation of the Neural-Fuzzy network, which is

integrated into the CNN structure via an adaptive subgradient method for the

credit assignment and error backpropagation.

In simulation results (training, validation and testing/recall) using a popular

dataset often used for benchmarking (MNIST 70000 handwriting digit samples)

it is shown that the proposed network performs equally well when compared to
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state-of-the-art CNN-based networks of similar complexity and size. However,

the advantage of the proposed structure, is that due to the added classification

layer in the form of a FL rule base, one could extract linguistic FL statements

for the overall model, which would enhance the interpretability of the system.

For example, in decision making applications, one could extract autonomously

linguistic rules to assist a human user/operator. To further extend this research

work, it would be interesting to capture and visualise the connection between

features and predictions via FL RBF-CNN layers.

The work in this chapter has already be published as [91].
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Figure 3.6: Two of five rule bases of a FL RBF-CNN model with 32 features
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4 Interpretable Convolutional

Neural Networks using a

rule-based framework for

classification

In previous chapter, a neural network model combined CNN and RBF was

proposed, and it was claimed that the proposed model has the ability to extract

linguistic rules for a specific classification action. In this chapter, via simulation

results based on another popular benchmark problem/dataset, it was shown

again that the proposed network structure performs as well as CNN-based

structures, hence there is a measurable but not significant loss of performance

by introducing the FL layer as part of the deep learning structure. Besides,

more analyses of linguistic interpretability based on fuzzy entropy are also

contained in this chapter.
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4.1 Model structure

4.1.1 RBF-CNN structure

The model applied in this chapter was the same as the one described in

Section 3.2 except the hyper-parameter settings. In Chapter 3, the Gaussian

membership width was clipped in the range [0.22, 0.62], while the width is

clipped in the range [0.2, 0.6] in this chapter. The reason of this mismatch is

explained in Appendix 8.1.

This model could be mainly separated into two parts, which are CNN layers

as a feature extractor and FL layers as a classifier. As mentioned in Table 4.1,

the first 7 layers of this FL RBF-CNN model are identical to the reference CNN

model, while the last two layers were changed to RBF layer and defuzzification

layer.

4.1.2 A framework for linking FL rules to CNN features

The idea for this interpretable methodology is trying to find out which features

would affect the predictions mostly and trying to demonstrate how these

features affect the predictions. Because of the multiple fuzzy rules existing in

a RBF-CNN model, the importanace of each rule could be estimated using a

Fuzzy Logic entropy measure. After establishing the link between rules and the

input features, which should be a high-dimention vector and would be hard to

read out directly, a set of heatmaps indicating the importance of input features

corresponding to one set of rules.

For any RBF-CNN model whose feature extraction part has a output form as
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4 Interpretable Convolutional Neural Networks using a rule-based framework for classification

Figure 4.1: FL RBF-CNN structure
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a vector, we could have the following pseudo code to describe this methodology.
Input: image, model

Output: trackback image

Get trained model feature layer weight W ;

Get trained model last tensor layer dimension D;

for each input image do

Calculate prediction;

Sort rules;

for each rule do

Calculate estimated feature x′ with least square estimation using

W as the input;

Reshape x′ into the shape D;

Calculate a trackback maxpooling layer result Mtrackback = M ◦ a;

Plot Mtrackback heatmap for the rule as the output;

end

end

Algorithm 1: Trackback algorithm for RBF-CNN models
The input space for the rule-based structure, in our case the fully connected

RBF layer, is a flat vector of weights, as shown in the CNN structure depicted

in Fig. 4.1. To enhance the interpretability of the antecedent part of the ‘IF

. . . THEN . . . ’ Fuzzy Logic rules we propose to ‘track back’ the weights of the

flat input vector of the fully connected layer towards revealing the relevant

features of the input image. Effectively, we propose to associate via this

mechanism relevant rules to features in the image’s feature space, so that the

user can appreciate which rules are responsible for each classification decision,
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4 Interpretable Convolutional Neural Networks using a rule-based framework for classification

and what is the relevant input space for each rule in the feature space. This is

achieved as follows:

For any CNN model, as defined in the structure shown in Table 4.1, the final

layer acts linearly [80]. Therefore, to track back the weights of the input space

of the fully connected layer, one can follow the process:

• Calculate a mask layer using a least mean square solution. The input is a

vector of selected features, and the output is a vector of 9216 points.

• Reshape the 9216-point vector as a tensor a with dimensions 12− 12− 64.

• Use tensor a as the mask. Calculate a track-back maxpooling layer result

using Mtrackback = M ◦ a.

• Reveal feature ‘heat maps’ using mask Mtrackback.

This procedures could be applied on any CNNmodel of the proposed structure,

regardless of having a FL-based RBF layer or not. The advantage of using

the FL-based RBF layer is that one can now link linguistic rules to the input

feature space using the above described process.

As the FL-RBF layer consists of multiple fuzzy rules, the relative importance

of each rule could be estimated using a Fuzzy Logic entropy measure. In the

proposed framework, a non probabilistic entropy function could be used [73],

this is shown below.

H = −K

n∑
i=1

(µi log (µi) + (1− µi) log (1− µi)) , (4.1)
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4 Interpretable Convolutional Neural Networks using a rule-based framework for classification

where K is a positive constant (usually equal to 1/N for normalisation), and

µi is i-th membership degree.

Using Fuzzy Entropy to identify the most ‘active’ rules for a given prediction,

and by identifying the Membership Functions of each rule with the highest

relevance to the input vector (membership degree), then a framework can be

established to directly link rules, to input space features; this is demonstrated

in the Simulation Results is Section 4.

4.2 Simulation Results

In this section, the proposed RBF-CNN modelling framework is tested against

two popular benchmark datasets to assess its learning and recall performance, as

well as demonstrate the developed linguistic interpretability. In both benchmark

case studies (MNIST character recognition, and MNIST Fashion), Adadelta [94]

was used for optimisation, with an adaptive learning rate during training. Early

stopping was used to avoid overfitting.

The results were generated on a computer whose CPU was Intel i7–6700k

and GPU was Nvidia GTX 1080. The computer was setted up as a TensorFlow

r1.13.1 and Keras 2.2.4 platform based on Python 3.7.

4.2.1 Case study: MNIST

The dataset applied in this section is introduced in previous chapter. Although

the same dataset utilised, the results were improved slightly because of the

change of hyper-parameters in the defuzzification layer.
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The MNIST data set has 60000-sample of training images and 10000-sample of

testing images. The training images were further split into two parts randomly,

as 50000-samples for training set and 10000-samples for validation (to avoid

overfitting).

Modelling performance

Simulation results were created to assess the performance of the developed deep

learning structure. This is done in two parts. First the learning performance

on a popular benchmark data set is assessed. This is achieved by comparing

the proposed learning structure against a classical and state-of-the art CNN

structure. On the second part, the robustness of the learning ability of the

proposed system is assessed by reducing consecutively the number of features

and evaluating the learning and recall performance.

The presented results include the mean classification accuracy as well as the

standard deviation in each case. Each set of simulation results shows the loss

function during training and validation as well as the classification accuracy for

training and validation. This is presented for a number of rules, for the rule base

of the Fuzzy-Logic-based classification layer (varying from 3 rules — simpler —

to 15 rules — more complex). The learning model makes use of an adaptive

learning rate method to optimise the model weights. The model is trained for

50 epochs, but also includes an early stopping criterion, to stop earlier if the

validation performance is not improved, with an improvement window of 15

epochs. After the stop, the model weights which resulted the smallest validation

loss would be stored for the following process. As shown in Fig. 4.2, the training
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of this network with 64 features converges within the first 30 epochs. The

mean training accuracy (for 10 repeats) of this model was 99.16%, and both

the validation and test accuracy of this model are at around 97.5% which is

comparable with other state-of-the-art CNN classification structures. As an

example comparison, LeNet-5 [42], which has a similar structure, achieves an

accuracy of 99%. A higher test classification accuracy (99.77%) is achieved

in [15], however this is achieved with a significantly more complex structure.

One can therefore conclude that the proposed structure does not sacrifice

significant performance in this case study, despite the much simpler overall

structure that aims at enhancing the interpretability of the model rather than

its accuracy.
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Figure 4.2: CNN model with 64 features, training and validation performance
(average of 10 simulations)

The performance of this FL RBF-CNN is further assessed via reducing the
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number of classification features from 64, to 32 and finally to 16. The same

algorithmic approach was followed, as presented in the training of the basement

model. Tables 4.2, 4.3, and 4.4 were generated with using the raw simulation

results (10 repeats per training case). In each of these three tables, there

are two columns whose values are average accuracy and standard variance for

training, validation, and test case respectively, and every feature case were

trained from 3 to 15 rules as listed in with a reference CNN network result

(labelled as REF). As shown in Table 4.2, the mean accuracy has a trend that

would reach the best performance when the number of Fuzzy Logic rules equals

to 7. However, to a certain extent, despite of the good performance, a model

having 64 features may not be very interpretable, hence models with 32 and 16

features were also simulated to ‘stress-test’ the performance of the proposed

structure. When the size of the classification features decreases, the neurons of

the last fully connected layers also gets reduced. It is expected to observe a

reduced classification power due to the fewer model parameters available to

capture the classification problem. In general, the classification accuracy is

reduced, as demonstrated in Table 4.3 and Table 4.4. In the case of 32 features,

the test accuracy that reached with 13 rules of 97.12% could be considered as

acceptable, however the test accuracy of 78.57% in the case with 16 features

using 7 rules demonstrates that there is a significant performance loss when

the number of features is significantly lower.
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Table 4.2: Accuracy mean and 95% confidence intervals of the model using 64
features and MNIST characters data

Rule Training Validation Test

3 98.80± 0.179% 97.23± 0.193% 97.01± 0.122%
5 98.83± 0.429% 97.32± 0.401% 97.09± 0.379%
7 99.16± 0.129% 97.80± 0.193% 97.52± 0.143%
9 99.05± 0.193% 97.79± 0.243% 97.52± 0.193%
11 98.93± 0.329% 97.63± 0.286% 97.30± 0.279%
13 98.07± 2.075% 96.82± 2.125% 96.56± 2.046%
15 97.89± 1.731% 96.81± 1.745% 96.37± 1.717%

REF 99.74± 0.043% 99.03± 0.043% 99.05± 0.050%

Table 4.3: Accuracy mean and 95% confidence intervals of the model using 32
features and MNIST characters datasets

Rule Training Validation Test

3 91.09± 0.080% 89.91± 0.073% 89.65± 0.077%
5 95.60± 0.065% 94.38± 0.059% 94.25± 0.061%
7 95.12± 0.083% 94.11± 0.074% 93.89± 0.075%
9 94.40± 0.078% 93.46± 0.074% 93.19± 0.075%
11 96.00± 0.068% 94.73± 0.067% 94.54± 0.066%
13 97.12± 0.051% 95.88± 0.045% 95.77± 0.046%
15 95.19± 0.072% 94.31± 0.066% 93.92± 0.067%

REF 99.54± 0.001% 98.84± 0.002% 98.88± 0.001%

Table 4.4: Accuracy mean and 95% confidence intervals of the model using 16
features and MNIST characters datasets

Rule Training Validation Test

3 72.58± 0.176% 72.27± 0.165% 71.97± 0.175%
5 74.22± 0.229% 73.93± 0.206% 73.58± 0.227%
7 79.21± 0.167% 78.78± 0.148% 78.57± 0.157%
9 77.22± 0.176% 76.90± 0.161% 76.70± 0.171%
11 72.56± 0.145% 72.64± 0.123% 71.96± 0.144%
13 76.74± 0.160% 76.38± 0.146% 76.17± 0.150%
15 75.85± 0.134% 75.68± 0.115% 75.27± 0.131%

REF 98.94± 0.002% 98.40± 0.003% 98.37± 0.002%
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FL-based interpretability: MNIST characters

In some application areas, the interpretability of models could be key to

understanding the underlying processes. For example in complex manufacturing

processes, when trying to understand the conditions causing faults and defects.

With the fully connected layer of the proposed CNN structure being a Fuzzy

Logic based layer, one can enhance the interpretability of the classification task,

by extracting Fuzzy Logic linguistic rules directly from the classification layer.

Such information can be, for example, further used to aid decision making, or to

assist the creation of human-machine interfaces. Fig. 4.3, as an example, depicts

two different rules from the rule base of the 32-feature FL RBF-CNN model;

just four inputs (features) and one output (classification weight) are shown for

simplicity. Rule 1 for example, translates into the following Singleton-based

Fuzzy rule:

‘IF Feature 1 is A1, and Feature 2 is B1, and Feature 3 is C1, and..etc.

THEN the Output class is O1.’ (4.2)

During feature extraction and classification, a trained CNN structure would

entail a set of image-like matrices, which could be visualised using the method

described in Section 1. Fig. 4.4 demonstrates such images for an input digit ‘0’

as in Fig. 4.4a. Fig. 4.4b is extracted from the first CNN layer, which outlines

the outer round feature of ‘0’. Furthermore, Fig. 4.4c depicts more abstract

features, including the outer edges and inner edges, and Fig. 4.4d includes
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Figure 4.3: Example of two FL rules, of the FL RBF-CNN model with 32
features

similar features as Fig. 4.4c albeit with a lower definition.

Using the methodology outlined in Section 3.2, feature maps linked to specific

Fuzzy Logic rules can be obtained.

Fig. 4.5 demonstrated three fuzzy rules corresponding to cases in Fig. 4.6

in the same sequence. Fig. 4.6 depicts three feature maps corresponding to

relevant FL rules which were identified by fuzzy entropy. For a given input

vector, using the linguistic FL rules, and the corresponding image-based features

it is possible to appreciate why a particular class has been predicted. This may

be trivial for the character recognition case study, however it can be extremely

important when investigating problems in manufacturing, biomedical systems

etc. when trying to understand the feature space for a particular prediction.
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(a) The input image for
the prediction

(b) The output of the first
CNN layer

(c) The output of the sec-
ond CNN layer

(d) The output of the
maxpooling layer

Figure 4.4: Features extracted by FL RBF-CNN during prediction for a sample
in MNIST characters dataset

4.2.2 Case study: Fashion MNIST

The Fashion-MNIST dataset was introduced to replace MNIST as a new

benchmark dataset [92] for machine learning. The Fashion-MNIST dataset

contains 60,000 training images and 10,000 testing images, which includes

28-by-28 greyscale images labelled into 10 classes.

For comparative analysis purposes, the training regime in this case study

is set to be the same as the one applied in the MNIST character recognition

case, i.e. a 10,000-sample validation set is selected randomly from the training

dataset and used to avoid overfitting.
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Figure 4.5: Three fuzzy rules, of the FL RBF-CNN model with 32 features for
the MNIST digit

Modelling performance

An identical performance assessment is used, as in Section 4.1. Tables 4.5, 4.6,

and 4.7 were also generated with 10 times simulations. Similar to the MNIST

case, the FL RBF-CNN model would achieve best performance when 5 to

7 rules are used. As shown in Table 4.5, the mean test accuracy fluctuated

around 84.0% since 3 rules to 13 rules. In the case of 32 features (Table 4.6)

and 16 features (Table 4.7), the test accuracy that reached with 5 rules of

80.03% could be considered as acceptable for a model without specific tuning,

however the test accuracy of 62.69% in the case with 16 features using 13 rules

demonstrates that there is a significant performance loss when the number of

features is significantly lower.
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(a) Features extracted by rule one

(b) Features extracted by rule two

(c) Features extracted by rule
three

Figure 4.6: Example of three ‘heat maps’ sorted by fuzzy entropy of the MNIST
digit
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Table 4.5: Accuracy mean and 95% confidence intervals of the model using 64
features and fashion MNIST Fashion datasets

Rule Training Validation Test

3 90.71± 0.033% 84.84± 0.022% 83.52± 0.023%
5 89.04± 0.042% 85.58± 0.022% 83.41± 0.029%
7 90.55± 0.034% 85.88± 0.029% 83.64± 0.029%
9 91.14± 0.031% 86.31± 0.012% 84.47± 0.020%
11 90.55± 0.089% 86.02± 0.050% 83.77± 0.062%
13 92.05± 0.038% 86.60± 0.014% 84.70± 0.022%
15 85.84± 0.129% 83.02± 0.090% 80.67± 0.097%

REF 97.55± 0.006% 92.88± 0.005% 92.34± 0.003%

Table 4.6: Accuracy mean and 95% confidence intervals of the model using 32
features and fashion MNIST Fashion datasets

Rule Training Validation Test

3 82.39± 0.168% 79.57± 0.159% 77.18± 0.155%
5 85.76± 0.077% 81.55± 0.057% 80.03± 0.057%
7 84.78± 0.084% 81.98± 0.049% 79.76± 0.066%
9 83.59± 0.104% 80.75± 0.080% 78.83± 0.081%
11 82.56± 0.101% 79.75± 0.079% 77.87± 0.075%
13 79.73± 0.116% 77.98± 0.085% 75.62± 0.096%
15 81.99± 0.107% 79.20± 0.078% 77.49± 0.082%

REF 95.83± 0.004% 92.44± 0.007% 91.77± 0.002%

Table 4.7: Accuracy mean and 95% confidence intervals of the model using 16
features and fashion MNIST Fashion datasets

Rule Training Validation Test

3 61.42± 0.084% 59.81± 0.085% 58.65± 0.086%
5 61.95± 0.092% 60.57± 0.081% 59.08± 0.083%
7 63.01± 0.111% 61.58± 0.105% 60.64± 0.100%
9 64.30± 0.096% 62.63± 0.084% 61.84± 0.084%
11 63.12± 0.095% 62.27± 0.089% 60.82± 0.089%
13 65.19± 0.059% 63.99± 0.048% 62.69± 0.054%
15 60.68± 0.126% 59.63± 0.113% 58.86± 0.118%

REF 93.96± 0.007% 91.26± 0.007% 90.73± 0.005%
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FL-based interpretability: Fashion MNIST

A sneaker shoe is used here as an example. Fig. 4.7 demonstrates the relevant

features obtained within this particular prediction. Fig. 4.7b shows the outline

shape of the shoe, and Fig. 4.7c and Fig. 4.7d demonstrates further abstract

features, linked to the relevant FL rules.

(a) The input image for
the prediction

(b) The output of the first
CNN layer

(c) The output of the sec-
ond CNN layer

(d) The output of the
maxpooling layer

Figure 4.7: Features extracted by FL RBF-CNN during prediction for a sample
in Fashion MNIST

Similar to the case in the MNIST benchmark, Fig. 4.8 shows three fuzzy

rules could be used to track back to feature maps, and Fig. 4.9 contains three

feature maps corresponding to tracked feature maps with three fuzzy rules

respectively.
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Figure 4.8: Three fuzzy rules, of the FL RBF-CNN model with 32 features for
the Fashion MNIST image

4.3 Conclusion

In this research work, an interpretability-oriented deep learning network is

presented, based on a CNN structure combined with a Fuzzy Logic structure to

perform the classification task and also provide the capability to linguistically

interpret the structure’s rule base. By combining the feature extraction property

of CNNs and the classification and interpretability ability of FL based systems,

an FL RBF-CNNs was developed. The proposed structure relies on a Radial

Basis Function realisation of the Neural-Fuzzy network, which is integrated

into the CNN structure via an adaptive subgradient method for the credit

assignment and error backpropagation. A systematic algorithmic process is also

developed to assign features to specific FL linguistic rules, and identify such rules

using an entropy function. The combination of the new modelling structure,

with the rule identification and linking to the input feature space, yields a

58



4 Interpretable Convolutional Neural Networks using a rule-based framework for classification

(a) Features extracted by rule one

(b) Features extracted by rule two

(c) Features extracted by rule
three

Figure 4.9: Example of three ‘heat maps’ sorted by fuzzy entropy of the Fashion
MNIST image
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4 Interpretable Convolutional Neural Networks using a rule-based framework for classification

methodology that can be used to provide linguistic interpretability to a deep

learning structure. We demonstrate, via two case studies (MNIST characters,

and MNIST fashion) that there is no significant predictive performance loss,

given enough features are used, and the rules to features maps can be used to

provide interpretability to a given classification.

This chapter was already published as the extension book chapter [90].
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5 A mathematical structuring

legally implemented RBF-CNN

model

This chapter introduces a new kind of model structure combining CNNs

and RBFs networks. The model structure providing in this chapter is an

improvement form of the model structure in Chapter 3 and Chapter 4. The

structure proposed in this chapter is a multiple-input-multiple-output (MIMO)

system rather than multiple-input-single-output (MISO) system in previous

chapters, which may benefit classification tasks by providing the probabilities

for multiple classes. The MNIST dataset and F-MNIST dataset were selected

as the benchmark dataset because of their popularity and simplicity.

5.1 Introduction

In Chapter 3 and 4, a methodology concluding image classification and rule-

base linguistic interpretable analysis was explained and tested on two popular
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datasets. However, the provided method was based on a mathematical compro-

mise which will limit the application cases of this model. In this chapter, an

improved mathematical model is provided.

5.2 The models weaknesses in the previous

chapters

In Chapter 3 and 4, a method combining CNNs and RBFs is provided. Based

on this method, several models were trained and achieved an accuracy over

95% on dataset MNIST. However, this method has two limitations caused by

its mathematical model.

The first limitation is a model based on RBF-CNN method can only output

a single value as its final output value. For classification neural network models,

the output results are usually formed in vector forms. With vector outputs, the

application of cross-entropy loss is possible. Cross-entropy loss is a common

loss function because of its better performance comparing with other loss

functions such as squared error [52], and it is possible to output multiple

prediction probability of labels with cross-entropy. With vector outputs, cross-

entropy loss among several loss functions provided by packages, says PyTorch

or TensorFlow, could be applied on directly. These open-source packages could

reduce possibility of implementations containing mistakes.

The second limitation is the output value cannot match to dataset labels

directly. A common classification neural network would have a vector output

indicating the predication probability for each class, while an RBF network
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can only output a single value. In order to label the output class using the

method described in Chapter 3 and 4, a round up function is necessary to

convert a float number into integer, which is the labels’ form. However, a

round up function is not a first-order smooth function which would break the

backpropagation of losses during training neural networks. As a compromise,

the round up function was only applied in the test phase of models.

5.3 Methodology

5.3.1 Proposed model’s structure

Because of the weaknesses discussed in Section 5.2, an updated model structure

is necessary. This new structure should resolve these two disadvantages. It

could be found that the two disadvantages listed in previous section are all

introduced by the Defuzzy layer. Therefore, one solution would be removing

the Defuzzy layer from the model developed in Chapter 3 and 4.

In order to benchmark the performance of the new proposed model, a reference

model was first created. Fig. 5.1 depicts the overall structure of a CNN network.

This model was designed to use 28× 28 pixel grey-scale images as input. After

two convolutional layers, a max pooling layer was added. The dropout layers

were applied to avoid overfitting. The Flatten layer was added to convert data

structure into vectors, and two Dense layers are fully connected layers. All

activation functions in this model were ReLUs. The loss function of this model

was cross entropy loss function, which is widely used in CNNs [40, 83]. In the

proposed research work, the Adam [39] optimiser was applied to perform the
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5 A mathematical structuring legally implemented RBF-CNN model

learning task, to take advantage of its automatically tuning variable learning

rate. The loss function was set as cross-entropy function. Table 5.1 shows the

architecture of the designed CNN.

5.3.2 Convolutional neural network with an RBF fuzzy logic

rule-base classification layer

In the previous section, a reference CNN was set. In this section, the No

Defuzzy-Radial Basis Function-Convolutional Neural Network (ND-RBF-

CNN) would be detailed.

The reference model could be treated as a combination of two parts, which

are first seven layers as a feature extractor and last three layers as a classifier.

The ND-RBF-CNN has the similar structure. As described in Fig. 5.2, the

first six layers of this ND-RBF-CNN model are identical to the reference

CNN model, while the layers after dense 1 layer was modified. The activation

function of dense 1 layer was changed from ReLU to a hard tanh function

in order to clip the output value in the range of [0.0, 1.0]. The reason to clip

the output of dense 1 layer, i.e., the input of rbf layer, is to guarantee the

input of Gaussian membership function is meaningful. Therefore, the output of

dense 1 layer should be always in the range of [0, 1]. The output of rbf layer

was fixed as 10 because there are 10 classes in both MNIST and Fashion-MNIST

datasets.

Table 5.2 shows parameter setting of the FL RBF-CNN. Similar to FL

RBF networks and FL RBF-CNNs, ND-RBF-CNNs will also be sensitive

to initial conditions (initial model structure and parameters) of the RBF and
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Figure 5.1: basic CNN structure
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defuzzification layers, and the initial parameters could not be determined

since the features from CNN layers have not been extracted before training.

Therefore, one has to establish some initial conditions for the FL rule base for

successful model training.

5.4 Results

5.4.1 Training results

As a further improvement adding Multiple-Output ability to RBF-CNN, the

model described in this chapter would be compared with results recorded

in previous chapters. In Chapter 3 and 4, there were two datasets used for

benchmark, which were MNIST and Fashion-MNIST. For the convenience of

comparison, these two datasets were also been applied in this chapter.

For each dataset, there were six groups tests set. These groups were trained

with different feature size, says 16, 32, and 64 features respectively. For each

feature size, there was a group used the new RBF layer as the experiment

group and a group applied ordinary linear layer as the control group.

The results were generated on a computer whose CPU was Intel i7–6700k

and GPU was Nvidia GTX 1080. Noteworthily, the computer was set up as

a PyTorch v1.5.0, rather than TensorFlow. The platform based on Python

3.8.

In all benchmarks, the batch size was chosen as 256 in order to achieve a

good balance between training speed and avoidance of overfitting. The models

was set with early stopping if the loss does not reduce in 15 epochs, and
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Figure 5.2: FL RBF-CNN layered structure

69



5 A mathematical structuring legally implemented RBF-CNN model

would stop training at 50 epochs at most. For the linear reference model, the

initialisation method was Kaiming normal distribution for its performance and

generalise. While for the ND-RBF-CNN model, variety initialisation method

was utilised. The parameters of linear parts would be generate by Kaiming

normal distribution; the RBF layer weights c was chosen as constant 0 because

it was found uniform distribution in the range of [0, 1] would cause the model

hard to train, while variety constant values would not affect training results

significantly; the standard deviations σ of Gaussian membership functions was

fixed at 0.3 because models cannot be trained if the weight and the standard

deviations are all trainable together.

MNIST

MNIST [42] is a popular image dataset provided as a 50000-sample training

set and an 10000-sample test set. In this benchmark, the provided training set

would be separated into two parts, which are 50000-sample training set and

10000-sample validation set in every training. Every situation was tested 30

times.

Table 5.3 contains three sets of results grouped by the feature size. It is clear

that the average accuracy would increase while feature size increased from 16

to 64 for both linear model and ND-RBF model. Comparing with the highest

MNIST accuracy 99.77% [15], it could be found the accuracies of both linear

model and ND-RBF model using 64 features are acceptable. Noteworthily, the

average test losses of linear models dropped significantly and end around 0,

while the ones of ND-RBF models ended around 1.5. It indicates the rules of
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ND-RBF models would be activated simultaneously even with 64 features.

Table 5.3: Test loss and accuracy for MNIST dataset

Feature size Model type Test loss Test accuracy/%

16
linear (1.0572± 0.3068) (90.23± 8.74)
RBF (1.9301± 0.1063) (61.26± 12.44)

32
linear (0.3316± 0.1288) (97.25± 0.54)
RBF (1.6443± 0.0918) (81.14± 10.48)

64
linear (0.0643± 0.0176) (98.34± 0.22)
RBF (1.5042± 0.0227) (95.72± 2.29)

Fig 5.3, 5.4, and 5.5 demonstrates the average loss and accuracy with error

bars for linear models and ND-RBF models in the cases of 16, 32, and 64

features respectively. It could be found in all cases of different features, linear

models could converge, while ND-RBF model only converge in the case of 64

features. In Fig 5.3b, the plot ends at 26 epochs, which means the lost of most

ND-RBF models would not decreases after 26− 15 = 11 epochs.

Fashion-MNIST

Fashion MNIST [92] is an image dataset in the same dimension of MNIST,

and provides a 50000-sample training set and an 10000-sample test set. The

purpose of creation of Fashion MNIST is to increase benchmark difficulty. In

this benchmark, the provided training set would be separated into two parts,

which are 50000-sample training set and 10000-sample validation set in every

training. Every situation was tested 30 times.

Table 5.4 contains three sets of results grouped by the feature size. The

results in Table 5.4 could draw a similar conclusion as the previous section
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(a) Linear models

(b) ND-RBF models

Figure 5.3: Training records of 16 features for MNIST dataset
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(a) Linear models

(b) ND-RBF models

Figure 5.4: Training records of 32 features for MNIST dataset
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(a) Linear models

(b) ND-RBF models

Figure 5.5: Training records of 64 features for MNIST dataset
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using MNIST dataset. It is clear that the average accuracy would increase

while feature size increased from 16 to 64 for both linear model and ND-RBF

model. The average test losses of linear models dropped significantly and end

around 0.34, while the ones of ND-RBF models ended around 1.67.

Table 5.4: Test loss and accuracy for Fashion-MNIST dataset

Feature size Model type Test loss Test accuracy/%

16
linear (1.1166± 0.2267) (72.82± 10.25)
RBF (1.8990± 0.0984) (58.73± 10.18)

32
linear (0.5591± 0.0638) (82.83± 2.14)
RBF (1.7259± 0.0380) (73.39± 4.27)

64
linear (0.3397± 0.0264) (88.71± 0.83)
RBF (1.6713± 0.0270) (78.93± 2.67)

Fig 5.6, 5.7, and 5.8 demonstrates the average loss and accuracy with error

bars for linear models and ND-RBF models in the cases of 16, 32, and 64

features respectively. Similar, it could be found in all cases of different features,

linear models could converge, while ND-RBF model only converge in the case

of 64 features. In Fig 5.6b, the average loss remains around 1.95 steadily to

17-th epoch, then dropped to around 1.8 at 24-th epoch. It indecates that in

several tests ND-RBF models could be trained, while in other tests the models

cannot be trained effectively.

5.4.2 Test result comparison

The benchmark results in previous section could be compared with the bench-

mark results of FL RBF-CNN. In Chapter 4, both MNIST and Fashion-MNIST

dataset were applied, and hence a comparison table could be created. Table 5.5
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(a) Linear models

(b) ND-RBF models

Figure 5.6: Training records of 16 features for Fashion-MNIST dataset
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(a) Linear models

(b) ND-RBF models

Figure 5.7: Training records of 32 features for Fashion-MNIST dataset
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(a) Linear models

(b) ND-RBF models

Figure 5.8: Training records of 64 features for Fashion-MNIST dataset
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and 5.6 were created from data in Table from 4.2 to 4.7, Table 5.3, and Ta-

ble 5.4. The test loss cells of FL RBF-CNN model in Table 5.5 and 5.6 are

empty because of the missing of data. All results of FL RBF-CNN models were

selected as the best results in different cases of rule size.

From the results listed in Table 5.5 and 5.6, it could be found the average

and the standard deviation of test accuracy of ND-RBF-CNN models in every

case was worse than FL RBF-CNN. However, with 64 features, the prediction

performance of ND-RBF-CNN dropped in an acceptable range (from 97.52% to

95.72% with MNIST dataset and from 84.70% to 78.93% with Fashion-MNIST

dataset).

Table 5.5: Test loss and accuracy for MNIST dataset

Model type Feature size Test loss Test accuracy/%

FL RBF-CNN
16 — (78.57± 7.72)
32 — (95.77± 2.26)
64 — (97.52± 0.20)

ND-RBF-CNN
16 (1.9301± 0.1063) (61.26± 12.44)
32 (1.6443± 0.0918) (81.14± 10.48)
64 (1.5042± 0.0227) (95.72± 2.29)

Table 5.6: Test loss and accuracy for Fashion-MNIST dataset

Model type Feature size Test loss Test accuracy/%

FL RBF-CNN
16 — (62.69± 2.66)
32 — (80.03± 2.80)
64 — (84.70± 1.07)

ND-RBF-CNN
16 (1.8990± 0.0984) (58.73± 10.18)
32 (1.7259± 0.0380) (73.39± 4.27)
64 (1.6713± 0.0270) (78.93± 2.67)
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5.5 Conclusion

In this chapter, a model, which combinesRBF andCNN but has no compromise

in mathematics was defined and benchmarked. As the sacrifice of mathematical

legalisation, the test accuracy dropped at an adequate cost. The interpretability

of this new proposed model would be explore in future.
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6 Applications of the model

without defuzzification in

manufacturing

In this chapter, a new dataset XCT should be introduced and the model should

be trained based on this dataset. Because of the low accuracy results, a 2-stage

model was developed and achieved good performance.

In Chapter 3, a methodology with FL and CNN for image classification

was introduced as RBF-CNN, and the methodology to track the rule bases

was introduced in Chapter 4. In Chapter 5, a RBF-CNN model get rid of

mathematical flaws was introduced as ND-RBF-CNN.

6.1 Introduction

Machine learning helps people in manufacturing [61, 63, 2, 66, 9, 20, 11, 72].

As an non-destructive flaw detection method, XCT was applied in high-value

components detections [84, 87]. On the other hand, XCT would generate

81



6 Applications of the model without defuzzification in manufacturing

plenty of data and experts spent lot of time in classification.

Specificity, CNNs made it possible to analysis images with a high accuracy.

For steady images, ImageNet [17] contains over 5247 classes, and VGG16 [96]

achieved 7.0% of top-5 error rate. Furthermore, ResNet [30] acquired 6.7% of

top-5 error rate.

However, CNNs are deep neural networks, which were black-boxes. People

could not understand what features of an image cause a CNN classify or

predict the class that the image should be in. Some efforts were paid on the

interpretability of CNNs.

In this chapter, a new method will be introduced and tested with XCT

dataset. This method combines FL with CNNs for the goal aiming on good

classification performance provided by CNNs and interpretability provided by

FL. However, as a compromise, the proposed method does not defuzzification

parts, and uses Gaussian membership function with fixed variance. Comparing

with other CNN with RBF models, the ND-RBF-CNN remains the ability to link

rules and features, and provides the agility to convert CNN to ND-RBF-CNN

models.

6.2 Background

6.2.1 A convolutional neural network

Neural networks are a large group among machine learning models, in which

convolutional layers are generally used for feature extraction. Fig. 6.1 shows a

typical CNN model for single image classification. In this typical CNN model,
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the first few layers combines convolutional layers and sub-sampling layers, which

are stacks of several two-dimension arrays. These convolutional layers could use

variety window sizes to extract features in different scales, and sub-sampling

layers, where a max pooling method is generally used, are applied to sub-sample

features into a smaller size. After the last stack of two-dimension layers, a

fully connected layer would be used, in which neurons are connected to every

outputs from the previous layer.

A CNN structure for image classification would contain several layers, grouped

in a way to perform specific tasks. Fig. 6.1 demonstrates a typical CNN

architecture. The first few layers would be multiple pairs of convolution layers

and pooling layers. The size of these convolution windows can be different,

which ensure convolution layers can extract features in different scales. The

pooling layers are proposed to sub-sample features into a smaller size, where

a max pooling method is generally used. Then, fully connected layers would

also be used, in which neurons are fully connected to all outputs from the

previous layer. These layers also convert the data structure from a multiple-

layer structure to a vector form. Rectangular linear units (ReLUs) would

normally be the activation function of the convolution layers as well as in the

fully connected layers as these can provide non-linear properties to those layers

and are also convenient for the calculation of the error backpropagation [24]. To

avoid exploding and vanishing gradients in deep networks, batch normalisation

can also be applied in every layer [33]. CNNs are not considered as convex

functions, which means parametric optimisation for CNNs is challenging, hence

numerous optimisation strategies have been developed [70], such as stochastic
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Figure 6.1: Representative CNN structure

gradient descent (SGD), Nesterov momentum [6], and adaptive subgradient

(Adagrad) methods [21].

The performance of a CNN is improved by error backpropagation. After all

layers are initialised, a CNN could output a value in a reasonable range. When

an input passed into a CNN, which typically is an image, a loss value would be

calculated with the output and the label of this image. This loss value would

be backpropagated via derivative.

Besides convolutional layers and max-polling layers, some other structures

are also generally used for different purposes. Rectangular linear units (ReLUs)

would normally be the activation function of the convolution layers as well as

in the fully connected layers as these can provide non-linear properties to those

layers and are also convenient for the calculation of the error backpropaga-

tion [24]. To avoid exploding and vanishing gradients in deep networks, batch

normalisation can also be applied in every layer [33].

6.2.2 EBM-XCT dataset

In this chapter, a new image dataset was created to test whether a model

applied the RBF layer could be used in manufacturing. In manufacturing,
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products may only be produced in a small number, and defects can only be

detected with non-destructive testing. Therefore, this new dataset was created

based on a series of X-Ray Computed Tomography (XCT) scans of Electron

Beam Melting (EBM) samples.

Experimental trials

There were three EBM 3D printed CM247 [29] alloy cubes manufactured and

XCT scanned. In Fig. 6.2, there were 12 cubes printed together, while only

labeled three ones, says No. 1, 9, and 12, were XCT scanned. From XCT scan

samples shown in Fig 6.3, there were three kinds of areas could be distinguished

as perfect, void, and crack parts.

Processed data

In order to train CNNs, a labeled dataset, containing three classes, named as

EBM-XCT was created. The three classes of this dataset were named and

selected according to defections generated during EBM printing procedures,

which are ‘perfect’, ‘void’, and ‘crack’, as showing in Fig. 6.4. Every sampled

image was chopped into 80-by-80 pixels in grey-scale. Fig 6.4a indicated the

sample has no defects, while Fig 6.4b and Fig 6.4c were two major kinds of

defections respectively, which were void and crack.

For testing the model performance on unseen data, the EBM-XCT dataset

were separated into training set and test set. Table 6.1 shows the sample size

of each class. The training set is not balanced as the lack of XCT images

containing high-quality void or cracking area. Because of the small size of
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Figure 6.2: EBM 3D printed CM247 alloy cubes
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(a) A sample image of No. 1 cube: A.
void part

(b) A sample image of No. 9 cube: A.
B. void part; C. crack part

(c) A sample image of No. 12 cube: A.
perfect part

Figure 6.3: Original XCT images with notes
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(a) Original perfect (b) Original crack (c) Original void

Figure 6.4: EBM-XCT examples

EBM-XCT dataset, every image in the dataset would be rotated 90, 180, and

270 degrees clockwise and added into the dataset with corresponding labels.

Therefore, the size of the datasets applied in this paper is four times larger

than the raw datasets respectively.

Table 6.1: Sample size of each class in the training set and the test set

Set Perfect Void Crack

Before process
Training set 55 46 30
Test set 5 5 5

After process
Training set 220 184 120
Test set 20 20 20

6.3 Methodology

Same as all previous chapters, there are a set of models would be formed. The

first model would be a regular CNN model, and the second one would be a

CNN model based on the former and other FL part. In this section, the main

CNN structure is detailed, and it is shown how the RBF-NF layer is integrated
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into the overall network structure and learning methodology.

6.3.1 Reference CNN

Fig. 6.5 depicts the overall structure of a CNN network. This model was designed

to use 80× 80 pixel grey-scale images as input. After two convolutional layers,

a max pooling layer was added. The dropout layers were applied to avoid

overfitting. The Flatten layer was added to convert data structure into vectors,

and two Dense layers are fully connected layers. All activation functions in

this model were ReLUs. The loss function of this model was cross entropy

loss function, which is widely used in CNNs [40, 83]. In the proposed research

work, the Adam [39] optimiser was applied to take the advantage of its self-

tuning learning rate for potential difficulties with a small training dataset, and

cross-entropy loss was applied. Table 6.2 shows the architecture of the designed

CNN.

6.3.2 Proposed CNN-FL modelling structure

As reviewed in Chapter 2, FL has already been mixed with CNNs for various

purposes. Price et al. inserts fuzzy layers between convolutional layers in a

CNN and achieved higher accuracy [60]. Fuzzy pooling layers [74] are also been

found and benchmarked. Yeganejou and Dick [93] introduces a fuzzy clustering

model training with features extracted with a pre-trained ResNets [30], and

gains a good accuracy with visual interpretation. However, no linguistic fuzzy

interpretable models combined with CNN layers which demonstrate what

features in an image cause the model classified it into a catalogue.
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Figure 6.5: Basic CNN layered structure
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Linguistic fuzzy models could help people understand what features leading

to the results. Targeting to such a model, it is proposed here that a model

combining CNNs and RBF fuzzy model.

In Chapter 5, a method named ND-RBF-CNN was introduced. Because of

its mathematical legalisation structure and the compatible ability to existing

optimisers, a model based on ND-RBF-CNN would be created referencing

the linear model designed in previous section and benchmarked.

Fig. 6.6 depicts the architecture of the FL RBF-CNN, and Table 6.3 shows

parameter setting of the FL RBF-CNN. The model has the same typography

of the layers as the model defined in Table 6.3, while the parameter sizes of

layers were modified adapting to EBM-XCT dataset. The patch sizes of the

convolution layers were increased to 4 because of the image size was increased.

The RBF layer would have an output of 3 as EBM-XCT dataset has three

classes.

Because of the part of FL RBF networks, ND-RBF-CNNs will also be

sensitive to initial conditions (initial model structure and parameters) of the

RBF layer, and the initial parameters could not be determined since the features

from CNN layers have not been extracted before training. Therefore, one has

to establish some initial conditions for the FL rule base for successful model

training. The overall training would rely on a cross-entropy loss function and

optimised by Adam optimiser.
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Figure 6.6: FL RBF-CNN layered structure
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6.3.3 Identification of interpretable features

The input space for the rule-based structure, in our case the fully connected

RBF layer, is a flat vector of weights, as shown in the CNN structure depicted

in Fig. 6.6. To enhance the interpretability of the antecedent part of the

‘IF. . . THEN. . . ’ Fuzzy Logic rules we propose to ‘track back’ the weights of

the flat input vector of the fully connected layer towards revealing the relevant

features of the input image. Effectively, we propose to associate via this

mechanism relevant rules to features in the image’s feature space, so that the

user can appreciate which rules are responsible for each classification decision,

and what is the relevant input space for each rule in the feature space. This is

achieved as follows:

For any CNN model, as defined in the structure shown in Table 6.3, the final

layer acts linearly [80]. Therefore, to track back the weights of the input space

of the fully connected layer, one can follow the process:

• Calculate a mask layer using a least mean square solution. The input is a

vector of selected features, and the output is a vector of 5607488 points.

• Reshape the 5607488-point vector as a tensor a with dimensions 37–37–64.

• Use tensor a as the mask. Calculate a track-back maxpooling layer result

using Mtrackback = M ◦ a.

• Reveal feature ‘heat maps’ using mask Mtrackback.

This procedures could be applied on any CNNmodel of the proposed structure,

regardless of having a FL-based RBF layer or not. The advantage of using the

95



6 Applications of the model without defuzzification in manufacturing

FL-based RBF layer is that one can now link linguistic rules to the input feature

space using the above described process. After converting FL-RBF-CNN to

ND-RBF-CNN, there is no more defuzzification layer, and hence there is no

link between rules to linguistic formats. However, the link between rules and

features still remains.

As the FL-RBF layer consists of multiple fuzzy rules, the relative importance

of each rule could be estimated using a Fuzzy Logic entropy measure. In the

proposed framework, a non probabilistic entropy function could be used [73],

this is shown below.

H = −K
n∑

i=1

(µi log (µi) + (1− µi) log (1− µi)) , (6.1)

where K is a positive constant (usually equal to 1/N for normalisation), and

µi is i-th membership degree.

Using Fuzzy Entropy to identify the most ‘active’ rules for a given prediction,

and by identifying the Membership Functions of each rule with the highest

relevance to the input vector (membership degree), then a framework can be

established to directly link rules, to input space features; this is demonstrated

in the Simulation Results is Section 4.

6.3.4 Simulation results

The benchmarks could be separated into two parts. In the first part, the models

would be trained targeting on higher performance. In the second part, the

linguistic interpretation method provided in Chapter 4 would be tested.
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General models’ performance

In this section, all models were trained and tested with EBM-XCT dataset

introduced in previous section. Because of different sub-datasets applied in

variety situation, the size of training, validation, test set are not common. All

models were setted with an early-stopper if the traini ng loss stops decreasing

for 15 epochs, and all training would stop after 50 epochs.

The results in this section were introduced in a chronical sequence. At the

vary beginning, a model was developed for three-class dataset. Regarding to

the unsatisfying prediction accuracy, a two-stage cascade model was developed,

which could predict unseen data at an accuracy above 92%.

Three-class dataset case

As a intuitive result, a set of models with three prediction classes was created

and tested first. The applied training dataset and validation dataset were

separated from EBM-XCT training dataset at a ratio of 0.8 : 0.2 randomly,

which were 524 ∗ 0.8 ≈ 419 samples for test and 524 ∗ 0.2 ≈ 105 samples

for:s validation. Afterwards, the trained models were tested with the test set

described in table 6.1, says 20 samples per class. All these data were tested in

three groups, which were separated based on feature size varied in 16, 32, and

64. After 30 trials, results were record as in table 6.4.

In table 6.4, we could find some conclusions. Firstly, we can find performances

of test loss and overall accuracy would be better when feature size increased,

while the improvement of performance was not significant from 32 features

to 64 features. Secondly, both linear and RBF models can classify ‘Perfect’
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class more accurately comparing with the other two defect classes. With 32

features, both models got an ‘Perfect’ class accuracy around 80%. But at the

same time, the ‘Crack’ class accuracy was close to 33.3%, which is the random

guessing accuracy. Therefore, the three-class models cannot classify this dataset

properly. However, the good ‘Perfect’ class accuracy indicated these models

maybe work well on classify samples with ‘Perfect’ labels.

Fig. 6.7 demonstrates the training records for both reference models and

ND-RBF-CNN models. It could be found both type of models were still

training when 50-epoch limit reached, which means the models can still be

trained further. However, the training losses reduced slowly means the models

can only learn from the training slowly.

In order to verify if the RBF-CNN model could be trained on the EBM-XCT

dataset, a binary case was tested.

Two-class dataset case

In this case, the EBM-XCT dataset was re-allocated into two classes: perfect

class and defect class. The perfect class is identical to the one in EBM-XCT

dataset, while the defect class is a combination of crack class and void class.

Because of the performance comparison varying feature size in Table 6.4, models

with 32 features, which may around the knee point of a accuracy versus feature

size curve, were trained and tested. The training dataset was not balanced: 220

samples labeled as ‘Perfect’, while 304 samples labeled as ‘Defect’. As the same

as the previous section, the original training dataset was split into training

part and validation part at a ratio of 80 : 20, says 419 samples in the training
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(a) Linear models

(b) ND-RBF models

Figure 6.7: Training records of the three-class case trained with 32 features
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set and 105 samples in the validation set. Afterwards, the models were tested

with the test set created in Section 6.2.2. The benchmark ended after 30 trials.

Table 6.5 concludes linear and ND-RBF-CNN models test results. As there

were two classes which can be described as positive and negative in the trials,

the table contains sensitivity and specificity, where the detection of defects was

marked as positive. Although both kind of models cannot achieve an prediction

accuracy over 90%, it could be found the performance of ND-RBF-CNN

models was slightly better than reference models.

Table 6.5: Test results for ‘Perfect-Defect’ two-class dataset with 32 features

Loss Accuracy/% Sensitivity/% Specificity/%

linear (0.5517± 0.0470) (77.44± 8.83) (50.67± 32.40) (90.83± 10.88)
rbf (0.5201± 0.0496) (80.44± 7.44) (64.83± 21.89) (88.25± 11.22)

Fig. 6.8 demonstrates the training records for both reference models and

ND-RBF-CNN models. As a supplement to data in Table 6.5, reference

models performed more robust than ND-RBF-CNN models. The above two

clues indicates that ND-RBF-CNN models could be trained very well in some

trials.

Void and Crack case

In this case, the EBM-XCT dataset was only used ‘Void’ and ‘Crack’ classes,

which are the components of ‘Defect’ mentioned in previous case. The training

dataset was created with 184 ‘Void’ samples and 120 ‘Crack’ samples. After-

wards, the dataset was separated randomly into a set of (184+ 120) ∗ 0.8 ≈ 243

samples for training and a set of 304 ∗ 0.2 ≈ 61 for validation. The benchmark
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(a) Linear models

(b) ND-RBF models

Figure 6.8: Training records of ‘Perfect-Defect’ two-class case trained with 32
features

102



6 Applications of the model without defuzzification in manufacturing

stopped after 30 trials for each kind of model.

Table 6.6 concludes linear and ND-RBF-CNN models test results. It could

be found again that the average performance of ND-RBF-CNN models was

better than reference models.

Table 6.6: Test results for ‘Void-Crack’ two-class dataset with 32 feature

Loss Overall accuracy/% Void accuracy/% Crack accuracy/%

linear (0.5158± 0.1554) (74.17± 23.31) (50.67± 48.59) (97.67± 5.44)
rbf (0.4255± 0.0980) (92.17± 12.79) (93.17± 24.92) (91.17± 12.43)

Fig. 6.9 demonstrates the training records for both reference models and ND-

RBF-CNN models. Similar, as a supplement to data in Table 6.6, reference

models performed more robust than ND-RBF-CNN models.

6.3.5 Trackback based on ‘Void-Crack’ two class model

Among all three cases above, the average accuracy of ND-RBF-CNN models

was the highest one, hence a model was chosen from ‘Void-Crack’ case, whose

test accuracy was 100%.

Fig 6.10 demonstrates the features extracted by the CNN part.

Fig 6.11 and 6.12 shows all membership function in each rules separately.

The blue curve indicates membership function, and the red lines indicate the

input of membership functions, i.e. features.

After re-order the membership functions in decreasing order of outputs, there

would be a linguistic rule plot as Fig. 6.13. Although there is no Singleton

defuzzy layer after RBF layer, the linguistic rules still could be formed as:
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(a) Linear models

(b) ND-RBF models

Figure 6.9: Training records of ‘Void-Crack’ two-class case trained with 32
features
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(a) Input image

(b) First CNN layer output (c) Second CNN layer output

Figure 6.10: Outputs of CNN layers
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Figure 6.11: Rule base 1: corresponding to crack

106



6 Applications of the model without defuzzification in manufacturing

0 1
0
1

0 1
0
1

0 1
0
1

0 1
0
1

0 1
0
1

0 1
0
1

0 1
0
1

0 1
0
1

0 1
0
1

0 1
0
1

0 1
0
1

0 1
0
1

0 1
0
1

0 1
0
1

0 1
0
1

0 1
0
1

0 1
0
1

0 1
0
1

0 1
0
1

0 1
0
1

0 1
0
1

0 1
0
1

0 1
0
1

0 1
0
1

0 1
0
1

0 1
0
1

0 1
0
1

0 1
0
1

0 1
0
1

0 1
0
1

0 1
0
1

0 1
0
1

Figure 6.12: Rule base 2: corresponding to crack
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Figure 6.13: Effective features corresponding to 2 most significant features
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‘IF Feature 30 is A1, and Feature 8 is B1, and Feature 9 is C1, and..etc.

THEN the Output class is O1.’ (6.2)

(a) Rule 1: corresponding to crack (b) Rule 2: corresponding to void

Figure 6.14: Effective features corresponding to 2 most significant features

With the trackback technique introduced in Chapter 4, visual interpretation

can still be achieved. Fig. 6.14 demonstrates the trackback feature maps

according most significant 10 features in each rule.

6.3.6 Comparison with FL-RBF-CNN model

As a comparison, the FL-RBF-CNN introduced in Chapter 4 is also tested

with the EBM-XCT dataset. In order to control variables, the benchmark

FL-RBF-CNN has 32 features and 3 rules, as the same as ND-RBF-CNN

models demonstrated in previous sections. The benchmark has three test cases,
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6 Applications of the model without defuzzification in manufacturing

which are ‘three class’ case, ‘perfect and defect’ case, and ‘void and crack’ case.

Table 6.7 contains the benchmark results. Generally, it could be found

FL-RBF-CNN models cannot predict any sensible results after training. In all

three cases, the FL-RBF-CNN models convergent because of the small test loss

95% confidence interval, while the predictions all bias to one specific class. It

could be say that a FL-RBF-CNN with 32 features and 3 rules cannot work in

this situation.

6.4 Conclusion

In this chapter, a small manufacturing image dataset was created. Because

of the small size, both reference linear model, who has the same typography

in previous chapters, and ND-RBF-CNN cannot be trained effectively. In

order to verify the performance of ND-RBF-CNN, the EBM-XCT dataset was

separated into two-class datasets. It was proved that ND-RBF-CNN could

be trained in most times and still has the ability of linguistic interpretation.

However, during training of ND-RBF-CNNs, the training losses and accuracies

has a large variance, which indicates it would be possible to improve robustness

by optimisubg the initialisation method of ND-RBF-CNNs.
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7 Enhancing network

interpretability via constrained

transfer learning

Although the model got a high accuracy in previous chapter, the training

robustness was not in an ideal situation. A transfer learning model was trained

to solve this problem.

In this chapter, a transfer learning model training procedure was tested and

measured. Transfer learning has been proved to be a rigid method for image

classification with a well-pre-trained model.s

7.1 Introduction

Transfer learning is a method using knowledge gained while solving one problem

and applying it to a different but related problem [59]. With transfer learning,

computational expensive models, such as ResNets [30] and VGG19, could be

adopted on another problem with less training time [64, 45, 38, 35].
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7 Enhancing network interpretability via constrained transfer learning

Transfer learning cannot only be applied in ordinary CNNs, but also other

form neural networks. Yeganejou and Dick [93] introduced a FL model combin-

ing ResNets and used transfer learning to initialise the FL layer parameters.

7.2 Methodology

Transfer learning may be a method to solve the initialisation problems with

RBF-CNN and ND-RBF-CNN. In Chapter 3, the RBF layer was raised first

time. However, the initialisation of RBF layer was not fixed. In Chapter 3 and

Chapter 4, the centres of Gaussian membership functions were generated by

uniform distribution, and the variances of Gaussian membership functions were

initialised as a number. In Chapter 5, 6, and 7, the centres of Gaussian mem-

bership functions were initialised as a number, while the variances of Gaussian

membership functions were fixed to a constant. There was no methodology for

using initialisation methods above except trying-error. All of these values were

selected after multiple times of trying-error.

Algorithm 2 introduces the procedures to complete the transfer learning

with parameter initialisation for ND-RBF-CNN models. At the beginning, an

ordinary CNN model would be trained as usual till the prediction accuracy

reach expectations. Afterwards, An ND-RBF-CNN sharing the same feature

extractor structure with the previous ordinary CNN would be constructed.

The parameters of the feature extractor part in the ND-RBF-CNN should be

transferred from the ordinary CNN model, and the parameters of the RBF

layer in the ND-RBF-CNN could be initialised with Fuzzy C-Means (FCM)
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7 Enhancing network interpretability via constrained transfer learning

algorithm using the target training dataset. Finally, the ND-RBF-CNN model

should be trained again with the target training dataset in order to improve

the prediction accuracy by reducing the loss.
Input: training dataset, validation dataset, ND-RBF-CNN model,

corresponding CNN model

Output: trained ND-RBF-CNN model

for each training dataset do

Train the corresponding CNN model with the input training dataset;

Validate the prediction accuracy of the corresponding CNN model

with the validation dataset;

if the prediction accuracy reach expectations then

Initialise the parameters of RBF layer in the ND-RBF-CNN

model using FCM algorithm and the input training dataset;

Transfer the parameters of CNN part in the CNN model into

ND-RBF-CNN model;

Train the initialised ND-RBF-CNN model with the training

dataset as the output;

Break;

else

Continue;

end

end

Algorithm 2: Transfer learning with parameter initialisation algorithm for

ND-RBF-CNN models
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7.2.1 Fuzzy C-means algorithm

The Fuzzy C-Means (FCM) [7] algorithm is a form of clustering in which a

data point could belong to multiple clusters. After years of development, FCM

has multiple variants [54, 55, 58]. However, FCM algorithm was found problem

with high dimensionality datasets, where the majority of cluster centres are

pulled into the overall centre of gravity [89].

The FCM algorithm could be described as follows. Given a finite collec-

tion of n elements X = {x⃗1, . . . , x⃗n}, the FCM algorithm returns a set of c

cluster centres C = {c⃗1, . . . , c⃗n} and a partition matrix w⃗ = wi,j ∈ [0, 1], i =

1, . . . , n, j = 1, . . . , c, where each element wi,j indicates the degree of elements

x⃗i belongs to cluster c⃗j . The algorithm aims to minimise an objective function:

argmin
x

n∑
i=1

c∑
j=1

wm
ij ∥x⃗i − c⃗j∥2, (7.1)

where

wij =
1∑c

k=1

(
∥x⃗i−c⃗j∥
∥x⃗i−c⃗k∥

) 2
m−1

7.3 Benchmarks

In this section, there are three datasets applied in benchmarks, which are

MNIST dataset, Fashion MNIST dataset, and EBM-XCT dataset. The MNIST

and Fashion MNIST dataset are chosen because of their large sample size and

general usage. The EBM-XCT dataset introduced in Chapter 6 is applied

because of the small sample size and the industrial case.
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The model structure is also slightly adjusted as Table 7.1. The models in

Chapter 5 and 6 were using hard tanh function to limit the output range of

Extractor part. In this Chapter, the hard tanh function is changed to sigmoid

function because of its high-order continuity.

Transfer learning method only requires a model with stored knowledge close

to target dataset, but not restricts the model type. In the case of initialing

RBF layer, the requirement of pre-trained model is that the pre-trained model

should have an output whose shape is the same as the input shape of RBF

layer. After the training of the ‘pre-trained’ model, the training dataset would

be used as the pre-trained model’s input again, while the output of CNN part

would be recorded, i.e., the output of the first 7 layer of models described

in Table 7.1. With the aid of function fuzz.cluster.cmeans() provided in

package skfuzzy [86], the centres of Gaussian memberships were calculated by

FCM algorithm. Afterwards, the cluster centres would be applied as the initial

centre values of RBF layer in the transfer-learning ND-RBF-CNN. Finally,

the transfer-learning model would be trained again with the training dataset

as usual.

7.3.1 MNIST dataset case

In this section, the MNIST dataset is used as the training and test dataset.

The MNIST dataset has 60000-sample of training images and 10000-sample of

testing images. The training images were further split into two parts randomly,

as 50000-samples for training set and 10000-samples for validation (to avoid

overfitting). There are two benchmarks tested with MNIST dataset, which
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7 Enhancing network interpretability via constrained transfer learning

are transferring from ND-RBF-CNN models to ND-RBF-CNN models, and

transferring from linear CNN (or ordinary CNN) models to ND-RBF-CNN

models.

ND-RBF-CNN to ND-RBF-CNN

In this case, an ND-RBF-CNN model is trained first as the ‘pre-trained’ model,

and then the Algorithm 2 is applied to another ND-RBF-CNN for 20 times,

and each time both the pre-training model and the transfer-learning model

would be terminate after 50 epochs. Table 7.2 shows the benchmark results.

Generally, a transferred model would have a lower accuracy except the case of

32 features. Besides, he 95% confidence interval of transferred test accuracy

in the case of 16 and 64 features is greater than the 95% confidence interval

of transferred test accuracy in the case of 32 features. As a conclusion, in the

32 feature case, transfer learning form an ND-RBF-CNN could reach a better

accuracy than the original model (98.790± 0.073% versus 98.710± 0.097%),

and a good performance may achieved in the case of 16 features and 64 features

(92.210± 5.031% and 97.610± 1.670% respectively).

Linear CNN to ND-RBF-CNN

In this case, a linear CNN model is trained first as the ‘pre-trained’ model, and

then the Algorithm 2 is applied to one ND-RBF-CNN for 20 times, and each

time both the pre-training model and the transfer-learning model would be

terminate after 50 epochs. Table 7.3 shows the benchmark results. It could be

found that in all three feature size cases, the transferred models could reach a
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Table 7.2: Test results of transfer learning from ND-RBF-CNN to ND-RBF-
CNN based on MNIST dataset

Feature size Model type Test loss Test accuracy/%

16
original 1.5063± 0.0200 96.280± 1.492
transferred 1.5413± 0.0500 92.210± 5.031

32
original 1.4742± 0.0010 98.710± 0.097
transferred 1.4735± 0.0010 98.790± 0.073

64
original 1.4712 99.010± 0.047
transferred 1.4845± 0.0160 97.610± 1.670

Table 7.3: Test results of transfer learning from linear CNN to ND-RBF-CNN
based on MNIST dataset

Feature size Model type Test loss Test accuracy/%

16
original 0.0544± 0.0030 98.620± 0.064
transferred 1.4792± 0.0010 98.260± 0.100

32
original 0.0352± 0.0010 98.980± 0.022
transferred 1.4741 98.730± 0.047

64
original 0.0297± 0.0010 99.100± 0.041
transferred 1.4723 98.910± 0.047

similar test accuracy as the original models.

For MNIST dataset, using the transfer learning methodology could produce a

well-trained ND-RBF-CNN, no matter the ‘pre-trained’ model, i.e., the original

model is an ND-RBF-CNN or a linear CNN.

7.3.2 Fashion MNIST dataset case

In this section, the fashion MNIST dataset is used as the training and test

dataset. The Fashion MNIST dataset has 60000-sample of training images and

10000-sample of testing images. The training images were further split into
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Table 7.4: Test results of transfer learning from linear CNN to ND-RBF-CNN
based on Fashion MNIST dataset

Feature size Model type Test loss Test accuracy/%

16
original 0.2607± 0.0050 91.780± 0.148
transferred 1.6663± 0.0670 79.240± 6.974

32
original 0.2326± 0.0020 92.150± 0.080
transferred 1.5681± 0.0170 89.350± 1.782

64
original 0.2179± 0.0020 92.440± 0.107
transferred 1.5441± 0.0080 91.790± 0.794

two parts randomly, as 50000-samples for training set and 10000-samples for

validation (to avoid overfitting). There is one benchmark tested with Fashion

MNIST dataset, which is transferring from linear CNN models to ND-RBF-

CNN models. The reason to deleting ND-RBF-CNN to ND-RBF-CNN tests is

that ND-RBF-CNNs may not extract features properly as the low test accuracy

on Fashion MNIST shown in Table 5.6.

Linear CNN to ND-RBF-CNN

In this case, a linear CNN model is trained first as the ‘pre-trained’ model, and

then the Algorithm 2 is applied to one ND-RBF-CNN for 20 times, and each

time both the pre-training model and the transfer-learning model would be

terminate after 50 epochs. Table 7.4 shows the benchmark results. It could

be found that the test accuracy of both original and transferred model would

increase respectively as the feature size increase. In the case of 64 features, the

test accuracy of transferred models would only drop slightly (91.790± 0.794%

versus 92.440± 0.107%).
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7.3.3 EBM-XCT dataset case

In this section, the EBM-XCT dataset introduced in Chapter 6 was applied.

The models would be test in three feature size, which are 16, 32, and 64.

The benchmarks were designed in two groups. The first group would verify

if a not-well-trained model would generate a good initial set of fuzzy trigger

functions, and another group would use well-trained models. In the not-well-

trained group, the dataset was designated as the same as ‘three-class’ case in

Chapter 6. While in the well-trained group, the dataset was decided as the

same as ‘Void-Crack’ case in Chapter 6.

All benchmarks contained 20 trials. In each trial, both the pre-training model

and the transfer-learning model would be terminate after 50 epochs. An early

stopper was also set as stopping if training loss stopping decrease for 15 epochs

for every model, including ‘pre-training’ models and transfer-learning models.

The ‘pre-training’ models are all linear CNNs.

From the training logs in Chapter 6, it could be found that either reference

model or ND-RBF-CNN model would not be trained effectively, and thus

the prediction label for test dataset would always be the same one. In order

to filter these untrained models, a filter was added in this section. This filter

would ignore models whose accuracy below 33.33% in three-class case or below

50.00% in two-class case.

Not-well-trained models

Table 7.5 shows the transfer-training results of the ‘three-class’ case. It could

be found that the test accuracy of both pre-trained models and the transferred
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models increases when more features applied. However, the test accuracy of

transferred model only increase slightly (from0.5615 ± 0.0440% to 0.5881 ±

0.0390%).

Well-trained models

Table 7.6 shows the transfer-training results of the ‘Void-Crack’ case. The

pre-trained model could reach 100% test accuracy in all three feature size

cases. Regarding to transferred models, the best test accuracy achieved in the

16 feature case, which was 0.9750 ± 0.0590%. However, the test accuracy of

transferred models would drop when feature size increases.

From the above two groups of results with EBM-XCT dataset, it could be

found that the proposed transfer learning methodology works in every situation

tested, while the performance varies depends on the performance of the pre-

trained model. In the situation of not-well-trained models, the transferred

model could only achieve a test accuracy of 0.5881± 0.0390, which is similar

to the performance of direct trained model (0.5733± 0.1310). Moreover, in the

well-trained model case, the transferred model has a better performance than

direct training model (0.9750± 0.0590 versus 0.9217± 0.1219).

7.3.4 Comparison with results in the previous Chapters

In Chapter 5, the ND-RBF-CNN models were also benchmarked on MNIST

dataset and Fashion MNIST dataset. Table 7.7 and Table 7.8 shows the

comparison between direct training results obtained in Chapter 5 and transfer

learning results got in this Chapter on MNIST dataset and Fashion MNIST
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Table 7.7: Comparison between direct training and transfer learning on MNIST
dataset

Feature size Model type Test loss Test accuracy/%

16
direct 1.9301± 0.1060 61.26± 12.44
transferred 1.4792± 0.0010 98.260± 0.100

32
direct 1.6443± 0.0920 81.14± 10.48
transferred 1.4741 98.730± 0.047

64
direct 1.5042± 0.0230 95.72± 2.29
transferred 1.4723 98.910± 0.047

Table 7.8: Comparison between direct training and transfer learning on Fashion
MNIST dataset

Feature size Model type Test loss Test accuracy/%

16
direct 1.8990± 0.0980 58.73± 10.18
transferred 1.6663± 0.0670 79.240± 6.974

32
direct 1.7259± 0.0380 73.39± 4.27
transferred 1.5681± 0.0170 89.350± 1.782

64
direct 1.6713± 0.0270 78.93± 2.67
transferred 1.5441± 0.0080 91.790± 0.794

dataset respectively. It could be found that the test accuracy of the transfer

learning models is better than the one of direct training models in every case.

7.4 Conclusion

In this chapter, an initialisation method for RBF layers combined with CNN

was proposed and tested. The transfer learning method inspired the initiali-

sation procedures. The initialisation was implemented with FCM algorithm.

Besides, the feature extractor part is also transferred from a pre-trained model.
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Generally, the results of transfer learning is better. For large datasets, says

MNIST and Fashion MNIST dataset, the test accuracy of transfer learning

models is better than the one of direct training models. Similarly, a transfer

learning model could also reach higher accuracy than a direct training model

in small dataset cases.
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8 Conclusion

In this research work, we have elaborated a number of methodologies to interpret

a deep CNN features into linguistic fuzzy rules. Generally, a CNN combines

with FL RBF networks could be regard as models containing a feature extractor,

i.e. CNN part, and the classifier, says FL RBF part. With different FL RBF

part, we have RBF-CNN models and ND-RBF-CNN models.

Although ND-RBF-CNN as the successor of RBF-CNN could be applied

more generally, the prediction performance was decreased. In order to remains

the prediction performance, some work were paid. In Chapter 6, the input

dataset was separated into different groups, which decreased the difficulty of

prediction. In Chapter 7, a general initialisation methodology was raised, and

the prediction performance was increased by applying transfer learning.

However, for both RBF-CNN and ND-RBF-CNN, the interpretability of

linguistic fuzzy rule are the same. In Chapter 4, the method to interpret rule

bases was introduced for RBF-CNN. In Chapter 6, the same method was tested

on ND-RBF-CNN.
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8 Conclusion

8.1 Future work

Theoretically, RBF-CNN, and ND-RBF-CNN especially, could be combined

with other deep CNNs. However, there was only one CNN structure was tested.

If the ND-RBF-CNN were tested and proved that the combination with other

CNN only at a tiny cost, the prediction process of deep CNNs would be more

transparent.

ND-RBF-CNN could be combined with other defuzzification method rather

than Singleton. In Chapter 5, the defuzzy layer was removed because of its

single output and the round function inside. If possible, a defuzzy matrix rather

than polynomial could be applied.

In Chapter 6, for the prediction accuracy, the EBM-XCT dataset was seper-

ated into two cascades. The model could be extended with the same method

in [1], i.e. reconstruction two cascades into one whole model.
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Fuzzy layer implementations in

Chapter 3 and Chapter 4

As described in Chapter 4, there is a small correction used in Chapter 4

comparing with the model used in chapter 3. The relevant code snippets

are listed in List 1 and List 2 respectively. In these two snippets, a Python

class named RBFLayer was defined to act as mathematical model defined

from Eq. (2.7) to (2.9). For the calculation performance, these equations were

implemented in vector form in order to accept multiple inputs one time, i.e.

Single Instruction, Multiple Data (SIMD).

1 import keras

2 from keras import backend as K

3 from keras.engine.topology import InputSpec, Layer

4

5

6 class RBFLayer(Layer):

7 def __init__(self, ruleNumber, **kwargs):

8 self.ruleNumber = ruleNumber

9 super(RBFLayer, self).__init__(**kwargs)

10 self.input_spec = InputSpec(min_ndim=2)

11

12 def build(self, input_shape):

13 assert len(input_shape) >= 2

14 input_dim = input_shape[-1]

15 # Fuzzy center matrix
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16 self.c = self.add_weight(

17 name='fuzzyCenter',

18 shape=(self.ruleNumber, input_dim),

19 initializer=keras.initializers.RandomUniform(minval=0.0,

20 maxval=1.0,

21 seed=None),

22 constraint=keras.constraints.MinMaxNorm(min_value=0, max_value=1),

23 trainable=True)

24 # Fuzzy variance matrix

25 self.sigma = self.add_weight(

26 name='fuzzyVariance',

27 shape=(self.ruleNumber, input_dim),

28 initializer=keras.initializers.Constant(value=0.3),

29 constraint=keras.constraints.MinMaxNorm(min_value=0.2,

30 max_value=0.6),

31 trainable=True)

32 self.input_spec = InputSpec(min_ndim=2, axes={-1: input_dim})

33 super(RBFLayer, self).build(input_shape)

34

35 def call(self, x):

36 normalized_x = K.batch_normalization(x,

37 mean=0,

38 var=1,

39 beta=0.5,

40 gamma=0.5,

41 epsilon=1e-3)

42 extended_x = K.repeat(normalized_x, self.ruleNumber)

43 normedX = -K.sum(K.square((extended_x - self.c) / self.sigma), axis=2)

44 return K.softmax(normedX)

45

46 def compute_output_shape(self, input_shape):

47 assert input_shape and len(input_shape) >= 2

48 assert input_shape[-1]

49 output_shape = list(input_shape)

50 output_shape[-1] = self.ruleNumber

51 return tuple(output_shape)

Listing 1: Fuzzy layer implementations in Chapter 3

1 import keras

2 import tensorflow as tf

3 from keras import backend as K

4 from keras.engine.topology import InputSpec, Layer

5

6

7 class RBFLayer(Layer):
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8 def __init__(self, rule_number, **kwargs):

9 self.rule_number = rule_number

10 super(RBFLayer, self).__init__(**kwargs)

11 self.input_spec = InputSpec(min_ndim=2)

12

13 def build(self, input_shape):

14 assert len(input_shape) >= 2

15 input_dim = input_shape[-1]

16 # Fuzzy center matrix

17 self.center = self.add_weight(

18 name='fuzzyCenter',

19 shape=(self.rule_number, input_dim),

20 initializer=keras.initializers.RandomUniform(minval=0.0,

21 maxval=1.0,

22 seed=None),

23 constraint=keras.constraints.MinMaxNorm(min_value=0, max_value=1),

24 trainable=True)

25 # Fuzzy variance matrix

26 self.sigma2 = self.add_weight(

27 name='fuzzyVariance',

28 shape=(self.rule_number, input_dim),

29 initializer=keras.initializers.Constant(value=0.3),

30 constraint=keras.constraints.MinMaxNorm(min_value=0.2,

31 max_value=0.6),

32 trainable=True)

33 self.input_spec = InputSpec(min_ndim=2, axes={-1: input_dim})

34 super(RBFLayer, self).build(input_shape)

35

36 def call(self, x):

37 normalized_x = K.batch_normalization(x,

38 mean=0,

39 var=1,

40 beta=0.5,

41 gamma=0.5,

42 epsilon=1e-3)

43 extended_x = K.repeat(normalized_x, self.rule_number)

44 norm_x = K.sum(tf.subtract(

45 0.0,

46 K.square(extended_x - self.center) / self.sigma2),

47 axis=2)

48 return K.softmax(norm_x)

49

50 def compute_output_shape(self, input_shape):

51 assert input_shape and len(input_shape) >= 2

52 assert input_shape[-1]

53 output_shape = list(input_shape)

54 output_shape[-1] = self.rule_number
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55 return tuple(output_shape)

Listing 2: Fuzzy layer implementations in Chapter 4

The code listed in the above two lists are most the same except the definition

of σ⃗, corresponding to line 25–31 in List 1 and line 26–31 in List 2; and the

method RBFLayer.call(x), corresponding to line 35–44 in List 1 and line

36–48 in List 2. In order to simplify the equation, the following equations

would only use scalar form.

In the both versions of equation definitions, the corresponding key equation

would be

µij(xj) = exp

(
−(xj − cij)

2

σ2
ij

)
, (1)

where c⃗ corresponds to RBFLayer.center correctly in both version, and σ⃗

corresponds to RBFLayer.sigma ideally. However, because of the typo-mistake

happened in the first version, the model in Chapter 3 was not the same as

descriptions.

In Chapter 3, there was a claim that the value range of elements of σ⃗2 was

clipped in the range of [0.2, 0.6]. However, in List 1, the actual clipped value

range was [0.22, 0.62] = [0.04, 0.36]. This happened at Line 43 in List 1, where

self.sigma was also included in function K.square(). At line 46 in List 2,

self.sigma2, denoting σ2, was moved outside of function K.square().
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