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Abstract 

Human facial complexion has been a subject of great interest in many areas 

of science and technology including dermatology, cosmetology, computer 

graphics, and computer vision. Facial colour appearance conveys vital 

personal information and influences social interactions and mate choices as 

contributing factors to perceived beauty, health, and age. How various colour 

characteristics affect facial preference and whether there are cultural 

differences are not fully understood. On the other hand, facial colour 

appearance cannot be simply quantified by colour measurement. Facial 

colour perception is distinctive. The perceptual aspects of facial colour 

appearance haven’t been precisely investigated.  

The present study aims to better understand the human colour perception of 

facial complexions. Psychophysical experiments were carried out to assess 

facial colour preference and facial colour appearance, respectively. A set of 

facial images of real human faces were used and the colour was rigorously 

controlled in those experiments so that the facial colour appearance could 

be evaluated based on the realistic skin models. 

Experiments on colour preference provided a thorough assessment of the 

relationships between various facial colour characteristics and preference 

judgements and meanwhile revealed large cultural differences between 

Caucasian and Chinese populations. A useful and repeatable analytical 

framework for facial preference modelling was provided. This work 

contributes to the growing body of research using realistic skin models and 

highlights the importance of examining various colour cues utilized in facial 

preference evaluation.  

Experiments on colour appearance for the first time precisely measured the 

overall colour perception of facial appearance. New indices WIS, RIS, and 

YIS were developed to accurately quantify perceived facial whiteness, 

redness, and yellowness. The perceptual difference between the colour 

appearance of the face stimuli and the nonface stimuli was discovered. 

Taken together, the present study shed new light on how our visual system 

perceives and processes colour information on human faces. 
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Chapter 1 Introduction
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1.1 Background 

Colour is the most common but crucial visual sensation to humans. As one 

of the most significant features of human faces, skin colour conveys vital 

personal information and influences the impression and preference 

perceived by others. The relationship between skin colour and facial 

preference is of great importance in numerous applications and occasions 

where effort has been made to satisfy people’s desire to have a beautiful, 

healthy-looking or youthful facial appearance. For example, facial colour 

preference may influence the product expectations in the cosmetic industry, 

the aesthetic facial criteria in plastic surgeries, preference-based facial 

colour reproduction in the imaging industry, and the colour rendition 

properties in the lighting industry, etc (Zeng and Luo, 2010; Xie and Zhang, 

2013; Gao et al., 2018).  

Studies on facial impressions and preference judgements started early from 

the structural facial traits such as facial symmetry, averageness and sexual 

dimorphism (Thornhill and Gangestad, 1999; Rhodes, 2006). Compared to 

those non-colour-related facial traits, the colour appearance of human faces 

has been relatively less investigated but has gained increasing attention in 

the last ten to twenty years, which may suggest an important role for facial 

colour information in any of the preference-related judgements including 

facial attractiveness, perceived healthiness, and perceived age. Colour 

appearance is also easier to change compared to those structural 

determinants. It can change either slowly and continuously due to UV 

exposure (Amano et al., 2020), fruit and vegetable (FV) consumption (Tan et 

al., 2015) or rapidly and momentarily due to changes in the physical or 

emotional state (Bilal et al., 2015), use of coloured cosmetics, change in the 

lighting environments. Skin colour, and all these subtle colour variations, can 

be sensitively perceived by human observers (Changizi et al., 2006). Hence, 

understanding the psychological effect of colour on facial preference has 

profound implications under various social contexts and could benefit 

numerous applications (Elliot & Maier, 2014). 

Several facial colour characteristics, such as overall facial redness, 

yellowness, colour variation, colour contrasts, etc. have been considered as 

individual crucial parameters of preference judgements. The axiom in most 

previous research is to change a single colour variable in a controlled 

experiment for preference evaluation, which neglects the holistic process of 

facial colour perception in real life. None of the studies has fully considered 
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different colour characteristics on human faces, and little is known about the 

impact of various colour cues taken together on facial preference judgment. 

More importantly, with those controlled experiments, facial preference has 

been studied based on colour-manipulated skin models rather than realistic 

skin models. It is difficult to assess the importance of colour in preference 

judgements on real human faces. 

There are also large effects on cultural and environmental differences 

involved. Since people typically rely on their own perceptions to judge the 

facial impression or preferences, it is important to know the perceptual 

differences when diverse populations of both observers and the observed 

are involved. Different application fields will also need to focus on specific 

aspects based on the needs of people from different cultural backgrounds. 

Current studies have mostly been conducted among Caucasian populations, 

yet cross-cultural studies are limited and cultural differences between 

different ethnic groups are not satisfactorily understood. 

On the other hand, the perception of facial colour appearance hasn’t been 

precisely investigated. The facial colour appearance describes what the 

colour stimuli of facial skin look like in the human colour vision, which plays a 

key role in social perception processes (Thorstenson et al., 2020). There is 

an increasing number of applications that need to quantify skin colour 

appearance and reproduce it accurately. For example, accurate skin colour 

reproduction is considered as an indicator of good quality for many products 

in imaging industry such as the display and the camera (Imai et al., 1996); 

colour matching to the surrounding skin is extremely important in patients 

wearing maxillofacial prostheses (Xiao et al., 2013; Sohaib et al., 2018). 

Studies on facial colour preference have commonly used average skin 

colour specified in CIELAB colour space to represent the overall facial colour 

appearance. Specifically, the mean L*, a* and b* values of the facial skin 

area are considered as the overall facial lightness, redness and yellowness, 

respectively. However, the relationship between these colour appearance 

attributes and the colorimetric values of a human face is not clear so far, and 

what is the overall colour appearance or the global colour impression of a 

human face remains unknown to us. Though the CIE colorimetry provides 

the objective tool for colour measurement and quantification of a certain 

point, our skin is a non-uniform multi-layered structure and such 

measurements cannot include the various colour characteristics or the 

overall colour perception of skin appearance. Existing studies have shown 

that, in terms of visual perception, the facial colour appearance could be 
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largely different from the colour appearance of other nonface objects. 

Considering the peculiarity of skin colour perception, how to accurately 

quantify and predict the perceived colour appearance of facial skin remains 

a challenge.  

1.2 Aim and objectives 

The aim of the present study is to understand the human colour perception 

of facial complexions, including colour preference and colour appearance. 

To achieve this aim, two objectives are set. 

The first objective is to study the relationship between facial colour 

characteristics and preference judgements based on realistic skin models. 

The specific tasks include: 

• To investigate the role of average skin colour in facial preference 

judgements (chapter 4). 

• To investigate the role of various facial colour characteristics in 

preference judgements and identify their relative importance (chapter 

5). 

• To model the relationships between facial colour characteristics and 

preference judgements (chapter 6). 

• To investigate the cultural difference between Caucasian and 

Chinese samples regarding facial colour preference (chapter 4, 5). 

The second objective is to study the human perception of facial colour 

appearance. The specific tasks include: 

• To quantify the overall facial colour appearance or the global colour 

impression of human faces (chapter 7). 

• To understand the colour perception of facial whiteness, redness, and 

yellowness (chapter 8). 

• To explore the perceptual difference between the colour appearance 

of the face stimuli and the nonface stimuli (chapter 8). 

The approach taken in this study is psychophysics. Visual experiments have 

been conducted in preference evaluation and appearance assessments, all 

using images of real human faces.  
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1.3 Outline of the thesis 

The flow chart below represents the research process of the present study. 

Nine chapters are included in this thesis. The overview of each chapter is 

also given below.  

 

Figure 1.1 The structure of the thesis. 

Chapter 1: Introduction 

The current chapter introduces the general background, research aim and 

objectives of the present study, and the structure of the thesis. 

Chapter 2: Literature survey 

Chapter 2 gives a comprehensive literature review of the fundamentals of 

human colour perception, the CIE colorimetry system, research on facial 
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colour preference, research on facial colour appearance, display used to 

present colour stimuli, psychophysics, and data analysis techniques. 

Chapter 3: Experiments 

Chapter 3 focuses on the experimental preparations, including displays and 

images, and the details of the two groups of psychophysical experiments. 

The first group are two experiments related to facial colour preference, 

including Experiment 1, a cross-cultural experiment on preference evaluation 

conducted in Leeds, and Experiment 2, a partially repeating experiment of 

Experiment 1 conducted in Shanghai. The second group are two 

experiments related to facial colour appearance, including Experiment 3, a 

colour matching experiment on overall facial appearance, and Experiment 4, 

a colour scaling experiment on facial whiteness, redness, and yellowness. 

The information about observers and the observer variation is described in 

this chapter. 

Chapter 4: Average skin colour and facial preference 

Chapter 4 concerns the role of average facial skin colour in reference 

judgements. The average skin colour (L*, a*, b*) of eighty facial images was 

analysed and its relationship with three preference attributes, attractiveness, 

perceived healthiness, and perceived age was examined. The perceptual 

difference between the three facial attributes among Caucasian and Chinese 

observers was evaluated. 

Chapter 5: Various colour characteristics and facial preference 

Chapter 5 gives a comprehensive assessment of more facial colour 

characteristics, including the average facial colour, local skin colour, skin 

colour variation, and facial colour contrasts. Their role in facial preference 

judgements was tested and the relative importance was revealed. The 

cultural difference in the utilisation of various facial colour cues was revealed 

and discussed. 

Chapter 6: Analytical tool for facial attractiveness modelling 

Chapter 6 provides an analytical framework for facial attractiveness 

modelling from a large number of facial colour cues. The model performance 

was evaluated using both a training dataset and a novel testing dataset. 

Different regression techniques were compared based on their model 

performance and variable selection. 

Chapter 7: Overall facial colour appearance 
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Chapter 7 is mainly concerned with the overall colour appearance of human 

faces. The colour perception of overall facial appearance was precisely 

examined and quantified. Factors that influence the perception of overall 

appearance were discussed based on several assumptions. The perceptual 

difference between Caucasian and Chinese observers was also discovered. 

Chapter 8: Facial whiteness, redness, and yellowness indices 

Chapter 8 concentrates on three colour appearance attributes of human 

faces, whiteness, redness, and yellowness. Their relationship with the 

CIELAB colorimetric values, L*, a*, and b* were revealed and new indices 

were developed to accurately quantify and predict facial whiteness, redness, 

and yellowness. The perceptual difference in the three attributes between 

the face stimuli and the patch stimuli within the context of facial skin colour 

was also discussed. 

Chapter 9: Conclusions 

Chapter 9 summarises the main findings of the present study and discusses 

the directions for future work. 
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Chapter 2 Literature survey 
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2.1 Overview 

This chapter provides the background information related to the present 

study. An outline of this chapter is given below. 

Human colour perception (Section 2.2) 

This section gives an overview of the fundamentals of human vision and 

colour perception, including the physiological aspects of the visual system, 

the basic perceptual attributes, and the colour appearance phenomena.  

CIE colorimetry (Section 2.3) 

CIE colorimetry serves as the foundation of colour specification and is an 

essential tool for colour quantification throughout this study. The CIE 

colorimetry system is introduced, and the uniform colour space, colour 

difference formulae, and colour appearance models are briefly reviewed. 

Skin colour and facial preference judgements (Section 2.4) 

This section reviews the research progress on facial colour preference. 

Using image-based methods, the effects of various colour cues, including 

the average skin colour and the other facial colour characteristics, on facial 

preference judgements are discussed. The limitation of the existing methods 

is considered. 

Skin colour and facial appearance perception (Section 2.5) 

After a review of facial colour preference, this section considers the 

quantification and the perception of the facial colour appearance. The 

methods of skin colour quantification are summarised. Studies on the 

perception of facial colour appearance and its perceptual difference from 

nonface objects are reviewed. 

Display (Section 2.6) 

This section introduces the characteristics and the colour characterisation 

process of the display, which is used as the medium for colour appearance 

assessment and preference evaluation in this study. 

Psychophysics (Section 2.7) 

Visual psychophysical experiments are the most important quantitative 

methods used in colour science research. This section introduces 

psychophysics and the psychophysical techniques used in this study. 

Data analysis techniques (Section 2.8) 
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Finally, the statistical methods and modelling techniques used for data 

analysis in this study are introduced in this section. 

2.2 Human colour perception 

Colour is much more than a physical stimulus. It is detected by the human 

eye and interpreted in the brain. Human colour perception is rich and 

complex. As a result of the interaction between a light source, an object, and 

the eye and brain, or the vision system, colour perception also involves 

physiology, optics, neural processing, cognition, psychology, etc. (Berns, 

2019). This section introduces the fundamentals of human vision and colour 

perception addressing some aspects of the human eye response and 

perceptual process. 

Three books, Measuring Colour by Hunt and Pointer (Hunt and Pointer, 

2011), Foundation of Vision by Wandell (Wandell, 1995), and Colour 

Appearance Models by Fairchild (Fairchild, 2013) are used as general 

references for this section. 

2.2.1 Light and colour 

Before understanding how the visual system processes the colour stimulus, 

it is necessary to characterise the nature of light which initiates the colour 

vision of human eyes. Light is the electromagnetic radiation that we can see, 

and it can be described by its wavelength in the unit of the nanometre (nm). 

As shown in Figure 2.1, the visible spectrum is limited between the 

wavelengths of 380 and 780 nm due to the sensitivity of human eyes. 

Shorter wavelengths have more energy than longer wavelengths. Note that 

the visible spectrum is continuous and there is no exact boundary between 

different colours (Hunt and Pointer, 2011). Figure 2.1 shows a rough 

correspondence between wavelengths and colours. 
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Figure 2.1 The electromagnetic spectrum and the visible light range 
(https://bodell.mtchs.org/OnlineBio/BIOCD/text/chapter8/concept8.2.ht
ml). 

The early prismatic dispersion experiment conducted by Isaac Newton has 

shown that white light such as sunlight is polychromatic and can be 

separated into different colour components, whereas monochromatic light 

cannot be separated anymore (Newton and Hemming, 1704). In the real 

world, the majority of coloured stimuli are composed of many wavelengths 

(Berns, 2019). The changes in the wavelength components result in a 

change in the colour. The interaction between light and an object includes 

reflection, transmission, and absorption (Fairchild, 2013). Colour can be 

generated when the light is reflected or transmitted by a non-self-luminance 

object (e.g. an apple), or when the light is emitted by a self-luminance object 

(e.g. a display).  

2.2.2 The visual system 

The visual system includes the eyes, the connecting pathways through to 

the visual cortex and other parts of the brain, as shown in Figure 2.2. In this 

section, how the visual system responds to the physical stimulus, light, is 

introduced. 
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Figure 2.2 The human vision system 
(https://www.chegg.com/learn/biology/introduction-to-biology/neural-
pathway-in-vision). 

Figure 2.3 shows the schematically an eye with some key components. Light 

enters through the pupil. The cornea and lens act together as a compound 

lens to focus and project an inverted image onto the retina. The 

photoreceptors in the retina produce photochemical reactions and propagate 

nerve impulses through many layers of neurons to the brain and ultimately 

produce visual sensations. 

 

Figure 2.3 Cross-sectional diagram of the human eye and the retina 
(https://www.blueconemonochromacy.org/how-the-eye-functions). 

There are two types of photoreceptors in the retina, rods, and cones. Rods 

gives monochromatic vision at low luminance levels (< 0.01 cd/m2), which is 



- 13 - 

referred to as scotopic vision. Cones of three kinds give colour vision at 

normal luminance levels (> 10 cd/m2), which is referred to as photopic vision. 

In the intermediate luminance levels, both rods and cones function and is 

referred to as mesopic vision. As a part of human vision, colour perception is 

mediated by the complex neural process starting with the stimulation of 

different photoreceptors in the retina.  

Photoreceptors are not equally sensitive to light of all wavelengths. Human 

colour vision is served by three kinds of cones referred to as L, M, and S 

cones maximally responsive in long, middle, and short wavelengths, 

respectively. Figure 2.4 shows the spectral sensitivity curve of the L, M, and 

S cones, resulting in trichromatic colour vision.  

 

Figure 2.4 Spectral responsivities of the L, M, and S cones (Fairchild, 2013). 

The image data obtained from the retina of the two eyes is first transduced 

into chemical and electrical signals in the photoreceptors, then processed 

through the retinal neurons network, the optic nerve formed by the ganglion 

cell axons, the lateral geniculate nucleus (LGN) in the thalamus, and to the 

visual cortex. About 30 visual areas have been in the cortex, labelled as V1, 

V2, V3, V4, etc. They are responsible for different aspects of the detection 

and interpretation of various visual information.  

2.2.3 Mechanisms of colour vision 

Historically, many scientists attempted to explain the mechanisms of colour 

vision. The two most convincing theories are the trichromatic theory and the 

opponent process theory. The trichromatic theory was proposed by Tomas 

Young in 1802 and extended by Hermann von Helmholtz in 1894. It 

assumes the retina's three types of cones are preferentially sensitive to the 

blue, green, and red colours respectively, and three images are formed by 

the three receptors and then transmitted to the brain (Young, 1845). The 
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opponent process theory was proposed by Ewald Hering. It suggests that 

the visual system interprets colour by opponent signals: red-green, yellow-

blue and white-black (Hering, 1964). Both theories are empirically based and 

can explain various vision phenomena. The modern theory of colour vision 

tends to incorporate both theories into the stage theory which assumes a 

trichromatic response at the cone level (L, M and S cones) and an opponent 

colours response (luminance, red-green, and blue-yellow) in later stages. 

Figure 2.5 shows the colour vision model proposed by Vos and Walraven in 

1971 (Vos and Walraven, 1971). The importance of the stage theory 

transforming from the trichromatic vision to the opponent processing is 

reflected in different colour appearance models (e.g. CIELAB).  

 

Figure 2.5 Colour vision model based on stage theory (Vos and Walraven, 
1971). 

Based on microspectroscopy and electrophysiology, the chromatic cone-

opponency pathways in the LGN have been characterised and 

acknowledged. However, after the colour-opponent signals are sent to the 

visual cortex, the later cortical stages of visual processing are less well 

understood (Gegenfurtner, 2003). At the later stages, the encoding and 

processing of visual information become significantly more complex. 

Numerous ganglion cell responses are combined to produce various cortical 

responses and to further support visual capabilities such as colour 

perceptions, motion detections, etc (Fairchild, 2013). As the visual cortex 

and the brain involve, a higher level of colour perception and psychological 

cognition (e.g. preference, expectation) occur, which are difficult to explain 

from the perspective of physiology. Many important cognitive visual 

mechanisms could affect colour appearance, such as memory colour (the 

memory of the colour of familiar objects), colour constancy (the ability of 
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visual system to keep the colour of objects relatively stable despite the 

various illumination), but haven’t been satisfactorily understood. For 

example, what is the role of the memory colour of familiar object in helping 

obtain the colour constancy (Granzier and Gegenfurtner, 2012). Based on 

the recent advances concentrating on the cortical processing of colour, the 

modern colour vision theory may see further progress in the future.  

2.2.4 Perceptual attributes of colour 

At the final stage of human colour perception, the visual stimuli of colour are 

not only considered as physical radiation. The appearance of a colour 

stimulus depends on the context in which it is seen. Colour appearance, 

representing the human perceptual attributes, is used to describe what 

colour stimuli look like under various viewing conditions at this stage. 

Several basic perceptual attributes which are used to specify the colour 

appearance are introduced in the section. 

Three basic perceptual attributes of colour, brightness, hue and 

colourfulness are defined by Hunt and Pointer as below (Hunt and Pointer, 

2011): 

Brightness 

Attribute of a visual perception according to which an area appears to exhibit 

more or less light. 

Hue 

Attribute of a visual perception according to which an area appears to be 

similar to one, or to proportions of two, of the perceived colours red, yellow, 

green, and blue. 

Colourfulness 

Attribute of a visual perception according to which an area appears to exhibit 

more or less of its hue. 

Three relative perceptual attributes of colours, lightness, and chroma are 

defined by Hunt and Pointer as below (Hunt and Pointer, 2011): 

Lightness 

The brightness of an area judged relative to the brightness of a similarly 

illuminated area that appears to be white or highly transmitting. 

Chroma 
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The colourfulness of an area judged in proportion to the brightness of a 

similarly illuminated area that appears to be white or highly transmitting. 

Saturation 

Colourfulness of an area judged in proportion to its brightness. 

2.2.5 Colour appearance phenomena 

Colour appearance phenomena, or substantive visual phenomena, describe 

the visual phenomena that affect how we perceive the appearance attributes 

of colour such as lightness, colourfulness, and hue (Elliot et al., 2015). In this 

section, details of a few colour appearance phenomena are given below. 

Light and dark adaptation 

Light adaptation describes the decrease in visual sensitivity when the level 

of illumination increases. An example is when we switch on the light in a 

dark room, our vision system is dazzled as it is overloaded due to the high 

sensitivity in the dark. After a short period of light adaptation, the sensitivity 

is decreased, and the vision goes back to normal. The dark adaptation refers 

to changes in the opposite direction and the process is slower than the light 

adaptation. An example is when we enter the dark movie theatre from the 

outside, it takes several minutes before we can see things clearly. 

Chromatic adaptation 

Chromatic adaptation refers to a far more important capability of the human 

visual system to adjust to the widely varying colour of illumination in order to 

approximately preserve the appearance of the object colour. It is the largely 

independent sensitivity regulation of the mechanisms of colour vision 

(Fairchild, 2013). Chromatic adaptation can be thought of as analogous to 

the feature of the automatic white balance of a camera. An example is that 

white paper appears to be white whenever viewed under daylight or 

candlelight.  

Simultaneous Contrast 

Simultaneous contrast causes colours to change in appearance when their 

background is changed (Albers, 2013). An example in Figure 2.6 shows that 

a black background causes the grey colour to appear lighter, whereas a 

white background causes the same grey colour to appear darker. The 

appearance change follows the opponent process theory, which implies that 

a darker background induces a lighter appearance; red induces green and 

green induces red; yellow induces blue and blue induces yellow; etc. 
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Figure 2.6 An example of Simultaneous Contrast, reproduced from 
(Fairchild, 2013). 

Crispening 

The increase in the perceived magnitude of colour differences when the 

background on which the stimuli are compared is similar to those of the 

stimuli (Craik, 1939). The effect can be illustrated in Figure 2.7, which shows 

the same two grey colours against a black, grey, and white background, 

respectively. 

 

Figure 2.7 An example of Crispening, reproduced from (Fairchild, 2013). 

Bezold-Brücke Hue Shift 

Bezold-Brücke Hue Shift refers to a change in the hue of a colour produced 

by a change in luminance (within the range of photopic vision), while the 

chromaticity remains constant. Purdy’s study has illustrated that wavelength 

change is needed to match the perceived hue of a monochromatic light at a 
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higher luminance level with another monochromatic stimulus at a lower 

luminance level (Purdy, 1931). 

Abney Effect 

Abney Effect refers to a perceived change in the hue of colour when the 

saturation is decreased, and the dominant wavelength and luminance 

remain constant (Burns et al., 1984). Thus, mixing a monochromatic light 

with white light does not preserve a constant hue. 

Helmholtz-Kohlrausch Effect 

Perceived brightness depends on both luminance and chromaticity. 

Helmholtz-Kohlrausch Effect shows that, at constant luminance, perceived 

brightness increases with increasing saturation, meanwhile the effect on 

brightness is also influenced by hue (Wyszecki, 1967). An example is shown 

in Figure 2.8. All the patches have the same luminance while some patches 

appear brighter than others. 

 

Figure 2.8 An example of the Helmholtz–Kohlrausch effect. All patches have 
the same relative luminance. Reproduced from (Elliot et al., 2015). 

Hunt Effect and Stevens Effect 

Hunt Effect refers to a progressive reduction in perceived colourfulness as 

the level of illumination falls (Hunt, 1952). Stevens Effect refers to a 

progressive reduction in brightness contrast as the level of illumination falls 

(Stevens and Stevens, 1963). 
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2.3 CIE colorimetry 

Colorimetry is the science and technology used to physically quantify and 

describe human colour perception (Ohno, 2000). It serves as the foundation 

of colour specification and sets the stage for the development of colour 

appearance models (Fairchild, 2013). The Commission Internationale de 

l’Eclairage (International Committee on Illumination, CIE) is the primary 

organization responsible for the standardisation of colorimetry. The CIE 

colorimetry system numerically defined the three components required for a 

colour stimulus, the light source, the objects, and the human visual system, 

and quantified how they interact to produce colours. The system is used as 

an essential tool for the colour specification and further analysis throughout 

the current study. 

In this section, Colorimetry by Ohta and Roberston (Ohta and Robertson, 

2006), Measuring Colour by Hunt and Pointer (Hunt and Pointer, 2011), and 

Colour Appearance Models by Fairchild (Fairchild, 2013) are used as the 

general references. 

2.3.1 Light source and CIE standard illuminants 

Light sources such as candles, lamps, or sunlight, emit electromagnetic 

energy to initiate visual responses. They are characterised numerically by 

the spectral power distribution (SPD) curve, the distribution of energy at 

each wavelength across the visible spectrum (380 nm~780 nm). The SPD 

conventionally normalised to a value of 100 at the wavelength of 560nm is 

referred to as the relative spectral power distribution and is commonly used 

to describe a light source. 

Another important characteristic of a light source is the correlated colour 

temperature (CCT), which is the temperature of the black body whose 

perceived colour most closely resembles that of the light source. For 

example, an incandescent lamp may have a CCT of 2800 K, a fluorescent 

tube of 5000 K, and an average daylight of 6500 K. Light sources perceive 

warmer (yellowish) with lower CCT and cooler (bluish) with higher CCT. 

Light sources with different SPDs render the same object colour in different 

ways, which is inconvenient in quantitively expressing colours. Thus, the CIE 

established standard specifying the SPDs of three illuminants for use in 

colorimetry (ISO/CIE, 2022). They are CIE standard illuminant A, CIE 

standard illuminant D65, and CIE standard illuminant D50 (CIE illuminant 

D50 has recently been included as CIE standard illuminant, see ISO/CIE 

11664-2:2022(E)). CIE standard illuminant A represents typical, domestic, 
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tungsten-filament lighting with a colour temperature of 2856 K. CIE standard 

illuminant D65 represents average daylight with a CCT of 6500 K. CIE 

standard illuminant D50 represents daylight with a correlated colour 

temperature of approximately 5000 K. Their relative spectral power 

distributions are plotted in Figure 2.9. 

 

Figure 2.9 The relative spectral power distribution of CIE illuminants. 

2.3.2 Colour-matching functions 

The colour-matching functions are the numerical description of the chromatic 

response. Based on the trichromatic colour vision and Grassmann’s laws of 

additive colour mixture, colour matching is processed by mixing the red, 

green, and blue light and controlling their amount to match a test light. 

Figure 2.10 shows a typical colour matching experiment. The three lights 

(typically red, green, and blue) required to match the test stimulus are 

referred to as primaries. 

 

Figure 2.10 Principle of trichromatic colour matching by additive mixing of 
lights (Hunt and Pointer, 2011) 

CIE defined colour-matching functions based on the two colour matching 

experiments conducted separately by Wright and Guild  (Wright, 1929; Guild, 
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1931). Figure 2.11 (a) shows the colour-matching functions for the CIE 1931 

Standard Colorimetric Observer, r̅(λ),  g̅(λ), and b̅(λ) represent the number of 

primaries (monochromatic stimuli of wavelengths 700 nm, 546.1 nm, and 

435.8 nm) needed to match the stimulus at each wavelength. The curves 

were the average colour matching properties of 17 British observers, based 

on the experimental results of 10 observers obtained by Wright’s 

investigation and 7 observers obtained by Guild’s investigation. 

A problem with the rgb colour-matching functions is that there are negative 

values of r̅(λ), which will add complexity to the calculation. To avoid the 

negative values, the primaries were then transformed from [R], [G], [B] to the 

unreal primaries [X], [Y], [Z] through a linear transformation. The 

transformation was carefully chosen so that X, Y, and Z would always be 

positive for all colours, and Y is proportional to L, the luminance of the colour 

specified. As the full-line curves in Figure 2.11 (b) show, this set of colour-

matching functions is representative of the colour-matching properties of the 

CIE 1931 standard observer using approximately 2o field of view. In 1964, 

CIE has specified a supplementary set of colour-matching functions with a 

10o field of view (the dash-line curves in Figure 2.11 b). 

 

Figure 2.11 (a) The rgb colour-matching functions; (b) CIE 1931 xyz colour 
matching functions (full lines), and CIE 1964 xyz colour matching 
functions (dash lines) (Hunt and Pointer, 2011) 

2.3.3 The tristimulus values XYZ 

Considering the three components required for a colour stimulus mentioned 

above, the tristimulus values - CIE XYZ of the stimuli (non-self-luminous 

object) can be obtained: 
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X = k ∑ 𝑆(λ)R(λ)x̅(λ)∆λ

λ

 

Y = k ∑ 𝑆(λ)R(λ)y̅(λ)∆λ

λ

 

Z = k ∑ 𝑆(λ)R(λ)z̅(λ)∆λ

λ

 

Equation 2.1 

 

where 𝑆(λ) is the spectral power distribution (SPD) of the light source; R(λ) 

is the spectral reflectance of the object, also quantified as a function of 

wavelengths; x̅(λ),  y̅(λ), and z̅(λ) are CIE colour-matching functions of the 

CIE 1931 standard observer as shown in Figure 2.11 (b); λ is the wavelength 

(in the unit of nm); k is a scaling constant to normalise the tristimulus values; 

k can be calculated by the following equation to make Y equal to 100 for the 

perfect diffuser: 

k = 100/ ∑ 𝑆(λ)y̅(λ)∆λ

λ

 

Y then gives the luminance factor expressed as a percentage. The set of 

tristimulus values, XYZ, constitutes the units of CIE 1931 XYZ colour space 

and provides an objective description of colour sensations registered in the 

human eye.  

To present the relative magnitudes of CIE XYZ tristimulus values, CIE 

chromaticity coordinates, x, y, z, are defined as the equations below: 

x =
𝑋

𝑋 + 𝑌 + 𝑍
;   y =

𝑌

𝑋 + 𝑌 + 𝑍
;   z =

𝑍

𝑋 + 𝑌 + 𝑍
 Equation 2.2 

 

where x + y + z = 1. The two-dimensional chromaticity diagram (Figure 2.12) 

is widely used to illustrate colours using chromaticity coordinates, x, and y 

derived from the tristimulus values. 
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Figure 2.12 CIE 1931 x,y chromaticity diagram. 

2.3.4 Uniform colour space 

Though the XYZ colour space is very useful for colour quantification, an 

obvious limitation is that equal distance in the CIE xy chromaticity diagram 

doesn’t have the perceptually equal colour difference. For example, the 

equal distance in the blue region has a larger colour difference than the 

green region perceptually. Thus, it is a non-uniform chromaticity diagram 

colour space. Besides, the chromaticity diagrams can only be used to 

compare colours with the same luminance. Considering both the 

chromaticity and luminance of colour, the two uniform colour spaces were 

developed, CIELAB and CIELUV, which provide uniform practices for the 

colour difference measurement. Both systems were recommended by the 

CIE in 1976. 

The CIELAB uniform colour space (or CIE 1976 L*a*b* uniform colour space) 

uses three orthogonal dimensions to describe the colour appearance of a 

stimulus, the vertical dimension L* represents lightness, a* represents the 

value along the red-green dimension, b*  represents the value along the 

yellow-blue dimension (Figure 2.13). Basically, in CIELAB uniform colour 

space, the same amount of numerical change of colour corresponds to the 

same amount of visually perceived colour change. The coordinates of 

CIELAB are transformed from the XYZ tristimulus values: 
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 L* = 116𝑓(Y/Yn) − 16 

a* = 500[𝑓(X/Xn) − 𝑓(Y/Yn)] 

b* = 200[𝑓(Y/Yn) − 𝑓(Z/Zn)] 

𝑓(𝑤) = {
(𝑤)1/3  𝑓𝑜𝑟 𝑤 > 0.008856

7.787(𝑤) + 16/116  𝑓𝑜𝑟 𝑤 ≤ 0.008856
 

Equation 2.3 

 

where X, Y, and Z and Xn, Yn, and Zn represent the tristimulus values of the 

object colour and reference white, respectively. The perceived attributes of 

chroma and hue can be predicted in CIELAB colour space. C𝑎𝑏
∗  is obtained 

by the distance between the origin point and the colour point specified by the 

coordinates a* and b*: 

C𝑎𝑏
∗ = [(𝑎∗)2 + (𝑏∗)2]1/2 Equation 2.4 

Hue angle, hab is the angle used to specify hue expressed in positive 

degrees starting at the positive a* axis and progressing in a counter 

clockwise direction. h𝑎𝑏 is obtained by the following equation: 

h𝑎𝑏 = 𝑡𝑎𝑛−1(𝑏∗/𝑎∗) Equation 2.5 

 

Figure 2.13 CIELAB uniform colour space. 

The CIELUV uniform colour space (or CIE 1976 L*u*v* uniform colour space) 

also has three orthogonal dimensions, the vertical dimension L* represents 

lightness, u*  represents the value along the red-green dimension, v* 

represents the value along yellow-blue dimension: 

L* = 116(Y/Yn)1/3 − 16  for  Y/Yn > 0.008856 

L* = 903(Y/Yn)  for  Y/Yn ≤ 0.008856 

u*=13L*(𝑢′‑𝑢𝑛
′ ) 

v*=13L*(𝑣′‑𝑣𝑛
′ ) 

Equation 2.6 
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where 𝑢′, 𝑣′ and 𝑢𝑛
′ ,  𝑣𝑛

′  are the chromaticity coordinates for the object colour 

and reference white, respectively, and are transformed from the XYZ 

tristimulus values: 

u′ = 4X/(X + 15Y + 3Z) 

v′ = 9Y/(X + 15Y + 3Z) 
Equation 2.7 

The CIELUV colour space correlates chroma, hue, and saturation in the 

following manner: 

C𝑢𝑣
∗ = [(𝑢∗)2 + (𝑣∗)2]1/2 

h𝑢𝑣 = 𝑡𝑎𝑛−1(𝑣∗/𝑢∗) 

s𝑢𝑣 = 13[(𝑢′‑𝑢𝑛
′ )2 + (𝑣′‑𝑣𝑛

′ )2]1/2 

Equation 2.8 

The CIELAB uniform colour space is widely used in the colorant and graphic 

arts industries, whereas the CIELUV uniform colour space is mainly used by 

the lighting, CRT and television industries. Moreover, the CIELUV uses 

substrative form of chromatic adaptation transform, which is extremely 

inaccurate in predicting corresponding colours data or colour difference 

(Fairchild, 2013). Thus, in the present study, the CIELAB system is used to 

describe the colour of non-self-luminous objects such as skin colour. 

Considering its uniformity and simplicity, it is used for colour specification, 

data analysis and model development. 

Note that, the CIE colour spaces define colour independently of the device 

by which the colour is created or displayed, i.e. camera, display, printer, or 

scanner, thus is referred to as device-independent standard colour space. 

The device colour space, such as the sRGB space, is referred to as device-

dependent colour space. 

2.3.5 Colour difference formulae 

Determining the difference between two colour stimuli is of great importance 

in colorimetry. Various colour difference formulae have been developed for 

quantifying such differences. The simplest forms of colour difference 

formulae, including ∆𝐸𝑎𝑏
∗  and ∆𝐸𝑢𝑣

∗ , are calculated by the Euclidean distance 

between the coordinates of two stimuli in the CIELAB and CIELUV colour 

spaces, respectively. Over the last thirty years, more complicated colour 

difference formulae have been proposed to more accurately predict the 

perceived colour difference, such as CMC (l:c), CIE94, CIEDE2000, etc. 

CMC (l:c) is a colour difference formula for small colour differences in the 

colorant industries (Clarke et al., 1984; McLaren, 1986). CIE94 and 

CIEDE2000 are elaborations of the CIELAB formula. As a replacement of 
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CIE94, CIEDE2000 is the current CIE recommendation for industrial colour 

difference prediction (CIE, 2018). It is applicable primarily for small colour 

differences between close patch samples (Sharma et al., 2005). It has 

limited performance for large colour difference prediction, and may not suit 

for assessing whole facial images. In this study, the CIELAB colour 

difference formula is used because it can accurately predict relative large 

colour differences and it is most used in previous studies to calculate skin 

colour difference (Stephen et al., 2011; Tan and Stephen, 2013; Melgosa et 

al., 2018; Amano et al., 2020).  

The colour difference ∆𝐸𝑎𝑏
∗  is the Euclidean distance between two colours 

(𝐿1
∗ , 𝑎1

∗, 𝑏1
∗)  and (𝐿2

∗ , 𝑎2
∗, 𝑏2

∗) in the CIELAB colour space, and it’s obtained by: 

∆𝐸𝑎𝑏
∗ =[(∆𝐿∗)2 + (∆𝑎∗)2 + (∆𝑏∗)2]1/2 Equation 2.9 

Where 

∆𝐿∗ = 𝐿1
∗ − 𝐿2

∗  

∆𝑎∗ = 𝑎1
∗ − 𝑎2

∗  

∆𝑏∗ = 𝑏1
∗ − 𝑏2

∗ 

The colour difference ∆𝐸𝑎𝑏
∗  can also be determined by: 

∆𝐸𝑎𝑏
∗ =[(∆𝐿∗)2 + (∆𝐻𝑎𝑏

∗ )2 + (∆𝐶𝑎𝑏
∗ )2]1/2 Equation 2.10 

Where 

∆𝐻𝑎𝑏
∗ = 2(𝐶𝑎𝑏,1

∗ − 𝐶𝑎𝑏,2
∗ )1/2 sin(∆ℎ𝑎𝑏/2) 

2.3.6 Colour appearance models 

The CIE XYZ system specifies a colour stimulus in terms of the tristimulus 

values, but doesn’t tell how it will appear. The appearance of colour stimuli is 

considered the final stage of human perception and depends on the viewing 

conditions, such as size, background, illumination, viewing geometry, etc. 

The same XYZ tristimulus values may lead to different visual perceptions 

when the colours are seen in different contexts. Thus, it is necessary to find 

a way of deriving the perceptual attributes of colours taking the influence of 

viewing conditions into consideration. 

Colour appearance models are mathematical models extending tristimulus 

colourimetry toward the prediction of colour appearance under different 

viewing conditions. As defined by CIE Technical Committee 1-34 (Testing 

Colour Appearance Models), a colour appearance model is any model that 

includes predictors of at least the relative colour appearance attributes of 
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lightness, chroma, and hue (Fairchild, 1997). To produce predictors of these 

appearance attributes, a model must include a chromatic adaptation 

transform to predict corresponding colours across different illuminants 

(Fairchild, 2013). 

Given the definition above, the CIE 1976 L*a*b* colour space (CIELAB) can 

be considered a colour appearance model. As the full CIELAB equations 

introduced in Section 2.3.4, the CIELAB colour space takes the XYZ 

tristimulus values and the reference white as input includes simple 

adaptation forms and produces predictors of lightness, chroma, and hue as 

output. Though CIELAB is a rudimentary colour appearance model, it is one 

of the most used models in various fields. Currently, in the area of skin 

research, the colour appearance is usually specified objectively in the 

CIELAB uniform colour space, thus it is adopted in the present study. 

Considering the complexity of colour appearance phenomena as mentioned 

in Section 2.2.5, many attempts have been made to construct various more 

complicated colour appearance models for quantitively modelling human 

colour perceptions. Examples of colour appearance models proposed since 

CIE recommended CIELAB in 1976 include the Nayatani model (1990), the 

Hunt model (1991), the RLAB model (1996), the LLAB model (1996), the 

CIECAM97s model (1997), the CIECAM02 (2002), and the CIECAM16 

(2016), etc. The CIECAM16 is the recent CIE recommendation for colour 

management systems (CIE, 2022).  

Currently, all these existing colour appearance models were constructed 

using simple uniform colour patches. Based on the CIELAB colour space, 

the colour appearance of human complexions is studied in the current 

research and the perceptual difference between face and patch is 

considered. 

2.4 Skin colour and facial preference judgements 

Facial preference judgements have a profound impact on diverse important 

social outcomes, such as mate choices and social decision-making, thus it 

has been studied from various facial perspectives (Little et al., 2011; 

Rowland and Burriss, 2017). In particular, facial symmetry, averageness and 

sexual dimorphism have been widely studied over the years from an 

evolutionary or biological perspective (Thornhill and Gangestad, 1999; 

Rhodes, 2006). Compared to non-colour-related facial traits, the colour 

appearance of a human face has been relatively less investigated but has 
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gained increasing attention in the last ten to twenty years, which may 

suggest an important role for facial colour characteristics in any of the 

preference-related judgments including facial attractiveness, perceived 

healthiness, and perceived age. In this section, the studies on skin colour, 

including the average skin colour and the other facial colour characteristics, 

and its relationship with facial preference judgements are reviewed. The 

limitations of the widely used image manipulation method are summarised 

and the cultural difference is considered. 

2.4.1 The average skin colour (L*, a*, and b*) and preference 

judgements 

Facial preference judgements, including facial attractiveness, perceived 

healthiness, and visual age, have been studied with various facial colour 

characteristics being considered as individual crucial parameters. The 

average skin colour, including facial redness, yellowness, and lightness, was 

most widely studied and shown to play an important role in facial preference 

judgements. The majority of this research used L*, a*, and b* parameters in 

the CIELAB colour space to represent the facial lightness, redness, and 

yellowness, respectively. Table 2.1 summarises the literature studying the 

role of average skin colour in facial preference judgements. 

Table 2.1 Studies on the average skin colour and facial preference 
judgements. 

Authors Ethnicity IV DV Images techniques 

Stephen et al. 
2009 

Caucasian L*, a*, b* Health 
manipulated 
faces 

adjusting 
colour 

Stephen et al. 
2009 

Caucasian a* Health 
manipulated 
faces 

adjusting 
colour 

Re et al. 2011 Caucasian a* 
Attractiveness 
Health 

manipulated 
faces 

pair 
comparison 

Stephen et al. 
2012 

Caucasian, 
African 

L*, a*, b* Attractiveness 
manipulated 
faces 

categorical 
judgement 

Coetzee et al. 
2014 

Caucasian, 
African 

L*, a*, b* Attractiveness 
manipulated 
faces 

categorical 
judgement 

Lefevre et al. 
2015 

Caucasian L*, a*, b* Attractiveness 
manipulated 
faces 

pair 
comparison 

Pazda et al. 
2016 

Caucasian a* Attractiveness 
manipulated 
faces 

categorical 
judgement 

Thorstenson 
et al. 2017 

Caucasian a* 
Attractiveness 
Health 

manipulated 
faces 

categorical 
judgement 

Foo et al.  
2017 

Caucasian L*, a*, b* 
Attractiveness 
Health 

real faces 
pair 
comparison 
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Foo et al. 
2017 

Caucasian 

L*, a*, b*, 
other 
biological 
indices 

Attractiveness 
Health 

real faces 
categorical 
judgement 

Appleton et al. 
2018 

Caucasian b* Health real faces 
categorical 
judgement 

Tobitani et al. 
2018 

n.a. (skin 
patches) 

melanin, 
haemoglobin 

Attractiveness 
manipulated 
patches 

categorical 
judgement 

Han et al. 
2018 

Caucasian, 
Chinese 

L*, a*, b* Attractiveness 
manipulated 
faces 

pair 
comparison 

Jones et al.  
2018 

Caucasian L*, a*, b* Health real faces 
categorical 
judgement 

Tan et al. 2019 
Malaysian 
Chinese 

L*, a*, b* 
Attractiveness 
Health 

manipulated 
faces 

adjusting 
colour 

Perrett et al.  
2020 

Caucasian L*, a*, b* Health 
manipulated 
faces 

pair 
comparison 

IV = independent variable; DV = dependent variable. 

Most studies used methods of image manipulation to conduct experiments. 

In these studies, observers were asked either to manipulate the facial colour 

to enhance their perceived preference (using the technique of adjusting 

colour) or to rate or make a forced choice between the colour-manipulated 

facial images in terms of their preference (using the techniques of 

categorical judgement or pair comparison). The images used in the 

experiments were normally computer-generated generic faces, which was 

usually morphed image averaged from several images of real faces. Figure 

2.14 shows an example of manipulated facial images. As a result, increased 

facial skin lightness, redness and yellowness have been claimed to enhance 

the healthy appearance and facial attractiveness at a statistically significant 

level, mostly for Caucasian people. 

 

Figure 2.14 Examples of face stimuli used in image manipulation studies 
(Thorstenson et al., 2017). Faces were manipulated on the CIELAB a* 
(redness) colour axis by -5 units (left) or +5 units (right). 
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For example, Stephen et al. investigated the role of overall skin colour in 

determining perceived facial healthiness by allowing participants to 

manipulate the skin portions of colour-calibrated Caucasian face 

photographs along CIELAB colour axes (Stephen, Coetzee, et al., 2009; 

Stephen, Law Smith, et al., 2009). In their results, to enhance healthy 

appearance, participants increased skin redness (a*) and skin yellowness 

(b*). Participants also increased skin lightness (L*), suggesting a role for low 

melanin coloration in the healthy appearance of faces. Lefevre and Perrett 

investigated the role of carotenoid colouration and melanin colouration in 

facial attractiveness judgements among Caucasian people (Lefevre and 

Perrett, 2015). They adjusted the level of these colourations by changing the 

colour of facial images along CIELAB colour axes (L*, a*, and b*) and had 

observers make attractiveness judgements on an internet-based pair-

comparison test (thus the colour is not rigorously calibrated). They claimed 

that both increased carotenoid colouration and increased melanin 

colouration were found preferred compared to lower levels of these pigments 

and the carotenoid-linked health-signalling system was highly important in 

mate choices. Coetzee et al. studied African perceptions of female 

attractiveness and claimed that skin colour (lightness, yellowness and 

redness), skin homogeneity and facial adiposity significantly and 

independently predict attractiveness in female African faces (Coetzee et al., 

2014). Re et al. conducted research to quantify the oxygenated blood colour 

(facial redness) change threshold required to affect the perception of 

attractiveness and health (Re et al., 2011). They found facial redness, to 

some extent reflecting the cardiovascular fitness of humans, had a 

perceptually equivalent influence on facial attractiveness and healthiness.  

However, a few recent studies used non-manipulated real facial images for 

preference evaluation and found different results. For example, Foo et al. 

used images of real faces to study the predictors of facial attractiveness and 

health in Caucasian samples and revealed skin colour did not predict 

attractiveness in either sex and colour may play a limited role in determining 

attractiveness (Foo, Simmons, et al., 2017). Jones et al. investigated the 

influence of shape and colour cue classes on facial health perception and 

their results indicated that short-term health cues in the form of skin 

colouration showed no utilisation, with very weak correlations between 

perceived health and all three colour channels (L*, a*, and b*), all ps > 0.636 

(Jones, 2018). Appleton et al. conducted a 4-week intervention in a 

randomized controlled trial where they documented a small but significant 

effect of fruit and vegetable intake on skin yellowness (about 1–2 b* units), 
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but no change in skin redness and no effect on perceived health (Appleton 

et al., 2018).  

Considering the mixed results, it is not clear so far the role of the average 

skin colour in facial preference judgements, especially in real human faces. 

The two methodologies will be further summarised in Section 2.4.4. 

2.4.2 Other facial colour characteristics and preference 

judgements 

Apart from the average facial skin colour, other facial colour cues, including 

local skin colour, skin colour variation, and facial colour contrasts, have been 

found to influence facial preference evaluations. The related literature is 

summarised in Table 2.2. 

The colour values at specific facial locations have been noticed by Jones et 

al. They defined three local facial areas and claimed cheek redness (a*) and 

periorbital luminance (L*) positively affected perceived health (Jones et al., 

2016).  

The appearance of the skin is noticeably uneven because of various 

structural details and colour variations, such as wrinkles, pores, spots, and 

freckles (Igarashi et al., 2007). The variation of skin colour, revealing 

information about skin texture, is also one of the facial colour characteristics 

that affect visual perceptions and preference judgements. Fink et al. 

conducted several studies to investigate the relationship between facial 

preferences and the homogeneity of skin colour/chromophore distribution. 

They used a set of shape-standardized stimulus faces with varying skin 

colour distributions and had observers rate these faces. They found that 

facial skin colour distribution significantly influences the perception and 

homogeneous skin colour distribution were perceived as younger and 

received significantly higher ratings for attractiveness and health than 

inhomogeneous skin colour distribution (Fink et al., 2006; Fink and Matts, 

2008). Additionally, Fink et al. also used isolated cropped cheek patches 

instead of full facial images and demonstrated that the effect of skin colour 

variation on the perception of attractiveness, health, and age is independent 

of any facial shape or facial feature cues (Matts et al., 2007; Fink et al., 

2011). Moreover, these perceptions of full-face images can be predicted by 

the isolated cropped skin images for all three attributes (Fink et al., 2012). 

Tan et al. also used cropped skin images to study perceived health in 

Chinese faces and similar results were found that homogenous skin texture 

linked positively apparent health of Chinese faces (Tan et al., 2018). 
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Facial colour contrasts also affect facial preference as cosmetics are widely 

used to alter facial contrast with the primary goal of making the face appears 

beautiful (Jones et al., 2015; Russell et al., 2019). Facial contrast, defined as 

‘the luminance and colour differences between the facial features and the 

skin surrounding those features’ (Porcheron et al., 2013), is another cue for 

perceiving age (Porcheron et al., 2013; Porcheron et al., 2017), health 

((Russell et al., 2016), and attractiveness (Russell, 2003). Most aspects of 

facial contrast were positively associated with attractiveness judgments, 

perceived health, and perceived age. In those studies, the adapted version 

of Michelson’s contrast for three dimensions (L*, a*, b* coordinates in 

CIELAB colour space) between three facial features (eyes, eyebrows, and 

mouth) and their surrounding skin has been used to characterise facial 

contrasts (Michelson, 1995; Russell, 2009). Besides, Melgosa et al. studied 

the facial contrast differences between Caucasians and Orientals adopting 

the CIELAB colour differences (△E) for facial contrast, and the CIELAB 

colour difference was found different between the two ethnic groups 

(Melgosa et al., 2018). 

Table 2.2 Studies on other facial colour characteristics and facial preference 
judgements. 

Authors Ethnicity 
Colour 
category 

IV DV Images techniques 

Jones et 
al. 2016 

Caucasian 
local skin 
colour 

forehead, 
periorbital, 
and cheeks L*, 
a*, b* 

Health 
manipulated 
faces 

categorical 
judgement, 
pair 
comparison 

Fink et 
al. 2006 

Caucasian 
skin colour 
variation 

estimated age 
Attractiveness 
Healthiness 
Age 

manipulated 
faces 

categorical 
judgement 

Matts et 
al. 2007 

Caucasian 
skin colour 
variation 

homogeneity 
algorithm 

Attractiveness 
Healthiness 
Age 

real patches 
categorical 
judgement 

Fink et 
al. 2008 

Caucasian 
skin colour 
variation 

manipulated 
smoothness 

Healthiness 
Age 

manipulated 
faces 

categorical 
judgement 

Fink et 
al. 2011 

Caucasian 
skin colour 
variation 

homogeneity 
algorithm 

Attractiveness 
Healthiness 
Age 

real patches 
categorical 
judgement 

Fink et 
al. 2012 

Caucasian 
skin colour 
variation 

real age 
Attractiveness 
Healthiness 
Age 

real patches 
categorical 
judgement 

Stephen 
et al. 
2010 

Caucasian 
facial 
colour 
contrast 

Lip contrast - 
L*, a*, b* 

Attractiveness 
manipulated 
faces 

adjusting 
colour 

Russell et 
al. 2009 

Caucasian 
facial 
colour 
contrast 

luminance 
contrast - L* 

Attractiveness 
manipulated 
faces 

categorical 
judgement 
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Porchero
n et al. 
2013 

Caucasian 
facial 
colour 
contrast 

colour 
contrast - L*, 
a*, b* 

Age 
manipulated 
faces 

categorical 
judgement 

Jones et 
al. 2015 

Caucasian 
facial 
colour 
contrast 

colour 
contrast - L*, 
a*, b* 

Attractiveness 
manipulated 
faces 

categorical 
judgement 

Russell et 
al. 2016 

Caucasian 
facial 
colour 
contrast 

colour 
contrast - L*, 
a*, b* 

Health 
manipulated 
faces 

categorical 
judgement 

Porchero
n et al. 
2017 

Caucasian, 
Chinese, 
Latin 
American, 
South 
African 

facial 
colour 
contrast 

colour 
contrast - L*, 
a*, b* 

Age 
manipulated 
faces 

pair 
comparison 

Fink et 
al. 2001 

Caucasian 

average 
skin 
colour, 
skin colour 
variation 

texture, 
colour 

Attractiveness 
manipulated 
faces 

categorical 
judgement 

Nkengne 
et al. 
2008 

Caucasian 

average 
skin 
colour, 
skin colour 
variation 

19 facial 
attributes 
(wrinkling, 
sagging, 
scaling colour, 
and texture) 

Age real faces 
categorical 
judgement 

Mayes et 
al. 2010 

Chinese 

average 
skin 
colour, 
skin colour 
variation 

L*, a*, b*, 
other 
biological 
indices 

Age real faces 
categorical 
judgement 

Foo et al. 
2017 

Caucasian 

average 
skin 
colour, 
skin colour 
variation 

L*, a*, b*, 
other 
biological 
indices 

Attractiveness 
Health 

real faces 
categorical 
judgement 

Tan et al. 
2018 

Malaysian 
Chinese 

average 
skin 
colour, 
skin colour 
variation 

L*, a*, b*, 
Gabor factor 
A, B, C 

Health (skin, 
face) 

real faces 
and patches 

categorical 
judgement 

Russell et 
al. 2019 

Caucasian 

skin colour 
variation, 
facial 
colour 
contrast 

with/without 
makeup  

Age 
manipulated 
faces 

pair 
comparison 

IV = independent variable; DV = dependent variable. 

2.4.3 Facial colour characteristics were examined in isolation 

The axiom in most previous research on facial preference described above 

is to change a single colour variable in a controlled experiment for 

preference evaluation. The single colour variable could be the average skin 
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colour, local skin colour, skin colour variation, or facial colour contrast. 

However, the impact of different colour cues taken together on facial 

preference judgment is not satisfactorily understood.  

To test several cues together, the controlled experiment is not suitable 

anymore as it only consideres single variable, but the images of real faces or 

skin patches are needed for preference evaluation. A few notable exceptions 

are listed in the last six rows in Table 2.2. The exceptions include a study 

that compared average skin colour with structural facial features, which 

showed that skin colour did not predict facial attractiveness (Foo, Simmons, 

et al., 2017; Jones, 2018). Studies that investigated skin colour and various 

biophysical properties such as wrinkling and sagging on age perception, 

showed that skin colour had only a weak association with perceived age, 

while skin colour uniformity was the most important attribute (Nkengne et al., 

2008; Mayes et al., 2010). Tan et al. used cropped cheek skin images to 

investigate the role of both skin colour and skin colour variation in health 

perception among Malaysian Chinese and claimed that homogenous skin 

texture and increased skin yellowness positively predicted the rated health 

(Tan et al., 2018).  

Although these studies included more than one colour cue, the results are 

equivocal, and none considered all the different colour characteristics 

together (including the average facial skin colour, local skin colour, skin 

colour variation, and facial colour contrast). It is not known how these colour 

characteristics are taken together would affect facial preference, whether 

they have correlated themselves, and which characteristics are more 

important in terms of predicting facial preferences including attractiveness, 

healthiness, and visual age. Therefore, one aim of the present study is to 

investigate the effect of various colour characteristics on facial preference 

evaluation and compare their distributions in predicting facial preference. 

2.4.4 The limitations of image manipulation 

More importantly, the existing studies on the same colour predictors 

generated disputable results due to the different methodologies that were 

used. Concerning the widely used methods of image manipulation to provide 

the stimuli for the experiments, generally, much stronger associations 

between facial colour characteristics and preference have been revealed 

compared to recent studies using non-manipulated facial images. In studies 

that use image manipulation, statistically significant results have been found 

that increased facial skin lightness, redness and yellowness are linked to 

enhanced healthy appearance and facial attractiveness (Stephen, Coetzee, 
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et al., 2009; Stephen, Law Smith, et al., 2009; Stephen et al., 2012; Lefevre 

and Perrett, 2015; Pazda et al., 2016; Thorstenson et al., 2017).  

To assess the role of various colour cues in facial preference judgment in 

real situations, the recently growing body of work has used realistic skin 

models in experiments for preference evaluation without any skin colour 

manipulation (Nkengne et al., 2008; Foo, Simmons, et al., 2017; Tan et al., 

2018; Jones, 2018; Appleton et al., 2018). These studies, however, revealed 

very weak correlations between average skin colour and perceived 

healthiness (p >  0.636) (Jones, 2018), a limited role for colour in predicting 

attractiveness (p > 0.05) (Foo, Simmons, et al., 2017), and much weaker 

associations between skin colour and perceived age compared to skin 

colour uniformity or distribution (Nkengne et al., 2008; Mayes et al., 2010). 

Although image manipulation could be an effective way to explore the effect 

of one single variable on preference evaluation while holding all other 

variables constant, it has several major limitations as summarised below: 

• It may not be a reliable method to conduct comprehensive 

examinations of the various variables. With image manipulation, facial 

colour cues could only be studied individually, which may simplify the 

complex nature of facial preference judgement in real situations 

where various colour cues are considered together in a more 

holistical way. 

• Using image manipulation, the role of the single colour characteristic 

that is being manipulated may be overestimated. Since observers can 

only manipulate a particular colour characteristic or choose 

manipulated facial images along fixed dimensions (e.g. CIELAB L*, 

a*, b*) for preference enhancement, they may only pay attention to 

that colour characteristic. Thus, the generated strong associations 

between the particular colour cue and the preference may not fit the 

real faces.  

• Manipulated skin colour change could be impractical when uniform 

colour shifts are ideally applied to each pixel over the face. It is not 

necessarily consistent with naturally occurring coloration changes 

since the variation in the colour pattern depends on the distribution of 

blood vessels across the face which is not uniform. 

• Manipulated skin colour changes are often restricted to a single 

dimension of CIELAB L*, a*, or b*. Real skin colour changes are not 

restricted to one of the CIELAB dimensions but are characterized by 

co-variations along all three dimensions, e.g. (Appleton et al., 2018). 
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•  The manipulated skin colour could easily get out of the real skin 

colour gamut if it’s not carefully processed. E.g. Figure 2.14 shows a 

magnitude of redness changes over 10 a* units and the colour shifts 

were applied uniformly across the face. Whereas in the real skin 

colour gamut, the range of redness values covered by different faces 

is about 6 a* units (see Figure 4.2). 

• The computer-generated or morphed facial images may lose skin 

texture and appear to be unrealistic after image processing.  

Considering the limitations above, the current study aimed to discuss facial 

colour preference within an evolutionary meaningful parameter space and to 

provide a useful and repeatable methodology for skin colour research based 

on a realistic skin model. High-resolution images of real human faces without 

changing the original colour were used, facial colour analysis was performed 

on each of the real facial images and a rigorous process of display colour 

characterization was performed to truly present the colour appearance of 

those facial images to observers in the preference evaluation experiments. 

Using realistic skin models in experiments for preference evaluation could 

inevitably raise concerns that it is difficult for observers to ignore the role of 

certain facial features, for example, the eyes, the nose, the lips, and the 

mouth, and make judgements based only on skin colour. In the current 

study, this real variation is considered and is trying to be covered, at least 

partially, by using a large number of images of real faces. In fact, by using 

such a method, the results actually reflect the role of skin colour in facial 

preference judgments in a real situation where the preference could be more 

or less influenced by those structural facial features.  

2.4.5 The cultural difference 

Most research work that has investigated the impact of facial colour 

appearance on these perceived attributes was conducted using Caucasian 

samples, both as participants and to provide stimulus material (see the 

column ‘Ethnicity’ in Table 2.1, Table 2.2). Facial colour perception, 

however, may vary between different ethnic groups. In colour imaging, 

people typically rely on their perceptions and preferences to judge the quality 

of the colour reproduction of faces. It is important to know the perceptual 

differences for preferred colour reproduction when diverse populations of 

both observers and the observed are involved. Cultural differences in the 

perception of facial colour appearance are also worthy of consideration 

because of the increasing number of applications that need to define the 

preferred colour reproduction based on the needs of different people, 
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including photography and graphic arts, dermatological diagnosis and 

surgery in medical applications, mannequin display in retail and e-

commerce, the product development of cosmetics, and colour rendition 

under various types of light source (Zeng and Luo, 2010; Xiao et al., 2014; 

Okuda and Okajima, 2017; Gao et al., 2018). 

So far, four studies have focused on the perceptual cultural differences in 

facial colour preference. Two studies by Stephen et al. were conducted 

amongst Caucasian and African populations(Stephen et al., 2012; Coetzee 

et al., 2014). In the first, both Caucasian and African observers viewed facial 

images of their own ethnicity and found similar perceptual preferences for 

increased skin lightness (L*) and yellowness (b*) in both Caucasian and 

South African populations. The second study also found that an association 

between skin colour and male facial attractiveness only existed when 

viewing own-ethnicity faces, both for African and Caucasian observers. A 

study conducted by Han et al., however, did not find a cross-cultural 

similarity in facial colour preference but found significantly different 

preferences for facial colour between Chinese and Caucasian participants 

such that Chinese observers prefer lighter skin and decreased yellowness 

compared to Caucasian participants (Han et al., 2018). Malaysian Chinese, 

by contrast, linked increased yellowness and redness but decreased 

lightness with enhanced perceived healthiness (Tan and Stephen, 2019). 

Porcheron et al. studied the influence of facial colour contrast on age 

perception among Caucasian, Chinese, Latin American, and South African 

(Porcheron et al., 2017). They revealed that facial colour contrast was a 

cross-culturally valid cue for perceiving age and that increasing the facial 

colour contrasts made the faces look younger, which was independent of the 

ethnic origin of both faces and observers. 

The limited cross-cultural studies inclusively used methods of image 

manipulation and showed controversial results. It remains unclear whether 

the perception of facial attractiveness, healthiness, and age, follows a similar 

pattern for different ethnic groups, and whether cultural differences exist in 

the preference judgements of real human faces. In the current study, the 

cultural difference in facial preference judgement was investigated between 

Caucasian and Chinese populations. 

2.5 Skin colour and facial appearance perception 

The great research interest in skin colour and facial preference judgements 

has shown the importance of facial colour appearance. The facial colour 
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appearance describes what the colour stimuli of facial skin look like in 

human colour vision. Although CIE colorimetry provides the objective tool for 

colour measurement and quantification, colour perception is subjective in 

nature, and the perceptual aspects are important in any evaluation of human 

faces. In this section, the methods of skin colour quantification are 

summarised. More importantly, studies on the perception of facial colour 

appearance and its perceptual difference from nonface objects are reviewed. 

2.5.1 Skin colour quantification 

It is critical to describe skin colour characteristics accurately through 

effective measurements in skin colour research. Human skin is a complex 

multi-layered surface with colour unevenly distributed. These properties add 

to the uncertainties of accurate colour measurements. Several types of 

measuring methods have been used for quantifying skin colour. The three 

most commonly used methods are described in this section, and they are 

colour charts, instrumental measurements, and image-based measurements. 

Colour charts 

Colour charts are used to classify human skin colour through colour 

matching with the target skin. The method has been adopted a long time ago 

before measuring instruments were introduced and is still used today. Table 

2.3 summarises five colour charts used for skin classification with various 

needs (Fitzpatrick, 1988; Taylor et al., 2005; De Rigal et al., 2007; 

Swiatoniowski et al., 2013).  

Table 2.3 Colour charts for skin classification. 

Colour charts Authors Descriptions Purpose Samples 

Von Luschan’s 

chromatic scale 

Felix von 

Luschan 

late 1800s 

36 coloured 

opaque glass 

tiles 

Measure skin 

colour, evaluate 

skin treatments 
 

Fitzpatrick skin 

prototype scale 

Fitzpatrick 

1975 

6 skin colour 

types 

Classify skin 

colour for UV 

protection 
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Taylor 

hyperpigmentati

on scale 

Taylor, S. 

et al. 2006 

15 coloured 

plastic cards 

Evaluate 

hyperpigmentatio

n treatment 

 

Skin Colour 

Chart® 

L’Oréal® 

2007 
52 fan charts 

Assist clinicians in 

evaluating the 

skin care products 
 

Pantone 

SkinTone™ 

Guide 

Sephora 

and 

Pantone 

110 fan 

charts 

Personalised 

cosmetic 

shopping 
 

Colour charts serve as an inexpensive and convenient tool to assess skin 

tone and thus have been successfully used in cosmetic companies. 

However, the accuracy or consistency of colour measurements largely 

depends on visual assessments of individuals and viewing conditions. 

Besides, colour charts can only have a limited number of colours and are not 

enough to determine human skin colour with a wider range and more 

variation. These limitations could be overcome by instrumental 

measurements and image-based measurements. 

Instrumental measurements 

Point measuring methods by instruments have also been most widely 

adopted for skin colour measurement. Tele-spectroradiometers (TSR) and 

spectrophotometers (SP) are two types of instruments that are widely used 

to acquire skin colour and spectral information. Spectroradiometers is a non-

contact-type instrument and require an external light source to measure the 

spectral power. Spectrophotometers is a contact-type instruments with a 

built-in light source and can measure the spectral reflectance of the skin 

surface. Based on CIE colourimetry, the skin colour of the target point area 

can be obtained in terms of the CIE tristimulus values and CIELAB 

coordinates, L*, a*, and b* values. Figure 2.15 shows an example of using a 

spectrophotometer to measure the skin colour of a subject’s forehead. 
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Figure 2.15 Example of using a spectrophotometer to obtain measurements 
on the subject’s forehead (Wang et al., 2018). 

Both instruments are more sensitive and reliable than visual assessments, 

thus can give more accurate point measurements of skin colour. Actually, 

the Skin Colour Chart® developed by L’Oréal® was based on the skin data 

measured by spectroradiometer instruments and the Pantone SkinTone™ 

Guide was established based on the spectrophotometer measurements. 

Although instruments can give relatively precise colour measurements, 

some uncertainties should be taken into consideration while using them. For 

example, the repeatability of the non-contact spectroradiometers is affected 

by measurement distances, and the measuring results of the contact 

spectrophotometers are affected by both measurement field sizes and 

different pressure applied during measurements (Wang et al., 2018). 

Furthermore, the instruments can only be used to obtain the colour 

information of certain points, but cannot include the overall skin colour 

information and all the colour characteristics, e.g. the average facial skin 

colour, skin colour variations, facial colour contrasts, etc. 

Image-based measurements  

Obviously, the point measurements are not enough to acquire the various 

facial colour characteristics mentioned in Section 2.4. In this regard, image 

analysis using digital cameras provides another method to record and 

assess skin colours. The image-based methods for colour measurements 

have been a research interest because they can be used to acquire a huge 

amount of information about the whole image and meanwhile achieve 

accurate colour measurements (Miyamoto et al., 2002; Xiao et al., 2016; 

Kikuchi et al., 2020). For the camera imaging systems, a stable environment 

with defined lighting conditions is required and mathematical algorithms are 

needed to transform the digital image data to CIE XYZ tristimulus values or 

spectral reflectance values. Thus, the colour specifications of each pixel in 

the facial image can be obtained. Moreover, the average facial skin colour 
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and other facial colour characteristics, such as skin colour variation and 

facial colour contrasts can be calculated based on the image data. Facial 

images are quite essential for skin colour presentation and facial 

attractiveness evaluation, so they have been used frequently in relevant 

studies (as reviewed in Section 2.4). 

Based on instrumental measurements and image-based measurements, 

several international skin colour databases have been established by 

different researchers to meet multi-disciplinary applications. Skin colour 

database collects skin colour information, investigates the variation in skin 

colour between different ethnic groups, gender and body locations, and 

provides a vital reference for skin colour research. In 2003, the International 

Organisation for Standardization published an international standard: 

Graphic technology - Standard object colour spectra database for colour 

reproduction evaluation (SOCS) (Tajima et al., 2002). SOCS recommended 

six sets of skin colour, SHISEIDO, KAO, OOKA, KAWASAKI, OULU, SUN 

(Tajima et al., 1998; Marszalec et al., 2000; Sun and Fairchild, 2002). The 

first three databases have not published their measurement setups. The 

latter three databases captured facial images during data collection, but all 

the facial images were not included in the published database. Besides, a 

Chinese skin colour database was built in 2012 with 202 Chinese subjects 

(Xiao et al., 2012). 

A more comprehensive skin colour database, the Liverpool-Leeds Skin-

colour Database (LLSD), with unified measurement methods and covering 

different ethnic groups, genders, ages and body locations was then 

established by the Universities of Liverpool and the Universities of Leeds 

(Xiao et al., 2017; Wang et al., 2018). Figure 2.16 shows how the facial 

image was captured in a diffused lighting condition, and the digital SLR 

camera was positioned in front of the subject’s face. This database included 

data for 188 subjects from four ethnic groups (Caucasian, Oriental, South 

Asian and African, including both genders). The facial images captured by a 

digital camera under CIE illuminant D65 and the reflectance data of each 

pixel in the images were also included in the database. The variations in 

ethnic skin colours were investigated based on the database (Xiao et al., 

2017).  

In the current study, the facial images selected from LLSD are used to 

assess the skin colour appearance and facial attractiveness in all the 

experiments. The process of image selection and processing will be 

described in Section 3.2.2. Based on these facial images of real faces, 
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accurate colour information is obtained to support the following data analysis 

and modelling work.   

 

Figure 2.16 Example of facial image capturing using the using VeriVide 
DigiEye® light booth (Wang et al., 2018). 

2.5.2 The overall facial colour appearance 

As reviewed in Section 2.4, the impact of facial colour appearance on 

preference judgements has been widely studied using the image-based 

method. Those studies have commonly used the mean pixel colour of facial 

skin area specified in CIELAB colour space (average L*, a*, and b* values) 

to represent the overall facial colour appearance. Although the facial image 

contains colour information of the entire face and image-based 

measurement can achieve high accuracy, the human colour perception 

could be different from the colour measurement. The overall colour 

appearance of human faces has not been studied so far and whether the 

overall facial colour appearance is perceived as the same as the mean pixel 

colour remains unknown. 

In real life and many applications, the colour appearance of non-uniform 

surfaces, such as teeth, food, and textiles, is evaluated. The human visual 

system seems to be able to extract and summarise the representative colour 

description, e.g. tree foliage is green and banana is yellow (Kuriki, 2004). 

Yet little is known about the formation of the summary representations of 

multi-coloured stimuli. The conventional hypothesis is the colorimetric 

average hypothesis that the colour appearance, or say a single colour 

impression, is determined by the colorimetric average of the elemental 

colours that constitute the textured pattern. However, as the colour 

appearance of the multi-coloured patch and several objects have been 

studied in a small number of literature, the human colour perception of multi-
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coloured stimuli seems cannot be simply explained by the colorimetric 

averages. 

Sunaga and Yamashita studied the global colour impressions of the non-

uniform textured patch consisting of two colours with the same hue and 

brightness but different saturation (Sunaga and Yamashita, 2007). Using an 

asymmetrical colour matching experiment, they found the matched colour 

shifted toward a higher saturation than the colorimetric averages, which 

supported the colour appearance hypothesis that the single colour 

impression is determined by an integration of the appearance of the 

elemental colours. Giesel and Gegenfurtner studied the colour appearance 

of real objects varying in material, hue, and shape (Giesel and Gegenfurtner, 

2010). In their experiments, observers adjusted the colour of the uniform 

patch to match the colour appearance of the object and results also showed 

observers did not simply take the average colour across objects. Rather, the 

geometry of the objects was taken into account and the variations in 

reflected light were neglected. Kimura investigated how colour information 

was summarized in multicolour mosaics by matching a uniform colour patch 

to the multicolour mosaics (Kimura, 2018). It was found when the colour 

variation was large, the matched colour deviated from the colorimetric mean 

toward the most-saturated colour. Virtanen et al. conducted experiments to 

characterize different aspects of the spatial integration of hue and claimed 

humans are efficient at integrating hue information over space (Virtanen et 

al., 2020). 

 

Figure 2.17 The multi-coloured stimuli used in previous studies on overall 
colour appearance (a) (Sunaga and Yamashita, 2007), (b) (Kimura, 
2018), (c) (Virtanen et al., 2020), (d) (Giesel and Gegenfurtner, 2010). 

So far, the studies on overall colour appearance or global colour 

representations of multi-coloured stimuli are restricted to relatively simple 
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objects, including textured patches, mosaics, monochromatic objects, etc. 

(as shown in Figure 2.17). Whereas human faces are more complex visual 

stimuli with larger variations and more unique patterns. How the visual 

system discriminates, identifies, integrates the colour information, and forms 

ensemble perceptions across the whole face could be quite different and 

complicated. In the current study, how the colour appearance of a human 

face is summarised as a representative colour is studied. The relationship 

between the overall colour perception and colorimetric average values of 

human faces is investigated. 

2.5.3 Facial whiteness, redness, and yellowness 

Facial skin whiteness, redness and yellowness are three attributes most 

directly describe people’s perceptions of facial colour appearance and thus 

receive most concerns in application fields such as cosmetics and 

dermatology and also in our daily life. Studies on facial colour and 

preference judgements have commonly used the CIELAB colour space to 

describe skin colour appearance, and the overall facial lightness, redness 

and yellowness have been simply represented by the mean L*, a* and b* 

values of the facial skin area respectively (Section 2.4.1). So far, not only the 

overall facial colour appearance is not clear, but the perception of facial 

redness and yellowness has also not been precisely examined. It is 

unknown whether these colorimetric values in CIELAB colour space are 

equivalent to the subjective colour perceptions of facial skin.  

Whiteness is an important colour attribute in many industries and thus 

indices have been developed for evaluating the whiteness in different 

applications, most notably for paper and textiles. For example, the CIE 

whiteness index (WIC) of neutral hue was a widely used index 

recommended by CIE (ASTM, 1993). Besides, WIO and WID were 

specifically used to assess the tooth whiteness perception in dentistry (Luo 

et al., 2007; Luo et al., 2009; Pérez et al., 2016). Those indices are limited to 

a specific range of chroma and tint (nearly white). To describe general 

colours, the depth scale D*
ab was developed by Berns to describe the 

difference in colour from the neutral colours (Berns, 2014). It is calculated by 

the distance between the whitest colour (L*=100, C*
ab=0) and the sample 

colour in the L* C*
ab plane in the CIELAB colour space. In the area of skin 

colour, whiteness or having white skin is considered an important element in 

female beauty in Asian cultures (Xie and Zhang, 2013; Gao et al., 2018). 

The Individual Typology Angle (ITA°) was proposed to classify skin colour 

with ‘lightness’ and show the degree of constitutive pigmentation of the skin 
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(Chardon et al., 1991; Del Bino and Bernerd, 2013). The term ‘lightness’ 

used here is not the L* in the CIELAB system, but similar to the meaning of 

skin whiteness. As Figure 2.18 shows, the ITA° index is determined in the 

L*b* plane based on the CIELAB system and allows skin colour types to be 

classified into six groups. For the skin colour with lightness higher than 50, 

the skin colour with higher L* and smaller b* values appears lighter. For the 

skin colour with lightness lower than 50, the skin colour with higher L* and 

bigger b* appears lighter. This whiteness scale indicates the difference 

between perceived skin whiteness and colorimetric values of lightness (L*). 

On the other hand, studies on brightness perception showed though 

perceived facial whiteness was found highly associated with lightness (L*) as 

well as brightness (Shimakura and Sakata, 2019; He et al., 2021), whiteness 

is perceptually independent from brightness in face perception (Shimakura 

and Sakata, 2019). Another study on facial skin whiteness conducted among 

Japanese women has found that whiteness is not only linked with L* and b* 

but also related to a* (Yoshikawa et al., 2012). They claimed that reddish 

facial skin appeared whiter than yellowish one in high-lightness regions and 

low-chroma facial skin appeared whiter than high-chroma one. 

 

Figure 2.18 The Individual Typology Angle (ITA°) (Del Bino and Bernerd, 
2013). 

The Yellowness index has also been developed in dentistry (Sullivan et al., 

2019), whereas no index of redness or yellowness could be used to quantify 

the colour perception of human complexion. Facial skin redness is 

determined by perfusion with oxygenated blood and conveys information 

about cardiovascular fitness and emotional state (Re et al., 2011). Facial 

redness is also considered as the most common and recognisable clinical 

sign of many facial dermatoses (Dessinioti and Antoniou, 2017). Skin 
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yellowness is influenced both by dietary carotenoids and melanin (Lefevre 

and Perrett, 2015). Interestingly, facial redness and yellowness perceptions 

have shown special salience in colour change discrmination compared to 

facial luminance (Tan and Stephen, 2013). Both facial redness and 

yellowness were found closely related to facial attractiveness, healthiness, 

and visual age (Section 2.4.1). However, those studies simply used a* and 

b* parameters of the CIELAB colour space to roughly characterise facial skin 

redness and yellowness, respectively. Though in the CIELAB system, a* 

represents the value along the red-green dimension, and b*  represents the 

value along the yellow-blue dimension, we haven’t know whether a* and b* 

are accurate measures of the subjective colour perceptions of ‘skin redness’ 

or ‘skin yellowness’.  

The literature above suggested that facial skin whiteness might not be 

influenced only by L*; though skin redness and yellowness were expected to 

be connected with a* and b*, respectively, it was far from clear what the 

actual relationship is within the constraints of skin colour space. Considering 

the peculiarity of human skin colour, skin whiteness, redness, and 

yellowness might be good scales to quantify facial colour appearance from 

the perspective of visual perception. In the current study, psychophysical 

data is collected to quantitatively define these perceptual attributes of skin 

colour appearance and to precisely examine their relationship with the 

colorimetric values.  

2.5.4 Perception of facial colour appearance 

Perception of facial colour appearance is unique. The existing studies have 

shown that, in terms of colour discrimination and perception, the facial colour 

appearance is largely different from the colour appearance of nonface 

objects.  

Concerning facial colour discrimination, Tan and Stephen examined the 

detection threshold for skin colour changes in Malaysian Chinese observers 

(Tan and Stephen, 2013). They revealed visual sensitivity was greater at 

discriminating changes in facial redness and yellowness than changes in 

luminance. However, the sensitivity was not greater for nonface stimuli 

(colour patches). Meanwhile, they also found the cross-race effect in 

discriminating facial colours that participants were more sensitive in 

recognising colour changes of their own faces rather than faces of other 

ethnicity.  
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Regarding colour appearance perception, a few studies were conducted 

comparing the face stimuli and the uniform patch stimuli. Yoshikawa et al. 

studied the influence of chromatic components on whiteness perception and 

found that perceived facial whiteness is largely influenced by chroma and 

hue that reddish skin and low-chroma skin appeared brighter or whiter 

(Yoshikawa et al., 2012). Yet these results were not found in the perception 

of the uniform colour patch, which suggested a higher-level process of face 

recognition existed and affected the perception of skin whiteness. Shimakura 

and Sakata investigated the effect of saturation on perceived brightness and 

whiteness in both face images and uniform colour patches (Shimakura and 

Sakata, 2019). They found an inverse effect on the perception of the colour 

appearance of the face and uniform colour patch. A uniform colour patch 

appeared brighter with increased saturation (the Helmholtz–Kohlrausch 

effect) while a facial image appeared less bright with increased saturation 

while (contrary to the Helmholtz–Kohlrausch effect). They also suggested 

the contribution of higher-order recognition mechanisms. Hasantash et al. 

tested how memory modulated the colour appearance perception of objects 

and faces under different light conditions and found, in some lighting 

conditions, the impact of memory on colour perception is greatest for face 

colour compared to other colours (Hasantash et al., 2019). More recently, 

He et al. investigated the effect of colour on brightness perception among 

different Asian countries and suggested the perceptual difference existed 

among different countries (He et al., 2021). Normally such cultural 

dependency would not be expected in the perception of uniform colour 

samples. 

All the literature above has noted the distinctiveness of facial colour 

perception from nonface objects. In the current study, both the overall facial 

appearance and the perception of skin whiteness, redness, and yellowness 

are assessed. Meanwhile, the perceptual difference between the face stimuli 

and the uniform patch stimuli with the same colour appearance is explored 

with the aim of better understanding human perception of skin colour. 

2.6 Display 

Two displays, including an LCD and a LED display, were used in this study 

as a medium for colour appearance assessment and preference evaluation. 

It is of key importance to reproduce the colour of the visual stimuli (images of 

real human faces and uniform colour patches) accurately and consistently 

on display during the psychophysical experiments.  
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2.6.1 Display calibration and characterisation 

The display colour is determined by the RGB digital signals. As they are 

device-dependent, different displays are likely to have different RGB 

primaries and generate different colour appearances of the same image. 

The same display is also likely to generate different colour appearances 

depending on the settings (e.g. brightness, contrast, sharpness) and status 

of the device (e.g. warm-up time) (Westland et al., 2012). To solve this 

problem, display calibration and characterisation were conducted. As 

defined by Johnson (Johnson, 1996), calibration is the process of setting up 

the device to ensure it gives consistent responses every time; 

characterisation is the process of defining the relationship between the 

device-dependent colour space such as the adobe RGB space and the 

device-independent colour space such as the CIE XYZ. In the following 

section, the display characterisation models will be introduced. The settings 

under which display characterisation is conducted should be kept the same 

all the time during the psychophysical experiments to ensure the displays 

give a consistent performance. 

2.6.2 Display characterisation models 

Normally, display characterisation models can be simplified into a two-stage 

model. The first stage is a non-linear transformation between the RGB 

signals and the display luminance for each channel. The widely used GOG 

(gain-offset-gamma) model was proposed by Berns et al. (Berns, 1996). The 

model characterises the power-law relationship between the input digital 

signals and the output display luminance of the CRT (cathode ray tube) 

displays. Many LCD (liquid crystal display) manufacturers make the LCDs a 

power-law response mimicking the CRT displays thus the GOG models can 

also be used for LCD (Balasubramanian, 2017). The equation of the GOG 

model is given below: 

𝑅 = (𝑎𝑟 × 𝑑𝑟/(2𝑁 − 1) + 𝑏𝑟)𝛾𝑟 

𝐺 = (𝑎𝑔 × 𝑑𝑔/(2𝑁 − 1) + 𝑏𝑔)𝛾𝑔 

𝐵 = (𝑎𝑏 × 𝑑𝑏/(2𝑁 − 1) + 𝑏𝑏)𝛾𝑏 

Equation 2.11 

Where R, G, and B are linearised digital values ranging from 0 to 1; 𝑑𝑟, 𝑑𝑔, 

and 𝑑𝑏  are the input digital signals of R, G, and B channels; for each 

channel, 𝑎, 𝑏, 𝛾 are the coefficients of gain, offset, and gamma, and the sum 

of the gain and offset are constrained to 1. Neutral colours are 

recommended to determine the three coefficients (Roy S. Berns et al., 

1993). Measurements of a set of neutral samples are required as the training 
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data and method of optimisation is needed to obtain the coefficients of gain, 

offset, and gamma for each channel with the minimum colour difference of 

the training data. 

Other model also used to characterise the non-linear relationship include the 

PLCC (piecewise linear interpolation assuming constant chromaticity 

coordinate), which uses separate look-up-tables for each channel and 

assumes a linear relationship between points of the look-up-table (Post and 

Calhoun, 1989). Usually, the PLCC model requires more training data than 

the GOG model. 

The second stage of display colour characterisation is a linear 

transformation between the linearised values and CIE XYZ tristimulus values, 

and the equation is given below: 

[
𝑋
𝑌
𝑍

] = [

𝑋𝑟,𝑚𝑎𝑥

𝑌𝑟,𝑚𝑎𝑥

𝑍𝑟,𝑚𝑎𝑥

 𝑋𝑔,𝑚𝑎𝑥 

𝑌𝑔,𝑚𝑎𝑥

𝑍𝑔,𝑚𝑎𝑥

𝑋𝑏,𝑚𝑎𝑥

𝑌𝑏,𝑚𝑎𝑥

𝑍𝑏,𝑚𝑎𝑥

] [
𝑅
𝐺
𝐵

] 
Equation 2.12 

Where R, G, and B are linearised digital values; X, Y, and Z are 

corresponding tristimulus values; 𝑋𝑟,𝑚𝑎𝑥 , 𝑌𝑟,𝑚𝑎𝑥 , 𝑍𝑟,𝑚𝑎𝑥  are the tristimulus 

values when the red channel is at the maximum intensity, 𝑋𝑔,𝑚𝑎𝑥 , 𝑌𝑔,𝑚𝑎𝑥 , 

𝑍𝑔,𝑚𝑎𝑥 are the tristimulus values when the green channel is at the maximum 

intensity, 𝑋𝑏,𝑚𝑎𝑥 , 𝑌𝑏,𝑚𝑎𝑥 , 𝑍𝑏,𝑚𝑎𝑥  are the tristimulus values when the blue 

channel is at the maximum intensity. This 3 x3 matrix can be obtained by 

three measurements of the pure red, pure green, and pure blue samples 

(Roy S. Berns et al., 1993).  

2.6.3 Spatial independence and channel independence 

When adopting the display characterisation models and applying the linear 

transformation, two underlying assumptions are made (Roy S Berns et al., 

1993). The first important assumption is that the luminance and chromaticity 

of the colour displayed on one area of the screen are not affected by the 

colour on another area of the screen (spatial independence). To evaluate 

spatial independence, the white colour is usually measured against a black 

background and a white background, respectively, and the two 

measurements were compared in terms of the colour difference (Figure 

2.19). 
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Figure 2.19 Evaluation of the spatial independence of display. 

The second important assumption is that the output of each channel is 

independent (channel independence) so the output of the display is 

expected to be the sum of the tristimulus values of the three channels based 

on Grassmann’s laws of additive mixing. The influence of the channel 

independence is tested by measuring the tristimulus values of the pure red, 

green, and blue colours (Figure 2.20), and comparing the sum of these 

tristimulus values with the tristimulus values of the pure white colour in terms 

of the colour difference. 

 

Figure 2.20 Evaluation of the channel independence of display. 

2.7 Psychophysics 

Psychophysics is a discipline of the scientific study of the relationships 

between physical measurements of stimuli and the perceptions or 

sensations that those stimuli evoke (Gescheider, 2013). Psychophysical 

methods serve as tools to derive quantitative measures of all dimensions of 

human perceptions which are often considered subjective. It is the 

foundation of CIE colorimetry (Hunt and Pointer, 2011). As the present study 

deals with the human colour perception of facial skin, all the experimental 

work is associated with psychophysics. Specifically, visual psychophysics is 

used as the basis of the experimental work to deal with human colour 

perception.  

There are two classes of visual psychophysical experiments: scaling 

experiments and matching or threshold experiments. The former is used to 

generate the relationship between physical measurements of stimuli and 

perceptual magnitudes. For example, scaling experiments could be used in 
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the evaluation of image quality. The latter is designed to measure the 

perceptual equality or the visual sensitivity of stimuli. Matching techniques 

are widely used in the study of colour appearance to determine whether two 

colour stimuli have a perceptually equal appearance across different 

conditions. It is critical to select the appropriate research method according 

to the specific situation. This section introduces the psychophysical scales 

and the two classes of methods. 

2.7.1 Psychophysical scales 

Four major types of scales are normally used in psychophysical experiments 

to describe the relationship between physical stimuli and the associated 

perceptions or sensations (Stevens, 1946). 

Nominal scale 

The nominal scales use numerals as labels or type numbers. They are 

categories without ordering or direction. For example, the numbering of 

players or classes, etc. 

Ordinal scale 

The ordinal scales are used to rank ordered categories. For example, the 

size of clothes, the classes of leather, etc. 

Interval scale 

The interval scales specify the differences between measurements but 

without a true zero point. For example, the Celsius temperature scale, the 

Likert scale for rating, etc. 

Ratio scale 

The ratio scales are interval scales with a true zero point. They are used in 

measurements of the ratio between a magnitude of a continuous quantity 

and a unit of measurement of the same kind. Most measurements in 

physical science and engineering use ratio scales. For example, the mass, 

the length, the duration, etc. 

2.7.2 Scaling techniques 

Different scaling techniques are used for the psychophysical study to 

quantitively measure the observers’ responses. Three scaling techniques 

are introduced in this section, categorical judgement, pair comparison, and 

magnitude estimation.  
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2.7.2.1 Categorical judgement 

Categorical judgement is an effective scaling method. Observers are asked 

to respond with their opinion of the stimuli by an equal–interval scale of 

categories, e.g. a seven-point Likert scale. Torgerson’s Law of Categorical 

Judgment is applied to this method (Torgerson, 1958). Unlike the paired 

comparison, the method is useful particularly when the number of stimuli is 

large. Previous studies on skin colour and facial preference judgements 

have largely used two methods, categorical judgement and pair comparison 

(see Section 2.4, as summarised in Table 2.1 and Table 2.2). A few also had 

observers adjust the colour of the stimuli. The number of references using 

each method is listed in Table 2.4 below. Pair comparison could be useful 

for studies using manipulated facial images as other variables are controlled 

and only subtle colour changes exist between sample pairs. While studies 

using the uncontrolled stimuli of real facial images have mainly chosen the 

method of categorical judgement and the 7-point. In the present study, the 7-

point Likert scale was also used for the preference evaluation based on 

facial skin colour (see Experiment 1 and Experiment 2). 

Table 2.4 Psychophysical techniques used in the literature on skin colour 
and facial preference judgements. 

Methods Specific techniques References amount 

Categorical 
judgement 

Preference rating using a 7-point 
Likert scale 

13 

Preference rating using a 9-point 
Likert scale 

5 

Other techniques, e.g. 10-point rating 
scale, 0-100 scale, questionnaire, etc. 

3 

Pair 
comparison 

Forced choice between pairs of 
stimuli, e.g. participants were told to 
choose the face they thought was 
more preferred 

8 

Adjusting 
colour 

change the colour to make the face as 
attractive/healthy as possible 

4 

2.7.2.2 Pair comparison 

As mentioned above, paired comparison can be used in the experiment with 

a relatively small number of stimuli. The observers will view all the possible 

pairwise combinations of stimuli and are usually asked to choose one 

stimulus after evaluation. The proportion of times a particular stimulus is 

chosen is calculated and recorded during the experiment. Thurstone’s Law 
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of Comparative Judgement is applied to this method (Thurstone, 1927).  

Examples of pair comparison can be found in the literature reviewed in 

Section 2.4 as summarised in the last column of Table 2.1 and Table 2.2. 

2.7.2.3 Magnitude estimation 

Magnitude estimation is a technique standardly applied in psychophysics to 

measure judgments of sensory stimuli (Teghtsoonian et al., 1975). In 

magnitude estimation, observers judge the intensity of a stimulus in 

comparison to a baseline stimulus or reference stimulus. This method can 

directly generate the ratio scale and is highly replicable both within and 

across observers, thus has been widely adopted to study colour appearance. 

In fact, magnitude estimation and matching are the two suggested 

psychophysical techniques for colour appearance modelling (Fairchild, 1995; 

Fairchild, 1997). To study the colour appearance, observers are asked to 

estimate the scale values of the colour appearance attributes, e.g. lightness, 

colourfulness, hue etc. (see Section 2.2.4 for perceptual attributes of colour) 

based on a reference stimulus. Using this method, the perceptual scale 

values can be directly obtained in the context of various parameter settings. 

This method is used for accumulating some most important colour 

appearance datasets, e.g. LUTCHI data (Luo et al., 1991) as well as 

developing and testing the colour appearance models (Luo et al., 1991; 

Fairchild, 1995; Luo and Hunt, 1998; Kuo, 2007; Pointer et al., 2008). The 

advantage of this method is that the training is easy, and observers can 

easily scale the perceptual attributes. The disadvantage is the variation of 

observers could be larger than the matching techniques. Hence, the 

coefficient of variation (CV) has been suggested as a statistical measure to 

compare the observer variations in data analysis (Fairchild, 1995). The 

calculation of the CV value will be introduced in Section 2.8.2 for measures 

of observer variation. In the present study, the magnitude estimation is used 

to scale three perceptual attributes of facial colour appearance, whiteness, 

redness, and yellowness based on the reference stimuli, and the CV value is 

used to assess the observer variation (see Experiment 4). 

2.7.3 Matching techniques 

Colour matching techniques are the other widely used method in studies on 

colour appearance and there are two major types of matching techniques, 

asymmetric matching and memory matching.  
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2.7.3.1 Asymmetric matching 

Asymmetric colour matching is often used in the study of colour appearance 

assessment to determine when two stimuli are not perceptually different 

(Fairchild, 2013). For example, the CIE colour matching functions are 

derived from colour matching experiments, providing the basis of CIE 

colourimetry. When judging adjacent colour samples, the human visual 

system is good at detecting whether they are equal or not. The observers 

produce a colour match while viewing both stimuli and then the physical 

properties of the match will be used to study the perception of the human 

visual system. All the studies reviewed in Section 2.5.2 have used the 

technique of asymmetric matching to study the overall colour appearance of 

multi-coloured objects (Kuriki, 2004; Sunaga and Yamashita, 2007; Giesel 

and Gegenfurtner, 2010; Kimura, 2018; Virtanen et al., 2020). In the present 

study, this method is used to assess the overall colour appearance of human 

faces (see Experiment 3). 

2.7.3.2 Memory matching 

Memory colour matching is another type of matching technique used in 

colour appearance research. The observers are asked to match the colour of 

a familiar object under adaptive conditions until it matches the observers’ 

memorized colour of this object. Hasantash et al.’s study gives an example 

of memory colour matching (Hasantash et al., 2019). 

2.8 Data analysis techniques 

The statistical methods and modelling techniques used for data analysis are 

introduced in this section. The data analysis in the present study is 

conducted using R (RDC, 2010), which is a programming language for 

statistical computing and graphics supported by the R Core Team and the R 

Foundation for Statistical Computing. 

2.8.1 Statistical measures and tests 

Several statistical measures and tests described in this section served as 

the bedrock of data analysis. The book, Introduction to statistics in 

psychology by Howitt and Cramer (Howitt and Cramer, 2007), is used as a 

general reference for this section. 

The mean 

The arithmetic mean is adopted in this study, which is the everyday concept 

of average. It is calculated by summing all of the data in a distribution and 
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then dividing by the number of the dataset. The statistical notation can be 

expressed in the equation below: 

�̂� =
∑ 𝑋

𝑁
 Equation 2.13 

Where �̂� is the statistical symbol for the arithmetic mean of a set of data; ∑ 𝑋 

means add up all of the data 𝑋, 𝑁 is the number of the data. 

The median 

The median is the middle data of a set if the dataset is organised from the 

smallest to the largest. 

The variability 

The concept of variability is essential in statistics. The statistical term, 

variance, is the basic measure of variability.  

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  
∑(𝑋 − �̂�)2

𝑁
 Equation 2.14 

The standard deviation 

The standard deviation measures the dispersion of a set of data relative to 

its mean and is calculated as the square root of the variance. 

𝜎 = √
∑(𝑋 − �̂�)2

𝑁
 Equation 2.15 

Data standardisation  

Based on the mean and standard deviation, data standardisation can be 

achieved by calculating the Z-scores, also referred to as standardised 

scores or standard scores. Z-score standardisation refers to the process of 

standardising every value in a dataset such that the mean of all of the values 

is 0 and the standard deviation is 1, as expressed in the equation below. It 

allows all the data to be expressed consistently in a standard form so that 

the variables with many different units of measurement can be compared. 

standardised score = (X − �̂�)/𝜎 Equation 2.16 

The benefit of standardisation is the clear outliner can be transformed so 

that it’s no longer a massive outliner. Otherwise, the outliner will largely 

influence the model fit especially for some types of machine learning 

models. thus, in the present study, the dataset including various facial colour 

characteristics is standardised prior to the modelling analysis (see Chapter 5 

and Chapter 6). 
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Person correlation coefficient 

With two or more sets of data (variables), the relationships between them 

become important. The relationships can be visualised by the scatterplots or 

quantified by correlation coefficients. Correlation coefficients are the 

numerical indices measuring the relationship between two sets of data. The 

Person correlation coefficient, r, is primarily used for score variables, and is 

determined by the equation below. 

𝑟 =
∑(𝑋 − �̂�)(𝑌 − �̂�)

√∑(𝑋 − �̂�)2 √∑(𝑌 − �̂�)2
 

Equation 2.17 

The coefficients can be either positive (the two sets of data increase 

together) or negative (one set of data increases as the other decreases). 

The absolute values of the coefficients range from 0 (no relationships) to 1 

(perfect relationships), indicating how close the relationships are. In the 

present study, Person correlation is used in the data analysis of different 

experiments. The Person correlation coefficients are reported along with the 

statistical significance of the correlation coefficients. The correlation tests are 

conducted using the cor() function of the stats package in R. 

The t-test 

The t-test is mainly used to assess the difference between two sets of data 

which are collected under two separate conditions but from a single sample 

of participants. It is also appropriate to apply the t-test when the two sets of 

scores are correlated with each other as when matching is used, which is 

the situation in Experiment 3 (colour appearance matching) of the present 

study. A one-sample t-test is a simple type of t-test used to determine 

whether or not the mean of a population is equal to some value. It is used in 

the analysis of Experiment 3 (see Chapter 7). The one-sample t-test was 

done using the t.test() function in the stats R package. 

The linear mixed-effect analysis 

The linear mixed-effect analysis is an extension of the simple linear analysis. 

The term mixed refers to its capability to allow both the fixed effects and 

random effects to be tested in the same analysis. The mixed analysis 

provides a general, flexible approach to correlated data or hierarchical 

structures (observations with subgroups). The fixed effects parameters tell 

how population means differ between any set of treatments, while the 

random effect parameters represent the general variability among subjects 

or other units. In the present study, the linear mixed-effect analysis is used in 

Experiment 1 to test the fixed effects of L*, a*, and b*, image ethnicity and 
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observer ethnicity, and meanwhile include the random intercepts for both 

images and observers. The linear mixed-effect analysis was implemented by 

the lmer() function in the lme4 R package (Bates et al., 2015). As image 

ethnicity and observer ethnicity are categorical predictors, the deviation 

coding was used to convert both image ethnicity and observer ethnicity into 

deviation-coded factors. The detail of the analysis can be found in Chapter 4. 

2.8.2 Measures of observer variation 

In visual psychophysical experiments, the observer variation, including the 

intra-observer and the inter-observer variation, is critical and needs to be 

initially considered to be aware of the typical error involved in the 

experiments. The intra-observer variation is the variation in repeated 

measurements by the same observer, also referred to as observer 

repeatability. The inter-observer variation is the variation of measurements 

between different observers, also referred to as observer accuracy. 

According to the psychophysical techniques used, different types of data are 

collected in the four experiments of the present study. Thus, different 

measures are used to evaluate the observer variation, which is also for the 

purpose of comparing the variation with the existing literature. Three 

methods are introduced in this section to quantify the observer variation in 

the present study. The observer variation of each experiment will be 

calculated in the next chapter. 

The Cronbach’s alpha coefficients 

Cronbach’s alpha is a measure of internal consistency or reliability, which 

shows how closely related a set of items is as a group (Cronbach, 1951). It 

used to be a measure of the reliability between scales, but it has been widely 

adopted as a measure of consistency between ratings from different 

observers (inter-observer variability) in a large number of studies on skin 

colour facial preference judgements (as reviewed in Section 2.4). It is 

expressed in the following equation: 

𝛼 =
𝑁𝒸̅

�̅� + (𝑁 − 1)𝒸̅
 

Equation 2.18 

Where N is the number of items; 𝒸̅ is the average inter-item covariance 

among the items and �̅�  is the average variance. The values of the 

Cronbach’s alpha coefficients range from 0 to 1 where a higher number 

indicates a greater consistency or smaller variation. In the present study, 

Experiment 1 and Experiment 2 collect the ratings of preference judgements 
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and thus use the Cronbach’s alpha coefficients as the measure of observer 

variation (see Section 3.3.1.2 and Section 3.3.2.2). 

The mean colour difference from the mean (MCDM) 

The mean colour difference from the mean (MCDM) is a measure commonly 

used to describe colour variations for a set of data points in CIELAB space 

using the following equation (Nadal et al., 2011; Berns, 2019), 

𝑀𝐶𝐷𝑀 =
∑ [(𝐿𝑖

∗ − 𝐿∗̅)2 + (𝑎𝑖
∗ − 𝑎∗̅̅ ̅)2 + (𝑏𝑖

∗ − 𝑏∗̅̅ ̅)2]1/2𝑁
𝑖=1

𝑁
 Equation 2.19 

where 𝐿𝑖
∗,  𝑎𝑖

∗, and 𝑏𝑖
∗ are the CIELAB coordinates for the 𝑖th measurement, 𝐿∗̅, 

𝑎∗̅̅ ̅ , and 𝑏∗̅̅̅are the average CIELAB coordinates and 𝑁  is the number of 

measurement. Larger values of MCDM indicate larger colour differences or 

larger variations. In the present study, the datasets collected in Experiment 3 

(colour appearance matching) are the matched colours all specified in 

CIELAB coordinates. Thus, the MCDM is adopted in experiment 3 to assess 

the observer variability including the inter- and intra- observer variability (see 

Section 3.4.1.2). Besides, the MCDM is also used in this study to evaluate 

skin colour variations of target facial areas (see Section 5.2.1). 

The coefficient of variation CV 

The coefficient of variation CV is a statistical measure to represent the 

agreement between two sets of data and is expressed in the equation below. 

𝐶𝑉 = 100 [∑(𝑥𝑖 − 𝑘 ∗ 𝑦𝑖)2/𝑛]
1/2

/�̅� Equation 2.20 

Where n is the number of samples in x and y datasets; �̅� is the mean value 

of the y dataset; k is a scaling factor and is equal to 1 when the two datasets 

have the same unit. To determine the inter-observer variation, 𝑥𝑖 and 𝑦𝑖 are 

the individual results and the mean results over all observers; for the intra-

observer variation, 𝑥𝑖  and 𝑦𝑖  are the first and second judgement data, 

respectively. The CV value can be thought of as the relative percentage 

error, For a perfect agreement, the CV value should equal 0. Larger values 

indicate worse agreement or larger variations. The CV is recommended by 

CIE TC 1-34 to assess the observer variation for the technique of magnitude 

estimation in colour appearance scaling (Fairchild, 1995; Fairchild, 1997). It 

has been widely implemented in colour appearance research (Luo et al., 

1991; Fairchild, 1995; Luo and Hunt, 1998; Kuo, 2007; Pointer et al., 2008).  

In the present study, the magnitude estimation is used in Experiment 4 to 

scale the perceptual attributes of facial colour appearance, and the CV value 
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is used to assess the observer variation including the inter- and intra- 

observer variability (see Section 3.4.2.2). 

2.8.3 Modelling techniques  

Based on the basic statistical measures and analysis, it is helpful to identify 

the relationships between the data and make further predictions by applying 

modelling techniques. Different models are applied to the present study to fit 

the different types of the data and purpose of modelling. For example, the 

relationship between one independent variable and one dependent variable 

is estimated by the simple linear regression model (e.g. predict the 

perceived face colour from the average face colour, see Chapter 7). A 

multiple regression model is used when several explanatory variables are 

involved (e.g. quantify the perceptual attributes of facial colour appearance 

from the L*, a*, and b* values, see Chapter 8). However, these models could 

be inaccurate to handle a larger number of explanatory variables and the 

complex relationship between them (high dimensional data) (Filzmoser and 

Nordhausen, 2021), e.g. to model the relationship between a large dataset 

of facial colour characteristics and the response variable of facial preference. 

Hence, some other multivariate statistical techniques are considered and 

their effectiveness is discussed (see Chapter 5 and Chapter 6). In this 

section, different modelling methods that are used in the present study are 

introduced. 

Ordinary Least Squares Regression (OLS)  

OLS has been widely used as a standard method to predict a response 

variable from one or several explanatory (predictor) variables. The 

parameters in OLS models were estimated by minimizing the residual sum 

of squares. OLS with only one predictor is called simple linear regression, 

while with two or more predictors is multiple linear regression. Multiple linear 

regression (MLR) is one of the most widely used methods for forecasting.  

Running an OLS model with too many variables, especially irrelevant ones, 

will lead to a needlessly complex model. One way to simplify the model and 

reduce the multi-collinearity is to perform subset selection. Stepwise 

regression is the multiple linear regression with a process of subset 

selection. The method adds the most relevant variable or removes the least 

relevant predictors from the model in each step so that only the most 

important ones that are capable of predicting the variation in the response 

variable are left in the final model. Two stepwise methods that are mostly 

used are forward and backward methods. Stepwise Regression (Forward 
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Steps) starts with only one intercept and then adds variables based on 

certain criteria (e.g. AIC, correlation significance, etc.) in a stepwise manner 

until no variable can be added (Yamashita et al., 2007). The forward method 

is more suitable when the number of variables is larger than the sample size.  

Stepwise Regression (Backward Steps) starts with a full model and then 

removes one variable in each step based on certain criteria until the model 

cannot remove any more variables. As the backward elimination method has 

the advantage of considering the effects of all the colour variables 

simultaneously at the start point, it generally has better performance than the 

forward methods when the number of variables is not too large. 

The OLS method has been most widely used for forecasting in many 

research fields such as the environment (Abdul-Wahab et al., 2005; 

Çamdevýren et al., 2005; Pires et al., 2008; Mountains, 2013; Gomes et al., 

2014), economics (Chan and Park, 2005), and psychology (Ansiau et al., 

2005). Despite its success in many applications, yet the regression methods 

can face difficulties when the number of explanatory variables is too large 

and there are collinearities between them (McAdams et al., 2000). In such 

cases, different variable selection methods in MLR analysis may lead to 

different models and make it difficult to identify the most important 

contributor in the model.  

Dimension reduction regression 

The idea of Principal Component Analysis (PCA) is to linearly transform the 

given features inside the feature space into a specific principal component 

space which maximizes the variance and minimises the number of features 

utilised to explain such variance. Based on the PCA, principal component 

regression and partial least squares regression are the common approaches 

that adopt the pre-processing to remove the dependence of explanatory 

variables, and thus avoid overfitting. Principal component regression (PCR) 

overcomes the problem of multi-collinearity by projecting the original 

predictors into an uncorrelated subspace of principal components and then 

using OLS to fit the linear regression model using the principal components 

as predictors (Pires et al., 2008; Abdi and Williams, 2010). In PCR, the 

dependent variable is not used to identify each principal component 

direction, thus it is not guaranteed that the principal components are related 

to the response variable. Partial least squares regression (PLSR)  is the 

supervised version of PCR as it projects the original predictors into a 

subspace of latent components that maximize the covariance between the 

response variable and the predictor variables (Geladi and Kowalski, 1986).  
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Regularisation regression 

Regularisation of penalisation is a relatively new and entirely different 

approach to deal with multicollinearity. Techniques of regularisation or 

penalisation are used to constrain the coefficients of a model and reduce the 

variance of the parameter estimators. The most well-known Regularisation 

regression methods are ridge, lasso, and the elastic net.  The Ridge 

Regression (RR) is essentially a linear regression model but with added 

constraints to the coefficients (Hoerl and Kennard, 1970; McDonald, 2009). 

All coefficients shrink towards 0 by a tuning parameter and the model still 

maintains the structure of the original OLS model. In contrast, Least 

Absolute Shrinkage and Selection Operator Regression (LASSO) is another 

form of regularisation regression which penalises high coefficients and 

forces coefficients to be 0 (whereas RR make coefficients approach 0) 

(Tibshirani, 1996). LASSO works well for feature selection as it takes out 

unnecessary variables from the model and makes the model simpler and 

more interpretable than RR. The Elastic Net Regression (EN) combines 

shrinkage from RR and LASSO and balances the two algorithms by 

weighting the two effects. EN is a linear regression which shrinks predictors 

to reduce overfitting through Regularisation and meanwhile performs 

variable selection by setting the coefficients of uninformative parameters to 

zero (Hastie et al., 2001; Zou and Hastie, 2005). The models have two 

hyperparameters, α and λ, which could be tuned to optimize the model fit. α 

controls the degree to which the model shrinks coefficients and λ determines 

how aggressively coefficients are set to zero. The implementation of this 

approach can be found in previous studies (Jaeger and Jones, 2022; Jaeger 

and Meral, 2022). 

Cross-validation is often used in those regularisation regressions to 

determine the tuning parameter with maximised model fit and to separate 

the training and testing of a dataset for model performance evaluation. In K-

fold cross-validation, the dataset is randomly divided into K folds, one of the 

folds is the holdout set and the remaining K-1 folds are to fit the model. The 

model performance is evaluated, usually by RMSE, using the fold that is 

held out. The process can be repeated using a different set each time as the 

holdout set, and the overall model performance is the average over all splits. 

The advantage of using cross-validation is that the dataset is split and the 

model performance is tested using an independent testing dataset. With 

repeats of different splits, it is more likely to obtain an unbiased estimate of 

the model performance. 
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2.8.4 Model selection and performance evaluation  

In order to compare the overall model performance between different 

multivariate modelling techniques, the coefficients of determination and the 

root mean squared error are introduced. 

The coefficients of determination R2 

The coefficients of determination, R2, measures how well the predictions of a 

statistical model fit a set of observations. R2 is calculated as the square of 

the Person correlation coefficients between the observed values and the 

model-fitted values. In most cases, R2 ranges from 0 to 1, and a higher value 

indicates a better model fit. As more explanatory variables are added to the 

model, the R2  automatically increases. The adjusted R2 is often used to 

correct the goodness-of-fit measure for linear models, and it can be 

calculated by the following equation. 

𝑎𝑑𝑗. 𝑅2 = 1 − (1 − 𝑅2)
𝑛 − 1

𝑛 − 𝑝
 

Equation 2.21 

Where p is the total number of explanatory variables in the model and n is 

the sample size. The adjusted R2 can be largely influenced by the number of 

explanatory variables. 

Root Mean Squared Error (RMSE) 

The Root Mean Square Error (RMSE) of prediction is the widely used 

criterion to represent the prediction error using the same units as the original 

rating scale. It is defined as the equation below: 

𝑅𝑀𝑆𝐸 = √∑
(𝑦�̂� − 𝑦𝑖)2

𝑛

𝑛

𝑖=1

 Equation 2.22 

Where 𝑦�̂� are the predicted values, and 𝑦𝑖 are the observed values. A smaller 

value of RMSE indicates better goodness of fit of the model. Compared to 

statistics such as the R2, RMSE is not inflated by the number of predictors. 

2.9 Summary 

This chapter gave a review of the relevant literature to the present study. 

The key information is summarised below. 

• The knowledge of human colour perception was reviewed. Colour is 

more than a physical stimulus. The perceptual aspects and the 



- 63 - 

psychological cognition of the human visual system largely influence 

the perception and preference judgements of skin colour. 

• The CIE colorimetry provides the numeric system for colour 

specification. CIELAB uniform colour space was adopted in the 

present study for skin colour specification, facial appearance 

investigation, data analysis and model development. 

• Facial colour preferences were widely explored using image-based 

methods. Various facial colour characteristics affect preference 

judgements. The limitations of the existing studies include: 1) results 

were controversial due to the different methods used while studies 

using realistic skin models lacked; 2) different colour characteristics 

were examined in isolation, it was unknown how they took together 

would influence preference judgements and what their relative 

importance was; 3) the cultural differences were not satisfactorily 

understood. 

• Research on facial colour preference showed the importance of facial 

colour appearance. Although CIE colorimetry provides the objective 

tool for colour measurement and quantification, colour perception is 

subjective in nature. The existing studies suggested: 1) the overall 

facial colour appearance was not clear; 2) the perception of facial 

whiteness, redness, yellowness, and their relationships with the 

colorimetric values were not precisely examined; 3) the perceptual 

difference between face and nonface object existed but was not fully 

understood. 

• Display colour characterisation is essential to achieve accurate and 

consistent colour reproduction of the visual stimuli on display. The 

characterisation process was implemented in the displays used for 

appearance assessment and preference evaluation in the present 

study. 

• Psychophysics provides fundamental tools for this study to derive 

quantitative measures of subjective colour perceptions related to 

facial skin. In this study, the technique of categorical judgement was 

adopted to measure the preference evaluation; the asymmetric colour 

matching was used to assess the overall colour appearance of human 

faces; magnitude estimation was implemented to scale three 

perceptual attributes of facial colour appearance, whiteness, redness, 

and yellowness. 

• The statistical methods and modelling techniques used in this study 

were introduced. Different methods and techniques were chosen for 
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different data analyses according to the types and characteristics of 

datasets collected as well as the purpose of the experiments.  
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Chapter 3 Experiments 
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3.1 Overview 

In this chapter, psychophysical experiments for assessing facial colour 

preference (Experiments 1, 2) and facial colour appearance (Experiments 3, 

4) were described. Figure 3.1 shows an experiments overview. Experiment 1 

and 2 aimed to investigate the relationship between skin colour and facial 

preference judgements using categorical judgement methods. Experiment 1 

was a cross-cultural study conducted in the UK, and Experiment 2 was a 

validation experiment conducted in China. Experiments 3 and 4 aimed to 

investigate the human perception of facial colour appearance. Experiment 3 

studied the overall facial colour appearance using the technique of 

asymmetry colour matching. Experiment 4 studied perceptual facial 

whiteness, redness, and yellowness using the technique of magnitude 

estimation. The experiments for this study were carefully prepared to 

achieve a reliable and consistent result. The details of experimental 

preparations were reported, including display (Section 3.2.1) and image 

(Section 3.2.2). Details of each of the four experiments were then given in 

Section 3.3.1, Section 3.3.2, Section 3.4.1, and Section 3.4.2, respectively. 

Within each section, the experiment design and procedure were described, 

followed by the observers and the evaluation of observer variations. The 

results of experiments will be presented and discussed in the following 

Chapters 4-8. 

 

Figure 3.1 Experiments overview (CA = Caucasian, CN = Chinese). 
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3.2 Experimental preparation 

3.2.1 Display 

Experiments 1, 3, and 4 were conducted at Leeds using a 24.1-inch BenQ 

colour professional display (51.84 cm x 32.40 cm, LCD backlit, adobe RGB 

colour space). Experiment 2 was conducted in Shanghai, China and used a 

12.9-inch iPad pro display (28.06 cm x 21.49 cm, LED backlit, P3 colour 

space) due to the difficulty of moving the BenQ display from Leeds to 

Shanghai. During the experiments, the BenQ display was placed horizontally 

and the iPad display was placed vertically so that the facial images were 

presented in a similar size on both displays. Before the experiments, the 

colour characteristics of both displays were measured and characterisation 

was done to precisely control the colour and consistently and accurately 

reproduce the appearance of human faces on both displays during the 

experiments. 

3.2.1.1 Colour measurement 

All the measurements were carried out in a dark room. Before the 

radiometric measurements, the displays were placed where they would be 

used and then turned on for 30min to warm up. The Konica Minolta CS-2000 

spectroradiometer (1°field of view) was used to measure the colour on 

display (BenQ and iPad) in term of the CIE XYZ tristimulus values in unit of 

cd/m2. The measured results were used to evaluate the display 

characteristics and develop colour characterisation model. Figure 3.2 shows 

the measuring geometry, the spectroradiometer was placed at a distance of 

0.6 m away from the display, and all the measurements were performed at 

the central point of the display. All images for characterisation were made by 

Microsoft PowerPoint software and displayed in full-screen mode. The 

absolute tristimulus values for 2°observers were obtained. 

 

Figure 3.2 Colour measurement geometry for display characterisation. 
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3.2.1.2 Spatial independence and channel independence 

The spatial independence of the display was first assessed by measuring 

the CIELAB colour difference between a white patch with a black surround, 

in the centre of the display, and the same white patch with a white surround. 

The results were 0.19 ∆𝐸𝑎𝑏
∗ for the BenQ display, and 0.84 ∆𝐸𝑎𝑏

∗ for the iPad 

display, which indicated a good spatial independence for both displays. The 

channel independence was then assessed by the colour difference between 

a full-field white and the prediction of the full-field white based on the sum of 

the tristimulus values of the full-field pure red, green, and blue. The colour 

difference was 1.41 ∆𝐸𝑎𝑏
∗ for the BenQ display, and 2.01 ∆𝐸𝑎𝑏

∗ for the iPad pro 

display. Both results indicated relatively good channel independence. 

3.2.1.3 Display characterisation 

The GOG (gain-offset-gamma) model was employed to carry out the display 

colour characterise for both displays (Burns and Berns, 1996; Day et al., 

2004). The pure red, green, blue and 18 greyscale patches (equal dr, dg, db 

values of 0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180, 195, 210, 

225, 240 and 255) seen against a neutral grey background, were used as 

the training dataset for building the GOG model. The mean colour difference 

between the instrument measurement and the model prediction of the 18 

training samples was calculated to evaluate the accuracy of the display 

model. The optimisation function solver in Microsoft Excel was then used to 

solve the coefficients of gain, offset and gamma for each channel by 

minimising the average colour difference ∆𝐸𝑎𝑏
∗  of the 18 training samples. 

After the optimisation, the coefficients of gain, offset and gamma for each 

channel of the two displays were obtained as listed in Table 3.1. The BenQ 

display model generated a mean colour difference of 0.48 ∆𝐸𝑎𝑏
∗ within the 

training dataset, and the iPad pro display model generated a mean colour 

difference of 0.08 ∆𝐸𝑎𝑏
∗ . Figure 3.3 and Figure 3.4 show the relationships 

between the digital input and the luminance output and the CIE tristimulus 

values of the two displays.  
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Table 3.1 Gain, offset and gamma for each channel of the BenQ display and 
the iPad display. 

 Gain Offset  Gamma 

BenQ display    

Red 0.9964 0.0001 2.2605 

Green 1.0125 -0.0051 2.2447 

Blue 1.0129 -0.0096 2.2442 

iPad display    

Red 0.9949 -0.0039 2.1731 

Green 1.0070 -0.0030 2.1826 

Blue 1.0071 -0.0033 2.1797 

 

 

Figure 3.3 The relationships between the digital input and the luminance 
output and the CIE tristimulus values of the BenQ display. 
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Figure 3.4 The relationships between the digital input and the luminance 
output and the CIE tristimulus values of the iPad display. 

To evaluate the model performance on skin colour reproduction, twenty 

random-selected skin colour patches, again seen against a neutral grey 

background, were used as the testing dataset. The BenQ display model 

generated a mean colour difference of 0.80 ∆𝐸𝑎𝑏
∗  averaged from the 20 skin 

colour samples as testing colours; The iPad pro display model generated a 

mean colour difference of 0.21 ∆𝐸𝑎𝑏
∗  for the testing skin colours. Because the 

GOG model gave a relatively good colour reproduction performance, other 

models for display colour characterisation were not considered in this study. 

The models were used to process the facial images by computing the RGB 

values that are required to display any colour specified in CIE colorimetric 

values (see Section 3.2.2.2). 

3.2.2 Image 

3.2.2.1 Image photography and selection 

All facial images used in this study were selected from the Liverpool-Leeds 

Skin-colour Database (LLSD), which included both the image data and 

corresponding reflectance data of each pixel in the images. The facial image 

of each subject was obtained by photography in a VeriVide DigiEye® light 

booth, which provided a uniform matte mid-grey background and even, 

diffuse, fluorescent illumination that simulated CIE illuminant D65. There was 

no other lighting in the room where the photography took place. During data 

collection, the participant sat in the viewing cabinet and their target facial 

area was adjusted to fit within the camera image. A digital SLR camera 

(Nikon D7000), controlled by the DigiEye® system software, was used to 

capture each subject’s face. The distance from the participant to the camera 
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was fixed at approximately 57.5 cm and the participant looked straight into 

the camera.  

Eighty real facial images, including 40 Caucasian images and 40 Chinese 

images, all with neutral facial expressions, were selected from the LLSD 

database for all the experiments in this study. Apart from the same 40 

Chinese images, Experiment 2 used additional 60 Chinese images as a 

validation dataset, and these images were also selected from the LLSD 

database. 

3.2.2.2 Image processing 

For each facial image, the spectral reflectance data of each pixel was first 

transformed to CIE XYZ values by Equation 2.1 using the CIE illuminant D65 

as the light source, and the tristimulus values were then converted to display 

RGB values based on the display colour characterisation model. The BenQ 

display model was used to process the 80 facial images to be presented on 

the BenQ display in Experiment 1, 3, and 4; The iPad Pro display model was 

used to process the 100 Chinese images used in Experiment 2. After 

processing the colour, the hair, ears, and any visible clothing were then 

manually removed from each image using Photoshop CS6. The image was 

at last scaled to be in the centre of the screen with a mid-grey background 

(L*, a*, b* = 50, 0, 0 in CIELAB colour space). Figure 3.1 shows an example 

of a Chinese real facial image and a Caucasian real facial image used in this 

study.  

 

Figure 3.5 An example of a Chinese real facial image (left) and a Caucasian 
real facial image (right). 
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3.3 Experiments on facial colour preference 

3.3.1 Experiment 1 

3.3.1.1 Study design  

Experiment 1 was a psychophysical experiment of facial preference 

evaluation using the categorical judgement methods. It was conducted in 

Leeds, UK. The 80 facial images of real human faces, including 40 

Caucasian images and 40 Chinese images, were used in this experiment.  

The experiment was conducted in a dark room and using a self-compiled 

MATLAB program to display facial images on the BenQ display. There was a 

3-min dark adaptation before the formal experiment. After that the observers 

were given the experimental instructions. The experiment was divided into 

three separate sessions. In each session, the observer viewed 80 facial 

images presented in random order and rated each skin colour of each image 

concerning one of the three attributes, perceived attractiveness, perceived 

healthiness, and perceived visual age. 

Figure 3.6 shows the experimental scene and one of the questions. 

Observers had eight seconds to view each facial image, then the question 

page would automatically show on screen. The following question was 

asked after the observation of each image, “Based on the skin colour, what 

attractiveness score (or healthiness score or the estimated age, depend on 

different sessions) you would give for the last image?” The observer then 

made a judgement of the facial skin colour without a time limit. The ratings 

were recorded manually by the experimenter. After rating one image and 

clicking the mouse, the next facial image would appear on display 

automatically. 

 

Figure 3.6 Observer evaluating the facial image on display (left) and one of 
the questions shown on display (right). 
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Using a categorical judgment method, the perceived facial attractiveness 

and healthiness were rated on a 7-point Likert-type scale where 1 

represented ‘least attractiveness’ / ’healthiness’ and 7 represented ‘best 

attractiveness’ / ‘healthiness’. The visual age was rated on a single-year step 

scale from 1 to 99 years. 

3.3.1.2 Observers and observer variations 

The experiment used 44 observers with normal colour vision, including 22 

Caucasians (13 males; mean age ± SD = 24.27 ± 5.30) and 22 Chinese (7 

males; mean age ± SD = 26.05 ± 3.96), whom each evaluated the colour 

appearance of the 80 facial images using three subjective attributes. The 

Chinese observers were from mainland China, and at the time of the study, 

they were at Leeds University, UK as students or visiting scholars. On 

average, they spent about 1–3 years in the UK. All the observers were given 

instructions in English and confirmed their understanding before the 

experiments. 

The Cronbach Alpha Coefficient was used to assess the inter-observer 

variability of the Caucasian and Chinese observers (Cronbach, 1951). As 

shown in Table 3.2, the values of Cronbach's alpha coefficient are all greater 

than 0.87, suggesting that there is high internal consistency in the 

judgements of attractiveness, healthiness, and age for both the Caucasian 

and Chinese groups of observers. For both sets of observers, inter-observer 

variability was a little higher when rating their own ethnic’s images. Both sets 

of observers agreed more strongly on what is attractive, healthy and young 

in their own-ethnicity faces compared to other-ethnic faces. 

Table 3.2 The Cronbach Alpha Coefficient for assessing the inter-observer 
variability of the Caucasian (CA) and Chinese (CN) observers (sample 
size). 

 CA CN  CA & CN 

CA images    

Attractiveness 0.96 (22) 0.93 (22) 0.96 (44) 

Healthiness 0.96 (22) 0.93 (22) 0.97 (44) 

Age 0.90 (22) 0.91 (22) 0.95 (44) 

CN images    

Attractiveness 0.95 (22) 0.96 (22) 0.97 (44) 

Healthiness 0.96 (22) 0.96 (22) 0.98 (44) 
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Age 0.87 (22) 0.92 (22) 0.94 (44) 

3.3.2 Experiment 2 

3.3.2.1 Study design  

Experiment 2 was conducted in Shanghai, China to obtain another set of 

facial attractiveness evaluation data using a new set of Chinese facial 

images and a new panel of Chinese observers, which was used as a 

validation dataset for Experiment 1. One hundred Chinese facial images 

were used as the visual stimuli in Experiment 2, including the same 40 

images as Experiment 1, which were used to test the observer consistency 

between Experiment 1 (Leeds) and experiment 2 (Shanghai), and another 

60 Chinese facial images as the new testing materials.  

The experiment was conducted in a dark room. The experimental procedure 

was the same as Experiment 1 but only facial attractiveness was assessed. 

The observers viewed each of the facial images presented in a random 

order and then made a judgement of perceived facial attractiveness based 

on the skin colour using a 7-point Likert-type scale where 1 represented 

‘least attractiveness’ and 7 represented ‘best attractiveness’. During the 

experiments, to present the facial images in a similar size to the BenQ 

display, the iPad display was placed vertically. 

3.3.2.2 Observers and observer variations 

Fifty-one Chinese observers (21 males, mean age ± SD = 24.45 ± 4.10) 

including both genders with normal colour vision participated in experiment 

2, and at the time of the study, they were all native Chinese and were either 

students or researchers at Fudan University, China.  

Cronbach’s alpha was again calculated as a measure of agreement for 

attractiveness ratings across observers. The internal consistency was also 

high for ratings in Experiment 2: Cronbach’s alpha = 0.98, 95% CI [0.98, 

0.99]). Furthermore, the rating results of the same forty Chinese images 

between the two experiments were compared to assess the consistency 

between the two groups of Chinese observers and the two sets of rating 

scores were found to be significantly highly correlated (Person’s correlation 

coefficient: r(38) = 0.94 [0.89, 0.97], p < 0.001). The high consistency of the 

preference judgement results between the two experiments showed that the 

short experience of living abroad would not affect the aesthetic preference of 

Chinese observers. 
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3.4 Experiments on facial colour appearance 

3.4.1 Experiment 3 

3.4.1.1 Study design  

Experiment 3 was a colour appearance matching experiment designed to 

study the overall facial colour appearance of human faces. The same 80 real 

facial images as Experiments 1 and 2, including 40 Caucasian images and 

40 Chinese images, were used in this experiment. Before the experiment, 

eighty corresponding colour patches were generated using MATLAB (an 

example shows in Figure 3.8). Each uniform colour patch has the same 

shape as the corresponding facial image, and the initial colour was the 

average facial colour calculated from all the pixels in the facial skin area of 

that image. The process of calculation can be found in Section 4.2.1 and an 

example of the facial skin area is shown in Figure 4.1(the non-black area). 

The experiment was carried out in a dark room. The observers performed all 

the operations in a self-compiled MATLAB program on display. After 3-min 

dark adaption, the observers were given the experimental instructions and 

started a training session before the formal experiment to learn how to adjust 

the colour of the patch colour through keyboard control before the 

experiment. Figure 3.7 shows the instruction page the observers saw on 

display before the formal experiment. 

 

Figure 3.7 The experimental instructions page of Experimental 3. 

Figure 3.8 shows an example of the experimental interface of the formal 

experiment. During the experiment, there was a facial image on the left of 
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the screen and a same-shape colour patch on the right. The observers were 

asked to adjust the patch colour without any time limit until they produced a 

match between the overall colour appearance of the facial image and the 

colour of the colour patch based on the skin colour.  

 

Figure 3.8 An example of the Experimental 3 interface. 

 

Figure 3.9 Keyboard control for patch colour adjustment. 

All the colour control of the patch was achieved through the keyboard. As 

Figure 3.9 shows, six adjacent keys outlined on the keyboard were used to 

adjust the patch colour along the L*, a* and b* dimensions in CIELAB colour 

space, roughly altering facial lightness, redness, and yellowness, 

respectively. The step of adjustment was 0.5 units for each time pressing the 

keys of any colour dimensions. The function key was used to save the match 
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results of the present face and show the next face. The space key was used 

to restore the default patch colour.  

After completing one match and pressing the Fn key, the data would be 

saved and the next set of facial images and colour patches would appear on 

display automatically. The 80 facial images were shown in random order and 

10 randomly selected facial images were repeated to test the intra-observer 

agreement (repeatability). Besides, a reference facial image was also 

matched, which was not used in this experiment but was used in Experiment 

4. In total, each observer matched the overall colour appearance of 90 facial 

images and an additional reference image. 

3.4.1.2 Observers and observer variations 

Forty-four observers with normal colour vision took part in the experiment, 

including 21 Caucasians (4 males; mean age ± SD = 25.67 ± 4.39) and 23 

Chinese (11 males; mean age ± SD = 26.64 ± 3.87). They were either 

students or members of staff from the University of Leeds. 

The observer variability including the inter- and intra- observer variability was 

evaluated in terms of the mean colour difference from the mean (MCDM). 

The inter-observer variability was evaluated per facial image by calculating 

the colour difference ∆E*ab between the matched colour of an individual 

observer and the mean-matched colour over all observers and then taking 

the mean. The mean inter-observer MCDM values calculated for all 80 faces 

was 2.61 ∆E*
ab unit (Caucasian faces: 2.58 ∆E*

ab unit, Chinese faces: 2.24 

∆E*
ab unit). The Intra-observer variability was assessed by calculating the 

MCDM, regarding each observer’s MCDM for the 10 repeated facial images 

and then averaging over all observers. All the observers showed high 

repeatability with an MCDM of less than 2 ∆E*
ab units except for Observer 21 

and 25 (the intra-observer variability was 2.21 ∆E*
ab, and 2.23 ∆E*

ab 

respectively). Thus, the observation data from these two observers were 

removed for further data analysis. The mean intra-observer MCDM values of 

the rest 42 observers were 1.13 ∆E*
ab unit. These results of inter- and intra- 

observer variability indicated both the high consistency and repeatability of 

observers. 

3.4.2 Experiment 4 

3.4.2.1 Study design  

Experiment 4 was a colour appearance scaling experiment designed to 

study perceptual facial whiteness, redness, and yellowness. The perceptual 

difference between facial colour and uniform patch colour was also 



- 78 - 

considered. The technique of magnitude estimation was used in the 

experiment. The observers were asked to scale the perceptual whiteness, 

redness, and yellowness of both the faces and the uniform colour patches. 

The same 80 real facial images used in Experiments 1, 2, and 3 were also 

used in this experiment together with 80 corresponding uniform colour 

patches. Each uniform colour patch has the same shape as the 

corresponding facial image, and the patch colour was the overall colour 

appearance of the corresponding facial image based on the colour matching 

results of Experiment 3. 

The experiment was carried out in a dark room and observers had a 3-min 

dark adaption before the experiment. The observers performed all the 

operations in a self-compiled MATLAB program on display. The experiment 

was separated into two sessions, one to scale the facial images and the 

other to scale the uniform colour patches. The order of the two sessions was 

fully randomized for different observers. To ensure the observers had a clear 

concept of the experiment, they were asked to view all the images quickly, 

then were given the experimental instructions and started a training session 

before both sessions during the formal experiment. Figure 3.10 shows the 

instruction page for the facial image session and Figure 3.11 shows the 

instruction page for the uniform patch session. Note that the instruction texts 

on the top would disappear once the formal experiment started. The verbal 

instructions were also given to the observers: ’You will be shown a series of 

testing facial images/face-shaped uniform colour patches in random order. 

Your task will be to scale what whiteness, redness, and yellowness you see 

based on your perception of the skin/patch colour. Please use the reference 

as a standard, which had a whiteness/redness/yellowness of 50, to scale the 

perceptual whiteness/redness/yellowness for each testing face/ colour patch’. 

During the facial image session, two facial images, including a reference 

face and a testing face, are shown on the display side by side. The 

reference face was an average face derived from 20 Caucasian faces and 

20 Chinese faces and its whiteness, redness, and yellowness were all set to 

have a value of 50. Observers were asked to estimate the facial whiteness, 

redness, and yellowness of the testing face in comparison to the reference 

face respectively. An estimation scale of 0-100 was used where 0 

represented the least white, red, or yellow face, and 100 represented the 

most white, red, or yellow face.  
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Figure 3.10 The experimental instructions page of the facial image session. 

During the uniform patch session, two colour patches, including a reference 

patch and a testing patch, are shown on the display side by side. The colour 

of the reference patch was the overall colour appearance of the reference 

face, and the colour of the testing patch was the overall colour appearance 

of the corresponding facial image. The overall colour appearance of both the 

reference face and all the testing faces was obtained by colour matching in 

Experiment 3. The reference patch was set to have a value of 50 for 

whiteness, redness, and yellowness. Observers were asked to estimate the 

whiteness, redness, and yellowness of the testing colour patch in 

comparison to the reference colour patch. An estimation scale of 0-100 was 

used where 0 represented the least white, red, or yellow patch, and 100 

represented the most white, red, or yellow patch.  



- 80 - 

 

Figure 3.11 The experimental instructions page of the uniform patch 
session. 

After completing the estimation of one face or one patch and clicking the 

Next button, the data would be saved for further data analysis and the next 

testing face or patch would appear on display automatically. During the facial 

image session, the 80 facial images were shown in random order and 10 

randomly selected facial images were repeated to test the consistency of 

each observer. The uniform patch session included 80 corresponding 

patches as well we 10 randomly repeated patches. In total, each observer 

scaled the colour appearance of 90 facial images and 90 corresponding 

uniform colour patches. 

3.4.2.2 Observers and observer variations 

A panel of 43 observers took part in the experiment, including 23 

Caucasians (7 males; mean age ± SD = 24.65 ± 4.61) and 20 Chinese (9 

males; mean age ±  SD = 25.70 ±  5.27). They were either students or 

members of staff from the University of Leeds. All the observers had normal 

colour vision according to the Ishihara test (Clark, 1924).  

The coefficient of variation (CV) was used to verify the observer variation 

and the scaling factor k was set to one as the same scale was used in this 

experiment. The intra-observer variability was assessed by calculating the 

CV values between the two repeated judgements. The inter-observer 

variability was evaluated by computing the CV values between the individual 

observer scaling data and the mean scaling data of all observers. Table 3.3 
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summarized the resulting mean CV values covering all observers for the 

intra- and inter-observer variability. 

Table 3.3 The intra- and inter-observer variability in terms of the CV values 
of face scaling and patch scaling for each of the three perceptual colour 
attributes. 

Perceptual 

attributes 

Inter-observer variability Intra-observer variability 

Face Patch Face Patch 

Whiteness 14.4 15.6 14.5 15.8 

Redness 10.8 14.4 11.5 13.6 

Yellowness 16.8 19.6 18.6 21.0 

The intra- and inter-observer variability were close for both face and patch 

perception and for scaling all three perceptual attributes, which indicated that 

observers performed similarly in terms of within an individual observer and 

between observers. The largest mean CV values were seen for yellowness 

estimation and the redness perception had the smallest mean CV values, 

which was the same case for both face and patch. Thus, it could be 

assumed that observers might use different criteria in the evaluation of 

yellowness, whereas similar or common criteria in the perception of redness. 

For all three appearance attributes, smaller CV values were obtained for 

facial image scaling compared to uniform patch scaling, which suggested 

observers might find the skin colour was easier to scale, whereas the 

uniform patch colour was more difficult to scale. 

3.5 Summary 

Two groups of psychophysical experiments for accumulating the preference 

and appearance evaluation data were conducted. The details of 

experimental preparation and experimental procedures were described in 

this chapter and summarised below. 

• The characteristics of the experimental displays were carefully 

investigated and the GOG model was used to perform the display 

colour characterisation for both the BenQ display and iPad display. 

• The experimental materials, including 40 Caucasian facial images 

and 40 Chinese facial images, were selected from LLSD and then 

processed for Experiments 1, 3, and 4 based on the BenQ display 

model. The 40 Chinese facial images and another 60 Chinese facial 
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images were processed for Experiment 2 based on the iPad display 

model.  

• The study design, experimental procedures, and psychophysical 

techniques were described in detail respectively for each of the four 

experiments. 

• Observer variations for each experiment were also assessed using 

different measures according to the techniques used in the 

experiments. 
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Chapter 4 Average skin colour and facial 

preference 
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4.1 Overview 

In the previous chapter, Experiment 1, a cross-cultural experiment on facial 

colour preference was introduced (Section 3.3.1). In this chapter, the raw 

data collected in Experiment 1 was used to test the role of average facial 

colour in preference judgements. The average skin colour, in terms of the L*, 

a*, b* values, of each facial image used in Experiment 1 was analysed 

(Section 4.2), statistical analysis (Section 4.3) was performed to elucidate 

the associations between average facial skin colour and perceptual ratings. 

Whether these associations are modulated by observer or image ethnicity 

was also investigated in this chapter.  

4.2 Image analysis of the average facial skin colour 

4.2.1 Image analysis 

The mean colour specification, in terms of CIELAB coordinates (L*, a*, b*), 

of the 80 test facial images (40 Chinese and 40 Caucasian) were calculated 

as the overall mean of each pixel in the facial area, excluding the mouth, 

nose, eyes, and eyebrows, as shown in Figure 4.1. The areas other than the 

facial skin were masked manually for each of the images and the 

calculations were performed in MATLAB. 

 

Figure 4.1 An example of the facial area (the non-black area) used to 
calculate the average facial colour. 

4.2.2 The distribution of the average facial colours 

Figure 4.2 shows the distribution of the mean facial colours of the test facial 

images in a*b* plane and L*C* plane in CIELAB colour space. There are 

systematic mean differences in lightness and chromaticity between the two 
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ethnic groups. The Caucasian images (average L*=59.0, a*=8.3, b*=14.1) 

have, on average, higher lightness (L*) and lower yellowness (b*) compared 

to the Chinese images (average L*=55.0, a*=8.9, b*=16.9).  

 

Figure 4.2 The distribution of the mean facial colours of the test facial 

images in CIELAB a*b* space (left) and L*C* space (right):  
Caucasian (CA),  Chinese (CN). 

4.3 Statistical analysis 

The raw data collected from Experiment 1 was used to conduct the following 

data analysis. For each of the three dependent variables (DV - 

attractiveness, healthiness, perceived age) a linear mixed-effect model was 

set up with the following fixed effects: lightness (L*), redness (a*) and 

yellowness (b*) as continuous predictors and image ethnicity and observer 

ethnicity as categorical predictors, including random intercepts for both 

images and observers.  

All linear mixed-effect models were implemented in lme4 R package (Bates 

et al., 2015). Deviation coding was used to convert both image ethnicity and 

observer ethnicity into deviation-coded factors (code ‘-0.5’ for Caucasian 

images/observers and code ‘0.5’ for Chinese images/observers) for testing 

the main effects of each model. For each DV, a simple and a full model was 

considered; the full model allowing for all interactions between colour (L*, a*, 

b*) and ethnicity (observer ethnicity, image ethnicity). The simple and full 

models were compared by the AIC and BIC values (Akaike, 1974; Schwarz, 

1978; Burnham and Anderson, 2004). P values for the fixed effects in each 

linear mixed-effect model were calculated using F tests with type III sums of 
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squares and Satterthwaite’s degrees-of-freedom approximation in the 

lmerTest R package (Kuznetsova et al., 2017). Significant interactions 

revealed in the tests were followed up with a further analysis of the simple 

effects for each subgroup. In addition, Pearson’s correlation coefficients 

(two-tailed) were also used to test the associations of the perceptions of all 

three attributes for both sets of observers. 

4.4 The effect of average skin colour on facial preference 

judgements  

For all perceptual attributes, a linear mixed-effect model with and without 

interactions was first evaluated. In all cases, a model allowing for 

interactions outperformed the model without interactions, as shown in Table 

4.1. While the BIC for age weakly favoured the model with no interaction, all 

the AIC strongly preferred the model with interactions, as did the significant 

likelihood ration test. Therefore the analysis of the model with interactions 

was reported in below. 

Table 4.1 Model comparisons: mixed models with and without interactions 
for all three attributes. 

Model npar AIC BIC logLik deviance χ2  χ2df P 

DV=attractiveness   

no interaction 9 9725 9781 -4854 9707    

+ interactions 19 9534 9651 -4748 9496 211.03 10 <0.001*** 

DV=healthiness 

no interaction 9 9471 9526 -4726 9453    

+ interactions 19 9344 9460 -4653 9306 147.1 10 <0.001*** 

DV=age 

no interaction 9 20013 20068 -9997 19995    

+ interactions 19 20002 20119 -9982 19964 31.09 10 <0.001*** 

*P≤0.05, ** P≤0.01, ***P≤0.001. 

Table 4.2 shows all the main effects of the linear mixed-effect model for 

facial attractiveness. For attractiveness, neither the average skin colour 

(L*,a*,b*) nor observer ethnicity were significant, but image ethnicity, 

interactions between image ethnicity and lightness (p = 0.017) and 

interactions between observer ethnicity and L*/a*/b* are significant (p = 

0.001/ p < 0.001/ p < 0.001). The interactions indicated that the effect of 

lightness on attractiveness was different when faces of different ethnicity 
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were viewed and the effects of L*/a*/b* on attractiveness were different for 

Caucasian observers and for Chinese observers.  

Table 4.2 Linear mixed effects model estimates of fixed effects, their SE, t-
value, lower (2.5%) and upper (97.5%) confidence intervals and P-
values for attractiveness. 

Fixed effects Estimate SE t-value 2.5% CI 97.5% CI P-value 

(Intercept) 2.346 4.465 0.525 -6.513 11.206 0.601 

L* 0.021 0.058 0.359 -0.094 0.136 0.720 

a* -0.113 0.085 -1.328 -0.282 0.056 0.188 

b* 0.106 0.061 1.739 -0.015 0.228 0.086 

Im -20.703 8.929 -2.319 -38.419 -2.987 0.023* 

Ob -1.531 1.780 -0.860 -5.020 1.958 0.390 

Im:Ob -6.266 3.546 -1.767 -13.218 0.686 0.077 

L*:Im 0.284 0.116 2.448 0.054 0.515 0.017* 

L*:Ob 0.077 0.023 3.353 0.032 0.123 0.001*** 

a*:Im 0.187 0.170 1.102 -0.150 0.525 0.274 

a*:Ob -0.166 0.034 -4.901 -0.232 -0.099 <0.001*** 

b*:Im 0.182 0.122 1.487 -0.061 0.425 0.141 

b*:Ob -0.089 0.024 -3.646 -0.136 -0.041 <0.001*** 

L*:Im:Ob 0.079 0.046 1.707 -0.012 0.169 0.088 

a*:Im:Ob 0.137 0.068 2.030 0.005 0.270 0.042* 

b*:Im:Ob 0.050 0.049 1.024 -0.046 0.145 0.306 

*P≤0.05, ** P≤0.01, ***P≤0.001. Im=Image ethnicity, Ob=Observer ethnicity. 

Table 4.3 shows the results of the main effects in the full perceived 

healthiness model. For perceived healthiness, there was no significant main 

effect of average skin colour, but a significant effect of image ethnicity. 

Significant interactions were found between image ethnicity and lightness 

(p=0.024) and between observer ethnicity and a* and b*, respectively 

(p<0.001; p<0.001). Similar to facial attractiveness, the effect of lightness on 

perceived healthiness was different to faces of different origins and the effect 

of redness/yellowness on healthiness is different for the two groups of 

observers. 
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Table 4.3 Linear mixed effects model estimates of fixed effects, their SE, t-
value, lower (2.5%) and upper (97.5%) confidence intervals and P-
values for healthiness. 

Fixed effects Estimate SE t-value 2.5% CI 97.5% CI P-value 

(Intercept) 4.829 4.998 0.966 -5.088 14.745 0.337 

L* -0.015 0.065 -0.231 -0.144 0.114 0.818 

a* -0.100 0.095 -1.055 -0.289 0.088 0.295 

b* 0.093 0.068 1.357 -0.043 0.229 0.179 

Im -20.374 9.995 -2.039 -40.205 -0.544 0.045* 

Ob 2.141 1.725 1.241 -1.242 5.523 0.215 

Im:Ob -4.515 3.434 -1.315 -11.248 2.218 0.189 

L*:Im 0.300 0.130 2.306 0.042 0.558 0.024* 

L*:Ob 0.027 0.022 1.208 -0.017 0.071 0.227 

a*:Im 0.133 0.190 0.697 -0.245 0.510 0.488 

a*:Ob -0.141 0.033 -4.309 -0.205 -0.077 <0.001*** 

b*:Im 0.137 0.137 1.002 -0.134 0.409 0.320 

b*:Ob -0.147 0.024 -6.237 -0.193 -0.101 <0.001*** 

L*:Im:Ob 0.060 0.045 1.339 -0.028 0.147 0.181 

a*:Im:Ob 0.102 0.065 1.563 -0.026 0.231 0.118 

b*:Im:Ob 0.034 0.047 0.726 -0.058 0.126 0.468 

*P≤0.05, ** P≤0.01, ***P≤0.001. Im=Image ethnicity, Ob=Observer ethnicity. 

For estimated age, as shown in Table 4.4, there were significant main 

effects of redness (a*), image ethnicity, and the interaction between the 

ethnicity of the image and observer. Significant main effects of interactions 

between colorations and ethnicity included the interaction between lightness 

and image ethnicity (p=0.015), the interaction between redness and image 

ethnicity (p=0.036) and the three-way interaction of L*:Im:Ob (p=0.035). 

Facial lightness/redness had different effects on the perceived age of 

Caucasian faces and Chinese faces, and the influence of lightness on age 

perception also depended on the ethnicity of the observer.  
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Table 4.4 Linear mixed effects model estimates of fixed effects, their SE, t-
value, lower (2.5%) and upper (97.5%) confidence intervals and P-
values for estimated age. 

Fixed effects Estimate SE t-value 2.5% CI 97.5% CI P-value 

(Intercept) 23.676 14.317 1.654 -4.731 52.082 0.102 

L* -0.112 0.186 -0.603 -0.482 0.257 0.548 

a* 0.550 0.273 2.017 0.009 1.091 0.047* 

b* 0.237 0.196 1.210 -0.152 0.626 0.230 

Im 70.588 28.617 2.467 13.805 127.37 0.016* 

Ob 4.551 8.080 0.563 -11.290 20.392 0.573 

Im:Ob 31.712 16.046 1.976 0.254 63.170 0.048* 

L*:Im -0.926 0.372 -2.487 -1.665 -0.187 0.015* 

L*:Ob -0.072 0.104 -0.693 -0.277 0.132 0.488 

a*:Im -1.165 0.545 -2.136 -2.247 -0.083 0.036* 

a*:Ob 0.294 0.153 1.922 -0.006 0.593 0.055 

b*:Im -0.602 0.392 -1.536 -1.380 0.176 0.129 

b*:Ob -0.142 0.110 -1.294 -0.358 0.073 0.196 

L*:Im:Ob -0.440 0.209 -2.106 -0.849 -0.030 0.035* 

a*:Im:Ob -0.133 0.306 -0.434 -0.732 0.467 0.665 

b*:Im:Ob -0.313 0.220 -1.425 -0.744 0.118 0.154 

*P≤0.05, ** P≤0.01, ***P≤0.001. Im=Image ethnicity, Ob=Observer ethnicity. 

To further understand the interactions above and reveal the simple effects of 

L*, a* and b* within each set of image and observer, parameter estimates for 

the fixed effects within each subgroup were computed from the three linear 

mixed-effect models, as shown in Table 4.5.  
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Table 4.5 Parameter estimates of the simple effects in the linear mixed-
effect models. 

Fixed effects CA observers CN observers 

DV = attractiveness 

CA images   

Model   

L* β=-0.140，P=0.149 β=-0.102，P=0.291 

a* β=-0.090，P=0.507 β=-0.324，P=0.018* 

b* β=0.072，P=0.425 β=-0.041，P=0.647 

CN images   

Model   

L* β=0.105，P=0.133 β=0.221，P=0.002** 

a* β=0.029，P=0.790 β=-0.068，P=0.538 

b* β=0.229，P=0.010** β=0.166，P=0.059 

DV = healthiness 

CA images 

Model   

L* β=-0.164，P=0.131 β=-0.166，P=0.124 

a* β=-0.071，P=0.638 β=-0.263，P=0.083 

b* β=0.106，P=0.292 β=-0.058，P=0.567 

CN images   

Model   

L* β=0.106，P=0.170 β=0.163，P=0.037* 

a* β=0.011，P=0.930 β=-0.079，P=0.519 

b* β=0.226，P=0.021* β=0.097，P=0.318 

DV = age 

CA images   

Model   

L* β=0.277，P=0.381 β=0.424，P=0.180 

a* β=0.952，P=0.033* β=1.312，P=0.004** 

b* β=0.531，P=0.074 β=0.545，P=0.066 

CN images   

Model   

L* β=-0.429，P=0.060 β=-0.721，P=0.002** 

a* β=-0.146，P=0.684 β=0.081，P=0.821 

b* β=0.085，P=0.763 β=-0.213，P=0.451 

*P≤0.05, ** P≤0.01, ***P≤0.001. DV=dependent variable. 

When Chinese observers rated Chinese faces, an increase in lightness was 

strongly associated with greater attractiveness (p = 0.002); for Caucasian 

faces, a decrease in redness predicted greater attractiveness (p = 0.018). 

Caucasian Observers associated an increase in yellowness with higher 
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attractiveness, but only when viewing Caucasian facial images (p = 0.010). 

Lighter skin was associated with greater healthiness but only when Chinese 

observers rated Chinese images (p = 0.037). Caucasian observers 

associated an increase in yellowness with healthiness (p = 0.021) when 

viewing facial images of Chinese. This association was driven by the 

Caucasian images: an increase in redness was associated with an older 

perceived age for Caucasian images when viewed by Caucasian (p = 0.033) 

or Chinese Observers (p = 0.004). Lightness was a strong predictor for 

perceived youthfulness when Chinese observers rated Chinese faces (p = 

0.002). 

4.5 Cultural differences on the associations between the 

three perceptual attributes 

Ratings of attractiveness and healthiness are highly correlated across both 

image and observer ethnicities (Table 4.6, also see Figure 4.3) but are 

negatively correlated with estimated age. The latter negative correlations are 

highly significant for Chinese observers. The strongest negative correlations 

are observed when Chinese observers rate Chinese image, consistent with 

interactions between ethnicity and skin coloration cues.     

Table 4.6 The Pearson Correlation Coefficients of age, healthiness, and 
attractiveness scores for the Caucasian (CA) and Chinese (CN) 
observers. 

 CA images CN images Overall images 

CA observers    

Attractiveness-Healthiness 0.912*** 0.946*** 0.929*** 

Attractiveness-Age -0.343 -0.354 -0.351* 

Healthiness-Age -0.293 -0.295 -0.298 

CN observers    

Attractiveness-Healthiness 0.881*** 0.927*** 0.893*** 

Attractiveness-Age -0.632*** -0.828*** -0.730*** 

Healthiness-Age -0.651*** -0.818*** -0.726*** 

*P≤0.05/18, ** P≤0.01/18, ***P≤0.001/18. N = 40, 40, 80 for CA, CN and overall images, 

respectively. All p-values were Bonferroni-corrected. 



- 92 - 

 

Figure 4.3 Associations between attractiveness, healthiness and age ratings 
for Caucasian observers (left column) and Chinese observers (right 
column). The regression lines were drawn for the significant 
correlations at Bonferroni adjusted α. 
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Comparison of the results of the Caucasian observers and the Chinese 

observers showed that there were differences between the two sets of 

responses for attractiveness, healthiness and age. For Caucasian 

observers, there was high correlation between attractiveness and 

healthiness but no correlations between attractiveness and age, and 

between healthiness and age. This applied to both Caucasian and Chinese 

facial images. Caucasian observers had highly correlated perceptions for 

facial attractiveness and healthiness, but they wouldn’t link these two 

attributes with the estimated age. For Chinese observers, however, 

attractiveness was correlated significantly and positively with healthiness, 

age correlated significantly but negatively with both attractiveness and 

healthiness. When Chinese observers judged their own ethnicity images, the 

three attributes were very highly correlated with each other (positively or 

negatively), which indicated that, for Chinese observers, the three 

perceptions, attractiveness, healthiness, and age, could be considered 

consistent. Perceptual difference or aesthetic difference was found in this 

part.  

4.6 Discussions  

4.6.1 The use of the realistic skin models 

In total, 80 calibrated, high-resolution, non-manipulated images of real 

human faces were used in Experiment 1 as representatives of the 

complexion and skin colour variation of real, Caucasian and Chinese, human 

faces. The ethnic difference of skin colour was larger along the lightness and 

yellowness dimension and smaller in redness, which was consistent with the 

skin colour variation of the two ethnic groups (Xiao et al., 2017). Although 

the observers were asked to make judgements based only on skin colour, it 

was difficult to ignore the role of certain facial features, for example, the 

eyes, the nose, the lips and the mouth. In our study, this real variation was 

covered, at least partially, by using a set of 80 images of real faces, 40 

Caucasian and 40 Chinese. 

4.6.2 The role of average skin colour (L*, a*, b*) in preference 

judgement is more limited than previously thought 

The most robust positive associations were found between facial skin 

lightness (L*) and attractiveness, healthiness, and youthfulness, but only 

when Chinese observers judged facial images of their own ethnicity. These 

associations between ratings and skin lightness are grounded in known 
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physical changes: a decrease of one L* unit is equivalent to a 10-year 

increase in age in female Chinese skin (Huixia et al., 2012). In contrast to 

our study, Han et al. (Han et al., 2018) found an effect of lightness on 

attractiveness/perceived health for both, Chinese and Caucasian faces, 

whereas in this study significant associations was only found when Chinese 

faces were rated. A possible explanation for this discrepancy is that Chinese 

skin is characterised by a lower average L* value, and crucially, by a smaller 

variation in lightness compared to the skin of Caucasians (Xiao et al., 2017). 

It is speculated the smaller variability in L* for Chinese faces leads to a more 

informative and more reliable lightness cue.  

The association between an increase in skin yellowness (b*) and perceived 

attractiveness and healthiness is likely to reflect the Caucasian preference 

for ‘tanned’ skin. Skin yellowness as a significant predictor for perceived 

health is consistent with previous studies (Whitehead et al., 2012). Whether 

skin yellowness is associated with physical health is controversial and not 

clear so far.  

No evidence was found that facial skin redness is positively associated with 

perceived attractiveness, healthiness or youthfulness (Tables 4.5), in 

contrast to previous reports with Caucasian (Stephen, Coetzee, et al., 2009; 

Stephen, Law Smith, et al., 2009; Stephen et al., 2011; Stephen et al., 2012) 

and Chinese observers (Han et al., 2018; Tan and Stephen, 2019). The 

results of this study were, however, consistent with recent studies using a 

large image data base of real female faces that did not find any association 

between facial redness and objective health measures, neither any positive 

association between redness and attractiveness (Cai et al., 2019). Other 

studies employing non-manipulated real facial images, found a weak positive 

association between skin yellowness and facial attractiveness, but skin 

redness as a mediator showed a small but negative association with facial 

attractiveness (Appleton et al., 2018). 

Broadly speaking, studies that have reported a strong positive association 

between average skin colour and attractiveness or healthiness, have 

involved colour-manipulated facial images (Stephen, Coetzee, et al., 2009; 

Stephen, Law Smith, et al., 2009; Lefevre and Perrett, 2015; Pazda et al., 

2016). More recent studies, including this study, using non-manipulated 

facial images, have failed to show these strong associations (Foo, Simmons, 

et al., 2017; Jones, 2018; Appleton et al., 2018; Cai et al., 2019). This 

discrepancy could be due to the methodological differences, including the 

magnitude of colour changes (e.g. redness in excess of 10 a* units) and 
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colour shifts being applied uniformly across the face. While in the real 

human faces, skin colour doesn’t change uniformly over the entire face and 

the magnitude is much smaller (the range of redness values covered by 

different faces is only about 6 a* units, Figure 4.2). Crucially, skin colour 

manipulations were often restricted to the CIELAB dimensions, a*, b*, L*, 

whereas in the natural skin colour universe, skin colour dimensions are 

highly correlated (Xiao et al., 2017). Thus, it could be speculated that 

previous experiments may have overestimated these associations by using 

skin colour manipulations well beyond the gamut found in non-manipulated 

images as well as changing the coloration of the entire face instead of 

specific areas. 

4.6.3 The role of other facial colour cues   

Since non-manipulated images of real faces were used, average facial 

colour co-varied necessarily with other facial colour cues when preference 

judgement was made based on the skin colour. The high observer 

consistency both within and across ethnicities (Table 3.2) suggest that 

observers may also rely on additional facial colour cues in their judgments. 

The current part of work was designed to estimate the strength of 

association between mean skin coloration (L*, a*, b*) and the perceptual 

ratings of perceived health, attractiveness, and perceived age; it is not 

allowed to estimate the contribution of skin coloration relative to the 

contribution of other facial colour cues, such as skin colour variation, 

localised skin colour or other feature colour contrasts. A further analysis in 

the next chapter would be useful to include all the other facial colour cues 

and evaluate the relative contribution of both the average skin colour and 

other facial colour characteristics. 

4.6.4 The perceptual difference between the three facial attributes 

among Caucasian and Chinese observers. 

Perceived attractiveness and healthiness showed significantly high 

correlations among both Caucasian and Chinese observers. Cultural 

differences emerged however, when age judgements were taken into 

consideration. Caucasian observers thought that both a younger face and 

older face could have an attractive and healthy appearance. For Chinese 

observers, younger faces meant a healthier look and were more attractive. 

These results were consistent for observers judging both own-ethnicity faces 

and other-ethnicity faces. Neotenous faces were perceived as more 

attractive and healthier by Chinese observers. Such ethnic differences in 

objective aesthetic criteria should be considered in many applications of 
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preferred skin colour reproduction such as the various surgeries performed 

for aesthetic reasons (Gao et al., 2018). 

4.7 Summary  

This chapter focused on the role of overall facial colour appearance and how 

it relates to attractiveness, healthiness, and perceived age. A summary of 

the analysis and major findings are given below: 

• The average skin colour (L*, a*, b*) of all the facial images used in 

Experiment 1 was analysed. Statistical analysis was conducted to 

assess the role of the average L*, a*, b* in facial preference 

judgement and reveal the cultural difference in the perception of 

attractiveness, healthiness, and age based on facial colour 

appearance. 

• Evidence was found that observers of both ethnicities make use of 

the average facial skin colour (L*, a*, b*) to rate attractiveness, 

healthiness, and perceived age, but the utilisation of these cues is 

more subtle than previously thought.  

• Crucially, those skin coloration cues are not universal and are utilised 

differently within the Chinese and Caucasian ethnic groups, reflecting 

different aesthetic preferences in eastern and western cultures.  

• These results contributed to the growing body of work demonstrating 

the importance of skin colour manipulations within an evolutionary 

meaningful parameter space, ideally using realistic skin models based 

on physical parameters.   
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Chapter 5 Various colour characteristics and 

facial preference 
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5.1 Overview  

In the last chapter, the limited role of average skin colour in preference 

evaluation in real faces was discussed. In this chapter, various facial colour 

characteristics were quantified and their ranges and variations in Chinese 

and Caucasian populations were analysed (Section 5.2). Using the data 

from Experiment 1, separate analyses were carried out for each ethnic group 

to examine the role of colour in predicting the preference rating of their own 

faces. Techniques from machine learning were implemented to perform a 

comprehensive assessment of the relative importance of various facial 

colour characteristics that contribute to facial attractiveness, perceived 

healthiness, and perceived age. Three different classes of colour cues were 

compared (Section 5.5) and the most important colour predictors were 

identified (Section 5.6). Cultural differences between Chinese and 

Caucasian are further explored taking into account a range of facial colour 

characteristics. 

5.2 Image analysis of facial colour characteristics 

5.2.1 Image analysis 

Based on the literature review, nineteen facial colour characteristics from the 

three classes in below were considered as potential important colour cues 

for facial preference judgements and were analysed for each of the 80 facial 

images in Experiment 1. All the areas of interest shown in Figure 5.1 were 

selected manually for each image and all the calculations were performed in 

MATLAB. 

 

Figure 5.1 An example of the facial image showing the areas that selected 
for calculating facial colour characteristics. (a) Areas of interest used to 
calculate local skin colour and skin colour variation; (b) Areas of the 
features and the surrounding skin used to calculate facial colour 
contrasts. 
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Average facial colour and local skin colour. Apart from the average facial 

skin colour (L*, a*, b*), the local skin colour of cheek redness, a*, and 

periorbital lightness, L*, were also taken into account considering the study 

of Jones et al. (Jones et al., 2016). They were calculated as the overall 

mean of each pixel within the selected areas as shown in Figure 5.1(a). 

Skin colour variation. To access the facial skin colour variation, the 

mean colour difference from the mean (MCDM) was adopted, a measure 

commonly used to describe colour variation for a set of data points in 

CIELAB space using the following equation (Nadal et al., 2011; Berns, 

2019), 

𝑀𝐶𝐷𝑀 =
∑ [(𝐿𝑖

∗ − 𝐿∗̅)2 + (𝑎𝑖
∗ − 𝑎∗̅̅ ̅)2 + (𝑏𝑖

∗ − 𝑏∗̅̅ ̅)2]1/2𝑁
𝑖=1

𝑁
 Equation 5.1 

Here, MCDM was used to evaluate skin colour variation of any target facial 

areas, where 𝐿𝑖
∗,  𝑎𝑖

∗, and 𝑏𝑖
∗ are the CIELAB coordinates for the 𝑖th pixel of 

the area, 𝐿∗̅, 𝑎∗̅̅ ̅, and 𝑏∗̅̅̅are the average CIELAB coordinates of the facial area 

and 𝑁 is the number of pixels within the area. As outlined in Figure 5.1(a), 

the MCDM of the forehead, cheek, nose, and chin areas was calculated and 

the grand mean of the MCDM values of the four parts was then obtained to 

represent the skin colour variation over the whole facial area. Both the skin 

colour variation of the whole facial area (MCDM) and the cheek (MCDM-

Cheek) were analysed in this study. The smaller the value of the MCDM, the 

smaller the colour difference and the more even/homogeneous the skin 

colour distribution is. 

Facial colour contrast. The adapted version of the Michelson contrast 

and the CIELAB colour differences (∆𝐸) were used to describe facial colour 

contrast between three facial features (eyes, eyebrows, and mouth) and 

their surrounding skin Figure 5.1(b). The adapted Michelson contrast of the 

three dimensions (L*, a*, b*) was considered, as defined by the following 

equation, 

𝐶Feature =  |
𝐴Skin − 𝐴Feature

𝐴Skin + 𝐴Feature
| 

Equation 5.2 

where 𝐴Skin is the respective CIELAB coordinates (L*, a*, b*) of the 

surrounding facial skin and 𝐴Feature  is the respective CIELAB coordinates 

(L*, a*, b*) of the facial features (eyes, eyebrows, and mouth). Meanwhile, 

the CIELAB colour differences (∆𝐸) between the three facial features and 

their surrounding skin were also calculated and the facial colour contrast 

was defined by the following equation, 
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∆𝐸 = [(𝐿1
∗ − 𝐿2

∗)
2

+ (𝑎1
∗ − 𝑎2

∗)
2

+ (𝑏1
∗ − 𝑏2

∗)
2

]
1/2

 Equation 5.3 

where 𝐿1
∗ , 𝑎1

∗, and 𝑏1
∗ are the CIELAB coordinates of the facial features, and 

𝐿2
∗ , 𝑎2

∗ , and 𝑏2
∗ are the CIELAB coordinates of their surrounding skin area. For 

both 𝐶Feature and ∆𝐸, the bigger the value, the larger the facial colour contrast 

is. 

5.2.2 Variation in facial colour characteristics across Caucasian 

and Chinese images 

All the facial colour characteristics were quantified in CIELAB colour space. 

Table 5.1 and Figure 5.2 shows all the parameters measured for the forty 

Caucasian (CA) faces and the forty Chinese (CN) faces. CA and CN faces 

differ in various facial colour characteristics. The mean values and standard 

deviations for each group can be found in Table 5.1, together with the results 

of a two-sample t-test (P values) for the difference between the two ethnic 

datasets. All colorimetric characteristics between the two ethnic sample 

differ statistically from each other  (P<0.05),  except for the cheek redness 

(cheek-a*) and the skin colour variations (MCDM-cheek and MCDM).  

Table 5.1 Descriptive statistics for the facial colour characteristics in CA and 
CN facial images (t-test values for which P>0.05 are shown in bold). 

  Mean (SD) 
t-test 

  CA CN 

L* 60.63 (2.06) 55.92 (2.10) <0.001 

a* 8.10 (1.26) 8.72 (1.16) 0.025 

b* 15.25 (2.06) 18.55 (1.50) <0.001 

Cheek-a* 9.91 (1.70) 10.04 (1.91) 0.741 

Periorbital-L* 54.77 (2.87) 53.07 (2.11) 0.003 

MCDM-Cheek 2.48 (0.32) 2.40 (0.31) 0.237 

MCDM 2.58 (0.21) 2.51 (0.22) 0.169 

Eyes-C-L* 0.15 (0.03) 0.18 (0.03) <0.001 

Eyes-C-a* 0.21 (0.09) 0.13 (0.07) <0.001 

Eyes-C-b* 0.14 (0.07) 0.21 (0.04) <0.001 

Eyes-△E 15.02 (2.78) 18.25 (2.47) <0.001 

Brows-C-L* 0.16 (0.06) 0.13 (0.05) 0.010 

Brows-C-a* 0.06 (0.05) 0.13 (0.08) <0.001 

Brows-C-b* 0.06 (0.04) 0.18 (0.04) <0.001 

Brows-△E 16.32 (5.18) 13.67 (4.17) 0.014 

Mouth-C-L* 0.12 (0.02) 0.10 (0.02) 0.001 

Mouth-C-a* 0.41 (0.06) 0.33 (0.06) <0.001 

Mouth-C-b* 0.14 (0.05) 0.17 (0.04) 0.002 

Mouth-△E 17.84 (2.64) 15.26 (2.13) <0.001 
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Figure 5.2 Violin plots showing range and variation of facial colour 
characteristics in CA and CN facial images. White points indicate 
medians, black rectangles represent interquartile ranges. 

5.3 Statistical analysis and modelling techniques 

Considering in most cases in daily life observers are making preference 

judgements of faces of their own ethnicity, this part of analysis focused on 

the ‘within-race’ effect. Separate analyses were carried out for each ethnic 

group to examine the colour variables that might predict each preference 

rating.  Thus, the observation data collected in Experiment 1 was separated 

into two dataset, the Caucasian dataset, which is the preference ratings of 

the Caucasian images judged by the Caucasian observers, and the Chinese 

dataset, which is the preference ratings of the Chinese images judged by the 

Chinese observers.  

As the internal consistency in the ratings of attractiveness, healthiness, and 

age for both the Caucasian dataset and Chinese dataset is very high, 

ranging from Cronbach's α = .90 to Cronbach's α = .96 for Caucasian 
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dataset and from Cronbach's α = .92 to Cronbach's α = .96 for Chinese 

dataset across the attributes (Table 3.2). Ratings were averaged across all 

observers to create a score for each face on each preference attributes 

before correlation analysis and modelling from the face level colour traits. All 

the colour predictors were z-standardised prior to the following analysis as 

prepared for the cross-validated regressions.  

The Pearson Correlation Coefficient (two-tailed) was first used to identify 

correlations between each colour characteristic and facial attractiveness, 

healthiness, and visual age rated by the observers, for the Caucasian and 

Chinese datasets, respectively. The results will be described in Section 5.4.  

To compare the role of the three classes of colour characteristics (average 

facial colour and local skin colour, skin colour variation, facial colour 

contrasts) in predicting the preference of real human faces, and identify their 

relative importance, techniques of cross validation from machine learning 

were implemented. The analysis was done by the caret package in R (Kuhn, 

2008). Cross-validated linear regression models (5-fold cross validation with 

50 repeats) were used to compare the predictive power of the three different 

classes. The data was split into a 4-fold training dataset for model estimation 

and a 1-fold testing dataset for predictive accuracy test, so that the problem 

of overfitting could be avoided by testing the model with the new testing data 

rather than the old training data. Moreover, the process was repeated 50 

times with different random splits of the data. The model’s overall predictive 

fit was assessed by the mean RMSE (root mean square error) over all splits 

as RMSE represents the difference between predicted values from the 

model and observed values from the experiments. RMSE has the same unit 

as the scale used in experiment and is not inflated by the number of 

predictors, compared to other statistics such as R2. The results will be 

reported in Section 5.5. 

Finally, the Elastic Net Regression (Hastie et al., 2001; Zou and Hastie, 

2005) was used to evaluate the role of all facial colour characteristics and 

their relative importance in determining facial preference by simultaneously 

entering them into one regression model. The Elastic Net Regression is a 

linear regression which shrink predictors to reduce overfitting through 

Regularisation and meanwhile perform variable selection by setting the 

coefficients of uninformative parameters to zero. The models have two 

hyperparameters which could be tuned to optimize the model fit, α, which 

controls the degree to which the model shrinks coefficients, and λ, which 

determines how aggressively coefficients are set to zero. Cross validation 
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was also implemented here to first generate the optimal combination of the 

two model hyperparameters, α and λ, with maximized fit (minimized RMSE) 

and then test the model fit with the optimal α and λ by the mean RMSE over 

all splits. The performance of each combined model represented by the 

mean RMSE and the relative importance of different facial colour 

characteristics in the model represented by the absolute β values will be 

reported in Section 5.6. 

5.4 Zero‑order correlations between facial colour 

characteristics and each facial preference 

The results of the correlations between facial colour characteristics and each 

of the three preference ratings are shown in Figure 5.3 and the complete 

correlation matrix of preference ratings and facial colour characteristics can 

be found in Table 5.2 at the end of this section. 

Facial attractiveness. Facial colour characteristics were linked 

differently with facial attractiveness by the Caucasian (solid bars) and the 

Chinese observers (dashed bars). In the Caucasian dataset, facial 

attractiveness was positively correlated with facial yellowness (b*, p<0.05) 

and b* contrast around the mouth (mouth-C-b* p<0.05), but negatively with 

L* contrast around the mouth (mouth-C-L*). In the Chinese dataset, facial 

attractiveness was positively correlated with facial lightness (L*, p<0.01), a* 

contrast around the mouth (mouth-C-a*, p<0.001), and colour difference 

around the mouth (mouth-△E, p<0.01), which may also result from the a* 

contrast considering the high correlation between a* contrast and △E 

around the mouth (r=0.859, p<0.001). Chinese facial attractiveness was 

negatively correlated with facial redness (a*), both skin colour variation 

(MCDM-cheek and MCDM), and a* contrast around the brows (brows-C-a*). 

Perceived healthiness. The attractiveness ratings and healthiness 

ratings are highly correlated for both groups (r>0.9, p<0.001 in Table 4.6), 

thus colour cues utilized for healthiness perception were somewhat similar to 

those for attractiveness judgements. For the Caucasian dataset, perceived 

healthiness was positively correlated to facial yellowness (b*, p<0.05) and b* 

contrast around the mouth (mouth-C-b*, p<0.05), but negatively correlated to 

overall lightness (L*, p<0.01), periorbital lightness (periorbital-L*, p<0.05), 

and overall skin colour variation (MCDM, p<0.05). For the Chinese dataset, 

perceived healthiness was positively correlated to facial skin lightness (L*, 

p<0.01), colour contrast around the eye and the mouth (eyes-C-b*, △E, 

p<0.05; mouth-C-a*, △E, p<0.01). Perceived healthiness for the Chinese 
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dataset was negatively correlated with facial redness (a*, p<0.05) and a* 

contrast around the brows (brows-C-a*, p<0.01). 

 

Figure 5.3 The Pearson Correlations between each facial colour 
characteristic and each facial preference attributes: attractiveness (top), 
healthiness (middle), and age (bottom). Each bar chart represents the 
correlation coefficient (left darker bar chart: CA; right lighter bar chart: 
CN); all the negative coefficients are marked with (-) at the bottom of 
the bar charts; Asterisks above the bar charts indicate the statistical 
significance of each relationship: *p≤0.05, ** p≤0.01, ***p≤0.001. 

Perceived age. For the Caucasian dataset, perceived age was only 

significantly and positively associated with skin colour variation (MCDM-

cheek and MCDM, both p<0.01), which means larger variation in Caucasian 

skin colour was linked to older visual age. For the Chinese dataset, in 
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addition to skin colour variation (MCDM-cheek and MCDM, both p<0.05), 

perceived age was also positively correlated with facial redness (a*, p<0.01), 

colour contrast around the brows (brows-C-L*, a*, p<0.05). In addition, it was 

negatively correlated with facial lightness (L*, p<0.001), colour contrast 

around the eye and mouth (eyes-C-b*, p<0.01; mouth-C-a*, p<0.001; mouth-

△E, p<0.01). 

The colour difference, △E, around the three facial features (eyes, brows, 

mouth-△E) was excluded in the analysis of the next two section since it has 

originated from one of the separate colour contrast channels (L*, a*, or b*) 

for both groups according to the correlations in Table 5.2 (r>0.86, p<0.001).
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Table 5.2 Zero-order Pearson correlations between facial colour characteristics and preference ratings. CN results are below the 
diagonal and CA results are above the diagonal. The different coloured boxes show correlation at p< 0.001, p<0.01 and p<0.05. 
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5.5 The separate model: comparisons of three classes of 

facial colour characteristics in determining facial preference. 

Figure 5.4 shows each model’s overall predictive fit was assessed by the 

mean RMSE (root mean square error) over all splits. 

 

Figure 5.4 The model performance of the three classes of facial colour 
characteristics in predicting each facial preference attributes: 
attractiveness (top), healthiness (middle), and age (bottom). CA results 
are in the left column and CN results are in the right column. Black dots 
indicate the mean RMSE from 5-fold cross-validation with 50 repeats. 

Facial attractiveness. For the Caucasian dataset, the model of skin 

colour variation showed the best predictive accuracy (MRMSE = 0.85, SDRMSE 
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= 0.15), followed by the model of average/local skin colour (MRMSE = 0.90, 

SDRMSE = 0.15), and facial colour contrast (MRMSE =0.97, SDRMSE=0.24). For 

the Chinese dataset, the three classes showed similar predictive accuracy 

(average/local skin colour: MRMSE = 0.78, SDRMSE = 0.17; skin colour 

variation: MRMSE = 0.78, SDRMSE = 0.12; facial colour contrast: MRMSE = 0.77, 

SDRMSE = 0.21). 

Perceived healthiness. For the Caucasian dataset, the model of skin 

colour variation showed the best predictive accuracy (MRMSE = 0.91, SDRMSE 

= 0.18), followed by the model of average/local skin colour (MRMSE = 1.01, 

SDRMSE = 0.18), and facial colour contrast (MRMSE = 1.10, SDRMSE = 0.20). 

For the Chinese dataset, the facial colour contrast showed the best 

predictive accuracy (MRMSE = 0.78, SDRMSE = 0.18), followed by the skin 

colour variation (MRMSE = 0.80, SDRMSE = 0.12), and the average/local skin 

colour (MRMSE = 0.81, SDRMSE = 0.19). 

Perceived age. For the Caucasian dataset, the model of skin colour 

variation showed the best predictive accuracy (MRMSE = 2.69, SDRMSE = 

0.73), followed by the model of average/local skin colour (MRMSE = 3.19, 

SDRMSE = 0.93), and facial colour contrast (MRMSE = 3.82, SDRMSE = 1.31). 

For the Chinese dataset, the model of facial colour contrast showed the best 

predictive accuracy (MRMSE = 1.92, SDRMSE = 0.49), followed by the model of 

average/local skin colour (MRMSE = 2.22, SDRMSE = 0.53), and the skin colour 

variation (MRMSE = 2.35, SDRMSE = 0.32). 

5.6 The combined model: role of facial colour characteristics 

in determining facial preference.  

For each perceptual rating, the performance of the each combined (Elastic 

Net Regression) model was represented by the mean RMSE, and the 

relative importance of different facial colour characteristics in the model was 

represented by the absolute β values as shown in Figure 5.5 – Figure 5.7. 
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Figure 5.5 The relationship between different facial colour characteristics 
and facial attractiveness. CA results are in the left and CN results are in 
the right. Coefficients were derived from the elastic net model with 5-
fold cross validation and 50 repeats. 

Facial attractiveness. For the Caucasian dataset, the combined model 

predicted facial attractiveness within 0.84 point on a 7-point scale (MRMSE = 

0.84, SDRMSE = 0.16). As shown in Figure 5.5, the skin colour variation 

(MCDM-cheek, �̅�  = -0.155 and MCDM, �̅�  = -0.147) were the strongest 

predictors, with less skin colour variation predicting higher facial 

attractiveness. The mouth colour contrast (mouth-C-b*, �̅� = 0.128) and the 

facial lightness (L*, �̅� = -0.126) were also relatively informative predictors, 

whereas the brows contrast (�̅� = 0.003) was relatively uninformative. For the 

Chinese dataset, the combined model predicted facial attractiveness within 

0.71 point on a 7-point scale (MRMSE=0.71, SDRMSE=0.14). The brows colour 

contrast (brows-C-a*, �̅� = -0.187) and the mouth colour contrast (mouth-C-

a*, �̅�  = 0.157) were the strongest predictors of facial attractiveness. The 

facial skin yellowness (b*, �̅� = 0.005) was relatively less informative. 
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Figure 5.6 The relationship between different facial colour characteristics 
perceived healthiness. CA results are in the left and CN results are in 
the right. Coefficients were derived from the elastic net model with 5-
fold cross validation and 50 repeats. 

Perceived healthiness. For the Caucasian dataset, the combined model 

predicted perceived healthiness within 0.85 point on a 7-point scale (MRMSE = 

0.85, SDRMSE = 0.16). As shown in Figure 5.6, the overall skin colour 

variation (MCDM, �̅� = -0.273) and the facial lightness (L*, �̅� = -0.177) were 

the strongest predictors, with less skin colour variation and lower skin 

lightness predicting higher perceived healthiness. The mouth luminance 

contrast (mouth-C-L*, �̅�  = -0.036) was relatively uninformative. For the 

Chinese dataset, the combined model predicted facial attractiveness within 

0.73 point on a 7-point scale (MRMSE = 0.73, SDRMSE = 0.11). The mouth 

colour contrast (mouth-C-a*, �̅�  = 0.232) and the brows colour contrast 

(brows-C-a*, �̅�  = -0.156) were the strongest predictors of perceived 

healthiness. The overall skin colour variation (MCDM, �̅�  = -0.001) was 

relatively less informative. 
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Figure 5.7 The relationship between different facial colour characteristics 
and perceived age. CA results are in the left and CN results are in the 
right. Coefficients were derived from the elastic net model with 5-fold 
cross validation and 50 repeats. 

Perceived age. For the Caucasian dataset, the combined model 

predicted perceived age within 2.88 years on a single-year step scale from 1 

to 99 years (MRMSE = 2.88, SDRMSE = 0.99). As shown in Figure 5.7, the skin 

colour variation (MCDM, �̅� = 0.555 and MCDM-cheek, �̅� = 0.476) were the 

strongest predictors for perceived age, with a larger skin colour variation 

predicting a higher estimated age. The mouth colour contrast (mouth-C-a*, �̅� 

= -0.002) was relatively uninformative. For the Chinese dataset, the 

combined model predicted perceived age within 1.83 years on a single-year 

step scale from 1 to 99 years (MRMSE = 1.83, SDRMSE = 0.34). Similar to the 

perceived healthiness, the brows colour contrast (brows-C-a*, �̅�  = 0.646) 

and the mouth colour contrast (mouth-C-a*, �̅�  = -0.446) were also the 

strongest predictors of perceived age. The facial lightness (L*, �̅� = -0.387) 

and the eyes colour contrast (eyes-C-b*, �̅� = -0.298) were also relatively 

informative predictors, whereas the overall skin colour variation (MCDM, �̅� = 

0.110) was relatively less informative. 

5.7 Discussion 

5.7.1 Colour predictors for facial attractiveness and perceived 

healthiness 

For both Caucasian and Chinese observers, colour predictors of 

attractiveness and perceived healthiness are somewhat overlapping since 

these two perceptual ratings were highly correlated for both datasets 

(r=0.912 for CA dataset, r=0.927 for CN dataset, see Table 4.6).  
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For Caucasian observers, skin colour variation is the strongest predictor to 

rate attractiveness and perceived healthiness, and more evenly distributed 

skin colour with less variation is linked to enhanced facial attractiveness and 

perceived healthiness, which is consistent with previous studies (Fink and 

Matts, 2008; Fink et al., 2012). Compared to the skin colour variation, the 

averaged skin colour is less important and only the L*, b* were found to be 

predictors of attractiveness and healthiness. Corroborating the results of the 

last chapter, facial redness (a* or cheek-a*) is not an important predictor for 

Caucasian preference, and may be due to the small range of naturally 

occurring skin colour variation and thus the observers focus more on the 

other colour cues when rating the real facial images. Facial colour contrast 

did not emerge as an important predictor of preference in Caucasians, in 

contrast to previous studies (Stephen and McKeegan, 2010; Porcheron et 

al., 2013; Russell et al., 2016); only contrast around the mouth showed a 

limited role in attractiveness and perceived health. The reason for this is also 

likely to be the limited range of facial colour contrast in real faces without any 

applied cosmetics. 

For Chinese observers, facial colour (a*) contrast (brows-C-a*, mouth-C-a*) 

is the most important predictor among different colour characteristics to 

judge both attractiveness and healthiness. Facial lightness (L*) is another 

consistent cue for Chinese people to judge facial preference, in line with the 

results of the last chapter (Table 4.5). The opposite preference for skin 

tanning between Chinese and Caucasians (Lefevre and Perrett, 2015) 

suggests the mainstream aesthetic difference between the two cultures. Skin 

colour variation also emerged as a predictor for Chinese observers but only 

when they judge facial attractiveness, with smaller variation in skin colour 

linked to enhanced facial attractiveness. Local skin colour does not emerge 

as a relevant predictor when all colour features are considered together. 

5.7.2 Colour predictors for perceived age 

Skin colour variation is found to be a predictor of perceived age in both the 

Caucasian and Chinese datasets (Figure 5.7).  

Crucially, it is the only important colour cue for age perception of Caucasian 

observers judging own-ethnicity faces. Larger variation in facial/cheek skin 

colour is linked to older visual age. This is in agreement with the study of 

Nkengne et al. (Nkengne et al., 2008), which looked at the influence of 

various skin attributes (skin yellowness, skin texture, etc.) on the age 

perception of Caucasians and found that skin colour uniformity was the most 

important attribute. Chinese observers deploy the colour cues differently 
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from the Caucasian sample. Since all three perceptual ratings from Chinese 

observers are highly correlated (r>0.818, in Table 4.6), the significant colour 

predictors of perceived age are similar to the predictors of attractiveness and 

healthiness.  

For Chinese observers, facial redness contrasts (brows and mouth) are the 

most important predictors for perceived age, but are deployed differently: 

brow and mouth contrasts are associated with a decrease and increase in 

youthfulness respectively. Skin lightness (L*) is the third informative cue for 

perceived age: a higher facial lightness is associated with youthfulness 

(younger visual age). Similarly to Caucasian observers, Chinese observers 

also rate more evenly distributed skin colour as younger. However, skin 

colour variation only plays a limited role compared to skin colour and 

contrast. These results reveal the importance of facial colour (a*) contrast for 

the Chinese observers. Using the same set of facial colour contrasts, 

Porcheron et al. investigated their relationship with the perceived age in 

Chinese subjects and also found the mouth a* contrast had significant and 

negative correlation with real age and the brows a* contrast had positive 

correlations with age (Porcheron et al., 2017). 

5.7.3 Cultural difference between Caucasian and Chinese 

observers 

As noted above, the use of different facial colour cues is ethnicity specific 

(Figures 5.5 - 5.7) and these results extended the findings in the last chapter 

on the ethnicity-specific use of the average facial skin colour. Moreover, the 

cultural differences include the opposite preference for facial lightness and 

the different importance of the three classes of colour traits in preference 

evaluation. The aesthetic difference between western and eastern culture 

might result from the development of multiple social and cultural factors over 

a long period of time. Meanwhile, the differential use of the facial colour cues 

could also stem from the different colorimetric parameters of the faces of the 

two ethnic groups (as shown in figure 5.2).  

Generally, Chinese observers tend to utilise facial colour cues more 

effectively when evaluating facial preference (attractiveness, perceived 

healthiness, and visual age) compared to Caucasians, which is reflected in 

the higher number of significant correlations between perceptual ratings and 

colour characteristics in the Chinese dataset (Figures 5.3). The results of the 

separate models suggest that all the three classes of colour predictors show 

better predictive accuracy (smaller RMSE) in the Chinese models compared 

to the Caucasian models no matter which preference attribute is judged 
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(Figure 5.4). Most importantly, the Chinese combined models also give 

better predictive accuracy than the Caucasian combined models in all 

preference attributes, which predict attractiveness, healthiness, and visual 

age within 0.71 point, 0.73 point, and 1.83 years, respectively (the predictive 

accuracy is 0.84 point, 0.85 point, and 2.88 years for Caucasian model, 

respectively). These results suggest an important and novel aspect of the 

cultural difference between Caucasian and Chinese samples. Coetzee et al. 

investigated the role of facial shape cues and colour cues in attractiveness 

preference of White Scottish and Black South African people and found that 

Black South Africans rely heavily on colour cues while White Scottish use 

shape cues (Coetzee et al., 2014). Given that Asians were less influenced 

by some structural facial features than Caucasians (Cunningham et al., 

1995), it is speculated that Caucasians may make facial preference 

judgements based on more structural facial features than colour cues while 

Chinese rely more heavily on facial colour cues.  

5.7.4 The role of facial colour characteristics in preference 

evaluation of real faces 

The results show the similar importance of all three classes of colour traits 

(average skin colour, skin colour variation, facial colour contrast) in 

determining facial preference judgements in real faces (Figure 5.4). Which 

colour characteristics are used depends on the preference attribute under 

consideration and also on the ethnic group (Figure 5.5 - 5.7).  

As outlined in the Section 4.6.3, earlier studies using manipulated images 

have commonly found more significant relationships between the single 

manipulated colour cue and preference ratings (Fink et al., 2006; Stephen, 

Law Smith, et al., 2009; Scott et al., 2010; Jones et al., 2016; Porcheron et 

al., 2017). However, those colour manipulations in single dimensions have 

neglected the fact that facial colour preference is evaluated holistically in real 

situation based on various facial colour cues. When judging facial preference 

of real human faces, it may be beneficial to consider a wide range of facial 

colour cues simultaneously, hence allowing an estimate of the relative 

importance of the individual cues. 

Though more recent studies have started to use non-manipulated images to 

study facial preference, and found much weaker associations between skin 

colour and facial preference (Nkengne et al., 2008; Foo, Simmons, et al., 

2017; Jones, 2018; Tan et al., 2018; Appleton et al., 2018), none of them 

have considered all classes of different facial colour cues together. Foo et al. 

investigated skin colour (L*, a* and b*) and other structural facial features as 
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the preference predictors, and they concluded that skin colour did not predict 

attractiveness while facial yellowness played a limited role in predicting 

healthiness(Foo, Simmons, et al., 2017). Jones et al. also compared facial 

shape cues and colour cues in health perception using average facial L*, a*, 

and b*, and they found no role of skin colour as a short-term health cue 

(Jones, 2018). Tan et al. studied skin texture and colour in health perception 

and found homogenous skin texture and increased skin yellowness was 

positively associated with perceived health of Malaysian Chinese faces, 

however, facial colour contrast was not considered in their study which may 

also be an important predictor(Tan et al., 2018). Consistent with those 

studies that used non-manipulated images, the results showed that average 

skin colour (L*, a*, and b*) itself, as a single factor, is not a very strong 

predictor for facial preference evaluation but plays a limited role, especially 

for Caucasians’ age perception. Given that different facial colour cues were 

utilised differently depending on the preference judgement at hand and the 

observers, a wide range of facial colour characteristics need to be studied at 

the same time to obtain a realistic estimate of the role of colour features for 

aesthetic preferences.  

5.8 Summary 

In this chapter, a comprehensive assessment of various facial colour 

characteristics that affect facial preference was provided. Colour predictors 

of facial attractiveness, perceived healthiness, and perceived age were 

studied in both Caucasian and Chinese samples. A summary of the analysis 

and major findings are given below: 

• Various facial colour characteristics were calculated and these 

naturally occurring variations across Caucasian and Chinese faces 

were analysed. 

• A moderate role for colour characteristics in determining facial 

preference was revealed. 

• Although the average skin colour of facial areas plays a limited role, 

together with colour variation and contrast, there are stronger links 

between colour and facial preference than previously revealed. 

• Different facial colour cues are found to be utilised by different 

observers according to the different preference attributes they are 

accessing. Interestingly, Chinese observers tend to rely more heavily 

on colour cues to judge facial preference than Caucasian observers. 
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• The results highlighted the importance of examining various facial 

colour cues simultaneously to characterise the role of colour 

predictors in facial preference evaluation and demonstrated the large 

cultural difference between Caucasian and Chinese populations. 
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Chapter 6 Analytical tool for facial 

attractiveness modelling 



- 118 - 

6.1 Overview 

In the last chapter, attempts were made to examine the relationship between 

various colour cues and preference judgements in Caucasian and Chinese 

samples. The relative importance of different colour predictors was revealed. 

For numbers of industry applications, there is a strong need to predict facial 

preference. It is often desirable to achieve good predictive accuracy with 

fewer explanatory variables. Due to the high number of candidate variables 

and their correlations, predicting attractiveness from various colour cues 

could be difficult and may depend on the modelling methods. 

Taking the Chinese dataset as an example, this chapter provided a complete 

analytic framework regarding attractiveness modelling and focused on the 

comparison of different multivariate regression techniques. The 

attractiveness ratings collected in Experiment 1 were used as the training 

dataset for model estimation. To avoid the issue of overfitting, a novel 

dataset collected in Experiment 2 was used as the new testing dataset to 

validate the out-of-sample predictive accuracy of different models. In 

addition to regularisation, regression techniques including subset selection 

and dimension reduction have also been used for robust regression of the 

high-dimensional dataset (a dataset in which the number of features is close 

to or larger than the number of observations). It will be tested whether other 

multivariate approaches would better fit the dataset in this study. 

In this chapter, the different regression techniques were introduced in 

Section 6.2, and the analysis procedure and the criteria for comparison were 

described in Section 6.3. Regression techniques were compared in terms of 

predictive accuracy, model fit, and variable rankings and selections (Section 

6.4, 6.5). The advantages and disadvantages of different methods were then 

discussed, to what extent facial attractiveness could be modelled from 

colorimetric facial traits was further explored, and future recommendations 

were given in Section 6.6.  

6.2 Modelling techniques 

The relationships between facial attractiveness and colour characteristics in 

the Chinese dataset were modelled using the eight statistical and machine 

learning algorithms as described below. The ordinary least squares 

regression was included for comparison. The other seven strategies 

proposed were based on the three most commonly used multivariate 

techniques, subset selection, dimension reduction, and regularisation. For all 



- 119 - 

the regression techniques that have tuning parameters, a ten-fold cross-

validation was performed to determine the optimal parameters with the 

maximized model fit and optimise the algorithms. All the analyses were 

carried out in R (RDC, 2010). 

Ordinary Least Squares Regression (OLS) The OLS model was built 

using the lm() function under the stats library. In OLS, all the relevant colour 

predictors were included in one regression model without any process of 

variable selection.  

6.2.1 Subset selection regression 

In this study, both forward stepwise and backward stepwise methods were 

tested and the subset selection was achieved by an iterative procedure 

based on Akaike Information Criterion (AIC). The stepwise regression was 

implemented using the functions ols_step_backward_aic() and 

ols_step_forward_aic() in the olsrr package. 

Stepwise Regression – Forward Steps (SF) The model starts with only 

one intercept and then adds colour predictors based on AIC in a stepwise 

manner until AIC is no better. 

Stepwise Regression - Backward Steps (SB) The model starts with all the 

relevant colour predictors and then removes colour predictors based on AIC 

in a stepwise manner until AIC is no better.  

6.2.2 Dimension reduction regression 

The method doesn’t perform feature selection but overcomes the problem of 

multi-collinearity by dimension reduction. PCR and PLSR are common 

dimension reduction regression techniques. In this study, both were 

conducted by the pls package using the function pcr() and plsr(), 

respectively. 

Principal component regression (PCR) In this study, a ten-fold cross-

validation was utilised to determine the number of principal components by 

minimizing the Root Mean Squared Error (RMSE) of the prediction on the 

one-fold new data. 

Partial least squares regression (PLSR) The ten-fold cross-validation was 

also adopted to select the optimal number of linear combinations (latent 

components) for PLSR by minimizing the Root Mean Squared Error (RMSE) 

of the prediction on the one-fold new data.  
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6.2.3 Regularisation regression 

Techniques of regularisation or penalisation are used to constrain the 

coefficients of a model and reduce the variance of the parameter estimators, 

which have become popular for the analysis of high-dimensional datasets in 

recent years. The ridge and lasso were done by the glmnet package and the 

elastic net was done by the caret package. 

The Ridge Regression (RR) RR applies the L2 penalty to minimise 

overfitting and reduces the coefficients of less important variables to 

approach 0. The higher value of the shrinkage parameter, lambda, the more 

aggressively the coefficients are shrunk toward zero. Here, the optimal 

lambda was defined using a ten-fold cross-validation process while alpha = 

0. 

Least Absolute Shrinkage and Selection Operator Regression (LASSO)

 LASSO applies the L1 penalty to minimise overfitting and reduces the 

coefficients of less important variables to 0 (whereas RR make coefficients 

approach 0). The same ten-fold cross-validation process was performed to 

determine the tuning parameter, lambda, while alpha = 1. 

The Elastic Net Regression (EN) EN combines the penalty terms of RR and 

LASSO. In EN, both parameters, alpha and lambda, can be tuned to 

optimize the model fit where alpha controls the degree to which the model 

shrinks coefficients and lambda determines how aggressively coefficients 

are set to zero. The ten-fold cross-validation was implemented to generate 

the best combination of alpha and lambda with the maximised fit (minimised 

RMSE).  

6.3 Analysis procedure and criteria for model comparison 

6.3.1 Analysis procedure  

To provide a repeatable analytical tool for facial attractiveness modelling and 

conduct rational comparisons across different regression techniques, a four-

step analysis procedure was followed, as shown in Figure 6.1. 
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Figure 6.1 The framework of the analysis procedure. N is the number of 
colour predictors. 

Taking the Chinese dataset as an example, the relationships between 

attractiveness and facial colour cues were studied in this chapter. The first 

two steps were the same for all the modelling methods, which were to 

involve all the possible explanatory variables of facial colour characteristics 

and to remove the irrelevant variables. To identify as many as possible 

colour variables in the first step, in addition to the colour cues mentioned in 

Section 5.2, this chapter also included all the local skin colours (as outlined 

in Figure 5.1-a), feature colours (as outlined in Figure 5.1-b), and the 

chroma, C*, and hue angle, hab for all the colour variables as they may also 

be important colour parameters in relation to perception. A total of sixty-five 

explanatory colour variables were included in step 1. Then the correlation 

matrix was obtained to assess the association between attractiveness 

ratings and the sixty-five facial colour characteristics (Figure 6.2). The 

twenty-one colour variables that have significant correlations (p < 0.05) with 

attractiveness ratings were selected as valid predictors for the next step of 

modelling (marked as red in Figure 6.2). This step of data pre-processing 

was to remove the irrelevant variables from a large number of variables 

before further building the regression model as they might not make 

contributions to the prediction model.  
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Figure 6.2 The correlation matrix between facial attractiveness ratings and 
facial colour characteristics. The twenty-one colour variables that have 
significant correlations (p < 0.05) with attractiveness ratings were 
marked in red. 

The relationship between facial attractiveness and the relevant colour 

characteristics was then modelled in step 3 and model comparison was 

conducted in step 4. All the colour predictors were standardised to have zero 

mean and unit standard deviation before modelling. For both the training 

dataset (data collected in experiment 1 using the 40 Chinese images) and 

the testing dataset (data collected in experiment 2 using the new set of 60 

Chinese images), ratings were averaged across all observers to create a 

score for each face before modelling from the face level colour traits. 

6.3.2 Criteria for model performance comparison 

Model performance was evaluated by the predictive accuracy, the goodness 

of fit, and the selection of colour predictors. To evaluate the effectiveness of 

different multivariate analysis techniques, after developing the eight models 

based on the training dataset, a novel testing dataset (using both new 
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observers and a new set of facial images) was used to test the performance 

of different models. Both the in-sample and the out-of-sample model 

performance were reported. On the other hand, the number of variables and 

the valid colour predictors that remained in each model were compared and 

discussed. 

Predictive accuracy The Root Mean Square Error (RMSE) was adopted to 

measure the difference between the observed values (attractiveness scores 

rated by observers) and modelled values (attractiveness scores predicted by 

models) and compare the predictive accuracy of different models. by 

contrast with R2, RMSE is not inflated by the number of predictors and it has 

the same unit as the original scale used in this study. 

Goodness of fit The model accuracy was also measured using the 

coefficients of determination R2. It was calculated as the square of the 

Person correlation between the observed values (attractiveness scores rated 

by observers) and modelled values (attractiveness scores predicted by 

models).  The R2 values were calculated for the training dataset, as the 

goodness of fit, and also for the testing dataset, as the goodness of 

prediction. 

Selection or ranking of colour predictors For the regression techniques that 

perform direct variable selection such as SF, SB, LASSO, and EN, the 

model was evaluated by the number and selection of colour predictors that 

remained in the model. For the rest methods including OLS, PCR, PLSR, 

and RR, all the variables remained in the model and the rank of the variables 

was compared according to the standardised regression coefficients. 

6.4 Predictive accuracy and model fit 

The results of the in-sample and the out-of-sample model performance of 

the eight regression methods were shown in Table 6.1. Differences in RMSE 

values between different models were relatively smaller for the training 

dataset (from 0.42 to 0.62) but larger for the testing dataset (from 0.66 to 

1.35). The range of R2 for the training dataset across different models was 

from 42.6% to 73.9% and is always lower on the test as expected. In this 

study, PCR selected two principal components for optimal model fit, and the 

two components explained 58.6% of the variance in the original predictors 

and 42.6% of the variance in attractiveness; PLSR selected only one 

component, which explained 41.5% of the variance in the original predictors 

and 44.8% of the variance in attractiveness. Within the training dataset, OLS 
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and subset selection regressions had lower RMSE values and higher R2 

values than dimension reduction and Regularisation techniques. However, 

the Regularisation techniques achieved better out-of-sample model 

performance than all the other models, where EN showed the lowest RMSE 

value and RR had the highest R2 value for the testing dataset. Although OLS 

showed the lowest RMSE and highest R2 value for the training dataset, it 

performed the worst on the testing dataset. 

Table 6.1 Comparison of the eight multivariate regression algorithms based 
on the RMSE and R2 for the training dataset and the testing dataset. 

Algorithms 
Training 
RMSE 

Training  
R2 (%) 

Testing 
RMSE 

Testing  
R2 (%) 

OLS 0.42 73.9 1.35 10.8 
Subset selection     

SF 0.51 61.2 0.82 38.5 
SB 0.44 71.4 1.17 12.0 

Dimension reduction     

PCR 0.62 42.6 0.71 39.9 
PLSR 0.61 44.8 0.68 39.6 

Regularisation     

RR 0.60 51.8 0.67 43.5 
LASSO 0.54 58.1 0.70 39.4 
EN  0.55 56.9 0.66 41.8 

The accuracy of the eight regression models in predicting facial 

attractiveness was also demonstrated in the bar plots in Figure 6.3. The OLS 

and subset selection regressions showed lower in-sample RMSE values but 

higher out-of-sample RMSE values. The models using dimension reduction 

and regularisation techniques were just the opposite, resulting in closer 

RMSE values between the training dataset and the testing dataset. 

 



- 125 - 

 

Figure 6.3 The RMSE values of the eight regression models in predicting 
facial attractiveness for the training data (blue bars) and the testing 
dataset (red bars). 

The scatter plots in the next two pages gave the comparisons between the 

actual values of facial attractiveness ratings recorded during the experiments 

and the predicted values of facial attractiveness calculated from the 

regression models of all the facial images. Each red data point on the left 

column represented one of the forty facial images that were judged in 

Experiment 1, and each blue data point on the right column represented one 

of the sixty facial images that were judged in Experiment 2. The lower level 

of dispersion of the data points from the diagonal lines suggested the better 

performance of the model. Generally, different models did not show 

considerable differences in the attractiveness prediction of the training 

dataset, whereas different degrees of dispersion were shown across 

different regression models indicating the different out-of-sample model 

performances as mentioned above. 
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Figure 6.4(a)-(d) Model performance of the (a) OLS, (b) SF, (c) SB, (d) PCR 
in predicting facial attractiveness for the training data (left column) and 
the testing data (right column). 
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Figure 6.4(e)-(h) Model performance of the (e) PLSR, (f) RR, (g) LASSO, 
(h) EN in predicting facial attractiveness for the training data (left 
column) and the testing data (right column). 
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6.5 Ranking and selection of predictors 

The numbers of colour predictors that were selected by SF, SB, LASSO, and 

EN models were 7, 11, 11, and 14, respectively. For OLS, PCR, PLSR, and 

RR models, all 21 variables remained in the model. Based on the 

standardised regression coefficients in all regression models, the colour 

predictors were ranked in each model. Considering the regularisation 

techniques gave the better predictive accuracy as described in the previous 

section, the top 11 colour predictors selected by both LASSO and EN were 

listed in Table 6.2, ordered by the relative importance of each colour 

predictor (according to absolute standardised regression coefficients) in the 

EN model (last column). The rankings of these 11 colour predictors in eight 

regression models were given in the table. Some variables that were not 

selected by SF or SB were marked as 0. Between RR, LASSO, and EN, 

almost all the top 11 variables selected were in common. 

Table 6.2 Ranking of the eleven colour predictors selected by LASSO & EN 
in the eight regression models. Variables that were not selected by SB 
or SF regression are marked as 0. 

LASSO & EN selected  OLS SF SB PCR PLSR RR LASSO EN 

Brows_C_a* 5 4 3 8 5 1 1 1 

MCDM 12 6 4 9 11 3 2 2 

Nose_hab  7 0 6 18 7 2 6 3 

MCDM_Cheek  10 7 0 15 17 4 7 4 

Mouth_C_a* 17 0 7 10 2 5 8 5 

Chin_L* 13 10 0 4 3 6 9 6 

Forehead_hab 4 5 0 19 9 11 5 7 

Chin_hab 8 0 0 21 14 10 3 8 

Cheek_L* 2 2 2 3 1 7 11 9 

Nose_L* 16 8 5 6 8 12 4 10 

Mouth_C_hab 15 9 0 16 10 9 10 11 

The correlation matrix between the top eleven colour predictors selected by 

LASSO & EN and facial attractiveness ratings were further visualised in the 

heatmap in Figure 6.5. To identify the hidden structure and pattern in the 

matrix, the 11 colour predictors were reordered based on the hierarchical 

clustering as shown in the five black boxes, which were linked to the brows 

colour contrast (a*), skin colour variation (overall or cheek), local skin hue 

angle (forehead, chin or nose), the mouth colour contrast (a*) and local skin 

lightness L* (nose, chin, or cheek), from top left to bottom right. 
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Figure 6.5 The correlation matrix between the eleven colour predictors 
selected by LASSO & EN and facial attractiveness ratings. 

6.6 Discussion 

6.6.1 The analytical framework for modelling facial attractiveness 

from various facial colour cues 

Previous chapters demonstrated that using colorimetric cues in isolation to 

study facial attractiveness was associated with various problems, especially 

simplifying the complex nature of facial attractiveness judgement based on 

various colour cues (Section 5.6, 5.7). Therefore, the univariate approaches 

that were almost exclusively employed in the past could not satisfy the 

current research purpose of attractiveness modelling in real faces. To 

consider all the relevant colour characteristics simultaneously and manage 

the complex data structure with a large number of correlated colour features, 

multivariate approaches are needed. An important challenge is to develop 

an analytical tool that can be used to select valid predictors and make 

accurate predictions. The last chapter was an attempt to involve a relatively 

large number of colour variables and predict preference by the EN model. 

Due to the high number of candidate variables and their correlations, 

predicting attractiveness from various colour cues could be difficult and it 
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was unknown whether other multivariate approaches would better fit the 

dataset. 

In this chapter, more potential colour predictors were included which has 

never been considered together before. Different multivariate statistical 

techniques were compared in terms of the effectiveness and performance in 

attractiveness modelling. A complete analytical framework was provided for 

modelling facial attractiveness from a large number of facial colour 

characteristics (see Figure 6.1). Starting from identifying relevant variables, 

all the potential colour predictors were summarized based on a literature 

review and a pre-processing step of correlation analysis was carried out to 

ensure all the colour characteristics contributing to attractiveness judgement 

were included in the following regression analysis. Different regression 

techniques were then employed and the models were estimated using a 

training dataset and then validated using a novel testing dataset. 

This methodology can be applied in any future research on attractiveness 

modelling from various facial colour traits. If any other facial colour 

characteristic is identified to have an impact on facial attractiveness 

judgment, the new colour predictors can be added to the analysis from the 

first step of variable identification. Any other potential regression techniques 

can also be considered in the third step of modelling to see whether the final 

performance of the model will be improved. Besides, following this 

framework, other facial preference attributes can be studied as well and the 

prediction model can be built considering different ethnic groups, ages, 

genders, etc.  

6.6.2 Comparison of different regression techniques 

Different regression models were built to predict preference ratings from a 

large set of colour variables. Due to the collinearities between those 

explanatory variables (see Figure 6.2), conventional regression methods 

such as OLS may cause problems of multi-collinearity and result in 

overfitting. The problem of multi-collinearity was addressed using three 

different approaches, reducing the number of independent variables, 

removing the dependency between variables by projecting them into a new 

uncorrelated variable space, and adding some regularisations. To avoid the 

issue of overfitting, a novel testing dataset was used and any overfitting 

caused by the high-parameter model would only help fit the training dataset, 

but not the testing dataset. 
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The stepwise multiple regression models directly used the colour predictors 

as independent variables for facial preference prediction. The advantage of 

such an approach is that the model is straightforward and easy to run and 

interpret. However, among the three regression techniques, stepwise 

multiple regression was most largely affected by multi-collinearity and 

overfitting. Especially the backward method, as it contained more variables 

than the forward method, the model resulted in an out-of-sample predictive 

error almost three times larger than the in-sample error (RMSE values). The 

disadvantage of the subset selection methods is notable that they are not 

designed to handle high dimensional datasets and can easily fail to predict 

the attractiveness when the number of predictors increases. The methods 

assume that there is a perfect model, but due to the correlations between 

independent variables, the results vary based on the order of the variable 

selection which made it difficult to identify the most important contributor in 

the model.  

Dimension reduction methods overcome the problem of multicollinearity by 

transforming the original predictors into uncorrelated principal components. 

As a result, the out-of-sample model accuracy of both PCR and PLSR was 

relatively closer to the in-sample model accuracy compared to other 

methods. Meanwhile, as the PCR and PLSR models selected the most 

important principal components as the independent variables (in this study, 

PCR selected the first two principal components and PLSR only selected the 

first component), the model had the least number of predictors and the least 

degrees of freedom. The shortcoming of selecting principal components is 

that a certain amount of colour information has been lost during the 

dimension reduction process. Such loss of information influences the R2 

values so that both the PCR and PLSR models explained the lowest 

variance in attractiveness (42.6% and 44.8%, respectively) than all the other 

methods. Regression models using dimension reduction techniques also 

have the disadvantage that they are difficult to interpret and are not practical 

to make future predictions. Though the model only contains a small number 

of principal components, any future prediction will require the analysis of all 

the relevant colour variables to calculate those principal components.   

The regularisation regression models are easier to understand and interpret. 

Especially the LASSO and EN, as they performed feature selection, once 

the model has been developed only a subset of facial colour characteristics 

with the strongest effects on the response variable will need to be analysed 

for future facial preference prediction and will be directly used to build the 
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model. Both models gave relatively accurate predictions on the testing 

dataset while EN performed better in terms of both predictive error (RMSE) 

and variance explained (R2). RR also gave a similar performance as EN but 

with all the colour predictors remaining in the RR model. To make future 

predictions, the model will need all the relevant colour predictors of any new 

faces to be calculated. Generally speaking, based on both the predictive 

accuracy and the model fit, the regularisation regressions could be the best-

fit technique for modelling attractiveness from facial colour traits. 

6.6.3 The variable rankings and selections across regression 

models 

Variable rankings and selections are different issues from the model 

performance which need to be simultaneously taken into account. According 

to the complete correlation matrix between facial attractiveness ratings and 

the facial colour characteristics (Figure 6.2), all the relevant colour predictors 

at significant levels were L*, a*, or hab related without an exception. These 

results revealed that Chinese observers relied more on colour cues related 

to skin lightness (L*), redness (a*) or hue angle (hab) for attractiveness 

judgement. The other two colour attributes, yellowness (b*) or chroma (C*) in 

CIELAB colour space, are less important and almost entirely unused to 

make decisions on attractiveness.  

Among these relevant colour predictors, the variable ranking of the RR, 

LASSO, EN, and PLSR showed a large overlap. LASSO and EN selected 

the same top eleven colour predictors. Within these 11 colour predictors, the 

top 10 from RR, the top 9 from PLSR, the top 6 from PCR, the top 6 from 

SF, and the top 8 from SB were included (Table 6.2). After grouping the 

correlated variables (Figure 6.5), the most important features were clustered 

into five groups: the brows colour contrast (a*), skin colour variation (overall 

or cheek), local skin hue angle (forehead, chin or nose), the mouth colour 

contrast (a*) and local skin lightness L* (nose, chin, or cheek). 

Generally, the results were consistent with the Chinese model of facial 

attractiveness in the last chapter (Section 5.6) except for the two new 

predictors, local skin hue angle and local skin lightness. Both the hue angle, 

hab and the local skin colour attributes were newly added to the analysis of 

this chapter as potentially important colour parameters in relation to 

perception. The results verified the assumption that hab is an important 

colour predictor of attractiveness evaluation. And calculating the skin 

lightness of some local skin areas might be enough for future attractiveness 

predictions instead of analysing the overall facial lightness. 
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6.6.4 The predictive accuracy in attractiveness modelling from 

colorimetric facial traits 

Comparing the model performance, the research question ‘how accurate 

facial attractiveness can be predicted from colorimetric facial traits’ was 

addressed. In this study, different regression techniques were able to predict 

facial attractiveness with a minimum predictive error of less than one point 

(0.66 points) on a 7-point rating scale (EN) and a highest prediction R2 of 

43.5% (RR) both when validated on an independent dataset. The RMSE 

was slightly smaller than the Chinese model of attractiveness in the last 

chapter (RMSE=0.71, see Section 5.6) and the possible reason could be 

that more variables were involved and identified as important colour 

predictors in this chapter (e.g. the hue angle, hab) and thus the model 

performance was improved. 

As discussed in Section 5.7.4, studies that used univariate models to predict 

attractiveness from single colour cues may underestimate the role of facial 

colour cues in the attractiveness judgement of real faces (Foo, Rhodes, et 

al., 2017; Jones, 2018; Tan et al., 2018; Cai et al., 2019). The current 

multivariate approaches again showed superior performance and confirmed 

the effectiveness of colour in attractiveness modelling. On the other hand, 

very few studies used multivariate approaches to build facial attractiveness 

models based on structural facial features including averageness, 

dimorphism, and symmetry, and their out-of-sample RMSE varied from 0.46 

to 0.77 (Jones and Jaeger, 2019; Holzleitner et al., 2019). Compared to 

those studies, the colour-based models in this study showed comparable 

importance of the colorimetric facial traits in attractiveness judgement. 

6.6.5 Future recommendations 

An ideal regression model for attractiveness prediction should be sparse, 

interpretable, and well-predictive. Based on the discussion above, both 

regression techniques of dimension reduction and regularisation can be 

used for future study of attractiveness modelling from facial colour traits. 

Determining the specific regression algorithm depends on the investigatory 

priority. The PCR, PLSR, and RR have been identified as suitable algorithms 

to deal with multi-collinearity (Geladi and Kowalski, 1986; Abdi and Williams, 

2010). The LASSO and EN select fewer variables and are easier to interpret 

and more practical to implement. Complex models are not necessarily 

performing better than simpler ones (Ransom et al., 2019). For evaluating 

the overall performance of different algorithms in the future, both the 
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simplicity of the model and the predictive accuracy need to be taken into 

account. 

6.7 Summary 

This chapter focused on the comparison of different regression techniques 

for attractiveness modelling using a large number of facial colour cues. A 

summary of the analysis and major findings are given below: 

• An analytical framework was proposed, following which eight 

regression models of three regression techniques were compared in 

terms of predictive accuracy, the goodness of fit, and variable 

selection.  

• The framework of analysis procedure could serve as an important 

analytical tool for future study in facial attractiveness or other 

preference attributes modelling and prediction from a large number of 

facial colour characteristics. 

• Generally, both dimension reduction regression and regularisation 

regression outperformed the classical OLS and stepwise techniques 

as the high variance and overfitting weakened the prediction power of 

these classical approaches.  

• The EN showed the most accurate predictions when validated using 

the independent testing dataset. With fewer colour variables selected, 

the model is also easier to interpret and more practical to implement. 

• The most important colour features of attractiveness identified in this 

study were: the brows colour contrast (a*), skin colour variation 

(overall or cheek), local skin hue angle (forehead, chin or nose), the 

mouth colour contrast (a*) and local skin lightness L* (nose, chin, or 

cheek). 
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Chapter 7 Overall facial colour appearance 
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7.1 Overview 

The last three chapters have revealed that facial colour appearance could 

largely influence the facial attractiveness assessment. Previous research on 

facial preference as well as this study has commonly used the average facial 

skin colour specified in CIELAB colour space (L*, a*, and b*) to roughly 

represent the overall facial colour appearance, which was based on the 

colorimetric averaging hypothesis. However, it was unknown whether the 

colorimetric average could represent the perceptual overall colour 

appearance of human faces, and whether the CIELAB coordinates were 

suitable for quantifying the colour perception of human skin. In the next two 

chapters, efforts were made to better understand the perception of facial 

colour appearance.  

This chapter addressed the research question ‘what is the overall colour 

appearance or the globally representative colour of a human face’. Using the 

colour appearance matching data collected in Experiment 3, statistical 

analysis (Section 7.2) was done to test the colorimetric averaging hypothesis 

(Section 7.3). Mathematical models were built to accurately predict the 

perceptual colour appearance of human faces (Section 7.4). The influential 

factors of skin appearance perception and the perceptual difference between 

observers were discussed (Section 7.5). 

7.2 Statistical analysis 

In Experiment 3, 40 Caucasian and 40 Chinese facial images were used. 

The average pixel colour of each facial image was obtained by image 

analysis previously (see Section 4.2). 

During the experiment, the overall colour appearance of each facial image 

was assessed by colour appearance matching using uniform face-shaped 

colour patch by a panel of observers. The matched patch colour of each 

image from each observer was recorded in terms of display RGB values. 

The mean matched colour over all observers for each image was then 

calculated (by face dataset). The RGB values were transformed into the CIE 

XYZ tristimulus values based on the display characterisation model (the 

forward model) and subsequently transformed to CIELAB colour coordinates 

using display white point as the reference white.  

The average colour and matched colour were first compared, and their 

colour appearance difference was calculated in CIELAB uniform colour 
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space for each face. The one-sample t-test (H0: no colour change) was used 

to evaluate the overall colour changes using the by face dataset. To further 

test the effects of the face ethnicity, observer ethnicity, and the interaction 

between the two on the colour change applied, the linear mixed-effect model 

was set up using the raw data collected (dependent variables = colour 

change in three dimensions, △L*, △a*, △b*; fixed effects = face ethnicity, 

observer ethnicity; random effects: face ID, observer ID). The main effects 

and the interaction between face and observer ethnicity were included in the 

model. At last, based on the consistent colour shift from the average pixel 

colour and the matched facial colour across different faces, simple linear 

regressions were performed to quantify the overall facial colour appearance. 

All the analyses were conducted in R (RDC, 2010). The one-sample t-test 

was done using the t.test() function in the stats R package. The linear mixed-

effect models were implemented by the lmer() function in the lme4 R 

package (Bates et al., 2015). The simple linear regression model was built 

using the lm() function under the stats library. 

7.3 Average colour vs. matched colour 

The mean colour difference (with the standard deviation) between the 

average colour and the matched colour of 80 facial images is 3.14 ± 0.56 

∆E*ab unit (Caucasian faces: 3.12 ± 0.52 ∆E*ab; Chinese faces: 3.17 ± 0.58 

∆E*ab). Table 7.1 shows the results of the one sample t-test and the mean 

colour changes in terms of the five individual colour attributes (L*, a*, b*, C*
ab 

and hab) and the overall colour difference. One sample t-test revealed that 

the patch colour significantly changed after matching. Observers increased 

facial lightness (L*) by 3.00 units (SE = 0.06), t(79) = 46.965, p < 0.001, 

decreased facial redness (a*) by 0.77 units (SE = 0.04), t(79) = -21.133, p < 

0.001, and decreased facial yellowness (b*) by 0.27 units (SE = 0.03), t(79) 

= -8.907, p < 0.001, to match the overall colour appearance of the faces 

based on their perceptions. In other words, observers decreased chroma 

(C*
ab) by 0.56 units (SE = 0.03), t(79) = -18.949, p < 0.001, and increased the 

hue angle (hab) by 1.69 units (SE = 0.06), t(79) = 51.094, p < 0.001, to match 

the overall colour appearance of the faces based on their perceptions. 
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Table 7.1 Summarized statistics from one sample t-test: overall colour 
change after matching. 

Colour Axis Significance Mean ± SE 

L* t
79 

= 46.965; p<0.001***  3.00 ± 0.06 

a* t
79 

= -21.133; p<0.001*** -0.77 ± 0.04 

b* t
79 

= -8.907; p<0.001*** -0.27 ± 0.03 

C*
ab t

79 
= -18.949; p<0.001*** -0.56 ± 0.03 

h
ab

 t
79 

= 14.886; p<0.001***  1.69 ± 0.11 

Overall △E t
79 

= 51.094; p<0.001***  3.14 ± 0.06 
*P≤0.05, ** P≤0.01, ***P≤0.001. 

Figure 7.1 visualises the colour shift from the average pixel colour (hollow 

points) to the matched facial colour appearance (solid points) of 40 

Caucasian faces (blue lines) and 40 Chinese images (orange lines) in a*b* 

plane and L*C* plane in CIELAB uniform colour space. The actual perceived 

facial colour appearance by observers was obviously different from the 

average facial colour. The colour shift of both Caucasian faces and Chinese 

faces showed a consistent trend that the actual matched facial colour 

appearance had lower a* values, slightly lower b* values and much higher L* 

values compared to the average facial pixel colour. 

 

Figure 7.1 Colour shift from the average colour (hollow points) to the 
matched colour (solid points) of Caucasian faces (blue lines) and 
Chinese faces (orange lines) in CIELAB a*b* space (left) and L*C* 
space (right). 
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To further explore how the colour change applied was influenced by the face 

ethnicity or observer ethnicity, linear mixed-effect modelling was carried out 

for the colour change in a*, b*, and L*, respectively. Figure 7.2 shows the 

difference in colour change between the face and observer of the two ethnic 

groups. After the colour matching, △ a*, △ b*, and △ L* were always 

negative, negative, and positive, respectively, across the four subgroups 

(Figure 7.2), showing the consistent pattern of colour change from the 

average pixel colour to the matched colour.  

For the redness change (△a*), there were main effects of face ethnicity 

(F1,79=77.807; p<0.001) and observer ethnicity (F1,42=10.708; p<0.01), but 

their interaction was not significant (F1,3239=0.122; p=0.727). The significant 

main effects showed that both observers reduced redness more on Chinese 

faces than Caucasian faces to match the perceived facial colour 

appearance, and Chinese observers made a larger decrease than 

Caucasian observers (Figure 7.2a). For the yellowness change (△b*), the 

face ethnicity was not significant (F1,46=0.002; p=0.963), but the observer 

ethnicity (F1,42=13.479; p<0.01) and the interaction (F1,3239=13.979; p< 

0.001) was significant. Chinese observers tended to decrease more 

yellowness on the average colour to match the actual appearance colour, 

and both observers decreased yellowness more when they viewed faces of 

their own ethnicity (Figure 7.2b). For the lightness change (△L*), the face 

ethnicity was also not significant (F1,79=0.427; p=0.515), but the observer 

ethnicity (F1,42=13.247; p<0.01) and the interaction (F1,3239=18.143; p< 

0.001) was significant. Caucasian observers made a larger increase in 

lightness than Chinese observers on both faces, and both observers 

increased lightness more when they viewed faces of their own ethnicity 

(Figure 7.2c).   
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Figure 7.2 Bar plots showing the effects of face ethnicity, and observer 
ethnicity on the colour change applied on a* (a), b*  (b), and L* (c). The 

error bars indicate 95% confidence intervals. *P≤0.05, ** P≤0.01, ***P

≤0.001.  

Overall, the actual facial colour appearance perceived by observers was less 

reddish, slightly less yellowish, and much lighter compared to the average 

facial colour which was commonly used in previous research. The effect of 

observer ethnicity on facial colour appearance match was observed. 

Comparing the two groups of observers, the facial appearance perceived by 

the Chinese was less yellowish and less reddish than what was matched by 

Caucasian observers, while the appearance perceived by Caucasian 

observers was lighter than what Chinese observers matched. 

7.4 Model the overall facial colour appearance 

Based on the consistent colour change between the average pixel colour 

and the matched colour (Figure 7.1), it was possible to carry out a simple 

regression analysis to predict the actual facial colour appearance perceived 

by observers from the average pixel colour. Based on the linear mixed-effect 

analysis, the effect of face ethnicity was only significant when matching the 

facial redness (a*), thus separate linear regression models were set up to 

predict the facial redness (a*) of Caucasian faces and Chinese faces, 
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respectively. As for facial yellowness (b*) and lightness (L*), the same model 

was applied to the faces of both ethnicities.  

Table 7.2 Linear regression model predicting the matched facial colour 
appearance from the average pixel colour. 

 β SE t P 

Regression 1: a* (CA Face) 

Model F1,38 = 858.7, P <0.001***, Adjusted R2=0.958 

(intercept) -0.894 0.290 -3.077 0.004** 

𝑎∗̅̅ ̅ 1.039 0.035 29.304 <0.001*** 

Regression 2: a* (CN Face) 

Model F1,38 = 869.9, P <0.001***, Adjusted R2=0.958 

(intercept) -1.053 0.301 -3.495 0.001** 

𝑎∗̅̅ ̅ 1.011 0.034 29.495 <0.001*** 

Regression 3: b* (Both Faces) 

Model F1,78 = 6918, P <0.001***, Adjusted R2=0.989 

(intercept) -0.581 0.209 -2.777 0.007** 

𝑏∗̅̅ ̅ 1.019 0.012 83.172 <0.001*** 

Regression 4: L* (Both Faces) 

Model F1,78 = 2373, P <0.001***, Adjusted R2=0.968 

(intercept) 2.811 1.202 2.339 0.022* 

𝐿∗̅ 1.003 0.021 48.712 <0.001*** 

Table 7.2 summarises the simple linear regression analysis for the perceived 

facial colour appearance, a*, b*, and L*, respectively. All the regression 

models were statistically significant at less than 0.001 level. The average 

pixel colour 𝑎∗̅̅ ̅, 𝑏∗̅̅̅,and 𝐿∗̅ explained 95.8 per cent, 98.9 per cent, and 96.8 

per cent of the variance in the prediction of the perceived facial colour 

appearance a*, b*, and L*, respectively. Figure 7.3 shows the linear 

regressions of the average pixel colour on matched colour appearance with 

regression lines. Each data point represents one face that was used in the 

experiment. Basically, all the data are clustered tightly around the regression 

line showing a strong linear relationship. 
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Figure 7.3 The linear regressions of the average pixel colour on the 
matched colour appearance with regression lines: a* of CA faces 
(upper left), a* of CN faces (upper right), b* (bottom left), L* (bottom 
right). 

7.5 Discussion 

7.5.1 The overall colour appearance of human faces 

This study focused on the overall facial colour appearance with two research 

questions: (1) What is the perceived overall colour appearance of a human 

face? (2) How to quantitatively model this facial colour appearance? A colour 

matching experiment was conducted in this study and 80 real facial images 

were used as representative of the complexion and skin colour variation of 

real, Caucasian and Chinese, human faces. The main finding was that the 

overall facial colour appearance was significantly different from the average 

colour in the facial skin area though the latter was exclusively considered as 

the overall facial colour appearance in previous studies. Interestingly, the 

actual facial colour appearance perceived by observers was less reddish, 

slightly less yellowish, and much lighter compared to the average facial 
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colour. Furthermore, the actual facial colour appearance was accurately 

quantified and modelled for the first time in this study. The overall facial 

colour appearance a*, b*, and L* was defined can be predicted by simple 

linear regressions of average pixel colour 𝑎∗̅̅ ̅,  𝑏∗̅̅ ̅, and 𝐿∗̅  calculated in the 

facial skin area using the following equations: 

𝑎∗  = 1.039𝑎∗̅̅ ̅ − 0.894, for CA faces; 

𝑎∗  = 1.011𝑎∗̅̅ ̅ − 1.053, for CN faces; 

𝑏∗  = 1.019𝑏∗̅̅ ̅ −  0.581; 

𝐿∗  = 1.003𝐿∗̅ + 2.811.  

Equation 7.1 

The current models promised a high accuracy for facial colour appearance 

quantification with more than 95 per cent of the variance explained. These 

models can be used in the future prediction of the overall facial colour 

appearance of any new facial images. As the overall facial colour 

appearance describes what the colour stimuli of facial skin look like in 

human colour vision or the representative colour of a human face, the model 

can be applied in many applications that need to quantify or reproduce the 

colour appearance. For example, it can be used as an image-based method 

in facial colour measurement to evaluate dermatology treatment, skin care 

products, or personalised cosmetic shopping, replacing the conventional 

visual assessment methods of using skin colour charts or palettes 

(Fitzpatrick, 1988; Taylor et al., 2005; De Rigal et al., 2007; Swiatoniowski et 

al., 2013). 

7.5.2 Factors that influence the perception of overall facial colour 

appearance 

Seemingly, the current results didn’t support the colorimetric averaging 

hypothesis which claims that the global colour impression is determined by 

the colorimetric average of the elemental colours in the multi-coloured 

textured patterns (Sunaga and Yamashita, 2007). If it’s not the case, how did 

the overall colour perception evoke when the observers were presented with 

a human face and what were the factors that might influence the perception 

of overall facial colour appearance? In this section, three assumptions were 

brought up based on the three factors and their possible influence on the 

colour perception of facial appearance was discussed. 

7.5.2.1 The outliners of the facial colours 

The first assumption is that there might be an influence of the outliners of the 

facial colours. The skin colour is not uniform and the presence of skin 
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features such as wrinkles, acne, moles, pores, hairs, and the shadows and 

highlights generated by these things could add some unusual colour to the 

skin colour calculations. It is possible that when perceiving facial colour 

appearance, our human vision system would recognize these features and 

filter this colour information since they are not normal skin colours. If so, the 

trimmed mean colour of each pixel excluding the outlines would optimise the 

regression models and make a closer prediction of the perceived overall 

facial colour appearance. Based on that assumption, attempts were made to 

remove a designated percentage of the largest and smallest values before 

calculating the mean pixel colour of the faces, and then the colour difference 

between the matched colour and the trimmed mean colour was examined. 

The trimmed mean colour was calculated using the function trimmean() in 

MATLAB.  

Figure 7.4 shows the average colour difference across eighty faces between 

the trimmed mean and the matched colour as a function of the percentage of 

the pixel colour used to calculate the mean after removing the outliners. It 

was found that the colour difference did decrease as more outliners are 

excluded from 3.14 ∆E*
ab unit (between the mean of the middle 100% of the 

pixel colours and the matched colour) to 2.83 ∆E*
ab unit (between the mean 

of the middle 60% of the pixel colours and the matched colour). The extreme 

value of the trimmed mean is actually the median of all pixel colours, which 

was 2.82 units of ∆E*
ab. By removing the outliners and calculating the 

trimmed mean, the colour difference was reduced by 10.2%. The results 

indicated that the colour information of some outliners on skin appearance 

might be processed and filtered out by the vision system during the 

perception of facial colour appearance, but only to a relatively small extent. 

There might be other factors that influence the perception of the overall 

facial colour appearance. 
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Figure 7.4 The ∆Ea*b* between the trimmed mean colour (excluding outliers) 
and the matched colour. 

7.5.2.2 The skin colours of different local facial areas 

Considering the particularity of skin colour, the way people observe a human 

face could be different from seeing any colour patches or other images. An 

earlier study showed when individuals examined facial displays, a greater 

amount of time was spent looking at the regions around the eyes as 

compared to the areas around the mouth (Janik et al., 1978). When 

assessing the overall colour appearance of facial skin, observers might also 

focus more on some important facial areas, instead of paying equal attention 

to the entire face. Thus, the second assumption is that the perceptual facial 

colour appearance is influenced by the local facial areas and is closer to the 

colour of the important areas of visual focus. In this respect, the colour of 

five local skin areas, forehead, cheek, nose, chin, and periorbital was 

considered, and their colour difference with both the average colour and the 

matched colour were examined.  

Table 7.3 shows the average colour differences across all faces, Caucasian 

faces, and Chinese faces, respectively. On average, the matched colour was 

the closest to the colour of the forehead, followed by the cheek, chin, nose, 

and periorbital, while the average facial colour was the closest to the colour 

of the chin. The results were similar to both faces that the forehead would be 

the most suitable local area to represent the global colour percept or 

impression of a human face among the five facial areas. 
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Table 7.3 The ∆Ea*b* between the five local skin colours and the average 
pixel colour (the top three rows), the matched facial colour (the bottom 
three rows). The smallest colour differences in each row were marked 
as bold.  

 Forehead Cheek Nose Chin Periorbital 

The colour difference with the average colour 
    Overall 3.22 4.82 3.55 2.39 5.11 
    CA Face 3.88 3.67 3.98 2.25 6.63 
    CN Face 2.56 5.97 3.12 2.53 3.60 
The colour difference with the matched colour 
    Overall 2.09 3.31 5.23 3.76 7.89 
    CA Face 1.48 2.79 6.25 3.78 9.41 
    CN Face 2.70 3.83 4.22 3.74 6.36 

 

While the forehead colour showed the smallest colour difference with the 

matched facial colour on average, there was individual difference across 

different faces, especially for the forty Chinese faces (Figure 7.5). That was 

due to the individual difference in skin colour distribution of the face. The 

forehead might be a lighter region for most faces, but the colour of other 

local areas didn’t show consistent a pattern across different faces, e.g. some 

faces had more reddish cheeks while others showed paler and lighter cheek 

colours, which resulted in the massive crosses of the lines in Figure 7.5. 

Therefore, in terms of the individual face, the selection of local areas 

representing the global facial colour impression is not determined and still 

depends on the colour distributions of that face. 

 

Figure 7.5 The ∆Ea*b* between the five local skin colours and the matched 
facial colour of each of the eighty faces (Image No.1-40: CA faces; No. 
41-80: CN faces).  
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7.5.2.3 The colours of facial features 

Although the observers were asked to make the colour match based on the 

overall skin colour, it was difficult to ignore the influence of the facial features 

(including eyes, brows, and mouth) on the skin colour perception. The 

perceptions of colour change according to the visual context, and such 

visual perception phenomenon refers to Simultaneous Contrast. According 

to the contrast effects on lightness, a test colour on a dark background 

appears lighter than the same colour on a light background (Luo et al., 

1995). Comparing the average skin colour and the feature colours for both 

faces, it was found the colour of all three features, eyes, brows, and mouth, 

are much darker than the average skin colour (Table 7.4). Thus, the third 

assumption was made that the major colour shift in lightness (L*) was due to 

the contrast effects influenced by the feature colours. However, the current 

experiments are not enough to confirm whether this assumption is correct. A 

follow-up study may be required to test the difference in the matching results 

if only facial skin areas were presented excluding the facial features instead 

of the whole facial images. 

Table 7.4 Descriptive statistics for the average facial skin colours and the 
facial feature colours in CA and CN faces. 

 Mean (SD) 
 L* a* b* 

CA Face    

Average 60.63 (2.06) 8.10 (1.26) 15.25 (2.06) 

Eyes 39.80 (3.62) 5.76 (1.06) 10.60 (1.39) 

Brows 42.94 (6.29) 7.94 (1.40) 13.51 (1.69) 

Mouth 47.16 (2.29) 20.31 (2.31) 12.40 (1.19) 

CN Face    

Average 55.92 (2.10) 8.72 (1.16) 18.55 (1.50) 

Eyes 37.59 (2.93) 6.75 (0.98) 12.07 (1.11) 

Brows 42.93 (5.24) 6.35 (1.30) 12.05 (1.99) 

Mouth 44.02 (1.75) 19.02 (2.10) 13.59 (1.07) 

 

7.5.3 The perceptual difference in facial colour appearance 

between Caucasian and Chinese observers 

Interestingly, the difference in colour change between the observer of the 

two ethnic groups was significant in all three dimensions, △L* (F1,42=13.247; 

p<0.01), △a* (F1,42=10.708; p<0.01), and △b* (F1,42=13.479; p<0.01). Both 

observers increased lightness (L*) to match the facial appearance, but 

Caucasian observers made more increase in lightness (L*), resulting in a 



- 148 - 

lighter appearance match compared to Chinese observers (Figure 7.2c). 

Both observers reduced redness (a*) and yellowness (b*) to match the 

overall facial colour appearance, but Chinese observers reduced more, 

resulting in a less yellowish and less reddish facial appearance match 

compared to Caucasian observers (Figure 7.2a and Figure 7.2b). Besides, 

the interaction effect between face ethnicity and observer ethnicity was 

found significant for the lightness change (△L*, F1,3239=18.143; p< 0.001) 

and the yellowness change ((△b*, F1,3239=13.979; p< 0.001). Both observers 

tended to make more colour changes when they viewed faces of their own 

ethnicity. Caucasian observers made a larger increase in lightness (L*) when 

they viewed Caucasian faces, while Chinese observers tended to decrease 

more yellowness on the average colour to match the actual appearance 

colour when they viewed Chinese faces (Figure 7.2c and Figure 7.2b). 

Such ethnic differences in facial colour perception have never been revealed 

before and possibly originated from the differences in the naturally occurring 

variations of skin chromatic properties or the long-term visual adaptation of 

the two ethnic groups. The systematic differences in the skin colour 

variations show that Caucasian faces have higher lightness (L*) and lower 

chroma (C*) values, while Chinese faces have lower lightness (L*) and 

higher chroma (C*) values (especially b*, see Figure 4.2). Such variations 

might contribute to the ‘other-ethnicity effect’ on skin colour perception that 

observers pay more attention to or have extra sensitivity in the colour 

dimensions (lightness or chroma) they are more familiar with. Tan et al. 

investigated the discrimination of facial colour change using Chinese 

participants and found the Chinese participants were more sensitive to the 

colour changes in redness (a*) and yellowness (b*), but not lightness (L*), 

yet observers of other ethnicity were not included in their study (Tan and 

Stephen, 2013). On the other hand, the perception of facial appearance can 

be strongly affected by the characteristics of faces viewed previously, and 

visual adaption can result in long-term changes, especially for more familiar 

faces (Webster et al., 2004; Webster and MacLeod, 2011). As Caucasian 

people are exposed to lighter faces on a daily basis while Chinese people 

are more familiar with their own faces with a bit higher chroma, the 

perception of the facial colour may be biased by prior exposure and linked to 

the observer’s state of adaptation. Meanwhile, there is the ‘other-ethnicity 

effect’ for face adaptation that people are more sensitive to faces of their 

own ethnicity or faces that are close to the average faces to which there are 

adapted (Webster and MacLeod, 2011). In Tan et al.’s study, they also found 

that Chinese participants were significantly better at recognizing colour 
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differences in faces of their own and familiar than other-ethnicity faces (Tan 

and Stephen, 2013). This might partially explain the interaction effect that 

both observers tended to make more colour changes on faces of their own 

ethnicity.  

Considering the above, further research is still needed to explore whether 

the perceptual differences between observers have come from their natural 

chromatic properties, state of adaption, sensitivity or other aspects. 

7.6 Summary 

In this chapter, the colour perception of overall facial skin appearance was 

investigated using a colour matching experiment. A summary of the analysis 

and major findings are given below: 

• The average colour was not a good representation of the overall facial 

colour appearance. 

• Overall, the actual facial colour appearance perceived by observers 

was less reddish, slightly less yellowish, and much lighter compared 

to the average facial colour which was commonly used in previous 

research.  

• The overall facial colour appearance was accurately quantified and 

modelled for the first time by simple linear regressions of average 

pixel colour, and the models promised a high accuracy for facial 

colour appearance prediction with more than 95 per cent of the 

variance explained. 

• Factors that influence the perception of overall facial colour 

appearance were discussed and three possible assumptions were 

brought up explaining why such global facial colour impressions 

formed.  

• The perceptual difference in facial colour appearance between 

Caucasian and Chinese observers was further discussed. 
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Chapter 8 Facial whiteness, redness, and 

yellowness indices 
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8.1 Overview 

In the previous chapter, the overall colour appearance of human faces was 

investigated by a colour matching experiment. A consistent tendency for the 

colour shift between the colorimetric average and the perceptual overall 

colour appearance was identified. While the overall colour appearance is 

important, skin whiteness, redness and yellowness are three attributes most 

directly describe people’s perception of facial colour appearance and thus 

receive most concerns by industry applications such as cosmetic 

companies. The CIELAB is now widely used for skin colour, and the a* and 

b* values are commonly used to represent redness and yellowness, 

respectively. In this chapter, facial skin whiteness, redness, and yellowness 

were precisely examined. Whether the CIELAB coordinates (L*, a*, and b*) 

are suitable for quantifying those three perceptual attributes of facial skin 

colour, and whether there is a perceptual difference between facial skin 

colour and uniform patch colour were investigated. 

Using the colour appearance scaling data collected in Experiment 4, 

statistical analysis (Section 8.2) was done to test first the relationship 

between the scaling results of the face and the patch with the matched 

colour appearance (Section 8.3), and then the relationship between 

perceived whiteness, redness, and yellowness and the CIELAB coordinates 

(Section 8.4). New indices of whiteness, redness and yellowness for facial 

skin were developed based on the multiple regression analysis (Section 8.5). 

The associations between skin whiteness, redness, and yellowness were 

also assessed (Section 8.6). Finally, the influence of L*, a*, and b* on skin 

colour appearance perception and the perceptual difference between face 

and patch were further discussed (Section 8.7). 

8.2 Statistical analysis 

The same 80 facial images were used in this chapter to study the perceived 

whiteness, redness, and yellowness of facial skin. The 80 corresponding 

uniform colour patches that have same appearance with each facial image 

(matched by a panel of observers in Experiment 3) were also used in this 

study to investigate whether facial feature would affect perception of facial 

whiteness, redness and yellowness appearance assessment. Each pair of 

the 80 faces and uniform colour patches were scaled regarding their 

perceptual whiteness, redness, and yellowness in Experiment 4. The scaling 

scores of facial skin whiteness, redness, and yellowness for each of the 80 
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facial images and from each of the 43 observers were recorded in the facial 

image session; the scaling scores of perceptual whiteness, redness, and 

yellowness for each of the 80 corresponding uniform colour patches and 

from each of the observer were recorded in the uniform patch session. The 

mean scaled scores over all observers for each face and each patch were 

then calculated to represent the perception of whiteness, redness, and 

yellowness by a panel of observers in the context of facial skin and uniform 

patches, respectively. 

The scaling results of the face and the patch with the matched colour 

appearance were first compared using Pearson’s correlation coefficients 

(two-tailed). The associations between the three perceptual attributes 

(whiteness, redness, and yellowness) and the CIELAB colorimetric values 

(L*, a*, and b*) were then assessed. Based on the associations, multiple 

linear regression models were set up to predict facial whiteness, redness, 

and yellowness from the L*, a*, and b* values, and the model performance 

was compared with the simple linear regressions. In addition, Pearson’s 

correlation coefficients (two-tailed) were used to test the associations 

between the three perceptual attributes for the facial stimuli and the patch 

stimuli, respectively. 

All the analyses were conducted in R (RDC, 2010). Pearson’s correlation 

coefficients were calculated using the cor() function in the stats R package. 

The simple linear regression model and multiple regression models were 

built using the lm() function under the stats library. 

8.3 Face colour vs. patch colour 

The Pearson Correlation Coefficient (two-tailed) was used to assess the 

agreement in the scaling scores of the faces and the matched colour 

patches. The Pearson Correlation Coefficient of Caucasian (CA) faces and 

the corresponding patches, Chinese (CN) face and the corresponding 

patches, and all the faces and the corresponding patches are shown in the 

first, second, and third column in Table 8.1, respectively. The scaling scores 

of the faces and the patches were highly correlated for all three scaled 

attributes of whiteness, redness, and yellowness (p<0.001). The data points 

clustered around the 45°line in Figure 8.1 show the associations between 

the face scores and the patch scores and indicate a good agreement 

between them.  
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Table 8.1 The Pearson Correlation Coefficients of the scaling scores 
between the face stimuli and the matched patch stimuli. 

 CA CN All 

Whiteness 0.96*** 0.96*** 0.97*** 

Redness 0.91*** 0.89*** 0.88*** 

Yellowness 0.97*** 0.93*** 0.98*** 

*P<0.05; **P<0.01; ***P<0.001. N = 40, 40, 80 for CA, CN and all faces, respectively  

 

Figure 8.1 Associations between face scores and patch scores when scaled 
by three perceptual attributes, whiteness, redness, and yellowness: • 
Caucasian faces (CA), • Chinese faces (CN). A line has been drawn at 
45° to facilitate comparison. 

8.4 Whiteness, redness, and yellowness vs. L*, a*, and b* 

The relationships between the three perceptual attributes (whiteness, 

redness, and yellowness) and the CIELAB colorimetric values (L*, a*, and 

b*) were investigated. Figure 8.2 and Figure 8.3 shows the correlations for 

the face stimuli and the uniform patch stimuli, respectively.  
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The perceived whiteness of facial skin showed stronger correlations with the 

L* and b* values than the a* value; Facial skin redness was found to have 

strong correlations with both the a* and b* values, and at a similar level; 

Facial skin yellowness was found most strongly correlated with the b* and 

also highly correlated with the L* value (Figure 8.2).  

 

Figure 8.2 Correlations between the three perceptual attributes, whiteness, 
redness, and yellowness, and the three CIELAB coordinates, L*, a*, 
and b* of the 80 facial images. The Person correlation coefficients and 
the significance of the correlations are shown at the left top of each 

subplot. *P≤0.05, ** P≤0.01, ***P≤0.001. 

The perceived whiteness of uniform skin patches also had a stronger 

correlation with the L* and b* values than the a* value; Patch redness was 

found more strongly correlated with the a* value than the b* value; Patch 

yellowness was found most strongly correlated with the b* and also 

correlated with the L* value (Figure 8.3). 



- 155 - 

 

Figure 8.3 Correlations between the three perceptual attributes, whiteness, 
redness, and yellowness, and the three CIELAB coordinates, L*, a*, 
and b* of the 80 uniform colour patches. The Person correlation 
coefficients and the significance of the correlations are shown at the left 

top of each subplot. *P≤0.05, ** P≤0.01, ***P≤0.001. 

8.5 Whiteness, redness, and yellowness indices for facial 

skin colour 

Considering the perceived facial whiteness, redness, and yellowness were 

influenced not only by a single variable of the CIELAB coordinates, it was 

reasonable to assume that these perceptual colour attributes could be more 

accurately predicted by the L*, a*, and b* values together. Thus, multiple 

linear regression models were set up to predict facial whiteness, redness, 

and yellowness from the L*, a*, and b* values. For comparison, three simple 

linear regression models were also set up to predict facial whiteness from 

the L* value, facial redness from the a* value, and facial yellowness from the 
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b* value. Table 8.2, 8.3 and 8.4 summarises the regression analysis for the 

perceived facial whiteness, redness, and yellowness, respectively. 

Compared to the simple linear regression, the multiple regression models 

explained more variance in the prediction of all three perceptual colour 

attributes (98.2, 87.4, and 96.8 per cent of the variance in facial whiteness, 

redness, and yellowness, respectively, was explained by the multiple 

regression models). Especially for the prediction of perceived facial redness, 

the model fit was largely improved from an R2 value of 46.1% (simple 

regression) to an R2 value of 87.4% (multiple regression). 

Table 8.2 Simple linear regression model and multiple linear regression 
model in predicting facial whiteness. 

  
Facial Whiteness 

β SE t P 

Regression 1: Whiteness ~ L* 

Model F1,78=620; P<0.001***; Adjusted R2=0.887 

(Intercept) -185.784 9.631 -19.29 <0.001*** 

L* 3.910 0.157 24.9 <0.001*** 

Regression 2: Whiteness ~ L*, a*, b* 

Model F3,76=1405; P<0.001***; Adjusted R2=0.982 

(Intercept) -75.117 10.455 -7.185 <0.001*** 

L* 2.743 0.118 23.211 <0.001*** 

a* -0.058 0.205 -0.285 0.776 

b* -2.385 0.146 -16.348 <0.001*** 

NS= not significant; *P<0.05; **P<0.01; ***P<0.001.  

Table 8.3 Simple linear regression model and multiple linear regression 
model in predicting facial redness. 

  
Facial Redness 

β SE t P 

Regression 1: Redness ~ a* 

Model F1,78=68.67; P<0.001***; Adjusted R2=0.461 

(Intercept) 32.375 2.975 10.884 <0.001*** 

a* 3.020 0.364 8.287 <0.001*** 

Regression 2: Redness ~ L*a*b* 

Model F3,76=183.6; P<0.001***; Adjusted R2=0.874 

(Intercept) 24.415 12.535 1.948 0.055 

L* 0.424 0.142 2.995 0.004** 

a* 3.281 0.246 13.361 <0.001*** 

b* -1.239 0.175 -7.087 <0.001*** 

NS= not significant; *P<0.05; **P<0.01; ***P<0.001.  
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Table 8.4 Simple linear regression model and multiple linear regression 
model in predicting facial yellowness. 

  
Facial Yellowness 

β SE t P 

Regression 1: Yellowness ~ b* 

Model F1,78=897.4; P<0.001***; Adjusted R2=0.919 

(Intercept) -16.671 2.246 -7.421 <0.001*** 

b* 4.100 0.137 29.957 <0.001*** 

Regression 2: Yellowness ~ L*a*b* 

Model F3,76=794.2; P<0.001***; Adjusted R2=0.968 

(Intercept) 84.563 10.316 8.198 <0.001*** 

L* -1.216 0.117 -10.429 <0.001*** 

a* -0.960 0.202 -4.749 <0.001*** 

b* 2.928 0.144 20.346 <0.001*** 

NS= not significant; *P<0.05; **P<0.01; ***P<0.001.  

Figure 8.4 shows the model performance of the simple linear regression 

model and the multiple regression model. Generally, the multiple regression 

model on the right column shows a lower level of dispersion of the data 

points from the diagonal line and suggests a better performance of the 

model compared to the simple regression model on the left column.  

Hence, a new Whiteness Index for Skin (WIS), a new Redness Index for 

Skin (RIS), and a new Yellowness Index for Skin (YIS) were developed 

based on the multiple regression analysis to accurately quantify and predict 

the perceived facial whiteness, redness, and yellowness, respectively, from 

the CIELAB coordinates. The formulas are given below: 

WIS (Whiteness Index for Skin) = 2.743𝐿∗̅ − 0.058𝑎∗̅̅ ̅ − 2.385𝑏∗̅̅ ̅ − 75.117; 

RIS (Redness Index for Skin) = 0.424𝐿∗̅ + 3.281𝑎∗̅̅ ̅ − 1.239𝑏∗̅̅ ̅ + 24.415; 

YIS (Yellowness Index for Skin) = −1.216𝐿∗̅ − 0.960𝑎∗̅̅ ̅ + 2.928𝑏∗̅̅ ̅ + 84.563. 

      Equation 8.1 
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Figure 8.4 The model performance of the simple regression models (left 
column) and multiple regression models (right column) in predicting 
facial whiteness (top row), redness (middle row), and yellowness 
(bottom row). 
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8.6 Associations between perceptual whiteness, redness, 

and yellowness 

At last, the Pearson Correlation Coefficient (two-tailed) was used to assess 

the associations between the three perceptual colour attributes, whiteness, 

redness, and yellowness. Table 8.5 shows the results of the face stimuli and 

the uniform patch stimuli. Within the constraints of the skin colour space, no 

matter whether the face or the uniform patch was scaled, the perceived 

whiteness, redness, and yellowness were not independent colour 

perceptions. Especially, whiteness and yellowness were strongly and 

negatively correlated perceptions (r = -0.93, -0.84 for face stimuli and patch 

stimuli, respectively). Comparing the two different stimuli, the face and the 

patch, higher correlations were found between any two of the three 

perceptual attributes in the face stimuli than the patch stimuli. The results 

indicated the colour perception of human faces could be more easily 

affected by perceptions of other colour dimensions compared to the uniform 

colour patches. In particular, perceived whiteness and redness were 

significantly correlated when evaluating the facial skin colour (p<0.001), 

whereas they were not related to each other when scaling the uniform skin 

colour patches (p>0.05). 

Table 8.5 The Pearson Correlation Coefficients of whiteness, redness, and 
yellowness for face and patch perceptions. 

 Face Patch 

Whiteness - Redness 0.42*** 0.06 

Whiteness - Yellowness -0.93*** -0.84*** 

Redness -Yellowness -0.65*** -0.54*** 

*P<0.05; **P<0.01; ***P<0.001. N=80, 80 for face and patch, respectively  

8.7 Discussion 

8.7.1 New indices of whiteness, redness, and yellowness for 

facial skin colour 

This study aimed to investigate (1) the relationship between perceived skin 

whiteness, redness, and yellowness and the colorimetric values, L*, a*, and 

b*, of the facial skin. (2) the perceptual differences between face stimuli and 

the uniform patch stimuli with the matched colour appearance. A 

psychophysical experiment was conducted using the method of magnitude 

estimation, and both the 80 real facial images and the corresponding 80 

uniform skin colour patches were scaled by three perceptual attributes, 
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whiteness, redness, and yellowness. Based on the multiple regression 

analysis, the three new indices, WIS, RIS, and YIS, were developed to 

accurately quantify and predict the perceived whiteness, redness, and 

yellowness of human faces. 

For a long time, the L*, a *, and b* values in CIELAB space have been taken 

for granted as the representatives of facial lightness, redness, and 

yellowness, respectively, in a large number of studies on facial colour 

preferences and facial impressions (Stephen, Law Smith, et al., 2009; Re et 

al., 2011; Stephen et al., 2011; Pazda et al., 2016; Jones et al., 2016; Foo, 

Simmons, et al., 2017; Thorstenson et al., 2017; Han et al., 2018; Jones, 

2018). Perceived facial whiteness was found highly associated with lightness 

(L*) and is particularly important in Asian beauty (Xie and Zhang, 2013; Gao 

et al., 2018; Shimakura and Sakata, 2019). The results of this study 

suggested that the perceptual facial whiteness was not simply a correlate of 

CIELAB L*, the perceptual facial redness was not simply a correlate of 

CIELAB a*, and the perceptual facial yellowness was not simply a correlate 

of CIELAB b*. Especially for the redness, it was proved that both the a* 

value and the b* value correlated with facial redness (r = 0.68 and 0.69, both 

p<0.001, see Figure 8.2), and the a* value was not a good predictor of skin 

redness (R2 = 0.461, see Table 8.3). In this study, it was the first time that 

the accurate relationships between perceived skin whiteness, redness, and 

yellowness and the colorimetric values, L*, a*, and b* were revealed as 

given by the new indices WIS, RIS, and YIS. The stronger performance of 

WIS, RIS, and YIS relative to the simple regressions was expected given 

that facial whiteness had a strong correlation with both L* and b*, facial 

redness had a strong correlation with both a* and b*, and facial yellowness 

had a strong correlation with both L* and b*. 

Previous whiteness metrics, the ITA° scale and the depth scale D*
ab were 

tested and both showed a good correlation with the facial whiteness scaling 

scores from the experiment (Figure 8.5), and both were better than the 

simple regression of L* (R2 = 0.887, see Table 8.2). Whereas the new WIS 

developed based on the visual assessment data of facial skin colour 

outperformed both the ITA° scale and the depth scale D*
ab in predicting facial 

whiteness. Facial redness and facial yellowness have never been quantified 

previously in the context of skin colour space. The new RIS, YIS, together 

with WIS developed in this study can be used as accurate measures of 

perceptual facial colour appearance in various applications as well as the 

studies related to skin colour appearance. 
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Figure 8.5 Perceived facial whiteness as a function of the ITA scale (left), 
Bern’s Depth scale (middle), and the new WIS scale (right). 

8.7.2 Effects of a* and b* (hab and C*
ab) on whiteness perceptions 

The results suggested the perceptions of whiteness, redness, and 

yellowness of both the face stimuli and the patch stimuli were affected by 

more than one single dimension of L*, a*, and b*. As the images of real 

human faces were used in this study, it could be difficult to examine the 

effect of each variable precisely and independently. In fact, the effects of L*, 

a*, and b* on the perceptual colour attributes could be affected by the 

intrinsic correlations between L*, a*, and b* as they were not independent 

variables within the real skin colour gamut (e.g. L* correlated with both a* 

and b*, see Table 5.2). In the following discussions, efforts were made to 

divide the L*, a* or b* values into subgroups, and to show, at least partially, 

the influence trend of L*, a*, and b* on the perceptual colour attributes as 

well as the perceptual differences between the face stimuli and the patch 

stimuli within the same subgroups. 

To discuss the influence of a* and b* on whiteness perceptions, the L* value 

was divided into five groups by a step of 2.5 L* units so that within each 

group the L* value was kept at an approximately similar level. Figure 8.6 

shows the results of the face stimuli and the patch stimuli side by side, and a 

regression line was drawn for each group. Table 8.6 at the end of this 

section summarises the slopes of all the regression lines for the face stimuli 

and the patch stimuli, respectively. The top row of Figure 8.6 shows the 

perceived whiteness of the face stimuli was more sensitive to the change of 

a* compared to that of the patch stimuli (slopes of the face were steeper 

than the patch in all groups, see Table 8.6). And a higher a* value was more 

easily to increase the perceived whiteness of faces in the higher L* range 

(slopes of the higher L* group were steeper than lower L* group). The 

bottom row of Figure 8.6 shows that a higher b* value decreased the 



- 162 - 

perceived whiteness of both the face stimuli and the patch stimuli (negative 

slopes), whereas facial skin whiteness was more sensitively affected by b* 

(slopes of the face were steeper than the patch in all groups, see Table 8.6). 

Meanwhile, a higher b* value was more easily to decrease the perceived 

whiteness of faces in the higher L* range (slopes of the higher L* group were 

steeper than the lower L* group). 

 

Figure 8.6 Relationships between whiteness scores and a* (top), and 
whiteness scores and b* (bottom) for facial colour perceptions (left) and 
patch colour perceptions (right). A regression line was drawn for each 
group. 

Similar results were found by Yoshikawa et al. who studied the effects of 

chromatic components on facial skin whiteness. Yoshikawa et al. revealed 

that the perceived facial skin whiteness was influenced by both the hue and 

chroma that reddish facial skin looked whiter than yellowish skin and low-

chroma skin looked whiter than high-chroma skin (Yoshikawa et al., 2012). 

Shimakura and Sakata also revealed facial skin image looked less bright 

with an increased chroma (the inverse Helmholtz–Kohlrausch effect) 

whereas a uniform colour patch looked brighter with an increase in chroma 

(the Helmholtz–Kohlrausch effect) (Shimakura and Sakata, 2019). In such 

cases, the effects of hue and chroma on whiteness perception in this study 
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were also investigated as Figure 8.7 shows. The top two plots show that 

reddish skin looked whiter than yellowish skin (negative slopes) and 

perceived facial whiteness was more sensitive to the hue change than the 

patch stimuli (slopes of the face were steeper than the patch in all groups, 

see Table 8.6). The bottom two plots show the inverse Helmholtz–

Kohlrausch effect for both the face stimuli and the patch stimuli (negative 

slopes in all groups except for group 1) and the face stimuli again showed 

greater sensitivity to the chroma change (slopes of the face were steeper 

than the patch in all groups except for group 1, see Table 8.6). Different from 

Shimakura and Sakata’s study, the Helmholtz–Kohlrausch effect was not 

found in the perception of uniform colour patches. This might be due to the 

face shape of the uniform patch stimuli used in this study, which could to 

some extent evoke the process of face recognition but the degree was 

weaker than the real face perception. 

 

Figure 8.7 Relationships between whiteness scores and hab (top), and 
whiteness scores and C*

ab (bottom) for facial colour perceptions (left) 
and patch colour perceptions (right). A regression line was drawn for 
each group. 
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Table 8.6 Summary of the slopes of the regression lines in Figure 8.6 and 
Figure 8.7. 

Group L*  Range 
Whiteness - a* Whiteness -b* 

Face Patch Face Patch 

1 54-56.5 0.57 0.19 -0.48 -0.03 

2 56.5-59 0.59 0.53 -1.56 -0.93 

3 59-61.5 2.15 0.70 -2.53 -1.43 

4 61.5-64 3.24 1.28 -2.91 -1.58 

5 64-66.5 0.64 -0.40 -3.11 -1.86 

  

Group L*  Range 
Whiteness - hab Whiteness -C* 

Face Patch Face Patch 

1 54-56.5 -0.25 -0.07 0.10 0.12 

2 56.5-59 -0.39 -0.28 -1.79 -0.96 

3 59-61.5 -0.69 -0.30 -3.25 -2.09 

4 61.5-64 -0.81 -0.39 -4.04 -2.33 

5 64-66.5 -0.38 -0.09 -4.19 -3.13 

8.7.3 Effects of L*, b* on redness perceptions and L*, a* on 

yellowness perceptions 

The a* value was also divided into five groups by a step of 1 a* unit to 

demonstrate the relationships between redness perceptions and the L* and 

b* values (Figure 8.8). The top row in Figure 8.8 shows that within each 

group both facial skin redness and patch redness were influenced by L*, and 

a higher L* value increased the perceived redness (positive slopes except 

for group 1). The perceived redness of the face stimuli was more sensitive to 

the change of L* compared to that of the patch stimuli (slopes of the face 

were steeper than the patch in all groups, see Table 8.7). The effects of b* 

on redness perception were similar between the face stimuli and the patch 

stimuli that a higher b* value decreased the perceptual redness of both the 

facial skin and the uniform patch (negative slopes).  
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Figure 8.8 Relationships between redness scores and L* (top), and redness 
scores and b* (bottom) for facial colour perceptions (left) and patch 
colour perceptions (right). A regression line was drawn for each group. 

At last, the b* value was divided into five groups by a step of 2 b* units to 

illustrate the effects of L* and a* on yellowness perceptions (Figure 8.9). The 

top plots in Figure 8.9 show a higher L* value decreased the perceptual 

yellowness of both the face stimuli and the patch stimuli (negative slopes), 

whereas the facial skin yellowness was more sensitively influenced by the L* 

(slopes of the face were steeper than the patch in all groups, see Table 8.7). 

The influence of the a* on yellowness perceptions didn’t show a consistent 

trend across different groups. 
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Figure 8.9 Relationships between yellowness scores and L* (top), and 
yellowness scores and a* (bottom) for facial colour perceptions (left) 
and patch colour perceptions (right). A regression line was drawn for 
each group. 

Table 8.7 Summary of the slopes of the regression lines in Figure 8.8 – 
Figure 8.9. 

Group a* Range 
Redness - L* Redness - b* 

Face Patch Face Patch 

1 5.5-6.5 1.72 -0.04 -2.49 -0.11 

2 6.5-7.5 0.90 0.69 -1.50 -1.53 

3 7.5-8.5 1.02 0.90 -1.40 -1.66 

4 8.5-9.5 1.38 0.98 -1.82 -1.45 

5 9.5-10.5 1.35 1.35 -1.73 -1.57 

  

Group b* Range 
Yellowness - L* Yellowness - a* 

Face Patch Face Patch 

1 11-13 -0.39 -0.28 -0.94 -0.40 

2 13-15 -0.69 -0.43 0.53 -0.27 

3 15-17 -1.38 -1.02 0.12 -0.08 

4 17-19 -0.88 -0.64 0.94 0.23 

5 19-21 -0.91 -0.71 1.02 0.62 
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8.7.4 Perceptual difference between face and patch 

While the scaling results between the face stimuli and the patch stimuli with 

the matched appearance were highly correlated (Section 8.3), perceptual 

differences were found between these two stimuli. The associations between 

the three perceptual colour attributes, whiteness, redness, and yellowness 

showed that higher correlations existed between any two of the three 

attributes in facial skin colour perceptions than the patch colour perceptions 

(Section 8.6). This might suggest that perceived whiteness, redness, and 

yellowness of human faces are more dependent on each other whereas 

when evaluating the uniform skin colour patches, these perceptual colour 

attributes could be easier to scale separately. The discussions in Section 

8.7.2 and Section 8.7.3 also indicated that perceptual differences existed 

between the face stimuli and the patch stimuli. Steeper slopes were normally 

found in face stimuli indicating the greater sensitivity of facial colour 

perception which might be easier affected by the change of L*, a*, or b* 

compared to the colour perceptions of uniform colour patches. These results 

were consistent with the associations between perceptual whiteness, 

redness, and yellowness in Section 8.6. Consistent with the previous 

research (Yoshikawa et al., 2012; Shimakura and Sakata, 2019), the 

perceptual differences between the face stimuli and the patch stimuli might 

indicate the higher-level process of face recognition which has an impact on 

colour perceptions. 

In general, whiteness, redness, and yellowness were not independent 

perceptual attributes within the context of facial skin colour. The perceived 

facial whiteness could be enhanced by increased facial redness or a*, but 

weakened by increased facial yellowness or b*, and vice versa. The 

perceived facial redness could be weakened by increased facial yellowness 

or b* and vice versa.  

8.8 Summary 

In this chapter, the perceptual whiteness, redness, and yellowness of both 

the face stimuli and the patch stimuli were investigated using the method of 

magnitude estimation. A summary of the analysis and major findings are 

given below: 

• Psychophysical data was collected to quantitatively model the 

perceptual attributes of skin colour appearance. 



- 168 - 

• The accurate relationships between perceived skin whiteness, 

redness, and yellowness and the CIELAB colorimetric values, L*, a*, 

and b* were revealed. 

• New indices WIS, RIS, and YIS were developed to quantify facial 

skin's perceptual whiteness, redness, and yellowness, respectively. 

Based on the multiple regressions, the new indices promised a high 

accuracy of prediction (R2 = 0.982, 0.874, and 0.968 for WIS, RIS, 

and YIS, respectively). 

• The perceptual differences between the face stimuli and the patch 

stimuli were discussed.  

• In general, the perceived whiteness, redness, and yellowness were 

not independent perceptual attributes within the context of facial skin 

colour, and were more likely to influence each other compared to the 

perceptions of uniform patches. 
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Chapter 9 Conclusions 
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9.1 Overview 

This research aims to better understand the human colour perception of 

facial complexions and to develop colour science models for colour 

preference evaluation and colour appearance perception. To achieve this 

aim, four psychophysical experiments were carried out in this research,  

assessing facial colour preference and facial colour appearance based on 

realistic skin models. 

Experiment 1 was a cross-cultural study on facial preference evaluation. 

Eighty facial images of real human faces, including 40 Caucasian faces and 

40 Chinese faces were used as stimuli in this experiment. Observers from 

the two ethnic groups were asked to rate the skin colour of each face, in 

terms of three preference attributes, facial attractiveness, perceived 

healthiness and visual ageing using the categorical judgement method.  

Experiment 2 was a repeating experiment on facial preference evaluation 

using a new set of Chinese faces and a new panel of Chinese observers. 

The experimental procedures were the same as Experiment 1. The skin 

colour of the same 40 Chinese images used in Experiment 1 and another 60 

new Chinese images was rated in terms of facial attractiveness using the 

categorical judgement method. 

Experiment 3 was a colour appearance matching experiment focusing on the 

overall colour perception of facial appearance. The eighty facial images of 

real human faces were again used. Observers were asked to adjust the 

colour of the face-shaped uniform colour patch to match the skin colour 

appearance of each of the faces. 

Experiment 4 was a colour appearance scaling experiment considering the 

perceived facial whiteness, redness, and yellowness, and the perceptual 

difference between the face stimuli and the uniform patch stimuli. The stimuli 

included eighty facial images and eighty uniform skin colour patches. The 

perceived whiteness, redness, and yellowness of both the face stimuli and 

the uniform patch stimuli were scaled in comparison to a reference using the 

magnitude estimation technique. 

Based on these experiments, the research work was further done by 

analysing the role of average skin colour in preference judgements (Chapter 

4), analysing the role of various facial colour characteristics in preference 

judgements (Chapter 5), providing an analytical framework and suggested 

regression techniques for facial attractiveness modelling (Chapter 6), 
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developing models to quantify and predict the overall colour appearance of 

human faces (Chapter 7), and developing new indices to quantify and 

predict facial skin's perceptual whiteness, redness, and yellowness (Chapter 

8).  

All the tasks described in Chapter 1 have been successfully achieved. A 

more detailed summary of the major findings and research contributions is 

given in the following sections. The directions for future study is also 

discussed in the end. 

9.2 The role of facial colour cues in preference judgements 

based on realistic skin models  

Based on the results of Experiment 1, the effect of various facial colour cues 

on facial preference judgements was thoroughly assessed and the relative 

importance of different colour cues was revealed. In order to discuss the 

facial colour preference based on a realistic skin model, a set of high-

resolution images of real faces was used without changing the original 

colour and a rigorous process of display colour characterisation was 

performed to truly present the colour appearance of those facial images to 

observers in the preference evaluation experiments. The results underline 

the role of facial colour in nonverbal social communication such as 

determining facial preference. Although the average skin colour of facial 

areas plays a limited role, together with colour variation and contrast, there 

are stronger links between colour and facial preference than previously 

revealed. The results highlight the importance of examining various facial 

colour cues to obtain the full picture of colour predictors utilised in facial 

preference evaluation. The present study also contributes to the growing 

body of work demonstrating the importance of skin colour manipulations 

within an evolutionary meaningful parameter space, ideally using realistic 

skin models based on physical parameters.   

9.3 The cultural difference regarding facial colour preference 

between Caucasian and Chinese populations  

Meanwhile, interesting cultural differences regarding facial colour reference 

between Caucasian and Chinese populations were found. Facial colour 

characteristics as cues for attractiveness, healthiness, and youthfulness are 

deployed differently by Caucasian and Chinese observers. For example, the 

preference for facial lightness is opposite that Caucasian people prefer 
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tanning skin while Chinese people prefer lighter or whiter skin; Caucasian 

observes heavily rely on skin colour variation to make preference 

judgements, whereas facial colour contrasts are more important factors to 

Chinese observers; Chinese observers tend to rely more heavily on colour 

cues to judge all facial preference attributes than Caucasian observers; 

Caucasian observers think that both a younger face and older face can have 

an attractive and healthy appearance, whereas Chinese observers think 

younger faces mean healthier look and are more attractive; etc. From a 

psychological perspective, this is a very important subject that involves 

cross-cultural differences in human behaviour. Also, it is a subject that 

commands close attention by the industry such as cosmetics from both a 

colour and beauty perspective. 

9.4 A new analytical framework for facial preference 

modelling 

Attractiveness modelling could be complicated due to a large number of 

explanatory variables and correlations between them. In order to verify the 

out-of-sample performance of different modelling techniques, Experiment 2 

was conducted to collect an independent testing dataset using new face 

stimuli and new observers. Results show that both dimension reduction 

regression and regularisation regression outperform the classical multiple 

and stepwise regressions, and the elastic net regression shows the most 

accurate predictions with relatively fewer colour variables selected. More 

importantly, the present study provides a useful and repeatable analytical 

framework for facial preference modelling based on a realistic skin model. 

The framework includes steps of variable identification, pre-processing, 

modelling, and model performance comparisons. It can serve as an 

important analytical tool in future studies of facial preference modelling and 

prediction from a large number of explanatory variables.  

9.5 The overall colour appearance of human faces 

It is the first time that the overall colour perception or the global colour 

impression of facial appearance is precisely examined. The results of 

Experiment 3 show that the perceived facial colour appearance is less 

reddish, slightly less yellowish, and much lighter compared to the average 

facial colour which was commonly used in previous research to represent 

the overall facial colour appearance. The overall facial colour appearance is 

accurately quantified and modelled by simple linear regressions of the 
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average pixel colour, and the models promise a high accuracy for facial 

colour appearance prediction with more than 95 per cent of the variance 

explained. Factors that may influence the perception of overall facial colour 

appearance were discussed. The perceptual difference in facial colour 

appearance between Caucasian and Chinese observers was interestingly 

found. 

9.6 New indices of facial skin whiteness, redness, and 

yellowness 

Results of Experiment 4 show that the perceived facial whiteness, redness, 

and yellowness cannot be simply represented by the L*, a*, and b* values in 

CIELAB colour space, respectively. Especially, the a* value is not a good 

predictor of skin redness (R2 = 0.461). Based on the relationships between 

perceived skin whiteness, redness, and yellowness and the CIELAB 

colorimetric values, new indices WIS, RIS, and YIS are developed to 

accurately quantify those colour perceptions, which promise a high accuracy 

of prediction (R2 = 0.982, 0.874, and 0.968 for predicting facial whiteness, 

redness, and yellowness from WIS, RIS, and YIS, respectively). The new 

indices can be used as accurate measures of perceptual facial colour 

appearance in various applications as well as studies related to skin colour 

appearance. In general, whiteness, redness, and yellowness are not 

independent perceptual attributes within the context of facial skin colour. The 

perceived facial whiteness can be enhanced by increased facial redness or 

a*, but weakened by increased facial yellowness or b*, and vice versa. The 

perceived facial redness can be weakened by increased facial yellowness or 

b* and vice versa. 

9.7 The perceptual difference between the colour appearance 

of the face stimuli and the nonface stimuli 

Meanwhile, the results of Experiment 4 also confirmed the perceptual 

differences between the face stimuli and the patch stimuli. Within the range 

of skin colour, the perceived whiteness, redness, and yellowness are not 

independent perceptual attributes no matter for the face stimuli or the 

uniform patch stimuli. However, higher correlations exist between any two of 

the three attributes in facial skin colour perceptions than the patch colour 

perceptions, showing these three colour appearance attributes are more 

likely to influence each other for the face stimuli compared to the uniform 
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patch stimuli. The perceptual differences may involve the influence of a 

higher-level process of face recognition on colour perceptions. 

9.8 The direction for future study 

The present study shed some new light on how our visual system perceives 

and processes colour information on human faces. Skin colour and face 

perception is a relatively new and multi-disciplinary research area covering 

colour technology, vision science, psychology, human behaviour, etc. and 

shaping numerous industry applications. There are various promising 

directions for future work of this research area. 

The effect of various facial colour cues on preference judgements has been 

thoroughly examined in this study, and all the facial colour characteristics 

were calculated in the CIELAB uniform colour space. Considering that the L*, 

a*, and b* are not perfect predictors of the perceptual facial whiteness, 

redness, and yellowness, respectively, the CIELAB may not be the best 

colour appearance model to describe the human colour perception of 

complexions and to predict facial preference judgements. Though the 

CIELAB uniform colour space is the most widely adopted colour space to 

objectively specify skin colours in numerous research, it was developed 

based on the uniform patch colours rather than skin colours as all the 

existing colour appearance models were. Given the perceptual difference 

between the face stimuli and the uniform patch stimuli, the current colour 

appearance model may not be adequate for the prediction of the much more 

complicated appearance of human skin or face. Based on the perception of 

skin colour, a better colour appearance model for human complexions could 

be built to accurately describe and predict skin colour appearance, e.g. using 

the perceived skin whiteness, redness, and yellowness instead of the L*, a*, 

and b* as the new coordinates. With the optimised colour appearance model, 

it might be possible to map the facia colour cues to a new colour space and 

achieve better prediction of facial preference judgements.  

Lighting can be a factor that largely changes the colour appearance of 

human faces and thus affect the preference assessment. The present 

experimental works used facial images from the LLSD to assess the facial 

colour appearance and preference. The facial images from that database 

were all captured under the CIE standard illumination D65. In the future, the 

influence of lighting conditions could be considered and facial colour 

preference under various lightings could be further investigated. Currently, 

the colour preference index, especially for light-emitting diodes (LEDs), is 
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under discussion by CIE technical committee TC1-91, and skin colour is still 

considered as a special target. A better metric is needed to quantify light 

source colour rendering and preference properties for human skin colour. 

The present research has provided a useful and repeatable methodology for 

facial colour preference research based on a realistic skin model. Large 

cultural differences in facial colour perceptions were found between 

Caucasian and Chinese populations. The future study could make the 

methodology more inclusive by involving more different ethnic groups. A 

larger image database and larger-scale psychophysical experiments will be 

needed to collect more observation data. Both the observer and the 

observed will cover more different ethnic groups and people from different 

cultural backgrounds. The cultural difference will be fully discussed by 

comparing the modelling results of different groups. 

The effect of ethnicity has been investigated in our experiments using 

observers of both genders, the observer gender is another possible 

additional variable. While the current sample is too small to conduct a 

meaningful gender-based analysis, previous studies found a strong effect of 

facial redness that impacts on perceived health and attractiveness for both 

male and female skin by skin colour manipulations (Pazda et al., 2016; 

Thorstenson et al., 2017). Whether there is a perceptual difference for facial 

colour appearance between gender and, if there is, how large the effect is in 

the realistic skin model compared to the cultural difference, requires further 

work. 

Human colour perception of facial appearance is rich and complicated. In 

this study, factors that influence the perception of overall facial colour 

appearance were discussed and three possible assumptions were brought 

up explaining why such global facial colour impressions formed. Those 

assumptions will need to be tested. Besides, the perceptual difference in 

facial colour appearance between Caucasian and Chinese observers was 

also observed. Further research is still needed to explore whether the facial 

appearance perception is culture-dependent and whether perceptual 

differences have come from their natural chromatic properties, state of 

adaption, sensitivity or other aspects. Additionally, the mechanisms behind 

the perceptual differences between the face stimuli and the patch stimuli are 

still unknown. A large amount of research work is required to fully 

understand the visual sensitivity and the physiological mechanisms 

underlying facial colour perception. 
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List of Abbreviations 

AIC Akaike Information Criterion  

BIC Bayesian Information Criterion  

CA Caucasian 

CI Confidence Interval 

CIE 
Commission Internationale de L’ Éclairage (International 
Commission on Illumination) 

CAM Colour Appearance Model 

CIELAB CIE 1976 (L∗a∗b∗) Colour Space 

CN Chinese 

CRT Cathode Ray Tube 

CV Coefficient of Variation  

DV Dependent Variables 

EN The Elastic Net Regression  

FV Fruit and Vegetable  

GOG Gamma Offset Gain 

ISO International Organization for Standardization 

ITA The Individual Typology Angle 

IV Independent Variable 

LASSO 
Least Absolute Shrinkage and Selection Operator 
Regression  

LCD Liquid Crystal Display 

LED Light-Emitting Diodes 

LGN lateral geniculate nucleus 

LLSD Liverpool-Leeds Skin-colour Database 

MCDM The Mean Colour Difference from The Mean 

MLR Multiple Linear Regression 

NS Not Significant 

OLS Ordinary Least Squares Regression 

PCA Principal Component Analysis 

PCR Principal Component Regression 
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PLCC 
The Piecewise Linear Assuming Chromaticity Constancy 
Model 

PLSR Partial Least Squares Regression 

RGB 
R: Red Channel; G: Green Channel; B: Blue Channel. The 
Range Of The Value Of The R,G,B Is From 0 To 255 

RIS Redness Index for Skin 

RMSE Root Mean Squared Error 

RR Ridge Regression 

SB Stepwise Regression - Backward Steps 

SD Standard Deviation 

SF Stepwise Regression – Forward Steps 

SLR Single Lens Reflex 

SOCS Standard Object Colour Spectra Database 

SP Spectrophotometers 

TC Technical Committee 

TSR Tele-spectroradiometers 

UV Ultra Violet 

WIC CIE Whiteness Index 

WIS Whiteness Index for Skin 

YIS Yellowness Index for Skin 

 

 


