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Adaptive Observability for Forensic-Ready
Microservice Systems

Davi Monteiro, Yijun Yu, Andrea Zisman, and Bashar Nuseibeh

Abstract—Microservice-based applications may include multiple instances of microservices running on containerised infrastructures.
These infrastructures pose challenges to digital investigations of security incidents because digital evidence can be destroyed when
containers are terminated. Observability techniques are used to facilitate the investigation of incidents in microservice systems.
However, existing observability approaches do not address security incidents when there is a need to perform digital forensic
investigations. Furthermore, approaches to proactively support digital forensic investigations are limited to security incidents that are
known a priori. In this paper, we propose an adaptive observability approach based on game theory. The approach addresses the
challenge of implementing forensic-ready microservice systems while considering uncertainties in security incidents. Our approach
provides evidence collection capabilities for microservice systems and continually adapts to improve the forensic readiness of
microservices. Specifically, the approach uses game theory to model and reason about the interactions between users and
microservices, determining the optimal time and manner for observing microservices before the occurrence of security incidents. The
performance of the approach has been assessed and compared with other observability approaches. Results of the evaluation indicate
that adaptive observability outperforms other observability approaches, with improvements ranging from 3.1% up to 42.50%.

Index Terms—microservices, forensic-ready systems, observability, game theory
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1 INTRODUCTION

M Icroservices have emerged as an architectural style
for building a single application as a collection of

fine-grained, loosely coupled, and autonomous services, in
which each service runs in its process and communicates
through lightweight mechanisms [1]. This architectural style
focus on isolating microservices around business capabil-
ities, employing well-established software modularisation
principles such as separation of concerns [2] and bounded
context [3]. As a result, each microservice functions as an
independent unit for development, testing, deployment,
operation, and scalability [4], [5].

Microservice-based applications may include hundreds
to thousands of instances of microservices running on
containerised infrastructures (e.g., Kubernetes and Docker
Swarm). These containerised infrastructures provide auto-
scaling and self-healing capabilities to create multiple in-
stances of microservices scaling up the application and re-
place malfunctioning microservices. However, these infras-
tructures pose challenges when a security incident occurs,
and a digital forensic investigation needs to be conducted.
Containers are ephemeral by nature - they have a spe-
cific lifetime and; when terminated, their internal storage
is destroyed together with any potential digital evidence.
Therefore, it is necessary to anticipate security incidents
and prepare microservice-based systems to collect potential
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digital evidence for future investigations.
Traditionally, digital forensics is a reactive process initi-

ated after the occurrence of security incidents [6]. In con-
trast, digital forensic readiness aims to support digital inves-
tigations proactively [7]; i.e., preparing software systems to
collect potential digital evidence before security incidents
occur. Some strategies and guidelines [7]–[9] have been pro-
posed to collect digital evidence proactively. Other methods
and techniques have been developed to implement forensic-
ready systems focusing on the reduction of data necessary
to investigate security incidents [10], [11]. However, these
existing approaches depend on the assumption of prior
knowledge about security incidents to synthesise evidence-
gathering capabilities, which limits their effectiveness in un-
certain scenarios. Examples of this type of scenario include
cases where a forensic-ready system needs to collect possible
digital evidence under: (i) uncertainty about the type of
user (e.g., regular or malicious) who is interacting and (ii)
uncertainty about the behaviour of malicious users.

More recently, a set of instrumentation techniques (e.g.,
metrics, logs, and distributed tracing), referred to as ob-
servability, have been used to facilitate the investigation
of incidents in microservice systems [12]–[14]. According
to Polyakov [15], there are three observability approaches,
namely: (i) full observability: when all observability data is
collected (metrics, logs, and traces); (ii) sampling observ-
ability: when observability data with a fixed probability is
collected; and (iii) adaptive sampling observability: when a
prior probability is adjusted to assure that the amount of
data collected is stable based on levels of traffic workload.
Full observability brings extra overhead to microservice sys-
tems, while sampling and adaptive sampling observability
aim to reduce the cost of data collection [16]. However, in the
context of a security incident, approaches (ii) and (iii) may
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not record the data required to support digital investigations
due to the sampling process.

In this paper, we propose a game-theoretical approach,
named adaptive observability, for implementing forensic-
ready microservice systems. Our approach uses game the-
ory to formalise representations and reasoning of the in-
teractions between users and microservices. In particular,
game theory provides a framework for reasoning about se-
curity incidents involving uncertainty scenarios [17]. These
representations model how malicious users and forensic-
ready microservices should make decisions when interact-
ing. In addition, the representation of such interactions as
a game model helps us capture uncertainties around secu-
rity incidents (e.g., the presence of malicious users, types
of attacks that may occur, and possible impacts of these
attacks). Therefore, we reason about these representations
to determine when and how to observe microservices before
the occurrence of security incidents.

Furthermore, we consider a set of requirements, known
as forensic readiness requirements [18], in the implementation
of our approach. Such requirements are important to bridge
the gap between the concept of digital forensic readiness
and its implementation in software engineering practices.
For example, rather than providing forensics readiness
guidelines, these requirements specify how forensics-ready
systems must behave to achieve forensics readiness. We
evaluated our approach, and the results indicate that adap-
tive observability outperforms full and sampling observ-
ability using the F-measure as a criterion to perform the
comparisons. Specifically, our approach shows significant
improvement (up to 42.50% better performance) in scenarios
with high uncertainty of malicious users. The main contri-
butions of this work are the following:

• Representations of malicious users and forensic-ready
microservices;

• A game-theoretical model to reason about interactions
of users and microservices;

• An empirical evaluation of adaptive observability com-
pared to other observability approaches.

The remainder of this paper is organised as follows. In
section 2 we describe a motivating example. In section 3 we
provide an overview of adaptive observability. In section 4
we define representations of malicious users and forensic-
ready microservices. In section 5 we formalise our game-
theoretical model. In section 6 we describe how the adaptive
observability approach can be used in practice. In section 7
we evaluate our approach and discuss. In section 8 we
provide an account of existing work. Finally, in section 9
we describe some concluding remarks and future work.

2 MOTIVATING EXAMPLE

Our work is motivated by an example of a microservice
system for intelligent video surveillance, inspired by one
of Amazon’s machine learning sample solutions, and used
as a running example to illustrate self-adaptive microservice
systems [19]. The application aims to inform users about the
presence of humans via real-time analysis of video frames
captured by security cameras.

The architecture of this application consists of two types
of microservices: business and infrastructure. A business

microservice refers to a service that supports a specific busi-
ness function, such as face recognition and video playback;
whereas an infrastructure microservice encompasses more
generic and reusable services that handle non-functional
tasks, such as service discovery and service orchestration.

Scenario. Consider a scenario where two users, Bob and
Alice, have access to the video surveillance application.
Bob is a malicious user who intends to compromise the
system availability, whereas Alice is a regular user who has
no intentions of attacking the system. In order to achieve
his malicious objective, Bob can employ various types of
attacks. However, the potential impact of an attack depends
on the type of microservice targeted by Bob.

The system encounters two forms of uncertainty: the type
of user (malicious or regular) involved in the interactions
and the behaviour of malicious users (attack or no attack).
If the microservice system decides to observe an interaction
from Alice, which represents an ordinary interaction with
the system, the data collected is irrelevant to support digital
investigations. Otherwise, if the system decides to observe
an interaction from Bob, the data collected could be relevant
for future digital investigations. There is a cost (networking,
storage, or overhead) associated with each action performed
by the system that our approach aims to reduce.

Bob is aware that the surveillance application consists of
a collection of microservices, but he is unsure about the
specific type of microservice with which he is interacting.
Additionally, he is unsure about the observability tech-
niques employed by the microservice system or whether the
system has chosen not to observe his interaction. In his ef-
forts to compromise the system availability, Bob can employ
two types of denial-of-service attacks: distributed denial-
of-service (DDoS) and application-layer DDoS. The former
proves effective in targeting infrastructure microservices by
exhausting system resources, while the latter is effective
against business microservices as it causes the system to
attack itself, leading to a cascade of system failures [20].

Lastly, Bob may change the type of attack employed de-
pending on his perception of the impact against a specific
type of microservice. In addition, Bob prefers to maintain
his privacy and avoiding the likelihood of being traced back
in case of a digital forensic investigation. Thus, he prefers to
attack the system when his interactions are ignored by the
system. In summary, Bob aims to maximise the impact of
the attack while minimise the possibility of privacy loss.

Existing approaches for implementing forensic-ready
systems [10], [11] may not be effective in scenarios where
there is no prior knowledge of security incidents. To col-
lect digital evidence, we can use existing observability ap-
proaches, but they may not meet forensic readiness require-
ments such as relevance, completeness, and minimality. For
example, full observability can collect all necessary digital
evidence, but may also collect irrelevant data, compromis-
ing the relevance and minimality requirements if a regular
user interacts with the system. Sampling approaches such as
fixed or adaptive may collect relevant data, but they may not
satisfy the forensic readiness requirements, as the sampling
process can occur during interactions of regular users.

Our approach models uncertainties from the perspec-
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tives of users and microservices to reason about their inter-
actions and determine when and how to observe microser-
vices. In addition, our approach uses collected data to im-
prove and adapt the proposed game model, enhancing the
forensic-ready capabilities of microservice systems. Game
theory provides an effective solution for this work because
it allows the representation and analysis of strategic interac-
tions of self-interest players (users and microservices) prior
to the occurrence of security incidents. In such interactions,
the best action of a player depends on expectations about
what other players will do. Self-interest means that players
have preferences over the outcomes of their interactions,
and they would behave to maximise them.

3 APPROACH: ADAPTIVE OBSERVABILITY

Adaptive observability provides mechanisms for instru-
menting, collecting, and preserving observability data such
as metrics, logs, and traces. Figure 1 shows the architecture
of our approach with two phases: design time and runtime.

During the design time phase, software engineers must
specify interactions between users and microservices us-
ing the proposed game model. This specification includes
defining the types of users and microservices, available
actions, and uncertainties. Additionally, software engineers
must provide model parameters to instantiate the game
model. These parameters represent the possible impacts and
costs of attacks constrained by the preference specifications
of malicious users and forensic-ready microservices. The
model defined in this phase is used in the runtime phase.

During the runtime phase, the approach uses a MAPE-
based feedback loop [21] to provide adaptations to the
microservice system. Such adaptations are strategies for
forensic-ready microservices in response to potential inter-
actions of malicious users. As shown in the figure, in the
runtime phase the architecture is divided into managing
system and managed system. In the following, we explain the
components of this phase.

Managing System. This system is organised into strategic
reasoning and MAPE-based components. The strategic rea-
soning components support the steps in the feedback loop.
It consists of four components, namely: (i) game solver:
responsible for computing the game solution as a set of
strategies to be executed by forensic-ready microservices (ii)
runtime model: responsible for maintaining updates on the
game model at runtime, including player types, available
actions, and uncertainties; (iii) learning model: responsible
for maintaining the histories of the game and learning rules
to formulate future strategies; and (iv) strategy builder: re-
sponsible for building strategies for forensic-ready microser-
vices. Such strategies are descriptions of when and how to
observe and collect observability data from microservices.

In the MAPE-based components, the Monitor provides
an API for the instrumentation of microservices and sensors
to collect data from the managed system. The collected
data is used to update the runtime model and learning
model components. The Analyser component performs
game-theoretic reasoning using the game solver component
and computes strategies used by the managed system. The
Planner component synthesises strategies for forensic-ready

microservice using the strategy builder component. The Ex-
ecutor performs the microservice strategies in the managed
system. This process is executed by actuators distributed
among the microservices of the managed system.

Managed system. A microservice system interacts with
users to realise business functionalities and generates out-
puts (metrics, logs, and traces) stored in a datastore.

In this paper, we focus on the descriptions of the prefer-
ence specifications and the game-theoretical model for adap-
tive observability. A complete description of the adaptive
observability approach, including the learning and strategy
builder components, will be addressed in future work.

4 PREFERENCE SPECIFICATIONS

The representations of malicious users and forensic-ready
microservices are essential for determining how they should
make decisions during interactions. To formalise these rep-
resentations, we use the concept of preferences from rational
choice theory [22]. This theory consists of three elements: (i)
a set of actions; (ii) a set of outcomes; and (iii) a specification
of preferences over outcomes. To illustrate this theory, con-
sider the case of Bob, a malicious user trying to compromise
a microservice-based system. Bob can perform two types of
attacks (actions), resulting in different consequences (out-
comes), but he prefers to act when the system ignores his
interactions. In this scenario, we can define Bob’s preference
as preserving privacy (preferences over outcome).

Preference is the order that an agent gives to a set of
outcomes [23]. Formally, preferences are specified by binary
relations to express strict (≻), indifferent (∼), and weak (⪰)
preference relations. For example, let O be a finite set of
outcomes, for any o1, o2 ∈ O, o1 ≻ o2 when an agent
strictly prefers o1 to o2; o1 ∼ o2 when an agent is indifferent
between o1 and o2; and o1 ⪰ o2 when an agent weakly
prefers (is indifferent or prefers) o1 to o2.

4.1 Preferences of malicious users
Previous research in the fields of security and privacy has
used concepts from economics and game theory to represent
attackers [24], [25]. However, these studies have primarily
focused on specific attack-defence scenarios, and how to
formalise the attacks using game models. Examples are the
zero-sum games [26], repeated games [27], and stochastic
games [28]. To provide a more generalised framework for
understanding attacker behaviour, researchers have pro-
posed an incentive-based model of attacker intent, objec-
tives, and strategies (AIOS) [29]. In this model, attackers
aim to maximise their incentives and minimise the costs
associated with their actions.

We use the AIOS model to formalise the behaviour of
malicious users in our work. This model is suitable for
the proposed adaptive observability because it allows us to
consider the incentives and costs of users without relying
on specific attack scenarios. Under this model, we consider
that (i) the incentive for malicious users is to impact the
confidentiality, integrity, or availability (CIA) of a system;
and (ii) the cost is the possibility of potential privacy loss
resulting from a particular outcome. Based on these assump-
tions, we formulate a set of outcomes from the perspective
of malicious users described as follows:
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Fig. 1. An architectural overview of the adaptive observability approach in a microservice-based system.

o1: successful attack and potential privacy loss - impact
on CIA and data is preserved by the system.

o2: successful attack and no privacy loss - impact on CIA
and no data is preserved by the system.

o3: unsuccessful attack and potential privacy loss - no
impact on CIA and data preserved by the system.

o4: unsuccessful attack and no privacy loss - no impact on
CIA and no data is preserved by the system.

After specifying the outcomes, we perform pairwise
comparisons to establish a preference ordering for malicious
users. To perform these comparisons, we use the preference
ranking method [30], which defines preferences over n
outcomes in a n× n matrix A = (aij), where:

aij =


1 if outcome i is preferred to j

-1 if outcome j is preferred to i

0 otherwise
(1)

In the pairwise comparisons, we assume that malicious
users prefer to maintain their privacy over causing an im-
pact on the CIA of microservice systems. In other words,
the most important aspect for malicious users is to preserve
their privacy, which can be represented as o2 ⪰ o1 and
o2 ⪰ o3 and o4 ⪰ o3 and o4 ⪰ o1. The most preferred
outcome is o2, which represents a successful attack where
the microservice system ignores the interactions from mali-
cious users. This can be expressed as o2 ⪰ o1, o2 ⪰ o3, and
o2 ⪰ o4. In contrast, the least preferred outcome is o3, which

denotes an unsuccessful attack where the microservice sys-
tem collects data from the interactions of malicious users.
Therefore, o1 ⪰ o3, o2 ⪰ o3, and o4 ⪰ o3. Matrix 2 presents
the results of these comparisons.

A1 =

o1 o2 o3 o4


0 -1 1 -1 o1

1 0 1 1 o2

-1 -1 0 -1 o3

1 -1 1 0 o4

(2)

Based on the results of Matrix 2, we can establish a
preference order that ranks the outcomes from most to
least preferable in an ordinal manner. This order provides
foundations to analyse how malicious users should behave
when interacting with forensic-ready microservices. The
preference ordering of malicious users is defined as follows:

o2 ⪰ o4 ⪰ o1 ⪰ o3 (3)

4.2 Preferences of forensic-ready microservices

Digital forensic readiness in the context of software engi-
neering is a property that encapsulates the capabilities of
the software to collect digital evidence before the occur-
rence of security incidents. In this view, Pasquale et al.
[18] propose a set of requirements for forensic-ready sys-
tems such as availability, relevance, minimality, traceability,
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completeness, non-repudiation, data provenance, and legal
compliance. In the work in this paper, we focus on the
following requirements:

• Relevance (REQ-1): preserved data should be essential
to support a digital forensic investigation and explain
how security incidents occurred;

• Completeness (REQ-2): preserved data should have
all the necessary or appropriate elements to support a
digital forensic investigation;

• Minimality (REQ-3): preserved data should be mini-
mal and not include any information that is unneces-
sary for an investigation.

A forensic-ready system needs to decide if data is rel-
evant or non-relevant. This task is similar to information
retrieval and binary classification problems, in which a
model or a classifier, produces a discrete class label (positive
or negative), indicating the predicted class of an instance
[31]. However, the predicted class may be different from the
actual class. Thus, additional labels (true and false) need
to be considered. Given a model and an instance, there are
four possible outcomes: (i) true positive: positive instances
correctly classified as positive; (ii) false positive: negative
instances incorrectly classified as positive; (iii) true nega-
tive: negative instances correctly classified as negative; and
(iv) false negative: positive instances incorrectly classified
as negative. We map this idea from binary classification to
formulate a set of outcomes from the perspective of forensic-
ready microservices, described as follows:
tp: true positive - relevant data preserved; e.g., data col-

lected from the interactions of malicious users;
fp: false positive - non-relevant data preserved; e.g., data

collected from the interactions of regular users;
tn: true negative - non-relevant data not preserved; e.g.,

data not collected from the interactions of regular users;
fn: false negative - relevant data not preserved; e.g., data

not collected from the interactions of malicious users.
For each pair of outcomes, we use the forensic readiness

requirements to assess the most preferable outcome. In
addition, we made two assumptions in these comparisons:
(i) collecting relevant data is preferred to ignoring irrelevant
data (i.e., tp ⪰ tn), and (ii) collecting irrelevant data is
preferred to ignoring relevant data (i.e., fp ⪰ fn).

• For REQ-1 and REQ-3, the system should preserve only
relevant data, discarding unnecessary information (tp
⪰ fp, tp ⪰ tn, and tp ⪰ fn).

• For REQ-2, the system should preserve all the necessary
or appropriate data ( tp ⪰ fp, tn ⪰ fp, and fp ⪰ fn).

• For RQ-3, the system should not preserve irrelevant
data (tp ⪰ tn, tn ⪰ fp, and tn ⪰ fn).

The outcome fn violates all the forensic readiness re-
quirements; for this reason, tp ⪰ fn, fp ⪰ fn, and tn ⪰
fn. Matrix 4 and preference ordering 5 exhibit the results
of pairwise comparisons and preferences of forensic-ready
microservices, respectively.

A2 =

tp fp tn fn


0 1 1 1 tp

-1 0 -1 1 fp

-1 1 0 1 tn

-1 -1 -1 0 fn

(4)

tp ⪰ tn ⪰ fp ⪰ fn (5)

The preference orderings presented in this section are
utilised as constraints in the parameterisation of the pro-
posed game model. This process instantiates the game
model to express the impacts and costs of potential attacks.
These constraints are necessary to ensure that the specified
orders of preference in Formulas 3 and 5 are maintained.

5 ADAPTIVE OBSERVABILITY GAME

The fundamental assumption of game theory is that all
agents (or players) have common knowledge. However,
this assumption restricts the representation of the scenario
described in Section 2, as Bob and the microservice sys-
tem have uncertainties regarding each other. Therefore,
we use Bayesian games to formalise our game-theoretical
model. Bayesian games, or games of incomplete informa-
tion, are models of interactive decision situations in which
the game’s elements (e.g., players, actions, or preferences)
are not common knowledge.

5.1 Game-theoretical model

We formalise a game-theoretical model for forensic-ready
microservice systems addressing the uncertainties from the
perspectives of users and microservices. We consider that all
users and microservices are rational players in the game; i.e.,
they are assumed to maximise their utility. The uncertainties
of a player are captured by the notion of an epistemic type,
which describes a player’s private knowledge about other
players [32]. Formally, we define the adaptive observability
game as a tuple G = ⟨N,A,Θ, p, u⟩, where:

• N = {1, · · · , n} is a finite set of players in which i
represents the index for the players, and we use −i to
denote all the other players except i;

• A = {A1, · · · , An} is a finite set of actions, where Ai is
the set of actions available for player i;

• Θ = {Θ1, · · · ,Θn} is a finite set of types, where Θi is
the type space of player i;

• p : Θ 7→ [0, 1] is the common prior over types;
• u = {u1, · · · , un} is a finite set of utility functions,

where ui : A×Θ 7→ R is the function for player i.
Example. Consider a simplified version of the motivating

example described in Section 2. There are two players,
N = {1, 2}, in which player 1 represents the users and
player 2 represents the microservices. For each player, there
are two types: Θ1 = {θ1,1, θ1,2} is the type space of player
1, and Θ2 = {θ2,1, θ2,2} is the type space of player 2.
Type θ1,1 represents the malicious user (Bob), and type θ1,2
represents the regular user (Alice). Type θ2,1 represents the
infrastructure microservices, and θ2,1 represents the busi-
ness microservices. We denote A1 as player 1’s set of actions
formed of A (DDoS attack) and N (no attack), and A2 as
player 2’s set of actions composed of L (log) and I (ignore).
The probability distribution on these types is as follows: (i) p
is the probability that player 1’s type is θ1,1, and 1− p is the
probability that player 1’s type is θ1,2; (ii) q is the probability
that player 2’s type is θ2,1, and 1 − q is the probability that
player 2’s type is θ2,2.
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Fig. 2. The game tree of a simplified version of the motivating example, containing two players, four types, and four actions.

Figure 2 shows the game tree that represents the model
described above. In a game tree, each node represents a
player, the edge represents a possible action, and the leaves
denote the outcomes of utility functions. The Nature node
is a player who has no utility function; instead, this node
provides exogenous randomisation to decide players’ types.
Nodes 1 and 2 represent players 1 and 2, respectively. The
dashed lines connecting the nodes denote four information
sets. Specifically, an information set is a set of decision nodes
that a player cannot distinguish when making a decision
[33]. For instance, Bob is uncertain whether he is interacting
with a business or infrastructure microservice. This uncer-
tainty is captured by the information set.

5.2 Strategies and utility functions
Each player (users or microservices) can choose an action
deterministically or probabilistically. A pure strategy is a
deterministic choice of action for player i that maps from
every type of i to the action. On the other hand, a mixed
strategy is a probabilistic choice of action, defined as a
probability distribution over pure strategies.

The AIOS model encompasses concepts such as attacker
intent, objectives, and strategies. Attacker intent and objec-
tives are used to specify the preferences over outcomes, as
described in Section 4.1. In this section, we focus on defining
the strategies for malicious users. For example, Bob aims to
compromise the system availability, as described in Section
2. To achieve this goal, Bob can use two attacks: DDoS
and application-layer DDoS. We incorporate these attacks as
strategies for malicious users in the game model, denoting
user i’s strategy si ∈ S1, where S1 is the set of (pure and
mixed) strategies for player 1.

For instance, the edges of node 1 in Figure 2 represent
the actions available to player 1 (users): A (attack) and N
(no attack). In this context, a pure strategy for player 1 is the
choice to play A or N, while a mixed strategy for player 1
is a choice to play A with a probability of 1/2 and N with a
probability of 1/2.

The process of collecting evidence in microservice sys-
tems is accomplished through observability instrumentation

techniques, including metrics, logs, and distributed tracing.
We model these techniques as strategies for forensic-ready
microservices. Formally, we denote microservice i’s strategy
as si ∈ S2, where S2 is the set of (pure and mixed) strategies
for player 2. For example, the actions available to player
2 (microservices) represented as the edges of node 2 in
Figure 2 are L (log) and I (ignore). An example of a pure
strategy for player 2 is the choice to play L or I. On the
other hand, a mixed strategy is the choice to play L with a
probability of 2/3 and to play I with a probability of 1/3.

In game theory, players choose strategies based on their
preferences over outcomes and those of the other players.
Preferences can be represented by the concept of utility
function, which measures players’ level of satisfaction with
given outcomes. Formally, a utility function for player i is
a real-valued function ui : O 7→ R, where O is a set of
outcomes. The results of utility functions are called utilities
or payoffs, where larger numbers describe better outcomes
and smaller numbers denote less favourable outcomes. The
leaves in Figure 2 represent utilities. In the remainder of this
section, we define the utility functions for malicious users
and forensic-ready microservices. These utility functions
are numerical representations of the preferences specified
in Section 4.1 and 4.2. We use the model parameters to
calculate the results of these utility functions and allow
adjustment of these functions based on the preferences of
malicious users and forensic-ready microservices.
Utility function for malicious users. For malicious user i,
given the preferences described in Section 4.1, the i’s utility
function is defined as follows:

ui(si, s−i, θ−i)
def
= ii(si, θ−i)− ci(si, s−i), (6)

where function ii(si, θ−i) captures the impact metrics of
the CIA (confidentiality, integrity, and availability) triad on
microservices of type θ−i, defined as:

ii(si, θ−i)
def
=

∑
{i∈N |i=2,Θ2=θ−i}

[IC(si, i)+II(si, i)+IA(si, i)],

(7)
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where functions IC(si, i), II(si, i), and IA(si, i) denote the
impact of confidentiality, integrity, and availability, respec-
tively, on all microservices of type θ−i, given that malicious
user i chosen to play strategy si.

These functions are measured using the Common Vul-
nerability Scoring System (CVSS),1 which assigns a score
from 0 (no impact) to 10 (critical impact) for each impact
metric. We refer the reader to the official specification of
CVSS for a complete description of the impact metrics.2 We
used CVSS in the definition of utility functions because it
captures the effects of a successful attack from the inter-
actions described in this work. Furthermore, CVSS is used
worldwide as a primary source for assessing the severity
of computer system security vulnerabilities [34]. We do not
consider the correctness and accuracy of CVSS scores.

The cost of strategies employed by malicious users de-
pends on the probability of privacy loss. More specifically,
the function ci(si, s−i) represents the privacy cost of user i,
which is modelled as εvi, where ε ∈ [0, 1] is the probability
of privacy loss resulting from a particular outcome, and
vi ∈ [1,∞) is user i’s private valuation of privacy [35]. To
ensure that this utility function represents the preference
relations for malicious users described in Section 4.1, the
privacy cost εvi must be greater than ii(si, θ−i). Therefore,
we use the preference ordering for malicious users as con-
straints to tune the parameters of the model.
Utility function for forensic-ready microservices. Con-
sidering the preference relations specified in Section 4.2,
forensic-ready microservice i’s utility function is defined as:

ui(si, s−i)
def
= ri(si, s−i)ei − ci(si), (8)

where ri(si, s−i) is the relevance function which expresses
the importance of data collected by microservice’s strategy
si from user’s strategy s−i. This is a discrete function that
returns 1 if the data collected is relevant, and 0 if the data
preserved is non-relevant, expressed as:

ri(si, s−i) =

{
1 if si preserves relevant data from s−i

0 otherwise
(9)

where parameter ei ∈ [1,∞) represents the scale of im-
portance of potential digital evidence, specified as probative
value. In particular, probative value is defined as the degree
of significance of digital evidence used to decide whether
the evidence supports a particular hypothesis in a legal case
[36]. Formally, let Ei denote the set of probative values
for microservice i. We use the notation ei ∈ Ei to denote
the probative value which microservice i declares to define
the utility function ui(si, s−i). Finally, the cost function
ci(si) represents the cost of microservice i’s strategy si (e.g.,
measure, log, or trace). This cost can be estimated based on
measures of monitoring, evidence collection, storage, and
network usage.

5.3 Expected utility function
In the motivating example, we describe a scenario where
Bob (malicious user) knows his type, but does not know

1. https://www.first.org/cvss
2. https://www.first.org/cvss/specification-document

the types of microservices. Similarly, microservices (business
and infrastructure) have information about their types but
do not have information about the types of users (malicious
and regular). To reason about this setting, we need to
consider the expected value of utility functions relative to
the probability of other players’ types and actions. This rea-
soning is captured by the concept of expected utility function.
We use the notation Ei to denote player i’ expected utility
function. Furthermore, a pair of strategies of players i and
−i is called a strategy profile, written as s = (si, s−i) ∈ S,
where S is the Cartesian product of S1 (set of strategies
for player 1) and S2 (set of strategies for player 2). In the
adaptive observability game, the expected utility function Ei

of player i for playing the strategy profile s = (si, s−i) ∈ S
with type θi is defined as follows:

Ei(s, θi) =
∑

θ−i∈Θ−i

p(θ−i | θi)Ei(s, (θ−i, θi)) (10)

In other words, the expected utility function depends
on (i) the probability of other players having types −θ,
given that player i has type θ, expressed by the conditional
probability p(θ−i | θi); and (ii) the expected utility function
Ei(s, θ−i, θi) which is detailed as follows:

Ei(s, (θ−i, θi)) =
∑
a∈A

∏
j∈N

sj(aj | θj)

ui(a, θ−i, θi) (11)

The expected utility function Ei(s, (θ−i, θi)) depends on
(i) the probability under mixed strategy sj that player j
plays action aj , given that j’s type is θj , expressed by the
notation sj(aj | θj); and (ii) the evaluation of i’s utility
function given action a, other player’s type θ−i, and i’s type
θi, written as ui(a, θ−i, θi).

5.4 Equilibrium analysis

Rational players are assumed to maximise their expected
utility, and their decisions are guided by the principle of
the best response. Specifically, a player formulates the best
responses that generate more expected utility, given the
strategies of the other players. For instance, suppose that
player 2 (microservice) knows that player 1 (user) will
choose N (no attack). In this case, player 2 will choose I
(ignore) because that is the best response to N. Formally,
player i’s best response to strategy profile s−i is defined as:

BRi(s−i) = arg max
s′i∈Si

Ei(s
′
i, s−i | θi). (12)

Given the definition of best response, the Nash equilib-
rium (NE) [37] of a game is a strategy profile s = (s1, ..., sn)
where, for all players i, si is the best response to s−1; i.e.,
no player has incentives to change the strategy, and each
player is playing the best response to the strategies of the
other players. In the context of the adaptive observability
game, the equilibrium concept of interest is Bayesian Nash
equilibrium (BNE) [32], a refinement of NE. Formally, a
strategy profile s = (s1, ..., sn) is BNE if si is a best response
to s−i for every player i ∈ N . We use Gambit software

https://www.first.org/cvss
https://www.first.org/cvss/specification-document
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tools for game theory to obtain the BNE, and simulate the
behaviour of players in an equilibrium setting.3

6 ADAPTIVE OBSERVABILITY IN ACTION

We describe how to support the adaptive observability
approach to be used in existing microservice-based appli-
cations. The implementation of adaptive observability in
microservices systems relies on having instrumented mi-
croservices. However, existing observability solutions lack
standardisation in the code instrumentation of the APIs.
As a result, the use of observability solutions requires re-
instrumenting the code of microservices. To overcome this
challenge, the cloud community has developed an observ-
ability framework (OpenTelemetry), which provides a uni-
fied and vendor-agnostic way of instrumenting, collecting,
and exporting observability data across different platforms.4

We use Micrometer as an abstraction layer over Open-
Telemetry to instantiate the concepts proposed in adaptive
observability. In particular, Micrometer provides a facade
over the instrumentation APIs of observability solutions,
thereby allowing software engineers to instrument JVM-
based applications using a single API.5 This API, called
Observation API, defines concepts such as meters, counters,
gauges, timers, and tracing. The implementation of these
concepts is determined at runtime by the observability
solution added to the application classpath.

We extended the Observation API to enable adaptive
observability in existing microservice-based applications.
Specifically, we created two Java annotations, namely
@EnableAdaptiveObservability and @MicroserviceType, which
must be added to the application’s main class. The
former annotation enables adaptive observability in a
microservice by creating necessary configurations for
executing microservice strategies. The latter annotation
specifies the type of microservice based on the model of the
adaptive observability game. Listing 1 shows an example
of a class using these annotations. Therefore, to enable
adaptive observability in an existing microservice-based
application, only two lines of code, one for each annotation,
need to be added to each microservice.

1 @EnableAdaptiveObservability

2 @MicroserviceType(value = "infra")

3 @SpringBootApplication

4 public class Application {

5 public static void main(String[] args) {

6 SpringApplication.run(Application.class, args);

7 }

8 }

Listing 1. @EnableAdaptiveObservability and @MicroserviceType

The code instrumentation in microservices is performed
by implementations of the Observation interface. An
observation, in this context, refers to the act of viewing
and recording a fact or occurrence for further analysis.
To perform an observation, we need an implementation
of ObservationRegistry that we provided through the

3. http://www.gambit-project.org
4. https://opentelemetry.io
5. https://micrometer.io

auto-configuration of @EnableAdaptiveObservability. Our
implementation of ObservationRegistry comprises instances
of ObservationHandler, responsible for carrying out the
microservice strategies prescribed by the game-theoretical
model. Listing 2 shows an example, where an observation is
created and initiated in line two, followed by the opening of
the observation’s scope using a try-with-resources pattern.
Events are generated within the scope to signal various
aspects of the user creation process.

1 public User createUser(UserRequest userRequest) {

2 Observation obs = Observation.start(...);

3 try (Scope scope = obs.openScope()) {

4 obs.event(Event.of("Start of user creation"));

5 return userService.save(userRequest);

6 } catch (Exception exception) {

7 obs.event(Event.of("Error in user creation"));

8 obs.error(exception);

9 throw exception;

10 } finally {

11 obs.event(Event.of("End of user creation"));

12 obs.stop();

13 }

14 }

Listing 2. Instrumentation using the Observation API

In addition to code instrumentation, a new microservice
is required to manage the game model, perform strategic
reasoning, and dispatch strategies to other microservices.
To enable auto-configuration on this new microservice,
we created @EnableAdaptiveObservabilityServer. Listing 3
provides an example of a class using the server annotation.

1 @EnableAdaptiveObservabilityServer

2 @SpringBootApplication

3 public class Application {

4 public static void main(String[] args) {

5 SpringApplication.run(Application.class, args);

6 }

7 }

Listing 3. @EnableAdaptiveObservabilityServer

To use a different observability approach (e.g., full and
sampling), it is necessary to remove the configuration for
adaptive observability described in this section and add a
property to a configuration file. This property represents the
probability of sampling and can take a value between 0.0
and 1.0. In terms of code instrumentation, no modifications
need to be made, as long as the Observation API is used.
Thus, the separation of the instrumentation API from the
observability solutions helps to reduce coupling between a
microservice and any particular observability framework.
However, the choice of an observability approach impacts
the evidence collection process in microservices systems;
specifically, there are implications for the amount of data
collected and its relevance. For this reason, there is a need
for assessments of this impact to serve as recommenda-
tions to software engineers in choosing an observability
approach.

http://www.gambit-project.org
https://opentelemetry.io
https://micrometer.io
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7 EVALUATION

The work was evaluated in terms of a comparison of the
performance of the adaptive observability approach with
the full and sampling observability. To achieve this goal, we
designed and conducted an experiment to investigate the
impact of different observability approaches on the evidence
collection process in microservice-based applications. We
selected an open-source benchmark microservice system
called TrainTicket [38], which consists of 41 microservices
adhering to microservice design principles and reflecting
industrial practices. We chose this system due to its com-
plexity and size, which represents a challenging scenario for
the evaluation of our approach.

We assessed the performance of the observability ap-
proaches using metrics such as precision, recall, and F-
measure. Such metrics are used for evaluating the perfor-
mance of information retrieval methods and binary classi-
fiers [31], [39]. In our context, these metrics are appropriate
for quantitatively measuring whether forensic readiness re-
quirements (relevance, completeness, and minimality) have
been satisfied. For example, precision measures how much
data preserved is relevant; i.e., an observability approach
that collects only essential data has a precision of 1.0 (per-
fect precision) and satisfies the requirements of relevance
and minimality. Recall measures the percent of all possible
relevant data preserved; i.e., an observability approach that
collects all the necessary data has a recall of 1.0 (perfect
recall) and satisfies the requirement completeness.

Ideally, an observability approach would have both per-
fect precision and perfect recall. Thus, we decided to use
F-measure as a criterion to perform the comparisons since
it is a single metric that takes into account both precision
and recall. In particular, F-measure is calculated by taking
the harmonic mean of recall and precision. The formulas
to compute precision, recall, and F-measure are defined,
respectively, as follows.

Precision =
tp

tp+ fp
(13)

Recall =
tp

tp+ fn
(14)

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
(15)

7.1 Research questions
The evaluation is based on the following research question:
RQ1: What is the performance of the observability ap-

proaches in terms of precision, recall, and F-measure?
Rationale: This research question aims to evaluate the per-
formance of observability approaches under various scenarios
of uncertainty related to the type of users (e.g., regular and
malicious) and varying the number of simultaneous users
interacting with the microservice-based system.

RQ2: What is the best observability approach in terms of F-
measure to perform evidence collection in microservice-
based systems?
Rationale: This research question aims to determine which
observability approach performs better in terms of F-measure
and to provide recommendations to software engineers in
choosing an observability approach.

7.2 Hypotheses
As part of the experiment, we formulated and tested the
following hypotheses:
H01 There is no difference in performance (measured as

F-measure) between the observability approaches. i.e.,
H01 : F1(full) = F1(sampling) = F1(adaptive).

H11 There is difference in performance (measured as F-
measure) between the observability approaches. i.e.,
H11 : F1(full) ̸= F1(sampling) ̸= F1(adaptive).

7.3 Variables
Variables in experiments are divided into two categories:
independent and dependent. The former refers to those
variables that we can control and modify in the experiment.
The latter refers to those variables that we want to study
to see the effect of the modifications in the independent
variables. In this experiment, the independent variables are
the uncertainty of the type of user and the number of
simultaneous users interacting with the microservice-based
system. The dependent variable is the performance metric
F-measure defined in Formula 15.

7.4 Experimental design
To conduct the experiment, we simulated different types
of users interacting with the system using the following
strategies: no attack, attack 1, and attack 2. In the first
strategy, no attack represents a use case for booking train
tickets. In the second strategy, attack 1 represents a DDoS
attack targeting infrastructure microservices. In the third
strategy, attack 2 represents a SQL injection attack on busi-
ness microservices. To assess the impact of attacks 1 and 2,
we use CVSS as the primary source. The summary of the
users’ strategies containing their respective impacts on the
system is presented in Table 1.

We modelled the strategies as a set of execution scenarios
using an open-source load testing tool, named Gating.6 Each
execution scenario, representing the interaction between
users and the TrainTicket system, is described in Table 2. The
execution scenarios describe situations of different levels of
uncertainty about the type of user, ranging from 10% to
90% of malicious users. The number of simultaneous users
interacting with the system are 102, 103, 104, and 105. The
uncertainty about the type of microservice is represented as
50% infrastructure and 50% business. Finally, we apply all
the observability approaches (full, sampling, and adaptive)
to perform the process of evidence collection during the
simulation.

Each execution scenario is repeated 30 times to ensure
statistical significance of the performance metrics (e.g., pre-
cision, recall, and F-measure) with a confidence interval
between 95% and 99%, as recommended by Arcuri and
Briand [40]. The result of the evidence collection performed
by the observability approaches is stored in three different
datasets: G1: data collected by full observability; G2: data
collected by sampling; and G3: data collected by adaptive
observability.

We created a gold standard dataset to establish a com-
mon ground to assess the performance of the observability

6. https://gatling.io

https://gatling.io
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TABLE 1
Summary of user strategies and their impact on the CIA.

Impact metrics

Strategy Description Attack vector Confidentiality Integrity Availability CVE-ID

No attack Booking train tickets - None (I:N) None (A:H) None (A:H) -
Attack 1 DDoS attack Infrastructure microservice None (C:N) None (I:N) High (A:H) 2022-1728
Attack 2 SQL injection Business microservice Low (C:L) Low (I:L) None (A:N) 2013-0375

TABLE 2
Set of execution scenarios and their proportion of type of users and

microservices, given a number of simultaneous users.

Type of user Type of microservice

Malicious Regular Business Infrastructure Number of users

s1 10% 90% 50% 50% 102, 103, 104, 105

s2 20% 80% 50% 50% 102, 103, 104, 105

s3 30% 70% 50% 50% 102, 103, 104, 105

s4 40% 60% 50% 50% 102, 103, 104, 105

s5 50% 50% 50% 50% 102, 103, 104, 105

s6 60% 40% 50% 50% 102, 103, 104, 105

s7 70% 30% 50% 50% 102, 103, 104, 105

s8 80% 20% 50% 50% 102, 103, 104, 105

s9 90% 10% 50% 50% 102, 103, 104, 105

approaches. A gold standard is a benchmark created as a set
of accurate annotations which provide perfect precision and
recall. To create this dataset, we directly observed the data
collected to verify the identity of the user and the strategy
performed. We then compared the results of G1, G2, and G3

to this gold standard dataset.

7.5 Results and hypothesis testing
The results presented in this section are part of a more
comprehensive evaluation, and the supplementary material
is available on GitHub.7 In the following, we revisit and
answer our research questions.

RQ1: What is the performance of the observability
approaches in terms of precision, recall, and F-measure?

The results of the precision, recall, and F-measure of the
observability approaches (full, sampling, and adaptive) are
shown in Figure 3. Full observability provided a perfect
recall (score of 1.0) for all execution scenarios. However, the
precision was low (e.g., 0.03, 0.07, and 0.10) in scenarios
with high uncertainty about malicious users (e.g., s1, s2,
and s3). On the other hand, in scenarios of low uncertainty
(e.g., s7, s8, and s9), the precision scores increase as there
are more malicious users interacting with the system. This
was expected, as the full observability approach collects all
data during the evidence collection process.

Unlike full observability, the results for sampling and
adaptive observability approaches shown in Figure 3
demonstrate that these approaches do not provide perfect
recall. Instead, the recall score was approximately 0.5 on
average, while the precision score tends to increase in

7. https://github.com/davimonteiro/tsc-evaluation

scenarios with low uncertainty about malicious users (s7,
s8, and s9).
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Fig. 3. Precision, recall, and F-measure of the observability approaches.

RQ2: What is the best observability approach in
terms of F-measure to perform evidence collection in
microservice-based systems?

To answer this research question, we use F-measure
as a criterion to decide which observability approach per-
forms better. However, F-measure may not be sufficient to
thoroughly evaluate the performance difference between
the observability approaches, as observed results may be
affected by chance. To address this limitation, we decided
to perform a statistical analysis to assess whether there is
enough empirical evidence to claim that there is a differ-
ence between them. To conduct the statistical analysis and
hypothesis testing, we use the Wilcoxon signed-rank test,
which is a non-parametric test used to compare two paired
samples when each individual in one sample also appears
in the other sample [41], [42]. Specifically, we use this test
because the data in G1, G2, and G3 does not follow a normal
distribution, violating the assumption for a parametric test.

https://github.com/davimonteiro/tsc-evaluation
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TABLE 3
The F-measure of datasets G1, G2, and G3 and their relative

difference.

Datasets (F1) Relative difference

G1 G2 G3 G3 vs G1 G3 vs G2

s1 0.0670 0.0653 0.0931 38.96% 42.50%
s2 0.1339 0.1254 0.1775 32.51% 41.52%
s3 0.1824 0.1675 0.2351 28.91% 40.37%
s4 0.2364 0.2121 0.2905 22.91% 36.95%
s5 0.2862 0.2510 0.3383 18.18% 34.76%
s6 0.3339 0.2868 0.3773 12.99% 31.58%
s7 0.3794 0.3202 0.4132 08.93% 29.03%
s8 0.4261 0.3493 0.4461 04.69% 27.71%
s9 0.4629 0.3758 0.4772 03.10% 26.97%

Our null hypothesis H01 states that there is no dif-
ference in performance, measured as F-measure, between
the observability approaches; i.e., we have no assumption
about which approach is better in terms of F-measure. The
results of the Wilcoxon test, reported in the supplementary
material, indicate a statistically significant difference in F-
measure between the observability approaches. Therefore,
at the 5% significance level, we reject the null hypothesis
H01 and conclude that the approaches’ performances are
significantly different.

We used Vargha and Delaney effect size Â [43], a non-
parametric effect size measure, to evaluate the magnitude
of the performance difference. This type of effect size is
recommended in software engineering when randomised al-
gorithms are involved [40], [44], [45]. In this experiment, the
Vargha and Delaney effect size ÂAB measures the expected
probability of observability approach A producing a higher
F-measure score than approach B. This measure is useful to
assess the practical significance of the observed difference
in performance expressed as F-measure.

In the supplementary material, we present the results of
Vargha and Delaney effect size comparing G3 versus G1,
denoted as Â31, and G3 versus G2, written as Â32. The
values of this effect size range from 0 to 1, in which a value
of 0.5 indicates that two approaches are stochastically equiv-
alent and values closer to 0 or 1 indicate a large stochastic
difference between approaches. For example, in scenario s3
for 103 users Â31 = 0.99 (large); i.e., we would obtain better
results 99% of the time with adaptive observability.

Lastly, to compare the performance of the observability
approaches in terms of F-measure, we calculated the relative
difference between G3 and G1, as well as between G3 and
G2. Table 3 presents the F-measure of datasets G1, G2,
and G3, along with their relative differences. The results
indicate that the adaptive observability approach outper-
forms the other observability approaches in all execution
scenarios. Specifically, adaptive observability is better than
sampling observability (from 26.97% up to 42.50%) and full
observability (from 3.1% up to 38.96%). When considering
the uncertainty regarding malicious users, the performance
of adaptive observability improves as the uncertainty of
attacks occurring increases. In other words, adaptive observ-
ability performs better in scenarios with high uncertainty
about malicious users (e.g., s1, s2, and s3).

7.6 Threats to validity

Threats to validity can be classified into the following cate-
gories: conclusion, internal, construct, and external validity.
We discuss the threats that potentially impacted our work
and the ways in which we attempted to mitigate them.

Conclusion validity concerns the factors that affect the sta-
tistical analysis and the conclusion from relations between
the variables of an experiment. In order to address this
threat, we first verify whether the datasets analysed in this
experiment follow a normal distribution via a histogram
and the Shapiro-Wilk test [46]. Since we found that the
normality assumption was violated, we decided to use a
non-parametric test which does not rely on that assumption.
Next, to mitigate the risk of the fishing and the error rate
threat, we decided to use only one dependent variable as
described in Section 7.3. Finally, this experiment is based on
the assumption that analysed datasets are correctly labelled.
To address threats to this assumption, we created a gold
standard as described in Section 7.4.

Internal validity evaluates the influences or biases that af-
fect the causality of the independent variables. We expressed
different scenarios to simulate interactions between users
and the system, varying the number of simultaneous users
and the uncertainty about the type of user. However, we
did not change the uncertainty of the type of microservice
by fixing an even probability distribution (50% business and
50% infrastructure). The latter type of uncertainty may not
reflect reality, and we may need to consider different levels
of uncertainty. However, this would increase the number
of possible execution scenarios, making this experiment
infeasible.

Construct validity concerns generalising the results based
on the concept or theory behind it. The metrics used to
assess the performance of the observability approaches may
not be sufficient to cover all aspects of the evidence collec-
tion process. Other factors such as cost and scalability may
also be important to consider. Moreover, our study focused
on a single microservice-based system, which may limit the
generalisability of our findings.

External validity assesses the extent to which the findings
can be generalised to other settings. The main concern is the
choice of the benchmark system used in this experiment, as
a single microservice-based system may limit the general-
isability of our findings. Prior studies also used the same
benchmark system [47]–[51].

8 RELATED WORK

Microservices and Observability. The concept of observ-
ability originated in control theory and refers to the measure
of how the internal states of a system can be determined
from its external outputs [52], [53]. In microservice systems,
observability involves a set of instrumentation techniques
that helps developers reason about incidents in microser-
vices [13], [14]. Existing studies use data collected by observ-
ability to automate debugging processes [54], [55], perform
fault localisation [48], [56], and investigate the effectiveness
of existing industrial debugging practices [47]. However,
these studies assume that data, relevant or not, is available
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for investigating incidents. Our work aims to use observabil-
ity to perform evidence collection of relevant data before a
security incident occurs, reducing the cost of observability.

Digital forensic readiness. The notion of digital forensic
readiness was formulated in the context of organisations
to support proactive digital investigations of software sys-
tems [7], [57], [58]. Existing research literature has initially
focused on identifying guidelines [7]–[9] that can enhance
organisations’ capabilities to achieve digital forensic readi-
ness [18]. In software engineering, however, little attention
has been given to the challenge of how to implement soft-
ware systems that are forensic-ready. Existing works that
address this problem is ineffective for microservices because
they introduce unnecessary system overhead. For example,
there are approaches [59]–[62] that focus on proactive evi-
dence collection of all potential digital evidence. However,
this strategy consumes additional system resources (e.g.,
CPU and I/O) [63], especially in highly optimised microser-
vices that tend to be latency sensitive [12]. Furthermore,
excessive evidence collection can produce irrelevant data
that hides the relevant digital evidence required to estab-
lish factual and reliable conclusions during digital forensic
investigations [10], [63].

Researchers have proposed techniques and methods
to perform evidence collection selectively. For example,
Pasquale et al. [10] propose using attack scenarios [64] to
modify evidence collection mechanisms for cloud infras-
tructures. Alrajeh et al. [11] introduce the concept of evi-
dence preservation requirements to model known incidents
in advance and synthesise evidence collection capabilities
for forensic-ready systems. These studies, however, con-
sider that security incidents and the attacker behaviour are
known a priori. This means that if an attacker exploits an un-
known vulnerability or uses other strategies to compromise
software systems, the evidence collection mechanisms may
not collect the digital evidence needed; i.e., loss of digital
evidence. This scenario can be aggravated when there are
uncertainties associated with the presence of attackers or in
adaptations of their behaviour. For instance, attackers may
modify their strategies to compromise software if they are
ineffective to breach security capabilities [17].

Game theory. To address the uncertainties associated
with potential security incidents and the adaptive nature
of attacker behaviour, the security research community has
explored game-theoretical models for analysing and plan-
ning strategies to mitigate security threats. Within this con-
text, the interactions between attackers and defenders are
modelled to respond to various types of attacks, including
DDoS attacks [24], [65], stealthy attacks [66], bandwidth am-
plification attacks [67], and advanced persistent threats [17],
[68]–[71].

Game theory provides an appropriate framework for
reasoning about security incidents involving strategic
decision-making by attackers and defenders when there is
uncertainty about potential security incidents [17]. How-
ever, prior game theory-based approaches have not con-
sidered situations when the security mechanisms are in-
sufficient to protect the system assets or when there is a
need to design forensic-ready software systems. Further-
more, those approaches address two-player games (attacker
and defender). However, in the context of microservices,

other models are required to accommodate players, such
as types of users (e.g., regular or malicious) and types of
microservices (e.g., business and infrastructure services).

Our work differs from earlier studies in forensic-ready
systems by addressing the uncertainty of security incidents.
We model the interactions between malicious users and
microservices as a game-theoretical model to decide when
and how to observe microservice systems. In particular,
we represent the uncertainties from both perspectives (at-
tacker and microservices). As opposed to game-theoretical
approaches in security, we consider the forensic readiness
requirements (e.g., relevance, minimality, and completeness)
to design forensic-ready microservice systems.

9 CONCLUSION

In this paper, we addressed the problem of implementing
forensic-ready microservice systems considering uncertain-
ties about security incidents. To illustrate this problem, we
presented a motivating example that highlights interactions
between users and microservices. This example provides
context for the concepts we introduce in our approach.
Our approach, named adaptive observability, focuses on
providing evidence collection mechanisms for microservice
systems. We primarily describe two aspects of our approach:
representation and reasoning. The former involves formal-
ising the representations of malicious users and forensic-
ready microservices. The latter involves reasoning about
these representations to decide when and how to observe
the microservices before a security incident occurs.

The work was evaluated by using a benchmark microser-
vice system. In the evaluation, we assessed the performance
of adaptive observability and compared it to existing ob-
servability approaches. The results indicate that adaptive
observability is better than sampling observability (from
26.97% up to 42.50%) and full observability (from 3.1% up
to 38.96%). In particular, adaptive observability performs
better in scenarios with high uncertainty about malicious
users.

In future work, we intend to extend the capabilities
of adaptive observability by incorporating adaptations of
microservices strategies based on the risk preferences of
malicious users. Specifically, we plan to investigate how dif-
ferent risk attitudes (e.g., risk averse, risk neutral, and risk
seeking) may influence the behaviour of malicious users. In
terms of evaluation, we intend to assess our approach using
an industrial case study, addressing the limitations of the
generalisability of results. Additionally, we recognise that
performance metrics may not be sufficient for evaluating
observability approaches. Therefore, we intend to consider
other factors, such as cost and scalability, when assessing
the effectiveness of adaptive observability.
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