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Abstract  

Type 2 diabetes (T2D) is a heterogeneous illness caused by genetic and environmental factors. 

Previous genome wide association studies (GWAS) have identified many genetic variants associated 

with T2D and found evidence of differing genetic profiles by age-at-onset. This study seeks to explore 

further the genetic and environmental drivers of T2D by analysing subgroups based on age-at-onset of 

diabetes and body mass index (BMI).  In UK Biobank, 36,494 T2D cases were stratified into 3 

subgroups and GWAS performed for all T2D cases and for each subgroup relative to 421,021 

controls. Altogether, 18 SNPs significantly associated genome-wide with T2D in one or more 

subgroups also showed evidence of heterogeneity between the subgroups, (Cochrane’s Q p <0.01) 

with 2 remaining significant after multiple testing (in CDKN2B and CYTIP). Combined risk scores, 

based on genetic profile, BMI and age, resulted in excellent diabetes prediction (AUC=0.92).  A 

modest improvement in prediction (AUC=0.93) was seen when the contribution of genetic and 

environmental factors was evaluated separately for each subgroup. Increasing sample sizes of genetic 

studies enables us to stratify disease cases into subgroups which have sufficient power to highlight 

areas of genetic heterogeneity.  Despite some evidence that optimising combined risk scores by 

subgroup improves prediction, larger sample sizes are likely needed for prediction when using a 

stratification approach. 
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Introduction 

 

Diabetes is a metabolic disease characterised by high blood glucose resulting primarily from either 

insufficient insulin production or insulin resistance. Incidence of diabetes is increasing due both to 

lifestyle factors, such as increasing levels of obesity, and longer life expectancy1. Among minority 

ethnic communities in the UK, the prevalence is up to 4 times higher than in White populations2. 

Diabetes represents a significant health burden due to the increased rates in individuals with diabetes of 

physical disability, including blindness and limb amputation, and comorbidities, such as kidney disease, 

cardiovascular disease and cancer3.  

 

Glucose homeostasis involves many distinct mechanisms, and genetic susceptibility to diabetes arises 

from gene variants affecting different gene networks. A complex pattern of genetic susceptibility and 

environmental exposures by individual leads to significant heterogeneity in the pathogenesis of T2D  

between individuals. Better understanding of these heterogeneous drivers may aid in predicting both 

susceptibility to diabetes in individuals, and its downstream complications and thus enable targeted 

treatments depending on whether, for example, the driver was related to insulin signalling, beta cell 

function or a combination of both. Accounting clinically for heterogeneity in diabetes is likely to lead 

to personalised treatment with correspondingly more reliable control of blood sugar levels. Diabetic 

complications are strongly related to the level of exposure to uncontrolled blood sugar levels, 

highlighting the importance of treatments which enable individuals to manage their blood sugar levels 

well. 

 

A clear genetic component to T2D has been identified through population, family and twin-based 

studies, with heritability estimates ranging from 26% genetic heritability to 50% MZ twin concordance4. 

Many genome-wide association studies (GWAS) of T2D have been carried out, with a large recent 
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meta-analysis including 62,892 diabetic cases and 596,424 controls identifying 139 loci associated with 

T2D8. However, these loci only explain around 20% of T2D heritability5. It is becoming increasingly 

clear that T2D is a disease which has different pathogenic pathways. Most GWAS do not consider the 

underlying heterogeneity between cases, but studies that stratify cases have found evidence for different 

genetic profiles between subgroups of T2D cases. Perry et al6 stratified T2D cases by BMI in a meta-

analysis of previous GWAS findings and found a difference in the genetic profile of lean individuals 

compared with obese. Stratification has also been explored by age-at-onset7 which showed evidence for 

different genetic profiles by age. In addition, previous work clustering adult-onset diabetes patients 

showed five clusters of patients  from six variables, each with distinct characteristics and risk of 

complications8. GWAS carried out on these five clusters identified 3 single nucleotide polymorphisms 

(SNPs) which reached genome-wide significance in at least one cluster31.  However, the small sample 

size, with 9,486 individuals divided over 5 clusters, suggests that with greater power further 

heterogeneity is likely to be detected. 

 

In this study, we aimed to identify differences in the genetic profiles of T2D in European-ancestry 

individuals, using larger subgroups which broadly captured genetic and environmental drivers of 

diabetes.  We derived three subgroups of T2D cases in UK Biobank, based on BMI and age at onset of 

diabetes.  In GWAS, we identified diabetes-associated SNPs in each subgroup, and tested for 

heterogeneous SNP-effects across the groups. We explored the genetic correlation between subgroup-

derived genetic risk profiles and diabetes traits, including beta cell function and insulin resistance. 

Finally, we investigated whether this BMI- and age-subgroup approach improved T2D prediction from 

genetics, or with an integrated risk model across genetic and environmental factors. 

 

Results 

 

In the UK Biobank, 36,494 European-ancestry individuals with T2D were grouped according to BMI 

and age-at-onset of diabetes into three subgroups. Group 1 consisted of individuals with BMI greater 
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than 30, Group 2 with BMI less than 30 and age-at-onset less than 60 and Group 3 with BMI less than 

30 and age-at-onset greater than 60. The characteristics of study participants and subgroups are 

summarised in Table 1. GWAS were conducted for all individuals and by subgroup using the same 

421,021 controls to ascertain whether there were differences in the genetic profiles of these three 

subgroups.  

 

GWAS overall and by subgroup 

 

GWAS with T2D cases in all subgroups (36,494 cases and 421,021 controls) identified 267 lead SNPs 

as genome-wide significant associations. An additional 10 SNPs showed genome-wide significant 

associations in subgroup-specific GWAS. Of the 277 lead SNPs, 25 were novel with no previous 

evidence for association with T2D, at these SNPs or at SNPs in linkage disequilibrium (LD) (Table 2), 

excluding SNPs from genes with known associations with diabetes.  Many of the lead SNPs had been 

found previously to have suggestive associations with T2D which did not meet genome-wide 

significance. 13 of the novel SNPs had previously been associated with metabolic measures, and 8 were 

associated with other non-metabolic traits and the remaining 4 were not previously associated with any 

traits. Two of the novel SNPs not previously associated with metabolic traits were annotated to genes 

which have been associated with chronic inflammatory diseases (PKIG and SBNO2).  In addition, one 

further SNP, rs9934018, was annotated to CLCN7 encoding a chloride channel protein with previous 

work indicating a relationship between chloride channels and beta cell health25. Three novel SNPs were 

found to be significant only in subgroup 1, defined by BMI > 30 (1:168960001, rs17153738, 

rs76798800). Results for all 277 SNPs are given in Supplementary Table 1. There was no evidence of 

genomic inflation for either the combined or subgroup analysis with λ1000 ~ 1.  

 

Given these indicators of heterogeneity we further explored differences in association across subgroups. 

18 of the 277 lead SNPs significantly associated with diabetes also showed significant heterogeneity 

between the subgroups using a threshold of Cochrane’s Q with p <0.01 (Figure 2);  2 SNPs (rs72655474 
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in CDKN2B, rs10166720 in CYTIP) remained significant after a Bonferroni correction for multiple 

testing.  

 

Genetic differences between groups 

 

Manhattan plots illustrating the genetic associations of each subgroup and all T2D cases are shown in 

Figure 1.  The genetic correlations between the groups were high, partly driven by the common set of 

controls across all GWAS analyses. The correlation between the Group 1 and 2 was the highest at r2= 

0.97 (standard error (SE) 0.05).  The correlations between Group 3 and both group 1 and 2 were similar 

(Group 1- 3,  r2= 0.88,  SE 0.05; Groups 2-3, r2 0.85; SE 0.05). SNP heritability for each subgroup was 

h2 =0.02-0.03 (Supplementary Table 3). 

 

In genetic correlation analysis with 15 pre-defined phenotypes related to T2D, 11 phenotypes evaluated 

had significant non-zero genetic correlations with one or more subgroups (Table S4, Figure 2b). Group 

1 and 2 had significant correlations with fasting insulin (Group 1: r2 =0.49; Group 2: r2 = 0.31) and 

insulin resistance (Group 1: r2 =0.52; Group 2: r2 =0.38), with lower, non-significant correlations in 

Group 3.  The only group showing a significant correlation with beta cell function was Group 3 (r2 =-

0.31).  Longevity only showed a genetic correlation with Group 1 (r2 =-0.39). 

 

 

Genetic and environmental contributions 

 

To determine whether the subgroups provided better prediction of diabetes case status, polygenic scores 

from each subgroup were generated and their predictive ability compared to the full dataset. The 

polygenic risk scores calculated using the GWAS summary statistics from the full dataset were more 

predictive of diabetes than those from each subgroup (Figure 3).  
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As diabetes risk is a combination of genetic and environmental factors including ageing, a combined 

risk score was optimised for the training set using both an overall and subgroup approach. This 

combined risk score included the genetic risk score, a BMI score and a smoothed age score (see Figure 

4). Combined risk scores based on the optimised parameters were calculated in the test set and diabetes 

was predicted using the R predict function and an AUC determined.  

 

The AUC prediction including all subgroup components for the full dataset which included 7,300 test 

cases was 0.92.  Also in the full dataset, a model utilising only the PRS component had an AUC of 0.87 

compared with an AUC of 0.74 for a model using only BMI and an AUC of 0.78 when both BMI and 

age were included.   Further analysis was then undertaken to assess the impact of using subgroup 

specific genetic risk scores and subgroup optimisation of the contribution to the risk score of genetics, 

BMI and Age (Table 3). We found an increase in prediction when using the genetic risk score calculated 

on the full group but using the weighting of genetic and environmental factors by subgroup. For Group 

1 this increased the AUC from 0.92 to 0.93. 

 

Discussion 

 

In this study we explored the different genetic profiles amongst individuals with T2D based on 457,515 

European-ancestry participants from UK Biobank (36,494 diabetes cases and 421,021 controls). 

Individuals with T2D were grouped based on age-at-onset and BMI, where Group1 comprised all 

individuals with BMI greater or equal to 30 (Group 1), then Group 2 and 3 had BMI <30 with an age-

at-onset less than 60 (Group 2) or  age-at-onset over 60 (Group 3). Our study builds on Noordam et al7, 

which found that the genetic profile of individuals with diabetes varies by age, and previous studies 

which have found differences between lean and obese individuals, and found clustering adult-onset 

diabetes produced distinct groups in terms of patient characteristics and risk of complications8. Our 

study found novel SNPs associated with T2D in the overall dataset, differing genetic profiles among 
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the subgroups and SNPs with high heterogeneity between subgroups. The study further found that the 

contribution to overall risk between genetic and environmental factors varied by subgroup. 

 

This study analysed a larger sample size than previous UK Biobank Diabetes GWAS, by including 

related individuals using a mixed model implemented in regenie. Case control studies with a small 

number of cases relative to the number of controls can suffer from bias which regenie addresses using 

the Firth correction method. This improved power enabled the identification of 25 novel SNPs. Four of 

the novel SNPs were annotated to genes with no annotated SNPs previously associated with diabetes 

including genes associated with chronic inflammatory diseases (PKIG and SBNO2) and CLCN7 

encoding a chloride channel protein. PKIG is a protein kinase inhibitor, blocking protein kinases from 

phosphorylating proteins which affects the level of activity and function. Specifically, it inhibits cAMP-

dependent protein kinase (PKA) and the cAMP/PKA signalling pathway is important for regulating 

glucose homeostasis in a wide range of processes including both insulin and glucagon secretion and 

glucose uptake26. SBNO2 regulates inflammatory processes27 and has been found to be differentially 

methylated with BMI28. Finally, CLCN7 is part of the family of chloride channel proteins. Beta cells 

contain chloride channels which respond to glucose concentration and in turn lead to insulin secretion24. 

 

 The three subgroups of T2D cases differed in size, which makes comparisons of the number of 

significant SNPs detected difficult.  However, Group 3, despite being around half the size of Group 1, 

showed a greater predictive genetic risk score (AUC=0.83) than Group 1 (AUC=0.74).  This may 

indicate that the pathogenesis of diabetes in the obese group has a greater environmental component 

than the non-obese group. A high degree of genetic correlation was seen between groups but with 

statistically significant differences for individual SNPs. This observation is in line with the results 

obtained by stratifying by age7 which found different genetic profiles between older age-at-onset and 

younger age-at-onset. TCF7L2 which contained SNPs more strongly associated with different age of 
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diagnosis in the previous study  also  contained SNPs heterogeneous between the three groups in the 

current study. Aly et al31 also identified a variant in TCF7L2 (rs7903146) as being significantly 

associated with only three of their five clusters, finding it not to be associated with severe insulin 

resistant patients (characterised by late onset and obesity) or severe autoimmune diabetes. In this study, 

rs4917644 was not even nominally significantly associated with T2D in Group 3, but it was with Group 

1 and 2.  In addition, 17 further SNPs had significant heterogeneity between the groups with 4 of these 

significant only in a subgroup and not genome-wide significant overall. Two SNPs met a multiple 

testing threshold for significance for heterogeneity. A SNP in CDKN2B, a gene which previous work 

has suggested plays a role in beta cell physiology and diabetes risk34 , and a SNP in CYTIP, a gene 

which has been found in animal models to have significantly different expression in mice deficient in 

insulin receptor substrate-235. These links to physiological processes suggest the underlying genetic 

heterogeneity may be reflected in the variation in disease pathogenesis by individual.  

 

There were differences between the groups in their genetic correlation with other traits.  Only Group 1 

and 2 had significant genetic correlations with insulin resistance and fasting insulin with the older age-

at-onset group showing no significant correlation.  This group instead showed a significant negative 

genetic correlation with beta cell function, which neither Group 1 or 2 did. This suggests that older age-

at-onset diabetes for those who are not obese has a different pathogenesis from those whose diabetes 

develops at a younger age or who are obese. Previous work by Udler et al32 clustered individuals by 

previously identified GWAS variants and diabetic traits identifying five clusters (Beta cell, Proinsulin, 

Obesity, Lipodystrophy and Liver).  In the current study, we found differences between the subgroups 

in loci identified by Udler et al in their Proinsulin and Lipodystrophy clusters there were also differences 

with ARAP, CCND2, HNF4A, PPARG and FAF1 only significant in Group 1 and ARAP, HNF4A and 

CMP only significant in Group 2. 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/advance-article/doi/10.1093/hm
g/ddad093/7207872 by guest on 14 July 2023



U
N

CO
RRE

CTE
D

 M
A
N

U
SC

RIP
T

10 
 

T2D is a complex disease driven by both genetic and environmental factors. The study sought to assess 

the contribution by subgroup of genetic and environmental factors to the overall risk by computing 

combined risk scores for a training data set and assessing their predictive ability in a test data set. 

Genetic risk was determined using polygenetic risk scores and the study found that the most predictive 

genetic risk scores for each subgroup were those that were calculated on all T2D cases, rather than by 

subgroup. Polygenic risk scores were calculated using all nominally significant SNPs, but the power 

may be too low within subgroups given the modest sample sizes. The combined risk score using all 

subgroups had an excellent level of prediction with an AUC 0.92, but this was improved for Group 1 

by using only Group 1 to optimise the balance between genetic and environmental risk factors. Group 

1 consists of obese individuals and the genetic risk score prediction for this group is not strong (AUC 

0.74) suggesting a greater environmental component to the pathogenesis.  However, by utilising the 

power of the significantly larger overall group the improvement in genetic risk score prediction 

combined with the weighting for BMI leads to an improvement in the prediction for this group. 

 

Whilst the study had a relatively large discovery sample, the clustering process meant that each 

subgroup contained around 10,000 individuals with diabetes.  This results in a lower statistical power 

for analyses within subgroups. The  process used to group individuals also resulted in different sized 

groups leading to differing statistical power, making it harder to compare the resulting genetic profiles.   

Due to the low numbers of diverse ancestry participants in the UK Biobank, analyses were restricted to 

individuals of European-ancestry. Diabetes incidence varies substantially by ethnicity both in terms of 

the level and age of incidence and results may therefore not be generalisable to other ancestries.   

 

In summary, by stratifying T2D cases by age-at-onset and BMI, we found subgroup specific genetic 

variation and furthermore differing contributions to disease pathogenesis from genetic and 
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environmental risk by subgroup. However, larger sample sizes than those currently available are 

likely needed to optimise prediction of T2D in a stratification approach. 

 

Materials and Methods 

 

Study Participants 

 

This study included participants from the UK Biobank which includes over 500,000 individuals aged 

40-69 at the time of recruitment. Participants were recruited from across the UK between 2006 and 

20109 and genotype data is available for all individuals10. Data up until 1 January 2021 was included in 

the study.  Ethical approval was provided by the Research Ethics Committee (REC reference 

11/NW/0382).  

 

Data on participants’ diabetes status was based primarily on hospital admission data but also included 

primary care data and self-reported status.  A combination of data fields was used to determine diabetes 

status including self-reported “Diabetes diagnosed by a doctor” (data field #2443) and the existence of 

the first reported date in data fields #130706 (insulin-dependent diabetes mellitus), #130708 (non-

insulin-dependent diabetes mellitus), #130710 (malnutrition-related diabetes mellitus) and #130712 

(other specified diabetes mellitus). For age-at-onset, self-reported responses to “Age diabetes 

diagnosed” (data field #2976) were used along with the first occurrence of diabetes reporting in data 

fields #130706, #130708, #130710 and #130710. Individuals with missing BMI were not included in 

the study. Two further exclusions were made to remove Type 1 diabetes (T1D) cases  and individuals 

of non-European ancestry. The exclusions made for T1D were, all cases with an age-at-onset of 18 or 

younger in recognition that cases arising at these ages are predominantly T1D11 and those cases where 

the individual progressed to insulin treatment within 1 year identified in data field #2986.  Previous 

work by Thomas et al33 indicates that 90% over T1D cases can be identified by this indicator.  

Individuals with no records of diabetes were used as controls. The same group of controls was used for 
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all subgroup analyses for consistency to ensure results arising were due only to differences in cases. 

Individuals with non-European ancestry were identified through 4-means clustering of the first two 

genetic principal components (PCs) as supplied by UK Biobank and excluded from analysis. Of the 

remaining individuals, 96% identified as white in data field #21000.  

 

 

Subgroups 

 

Individuals were put into groups based on BMI and age-at-onset.  Given the number of overweight T2D 

cases the BMI threshold for grouping was chosen as obesity (BMI > 30kg/m2). Group 1 included all 

individuals who had a BMI greater than or equal to 30.  To establish the differences between onset as 

age related disease and onset at earlier ages the age-at-onset was set to be 60.  Group 2 and 3 consisted 

of the remaining individuals divided by age-at-onset with Group 2 individuals having an age-at-onset 

of less than 60 and Group 3 with an age-at-onset greater than or equal to 60. 

 

Genetic data 

 

UK Biobank profiled the genotypes using Affymetrix UK BiLEVE Axiom and Affymetrix UK Biobank 

Axiom arrays (https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=263). UK Biobank also carried out 

genotype imputation and preliminary QC on the resulting genetic data (see Supplementary Note).  The 

first 20 principal components (PCs) were recalculated for the individuals to be included in the genome 

wide association study (following exclusions for ancestry, juvenile diabetes and QC) using FlashPCA 

v2.012. 

 

Genome-wide association analyses 

 

GWAS were conducted using logistic regression models using regenie, C++ program for whole genome 

regression modelling of large genome-wide association studies13. Covariates included the first 20 PCs 
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to account for population structure, sex and batch. In addition, further covariates were included to 

account for risk factors of diabetes including age, BMI and smoking. Analysis was restricted to SNPs 

on the autosomes, with MAF > 1% and an imputation information score >0.6. FUMA, a platform to 

annotate, prioritize, visualize and interpret GWAS results14 was used to identify independent lead SNPs 

based on a p-value threshold of 5 x 10-8, r2 <0.6 and LD <0.1.  LDlink software programme15 was used 

to check for novel sites that were not in LD with sites previously associated with diabetes or measures 

of blood glucose. For SNPs not in LDlink a manual check of the GWAS catalog16 was carried out for 

all sites with LD <0.2 within a 0.5MB window. Lead SNPs were determined to be significant only in 

one subgroup if the p-values for that SNP in the GWAS of the other subgroups and combined analysis 

were all greater than 5 x 10-8. 

 

Analysing genetic differences in the subgroups 

 

To assess the heterogeneity of each SNP across the GWAS results for the subgroups we used a fixed 

effects meta- analysis implemented through GWAMA (Genome-Wide Association Meta-Analysis) 

software 17 to calculate heterogeneity statistics. Heterogeneity was determined based on Cochrane’s Q 

p-value at a threshold of 1% with I2 >50% and further with adjustment for multiple testing at a 

Bonferroni threshold 1.9 x10-4. Genetic correlations and SNP heritability were calculated using the 

LDSC software18, based on LD score regression.  This is in line with previously reported subgroup 

GWAS7 and LDSC has been reported to be unbiased with sample overlap18.  Genetic correlations 

between the subgroups were calculated to determine the extent to which genetic profiles for each group 

overlapped. Correlations were also calculated between  GWAS results from each subgroup and 15 other 

phenotypes (Table S2), including five related to diabetes (2hr glucose, fasting insulin, HbA1c, insulin 

resistance and beta cell function), four metabolic phenotypes (waist-hip ratio adjusted for BMI, Visceral 

Fat, Body Fat percentage), a longevity measure (longest 10% survival), four psychiatric phenotypes 

(anxiety, depression, Alzheimer’s disease, autism) and two inflammatory phenotypes (inflammatory 

bowel disease and rheumatoid arthritis).  GWAS summary statistics for these phenotypes were accessed 
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from LD hub29. A 95% confidence interval was constructed to test the significance between the 

correlations observed. 

 

Polygenic risk scores 

 

 

Polygenic risk scores for the combined groups and each individual diabetes subgroup were calculated 

based on GWAS results after first rerunning the GWAS using a split training/test (80%/20%) set 

approach.   GWAS were carried out as above in the training set. Polygenic risk scores (PRS) were 

calculated overall and for each diabetes subgroup using Polygenic Risk Score software, PRSice v219,20 

using the GWAS summary statistics from the training set analysis with clumping (r2< 0.1 and 500kb 

window) and a p-value threshold 0.05 (based on a previous study in UK Biobank30).  

 

Combined risk scores 

  

Combined risk scores were calculated using methodology described in Moldovan et al21. based on the 

three risk factors of PRS, BMI and age. Each of these risk factors were transformed to account for the 

non-linear relationship between diabetes risk across risk factor percentiles. After transformation of each 

risk factor, each individual then had an assigned genetic risk score (GR), a BMI risk score (BR) and an 

age risk score (AR). Combined risk scores (CRS) were then calculated as in the formula below with 

regression model parameters estimated as described in Moldovan et al21. 

 

𝐶𝑅𝑆 =  𝛼 𝐺𝑅 +  𝛽 𝐵𝑅 +  𝛾 𝐴𝑅 

 

The ability of the combined risk scores to predict diabetes was then assessed in the test set using the 

area under the ROC curve (AUC). The AUC was calculated using the pROC package in R22. The 

combined risk scores were calculated twice for each subgroup. Once using genetic risk scores based on 
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the subgroup PRS with optimisation by subgroup for α, β, and γ and once using the genetic risk scores 

based on the overall data set also with optimisation by subgroup.  The AUC was determined using PRS 

alone, BMI alone and BMI and age to assess the impact of including genetics in the score. 
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Figure 1:  Genome wide association study results by subgroup. Manhattan plots GWAS results from 

T2D cases and controls from (a) Group1, (b) Group 2, (c) Group 3, (d) all groups combined.  
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Figure 2 Genetic differences between subgroups a. Heterogeneity between SNPs showing SNPs 

with Cochrane’s Q p <0.01. SNPs which are genome-wide significant in a subgroup but not genome-

wide significant overall marked with an asterisk b. Genetic correlations between subgroups and 

genetic profiles of other phenotypes.   
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Figure 3 ROC curves for polygenic risk scores by subgroup. All group analysis AUC = 0.87, 

Group 1 AUC = 0.74, Group 2 AUC = 0.78, Group 3 AUC = 0.83. 
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Figure 4: Combined risk score components a. Genetic risk at each percentile category for polygenic 

risk calculated for the combined group b Diabetes risk due to BMI calculated at each percentile 

category c. Diabetes risk due to age calculated at each percentile category. 
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 Diabetes Cases Controls Group 1 Group 2 Group 3 

Number 38,481 421,021 20,588 6,328 9,344 

BMI (mean, SD)  31.6 (5.7) 27.0 (4.5) 35.2 (4.7) 26.8 (2.7) 26.8 (2.3) 

Age-at-onset (mean, SD) 58.6 (11.1) n/a 59.0 (10.0) 51.6 (7.2) 68.1 (5.7) 

Age (at 1/1/21) 71.5 (7.0) 68.0 (8.1) 70.7 (7.1) 75.1 (4.4) 68.5 (7.4) 

Sex 

Female 

Male 

 

39% 

61% 

 

56% 

44% 

 

41% 

59% 

 

31% 

69% 

 

40% 

60% 

Smoking Status 

Never 

Ex-smoker  

Current   

 

42% 

45% 

13% 

 

54% 

35% 

10% 

 

42% 

46% 

12% 

 

43% 

41% 

16% 

 

41% 

45% 

14% 

 

Table 1: Participant characteristics of T2D cases and controls and characteristics of the three subgroups
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Table 2: Novel SNPs which were either significant in the analysis including all groups or significant in a subgroup analysis. P-values are shown for 

the all group analysis.

ID Chrom Position Gene Effect 

Allele 

Effect 

Allele 

Freq 

Beta se P-value Previous 

Associations 

1:168960001 1 168960001  AT 0.978861 0.118722 0.030362 9.22E-05 unrelated 

rs17153738 7 106658309  T 0.654342 -0.03904 0.008896 1.14E-05 unrelated 

rs76798800 1 154994978 DCST2 G 0.733766 0.037472 0.009505 8.08E-05 BMI/WHR 

rs371649660 7 74353884 GTF2I C 0.890097 0.095554 0.014636 6.63E-11 BMI/WHR 

rs2821226 1 203517292  A 0.472495 0.048463 0.008491 1.15E-08 BMI/WHR 

rs199679345 6 34234953  C 0.951861 -0.13681 0.019876 5.85E-12 related 

20:43246633 20 43246633 PKIG CACAA 0.952468 0.126113 0.02029 5.11E-10 None 

rs201458438 12 123801250 SBNO1 C 0.320434 -0.06178 0.00955 9.84E-11 BMI/WHR 

rs38169 7 15893300  C 0.244283 0.061601 0.009802 3.28E-10 related 

rs10823909 10 73989184 ANAPC16 T 0.911994 -0.08372 0.014924 2.03E-08 BMI/WHR 

rs72752197 5 44627323  C 0.780923 0.057415 0.010266 2.23E-08 unrelated 

rs11057368 12 124309574 DNAH10 G 0.633135 0.048748 0.008813 3.18E-08 BMI/WHR 

rs11187152 10 94500111  G 0.923309 0.098068 0.016017 9.21E-10 unrelated 

rs1916334 12 122484294 BCL7A G 0.804831 -0.06304 0.010707 3.93E-09 BMI/WHR 

rs56218834 2 25520857 DNMT3A G 0.572974 0.062063 0.008558 4.12E-13 BMI/WHR 

rs556132116 17 17931884 ATPAF2 C 0.689899 -0.05928 0.0108 4.04E-08 BMI/WHR 

6:19809493 6 19809493 RP1-167F1.2 TA 0.689373 0.050394 0.009156 3.71E-08 None 

10:114673015 10 114673015  GGT 0.856163 0.071575 0.012742 1.94E-08 None 

rs142201902 3 185153047 MAP3K13 C 0.92574 -0.09285 0.016139 8.76E-09 BMI/WHR 

rs34636896 10 114647936  G 0.183938 -0.10405 0.011741 7.84E-19 unrelated 

19:1149092 19 1149092 SBNO2 GC 0.638361 0.053763 0.009113 3.65E-09 unrelated 

rs876475 9 81545012  G 0.599162 -0.04786 0.008595 2.57E-08 unrelated 

rs59521405 2 112264989  T 0.752715 0.060811 0.009975 1.09E-09 BMI/WHR 

rs78535155 13 49435399  A 0.985318 0.198544 0.036376 4.81E-08 None 

rs9934018 16 1504934 CLCN7 T 0.593146 0.046978 0.00857 4.22E-08 unrelated 
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Training and Test set Genetic Risk population AUC (95% CI) 

All groups All groups 0.921 (0.918-0.924) 

Group 1 All groups 0.932 (0.929-0.934)-) 

Group 1 Group 1 0.883 (0.880-0.882) 

Group 2 All groups 0.915(0.912-0.918) 

Group 2 Group 2 0.825 (0.820-0.829) 

Group 3 All groups 0.916 (0.913-0.919) 

Group 3 Group 3 0.894 (0.890-0.898) 

 

Table 3: Predicting diabetes using combined risk scores within groups and across groups 
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