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ABSTRACT
The problem of mapping regions with socially-derived boundaries
has been a topic of discussion in the GIS literature for many years.
Fuzzy approaches have frequently been suggested as solutions,
but none have been adopted. This is likely due to difficulties asso-
ciated with determining suitable membership functions, which are
often as arbitrary as the crisp boundaries that they seek to replace.
This paper presents a novel approach to fuzzy geographical mod-
elling that replaces the membership function with a possibility dis-
tribution that is estimated using Bayesian inference. In this
method, data from multiple sources are combined to estimate the
degree to which a given location is a member of a given set and
the level of uncertainty associated with that estimate. The Fuzzy
Bayesian Inference approach is demonstrated through a case
study in which census data are combined with perceptual and
behavioural evidence to model the territory of two segregated
groups (Catholics and Protestants) in Belfast, Northern Ireland, UK.
This novel method provides a robust empirical basis for the use of
fuzzy models in GIS, and therefore has applications for mapping a
range of socially-derived and otherwise vague boundaries.
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Introduction

The problem of social boundaries in GIS

When describing a geographical area, there are two potential sources of uncertainty:
the location of the area and its extent (Clementini and Di Felice 1996). Here we are
concerned with the latter case, in which it is clear where the area is located, but its
boundaries cannot be unequivocally demarcated. This boundary uncertainty is referred

CONTACT J. J. Huck jonathan.huck@manchester.ac.uk
� 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by
the author(s) or with their consent.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE
https://doi.org/10.1080/13658816.2023.2229894

http://crossmark.crossref.org/dialog/?doi=10.1080/13658816.2023.2229894&domain=pdf&date_stamp=2023-07-05
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1080/13658816.2023.2229894
http://www.tandfonline.com


to as geographical vagueness, the sources of which are enumerated by Montello
(2003). There are several approaches to the categorisation of boundaries in GIS
(e.g. Smith and Varzi 2000, Montello 2003), but here we adopt the high-level typology
presented by Fisher (1996), who categorised boundaries as real (normally implying a
physical delimiting feature, such as a river), perceived (understood by individuals, but
not delimited) and imposed (normally administrative zones, i.e. all political and legal
regions). Imposed boundaries are typically crisp, in that it is easy to unequivocally
determine whether one is inside or outside the boundary. Perceived boundaries, how-
ever, exhibit geographical vagueness to some degree (Huck et al. 2014) and typically
reflect the ways in which individuals understand the places that they occupy in their
daily lives, such as the extent of their neighbourhood. Real boundaries can be either
crisp or vague, often depending on the nature of the delimiting feature. Vague geo-
graphical regions are characterised by the fact that their bounds are not merely
undetermined (i.e. merely unset or unconsidered), but rather are indeterminate (i.e.
there are no unequivocal precise bounds that could be defined, even if it were so
desired).

Where they are socially-derived, the boundaries of vague regions are determined
by the daily experience of individuals and, whilst it is easy to select a location that is
definitely either inside or outside them, there is no unequivocal manner by which a
precise boundary may be drawn (Clementini and Di Felice 1996, Fisher et al. 2004).
Nevertheless, their meaning is fully understood and people can reason about them
(Clementini and Di Felice 1996). Even seemingly well understood social concepts can
be revealed to be vague when carefully considered (e.g. downtown; Montello et al.
2003). Geographers typically account for vagueness in socially-derived regions by dis-
tinguishing between geometric spaces, which are universally defined and precisely
allocated (e.g. a census zone); and geographical places, which inherently exhibit vari-
ation between individuals and through time, and which do not exhibit defined loca-
tions or boundaries (Goodchild 2011).

Vague regions elude satisfactory representation using spatial primitives, such as
points, lines, and polygons (Montello et al. 2003, Goodchild 2011). This is because defi-
nitions of the perceived boundary must rely upon a multitude of perceived attributes
of an area, which are often individualistic and may not relate to measurable phenom-
ena (Carver et al. 2009). The representation must therefore consider not only the phys-
ical objects found therein, but also the meanings that those objects have for
individuals and communities (Purves and Derungs 2015). Vague geographical entities
might therefore be considered as both synergistic and incommensurable, a condition
that is captured by Tolkien (2001, p. 10): ‘It is one of its qualities to be indescribable,
though not imperceptible. It has many ingredients, but analysis will not necessarily dis-
cover the secret of the whole’. The representation of place remains of great importance
in the field of GIS, and was described by Goodchild (2011) as one of the fundamental
elements of our ability to deal with phenomena that are distributed in space.

It has frequently been suggested that vague or place-based regions lend them-
selves better to fuzzy or probabilistic representations, as opposed to precise geometric
models (e.g. Montello et al. 2003, Evans and Waters 2007, Leung 2010). Fuzzy
approaches, in which the degree of membership of a given set is determined by a
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membership function, have been applied in several areas of GIS research since early
applications were first proposed by Burrough (1986), but there are few, if any,
attempts to use such approaches for social phenomena. It is likely that this is a result
of the difficulty associated with the robust definition of membership functions for
social phenomena, in comparison with fields such as soil science and geomorphology
where fuzzy approaches have been applied more widely. This paper therefore presents
a Bayesian inference-based approach to fuzzy modelling that removes the need for a
pre-defined membership function and so better lends itself to socially-derived bounda-
ries. In support of this, we will briefly present an overview of the relationship between
fuzzy and probabilistic methods, before describing our proposed method in more
detail. We will then demonstrate our method using a case study relating to under-
standing patterns of intergroup segregation in Belfast, Northern Ireland.

Literature review

The relationship between fuzziness and probability

There has historically been a great deal of disagreement in the literature with respect
to whether fuzziness is the same as randomness and hence whether fuzzy models are
the same as probabilistic models. Key arguments ‘for’ and ‘against’ this position are
given in Cheeseman (1985) and Kosko (1990), respectively. Though both authors pre-
sent acceptable solutions to the debate, this paper will adopt the position that fuzzi-
ness and randomness are distinct, which is both the most straightforward position
and the one most frequently adopted in the GIS literature. In this view, both fuzzy
and probabilistic systems represent uncertainty numerically in the interval [0–1], but
they differ substantially in interpretation and the problems to which they should be
applied. In simple terms, fuzziness represents the degree to which an event occurs (as
a result of ambiguity in the event itself), whereas probability represents uncertainty
about whether the event occurs (as a result of chance relating to the occurrence of the
event) (Kosko 1990).

A formal distinction can be made by considering the extent to which ‘the thing’ (A)
can be distinguished from its opposite (Ac), formally A \ Ac ¼ ;: If A and Ac can be
distinguished, then the event is probabilistic; otherwise it is fuzzy (Kosko 1990). To
provide examples in the context of a social phenomenon, such as intergroup segrega-
tion: the question of the degree to which a location belongs to the territory of a given
group is therefore fuzzy; whereas the question of whether one or more members of a
given group are present in that location at a given time is probabilistic. The distinction
here is clear, as the absence of an individual (i.e. the opposite of their presence) is
readily discerned, whereas this is not the case for the degree to which a location is
part of a territory. Though this distinction may appear unimportant at first glance: this
difference in interpretation between fuzzy and probabilistic approaches is considerable
and it is important that the two are not confused (Fisher 1996). Indeed, Fisher (1996)
identifies several instances in the literature, where prominent authors have erroneously
taken the terms to be synonymous or interchangeable.
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A Bayesian approach to fuzzy membership

One of the key challenges in the application of fuzzy methods to geographical prob-
lems is the difficulty associated with defining suitable membership functions (Ahlqvist
et al. 2000). For example, it is one thing to recognise a mountain as a vague entity
(e.g. Fisher and Wood 1998, Varzi 2001, Smith and Mark 2003), but quite another to
determine a justifiable function with which a location can be evaluated for the degree
to which it is part of the mountain (e.g. Fisher et al. 2004). This challenge is perhaps
even greater in the case of socially defined place-based data because they are often
defined by perceived bounds and so are inherently subjective, making it impossible to
create a justifiable membership function.

Fuzzy approaches have previously been combined with Bayesian methods because
they lend themselves well to the formulation and analysis of subjective concepts
(Taheri and Behboodian 2001), though this has not yet been the case in the GIS litera-
ture and no spatial applications have previously been presented. Nevertheless, this
relationship clearly has great potential in a geographical context, as Bayesian inference
can be used to combine multiple types of evidence to determine the degree member-
ship of a vague region (which is represented as a fuzzy set). The generalisation of
Bayesian statistics to fuzzy data approaches has previously been referred to as ‘Fuzzy
Bayesian Inference’ in the mathematical literature (Fr€uhwirth-Schnatter 1993); and we
will adopt this terminology for the spatial implementation presented here.

In Fuzzy Bayesian Inference (FBI), the membership functions upon which fuzzy
methods usually rely are replaced with possibility distributions, which are more directly
relatable to probability theory and so allow for the use of Bayes’ theorem (Bacani and
de Barros 2017, Gentili 2021). The distinction between possibility and probability is the
same as that between fuzziness and randomness (as described in the preceding sec-
tion). The possibility distribution function therefore represents the state of knowledge
of an agent, returning a value based on the current evidence ranging between 0
when a state is impossible and 1 when a state is totally possible (Gentili 2021). To
illustrate this, consider Bayes’ theorem in Equation (1):

P AjBð Þ ¼ P BjAð Þ � PðAÞ
PðBÞ (1)

In the conventional probabilistic format, Bayes’ theorem comprises the following
terms:

� ‘posterior probability’, P(AjB): the updated probability of state A, given data B.
� ‘likelihood function’, P(BjA): the probability of the data B, assuming that state A is

true
� ‘prior probability’, P(A): our current belief about the probability of state A, before

accounting for data B
� ‘plausibility’ P(B): the probability of observing the data B irrespective of state A,

which simply serves to normalise the resulting value to the scale 0–1.

In our fuzzy (possibilistic) case, where A is the state and B is the supporting evi-
dence, the possibility distribution is the likelihood function (Gentili 2021), the prior
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probability is replaced by the prior possibility, the plausibility remains to serve to nor-
malise the resulting membership value and the posterior probability is replaced by the
posterior possibility, from which we can derive a degree of membership on the scale
[0–1]. To provide an example once again in the context of intergroup segregation,
state A would be that a location was part of the territory of a given group and B
would be data that will be used to update the posterior possibility of that state (e.g.
the presence of individuals from either that or another group).

Case study: modelling segregation and inter-group boundaries

In order to provide an example of the benefits that FBI can have for analysis of
socially-derived geographical phenomena, we will provide a case study concerning the
spatial analysis of intergroup segregation. There is a rich literature of the quantitative
measurement of segregation, with a variety of indices and measures, the overwhelm-
ing majority of which are based on the use of administrative tessellations (e.g. census
zones; Catney 2018). Such approaches typically take these zones (comprising imposed
boundaries) as a proxy for ‘neighbourhoods’ or similar socially-derived areas (which
typically exhibit perceived boundaries) and carry the implicit assumption that aggre-
gated data can be used to infer individual experiences (Wong and Shaw 2011, Farber
et al. 2012). This approach carries with it three fundamental methodological challenges
that are widely understood in the literature and equally apply to many other areas of
research into geographical patterns of social phenomena. The first of these is the
Ecological Fallacy (Robinson 1950), whereby all locations and members of the popula-
tion within each zone are implicitly (and incorrectly) assumed to share common char-
acteristics. Such datasets and the analyses arising from them implicitly assume
relationships between all individuals within a given zone and no relationship at all
between members of different zones, effectively removing each zone (and by exten-
sion each individual) from its spatial context (Farber et al. 2012). The second issue is
the Modifiable Areal Unit Problem (MAUP; Openshaw 1981). The MAUP comprises two
interrelated issues: (i) a zoning effect, representing a variance in results caused by the
use of alternative areal unit delineations; and (ii) a scale effect, reflecting the sensitivity
of the results and inferences to areal unit size. The former effect is clearly demon-
strated in the context of the present research by Huck et al. (2019), who identify a
‘Small Area’ (a standard census unit for Northern Ireland) that appears to be mixed,
but in fact represents two highly segregated communities aggregated into the same
zone (also Davies et al. 2019). The latter effect is examined in detail by Wong (1997),
who notes that simply using smaller zones can increase measured levels of segrega-
tion, as a result of the positive spatial autocorrelation of people in the same groups.
The third issue is the Uncertain Geographic Context Problem (UGCoP; Kwan 2012),
which is a phenomenon arising due to the spatial and temporal uncertainty in the
zones and the way in which they deviate from the actual areas they are intended to
represent. A simple example of this problem is the use of census zones as a proxy for
‘neighbourhoods’, which is a common and convenient solution for many types of spa-
tial analysis (Labib et al. 2020), but which fails to acknowledge that the imposed boun-
daries defined by administrative agencies are unlikely to map on to the individualistic
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notion of ‘neighbourhood’ that is understood by the people living within it (Grannis
2005, Goodchild 2011, Wong and Shaw 2011).

Approaches, such as those described above also carry a fourth challenge that is
specific to the study of segregation: an overwhelming focus upon only residential pat-
terns of segregation (i.e. measures of segregation that consider only where people
live, not where they work or spend their leisure time). However, there is an increasing
recognition that individuals may experience different levels of segregation across their
various socio-geographical spaces, not only residential spaces. As a result, authors,
such as Schnell and Yoav (2001), Wong and Shaw (2011), Farber et al. (2012), and
Huck et al. (2019) have begun to develop a range of methods that allow for more indi-
vidualistic ‘activity space’ approaches to understanding patterns of segregation.
Understanding behaviour at the individual level is of vital importance to understand-
ing dynamic patterns of segregation (Dixon et al. 2020a, Dixon and McKeown 2021).

Approaches based on administrative tessellations have been extremely valuable in
understanding the fundamental characteristics of urban residential segregation and
the associated negative socioeconomic consequences (Dixon et al. 2020a).
Nevertheless, such research has provided an incomplete understanding of the nature
of segregation, ignoring the time that people spend outside the home (Wong and
Shaw 2011). A more complete understanding of segregation must account for the
time that people spend at work, in places of education and in everyday activity
spaces, such as street corners, parks, markets and leisure facilities; as well as the time
that they spend travelling in cars, on public transport and on foot (Dixon et al. 2020a,
2022). We will therefore present a spatial application of FBI to a geographical model
of territory between segregated groups in Belfast, UK. In doing so, we will demon-
strate how this approach addresses all four of the above challenges in order to pro-
vide a deeper understanding of patterns of sectarian territory in the region.

Materials and methods

Study area

This study is based in a region of North Belfast, Northern Ireland, UK. Segregation in
Northern Ireland principally occurs between the two main communities: Catholics and
Protestants (Roulston and Young 2013, Merrilees et al. 2018). The nature of the conflict
is, however, far more complex than this religious nomenclature suggests: the chief
driver of the conflict is ethno-political, with Unionist Protestants tending to identify as
British and wishing to remain part of the United Kingdom and Nationalist Catholics
tending to identify as Irish and wishing to unify with the Republic of Ireland (Mac
Ginty et al. 2007, Roulston and Young 2013, Merrilees et al. 2018). Segregation and
sectarianism are everyday realities for many residents of Northern Ireland (Roulston
and Young 2013) and despite the conflict officially ending with the ‘Good Friday
Agreement’ in 1998, daily routines, practices and mobilities of individuals in North
Belfast remain significantly impacted by the ongoing effects of sectarianism (Hamilton
et al. 2008, Dixon et al. 2020b). Notably, residential patterns in this part of the city per-
sist in a distinctive ‘checkerboard’ pattern in which nationalist and unionist commun-
ities exist in close proximity yet remain divided in their everyday activities and use of
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space, with divisions often enforced by physical barriers known as ‘peace walls’.
Specifically, we will focus on five pairs of adjacent Catholic/Protestant communities,
which are indicated on Figure 1.

Data collection

Our approach comprises a spatial application of FBI to combine evidence from three
primary sources and one secondary source in order to produce fuzzy surfaces in which
each cell represents the degree of membership of the territory of a given group
(Catholic or Protestant). The secondary dataset is the Northern Ireland Small Area (SA)
data from the 2011 census, which was obtained from NISRA (2011) and includes the
percentage of Catholic and Protestant residents in each area, from which the overall

Figure 1. The study area and North Belfast communities upon which this research focuses. Base
map data # OpenStreetMap Contributors.
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ratio can be calculated and the areas classified (illustrated in Figure 2(A)).
This approach to representing territory only accounts for residential patterns and suf-
fers from the problems described earlier, but provides a useful basis for our prior possi-
bility, to which further evidence can then be added.

All three primary datasets were collected during a continuous campaign between
February and December 2016. The first primary dataset used in this research comprise
survey data collected from 488 residents of the study area, of which 242 were Catholic
and 246 Protestant; 196 were male, 291 female and one did not disclose a gender.
Participants were asked a range of questions relating to their experience of segrega-
tion, but here we only use whether they classify themselves as Catholic or Protestant
and the location of their home. These data on Catholic and Protestant residential

Figure 2. Key datasets: (A) small area census zones, including percentage of Catholic and
Protestant residents; (B) location of 488 Catholic and Protestant households that were surveyed; (C)
PGIS data from 33 participants relating to perceptions of Catholic and Protestant territory, as well
as mixed areas; (D) GNSS Traces for 196 Catholic and Protestant participants.
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locations are illustrated in Figure 2(B) and the dataset and methodology are described
in more detail in Dixon et al. (2020a).

The second primary dataset comprises Participatory GIS (PGIS) data collected using
the Map-Me platform,1 which uses a ‘spraycan’ (or ‘airbrush’) interface for users to add
data to the maps (Huck et al. 2014). This is intended to better capture the vagueness
inherent in the data avoiding the imposition of ‘artificial precision’ (after Montello et al.
2003) by forcing place-based data into fixed boundaries. Participants use the zoom
level of the map to control the level of precision and density of the spray; and this is
therefore often used as a proxy for ‘strength of feeling’ (Huck et al. 2019). Data were
collected from 33 residents of the study area, of which 14 were Catholic, 17 Protestant
and 2 ‘Other’; 21 were male and 12 female. Participants were asked to use the
‘spraycan’ interface to ‘spray paint’ onto a Google Map in response to the following
prompts: ‘Please spray the areas you would consider to be Catholic’, ‘Please spray the
areas you would consider to be Protestant’ and ‘Please spray the areas you would con-
sider to be Mixed’ (i.e. not segregated). This PGIS survey was conducted in the form of
a one-to-one mapping exercise with each participant to ensure that the data reflected
participants’ intentions (i.e. the data were not affected by mistakes or difficulties using
the platform etc.). The resulting dataset is illustrated in Figure 2(C) and described in
detail in Huck et al. (2019), whilst the software is described in Huck et al. (2014).

The third primary dataset comprises GNSS2 (Global Navigation Satellite System)
traces collected for a period of up to 14 days from 196 participants, of which 93 were
Catholic, 91 Protestant and 12 ‘Other’; 79 male and 117 female. Data were collected
using a custom Android mobile phone application, which recorded participants’ loca-
tion at 4-second intervals and uploaded them to a server along with a timestamp and
estimate of accuracy. Participants could pause the app for defined periods of time, but
otherwise the application continued to track even if it was closed or the device
restarted, ensuring high levels of data capture. The raw GNSS traces (comprising
�21.7 million data points) were processed as described in Davies et al. (2017). This
dataset is illustrated in Figure 2(D) and is described in more detail in Hocking et al.
(2018) and Dixon et al. (2020a).

These four datasets comprise the evidence that will be combined using FBI in order
to estimate a possibility distribution for each location in the study area (each cell in
the surface), from which we can derive values for both membership and uncertainty.
We will do this for both Catholic and Protestant territories, yielding two output surfa-
ces: one in which each cell contains a value representing the degree to which a given
location is part of a Catholic territory; and one in which each cell contains a value rep-
resenting the degree to which a given location is part of a Protestant territory (we will
refer to these values as ‘territoriality’). Note that both are required as the two datasets
are not necessarily perfectly inverse of each other due to the presence of the ‘mixed’
and ‘other’ classifications in the input datasets.

Fuzzy Bayesian inference

Our approach seeks to construct one FBI model for each cell in a surface that covers
the full extent of the study area. Each location will therefore have a separate
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possibility distribution, which is initialised with a prior possibility using the residential
ratios calculated from the Small Area census data. This approach is described as the
use of an informed prior (i.e. one based on pre-existing knowledge, information or
belief), which is preferable to starting with a flat prior (i.e. starting with no informa-
tion). Despite the issues that we have described arising from sole reliance upon this
dataset as a measure of territory, it nevertheless provides a sensible starting point for
an inference model. It also has the advantage of spatial contiguity, meaning that there
will be at least some data for all locations in the study area. We then iteratively add
evidence from each of the three primary datasets to determine a new posterior possi-
bility distribution. Each iteration of our spatial implementation of FBI comprises two
distinct steps. The first step requires the use of an evidence function to gather spatial
data (evidence) from the dataset in question (either survey, PGIS and GNSS data) and
process this into a distance-weighted evidence value. The second step then actually
incorporates this evidence value into the model for a given location to estimate the
posterior possibility distribution.

In the first step, the evidence for a given cell being a member of catholic or prot-
estant territory is gathered using the evidence function, the specifics of which are likely
to vary between applications of FBI. The simplest version of this would be a count of
data points within a given distance of the cell location, though in practice it is likely
that some form of distance weighting function will be applied to ensure that data
closest to the cell location are privileged over more peripheral data. In this example,
our evidence function comprises an inverse distance weighted squared (IDW2) score
based on an attribute-weighted count of all data points relating to each group within
a certain distance of the cell centre (the bandwidth), as per Equations (2) and (3). Data
are weighted twice in this instance: once based on their location (using IDW2 as
described above), and once based on their attributes (depending on the dataset, as
described below). This provides a good ‘general’ example of an evidence function that
could be applied to a range of datasets and applications. As with many GIS algorithms
that require a bandwidth parameter, there is rarely clear empirical evidence to support
the selection of a specific bandwidth value. Effort should be made to ensure that this
value reflects the nature of the phenomena in question insofar as is possible, though
the impact of minor changes in bandwidth will be limited due to the IDW2 weighting.

vg ¼ mg \ crf g (2)

Where: vg is the evidence relating to group g (Catholic or Protestant) for a given
cell location; calculated as the intersection between: mg, which is the complete set of
data points (evidence) relating to group g; and cr , which is a circle of radius r (the
selected bandwidth) centred at the given cell location.

eg ¼
Xvgj j

i¼0

wi 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xið Þ2 þ y� yið Þ2

q
r

 !2

(3)

Where: eg is the evidence value for group g at a given cell location; vg
�� �� is the

length of the evidence set; x and y represent the projected coordinates of the given
cell location; xi and yi are the projected coordinates of data point i; and wi is the
weighting value for data point i, which may be dataset specific and can vary either by
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data point or by dataset. In this case, weighting values (wi) for the PGIS data were cal-
culated on a scale of 0–1, determined by the zoom level at which the PGIS data were
created (as a proxy for strength of feeling; Huck et al. 2019), with data produced at
the smallest scale given the lowest weight and vice versa. For the GNSS data, wi was
the number of individuals that produced the data, with a larger number of individuals
resulting in a greater weighting. In absence of evidence to support weighting the
Survey data, wi was fixed at 1 for this dataset.

In the second step, the evidence values for each group and location (eg for Catholic
and Protestant territory) are then used to construct a Multinomial possibility distribu-
tion, with the parameter vector drawn from a Dirichlet distribution. The relationship
between these distributions is well established in Bayesian methods, with the latter
representing the conjugate prior of the former. This simply means that, for a possibility
distribution that conforms to a Multinomial distribution, the prior possibility distribution
will conform to a Dirichlet distribution, which is useful as knowing the distributions
beforehand significantly reduces the required amount of computation in the FBI
process.

When applied to probability distributions and continuous parameters, the denomin-
ator in Bayes formula (Equation 1) often becomes either computationally or analytic-
ally intractable for all but the most trivial models (Blei et al. 2017). It is therefore
common practice in Bayesian inference to estimate the posterior distribution using a
Markov Chain Monte Carlo (MCMC) approach, which allows us to sample from (and
therefore estimate) the posterior distribution without the need to solve Equation (1)
directly. Once the evidence distribution has been calculated from all three evidence
datasets, we therefore use the No U-Turn Sampler (an efficient MCMC algorithm;
Hoffman and Gelman 2014) to estimate the parameters of the posterior possibility dis-
tribution based on 1000 sample draws. Once we have estimated our posterior probabil-
ity distribution, we simply report the mean (our value for the degree to which a
location is a member of the given group territory) and the width of the 95% credible
interval, which provides our value for the uncertainty associated with this membership
value. This process is repeated with a separate model for every cell in the output ras-
ter surface for each community. All analysis was undertaken in Python 3.8 and the
source code repository, complete with example data, is given at the end of this
manuscript.

Results

To illustrate the proposed method, fuzzy surfaces describing the membership of a
given location to the Catholic and Protestant territories were calculated using a 20m
resolution (cell size) and 40m bandwidth (radius). Both surfaces are illustrated in
Figure 3.

Comparison with the small area census data

To explore the benefits of this approach, we will provide a brief comparison with trad-
itional zonal (census-based) approaches to understanding territory. Because census
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data only report data relating to residences but are spatially contiguous and so also
incorporate non-residential areas, their use in attempts to understand territory can be
misleading. This occurs, for example, where Small Area zones contain non-residential
facilities that are shared, but which are misclassified in conventional analyses because
the census data only accounts for residences (which are segregated). This is an
example of the Ecological Fallacy (Robinson 1950), whereby all of the area inside the
zone is erroneously considered to match the characteristics of the residential part. In
the study area, shared facilities are often located in the vicinity of residential areas as
part of attempts to promote integration, such as through the creation of ‘integrated
schools’ (i.e. schools intended to be attended by both Catholic and Protestant chil-
dren) and other ‘shared’ facilities that are created to promote interaction between
members of both groups. One such example is Cliftonville Integrated Primary School,
which is located in the Catholic Cliftonville community and is accordingly represented
as such in the Census data (>92% Catholic, Figure 4(Ai)). In the fuzzy surfaces, how-
ever, the school is recognised as a mixed ‘island’ (i.e. a relatively low possibility of
membership to either community) in this otherwise strongly Catholic territory (black
dot, Figures 4(Aii,Aiii)). There are many examples of such facilities (integrated schools,
parks, shopping centres etc.) that are ‘lost’ due to the spatial aggregation inherent in
the production of administrative tessellations.

A second example occurs where census zones are plotted across multiple neigh-
bourhoods, causing them to be aggregated and misrepresent the actual underlying
patterns. This is an example of the MAUP (Openshaw 1981) as well as the UGCoP
(Kwan 2012), in that the implicit assumption that suitably small zones can act as a
proxy for neighbourhoods fails either spatially, temporally, or both. An illustration of
this effect occurs in the Bellevue ward (Figure 4(B)), where there are multiple examples

Figure 3. Fuzzy surfaces describing the degree to which a given location is a member of (A)
Catholic and (B) Protestant territory. Road data # OpenStreetMap Contributors.
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of Small Area zones that are plotted across perceived community boundaries, normally
where community boundaries are quite small. In the case of the Bellevue ward, this
has created an erroneous ‘mixed’ area in the census data (Figure 4(Bi), 54% Catholic
and 43% Protestant), whereas in fact the area is strongly Catholic (Figures 4(Bii,Biii)). In
this case, it is likely that the Small Area encloses two highly segregated communities,
as opposed to one mixed one, which is an example of both the MAUP and the spatial
component of the UGCoP, as the assumption that the Small Area is representative of
a neighbourhood is flawed. However, as is clear from Figures 4(Bii,Biii), this is no lon-
ger the case and the surrounding area is now predominantly Catholic. This is likely
due to temporality component of the UGCoP, as the study area contains many areas
of housing that will change territory over time because of demographic shifts in the
area. For example, there is a widely held perception that wealthier and more socially

Figure 4. Comparison of small area census data (i) with fuzzy possibility surfaces for Catholic (ii)
and Protestant (iii) territory, illustrating all three datasets for three locations to demonstrate how
FBI addresses (A) the Ecological Fallacy (Cliftonville Integrated Primary School), (B) The UGCoP
(Bellevue), and (C) sharp boundary (between New Lodge and Duncairn).
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mobile members of the Protestant community tend to leave the area for more desir-
able areas, resulting in a so-called ’greening’ of North Belfast as their places are taken
by Catholics, leading to shifts in local territorial boundaries and increases in social
tensions.

Finally, we should also consider situations in which a fuzzy model might not be
expected to perform as well, such as where there are very sharp boundaries between
territories (normally accompanied by a physical boundary, such as a peace wall), which
does coincide with a Small Area zone boundary, meaning that the census data pro-
vides a good representation. Such an example can be found in the boundary between
the Duncairn (Protestant) and New Lodge (Catholic) communities, which occurs along
Duncairn Gardens (a main road) and is defined by a series of peace walls that provide
a precise physical boundary (Figure 4(Ci)). Here, the fuzzy surfaces have performed
well, maintaining relatively sharp edges whilst allowing for the ‘mixed’ behaviour on
the road itself and the comparatively less segregated industrial buildings that open
onto Duncairn Gardens, some of which are separated from the more segregated resi-
dential areas by the peace walls (Figures 4(Cii,Ciii)).

Uncertainty in the fuzzy surfaces

The uncertainty for each of the surfaces in Figure 3 is derived from the 95% credible
interval of the possibility distribution for each cell in the surface, the result of which is
shown in Figure 5. In spatial applications of FBI, it is essential to report uncertainty
maps alongside the results to ensure that results are expressed with the appropriate
level of confidence, allowing the quality of evidence to be evaluated. Areas of high

Figure 5. Surfaces describing the level of uncertainty (width of the 95% credible interval of the
possibility distribution) at each location in (A) the Catholic territorial surface and (B) the Protestant
territorial surface. Road data # OpenStreetMap Contributors.
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uncertainty can therefore either be discarded or further evidence can be collected to
reduce uncertainties to acceptable levels.

As expected, uncertainties are lowest in the communities from which participants
were drawn (identified in Figure 1) and highest in the peripheral zones of the map,
where we did not collect sufficient data to make a reliable estimate of territorial mem-
bership. The visibility of Small Area boundaries to the northwest of the Figure 5, for
example, demonstrates that little or no further evidence has been added to the prior
possibility in these regions. The uncertainties within our target communities are gener-
ally very small, with the largest occurring either at locations in which we collected less
data, such as Cliftonville golf club (�2 km west of Glandore/Skegoneill, labelled 2 on
the map) and the cluster of schools and churches between Fort William Park and
Somerton road (�1 km north of Glandore/Skegoneill, labelled 2 on the map); or in
locations that are shared by both groups, such as Cityside Retail Park (�1 km south
west of New Lodge/Tigers Bay, labelled 3 on the map) and Hillview Retail Park (imme-
diately south east of Glenbryn/Ardoyne, labelled 4 on the map).

Composite fuzzy territoriality map

Based on the FBI and associated uncertainty surfaces above, it is a simple matter to
extract only those areas for which there is a high degree of confidence in the territori-
ality value to create a fuzzy representation of the ‘core’ community territories. Figure 6
presents a composite surface of areas for which the degree of uncertainty was �0.1. A
standard ‘sieve’ operation has been used to remove extremely small areas of territory.
Darker colours indicate territorial membership to a greater degree, whereas the lighter
colours indicate areas that are shared. As with the individual layers presented in
Figure 3, variations in membership both between (inter-territorial) and within (intra-
territorial) territories are clear, as are the patterns of segregation and sharing.

Discussion and conclusion

This paper is not intended as a criticism of the use of administrative tessellations in
research, as they are well suited to the purposes for which they are intended.
However, the uncritical use of crisply defined polygons as a proxy for socially-derived
regions is widely understood to be inadequate and there is a clear need for new
approaches. This paper demonstrates one such approach, which allows researchers to
gain deeper insight into geographical areas with perceived boundaries by combining
information from multiple data sources. Fuzzy approaches have long been recognised
as a potential solution for modelling vague geographical entities, but applications of
fuzzy methods to social boundaries are extremely rare in the literature. One isolated
example that has similarities to the approach presented here is provided by Gao et al.
(2017), who present two approaches to mapping cognitive regions through the synthe-
sis of multiple geotagged datasets from web and social media sources. These
approaches, however, which are based on a grid-based and point-clustering
approaches combined with an evaluation of agreement between the data sources,
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provide neither the formal analytical framework, nor the ability to evaluate uncertain-
ties afforded by FBI.

A major contributing factor to the lack of uptake of fuzzy approaches to social
boundaries is the challenge in producing justifiable membership functions for vague
geographical entities (i.e. those with perceived boundaries), which can often prove to
be as arbitrary as the administrative zones that they seek to replace. Here, we address
this issue by demonstrating how a spatial implementation of FBI can be used to pro-
duce possibility distributions that describe both the expected degree of membership of
a given location to a set (i.e. Catholic or Protestant territory) and the level of uncer-
tainty associated with that value. The ability to combine primary and secondary evi-
dence from multiple official (e.g. census), empirical (e.g. GNSS Traces, Survey) and
qualitative (e.g. PGIS) datasets, means that we can capture multiple facets of what
‘territory’ means to both those who are included and excluded from it, which in turn

Figure 6. A fuzzy map of territoriality demonstrating the degree to which each part of the area is
a member of either Catholic or Protestant territory. Areas with the darkest colours are members of
their respective territory to the greatest degree, whereas areas with the lighter colours are more
likely to be shared. Areas for which the level of uncertainty was >0.1 are excluded.
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facilitates a more sophisticated and nuanced analysis. In the context of the case study,
this sophistication includes the ability to look beyond only residential patterns of seg-
regation and instead provide a holistic model that accounts for both residential and
activity space patterns, as well as both official and individual views.

There are two key limitations to this spatial application of FBI that might impact
upon adoption. First is the requirement for extensive data collection. Most work on
residential segregation exploits government census data, which is readily available and
the product of a huge investment of time and money. The FBI case study presented
here required the collection of large amounts of additional primary data (survey, PGIS
and GNSS data) to provide evidence for the inference of the possibility distribution,
which may limit applications to only those projects that are adequately resourced to
undertake such work. Clearly, shifts toward open data (including web- and social
media-based datasets such as those used by Gao et al. 2017) will help with this in
some areas by preventing the duplication of efforts, but it is likely that this will remain
a barrier to adoption for some applications. As with any inference-based approach,
the quality and representivity of the input datasets are also of great importance, as
systematic biases in the data will inevitably be reproduced in the resulting maps, so
rigorous collection techniques are required to ensure meaningful outputs.

The second key limitation is that FBI is highly computationally intensive due to the
use of the MCMC simulation to estimate the posterior possibility distribution, which is
computationally intensive. In most cases, it would not be possible to determine the
uncertainties associated with the resulting surfaces without this simulation step,
though alternative approaches, such as quadratic approximation would provide a
more efficient estimate for some simple models (see McElreath 2020). To address this
issue, the model presented here was calculated in 40 subregions that were processed
in parallel using a cluster computing facility and then stitched together at the end.
Where such facilities are not available, the computational burden of this approach
would be significant, which could limit the extent of the study area or the resolution
of the output surfaces. However, given the increasing popularity of Bayesian methods
in recent years, there are promising examples of ways in which to increase the compu-
tational efficiency of MCMC processes (e.g. Rajabi and Ataie-Ashtiani 2016). It is likely
that such advancements will continue to improve the computational efficiency of
MCMC, thus reducing the computational burden of spatial applications of FBI.

The outputs presented here were primarily intended as inputs to other types of
model, such as Agent Based Models that require agents to have a detailed under-
standing of the environment that cannot be satisfactorily obtained from census data
alone. However, the output maps clearly hold substantial value in their own right, pro-
viding new perspectives on patterns of segregation, territoriality and the use of shared
spaces, which would have great value in the formulation of future policy. FBI also cre-
ates rich possibilities for the exploration of the different lived and perceived land-
scapes of spatial division. For example, data from different groups of participants
could be analysed separately to understand similarities and differences in the ways in
which boundaries are understood. For example, in the context of our case study, FBI
would permit the exploration of questions, such as whether young people who grew
up in the years following the Good Friday Agreement view sectarian boundaries in
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north Belfast in the same way as older residents who lived through ‘the Troubles’.
Factoring in varying and perhaps even contested boundary perceptions into Bayesian
models might yield quite different maps of the divided city and thus reveal deeper
and more understanding of how perceptions vary between groups existing within the
study area.

Similarly, if evidence is continually fed into an FBI model with a temporally
weighted evidence function, then it would permit these patterns to be tracked over
time. This could provide authorities, NGOs and communities to gain deeper insight
into the patterns that have such a significant impact upon their daily lives and allow-
ing policies and interventions to be evaluated by observing temporal changes in atti-
tude and behaviour. From this perspective, FBI could prove to be a valuable tool for
providing up-to date understandings of territories, which would have a significant
impact upon the effective targeting of activities intended to promote integration in
the study’s area. This might include, for example, supporting on-going efforts to
remove �100 peace walls that currently exist within the study area (DoJ 2019) by sup-
porting decision making around which walls to remove and evaluating of the impact
of the removal of walls upon territorial boundaries. Further research should seek to
apply datasets produced using FBI to models of segregation, including the develop-
ment of new and improved segregation metrics and the adoption of the temporal
approach described above. The FBI method should also be applied to a range of other
vague social regions, such as the determination of ‘communities of interest’ for use in
electoral mapping (e.g. Phillips and Montello 2017).

In his discussion of place in GIS, Goodchild (2011) identifies that, whilst GIS has
been accused of taking an excessively simplistic view of many complex geographical
ideas, there are clear benefits to this approach with respect to the ease with which
the resulting data can be analysed, visualised and modelled. However, as Pickles
(1995) recognised, there has also been much discussion throughout the history of GIS
around the extent to which technologies bias, filter or otherwise intrude on the inter-
actions between people and their environment (also Montello et al. 2003). This discus-
sion is of great relevance here, as it is common for researchers to simply adopt census
data as a proxy for neighbourhoods, communities, territories and similar simply
because they are readily available as a secondary data source. FBI provides an
approach that permits the modelling of vague geographical areas that can illustrate
both inter- and intra-territorial differences without falling foul of widely understood
issues, such as the Ecological Fallacy, the MAUP or the UGCoP, whilst also navigating
the challenges associated with fuzzy methods that require defined membership func-
tions. We contend that convenience should not dictate the approaches taken in scien-
tific applications, and that methodological innovations, such as those presented in this
paper can provide novel alternatives that enable deeper insights to be gained into a
range of vague geographical entities.

Notes

1. http://map-me.org
2. GNSS is the generic term for satellite-based navigational systems, prominent examples of

which include GPS, GLONASS, and Galileo.
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