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Abstract— Internet of things devices have become highly
popular thanks to the services they offer. However, they also raise
privacy concerns since they share fine-grained time-series user
data with untrusted third parties. We model the user’s personal
information as the secret variable, to be kept private from an
honest-but-curious service provider, and the useful variable, to be
disclosed for utility. We consider an active learning framework,
where one out of a finite set of measurement mechanisms is
chosen at each time step, each revealing some information about
the underlying secret and useful variables, albeit with different
statistics. The measurements are taken such that the correct value
of useful variable can be detected quickly, while the confidence on
the secret variable remains below a predefined level. For privacy
measure, we consider both the probability of correctly detecting
the secret variable value and the mutual information between
the secret and released data. We formulate both problems as
partially observable Markov decision processes, and numerically
solve by advantage actor-critic deep reinforcement learning. We
evaluate the privacy-utility trade-off of the proposed policies on
both the synthetic and real-world time-series datasets.

Index Terms—Inference privacy, time-series privacy, privacy
funnel, active learning, actor-critic deep reinforcement learning,
human activity recognition, mental workload detection.

I. INTRODUCTION

RECENT advances in Internet of things (IoT) devices and
services have increased their usage in a wide range of

areas, such as health and activity monitoring, location-based
services, smart speakers, and smart metering. Moreover, most
service providers encourage users to share their personal data
in return for a better user experience. For instance, the users
can benefit from personalized dietary tips as a result of sharing
their activity sensor measurements, while they can receive
hotel, restaurant, or bar recommendations if they share their
location. However, in most of these applications, data collected
by IoT devices contain sensitive personal information about
the users. The concerning fact is that as soon as the user’s
raw data is sent to the service provider’s cloud, the sensitive
information can be inferred, misused, or leaked through se-
curity vulnerabilities even if the service provider and/or the
communication link are trusted third parties. For example,
chronic illnesses, disabilities, daily habits, and psychological
states can be revealed by health monitoring systems [1], [2],
while presence at home and states of home appliances can
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be inferred from the collected smart meter (SM) data [3].
Hence, privacy is an important concern for the adoption of
many IoT services, and there is a growing demand from
consumers to keep their personal information private against
malicious attackers and/or untrusted service providers (SPs),
while preserving the utility obtained from these IoT services.
Privacy has been widely studied in the literature [4]–[15],
and a vast number of privacy measures have been introduced,
including differential privacy [4], mutual information (MI)
[6]–[12], total variation distance [16], maximal leakage [17],
[18], and guessing leakage [19], to count a few.

A. Contributions

In this paper, we consider an active learning scenario for
privacy-utility trade-off (PUT) against an honest-but-curious
SP in time-series data sharing. We assume that a user wants
to share the “useful” part of her data with the SP. However,
the SP might deduce the user’s “secret” information from
the shared data (e.g., location, heartbeat, temperature, energy
consumption, etc.). We model the user’s secret and useful data
as correlated discrete random variables (r.v.’s). The user’s goal
is to prevent the secret from being accurately detected by the
SP while revealing the useful data accurately for utility.

Differently from the existing works [6], [7], [16], [17], [19]–
[21], which typically consider a time-independent data release
problem, we consider a discrete-time system, where, at each
point in time, the user releases a new measurement that is
correlated with both the secret and the useful variables. While
the objectives on the secret and the useful variables is similar
to privacy preserving data mining [22]–[26], these approaches
focus on sanitizing a stationary dataset while extracting the
required information. On the other hand, our scenario involves
transforming a time-series that becomes available to both the
adversary and the user in an online fashion. We assume that
the user can actively choose from among a finite number of
data release mechanisms (DRMs) at each time. While each
measurement reveals some information about the user’s latent
states, we assume that each DRM has different characteristics,
i.e., conditional probability distributions. The objective is to
choose a DRM at each time in an online fashion to reveal the
value of the useful r.v. as quickly as possible to maximize the
utility, while keeping the leakage of the sensitive information
below a prescribed value.

We first consider an operational privacy measure, where
the privacy of the secret r.v. is measured by the adversary’s
probability of correctly guessing its value. This is similar to
the privacy measures in [27] and [28], but unlike those, we
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are not interested in the multiplicative increase in the correct
guessing probability, but its exact value. Moreover, both [27]
and [28] focus on the one-shot data perturbation, whereas we
are interested in a sequence of data release actions, where the
leakage accumulates over time. We also consider MI between
the secret r.v. and the observations as it is a popular privacy
leakage metric in the literature. We note that MI-based privacy
does not necessarily prevent the detection of the true secret
value; instead, it limits the information leakage in an average
sense [28].

Our problem is similar to time-series data privacy in the
literature [8]–[11], [29]–[31], where the objective is to min-
imize privacy leakage by modifying the original time-series
data while constraining the utility loss. However, in this work,
the user selects from among multiple DRMs in an online
fashion rather than modifying the non-causally available time-
series data. Similar time-series data release problems are also
considered in [13], [15] and [32]. However, [13] considers the
PUT of a binary secret r.v. in an asymptotic regime, while
[32] considers M-ary r.v.’s for an offline scenario using semi-
definite programming, which has high computational com-
plexity when fine-grained data is considered. The data release
history is taken into account for M-ary r.v.’s in [15]; however,
the time aspect is not considered in the PUT objective.

We consider data release policies which take the entire
release history into account, and recast the problem under both
privacy measures as a POMDP. After identifying the structure
of the optimal policy, we use advantage actor-critic (A2C) deep
reinforcement learning (DRL) to evaluate our continuous state
and action probability space MDP numerically. We also use
variational representations for MI estimation through neural
networks.

Finally, we test the proposed policies in the human activity
privacy scenario, in which we use both synthetic data and
smartwatch sensor readings from smoking activity dataset
[33]. We also test our policies for mental workload de-
mographics privacy scenario using Tufts fNIRS to Mental
Workload (fNIRS2MW) dataset [34], which contains brain
activity recordings of adults with various demographics while
performing controlled cognitive workload tasks. We compare
the privacy levels achieved by the proposed policies using an
SP that predicts the true values for useful data and secret from
its observation history. The SP is represented by a long short-
term memory (LSTM) neural network.

Our contributions can be summarized as follows:

• We pose a novel privacy-aware active learning frame-
work for an online streaming of measurements. Unlike
the common data perturbation or noise addition problems
in the literature, where the already collected measure-
ments are perturbed in a non-causal manner, we focus on
the causal data collection mechanism. Taking into account
the accumulation of data leakage over time.

• We propose a data reading/sharing policy for optimal
PUT against an SP performing sequential Bayesian in-
ference, where the privacy is measured by the confidence
of the adversary in the true value of the sensitive r.v., i.e.,
its correct guessing probability of the secret r.v.
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Fig. 1: System model for active PUT against the SP.

• We propose another policy based on privacy measured
by the MI between the sensitive r.v. and the released data
history, which minimizes the data leakage in an average
sense, rather than constraining the confidence only on the
true value.

• For both cases, we recast the active time-series data re-
lease problem for PUT as a POMDP, and characterize the
optimal measurement mechanism when all the statistics
in the system are known. We also provide a RL-based
solution to evaluate both policies numerically using A2C-
DRL for human activity privacy and mental workload
demographics privacy datasets.

The remainder of the paper is organized as follows. We
present the problem statement in Section II and the related
work in Section III. Then, POMDP formulation of the problem
is introduced in Section IV. MI-based privacy is introduced
in Section V, and data-driven evaluation for human activity
and mental workload demographics privacy are presented in
Section VI-C. Finally, we conclude our work in Section VII.

II. PROBLEM STATEMENT

We consider a user that wants to share her data with an
honest-but-curious SP in return for utility. The data reveals in-
formation about two underlying latent variables; one represents
the user’s sensitive information, called the secret, while the
other is non-sensitive useful part, and is intentionally disclosed
for utility. The user wants the SP to quickly detect the non-
sensitive information with minimum error while keeping his
confidence in the secret r.v. below a predefined level.

Fig. 1 shows an illustration of the system model with three
DRMs. Let S = {0, 1, . . . , N−1} and U = {0, 1, . . . ,M−1}
be the finite sets of the hypotheses represented by the r.v.’s
S ∈ S for the secret and U ∈ U for the non-sensitive
useful information, respectively. Consider a finite set A of
different DRMs available to the user, each modeled with a
different statistical relation with the underlying hypotheses.
For example, in the case of a user sharing activity data, e.g.,
Fitbit records, set A may correspond to different types of
sensor measurements the user may share. Useful information
the user wants to share may be the exercise type, while the
sensitive information can be various daily habits. Similarly,
in the case of smart meter readings, the useful information
might be ON/OFF state of home appliances for smart power
scheduling whereas the sensitive information might be the
types of TV channels the user watches. We assume that the
data revealed at time t, Zt, is generated by an independent re-
alization of a conditional probability distribution that depends
on the true hypotheses and the chosen DRM At ∈ A, denoted
by q(Zt|At, S, U).
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The goal is to disclose U quickly and reliably through the
released data Zt, while keeping the SP’s confidence in S below
a certain threshold. Let τ be the time that the SP is confident
enough about the true useful variable and makes a declaration.
This is also the time at which the measurements should stop
since U can already be detected by the SP at the desired
confidence level. The objective of the problem is to find a
sequence of actions {A0, . . . , Aτ−1}, a stochastic stopping
time τ and a declaration rule d : Aτ−1 × Zτ−1 → U that
collectively solve the following optimization problem:

minimize
A0, . . . , Aτ−1, d

E[τ ] + λPerr(u)

subject to Ct(s) < LB ,∀t ≤ τ,∀s ∈ S,
(1)

where Perr(u) = P (d(Aτ−1, Zτ−1) 6= u) is the error
probability of making wrong declaration for the true value
u ∈ U ; Ct(s) is the SP’s instantaneous confidence in the true
sensitive value s ∈ S, which is a probability distribution on s
given the observation history, i.e., P (S = s|Aτ−1, Zτ−1); LB
is a scalar of user’s choice; and the expectation is taken over
the action and observation distributions as well as the initial
distributions of the r.v.’s. Here, by adjusting λ, we can trade-
off between the speed of declaration and the SP’s accuracy.

For our theoretical results, we assume that the observation
statistics q(Zt|At, S, U),∀At ∈ A, and the employed DRM
At are known by both the user and the SP. Later, we will also
consider real datasets with unknown data distributions in our
simulations. To maximally confuse the SP, the user selects
action At with a probability distribution π(At|Zt−1, At−1)
conditioned on the SP’s observation history up to that time,
{Zt−1, At−1}. In this work, we assume that the true values
of S and U are unknown to all the parties involved.

III. RELATED WORK

Time-series data privacy has been extensively studied [8]–
[11], [15], [29]–[31], [35]–[43]. Most of these works focus
on the privacy relying on a single observation from a time-
series, e.g., the current measurement [31], [38]–[42]. However,
time-series data privacy needs to take into account more than
just the individual data points since each measurement is
temporally correlated throughout the entire series.

Among those that consider temporal correlations, most
existing works focus on the privacy of the time-series mea-
surements rather than hiding latent sensitive attributes [9],
[10], [30], [31], [41]–[43]. In the location sharing scenario,
sensitive information is the time-series data itself and the
utility loss can be measured by data distortion, whereas, in
many applications, the user might be interested in hiding
an underlying sensitive hypothesis. For instance, the user’s
presence at home can be inferred from SM readings, while
her daily habits can be revealed to the SP through the sensors
of a wearable device. Inference privacy protects user’s data
from an adversary’s attempt to deduce sensitive information
from an underlying distribution [12], [15], [19]–[21], [44]–
[46]. These techniques perform well against inference attacks,
in which the adversary aims at detecting the user’s under-
lying private information with high confidence [43]. PUT
between two correlated sensitive and useful r.v.’s has also

been studied under privacy funnel [20], which is closely
related to information bottleneck introduced in [47]. In privacy
funnel approaches [12], [19]–[21], [44]–[46], the goal is to
conceal the sensitive information from SP’s inference while
gaining enough utility from the useful information, where
both the utility and the privacy leakage are measured by
MI. However, [12], [20], [21], [44] consider independent data
without temporal correlations, hence, these approaches are not
suitable for temporally correlated time-series data.

Differential privacy (DP), k-anonymity, information theo-
retic metrics and the SP’s error probability are commonly used
as privacy measures [8]–[11], [15], [29], [30], [35]–[43], [48]–
[51]. By definition, DP prevents the SP from inferring the
current data of the user, even if the SP has knowledge of all
the remaining data points. K-anonymity ensures that sensitive
data is indistinguishable from at least k− 1 other data points.
However, DP and k-anonymity are meant to ensure the privacy
of a single point in a time-series and do not usually consider
temporal correlations. As an intermediate framework between
complete independence and complete correlation, pufferfish
privacy considers low temporal correlations in time-series
[46]. However, the mechanism focuses on privacy around the
current data, which might ignore the inference from future and
past values. There are other works that formulate privacy using
the temporal correlations of infinite data streams; however,
in practice, these usually follow myopic correlations with
the current data, e.g., temporal correlations in a finite time
window, due to the utility loss concerns raising from high noise
[4], [48]–[50], [52]. For instance, the authors of [4] mention
that dependent DP considers a Markov Quilt mechanism,
which takes the correlation between certain tuples in the
dataset. Bayesian DP in [4] provides privacy for learning
iterations; however, this cannot be mapped directly to time-
series data privacy since there is a different data distribution
at each time step in the time-series. On the other hand, in
temporal privacy leakage proposed in [4], only the backward
privacy leakage is relevant to our method, since the future
observations are not available to us in our scenario. Similarly
to our proposed solution, backward privacy leakage exploits
Bayesian sequential data release. However, the optimal solu-
tion in [4] can only be achieved asymptotically as time goes
to infinity, while our solution is optimal in an online manner.
In [48], [49] and [50], authors propose myopic approaches
that consider the privacy of event sequences occurring in w
successive time instances in infinite data streams. On the other
hand, our scenario involves optimal stopping instead of an
infinite data release, we also take the entire data history into
account as opposed to a myopic w-event window.

In [42], DP in a SM with a rechargeable battery is achieved
by adding noise to the meter readings before reporting to
an SP. In order to guarantee DP, the perturbation must be
independent of the battery state of charge. However, for a
finite-capacity battery, the energy management system cannot
provide the amount of noise required for preserving privacy.
On the other hand, we consider a different scenario from the
mentioned approaches in the sense that we cannot perturb
the sensor readings as desired, e.g., we cannot simply add
Gaussian or Laplacian noise, as we are limited by the inherent
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stochasticity of the available measurement mechanisms. Our
goal is to choose the right measurement kernel at each time
instant based on the past released data.

Information-theoretic privacy (ITP) considers the statistics
of the entire time-series in terms of temporal correlations,
and studies privacy mechanisms that allow arbitrary stochastic
transformations of data samples. Specifically, mutual infor-
mation privacy focuses on the increase in one’s uncertainty
on the sensitive random variable in an average sense after
observing a correlated measurement. DP, on the other hand,
considers only a single data point privacy, and focuses on
the indistinguishability between two realizations of a sensitive
variable. The limited temporal correlations of standard DP
is partially eliminated by group DP and pufferfish privacy,
which take some degree of temporal correlations into account.
However, these remain as myopic policies due to the potential
loss of utility. The relation between DP and ITP is studied in
the literature [53]–[55], and an upper bound on min-entropy
privacy for time-series data is provided in a DP mechanism
[55]. However, the other way around is not guaranteed. To
reiterate, our original measure of privacy is operational based
on the adversary’s correct guessing probability of the secret
variable. This is similar to [27] and [28], but those works are
interested in the multiplicative increase in the correct guessing
probability, whereas we study the PUT by considering the
exact values of the adversary’s correct guessing probability
of both the secret and the useful r.v.’s.

Privacy metrics based on the SP’s error probability focus
on concealing the true realization of the sensitive information.
In [13], the goal is to increase the fidelity of the shared
data quantified through an additive distortion measure, while
guaranteeing privacy in an online manner. Privacy leakage is
measured by the error probability of the SP in detecting the
distribution of the underlying data samples. In [15], the user
shares her time-series data, which intrinsically contains corre-
lated sensitive and useful information, with an untrusted SP in
an online fashion. The goal is to maximize the confidence in
the true useful variable for utility while keeping the confidence
in the sensitive r.v. below a pre-defined level. This method
is the complement of the error probability approach, and its
difference from the DP and ITP is the threat model. In [15]
and in this paper, the SP, which acts as an adversary, makes
its final decision about the true realization of the sensitive
r.v. depending on whether the maximum confidence on any
realization of this variable exceeds a certain threshold. On the
other hand, ITP considers the information leakage about the
sensitive r.v. without considering any realization. Moreover,
DP, which has been shown to have a relation to max-entropy
privacy, considers the maximum indistinguishability between
two realizations of the sensitive r.v., which can also be mapped
to our problem as the maximum difference between the
confidence on two realizations [55]. This notion of DP does
not directly target keeping the confidence in any realization
below a threshold, which is a part of the scenario in both [15]
and this paper.

In [56], a SM system is considered assuming Markovian
energy demands. Privacy is achieved by filtering the energy
demand with the help of a rechargeable battery. ITP problem is

formulated as an MDP, and the minimum leakage is obtained
numerically through DyP, while a single-letter expression is
obtained for an i.i.d. demand. This approach is extended to the
scenario with a renewable energy source in [29]. In [57], PUT
is examined with a rechargeable battery. Due to Markovian
demand and price processes, the problem is formulated as a
partially observable MDP with belief-dependent rewards (ρ-
POMDP), and solved by DyP for infinite-horizon. In [11],
PUT is characterized numerically by DyP for a special energy
generation process.

ITP and utility for location sharing is studied in [9], and
extended to generic time-series data release in [10]. The user
follows a history-dependent online data release policy by
minimizing the MI between the real and modified location
trajectories subject to a distortion constraint. The effectiveness
of the proposed approach against myopic policies and its
application to GeoLife GPS trajectory dataset are presented
through numerical simulations.

IV. POMDP FORMULATION

The above PUT can be recast as a POMDP with partially
observable static states {S,U} ∈ S×U , actions At ∈ A∪{d},
and noisy observations Zt ∈ Z . A POMDP can be refor-
mulated as a belief-MDP with a compact yet uncountable
belief state and solved using classical MDP methods. We will
introduce SP’s belief to determine the state variable in three
steps. Firstly, we define the belief of the SP on S and U after
he observes {Zt−1, At−1} by

βt(s, u) = P (S = s, U = u|Zt−1 = zt−1, At−1 = at−1) (2)

over the belief space P(B) := {βt ∈ [0, 1]M×N :∑
s∈S,u∈U βt(s, u) = 1}, where the marginal beliefs are

represented by βt(u) :=
∑
s∈S βt(s, u) and βt(s) :=∑

u∈U βt(s, u), respectively. The SP’s confidence that S = s
at time t is represented by Ct(s) := βt(s). The user’s action
probabilities become conditioned on the belief distribution,
i.e., π(At = at|βt), while the observation probabilities are
the same as before. Secondly, we introduce a new state
FB := {max

s∈S
βt(s) ≥ LB : βt ∈ P(B)} for FB ⊆ P(B), called

the forbidden-state, which represents the condition where the
constraint in (1) is violated. With slight abuse of notation, we
will use FB to denote both the forbidden state of the system
and the set of belief states that fall into this state. FB is ideally
an infinite cost state; however, in practice, we assume it has
a large-cost. As the third step of defining the state space, we
include a terminal state to fully characterize the state in which
the user stops sharing her data with the SP. We assume that
after the user makes the stopping decision, the system goes
to a terminal state, denoted by FT , and remains there forever.
This makes the problem an episodic MDP. Consequently, the
state space becomes X = P(B) ∪ {FT }.

We always refer to the time-independent expression of
belief, i.e., β, as the current belief state. The optimal expected
total cost of our problem is defined as follows:
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Definition 1: For all β ∈ P(B), let the optimal value function
V ∗(β) represent the optimal expected cost of problem (1),
given the initial belief β. That is,

V ∗(β) := min{E[τ ] + λPerr(u)}, (3)

where the minimization is with respect to τ , DRMs, and the
declaration rule d.

The optimal expected total cost for active PUT against an SP
can be obtained by evaluating V ∗ at the initial belief. This can
be done by solving a DyP problem. After a single observation
{zt, at}, the SP updates its belief by Bayes’ rule as follows:

Φ(βt, zt, at) =
q(zt|at, s, u)βt(s, u)∑̃

s,ũ

q(zt|at, s̃, ũ)βt(s̃, ũ)
, (4)

where the function Φ(βt, zt, at) represents the next belief state
βt+1(s, u) in terms of the current belief, the action and the
observation. We define a Markov operator Ta for action a,
such that for any measurable function V : P(B)→ R,

(TaV )(β) :=

∫
V (Φ(β, z, a))

∑
s,u

q(z|a, s, u)β(s, u)dz. (5)

For any state β ∈ P(B), the user’s data release action a ∈ A
under the optimal policy results in an expected total cost of
1 + (TaV ∗)(β), where time spent by the user for data release
is represented by cost 1, and (TaV ∗)(β) is the expected future
value of V ∗. On the other hand, the user’s stopping decision
d results in error probability of the declaration of true useful
value u with penalty λ, i.e., λPerr(u) := λ(1 − β(u)). The
solution for the optimal V ∗ is formalized by the following
theorem.

Theorem 1: [58] The optimal V ∗ for β ∈ P(B) satisfies the
fixed point equation:

V ∗(β) = min{1 + min
a∈A

(TaV ∗)(β),min
u∈U

λ(1− β(u))}. (6)

Definition 2: Let a Markov stationary policy π be a stochas-
tic kernel from the state space to the action space, including
the stopping action, which determines the stopping time τ , i.e.,
Π := P(B) → A ∪ {d}. That is, the probability of choosing
DRM a under policy π at state β is denoted by π(a|β).

Following from Corollary 9.12.1 in [58], DyP equation (6)
characterizes the optimal deterministic stationary policy π∗ for
β ∈ P(B). The intuition behind Theorem 1 is that the user’s
data release action a∗ = arg mina∈A T

a(V ∗)(β) is the least
costly action with cost 1 + mina∈A T

a(V ∗)(β), unless choos-
ing the stopping action d and letting the SP make a decision
for u is less costly, i.e., λ(1− β(u)). We also ensure that for
any two hypotheses u, u′ ∈ U , u 6= u′, there exists an action
a ∈ A, such that D(q(z|a, s, u)||q(z|a, s, u′)) > 0,∀s ∈ S,
where D(·||·) denotes the Kullback-Leibler (KL) divergence.
That is, hypotheses u and u′ are distinguishable all the time,
such that (1) has a meaningful solution.

Theorem 2: Suppose there exists a parameter CT > 0, e.g.,
time cost, and a functional V : P(B) → R+ such that for all
belief states β ∈ P(B),

V (β) ≤ min{CT+min
a∈A

(TaV ∗)(β),min
u∈U

λCT (1−β(u))}. (7)

Then V ∗(β) ≥ 1
CT
V (β) for all β ∈ P(B).

See Appendix A for the proof of Theorem 2. Theorem 2
provides a lower bound for a fixed-point expression of V ∗.
However, it is difficult to calculate the value of V ∗ and solve
the DyP equation over a continuous belief space. Hence,
we solve (1) numerically using an RL approach to obtain
an approximate solution. Due to the belief-based privacy
constraint, we call our policy belief-privacy data release policy
(belief-PDRP), πB . We define an instantaneous cost function
for current state x and action a ∈ A ∪ {d} as

cπB (x, a) =


1, if x = β ∈ P(B)\FB , a ∈ A
min
u∈U

(1− β(u))λ, if x = β ∈ P(B)\FB , a = d

CB , if x = FB , a ∈ A
0, if x = FT .

The optimal policy π∗B is induced as a result of the minimiza-
tion of cπB (x, a). The constraint on the SP’s confidence in s
is enforced with a large instantaneous cost CB for reaching
state FB , which is ideally infinite. Assuming that the system
follows the optimal policy, data release actions resulting in a
transition to FB with a large-cost CB would not be selected
by the minimization problem. See the proof of Theorem 2
in Appendix A. The overall strategy for belief update is
represented by the Bayes’ operator as follows:

ΦπB (x, z, a) =


ΦπB (β, z, a), if x = β ∈ P(B), a ∈ A
FT , if x = β ∈ P(B), a = d

FT , if x = FT .

Since the user has access to all the information that the SP
has, it can perfectly track his beliefs. Hence, the user decides
her own policy facilitating the SP’s detection strategy, episodic
behavior, and belief.

According to her strategy, the user checks whether the
selected optimal action is the stopping action d. If so, she
receives a cost determined by the current error probability of
u with penalty λ, then transitions to the terminal state and
ends the episode. If not, she checks whether the SP’s belief
on any secret exceeds LB . If the user is in the forbidden-state
she receives a large-cost CB ; otherwise, either she receives a
time cost 1 or terminal state cost 0 depending on her state. If
the terminal state has not already been reached and stopping
action has not been taken at the moment, the user updates the
SP’s belief as in (4); otherwise she updates the state to the
final state x = FT . Using the condition (7) in Theorem 2, we
write the Bellman equation induced by the optimal policy π∗B
as [59],

V (x) = min
a∈A∪{d}

{cπB (x, a) + E[V (ΦπB (x, z, a))]},∀x ∈ P(B).

(8)

The objective is to find a policy π∗B that optimizes the cost
function. The proposed POMDP has a continuous state space
due to belief state and continuous action probabilities. Finding
optimal policies for continuous state and action is PSPACE-
hard [60]. In practice, to solve them by classical finite-
state MDP methods, e.g., value iteration, policy iteration, and
gradient-based methods, belief discretization is required [61].
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While a finer discretization gets closer to the optimal solution,
it expands the state space; hence, the problem complexity.
Hence, we use A2C-DRL to numerically solve the continuous
state and action space MDP in Section VI-C.

In the next section, we consider a MI-based privacy policy,
which measures the privacy leakage by MI and preserves the
privacy in an average sense.

V. MI AS PRIVACY CONSTRAINT

In this section, we consider a scenario, in which the user
is interested in limiting the information leakage about the
sensitive information in an average sense, rather than hiding
its true value. For instance, the SP might be confused about
the true secret; however, he might still have an idea about
which secret values are unlikely. More concretely, consider a
secret r.v. with alphabet size of three, e.g., U = {1, 2, 3}. From
the perspective of confidence, the belief of β(U = 1) = 1/2,
β(U = 2) = 1/4, β(U = 3) = 1/4 would be the same as
β(U = 1) = 1/2, β(U = 2) = 1/2, β(U = 3) = 0, while
the latter clearly has additional information about the secret
resulting in reduced uncertainty. To quantify the reduction in
uncertainty, we refer to the definition of MI which measures
the amount of information that two random variables share.
In other words, it quantifies the degree to which the values
of one variable can help predict, or reduce the uncertainty
of, the values of the other variable. MI between two ran-
dom variables X and Y can be calculated by I(X;Y ) =∑
x∈X ,y∈Y

P (x, y) log
(

P (x,y)
P (x)P (y)

)
. Therefore, we measure the

privacy loss by the MI between the secret variable S and
the observation history {Zt, At} for t ≤ τ . According to
her policy, the user wants to minimize the error on useful
information as quickly as possible while keeping the total MI
between the secret and the observations below a prescribed
level, i.e., ∀Z ∈ Z and ∀A ∈ A,

minimize E[τ ] + λPerr(u) (9)
s. t. I(S;Zt, At) < LMI , ∀t ≤ τ,∀S ∈ S

where LMI is a scalar of the user’s choice.
MI is commonly used both as a privacy and a utility measure

in the literature [8], [10], [20]. Here, it is used as a privacy
measure to control PUT between the useful variable and the
secret. Due to the MI-based privacy constraint in (9), we call
this policy MI-privacy data release policy (MI-PDRP), πMI .
MI between S and (ZT , AT ) over time T is given by

I(S;ZT , AT ) =

T∑
t=1

I(S;Zt, At|Zt−1, At−1). (10)

Theorem 3: The instantaneous MI cost between the secret
and the observations induced by policy πMI at time t can be
written as:

IπMI (S;Zt, At|β) = −
∑

s,u,zt,at

q(zt|at, s, u)π(at|β)β(s, u)

× log

∑̃
u

q(zt|at, s, ũ)π(at|β)β(s, ũ)

β(s)
∑̄
s,ū
q(zt|at, s̄, ū)π(at|β)β(s̄, ū)

. (11)

See Appendix B for the proof.
As before, we define the state in three stages, i.e., the belief,

the forbidden-MI-state as FMI := {βt(s) : IπMI (S;Zt, At) ≥
LMI ,∀t ≤ τ} for FMI ⊆ P(B), where the constraint in
(9) is violated, and the final state FT in which the episode
terminates. As before, we will use FMI to denote both the
forbidden state and the set of forbidden states for convenience.
We define an instantaneous cost function, cπMI (x, a), for
current state x ∈ X = P(B) ∪ {FT } and action a ∈ A ∪ {d},
which induces the optimal MI-PDRP π∗MI when minimized:

cπMI (x, a)=


1, if x=β ∈ P(B)\FMI , a ∈ A
min
u∈U

(1− β(u))λ, if x=β ∈ P(B)\FMI , a = d

CMI , if x=FMI , a ∈ A
0, if x=FT .

The constraint on the total MI leakage from S is enforced with
a large-cost CMI for state FMI . Assuming that the system
follows the optimal MI-PDRP π∗MI , FMI would not be visited
at all. The overall strategy for belief update is represented by
the Bayes’ operator as follows:

ΦπMI (x, z, a)=



ΦπMI (β, z, a), if x = β ∈ P(B), a ∈ A,
FT , if x = β ∈ P(B), a = d,

FMI , if x = β(s, u) ∈ P(B)
t∑
i=1

Iπ(S;Zi, Ai|βi) ≥ LMI ,

FT , if x = FT .

Theorem 2 holds for (9) when we replace {cπB ,ΦπB , FB}
with {cπMI ,ΦπMI , FMI}, and provides a lower bound for the
value function V ∗ for all β ∈ P(B). Hence, to find the policy
π∗MI , we solve the Bellman equation (8) using RL for cπB and
ΦπB . This policy minimizes the SP’s error on the true value
of u in the quickest way while constraining the MI leakage
from not only true secret s but all possible values for S.

A. Estimating MI

The exact computation of MI is possible when the data dis-
tribution is known. However, in most practical scenarios, the
user’s data distribution is not known or it is inaccurate. Hence,
we approximate I(S;ZT , AT ) via a variational representation
which is inspired by Barber-Agakov MI estimation for single
letter MI [62]. Since (10) is history-dependent, we modify this
variational bound to a history dependent expression as follows:

I(S;Zt, At|Zt−1, At−1) (12)

= H(S|Zt−1, At−1)−H(S|Zt, At) (13)

= H(S|Zt−1, At−1) + D(P (S|Zt, At)||Q(S|Zt, At))
+ E[logQ(S|Zt, At)] (14)

= H(S|Zt−1, At−1) + max
Q(S|Zt,At)

E[logQ(S|Zt, At)] (15)

where (13) follows from the definition of MI, (14) holds
for any distribution Q(S|Zt, At) over S given the values
in Zt × At, which represents what the belief would be



7

Fig. 2: Activity recognition with wearable IoT devices does
not only infer physical exercise but also sensitive daily habits.

after observing (At, Zt), and (15) follows from the fact that
maximum is attained when Q(S|Zt, At) = P (S|Zt, At).

Given (Zt−1, At−1) = (zt−1, at−1), we can rewrite the
variational representation for the MI conditioned on the neural
estimation of the current belief β̂(S) = Q(S|Zt−1, At−1) as

I(S;Zt, At|β̂) = H(β̂(S)) + max
Q(S|Zt,At,β̂)

E[logQ(S|Zt, At, β̂)],

(16)

where H(β̂(S)) = −
∑
s∈S

β̂(s) log β̂(s), and the expectation is

with respect to (S,Zt, At) ∼ β̂(S), π(At|β̂), q(Zt|At, S, U).
Since the current belief realization is known to both the user
and the SP, H(β̂(S)) is a constant. Numerical estimation of
the MI via neural networks is explained in Section VI-C2.

VI. NUMERICAL RESULTS

In this section, we present our results for both synthetic data,
human activity privacy and mental workload demographics
privacy use-cases. In the synthetic data case, we assume that
all the distributions of the DRM are known by both the user
and the SP, while the other two cases employ the distributions
that are learned from real datasets. In the human activity
privacy use-case, we focus on the sensors in wearable devices
as an example of DRMs, and their measurements as time-
series data. In this scenario, the user shares sensor readings
of her wearable device with the SP, while performing physical
activities, with the goal of tracking the type and duration of her
activities. However, as in Fig. 2, not only useful activities, such
as exercise type, but also sensitive activities, such as smoking,
drinking, or eating habits, can be inferred from these readings,
which the user may not want to share with the SP as the SP
can exploit such information for a commercial benefit at the
detriment of the user. Hence, the user shares a single sensor
reading from among multiple sensors at a time such that the
useful activity is revealed to the SP while his confidence in
the sensitive activity is kept hidden at a pre-defined level.

In the mental workload demographics privacy use-case, we
treat fNIRS sensors as the DRMs that release brain activity
measurements in the form of a multivariate time-series. The
users from various racial backgrounds labeled as white, asian
and other, share their brain activities for a mental workload
classification experiment while performing memory intensive
tasks. Even though the main task is to classify the mental
workload intensity level as U = {0, 1, 2, 3}, sensitive infor-
mation about the user’s demographics can also be inferred

during the experiment. Therefore, the user shares a single
sensor reading at a time to reveal the mental workload while
keeping the demographics hidden.

The POMDP formulation in Section IV enable us to nu-
merically approximate the proposed policies using RL. In RL,
an agent discovers the best action to take in a particular
state by receiving instant rewards or costs from the envi-
ronment [63]. POMDPs with continuous belief and action
spaces are difficult to solve numerically by using classical
MDP solution methods. Actor-critic RL algorithms combine
the advantages of value-based (critic-only) and policy-based
(actor-only) methods, such as low variance and continuous
action probability producing capability. Therefore, we use
A2C-DRL for the numerical evaluation of our problem.

A. A2C-DRL

In the A2C-DRL algorithm, the actor represents the policy
structure and the critic estimates the value function [63].
In our setting, we parameterize the value function by the
parameter vector θ ∈ Θ as Vθ(x), and the stochastic policy
by ξ ∈ Ξ as πξ. The error between the critic’s estimate and
the target differing by one-step in time is called temporal
difference (TD) error [64]. The TD error for the experience
tuple (xt, π(at|xt), zt, xt+1, ct(xt, at)) is estimated as:

δt = ct(xt) + γVθt(xt+1)− Vθt(xt), (17)

where ct(xt) + γVθt(xt+1) is called the TD target, and γ is a
discount factor chosen close to 1 to approximate the Bellman
equation for our episodic MDP. Instead of using the value
functions in actor and critic updates, we use the advantage
function to reduce the variance from the policy gradient. The
advantage is approximated by TD error. Hence, the critic is
updated by gradient ascent as:

θt+1 = θt + ηct∇θ`c(θt), (18)

where `c(θt) = δ2
t is the critic loss, and ηct is the learning rate

of the critic at time t. The actor is updated similarly as:

ξt+1 = ξt − ηat∇ξ`a(ξt), (19)

where `a(ξt) = − ln(π(at|xt, ξt))δt is the actor loss and ηat is
the actor’s learning rate. In the implementation, we represent
the actor and critic by fully connected deep neural networks
(DNNs) with two hidden layers of 256 nodes and Leaky-ReLU
activation. The critic DNN takes the current state x of size
N ×M as input and outputs the corresponding state value for
the current action probabilities V ξθ (x). The actor takes the state
as input, and outputs the corresponding action probabilities
{ξ0, . . . , ξ|A|} from a softmax layer for a ∈ A ∪ d.

B. Synthetic Data Use-Case

The synthetic data scenario represents the situations where
the probability distributions of DRMs and belief update rules
are known by both the user and the SP, while only the actions
are learned by the privacy mechanism.

We create a dataset for |A ∪ {d}|=4, |S|=3, |U|=3,
|Z|=50 and uniformly distributed S and U , and LB ∈
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(a)

(b)

(c)

(d)

Fig. 3: Belief-PDRP’s, πB , (a) stopping time τ and β(u), and
(b) SP’s accuracy for the secret and the useful information
with respect to LB , and MI-PDRP’s, πMI , (c) stopping time
τ and β(u), and (d) SP’s accuracy for the secret and the useful
information with respect to LMI .

TABLE I
SELECTED ACTIVITIES AND SMARTWATCH SENSORS

FROM SMOKING ACTIVITY DATASET.
Sensors: A Activities: (S,U)
Accelerometer 0 Sitting (0,0)
Gyroscope 1 Standing (0,1)
Magnetometer 2 Walking (0,2)
Linear-accelerometer 3 Sitting while smoking (1,0)

Standing while smoking (1,1)
Walking while smoking (1,2)
Sitting while drinking (2,0)
Standing while drinking (2,1)

{0.6, 0.7, 0.8, 0.9, 0.99}. Observation probabilities are selected
such that each action distinguishes a different pair of hypothe-
ses well for both S and U . For example, we create a matrix
with each row representing the conditional distribution of z
for different (a, s, u) realizations. For sensor a=0, we use
N (0, σj) for (s, u)={(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)},
N (1, σj) for (s, u) = (2, 0), N (2, σj) for (s, u) = (2, 1),
and N (3, σj) for (s, u) = (2, 2), and we normalize through
the columns representing z. Here, σj’s are chosen randomly
from the interval [0.5, 1.5] for each (a, s, u) with index
j={1, .., N×M×|A|}. This sensor discloses s=2 case more
than the other secrets. Moreover, a=1 and a=2 reveal more
information for s=1 and s=0 cases, respectively.

Fig. 3a shows the average stopping time τ and the maximum
belief on u, β(u), with respect to LB for the belief-PDRP,
πB . As the constraint on β(s) is relaxed, the stopping time
increases as well as the maximum β(u). In Fig. 3b, on the
other hand, we present the prediction accuracy of the true-
useful activity u from the belief calculation. Red lines in
Fig. 3b represent accuracy on u, and blue lines show the
accuracy on s. The gap between the accuracy shows the
effectiveness of the proposed policy πB in minimizing the
SP’s error probability of u in the quickest way while keeping
his confidence in s below the threshold for the synthetic data.

Fig. 3c shows the average stopping time τ and the maximum
confidence in u, β̂(u), with respect to LMI for the MI-PDRP,
πMI . As before, when the constraint on MI is relaxed, the
stopping time increases as well as the maximum β̂(u). In Fig.
3d, red lines represent accuracy on u, and blue lines show
the accuracy on s. The comparisons for both policies reveal
that randomly shuffling the DRMs results in a similar level of
accuracy for both variables. However, the proposed policies
exhibit a significant increase in the accuracy gap between
the useful and secret variables. This enhancement allows for
the decision-making process to be performed on the U while
maintaining a low accuracy for S. When we compare the two
policies we propose, despite the similar accuracy results for
both πMI and πB , πB seems more effective in hiding the true
realization of S. This is because MI-PDRP provides PUT by
constraining the statistics of all the realizations of S rather
than only the true realization.

C. Human Activity Privacy Use-Case

In the human activity privacy scenario, we use smoking ac-
tivity dataset [33] which contains more than 40 hours of sensor
measurements for activities, such as smoking while walking,
drinking while standing, sitting, etc. We use measurements
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Fig. 4: A2C-DRL process for belief-PDRP, πB .

from four selected sensors of a smartwatch, i.e., |A∪{d}| = 5.
Table I shows these sensors and sensitive-useful activity pairs
from the dataset. We learn the probability distributions to-
gether with the actions from real-world measurements.

1) Numerical Results for Belief-PDRP, πB: In this section,
we evaluate the PUT of the proposed optimal policy πB for
the smoking activity dataset. We model the SP by a long short-
term memory (LSTM) recurrent neural network with parame-
ters φ, which predicts the true useful variable u and secret s.
The LSTM-based predictor has 2 layers with 128 nodes and
2 look-backs, and inputs the past observations {zt−1, at−1}.
The output is a probability distribution representing the belief
vector β̂φ(S,U) obtained by minimizing a cross-entropy loss
between β̂φ(S,U) and true values of {S,U}. This is equivalent
to maximizing the log-likelihood of β̂φ(S,U), i.e.,

H(β, β̂) = −
∑
s,u

β(s, u) log(β̂(s, u)) = −Es,u[log(β̂(s, u))].

To train the LSTM SP beforehand, we split the training
data into 3 portions. One is for pre-training the LSTM SP,
which will be used during A2C-DRL, one is for online A2C-
DRL training, and the last portion is to train an SP, i.e., LSTM
predictor, for testing the performance of PUT with A2C-DRL.
Let πR be a random policy with uniform action probabilities.
We create observation pairs {Zt, At} for LSTM training by
randomly sampling actions At from πR, and obtaining time-
series Zt from the corresponding portion of the dataset. We
also used CT = 0.5 for the time cost, and λ = 50.

Fig. 4 shows the A2C-DRL process in which LSTM is used
as an online state predictor from the past observations. The
user checks if the termination action, i.e., at−1 = d, has been
taken, then she accordingly terminates the process. Otherwise,
she predicts the current belief with the LSTM network and
selects an action at via the actor. The actor-critic network
updates its parameters with the state value V (β) and action
probability π(at|β) accordingly. Sensor reading zt is observed
as per the selected action, and the observation pair zt, at is
shared with the SP.

Fig. 5a shows the average stopping time τ and the predicted
maximum belief on u, β̂(u), with respect to LB for the belief-
PDRP, πB . As the constraint on β̂(s) is relaxed, the stopping
time increases as well as the maximum β̂(u). In Fig. 5b, on
the other hand, no-PUT and PUT cases are compared in terms

(a)

(b)

Fig. 5: (a) Stopping time τ and β̂(u), and (b) SP’s accuracy
for the secret and the useful information with respect to LB .

of prediction accuracy of the test SP on true-useful activity
u and the secret s, where the accuracy of the SP for the
randomly generated At and corresponding Zt represents the
no-PUT case, while its accuracy for the A2C-DRL generated
actions At and Zt represents the PUT case. Red lines in Fig.
5b represent accuracy on u, and blue lines show the accuracy
on s. The flat lines show the no-PUT case which does not
depend on LB , and the curved lines represent the PUT case.
While the gap between the accuracy of u and s is very low
for random policy (no-PUT case), it is very large for πB (PUT
case). This shows the effectiveness of the proposed policy πB
in minimizing the SP’s error probability of u in the quickest
way while keeping his confidence in s below the threshold.
On the other hand, generating random actions from a random
policy does not yield a sophisticated strategy to reveal u and
hide s. The largest gap, i.e., the best performance of πB , occurs
at LB = 0.65 for πB .

2) Numerical Results for MI-PDRP, πMI : In this section,
we model the SP using two components; one is an LSTM-
based belief predictor with 2 layers of 128 nodes and 2 look-
backs, and the other one is a feed-forward neural network
(FFNN)-based observation generator with 3 layers of 256
nodes, where the output determines the mean µ and standard
deviation σ of a Gaussian distribution. As before, we use
CT = 0.5 for the time cost, and λ = 50.

As in Section VI-C1, we train the LSTM network with
parameters φ by minimizing a cross-entropy loss between the
observations {Zt−1, At−1} and {S,U}, which is equivalent
to maximizing the log-likelihood of β̂φ(S,U). As a result,
KL divergence between the real belief distribution β and the
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Fig. 6: A2C-DRL process for MI-PDRP, πMI .

predicted distribution β̂φ goes to zero when the log-likelihood
is maximized [62]. In addition, we estimate q(Zt|At, S, U),
which is represented by a Gaussian distribution,

q̂(Zt|At, S, U) = N (Zt|(µ,Σ)) = fψ(At, S, U), (20)

where (µ, σ) are determined by a FFNN fψ by maximizing
its log-likelihood. During A2C-DRL, we sample observations
Zt and At to calculate the variational bound for MI using
the pre-trained FFNN and LSTM networks which satisfy the
maximization in (16). We approximate the MI by sampling k
observations {zit, ait}ki ∼ q̂(zt|at, ŝ, û), πMI(at|β̂), and using
the predictions for the next k belief states {Q(s|zit, ait, β̂)}ki
as follows:

Î(S;Zt, At|φ, ψ)

= H(β̂φ) +
1

n

n∑
j=1

[1

k

k∑
i=1

log[Qψ((ŝj |zit, ait, β̂φ))]
]
, (21)

where ŝj is a realization of s sampled from the predicted belief
vector β̂φ(s). Fig. 6 illustrates the A2C-DRL process with
belief and MI calculation using pre-trained LSTM and FFNN.
The user checks if the termination action, i.e., at−1 = d,
has been taken. If so, she accordingly terminates the process.
Otherwise, she predicts the current belief from the previous
observations using the LSTM network and takes action at.
The actor-critic network updates its parameters with the state
value V (β) and action probability π(at|β) accordingly. Sensor
measurement is observed as per the selected action, and the
observation pair zt, at is shared with the SP. Î(Ŝ|At, Zt|βt)
is calculated by the SP using previous action at−1 and (ŝ, û)
according to (21).

Fig. 7a shows the average stopping time τ and the maximum
confidence in u, β̂(u), with respect to LMI for the MI-PDRP,
πMI . As the constraint on MI is relaxed, the stopping time
increases as well as the maximum β̂(u). In Fig. 7b, activity
prediction accuracy of the test SP for observations (Zt, At)
generated by random policy πR and πMI are compared. Red
lines in Fig. 7 represent accuracy on u, and blue lines show the
accuracy on s. Similarly to Section VI-C1, the gap between
the accuracy of u and s is very low for random policy, while
it is large for πMI . This shows that the proposed policy
πMI minimizes the SP’s error probability of u in a speedy
manner while keeping the information leakage from s below

(a)

(b)

Fig. 7: (a) Stopping time τ and β̂(u) and (c) SP’s accuracy
for the secret and the useful information with respect to LMI .

the threshold. Although πMI shows similar results with πB ,
πB is more effective in hiding the true realization of S. This is
because MI-PDRP provides PUT by constraining the statistics
of all the realizations of S rather than only the true realization.
The largest gap in Fig 7, i.e., the best performance of πMI ,
occurs at LMI = 1.2 for πMI .

D. Mental Workload Demographics Privacy Use-Case

Herein, we consider a cognitive workload classification sce-
nario in which we focus on preserving the privacy of subject
demographics. We use the fNIRS2MW dataset [34] that con-
tains brain activity recordings from 68 participants while they
are performing certain memory tasks. The dataset is labeled
according to the working memory intensity levels as U =
{0, 1, 2, 3}. We group 8-ary multivariate time-series sensor
measurements into 4 DRMs of size 2, i.e., |A∪{d}| = 5. For
each action realization, we collect 4 samples of observations.
Moreover, the secret r.v. is selected as the ethnic background of
the subjects, namely S = {White,Asian,Other}. We create
a time-series from the sensor readings by randomly choosing
subject data from various ethnicities. As before, we learn the
probability distributions as well as the actions from real-data.

1) Numerical Results for Belief-PDRP, πB: In this section,
we evaluate the PUT of πB for the mental fNIRS2MW dataset.
We use the same SP architecture and A2C-DRL process as
introduced in the human activity privacy use-case. We split
the fNIRS2MW dataset into 3 parts for (1) pre-training the SP
network for A2C-DRL training, (2) A2C-DRL online training,
and (3) pre-training the SP network for A2C-DRL testing. As
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(a)
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Fig. 8: (a) Stopping time τ and β̂(u) and (c) SP’s accuracy
for the secret and the useful information with respect to LB .

before, πR represents the random policy with uniform action
probabilities. We set CT = 0.5 for the time cost, and λ = 50.

Fig. 8a shows τ and the maximum β̂(u) with respect to
LB for the policy πB in the demographics privacy use-case.
As we relax the belief constraint, the stopping time and the
maximum β̂(u) increase simultaneously. Compared to the
activity privacy use-case, here, we observe lower confidence in
the useful variable for longer stopping time and larger privacy
constraints. This is due to the statistics of the dataset which
reveals relatively less information about the hypotheses for
detection tasks than the previous use-case. Fig. 8b shows a
comparison between no-PUT and PUT cases in terms of the
SP accuracy on u and s. Red lines represent the SP accuracy
on u, and blue lines show the accuracy on s. In Fig. 8b, we
observe that πB (PUT case) effectively reduces the accuracy
in s and increases the accuracy in u, compared to the baseline
policy. This result is aligned with the previous use-case and
shows that the policy πB provides PUT evidently.

2) Numerical Results for MI-PDRP, πMI : Here, we repeat
the process described in Section VI-C2 using the same ar-
chitectures and parameters for fNIRS2MW dataset. Fig. 9a
shows the average τ and ˆβτu performance of the MI-PDRP
policy with respect to the privacy constraint for demographics
privacy use-case. Compared to the previous use-case, here,
πMI achieves lower SP confidence in u for the same level of
information leakage in a longer stopping time. As mentioned
earlier, this is due to the dataset statistics. The PUT gained
by the policy πMI in comparison with the no-PUT case, i.e.,
πR, is shown in the Fig. 9b. As expected, πMI reduces the
accuracy in s while increasing the accuracy in u compared to

(a)

(b)

Fig. 9: (a) Stopping time τ and β̂(u) and (c) SP’s accuracy
for the secret and the useful information with respect to LMI .

the no-PUT case. We also observe that πMI policy achieves
the same level of accuracy reduction in s as πB , while the
gain in the accuracy in u is less than that of πB .

VII. CONCLUSION

We studied the PUT in time-series data release to a SP.
The goal of the user is to reveal the true value of a latent
utility variable while keeping the secret variable private from
the SP. In a sense, the SP is the legitimate receiver for
the utility variable, while acting as the adversary for the
sensitive variable. In particular, we measured the utility by
the confidence of the SP in the latent useful information. For
privacy, we considered both the confidence of the SP on the
sensitive information and the MI between the sensitive variable
and the revealed measurements. We proposed active sequential
data release policies to minimize the error probability on the
true useful variable in a speedy manner while constraining the
confidence of the SP or the MI leakage for the secret variable.
We provided a POMDP formulation of the problem and used
A2C-DRL for numerical evaluations. Utilizing DNNs, we
numerically evaluated the PUT curve of the proposed policies
for smoking activity and fNIRS2MW datasets. While in the
former useful and sensitive activities are revealed to the SP
through smartwatch sensors selected by the user, in the latter,
the user’s mental workload intensity levels that also contain
their demographics are revealed through the brain activity
measurements. We examined the effectiveness of the optimal
belief-PDRP and MI-PDRP schemes using an LSTM-based
adversary network. According to the numerical results, we
have seen that the proposed data release policies provide
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a significant privacy advantage compared to random sensor
selection. We have also seen that constraining the MI does
not necessarily hide the true value of the secret at the same
level as the belief-PDRP. However, this approach may be more
useful when the objective is not necessarily to hide the true
value of the secret but limit the knowledge of the SP in an
average sense. We have also shown that decision time gets
longer when the constraint on the secret is relaxed.
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