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SUMMARY
Covalent drug discovery has undergone a resurgence over the past two decades and reactive cysteine
profiling has emerged in parallel as a platform for ligand discovery through on- and off-target profiling; how-
ever, the scope of this approach has not been fully explored at the whole-proteome level. We combined
AlphaFold2-predicted side-chain accessibilities for >95% of the human proteome with a meta-analysis of
eighteen public cysteine profiling datasets, totaling 44,187 unique cysteine residues, revealing accessibility
biases in sampled cysteines primarily dictated by warhead chemistry. Analysis of >3.5 million cysteine-frag-
ment interactions further showed that hit elaboration and optimization drives increased bias against buried
cysteine residues. Based on these data, we suggest that current profiling approaches cover a small propor-
tion of potential ligandable cysteine residues and propose future directions for increasing coverage, focusing
on high-priority residues and depth. All analysis and produced resources are freely available and extendable
to other reactive amino acids.
INTRODUCTION

Covalent drug discovery has re-emerged over the past two de-

cades as a powerful modality for difficult-to-drug and conven-

tionally ‘‘intractable’’ targets. Covalent inhibition of protein tar-

gets takes advantage of the inherent reactivity of specific

amino acid side chains, primarily cysteine, but with a continually

expanding scope encompassing lysine, threonine, histidine, and

electrophilic N-terminal modifications.1–5 Covalent binding by a

targeted covalent inhibitor (TCI) presents a number of advan-

tages over non-covalent binding, including extended rather

than equilibrium-limited residence time at a target site, poten-

tially increased tractability of shallow binding pockets or intrinsi-

cally disordered regions, and selectivity driven by disease-asso-

ciated amino acid mutations or post-translational modification

(PTM) (Figure 1A).6,7 These benefits are exemplified by develop-

ment and Food and Drug Administration (FDA) approval of cova-

lent inhibitors for high-priority cancer targets, including KRAS

[G12C],7,8 EGFR,9 and BTK.10 Even covalent ligands for amino

acids outside of enzyme active sites may offer valuable starting

points as allosteric inhibitors or for covalent bifunctional mole-

cules which recruit effector proteins to neosubstrates (e.g. cova-

lent proteolysis or deubiquitinase targeting chimeras,

PROTACs11,12 or DUBTACs13). However, systematic discovery
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of novel and developable covalent ligands remains a significant

bottleneck due to the requirement for balanced reactivity and

sufficient selectivity toward a single target amino acid against

all other accessible amino acids displaying similar chemistry.

Technology platforms which permit quantitative profiling of co-

valent protein modifications have become powerful tools for TCI

discovery and development.6 Competition-based chemoproteo-

mic methods such as isotopic tandem orthogonal proteolysis—

activity-based protein profiling (isoTOP-ABPP), initially developed

byCravatt and co-workers,1 have seenwidespreadapplication for

highly parallel and versatile analysis of potential amino acid reac-

tivity and ligandability. Such analyses initially focused on

cysteine-reactive TCIs in cell lysates (in vitro) using a cysteine-

reactive iodoacetamide warhead to enrich, identify, and quantify

peptides bearing a cysteine existing at least partially in a reactive,

and therefore potentially ligandable, state (Figure 1B, top).1,2 Sub-

sequent technical developments, including novel cleavable re-

agents, multiplexing strategies, chemical enrichment, and mass

spectrometric (MS) acquisition approaches, have together

markedly improved both depth and throughput, as reviewed

comprehensively elsewhere.14 Weerapana and co-workers

further developed this concept for live-cell (in situ) labeling, using

photo-uncaging of protected a-haloketones in live cells to permit

labeling concentrations of up to 200 mM without significant cell
thor(s). Published by Elsevier Ltd.
commons.org/licenses/by/4.0/).
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Figure 1. Overview of cysteine profiling approaches and AlphaFold2-based accessibility analysis applied in this study

(A) Representative mode of action for covalent binding by a targeted covalent inhibitor.

(B) Schematic showing cysteine profiling approaches applying peptide-level cysteine enrichment, either by labeling in cell lysates (top) or in live cells (bottom).

(C) Overview of competitive fragment screening bymass spectrometry-based cysteine profiling, with schematic chromatograms of fragment-competed and non-

competed cysteines shown.

(D) Schematic for accessibility analysis on AlphaFold2-predicted structures as described by Bludau et al.32.
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death (Figure 1B, bottom).15,16 Reactive amino acid profiling

platforms have been applied extensively to covalent ligand

discovery, primarily by quantifying cysteine reactivity in

lysates treated with libraries of electrophilic fragments compared

to DMSO-treated controls (Figure 1C). In these screens, loss of

signal for a cysteine-containing peptide in a fragment-treated

sample is interpreted as evidence for covalent fragment reactivity

at that residue, with the magnitude of signal loss proportional to

the occupancy of this interaction. In recent years, increasingly

large-scale cysteine profiling (CP) experiments have generated a

substantial body of publicly available data and subsequent re-

sources allowing interpretation of chemoproteomic data in the

context of experimental structures, clinical variants, and protein

activity.1,2,15–30
The most comprehensive CP studies consistently profile

10,000 or more reactive cysteines in parallel. However, even

considering a single canonical isoform per protein (as defined

by the UniProt database), there are 261,260 cysteines in the hu-

man proteome and the structural distribution of reactive residues

has yet to be systematically analyzed. Similarly, the extent to

which CP approaches sample potentially ligand-accessible res-

idues remains undefined but has significant implications for the

efficiency of TCI discovery platforms and assessment of prote-

ome-wide selectivity. Here, we present a meta-analysis of 18

published reactive cysteine datasets (Table S1) in the context

of proteome-wide residue accessibility predictions enabled

by AlphaFold2 (Figure 1D). We find significant variation in

the accessibility distributions of profiled cysteines across
Cell Chemical Biology 30, 828–838, July 20, 2023 829
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published studies, uncovering warhead-specific effects and

clear disparities in residue targeting between cysteine-reactive

enrichment probes, electrophilic fragment libraries, and opti-

mized TCIs. We expect that these results, which we have

collated in a publicly accessible and searchable structural data-

base (https://tatelab.shinyapps.io/alpaca-db/), will help inform

the applicability of different CP approaches at each stage of

the probe or drug discovery pipeline, including direct screening

by MS-based ABPP, target identification, and off-target

profiling. We further suggest directions for future development

of CP platforms to enhance and accelerate discovery of devel-

opable covalent ligands.

Amino acid side chains and post-translational
modifications have distinct accessibility profiles
To predict the accessibility of amino acid side chains, we used a

recently reported approach to integrate PTMproteomic datasets

with AlphaFold2-predicted protein structural information across

almost all human proteins.31,32 In this approach, solvent acces-

sibility calculations and predictions of folded/intrinsically disor-

dered regions were integrated with phosphorylation, ubiquitina-

tion, and O-glycosylation datasets, and applied to uncover a

number of PTM-specific structural distribution patterns. Of

particular interest to the present study, the incorporation of

AlphaFold2 prediction error into part-sphere exposure33,34 cal-

culations from predicted structures provides a proteome-wide

metric of side-chain solvent accessibility at single-residue reso-

lution. We calculated ‘‘prediction-aware part-sphere exposure’’

(pPSE) for each residue in 19,453 proteins from the human

UniProt sequence database. The pPSE value of a given amino

acid reflects the number of proximal a-carbons counted in a

conical volume projecting 12 Å along the Ca-Cb vector (or

pseudo-vector in the case of glycine), with an internal angle of

70�. A high pPSE value represents a crowded environment

around the side chain and therefore a more buried and less

accessible residue, whereas a low pPSE value indicates high

accessibility (Figures 1D and 2A).

We assessed the overall validity of this model across a range

of relevant benchmarks. First, accessibility distributions show

intuitive trends across intrinsic physicochemical and structural

properties of individual amino acids. For example, charged

amino acids such as Asp, Glu, Lys, and Arg show enrichment

for highly exposed residues, whereas neutral and hydrophobic

residues such as Val, Leu, Tyr, and Phe show a converse enrich-

ment for buried residues (Figure 2B). Both Gly and Pro show a

very strong enrichment for fully exposed (pPSE = 0) but not

partially exposed residues (1 < pPSE <5), consistent with their

known enrichment in short loop regions.35 Focusing on subsets

of annotated cysteine PTMs reveals distinct distributions for

cysteine (Cys) annotated to engage in disulfide bonds, where

interchain linkages are more exposed compared to more buried

intrachain disulfides, consistent with accessibility to their

respective disulfide partner (Figure 2C). Conversely, lipid-modi-

fied cysteine residues showed enrichment for highly exposed

residues, with 63% of 1,084 S-acylated cysteines (from

SwissPalm database) found at pPSE %5 and 100% of 219

known prenylated cysteines (from UniProt annotation36) at

pPSE %3 (Figure 2C). pPSE distributions with high exposure

are consistent with the requirement for enzymatic lipidation at
830 Cell Chemical Biology 30, 828–838, July 20, 2023
cysteine, and mediation of subsequent membrane interactions

at the protein surface.37 Active site cysteine-annotated resi-

dues36 showed greatest enrichment at 5 < pPSE <8, indicating

the predicted ‘‘depth’’ of annotated active sites strikes an ex-

pected balance between substrate accessibility and solvent

exclusion. Similar distributions are seen for both metal-binding

and redox-active Cys.

Such wide coverage of structural models offers the opportu-

nity to analyze amino acids proximal to Cys residues annotated

with specific functions across thousands of cysteines. We calcu-

lated the pairwise enrichment based on Euclidean distance to

each amino acid side chain around subsets of Cys residues, a

three-dimensional analog of primary sequence enrichment anal-

ysis.38 We observe intuitive enrichments proximal to both metal-

binding Cys and active site Cys (Figure 2D) representative of the

known role of both Cys and His in protein-metal interactions and,

for example, Cys-His-Asp catalytic triads in active sites. In the

subset of cysteines found to be hyperreactive toward iodoaceta-

mide electrophiles, proximal Cys/His residues are enriched and

both Asp and Glu are depleted (Figure S1A). These findings align

with similar analysis performed with primary sequence enrich-

ment of hyperreactive Cys, finding enrichment of proximal Cys,

Trp, and Phe with varying distance in primary sequence.39

Together, these analyses indicate that physicochemically and

biologically relevant trends for amino acid solvent accessibility

can be extracted from computationally predicted structures

alongside conservative filtering for prediction quality. However,

we note that these predictions remain subject to the limitations

of AlphaFold2 itself, particularly the absence of bound water

molecules which may be directly involved at binding sites and

in enzyme mechanisms, and caution should be exercised

when drawing conclusions for any single residue in isolation in

the absence of experimental validation.

Warhead chemistry and labeling environment generate
distinct accessibility profiles
Depth of coverage of potentially ligandable cysteines remains

important for CP workflows, as current acquisition approaches

are limited to sampling a maximum of �35,000 unique cysteines

in a single experiment.23 Although this coverage represents a

tremendous improvement over first-generation technology, it

encompasses around 20% of all MS-detectable cysteine-con-

taining tryptic peptides (204,707, from Yan et al.23) and just

13% of all cysteines in the proteome.23 Clearly, the subset of

therapeutically relevant cysteines is significantly smaller, as a

residue must be accessible to a small molecule, present at least

partially in the nucleophilic thiol/thiolate form, and in the case of

TCIs should result in a phenotypic change upon drug binding in a

relevant physiological context. As such, enrichment of the most

ligandable cysteines would achieve meaningful coverage of

those residues most likely to prove fruitful as therapeutic targets,

although there is currently no clear consensus on the size or

character of this subset.

In CP experiments, preferential enrichment for surface resi-

dues has been proposed to occur by labeling with activity-based

probes in minimally denatured lysates. For example, Backus

et al. performed a direct comparison of cysteines quantified

when labeling a ‘‘native lysate’’ with iodoacetamide-alkyne

compared to those denatured by heating. Comparison of pPSE

https://tatelab.shinyapps.io/alpaca-db/


Figure 2. Amino acid- and PTM-specific structural environments from AlphaFold2-predicted structures

(A) AlphaFold2-predicted structure of XPO1 with atoms colored by accessibility (pPSE); bottom panel depicts the same structure sliced through to visualize

buried residues and their pPSE values.

(B) Proteome-wide amino acid pPSE distributions normalized to whole-proteome average for all residues reflect side-chain physicochemical properties. Amino

acids are ordered by percentage exposed (pPSE <5) residues.

(C) pPSE distributions of cysteine residues annotated with specific PTMs or functions in UniProt or SwissPalm.

(D) 3D (through-space) proximity enrichment of amino acids relative to cysteines with functional annotations reflects local environments conducive to metal

binding or nucleophilic activity.

See also Figure S1.

ll
OPEN ACCESSResource
distributions between these two strongly contrasted conditions

demonstrates that residues with at least 2-fold higher enrich-

ment in heat-treated samples (RNative/Heat < 0.5) also show

increased pPSE, consistent with increased access to more

buried cysteines (Figure 3A). Conversely, cysteines at least

2-fold enriched in the non-denatured lysate (RNative/Heat > 2) are

enriched in exposed (pPSE <6) cysteines. A similar experiment

reported by Li et al.40 with detergent-based enrichment showed

similar results (Figure 3B), confirming that minimally denaturing

lysis preserves exposed cysteine labeling preferentially and

that denaturation increases the accessibility of previously buried

residues. Although the effect is less prominent, labeling with low

(100 mM) and high (2 mM) concentrations of iodoacetamide-
alkyne in lysates sampled differing accessibility distributions

(Figures 3C and S2A, data from Yan et al.23) showing a shift to-

ward sampling more buried residues at higher reagent

concentrations.

We next sought to understand how the subset of cysteines

sampled by a range of published CP protocols varied by acces-

sibility. We compiled 18 published datasets, profiling a total of

44,187 unique cysteine residues and >3.5 million fragment-

cysteine interactions across a range of warhead chemistries,

enrichment strategies, and MS acquisition approaches

(Table S1). We found that among iodoacetamide-based re-

agents, the overall subset of cysteine residues sampled is

remarkably similar to the background distribution of cysteine
Cell Chemical Biology 30, 828–838, July 20, 2023 831



Figure 3. Cysteine profiling workflows sample different predicted accessibility distributions influenced by warhead chemistry and labeling

conditions

(A) Effect of heat denaturation on accessibility of profiled cysteines. Native-enriched residues (RNative/Heat > 2, blue) and denaturation-enriched residues

(RNative/Heat < 0.5, red) show distinct accessibility distributions; experimental data: Backus et al.2.

(B) Effect of detergent denaturation on accessibility of profiled cysteines. Native-enriched residues (RNative/Detergent > 2, gray) and denaturation-enriched residues

(RNative/Detergent < 0.5, green) show distinct accessibility distributions; experimental data: Li et al.40.

(C) Effect of iodoacetamide-alkyne (IAA) labeling concentration on accessibility of profiled cysteines. All cysteines detected in experiments at either 0.1 or 2 mM

are shown in gray and purple, respectively; experimental data: Yan et al.23.

(D) Accessibility distributions for 18 reported CP datasets compared to the whole-proteome average distributions, ordered by bias toward more accessible Cys;

colors denote percentage change of each pPSE over the whole proteome average.

(E) Comparison of iodoacetamide- and caged-iodoketone warhead across secondary structure groups as annotated by Bludau et al.32; experimental data:

Kuljanin et al.17 (desthiobiotin-iodoacetamide, DBIA) and Abo et al.16 (caged-iodoketone, CIK4).

(F) Predicted coverage of potentially ligandable cysteines (y axis) at given overall cysteine coverage (lines), versus selectivity of labeling toward ligandable

cysteines (x axis). Selectivity represents the fraction of liganded Cys identified in each study compared to the fraction of liganded Cys identified in combined

fragment screening datasets (16.2%); the total number of ligandable Cys is estimated by extending the fraction of ligandable Cys (16.2%) to all 261,260 Cys in the

human proteome.

(G) Inset from F, showing the coverage and selectivity values for 18 published CP datasets. For each point, the labeling probe and concentration are annotated;

size of each point reflects the number of cysteines found in each experiment.

See also Figure S2.
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Figure 4. Covalent inhibitors, from small fragments to elaborated drug-like molecules, predominantly target exposed cysteines

(A) Covalent fragment-targeted cysteines are enriched for accessible cysteines over non-liganded residues (light gray), particularly when drug treatment is

performed in live cells (in situ, left panel); experimental data from Backus et al.2.

(B) Venn diagram showing the overlap between cysteines targeted (RDMSO/Fragment > 4) by in situ and in vitro fragment treatments.

(C) Cysteine targets of FDA-approved TCIs, off-targets for lead-like compounds, and immunomodulatory elaborated electrophiles (Vinogradova et al.18) show

bias toward accessible cysteine residues, compared to the distributions sampled by all described MS-ABPP datasets and the average of all cysteine residues

across the proteome. Boxplots display 25th, 50th (median), and 75th percentile, whiskers display upper/lower limits of data; outliers are plotted as points.

(D) Comparison of accessibility distributions for four fragment screening datasets.2,17–19 Panels show the subset of cysteine residues liganded by two pro-

miscuous scout electrophiles (dark blue, top panels) and covalent fragment/inhibitor libraries (red, bottom panels). Background distributions of non-liganded Cys

are plotted for each study in gray. Inset shows number of unique cysteine residues plotted in each histogram.

(E) AlphaFold2-predicted structure for H. sapiens GAPDH, with active site Cys152 highlighted in yellow.

(F) T. gondii GAPDH2 with Cys897 (corresponding to the conserved H. sapiens Cys152) highlighted in yellow; additional domains have been removed from

visualization for clarity.

(G) Overlap of Cys defined as essential and in this study as ligandable (studies as referenced in panel D); experimental data from Li et al.32.

See also Figure S3.
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accessibility (Figure 3D). Notably, both N-acryloylindole29 and

a-bromoketone15 (BK1) warheads showed modest enrichment

of more exposed residues. The clearest enrichment is observed

with photocaged a-haloketones (CIK4, CBK1), which permeate

live cells without significant labeling and are then uncaged by

prompt irradiation at 365 nm (as shown in Figure 1B, lower work-

flow).15 Although lower in overall cysteine coverage (1,497

unique cysteines in total across both live-cell datasets), live-

cell labeling with photocaged warheads shows significant bias

for exposed residues across all annotated protein secondary

structures (Figure 3E) and therefore is not driven merely by a

preference for highly accessible, unstructured regions. The addi-

tional enrichment of accessible cysteines resulting from uncag-

ing and live-cell labeling relative to BK1 labeling in lysates may
be attributable to the native labeling cellular environment. These

observations suggest that even mild, detergent-free lysis pre-

sents a measurable departure from native cellular conditions,

for example by oxidation of highly reactive residues41 or partial

mechanical or thermal denaturation (e.g. by sonication). Further-

more, the timescales of uncaging and labeling likely differ in live

cells compared to lysates, alongside probe quenching in redox-

buffered live cells. Notably, studies with the highest enrichment

for exposed residues, including with photocaged ligands, also

tend to have a lower number of total identified Cys and the

most commonly identified Cys between studies is more acces-

sible (Figure S2B). This could be due to an inherent bias in

detectability of exposed residues or confounding factors be-

tween different studies which specifically affect peptide
Cell Chemical Biology 30, 828–838, July 20, 2023 833
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detection (variation in cysteine modification chemistry, fraction-

ation strategies, LC-MS platform, or data analysis). We suggest

that the chemical and biological origins of this differential label-

ing warrant further detailed investigation.

Taken together, these data indicate that probe chemistry and

labeling conditions significantly affect the subset of cysteines

sampled in a given experiment and should be critically evaluated

based on the experimental design. For applications such as

target identification from phenotypic covalent fragment

screening or off-target profiling of developed TCIs, comprehen-

sive (>50%) coverage of ligandable cysteines will be required to

achieve a reasonable success rate using CP workflows alone. A

number of computational studies have defined ligandable cyste-

ines from analysis of cysteine orientation, adjacent residues,

and binding pocket characterization;42–44 however, these

approaches have thus far relied on experimental structures.

Defining ligandability instead from empirical fragment screening

datasets,2,17–19 we observed that 16.2% of profiled Cys (6,474/

39,948) have at least one significant (RFragment/DMSO R 4) ligand-

ing event, relatively consistent with previous estimates.2,17 Ex-

tending this proportion to all Cys in the proteome, a reasonable

approximation given the aggregate of CP datasets to date

closely matches the global Cys accessibility distribution (Fig-

ure 3D), yields an estimate of 42,350 ligandable Cys in the prote-

ome. We therefore calculated the predicted percentage

coverage of ligandable Cys as a function of both labeling selec-

tivity and total number of Cys detected in a given experiment

(Figure 3F). The current state of the art allows for up to 35,000

Cys in a single quantitative comparison;21 however, given the

observed minimal enrichment for ligandable Cys (selectivity

�1), this represents coverage of only 14.5% of all potentially

ligandable Cys. To further investigate the extent to which diverse

labeling conditions andwarhead chemistries affect selectivity for

ligandable Cys residues, we calculated the fraction of identified

Cys in each study which are ligandable vs. non-liganded. We

observed a clear correlation between enrichment for accessi-

bility and selectivity toward ligandable Cys (Figure S2C), reach-

ing a maximum selectivity for ligandable Cys of 2.5-fold with

photocaged warheads (Figure 3G).

Consistent with recent advances in high-throughput proteome

profiling and advances in instrumentation,45–48 peptide detec-

tion and quantification improvements in the coming years will

no doubt improve the number of cysteines profiled in a given

MS-ABPP experiment. Combined with technical advances in

sample preparation, acquisition, and analysis to alleviate known

limitations of bottom-up approaches (e.g. multiple protease stra-

tegies, PTM-aware database searching), improvements in repro-

ducible cysteine depth are to be expected; however, our results

highlight the need to also optimize CP toward higher selectivity

for potentially ligandable residues. Almost 40% coverage of

the ligandable cysteinome is theoretically possible with the

best reported coverage and selectivity in existing studies,

although these factors may prove challenging to combine, as

noted previously.

Reactive fragments and drug-like covalent inhibitors
primarily target accessible residues
Finally, we performed a targeted re-analysis of combined frag-

ment screening datasets with our accessibility analysis to pro-
834 Cell Chemical Biology 30, 828–838, July 20, 2023
vide a proteome-wide window on potentially ligandable cyste-

ines. In the first report of covalent fragment screening by

isoTOP-ABPP, a comparison of fragment treatments in lysates

(in vitro) or live cells (in situ) was performed. Inspecting the

accessibility distributions of the liganded Cys in each condition

showed that the liganded cysteines in both treatments prioritize

more accessible residue distributions when compared to all de-

tected cysteines (Figure 4A), but with a greater bias in the live-

cell treatment, suggesting that these highly accessible cysteines

represent themost ligandable covalent targets in a native cellular

environment. Although substantially more liganded cysteines

were identified in vitro compared to in situ drug treatment (298

vs. 134), 82% of in-situ-identified sites (110 out of 134) were

identified in both conditions (Figure 4B). Based on these findings,

we compiled cysteine targets of FDA-approved TCIs,49 off-tar-

gets of lead-like/FDA-approved inhibitors,17,50–53 and immuno-

modulatory elaborated electrophiles,18 showing enrichment for

exposed cysteine residues compared to the distribution of cys-

teines detected by MS-ABPP or the proteome average

(Figure 4C).

We further sought to understand the structural context of cys-

teines liganded in large-scale competition fragment experi-

ments. A specific set of small, promiscuous electrophilic com-

pounds, also termed ‘‘scout fragments’’ by analogy to the low

molecular weight fragments applied in conventional fragment-

based ligand discovery, have been applied in diverse biological

contexts to determine differential proteome reactivity, for

example upon activation of T cells18 or NRF2-knockdown in

non-small-cell lung cancer cells.54 We therefore integrated reac-

tivity data from two commonly profiled promiscuous fragments

(KB02, KB05, Figure S3A) across 4 generations of CP technolo-

gies.2,17–19 Two datasets (Backus et al. and Vinogradova et al.)

show that scout-reactive cysteine profiles are enriched in

exposed residues, compared to no enrichment for non-liganded

cysteines, although this enrichment is observed to a lesser

extent in the datasets by Kuljanin et al. and Yang et al. (Figure 4D,

upper panels), at least in part due to predominantly non-overlap-

ping cysteines sampled in each approach (Figures S3B–S3D). A

similar trend is also evident in respective larger fragment

screening experiments, where Backus et al. and Vinogradova

et al. show enrichment for more exposed residues; however,

such enrichment is less apparent in the datasets by Kuljanin

et al. and Yang et al. (Figure 4D, lower panels). Categorizing li-

ganded cysteines by warhead (chloroacetamide vs. acrylamide)

from each fragment library showed no clear accessibility trends

across the three datasets (Figure S3E). We further calculated

various physicochemical properties for screened fragments

(cLogP, cLogS, H-bond donors, H-bond acceptors, molecular

weight, absolute and relative polar surface area, and total sur-

face area)55 and found that highly promiscuous fragments (>50

liganded residues) lie predominantly in the upper quartile of

cLogP and lower quartile of cLogS values, consistent with pro-

miscuous non-specific interactions of lipophilic fragments with

protein surfaces (Figure S3F). 3D proximity analysis also identi-

fied local amino acids enriched in highly liganded Cys, mainly

showing enrichment of polar or charged amino acids and deple-

tion of neutral, hydrophobic residues (Figure S3G); however, this

correlation is also seen for accessibility in general and therefore

cannot be disentangled at the whole-proteome level. Taken
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altogether, our results suggest that a subset of exposed cyste-

ines represent the target residues for covalent fragments and,

to an even greater extent, for more developed TCIs.

While we have focused on using predicted structures to deter-

mine proteome-wide trends in CP workflows and fragment

engagement, functionality of specific Cys residues is also an

important criterion for TCI development since it underpins the po-

tential to disrupt function through ligand binding. Two recent

studies have approached this problem with CRISPR-based

screening for fitness upon mutation of specific Cys residues,

opening up the possibility to identify therapeutically actionable

Cys targets.40,56 Combining such essentiality screens with both

chemoproteomic and structural information can provide addi-

tional insights into TCI tractability of a particular Cys. For example,

GAPDH2Cys798 is found to be fitness-conferring for Toxoplasma

gondii viability and corresponds toHomo sapiensGAPDHCys152

by primary sequence alignment and overlay of predicted struc-

tures (Figures 4E and 4F). Indeed, Cys798 and Cys152 are found

as hyperreactive residues in both T. gondii56 and H. sapiens20 hy-

perreactivity profiling experiments and have been identified in

both human and Escherichia coli fragment screening datasets57

(where E. coli Cys151 also corresponds to the active site Cys).

There is clear evidence of homology and shared function between

these residues, representing both a functional and ligandable site

with structural homology observable by predicted structures.

Thus, although the intersection between ‘‘essential’’ and experi-

mentally ligandable Cys is relatively low (Figure 4G), it represents

potentially high-value targets in a given physiological or patholog-

ical setting which could be greatly expanded by improvements in

CP methodology coupled to more extensive functional Cys

screening approaches.

DISCUSSION

Activity-based protein profiling technologies have made an

important contribution to the covalent drug discovery pipeline,

with cysteine-focused competitive profiling in particular offering

a method for proteome-wide dissection of cysteine reactivity

and ligandability. Our meta-analysis of publicly available

cysteine profiling datasets and proteome-wide accessibility pre-

dictions shows that while different warhead chemistries sample

distinct accessibility distributions, there is marked consistency

across datasets with similar warheads. Furthermore, more

specialized warhead chemistries show remarkable selectivities

for both accessible and ligandable cysteines. We also observe

enrichment for accessible residues in liganded targets of promis-

cuous scout fragments, fragment libraries, and drug-like elabo-

rated electrophiles. The early stages of covalent ligand optimiza-

tion campaigns are typically undertaken without the benefit of

structure-guided design,18,50,52 and we suggest that prote-

ome-wide structural accessibility analysis may be a useful com-

plementary approach when paired with CP workflows at each

step of ligand optimization to probe the bias between accessible

structural environments during evolution of a given ligand series.

Taken together, our analyses encourage further development

of covalent ligand discovery workflows to enhance and optimize

accessible residue coverage. Current high-throughput CP work-

flows spread coverage broadly across the full distribution of

cysteine accessibility and appear to substantially under-sample
potentially ligandable cysteines, even considering recent im-

provements in mass spectrometry which put 40,000+ quantified

cysteines within reach. However, as noted previously, current

MS technology is already capable of approaching full coverage

of accessible cysteines if profiling capacity is tightly focused

on accessible residues, for example by further development of

in-cell labeling workflows driven by photocaged warheads or

through combination of a defined set of less promiscuous Cys

reactive molecules which together provide superior coverage

of ligandable Cys residues. This consideration is equally impor-

tant for de novo target deconvolution of bioactive compounds

with a covalent mode of action, where incomplete coverage of

ligandable cysteines greatly reduces the likelihood of positive

target identification. Furthermore, as binding is inferred by loss

of signal, there is potential for false positives through com-

pound-induced changes in proximal PTMs, redox state, or pro-

tein conformation (and therefore cysteine accessibility) or simply

sample handling. In these cases, positive target enrichment

through direct labeling, for example with a bioactive probe

bearing a clickable tag, is likely to be a more feasible approach.

We also identify several limitations of accessibility analysis

which might be usefully addressed in the future. These include

the potential for false positive or negative identification of exposed

residuesdue tocurrent limitations instructureprediction,whichwe

have sought tominimize by limiting our global analysis to residues

with high-confidence prediction and further limiting ligandability

analysis to structured regions. While we believe our approach to

be as useful and robust as the underlying AlphaFold2 data at a

whole-proteome scale, any single prediction in isolation must be

coupled to experimental validation to be considered actionable.

The value of this analytical approach is expected to continually

improve with evolution of machine learning approaches to struc-

ture prediction which take account of confounding factors, such

as the presence of protein complex interfaces, protonation state,

bound water molecules and solvation, or PTMs which might

dramatically alter accessibility. Furthermore, it is important to

recognize that accessibility is not synonymous with reactivity,

and it is likely that a certain percentage of accessible residues

are not amenable to liganding with warhead chemistries currently

employed in profiling workflows; analyses will therefore benefit

from refinement in parallel with the disclosure of increasingly large

and diverse profiling datasets which reflect broader residue-level

reactivity. A tighter integration with proteomic data might be

achieved in future using filters which account for the limitations

of proteomic analysis, for example the limited capability of prote-

omics workflows to deal with very short, very long, or highlymodi-

fied peptides, encompassing a significant proportion of cysteines

which may be important ligand target sites.26

Finally, we have made all resources/analysis freely available

and created a tool for interactively visualizing collated site-spe-

cific chemoproteomic data on AlphaFold2 structures. We note

that the analytical pipeline presented here is straightforward to

implement and should be equally applicable to any residue-spe-

cific profiling pipeline. For example, as new profiling datasets

become available, it will be interesting to observe the evolution

of reactive amino acid coverage across models and species

enabled by the 200 million predicted protein structures in the

AlphaFold2 database, and by ongoing developments in warhead

chemistries targeting residues beyond cysteine.4,58
Cell Chemical Biology 30, 828–838, July 20, 2023 835



ll
OPEN ACCESS Resource
Limitations of the study
Our meta-analysis demonstrates the power of combining che-

moproteomic datasets with information gleaned from predicted

protein structures, thanks to comprehensive coverage of the

proteome by AlphaFold2 compared to current experimental

structure repositories. Conversely, the predictive nature of

AlphaFold2 presents its own limitations in accurately reflecting

the complexity and dynamic nature of protein structures. We

aimed to minimize the effect of low-confidence predictions by

applying stringent filtering on prediction quality (pLDDT),

confining ligandability analysis to structured domains, and draw-

ing conclusions based on distributions of predicted values,

rather than any one individual prediction. This approach will

significantly benefit from future refinements in protein structure

prediction, including extending analysis of accessibility to pro-

tein complexes and inclusion of bound water molecules. We

combined 18 distinct CP datasets, representing a wide range

of experimental parameters which are not individually controlled,

including labeling concentrations, lysis conditions, cell lines,

enrichment chemistry, and MS data acquisition and analysis.

We therefore elected to take processed chemoproteomic data-

sets from each individual study as-published and subjected

them to identical downstream filtering criteria to derive distribu-

tion-level comparisons. A further disparity, also highlighted by

Palafox et al.,20 is introduced in the mapping of identified cyste-

ines to genomic coordinates and disparities in the proteome da-

tabases used for MS/MSmatching in individual studies. In cases

where only peptide sequences are provided in source publica-

tions, we matched the sequences to the canonical UniProt hu-

man FASTA.We have kept where possible the originally reported

residue annotation (UniProt identifier and sequence position)

from each dataset; however, as discussed previously, mis-

matches are inevitable and imply a subsequent filtering step in

our analysis.

SIGNIFICANCE

Covalent drug discovery is a promising therapeutic modal-

ity, leveraging irreversible target occupancy, selectivity

based on side-chain chemistry, and the potential to exploit

previously unligandable binding sites. Current covalent

ligand discoverymost prominently targets cysteine residues

and is frequently supported at multiple stages by cysteine-

focused competitive chemoproteomic methods, which

attempt to profile on- and off-target residues directly from

hit compounds. We combined 18 published cysteine

profiling datasets with side-chain accessibility predictions

from AlphaFold2 to survey the landscape of cysteine-reac-

tive binding for 44,187 unique cysteine residues. We found

accessibility biases in residues sampled by cysteine

profiling experiments based on warhead character, in vitro

vs. in situ labeling, and probe concentration. We further

considered the residues targeted in ABPP-based fragment

screening studies across >3.5 million fragment-cysteine in-

teractions and found that optimization of covalent frag-

ments toward elaborated, drug-like compounds enhances

the selectivity of covalent binding toward accessible cyste-

ines, and against buried cysteines. Based on these findings,

we suggest considerations for future development of
836 Cell Chemical Biology 30, 828–838, July 20, 2023
cysteine profiling approaches to improve coverage of

high-priority residues for ligand discovery, incorporating

optimization of labeling chemistries as well as alleviating

current limitations in sample preparation, data acquisition,

and downstream analysis. We anticipate that our findings

will be immediately useful in conjunction with existing

cysteine profiling data, and widely applicable to reactive

amino acid analyses for residues beyond cysteine.We finally

provide a publicly available tool for visualizing ligandable

and accessible cysteines on AlphaFold2 structures in

conjunction with combined cysteine profiling datasets at

https://tatelab.shinyapps.io/alpaca-db/.
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, EdwardW.

Tate (e.tate@imperial.ac.uk)

Materials availability
This study did not generate new unique reagents.

Data and code availability
This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in the key resources table.

All original code and data/resources to reproduce all analysis has been deposited at Zenodo and GitHub and is publicly available as

of the date of publication. DOIs are listed in the key resources table. Any additional information required to reanalyze the data re-

ported in this paper is available from the lead contact upon request.

ADDITIONAL RESOURCES

An interactive viewer of AlphaFold2 structures, including visualization tools for highlighting specific Cys residues and a database of

compiled fragment screening data, as well as fragment structure visualization is freely available at: https://tatelab.shinyapps.io/

alpaca-db/
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

All data are generated from the datasets provided in the key resources table.

METHOD DETAILS

pPSE prediction from human AlphaFold2 structures
Solvent accessibility prediction, intrinsically-disordered region prediction and secondary structure annotationswere calculated using

StructureMap as described in Bludau et al.32 (https://github.com/MannLabs/structuremap). In brief, for each amino acid a conical

volume is extended out from the b-carbon (ɑ-carbon in the case of Gly) with an internal angle of 70� and distance of 12 Å. The number

of proximal amino acid ɑ-carbon atoms which sit within this cone (within the tolerance of the predicted aligned error) is then counted.

This count is the pPSE value reported. Code to reproduce this analysis is publicly available at www.github.com/TateLab.

Cysteine PTM and functional annotation
Residue-specific annotations were downloaded from UniProt, including functions (metal binding, active site nucleophile) and PTMs

(prenyl, disulfide) and matched to unique UniProt accession IDs and residue positions. Palmitoyl modifications were downloaded

from SwissPalm (https://swisspalm.org/) No filtering for prediction quality was applied across the pPSE distributions. For all map-

pings, the UniProt canonical human FASTA (downloaded 26/10/2022) was used. The reference proteome and formatted databases

used for these analyses are provided at: https://zenodo.org/record/7752842.

Cysteine profiling data curation
All datasets were downloaded as Supplemental Information files from their respective publications (Table S1, key resources table).

For analysis of cysteines detected in each dataset, all unique cysteine residueswere extracted andmatched to AlphaFold2-predicted

pPSE values byUniProt accession ID and sequence position. Any reverse/contaminant proteins and proteins with no predicted pPSE

values were removed and cysteines were then filtered by the following criteria: ambiguous cysteine identifications (i.e. annotations

with >1 possible cysteine) and low-confidence predictions (AlphaFold2 prediction quality <70) were removed. Additionally, for

coverage (Figure 3) and fragment ligandability analysis (Figure 4) cysteines predicted to be in unstructured protein domains were

removed.

pPSE distribution analysis
For all distributions, the number of residues at each pPSE value was normalized by the total number of cysteines per experiment/

condition such that the sum of all pPSE fractions was 1. All confidently predicted cysteine residues (quality >70) were used for refer-

ence distributions and relative change (Figure 3D) was calculated by subtracting the reference distribution from each dataset

(at respective pPSE values).

Selectivity calculations
The number of ligandable cysteineswas determined by calculating themaximumRvalue per uniqueCys residue across four reported

fragment screening datasets. Cys with RMaxR 4 were annotated as liganded and the proportion of ligandable Cys (16.2%) was used

in later calculation. For each CP dataset, the fraction of previously annotated ligandable Cys was calculated out of all fragment-

screened Cys (excluding Cys not found in fragment screening studies). As there is significant difference in the cysteines samples

by each warhead/dataset, the fraction of ligandable Cys was then extended to all Cys for each dataset (including those not found

in fragment screening data) to estimate the number of ligandable Cys identified. Percentage coverage of ligandable Cys was then

calculated for each dataset relative to the estimated number of ligandable Cys in the proteome (42,350). Selectivity was defined

as the fraction of ligandable Cys relative to the fraction from all ligandable Cys (16.2%).

Fragment screening data curation
Fragment screening datasets were downloaded as Supplemental Information files from their respective publications (Table S1). Inte-

gration with AlphaFold2-predicted pPSE values and subsequent filtering was performed as described above, except for selectivity

analysis where no filtering for quality or accessibility annotation was applied. Fragment-cysteine interactions with RDMSO/Fragment > 4

were annotated as liganded.

Fragment property analysis
SMILES strings were manually collated from Supplemental Information files of each fragment screening dataset and imported into

OSIRIS DataWarrior55 (v 5.5.0, Actelion Ltd). Physicochemical properties were calculated using DataWarrior built-in functions and

exported to R for visualization.
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Structure visualization
AlphaFold2 structures were downloaded from the Alphafold Protein Structure Database (https://alphafold.ebi.ac.uk/). For Figure 2A,

B-factors, representing prediction quality (pLDDT) as downloaded were replaced with pPSE values and visualized with UCSF Chi-

meraX (v1.5, https://www.rbvi.ucsf.edu/chimerax/). For Figures 4E and 4F, AlphaFold2 structures were visualized in PyMol (v2.5.4,

Schrödinger, LLC).

QUANTIFICATION AND STATISTICAL ANALYSIS

No statistical tests were applied in our analysis. Sample sizes for distributions can be found inset in each figure.
e4 Cell Chemical Biology 30, 828–838.e1–e4, July 20, 2023

https://alphafold.ebi.ac.uk/
https://www.rbvi.ucsf.edu/chimerax/

	Proteome-wide structural analysis identifies warhead- and coverage-specific biases in cysteine-focused chemoproteomics
	Introduction
	Amino acid side chains and post-translational modifications have distinct accessibility profiles
	Warhead chemistry and labeling environment generate distinct accessibility profiles
	Reactive fragments and drug-like covalent inhibitors primarily target accessible residues

	Discussion
	Limitations of the study

	Significance
	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Additional resources
	Experimental model and study participant details
	Method details
	pPSE prediction from human AlphaFold2 structures
	Cysteine PTM and functional annotation
	Cysteine profiling data curation
	pPSE distribution analysis
	Selectivity calculations
	Fragment screening data curation
	Fragment property analysis
	Structure visualization

	Quantification and statistical analysis



