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Abstract

Aims

The majority of studies report that the Covid-19 pandemic lockdown did not have a detri-

mental effect on glycaemia. We sought to explore the impact of lockdown on glycaemia and

whether this is sustained following easing of restrictions.

Methods

Retrospective, observational analysis in adults and children with type 1 diabetes attending a

UK specialist centre, using real-time or intermittently scanned continuous glucose monitor-

ing. Data from the following 28-day time periods were collected: (i) pre-lockdown; (ii) during

lockdown; (iii) immediately after lockdown; and (iv) a month following relaxation of restric-

tions (coinciding with Government-subsidised restaurant food). Data were analysed for

times in glycaemic ranges and are expressed as median (IQR).

Results

145 adults aged 35.5 (25.8–51.3) years with diabetes duration of 19.0 (7.0–29.0) years on

multiple daily injections of insulin (60%) and continuous insulin infusion (40%) were

included. In adults, % time in range (70-180mg/dL) increased during lockdown (60.2 (45.2–

69.3)%) compared to pre-lockdown (56.7 (43.5–65.3)%; p<0.001). This was maintained in

the post-lockdown time periods. Similarly, % time above range (>180mg/dL) reduced in

lockdown compared to pre-lockdown (p = 0.01), which was sustained thereafter. In children,

no significant changes to glycaemia were observed during lockdown. In multivariable analy-

sis, a greater increase in %TIR 3.9-10mmol/L (70-180mg/dL) during lockdown was associ-

ated with higher levels of deprivation (coefficient: 4.208, 95% CI 0.588 to 7.828; p = 0.02).
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Conclusions

Glycaemia in adults improved during lockdown, with people from more deprived areas most

likely to benefit. This effect was sustained after easing of restrictions, with government-sub-

sidised restaurant eating having no adverse impact on glycaemia.

1.0 Introduction

The coronavirus disease (COVID-19) outbreak caused by the novel Severe Acute Respiratory

Syndrome Coronavirus 2 (SARS-CoV-2) was defined by the World Health Organisation as a

global pandemic on 11th March 2020 [1]. The UK government imposed a strict lockdown to

slow the transmission of SARS-CoV-2 on 23rd March 2020 [2]. Both type 1 and type 2 diabetes

are associated with increased mortality in hospitalized patients with COVID-19 [3], with a

higher number of deaths in people with type 1 and type 2 diabetes living in the most deprived

neighbourhoods compared to those living in the least deprived areas [3]. Furthermore, among

people with diabetes, factors such as hyperglycaemia and obesity are independently associated

with COVID-19 mortality [4]. SARS-CoV-2 may adversely affect glucose metabolism both

directly by causing beta cell death and indirectly by increasing insulin resistance [5].

Type 1 diabetes (T1D) self-management can be challenging, involving multiple daily injec-

tions of insulin (MDI) or continuous subcutaneous insulin infusion (CSII), guided by self-

monitoring of glucose [6].

Previous studies have compared glycaemic measures before and during lockdown in people

with T1D using different glucose monitoring and insulin delivery modalities with the majority

finding that lockdown has not had a detrimental effect [7–13]. Few studies have investigated

glycaemic metrics following the end of lockdown during the relaxation of restrictions. These

studies demonstrated sustained improvements for up to a 2-week period but have not investi-

gated further [14–17].

In the UK, following lockdown, one of the Government’s policy measures to support busi-

nesses reopening, was the “Eat Out to Help Out Scheme (EOHO)”. Throughout August 2020,

the EOHO scheme supported the hospitality sector by providing consumers a discount of up

to 50% off food and drink (non-alcoholic) consumed in participating outlets with a maximum

discount of £10 per meal per person, valid all day Monday, Tuesday and Wednesday. These

included restaurants and pubs, with> 78,000 outlets participating and over 160 million meals

subsidised [18].

We aimed to explore the impact of lockdown and during the relaxation of restrictions in a

diverse group of adults and children with T1D living in London and to assess the factors

impacting glycaemia during this unprecedented change to people’s lifestyles, including use of

glucose monitoring technologies or CSII and pre-lockdown glycaemic control (HbA1c and

time in acceptable glycaemia range). We also explored the influence of deprivation according

to the English indices of deprivation [19].

2.0 Methods

2.1 Inclusion and exclusion criteria

This is a retrospective observational analysis of all adults and children with T1D using real-

time continuous glucose monitoring (rtCGM; Dexcom G6 or Medtronic) or intermittently

scanned continuous glucose monitoring (isCGM; Freestyle Libre), who were under regular
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care at Imperial College Healthcare NHS Trust (ICHNT) in London, UK. The groups were

defined by the responsible clinical service as paediatric (<18 years old) or adult (�18 years

old). ICHNT is a specialist diabetes referral centre for northwest London, providing services to

a diverse urban population. In addition, anonymised data from participants using rtCGM as

part of the free-living research study: ’Assessment of the Impact of Real-Time Continuous Glu-
cose Monitoring on People Presenting With Severe Hypoglycaemia (AIR-CGM; NCT03748433)’
[20] at Imperial College London, were included.

Only participants with at least 70% of continuous glucose data available for both 28 day

periods pre- and during lockdown were included. The requirement for at least 70% of glycae-

mic data was based on consensus recommendations for reporting % times in range [21]. Par-

ticipants who did not meet the above criteria, had type 2 diabetes or women who were

pregnant were excluded from analysis. The sample in these analyses may be considered repre-

sentative of a larger population, however only reflects individuals with T1D on rtCGM or

isCGM, and not those self-monitoring blood glucose.

2.2 Methods

2.2.1 Data collection and computation of glycaemic outcomes. Continuous glucose

data were collected over 28 days prior to lockdown (15th February 2020 00:00hrs to 13th

March 2020 23:59hrs) and compared with data of the same duration during lockdown (24th

March 2020 00:00hrs to 20th April 2020 23:59hrs), immediately after lockdown (4th July 2020

00:00hrs to 31st July 2020 23:59hrs); and a month following relaxation of restrictions (1st

August 2020 00:00hrs to 28th August 2020 23:59hrs) coinciding with the EOHO Government

scheme in the U.K.

The study was entirely observational (with no deviation from standard clinical care) and

ethics approval was not required. All individuals granted specific permission to share their glu-

cose data with the clinical teams, and for clinic staff to access this, when linking their devices

and uploading their data to web-based online software (Dexcom Clarity, LibreView, and Tide-

pool). NHS Research Ethics Committee review was not required. Data for analysis were de-

identified before they were analysed, with participants identified solely by study number.

Percentage (%) times in glycaemic range and measures of glycaemic variability (GV) were

computed using EasyGV (v10.0) software [22]. Outcomes measures included % time in range

(TIR) 3.9–10mmol/L (70 -140mg/dL), % time above range >10mmol/L (>180mg/dL; TAR1)

and>13.9mmol/L (>250mg/dL; TAR2), and % time below range (TBR) <3.9mmol/L

(<70mg/dL; TBR1), <3.0mmol/L (<54mg/dL; TBR2), and<2.8mmol/L (<50mg/dL; TBR3).

Evaluated GV measures include standard deviation (SD), coefficient of variation (CV), low

blood glucose index (LBGI) and mean absolute glucose change per unit time (MAG). Esti-

mated glucose management index (GMI) was calculated using the following formula [23]:

GMI (mmol/mol) = 12.71 + 4.70587 x [mean glucose (mmol/L)].

There were no available data on lifestyle or therapy changes for diet, exercise or insulin use.

IsCGM scanning frequency during these timeframes has been included in the analysis.

Socioeconomic deprivation was assessed by the English Indices of Deprivation 2019 [19]

using postcodes. Deprivation deciles are based on the Index of Multiple Deprivation 2019

(IMD 2019). Decile 1 represents the most deprived 10% of neighbourhoods in England, whilst

decile 10 represents the least deprived 10%.

2.2.2 Statistical methods. Changes in glucose outcome measures were analysed between

baseline (pre-lockdown), during lockdown and for the two months post lockdown. Data (%

TIR) were tested for normality using the Shapiro–Wilk test (p<0.05). The adult and paediatric

groups were also analysed separately. Differences between pre- and during lockdown glucose
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outcomes measures were tested for significance using Wilcoxon matched-pairs signed-rank

tests. Sub-analysis comparisons in the adult cohort, justified by relatively large numbers of

observations and significant variation between time points, explored differences according to

insulin delivery and mode of glucose monitoring.

Further analysis was performed in those participants who also had at least 70% of glucose

data for the two periods after lockdown. The non-parametric repeated measures Friedman sta-

tistical test was used to detect differences in glycaemia across the four different time points. To

determine where the significant differences lay between the four time points for the adult

cohort, the Wilcoxon matched-pairs signed-rank tests were performed as pairwise analyses.

Multivariable linear regression analysis of variation in glycaemic outcome measures was

performed using the covariates: age, gender, sensor modality, insulin delivery method, baseline

%TIR, baseline HbA1c and deprivation. Deprivation deciles were re-categorised according to

the tertiles: severely deprived, moderately deprived and least deprived, the equal numbers in

each category then providing for equal category weightings in the regression model. This anal-

ysis derived from observational data acquired in an unprecedented situation. Accordingly, no

information was available for a prior power calculation and a threshold of statistical signifi-

cance of p<0.05 was adopted as an aid to interpretation rather than as a decision-making crite-

rion. Statistical analyses were performed using Stata version 13 (StataCorp, College Station,

TX).

3.0 Results

3.1 Baseline demographics

We identified 145 individuals with at least 70% data uploaded pre- and during lockdown (S1

Fig). For adults and paediatrics combined, the median (interquartile range) age was 35.5

(25.8–51.3) years with diabetes duration of 19.0 (7.0–29.0) years and HbA1c of 7.7 (7.2–8.6)%

(61 (55–70) mmol/mol). 75 participants (52%) were male, 58 (40%) were CSII users and 48

(33%) used rtCGM; 20 (14%) used both rtCGM and CSII. For the adults using rtCGM, more

than a quarter (28%) had impaired awareness of hypoglycaemia (GOLD score� 4) and/or� 1

episode of severe hypoglycaemia in the past 1 year. Baseline characteristics of the participants

are summarized for adults and paediatrics in Table 1.

3.2 Improved glycaemia during lockdown in adults

For adults during lockdown, %TIR increased from 56.7 (43.5–65.3)% to 60.2 (45.2–69.3)%

(Table 2; p<0.001). A similar change was observed for % time in euglycaemia 3.9–7.8mmol/L

(70-140mg/dL; Table 2; p = 0.001). In the sub-analysis by insulin delivery (CSII vs MDI; S1

Table) and glucose sensing modality (rtCGM vs isCGM; S2 Table), significant improvements

in %TIR were observed for all subgroups. The median change in %TIR difference between

pre- and during lockdown was +2.1(-1.1 to +5.6)% in the MDI group (p = 0.004); +3.1(-3.3 to

+7.2)% in the CSII group (p = 0.05); +3.3 (-2.9 to +5.6)% in the rtCGM group (p = 0.04) and

+2.4 (-1.8 to +6.9)% in the isCGM group (p = 0.005). There were no significant differences for

median change in %TIR between the subgroups based on insulin delivery (MDI vs CSII) nor

glucose sensing modality (isCGM vs rtCGM).

For %TAR1 and %TAR2, significant reductions were observed during the lockdown period

(p = 0.01 and p = 0.007 respectively; Table 2). In the sub-analyses, a significant reduction was

seen in %TAR1 for rtCGM users (median change -3.0 (-8.0 to +1.2)%; p = 0.01); and in %

TAR2 for isCGM users (median change -0.9 (-3.4 to +0.9)%; p = 0.02). There were no

between-group differences for MDI vs CSII, nor isCGM vs rtCGM.
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For hypoglycaemia %TBR1 and %TBR2, no significant difference was observed from base-

line to lockdown (Table 2). In the MDI group, significant reductions in hypoglycaemia for %

TBR1 and %TBR3 were observed (p = 0.02 and p = 0.04 respectively). Between group differ-

ences revealed significant reduction in %TBR1 in MDI participants compared to CSII

(p = 0.005). Significantly reduced hypoglycaemia was also noted in the group using isCGM for

all %TBR thresholds, with no significant change in hypoglycaemia in the rtCGM users. There

were no between-group differences in hypoglycaemia for the isCGM and rtCGM groups.

Mean glucose values and measures of variability (SD, CV and MAG) significantly reduced

during lockdown in adults, except LBGI (p<0.05; Table 2). Although trends were similar

across all cohorts, significance was reached predominantly in MDI and isCGM users.

For individuals using isCGM, there were no significant differences in the number of inde-

pendent scans performed by each individual (pre-lockdown 11 (7–16) scans/day vs during

lockdown 10.5 (7–15) scans/day; p = 0.18).

3.3 Glycaemic outcomes in paediatrics

In the paediatric analysis pre- and during lockdown %TIR was 45.4 (33.8–60.8)% and 50.8

(35.0–61.1)% respectively, % time in euglycaemia was 28.3 (20.1–36.1)% and 32.2 (21.4–

41.0)% respectively, with no statistically significant differences (Table 2). The %TBR did not

differ before and during lockdown (Table 2). The changes in glycaemic variability measures

are summarised in Table 2, with no statistically significant differences, except for a reduction

in MAG from 3.2 (2.8–3.4) pre-lockdown to 3.0 (2.5–3.3) during lockdown (p = 0.01).

Similar to adults, there were no significant differences in the number of independent scans

performed in the paediatric cohort.

3.4 Independent influences on lockdown glycaemia

Multivariable linear regression analysis (Table 3) suggested greater social deprivation was asso-

ciated with an increase in %TIR (coefficient: 4.208 [95% CI 0.588 to 7.828]; p = 0.02) with a

negative association with change in %TAR1 (coefficient: -4.746 [95% CI -8.771 to -0.721];

p = 0.02).

There was a significant association between rtCGM use and an increase in %TBR1 during

lockdown (coefficient 1.498, 95% CI 0.393 to 2.603; p = 0.008). This association was not

Table 1. Baseline demographics for the complete dataset and separate adult and paediatric cohorts.

Demographics Combined (n = 145) Adults (n = 121) Paediatrics (n = 24)

Gender (male) 75 (52%) 59 (49%) 16 (59%)

Age (years) 35.5 (25.8–51.3) 40.0 (31.4–53.1) 13.1 (9.5–14.5)

Duration of diabetes (years) 19.0 (7.0–29.0) 22.0 (12.0–31.8) 4.7 (2.1–7.0)

Insulin delivery modality

CSII users 58 (40%) 43 (36%) 15 (63%)

MDI users 87 (60%) 78 (64%) 9 (38%)

Glucose sensing modality

rtCGM users 48 (33%) 43 (36%) 5 (21%)

isCGM users 97 (67%) 78 (64%) 19 (79%)

HbA1c (%) 7.7 (7.2–8.6) 7.6 (7.1–8.5) 7.9 (7.4–8.9)

HbA1c (mmol/mol) 61 (55–70) 60 (54–69) 63 (57–74)

Deprivation Index Score 4.0 (3.0–7.0) 4.0 (3.0–7.0) 4.0 (2.0–5.0)

Results are expressed as median (IQR)/ n (%).

https://doi.org/10.1371/journal.pone.0254951.t001
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observed with %TBR2 (coefficient: 0.518, 95% CI -0.036 to 1.072; p = 0.10). Increased %CV

was also associated with rtCGM use during lockdown (coefficient: 0.019, 95% CI 0.004 to

0.035; p = 0.01). Age, gender, baseline HbA1c, baseline %TIR and insulin delivery method did

not influence the effect of lockdown on %TIR.

3.5 Effect of deprivation

The overall median (IQR) deprivation deciles across the cohort for adults and children were 4

(3–7) (Table 1). At baseline, there were no significant differences in HbA1c between the two

groups (62 (55–73) mmol/mol in deciles� 4 vs 59 (55–67) mmol/mol in deciles� 5; p = 0.12).

Individuals in the lower 50% of the deprivation scores (deciles� 4 vs deciles� 5) had sig-

nificantly greater change in %TIR during lockdown than those in the upper 50% (change %

TIR +3.25 (-0.38 to 8.71) vs +1.79 (-3.61 to 4.73) respectively; p = 0.02). The boxplot (S2 Fig)

illustrates the change in %TIR for adults and children categorised into tertiles of index of

deprivation.

Table 2. Pairwise analysis of glycaemic outcomes in the adult and paediatric cohorts.

Adults Paediatrics

Pre-lockdown

(n = 121)

During lockdown

(n = 121)

P-value (Pre- vs During

lockdown)

Pre-lockdown

(n = 24)

During lockdown

(n = 24)

P-value (Pre- vs During

lockdown)

% time in range

TIR: 3.9-10mmol/L (70-

180mg/dL)

56.7 (43.5–65.3) 60.2 (45.2–69.3) <0.001� 45.4 (33.8–60.8) 50.8 (35.0–61.1) 0.24

% time in euglycaemia

3.9–7.8mmol/L (70-

140mg/dL)

33.7 (24.5–39.9) 36.0 (25.6–45.6) 0.001� 28.3 (20.1–36.1) 32.2 (21.4–41.0) 0.35

% time in hypoglycaemia

TBR1: <3.9mmol/L

(<70mg/dL)

3.8 (1.5–7.3) 3.8 (1.5–7.0) 0.38 3.2 (1.0–6.6) 3.1 (1.1–5.4) 0.86

TBR2: <3.0mmol/L

(<54mg/dL)

0.7 (0.2–1.9) 0.9 (0.3–2.1) 0.25 0.6 (0.1–1.3) 0.5 (0.2–1.6) 0.93

TBR3: <2.8mmol/L

(<50mg/dL)

0.5 (0.1–1.4) 0.5 (0.1–1.5) 0.10 0.3 (0.0–0.7) 0.3 (0.1–1.1) 0.95

% time in hyperglycaemia

TAR1: >10mmol/L

(>180mg/dL)

38.2 (27.6–52.4) 34.1 (24.0–48.8) 0.01� 43.2 (37.0–61.6) 39.7 (33.5–62.1) 0.57

TAR2: >13.9mmol/L

(>250mg/dL)

11.5 (5.9–18.3) 9.2 (4.6–17.3) 0.007� 20.7 (9.1–34.8) 18.5 (9.9–31.9) 0.35

Glycaemic variability

measures

Mean 9.2 (8.4–10.2) 9.0 (8.0–10.1) 0.02� 9.9 (9.1–12.1) 9.6 (8.8–11.7) 0.51

GMI (%) 7.3 (6.9–7.7) 7.2 (6.8–7.7) 0.02� 7.6 (7.2–8.5) 7.5 (7.1–8.4) 0.51

GMI (mmol/L) 56.0 (52.2–60.7) 55.1 (50.8–60.2) - 59.2 (55.4–69.8) 58.0 (54.2–67.8) -

Standard deviation 3.6 (3.0–4.1) 3.4 (2.9–3.9) <0.001� 4.4 (3.8–4.9) 4.1 (3.6–4.7) 0.07

CV (%) 37.6 (34.5–42.8) 37.4 (33.3–41.0) 0.008� 41.2 (38.0–47.0) 41.6 (36.9–44.7) 0.25

LBGI 1.0 (0.5–1.8) 1.0 (0.5–1.7) 0.49 0.9 (0.4–1.5) 0.9 (0.4–1.3) 0.63

MAG 2.5 (2.2–3.0) 2.5 (2.1–2.8) <0.001� 3.2 (2.8–3.4) 3.0 (2.5–3.3) 0.01�

Participants used rtCGM/ isCGM for at least 70% of time with at least 70% data uploaded for both time periods (as per consensus recommendations [21]). Results are

expressed as median (IQR).

�p<0.05. Abbreviations: CV, coefficient of variation; GMI, glucose management indicator; LBGI, low blood glucose index; MAG, mean absolute glucose; TAR, time

above range; TBR, time below range; TIR, time in range.

https://doi.org/10.1371/journal.pone.0254951.t002
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3.6 Post-lockdown analysis

Further analysis was performed in the adult cohort who had data uploaded in the two months

following the lockdown (the period 1 month after lockdown coinciding with the EOHO gov-

ernment scheme) (Table 4); n = 97 (S1 Fig). Between during and post-lockdown periods, there

were no significant differences in %TIR. Similarly, the significant reduction in %TAR1

observed in lockdown compared to pre-lockdown (p = 0.04), was sustained thereafter. %TBR1

did not change throughout the 4 time periods.

In the paediatric cohort, thirteen children also had at least 70% data uploaded in the two

periods after lockdown (S1 Fig). There was no statistically significant difference across the four

time periods in %TIR, %TAR1 and %TAR2, or %TBR1 (S3 Table). %TBR3 demonstrated sig-

nificant variation (p = 0.03) with median percentages during the four observation periods of

0.08, 0.24, 0.18 and 0.05, respectively.

4.0 Discussion

These real-world data from a large specialist centre suggest that adults in an urban setting with

T1D using glucose sensing technologies had an increase in time in range, with an associated

reduction in time above range and reductions in measures of glucose variability during lock-

down. Exposure to hypoglycaemia and hypoglycaemia risk assessed by LBGI did not change.

Improvement in time in range was associated with being in the most deprived tertile, as was

the reduction in time above range. This study adds to a growing body of evidence suggesting

that lockdown is not associated with a deleterious effect on measures of glycaemia [7–10, 13–

16, 24, 25].

The improved glycaemia in the adult cohort during this period of lockdown is likely to

reflect the complex interplay of social, behavioural and environmental factors previously

reported [7, 25, 26]. Even studies demonstrating a higher food intake [7] or specifically

Table 3. Multiple linear regression analysis of predictors of change (Δ) in %times in range and CV for blood glucose from pre-lockdown to lockdown for the com-

bined adult and paediatric cohorts (n = 145).

Δ%TIR 3.9-10mmol/L (70-

180mg/dL)

Δ%TBR1 <3.9mmol/L

(<70mg/dL)

Δ%TBR2 <3.0mmol/L

(<54mg/dL)

Δ%TAR1 >10mmol/L

(>180mg/dL)

ΔCV(%)

Age 0.029 (-0.061, 0.119)0.5 0.015 (-0.017, 0.047)0.3 0.006 (-0.009, 0.022)0.4 -0.044 (-0.144, 0.056)0.4 0.000 (-0.000,

0.000)0.8

Men 0.861 (-2.047, 3.769)0.6 -0.795 (-1.824, 0.233)0.1 -0.269 (-0.784, 0.247)0.2 -0.071 (-3.304, 3.163)1.0 -0.009 (-0.023,

0.006)0.2

CGM use 0.128 (-2.997, 3.252)0.9 1.498 (0.393, 2.603)0.008 0.518 (-0.036, 1.072)0.1 -1.586 (-5.060, 1.888)0.4 0.019 (0.004,

0.035)0.01

CSII use 2.361 (-0.689, 5.410)0.1 0.991 (-0.087, 2.070)0.1 0.362 (-0.178, 0.903)0.2 -3.332 (-6.722, 0.059)0.05 0.012 (-0.003,

0.027)0.1

Pre-lockdown HbA1c -0.094 (-0.254, 0.066)0.2 -0.045 (-0.102, 0.011)0.1 -0.008 (-0.036, 0.021)0.6 0.136 (-0.042, 0.314)0.1 0.000 (-0.001,

0.001)1.0

Pre-lockdown TIR -0.560 (-0.186, 0.066)0.4 -0.023 (-0.067, 0.022)0.3 0.003 (-0.020, 0.025)0.2 0.082 (-0.058, 0.222)0.2 0.000 (-0.000,

0.001)0.4

Deprivation

Moderate (IMD

deciles 4–5)

2.884 (-0.792, 6.560)0.1 0.723 (-0.577, 2.023)0.3 0.350 (-0.302, 1.002)0.3 -3.472 (-7.559, 0.616)0.1 0.016 (-0.002,

0.035)0.1

Severe (IMD deciles

1–3)

4.208 (0.588, 7.828)0.02 0.615 (-0.665, 1.895)0.3 -0.022 (-0.664, 0.620)0.9 -4.746 (-8.771, -0.721)0.02 0.007 (-0.011,

0.254)0.4

Coefficients (95% confidence intervals) are shown and significances in superscript. Abbreviations: CGM, continuous glucose monitoring; CSII, continuous

subcutaneous insulin infusion; CV, coefficient of variation; IMD, index of multiple deprivation; TAR, time above range; TBR, time below range; TIR, time in range.

https://doi.org/10.1371/journal.pone.0254951.t003
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increased carbohydrate consumption without an increase in total daily insulin dose [16], more

frequent snacking during lockdown [7], reduced physical activity [7, 25] and weight gain [25],

did not find that lockdown had a detrimental effect on glycaemia. Perhaps the impact of these

factors was outweighed by the imposed changes such as working from home, allowing for

more frequent checking blood glucose values and meal eating habits, which are associated

with better glycaemia control [27]. Meal eating habits are associated with daily routine [27],

and people with diabetes have reported more regular mealtimes during lockdown [7].

Although individuals had altered access to usual diabetes care with reduced face-to-face con-

tact during lockdown, remote support was provided by telephone or e-mail and this may have

been more accessible for some people who find it challenging to attend clinics. A Spanish sur-

vey found that 97.9% agreed with the use of telemedicine, favouring telephone as their pre-

ferred means of communication [26].

Our study did not demonstrate an increase in scanning frequency in isCGM users. How-

ever, this only made up 64% of the adult cohort. In addition, despite greater scanning fre-

quency, how individuals use that data is critical, and imposed restrictions on working from

home may allow for improved lifestyle choices.

Other studies investigating the two week period following the end of lockdown, have found

comparable results to our study, showing a sustained increase in %TIR and reduction in %

TAR1 [14, 15] or TAR 251-400mg/dL [16]. A small Spanish dataset of participants on MDI

using isCGM, found no change in glycaemic metrics between pre and during lockdown but an

Table 4. Glycaemic outcomes in the pre-, during, immediately after and a month after lockdown (n = 97).

Adults (n = 97)

Pre-lockdown During lockdown Immediately after lockdown 1 month after lockdown p-value

% time in range

TIR: 3.9-10mmol/L (70 -180mg/dL) 56.7 (43.5–65.1) 60.2 (43.9–69.3) 59.5 (48.6–71.5) 59.1 (46.7–72.2) <0.001�†‡

% time in euglycaemia 34.9 (24.5–39.9) 36.1 (24.9–45.7) 35.1 (26.1–44.3) 34.6 (25.4–47.4) 0.010�†‡

3.9–7.8mmol/L (70 -140mg/dL)

% time in hypoglycaemia

TBR1: <3.9mmol/L (<70mg/dL) 3.8 (1.5–6.6) 3.8 (1.5–6.5) 3.7 (1.4–7.0) 3.4 (1.4–6.6) 0.59

TBR2: <3.0mmol/L (<54 mg/dL) 0.8 (0.3–1.7) 0.9 (0.2–2.0) 0.8 (0.1–1.8) 0.6 (0.2–1.9) 0.55

TBR3: <2.8mmol/L (<50mg/dL) 0.5 (0.1–1.1) 0.5 (0.1–1.3) 0.5 (0.0–1.2) 0.3 (0.1–1.3) 0.64

% time in hyperglycaemia

TAR1: >10mmol/L (>180mg/dL) 38.0 (27.6–49.0) 33.8 (23.6–50.8) 34.9 (24.0–47.2) 36.4 (21.3–49.9) <0.001�†‡

TAR2: >13.9 mmol/L (>250mg/dL) 11.3 (5.9–18.3) 8.4 (4.4–17.4) 8.8 (3.3–17.0) 8.8 (2.6–17.1) <0.001�†‡

Glycaemic variability measures

Mean 9.2 (8.4–10.2) 9.0 (8.0–10.1) 9.1 (8.1–10.4) 9.1 (7.8–10.3) 0.004�†‡

GMI (%) 7.3 (6.9–7.7) 7.2 (6.8–7.7) 7.2 (6.8–7.8) 7.2 (6.7–7.7) 0.004�†‡

GMI (mmol/mol) 55.9 (52.0–60.8) 54.9 (50.3–60.4) 55.3 (50.8–61.6) 55.6 (49.5–61.0) <0.001�†‡

Standard deviation 3.6 (3.0–4.1) 3.4 (2.8–3.8) 3.4 (2.8–3.9) 3.4 (2.8–3.8) 0.002�‡

CV (%) 38.8 (34.1–41.8) 37.6 (33.5–40.8) 37.3 (33.2–40.9) 36.5 (32.9–40.2) 0.75

LBGI 0.9 (0.5–1.6) 1.0 (0.5–1.6) 0.9 (0.4–1.9) 0.9 (0.4–1.7) <0.001 �†‡

MAG 2.5 (2.2–3.0) 2.4 (2.1–2.8) 2.0 (1.0–2.3) 1.9 (1.0–2.3) <0.001�†‡

Results expressed as median (IQR). P-value calculated by Friedman test comparing glycaemic variables between the four time periods. For between group sub-analysis

�pre-lockdown vs during lockdown p<0.05analysis

†pre-lockdown vs immediately after lockdown p<0.05analysis

‡ pre-lockdown vs 1 month after lockdown p<0.05. Abbreviations: CV, coefficient of variation; GMI, glucose management indicator; LBGI, low blood glucose index;

MAG, mean absolute glucose; TAR, time above range; TBR, time below range; TIR, time in range.

https://doi.org/10.1371/journal.pone.0254951.t004
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improvement in %TIR (p = 0.05) and %TAR1 and %TAR2 post lockdown compared to before

[28].

The numbers in the paediatric cohort were small and changes did not reach statistical sig-

nificance, but effect sizes were similar to those seen adults. Our results are comparable to other

studies in children and adolescents which reported no significant increase in %TIR during

lockdown [11, 29, 30]. Conversely, other studies have demonstrated an increase in %TIR for

participants [12], including those using hybrid closed loop systems [10, 13]. Reports in chil-

dren have shown reduced time for physical activities [12], an increase in screen time [31], an

increase in consumption of sweet and fried food in adolescents [32] and a change to meal pat-

terns [30], emphasising the complex social factors involved. Nevertheless, many of the factors

contributing to improved glycaemia in adults are likely to be shared in children. In addition,

increased parental supervision during lockdown may have influenced behaviour, including

the frequency and timing of insulin delivery in relation to food, particularly considering that

25 percent of adolescents report missed insulin injections [33]. The significant reduction in

MAG in paediatrics during lockdown suggests decreased glucose variation which may in part

reflect better insulin matching to food, given inaccurate carbohydrate counting has been asso-

ciated with higher glycaemic variability in adults [34].

A small Italian dataset in adolescents during partial relaxation of restrictions and at the end

of lockdown, found a sustained improvement in %TIR and a reduction in %TBR from lock-

down onwards compared to pre lockdown [17]. However, all these participants used hybrid

closed loop system with an increase in percentage time in auto mode at the end of lockdown

compared to pre lockdown [17].

Multivariable analysis in adults and paediatrics indicated people in the lower 50% of the

deprivation scores improved %TIR more than those in the upper 50%. The cause for this novel

finding is unclear, but, with lower dietary quality scores in the most disadvantaged [35], may

reflect reduced access to less healthy lifestyle choices, increased time and capacity for self-man-

agement tasks, or increased engagement with education and support as remote consultations

may be less burdensome and more accessible than clinic visits. Furthermore, lower socioeco-

nomic status is associated with higher HbA1c as seen in the T1D Exchange registry, which

may enable greater room for changes in glycaemia towards improvement [36]. Our results dif-

fer from the findings in Scotland, which suggested higher levels of socioeconomic deprivation

were an independent predictor of deteriorating glycaemic control [8].

In our regression model, rtCGM use was likely to be associated with increased %TBR1

hypoglycaemia during lockdown despite no overall increase in time below range being

observed in between-group comparisons. This association was not observed for %TBR2. In the

UK, rtCGM is reimbursed by the National Health Service (NHS) for people with T1D at high-

est risk of hypoglycaemia, including those experiencing severe hypoglycaemia, loss of aware-

ness of hypoglycaemia, hypoglycaemia that is causing problems with daily activities, and

extreme fear of hypoglycaemia [37]. Behaviours associated with exposure to hypoglycaemia

[38] may be enabled during lockdown, increasing exposure to mild hypoglycaemia, but the

absence of an association with clinically important hypoglycaemia is reassuring. A reduction

was seen in hypoglycaemia in people using isCGM but not rtCGM. This may reflect the lower

TBR in the rtCGM group at baseline as the addition of alerts and alarms, even in a higher risk

group, kept hypoglycaemia to a minimum and further improvement was not detectable.

The strengths of this study include inclusion of adults and children, inclusion of people at

highest risk of hypoglycaemia and a large, diverse population of people using CSII and MDI

regimens. We analysed study periods of 28 days, increasing the robustness of the CGM derived

metrics, with a longer time period analysed than other studies pre and during lockdown [7–9,

39, 40] and also after lockdown [14–17, 28]. Although >70% of 14 days rtCGM data is the
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minimum recommended period for most evaluated metrics [21], metrics related to hypogly-

caemia in particular require longer duration due to higher error and variance [41]. Very

importantly, we include deprivation in our analysis.

Limitations to our analyses include missing insulin, dietary intake, education, occupation,

and physical activity data. Also, further analyses additionally including people using capillary

blood glucose testing would have value. In identifying likely prominent features of glycaemia

during lockdown, we carried out a number of statistical tests and it is possible that some signif-

icances may have arisen by chance. Nevertheless, our principal outcome variables: %TIR and

CV were both significant at p<0.01, and statistical testing was generally used as a guide to

interpretation in our analysis. Our findings could be regarded as hypothesis-generating, but it

should be emphasised that lockdown constituted an unprecedented change in lifestyle.

In conclusion, glycaemia in adults improved during lockdown, particularly in people from

more deprived areas, and was sustained post relaxation of lockdown. The improved glycaemia

is likely to be a result of complex social, behavioural, and environmental factors influencing

lifestyle during COVID-19. A similar effect size for glycaemic outcomes was observed in chil-

dren, but the smaller sample size limited definitive conclusions. There was no deterioration in

glycaemia associated with lifestyle during the EOHO Government scheme in the UK. Future

studies including a larger number of children are recommended, as are detailed analyses of the

differential behaviour changes seen across deprivation categories.
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