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ABSTRACT

Tabulation of chemical mechanisms with artificial neural networks (ANNs) offers significant speed benefits when computing the real-time
integration of reaction source terms in turbulent reacting flow simulations. In such approaches, the ANNs should be physically consistent
with the reaction mechanism by conserving mass and chemical elements, as well as obey the bounds of species mass fractions. In the present
paper, a method is developed for satisfying these constraints to machine precision. The method can be readily applied to any reacting system
and appended to the existing ANN architectures. To satisfy the conservation laws, certain species in a reaction mechanism are selected as
residual species and recalculated after ANN predictions of all of the species have been made. Predicted species mass fractions are set to be
bounded. While the residual species mass fractions are not guaranteed to be non-negative, it is shown that negative predictions can be
avoided in almost all cases and easily rectified if necessary. The ANN method with conservation is applied to one-dimensional laminar pre-
mixed flame simulations, and comparisons are made with simulations performed with direct integration (DI) of chemical kinetics. The
ANNs with conservation are shown to satisfy the conservation laws for every reacting point to machine precision and, furthermore, to pro-
vide results in better agreement with DI than ANNs without conservation. It is, thus, shown that the proposed method reduces accumulation
of errors and positively impacts the overall accuracy of the ANN prediction at negligible additional computational cost.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0143894

I. INTRODUCTION

Reacting flow simulation methods that involve the direct cou-
pling of chemistry and flow require the real-time numerical integra-
tion of the chemical kinetics. The chemical kinetics are described by
a system of ordinary differential equations (ODEs), where each ODE
expresses the instantaneous net formation rate of one of the chemi-
cal species present in the mechanism. For detailed chemical mecha-
nisms, this system of ODEs can quickly become large and unwieldy,
and furthermore, such systems are often stiff, which is often the case
for combustion mechanisms. It is the integration of these ODEs at
every point in time and space during a simulation that is the compu-
tational bottleneck for reacting flow simulations if conventional inte-
gration techniques are used. Methods in which this computational
bottleneck is present include, but are not limited to, transported
probability density function methods,1–3 direct numerical simula-
tion,4–6 Reynolds averaged Navier–Stokes (RANS) and unsteady
RANS simulations,7,8 the thickened flame model,9,10 and partially

stirred reactors.11,12 In all of these methods, the computational cost
of integrating the chemical kinetics precludes the use of extensive
detailed mechanisms.

Chemical mechanism tabulation eases this computational bottle-
neck by storing the behavior of the reaction mechanism for a given
region of composition space and performing retrievals during the sim-
ulation. However, the simplest tabulation techniques, such as the
lookup table,13 grow exponentially in memory requirements with the
dimension of the table and so cannot be feasibly stored on distributed
memory computer architectures if more than a handful of reaction
variables are considered. On-the-fly tabulation methods, such as the
binary tree-based in situ adaptive tabulation14 (ISAT), alleviate this
issue to some extent by only storing the composition space accessed in
the application, although memory requirements can still increase as
simulations progress if unfamiliar regions of the composition space
are encountered. Flame regime-specific tabulation approaches, such as
those which use the steady flamelet model15 or progress variable
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approaches, generally have fast retrieval times and small memory
requirements, but their application is limited to the intended regimes.

An alternative method to chemical mechanism tabulation uses
artificial neural networks (ANNs), which are a class of machine learn-
ing tools capable of a wide variety of tasks. In the present work, the
focus is on thermochemistry tabulation; hence, the ANNs employed
are multi-layer perceptrons (MLPs), which are well suited to non-
linear regression and so can approximate the function implicitly
defined by the overall behavior of the system of ODEs. A data-driven
non-linear optimization process, known as training, is used to teach
the MLP to approximate the system of ODEs over a given region of
composition space. Only the weights need to be stored during a simu-
lation, so memory requirements are low. MLP retrievals are performed
using a small number of matrix multiplications, thus reducing the
required computational time. The proliferation of machine learning
has led to a large number of recent applications in the context of com-
bustion modeling, dealing with various aspects of the problem, a
review of which can be found in Ihme et al.16 In the following, a brief
review of works directly relevant to thermochemistry tabulation will
be presented.

A class of works (such as Refs. 17–20) use ANNs to perform
retrievals from mixture fraction/progress variable-based tables created
using the steady flamelet model. As mentioned, such tabulation tech-
niques already have fast retrieval times, with the main benefit of using
the ANNs being the reduced memory required to store the weights
compared to the original table. When it comes to ANNs employed in
the context of combustion models that involve direct coupling of
chemistry and flow, the first challenge is to ensure that training data
are collected, which allows the ANNs to generalize to families of differ-
ent combustion problems. This is a critical step in the ANN tabulation
process, as the accuracy of MLPs extrapolating outside of the composi-
tion region on which they have been trained is poor. Approaches,
which take training data from the application,21 would lead to good
ANN accuracy but negate any potential speed-up from using the
ANNs in the first place. The simplest approaches to generating train-
ing data carry out sampling from across the theoretically allowable
composition space22–26 but are impracticable when considering larger
mechanisms where the required composition space resolution would
lead to a prohibitively large training set.

Using a canonical combustion problem to generate the training
set provides data in relevant composition space regions which is not
specific to a given application and can be used for mechanisms with a
large number of species. Sen and Menon27 and Sen et al.28 used linear-
eddy mixing simulations to generate training data before applying the
resulting MLPs to large eddy simulations of syngas/air flames.
Chatzopoulos and Rigopoulos,29 Franke et al.,30 Readshaw et al.,1 and
Ding et al.31,32 used unsteady laminar flamelets with ignition and
extinguishing to generate training data, with subsequent successful
application of the MLPs to a variety of non-premixed turbulent flames.
Other canonical combustion problems used include stochastic micro-
mixing systems33,34 for the simulation of syngas turbulent oxy-flames,
perfectly stirred reactors,35 and eddy dissipation simulations.36

Alternatively, at a modest computational cost, the MLPs can be trained
on-the-fly,37 in an analogous manner to ISAT.

The second challenge when tabulating thermochemistry using
ANNs is to ensure good prediction accuracy in a given application
using the simplest ANN architecture possible. Although accuracy

generally increases with the number of ANN parameters available,
retrieval times will also increase and so the potential speed-up will
diminish. Using fewer ANN parameters also allows the use of poten-
tially more accurate but also more computationally intensive quasi-
second-order or second-order training algorithms, such as the
Levenberg–Marquardt algorithm. ANN architectures that use a single
MLP to predict each species1,38 or extensions, such as the multiple
MLP (MMLP) method,31,32 occupy a sweet spot where potential accu-
racy is high, but the number of parameters is relatively low.

The third challenge, which we attempt to tackle in this work (and
was also identified in the review of Ihme et al.16), is to ensure that
ANNs are physically consistent with the reacting systems they are
used to approximate. Specifically, in the case of chemical mechanism
tabulation, the laws of mass and element conservation and the bounds
on the species mass fractions should be satisfied. Although out-of-
bounds mass fractions can be clipped and mass conservation errors
can be rectified by normalizing the predicted composition, element
conservation errors are more difficult to rectify. As a result, strategies,
such as random data generation,1,31,32 have been developed in con-
junction with the MMLP method to essentially incorporate data with
element conservation errors into the MLP training dataset. While such
random data generation strategies have been successfully applied along
with the MMLP method to a variety of premixed and non-premixed
flames, they require the selection of allowable windows for the element
ratios in the randomization process, which may not be easy to obtain
ahead of time.

The element conservation laws manifest themselves as a series of
linear constraints on the ANN outputs. In the context of atmospheric
modeling, Beucler et al.39 recently proposed a method for guaranteeing
that ANN predictions satisfy certain linear constraints by predicting
all but one variable and then appending a fixed “constraint layer” to
their ANN. The constraint layer calculates the final value of a certain
variable such that a linear constraint is satisfied. This method allows
the constraint to be applied during the ANN training, thus leading to
both physical consistency and good accuracy. However, fixing the con-
straint during training means that the variable that is associated with
the constraint layer is also fixed. This presents a difficulty for chemical
kinetics, where the choice of variable may depend on the local compo-
sition. This is because the inevitable errors in the ANN predictions
may lead to different species at different locations being no longer
bounded.

Therefore, it is advantageous to construct a method that applies
the constraints as a post-processing step, for example, as performed by
Bolton and Zanna,40 again in the context of atmospheric modeling.
Applying the constraints as a post-processing step allows flexibility
regarding which variables to correct via the constraint, but also intro-
duces the problem of choosing these variables. Wan et al.33,41 used a
post-processing step to apply constraints in the context of reaction
mechanisms, using an element conservation scheme to ensure that the
predictions of 11 species in a reduced mechanism satisfy the element
conservation laws in the full mechanism from which the reduced one
was derived. While this approach was successful in satisfying the con-
servation laws, the limited number of species used meant that a man-
ual selection of species for applying the element conservation
correction was feasible.

In the present paper, we propose a method for automatically and
robustly selecting which species to recalculate in order to ensure that
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conservation laws are satisfied, for an arbitrary chemical mechanism.
Once these species are selected, their values can be corrected in order
to satisfy the mass and element conservation laws to machine preci-
sion. The method is formulated in such a way that the likelihood of
unbounded predictions is very small. We also propose a method for
rectifying unbounded predictions in the unlikely event of an
unbounded corrected species. The proposed methodology can be eas-
ily appended to the existing ANN architectures for tabulation of chem-
ical kinetics to incorporate the conservation laws in applications. The
implementation presented here augments the MMLP methodology,
which has been shown to yield very good predictions in laminar flame-
lets, one-dimensional laminar premixed flames, and turbulent flames
with both fuels and fuel blends,1,31,32 all without employing data from
the target problem in the training set. For this reason, no turbulent
flame simulations will be carried out here; the objective is to show how
the proposed approach can improve the conservation properties of the
kinetics tabulation such that the simulations can acquire either more
accuracy where this is needed or can be performed more efficiently by
achieving similar accuracy with a simpler ANN.

Section II explains how a chemical mechanism is tabulated with
ANNs, as well as the constraints that should be applied to the ANN
predictions. In Sec. III, the proposed conservation method is outlined,
with algorithms given to allow the computational implementation of
the method. In Sec. IV, the conservation method is applied to the GRI
1.242 and USC Mech II43 combustion mechanisms, respectively, in the
context of simulations of one-dimensional CH4/air and C3H8/air lami-
nar premixed flames with non-equal diffusivities. The effect of satisfy-
ing the constraints on ANN accuracy and speed-up is examined by
comparing simulations with and without conservation to the direct
integration simulations.

II. FUNDAMENTALS OF ANN TABULATION
OF THERMOCHEMISTRY

The state of a mixture of ideal gases can be fully described by the
concentrations of the constituent species and two thermodynamic
state variables. If the pressure is fixed, then the state of the mixture is
defined by ½h;Yi�, where h is the specific enthalpy (including both sen-
sible and formation enthalpies), and Yi are the mass fractions of the
Nsp being considered. For a given initial state, the numerical integra-
tion of the system of chemical kinetics ODEs over a time step, Dt,
yields the following mapping from the initial to final state:

hðtÞ;YiðtÞ½ � 7!Yiðt þ DtÞ; (1)

where h does not change across the reaction step. This relationship
can also be written in terms of the change in the species mass fractions
over the time step being considered,

hðtÞ;YiðtÞ½ � 7!DYi; (2)

where DYi ¼ Yiðt þ DtÞ � YiðtÞ. In either case, the mapping is deter-
mined by the chosen reaction mechanism.When using MLPs for ther-
mochemistry tabulation, the initial state is treated as an input to the
MLP and the final state (or the change) as an output, and the aim is to
approximate the mapping from input to output as accurately as
possible.

The first step in the MLP tabulation process is to generate a data-
set suitable for the desired application, consisting of many input/
output pairs in the form of Eq. (1) or Eq. (2). To enable more effective

MLP training, several manipulations of the input variables may be
employed. These include simple linear scaling, non-linear operations,
such as log or root transforms, or dimension reduction techniques,
such as principal component analysis. If the transformed inputs are
denoted by rjðtÞ, where j ¼ 1; 2;…;Ninputs, and the transformed out-
puts are denoted as sk, where k ¼ 1; 2;…;Noutputs, then the mapping
described by Eq. (1) or Eq. (2) becomes

rj 7! sk: (3)

Figure 1 shows a generic MLP with K outputs, consisting of neu-
rons (circles) arranged in layers that are joined together with connec-
tions (lines), each of which has an associated weight. The number of
layers, the number of neurons in each layer, and the number of out-
puts of the MLP may vary. If K ¼ Noutputs, then a single MLP predicts
all the desired output variables. If K¼ 1, then each output variable is
predicted by its own MLP, and, hence, Noutputs MLPs are required to
predict all of the variables.

Each weight is assigned a numerical value, while each neuron has
an associated activation function, again determined by the user, which
can be non-linear. The neurons marked b are the bias neurons, which
do not take an input from another neuron but instead are given a con-
stant input of þ1. During training, an input vector, r, is presented to
the MLP input neurons and is propagated to the first hidden layer
according to

n1 ¼ act1 W1rþ b1ð Þ; (4)

where n1 is the output from the first hidden layer, act1 is the activation
function for the first hidden layer, W1 is the matrix of weights con-
necting the neurons of the first hidden layer to those in the previous
layer, and b1 is the vector of weights connecting the neurons in the
first hidden layer to the bias neuron in the previous layer. This process
is repeated through the remaining l� 1 hidden layers according to Eq.
(5), until the MLP output, s�, is retrieved, as shown below:

FIG. 1. Diagram of an MLP with K outputs showing neurons (circles) arranged in
layers connected by weights (lines).
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nl ¼ actl Wlnl�1 þ blð Þ; (5)

s� ¼ actlþ1 Wlþ1nl þ blþ1ð Þ: (6)

The errors between the MLP output and the target output for a given
data point p are used to adjust the values of the weights of all layers,
through a process known as backpropagation.44 This adjustment aims
to minimize a chosen loss function, L, over the training dataset, such
as the mean squared error shown below:

L ¼ 1
Ndata

XNdata

p¼1

XK
i¼1

spi � sp;�i
� �2

; (7)

where Ndata is the number of entries in the training dataset. Once the
MLPs have been trained, they can be used to make predictions on new
data.

If the predictions of the target outputs were perfect (i.e., L¼ 0),
then the conservation laws would be automatically satisfied. As such,
techniques that reduce the loss by increasing the MLP accuracy, such
as the use of a single MLP for each species1,38 or the MMLP
method,31,32 naturally reduce the error in the conservation laws. In
practice, however, the amount of constraint violation will never be
zero and some points may even severely violate the constraints in
search of reduction in the loss function. To mitigate this, one possibil-
ity is to introduce a term to the loss function that penalizes constraint
violation, as done, for example, in Bode et al.,45 who included a penalty
term for mass conservation. However, this does not guarantee that the
constraints are not violated and furthermore raises the issue of how to
weight each term in the loss function in order to effectively impose the
penalty. Modifying the loss function is also problematic when using
separate MLPs for each species, as the constraints contain sums over
species which the separate MLPs have no knowledge of. In Sec. III, an
algorithm will be proposed for satisfying conservation law constraints
that does not suffer from these limitations.

III. AN ALGORITHM FOR SATISFYING CONSERVATION
LAW CONSTRAINTS

In order to obey the conservation laws, the ANN predictions, s�,
having been de-transformed to yield Y�, must satisfy certain con-
straints that consist of linear combinations of the species mass frac-
tions. The first constraint is that the species mass fractions must be
bounded,

0 � Y�i ðt þ DtÞ � 1: (8)

The mass conservation constraint is given by

XNsp

i¼1
Y�i ðt þ DtÞ ¼ 1: (9)

The element conservation constraints are given by

XNsp

i¼1
AjiY

�
i ðt þ DtÞ ¼ ZjðtÞ; (10)

where Zj is the mass fraction of element j, and Aji is the proportion of
the mass of species i contributed by element j, with j ¼ 1; 2;…;Ne

and Ne being the number of elements for which conservation is
required in the reaction mechanism. Elements that do not participate

in reactions (such as nitrogen if present only as N2 in a mechanism
that does not include nitrogen chemistry) can be ignored. A composi-
tion that satisfies Eq. (10) will automatically satisfy Eq. (9), so to obey
both mass and element conservation, it is sufficient to satisfy Eq. (10).

The basic procedure for correcting the ANN predictions in order
to satisfy the conservation laws to machine precision will now be illus-
trated using a mixture consisting of only two species, with their mass
fractions given by Y1 and Y2. After the ANN predictions of both spe-
cies are made, any negative predictions are set to zero and any mass
fractions greater than one are clipped to satisfy Eq. (8). The aim is to
obtain the mass fractions satisfying the conservation laws, Ycon

i . To
start, Ycon

i are initialized to these bounded predictions. Then, in order
to satisfy an element conservation constraint, a correction is applied to
one of the predicted species mass fractions. For example, the value of
Y1 can be corrected,

Ycon
1 ¼ Zj � A2jYcon

2

A1j
: (11)

The composition will now satisfy the conservation law for the ele-
ment being considered. Alternatively, the value of Y2 can be corrected,
with its new value obtained in a similar way using

Ycon
2 ¼ Zj � A1jYcon

1

A2j
: (12)

It should be noted that only one of Eq. (11) or Eq. (12) is needed
in order to recalculate one species mass fraction to conserve the ele-
ment under consideration. The species that is recalculated, thus, will
be referred to as the residual species. It is only the mass fractions of the
residual species that will be altered to satisfy the mass and element
conservation laws with the mass fractions of the other species left
unchanged.

To ensure that Ycon
i remains bounded, the recalculated residual

species mass fractions must be also be bounded. In practice, the most
common violation of the species mass fraction bounds occurs through
negative mass fraction predictions. It is, therefore, worth examining
how negative residual species mass fractions may arise. Looking at Eq.
(11), the residual species mass fraction would be negative if the total
amount of element contained in Ycon

2 was predicted to be greater than
the available amount of that element at time t. Figure 2 illustrates how
a negative residual prediction could arise by arbitrary considering Y1
as the residual species. From the top of Fig. 2, the first two horizontal
bars show the contributions of each species to the element under con-
sideration in the initial composition and the target composition,
respectively. The third bar shows the contribution of each species to
the element under consideration for fictitious ANN predictions. It can
be seen in the third bar that there is a large overprediction in Y2 com-
pared to the target value and therefore a large overprediction of the
amount of the element under consideration contained in Y2. In fact,
the predicted amount of the element contained in Y2 is larger than its
total amount available at time t. In order to conserve this element, the
value of Y1 is, therefore, calculated via Eq. (11) to be negative. This is
illustrated by the fourth bar in Fig. 2, where the total amount of the
element is now conserved, but the contribution of Y1 to the element is
negative.

Figure 2 raises two important points for the foundations of the
proposed method. The first is that the residual species should be
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chosen after the ANN predictions are made, and it should be the spe-
cies that contains the highest possible amount of the element to be
conserved in the predictions. This reduces the chance of the non-
residual species containing more of the element than was available at
time t and so reduces the chance of negative values being calculated
for residual species. This has the important implication that the choice
of residual species should be different for each composition. Figure 3
shows the same initial and target composition as Fig. 2, but now con-
siders Y2 as the residual species. Figure 3 shows that after using Eq.
(12) the composition Ycon

i remains bounded. Because the contribution
of Y�2 to the element under consideration is so much larger than that
of Y�1 , the error in Y1 would have to be extremely large to calculate
Ycon
2 as negative.

The second important point raised by Figs. 2 and 3 is that the
chance of negative residual species mass fractions occurring will natu-
rally decrease with increasing prediction accuracy, and so the method
of recalculating residual species is complementary to approaches, which
increase ANN accuracy. Wildly inaccurate predictions from a correctly
implemented ANN method, such as those which are significantly out-
of-bounds, are extremely uncommon and can be screened out. This

screening-out could be performed, for example, by comparing the pre-
dicted value against the maximum value of the species found in the
training set. A threshold can be set on the prediction value, above which
the predictions are considered very inaccurate. Moderate prediction
errors are easily absorbed by the proposed method.

The expansion of the method illustrated so far to a mixture con-
taining an arbitrary number of species is straightforward. A separate
residual species is chosen to satisfy each of the Ne element constraints.
To proceed, it is simplest to eliminate the elements one at a time. For
example, if the elements are C, H, and O, a possible choice of residual
species is CH4 (for C), H2O (for H without changing C), and O2 (for
O without changing C or H). Another possibility is CH4 (for C), H2O
(for H), and both of CO2 and CO (for O without altering C). For sim-
plicity, we restrict ourselves to using a single residual species for each
element; hence, there are a total of Ne residual species. This has the
consequence that the final residual species must contain a single ele-
ment only to avoid disrupting the already conserved elements. This
means the number of species that can be considered as the final resid-
ual species is limited, as is the number of possible orders in which to
eliminate the elements.

Once the element solution order is determined, the first residual
species is chosen as the species predicted to contribute the most to the
mass fraction of the first element to be eliminated. The second residual
species is the species that does not contain the first element and is pre-
dicted to contribute the most to the mass fraction of the second ele-
ment. This process continues until all of the residual species have been
determined. At that point, the residual species mass fractions can be
recalculated to satisfy the mass and element conservation laws.

Depending on which species can be considered as the final resid-
ual species and the ANN accuracy, it may not be possible to avoid a
negative final residual species. As an example, the GRI 1.2 mechanism
has 31 species, but there are only six that contain a single element: H2,
H, O, O2, C, and N2. The conservation of N is unnecessary in GRI 1.2,
so N2 is ignored. Of the remaining species, it is possible that none will
occur in large enough amounts to prevent the error in the non-
residual species from overwhelming the amount of the element under
consideration at time t. Therefore, an algorithm is proposed to rectify
a negative value in the final residual species, in the instances where it
arises, without altering any of the other elements.

It may also be possible that, in the chosen mechanism, there are
no species consisting of a single element only. While the method will
be outlined in the simplest way possible by choosing a single residual
species for each element, there is no reason why multiple residual spe-
cies cannot be chosen to conserve the same element, in a similar spirit
to the algorithm proposed as part of the method to rectify negative val-
ues of the final residual species mass fraction. This extension would
increase the applicability of the method to even more mechanisms.

It should be noted at this point that the method does not depend
on the choice of the time step, Dt, as only the element mass fractions
at time t are used as reference for the conservation algorithm.
Furthermore, unlike the conventional integration of ODEs that relies
on the values of the dependent variables and their gradients at the cur-
rent time, as well as on the time step, ANNs are trained using only ini-
tial and final value pairs, with the time step not entering at all the
training process. If variable time step is required in a simulation, there
are two ways of accommodating it. The first one is to have the ANNs
trained for a minimal time step and call them in succession to make

FIG. 2. Illustration of a large overprediction of Y�2 resulting in a mass fraction of
Y con
1 , which is calculated to be negative in order to satisfy the conservation law for

the element under consideration.

FIG. 3. Illustration of a large overprediction of Y�2 , which can be corrected in order
to satisfy the conservation law for the element under consideration by calculating
Y con
2 .
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up integer multiples of it. The second one is to have more than one
sets of ANNs, e.g., one trained with 10�6 s and one with 10�5 s, and
use combinations of them.

This rest of this section details the computational implementa-
tion of the procedure for satisfying the conservation laws in ANNs,
starting from the input composition, ½hðtÞ;YiðtÞ�, and finishing with a
predicted composition, which is bounded and obeys the conservation
laws, Ycon

i ðt þ DtÞ. The procedure can be broken down into the fol-
lowing four steps:

1. Generate initial ANN predictions (Algorithm 1).
2. Select residual species (Algorithm 2).
3. Recalculate residual species mass fractions (Algorithm 3).
4. Rectify negative final residual species if necessary (Algorithm 4).

Each of these steps is described below. A worked example of the
solution procedure using Algorithms 1–4 is also provided in the
Appendix.

A. Step 1: Generate initial ANN predictions

The first step in the process is to generate the initial ANN predic-
tions. If the ANNs predict the species, Y�i ðt þ DtÞ, then these can be

ALGORITHM 1. Generate initial ANN prediction.

Require: hðtÞ;YiðtÞ � Input composition
if ANNs predict outputs then

Y�i ðt þ DtÞ ¼ ANNs[hðtÞ;YiðtÞ] � Predicted outputs
else if ANNs predict changes then

DY�i ¼ ANNs[hðtÞ;YiðtÞ] � Predicted changes
Y�i ðt þ DtÞ ¼ YiðtÞ þ DY�i � Predicted outputs

end if
for i ¼ 1;Nsp do � Remove out of bounds predictions

if Y�i ðt þ DtÞ < 0 then
Y�i ðt þ DtÞ ¼ 0

end if
if Y�i ðt þ DtÞ > 1 then

Y�i ðt þ DtÞ ¼ 1
end if

end for
Yb
i ðt þ DtÞ ¼ Y�i ðt þ DtÞ

return Yb
i ðt þ DtÞ � Bounded predictions

ALGORITHM 2. Select residual species.

Require: Yb
i ðt þ DtÞ � Non-negative ANN predictions

Require: Cc � Indices of NC candidate final residuals
Require: EC

c � Indices of the elements contained in the candidates
Calculate predicted element mass fractions:
for j ¼ 1;Ne do

Zb
j ðt þ DtÞ ¼

XNsp

i¼1
AjiY

b
i

end for
Find the index of the final residual species in the candidates by calculating how much each candidate contributes to its element:

T ¼ maxloc
1�Yb

Cc

Zb
ECc

� �

SNe ¼ CT � Index of final residual species in mechanism
ENe ¼ EC

T � Index of element contained in final residual
Ej ¼ ðE1;E2;…;ENeÞ � Element solution order
Determine the other residual species:
for k ¼ 1;Ne � 1 do

Find indices of possible residual species for the current element, depending
on the elements which have already been eliminated:
Pp ¼ Stoti which contain Ek and may contain any of El, with l ¼ kþ 1;Ne

Index of residual species for the kth element in the possible species:

T ¼ maxloc
AEk Pp

Yb
Pp

Zb
Ek

� �

Index of residual species for the kth element in the mechanism:
Sk ¼ PT

end for
return Sj, Ej � Indices of residual species and element solution order
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used directly. If the ANNs predict the changes in the species over a
given time step, then predictions of the change, DY�i , can be made and
added to the input composition to retrieve Y�i ðt þ DtÞ. Any composi-
tions with extremely unphysical predictions should be screened out.
Any Y�i ðt þ DtÞ that lie moderately outside of the mass fraction
bounds are set to lie within them, to give the bounded predictions
Ybðt þ DtÞ. If the ANNs predict Y�i ðt þ DtÞ, then predictions can be
guaranteed to be in bounds by using modified rectified linear unit
(ReLU) activation functions on the output layer.

B. Step 2: Select residual species

The second step is to choose which of the predicted species to
consider as residual species for the given composition. We have
restricted ourselves to the final residual species, which are made up of
a single element only. The number of candidate final residuals is
denoted by NC, while the index of each candidate final residual in the
mechanism is stored in Cc. The index of the element contained in each
of the candidate final residuals is denoted by EC

c . Because the number
of element solution orders is limited by the candidate final residuals, it
is preferable to select the final residual species first in order to ensure
that a valid order is chosen. To do this, the predicted element mass
fractions are calculated using the bounded predictions. As explained
previously, to try and avoid negative residual predictions, the final
residual species, SNe , is chosen to be the candidate final residual spe-
cies, which contributes the highest proportion of the mass of its

respective element. The element solution order, Ej, for the Ne elements
is, then, determined. The final element in the solution order, ENe , will be
the one contained by the final residual species SNe . We have found the
order for the remaining elements to be unimportant. Once the element
solution order has been fixed, the remaining residual species can be
determined. The residual species for the first element in the solution
order is determined by finding the species, which contributes the most
to the first element. The residual species for the second element is deter-
mined by finding the species, which contributes the most to the second
element in the solution order but does not contain the first element.
This continues until all but one element is eliminated (which is the ele-
ment contained by the already determined final residual species).

C. Step 3: Recalculate mass fractions of residual
species

Once the residual species have been determined, the correction
to satisfy the conservation of mass and elements can be applied. The
target element mass fractions, ZjðtÞ, are calculated using the input
composition. The conserved species mass fractions, Ycon

i ðt þ DtÞ, are
initialized to the bounded ANN predictions. A switch for the species,
bi, is introduced and set to one for all species. The switch for the first
residual species, bS1 , is set to zero. The predicted mass fraction of the
first element to be conserved is calculated without the mass fraction of
the first residual species, as follows:

Zcon
E1 ¼

XNsp

i¼1
biAE1iY

con
i : (13)

ALGORITHM 3. Recalculate residual species mass fractions.

Require: YiðtÞ � Original species composition
Require: Yb

i ðt þ DtÞ � Bounded ANN predictions
Require: Sj � Indices of residual species from Step 2
Require: Ej � Element solution order from Step 2
Calculate element mass fractions at time t:
for j ¼ 1;Ne do

ZjðtÞ ¼
PNsp

i¼1
AjiYiðtÞ

end for
Ycon
i ðt þ DtÞ ¼ Yb

i ðt þ DtÞ � Initialize conserved mass fractions
bi ¼ 1 � Set residual species switch
for j ¼ 1;Ne do

bSj ¼ 0 � Set switch for current residual species
Calculate element mass in all but the current residual species:

Zcon
Ej ¼

PNsp

i¼1
biAEj iY

con
i

Recalculate residual species mass fraction:

Ycon
Sj ¼

ZEj�Z
con
Ej

AEj Sj

bSj ¼ 1 � Reset switch
if Ycon

Sj < 0 and j 6¼ Ne then
Go to Step 2 and try new element solution order.

end if
end for
return Ycon

i ðt þ DtÞ � Composition obeying conservation laws

ALGORITHM 4. Rectify final residual species if needed.

Require: Ycon
i ðt þ DtÞ � Conserved ANN predictions

with negative final residual
Require: SNe �Index of final residual species
Require: R1, R2 � Indices of pairs of rectifying species

for the final residual
Require: ER � Other element pair of rectifying

species contain
a ¼ �AENe SNe Y

con
SNe

b ¼ AENe R1

c ¼ AENe R2

d ¼ AERR1

AERR2

DYcon
R1
¼ �a

b� cd
� Change in first rectifying

species mass fraction
DYcon

R2
¼ �dDYcon

R1
� Change in second rectifying

species mass fraction
Ycon
R1
¼ Ycon

R1
þ DYcon

R1
� New mass fraction of

first rectifying species
Ycon
R2
¼ Ycon

R2
þ DYcon

R2
� New mass fraction of second

rectifying species
Ycon
SNe
¼ 0 � Negative final residual

mass fraction zeroed
return Ycon

i ðt þ DtÞ � Bounded conserved ANN predictions
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The mass fraction of the first residual species can then be recalcu-
lated in order to conserve the first element,

Ycon
S1 ¼

ZE1 � Zcon
E1

AE1S1
: (14)

The switch for the first residual species, bS1 , is then set to one
again, and the process is repeated until all of the new residual species
mass fractions are determined. The species mass fractions now con-
serve all of the elements, as well as the total mass. As explained in Sec.
III, it is possible that a negative value may be encountered in the resid-
ual species, although this is unlikely owing to the choice of the choice
of residual species as the one contributing the most to its correspond-
ing element. If the residual species with the negative value is not the
final one, a new solution order can be tried, and if negative residuals
are still encountered, the composition can be rejected, while the new
state can be calculated with direct integration. As long as such instan-
ces are rare, this will not impact on the time saving of the ANN tabula-
tion. If a negative value in the final residual species is encountered,
then it can be rectified using the algorithm to be described in step 4.

D. Step 4: Rectify final residual species if needed

If a negative value is encountered in the final residual species, it
can be removed by modifying a pair of rectifying species, R1 and R2, to
make up for the required change in the final element without altering
any of the other elements. For each candidate final residual species, a
pair of rectifying species can be selected ahead of time from the species
available in the mechanism. For a given candidate final residual, a pair
of rectifying species must share one element other than the element
contained in the respective candidate final residual, and (at least) one
of the pair must contain the element contained in the respective candi-
date final residual. For example, if O2 is chosen to be the final residual
species, a possible pair of rectifying species is CO2 and CO. Then, if
the O2 mass fraction is recalculated to be negative, its mass fraction
can be set to zero. This introduces extra O element, which must be
removed to satisfy element conservation. To do this, the mass fraction
of CO2 can be reduced and the mass fraction of CO increased to
account for the O element without changing the C element.
Alternatively, the rectifying species could have been chosen as H2O
and H2. It may be possible that a pair of rectifying species cannot be
found for a given candidate final residual, in which case Algorithm 4
cannot be used directly if negative values are recalculated for that final
residual. Algorithm 4 shows how a negative value in the mass fraction
of the final residual species can be rectified.

After using Algorithms 1–3, and Algorithm 4 if necessary, the
predicted composition now satisfies the bounds and the conservation
laws. A worked example of the method is given in the Appendix.
Section IV applies this conservation method to one-dimensional pre-
mixed flame simulations to evaluate its effectiveness.

IV. APPLICATION TO ONE-DIMENSIONAL PREMIXED
FLAMES
A. Simulation methodology

In the present section, reaction source term computations in sim-
ulations of one-dimensional adiabatic premixed flames are performed
with three approaches: direct integration (DI) with the VODE solver,46

ANNs, and ANNs with the conservation method proposed here.

The complete set of the equations describing the one-dimensional pre-
mixed flames simulated here can be found in Ref. 47. Here, we focus
on the species transport equation, which can be written as follows:

q
@Yi

@t
þ @qðuþ VcÞYi

@x
¼ @

@x
qDi

Wi

W
@Xi

@x

� �
þ _x i; (15)

where u is the velocity, x is the spatial position, q is the density, Di is
the diffusivity, Wi is the molecular weight of species i, W is the mean
molecular weight, Xi is the mole fraction, and _x i is the reaction source
term. Vc is a correction velocity introduced to satisfy mass conserva-
tion and is given by

Vc ¼
XNsp

i¼1
Di

Wi

W
@Xi

@x
: (16)

To simulate the flames, Eqs. (15) and (16) are discretized and solved
with the method of fractional steps. With this formulation, the reac-
tion source term is solved within its own fractional step as a system of
ODEs of the following form:

_xi ¼
dYi

dt
¼ f ðh;YiÞ: (17)

These ODEs are solved as an initial value problem using either DI or
the ANNs with or without conservation. This yields a mapping of the
form of Eq. (1) and so is well suited for the proposed conservation
methodology. Details of the simulations are given in Table I. The
domain was filled with fuel/air mixture at the chosen equivalence ratio.
To ignite the flame, half of the domain was initialized to equilibrium
conditions, while the other half was initialized as unburnt. A mini-
mum temperature of 500K was set for a point in the domain to be
considered reactive.

Two flames are computed: a CH4-air flame, computed with the
GRI 1.242 mechanism, and a C3H8-air flame, computed with the USC
Mech II mechanism.43 GRI 1.2 contains thirty one species and four
elements (C, H, O, and N), while USC Mech II contains 111 species
and five elements (C, H, O, N, and Ar). However, neither mechanism
includes nitrogen chemistry, with N2 being the only species including
N, while Ar is inert and neglected. Therefore, in simulations with
either mechanism, there are constraints only for three elements,
namely, C, H, and O, as well as the constraint that the reacting species
mass fractions must sum to 1� YN2ðtÞ. There are five candidate final
residual species for both mechanisms, which were identified as C, H2,
H, O, and O2. For H2 and H, the rectifying species were chosen to be
H2O and OH, while for O2 and O, they were CO2 and CO. Although
it is very unlikely that C will ever be used as the final residual species
due to its general small contribution to the C element, its rectifying

TABLE I. Premixed flame simulation details.

Domain length 10mm

Grid nodes 600
Unburnt temperature 300K

Time step 1 ls
Simulation length 0.02 s
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species are chosen as CO2 and O2. Finally, non-equal diffusivities are
used for both flames.

To construct the training sets for the ANNs, composition states
were sampled randomly throughout one-dimensional premixed flame
simulations with equal diffusivities at varying equivalence ratios using
the same method and parameters as in Table I. These composition
states were used as a basis for random data generation following the
method shown in Ding et al.31,32 and Readshaw et al.,1 before being
discarded. The randomly generated data were then integrated using
VODE over a time step Dt ¼ 1ls to form the input/target pairs of the
ANN training data sets. Single output MLPs were used for each spe-
cies, and the training set and ANN architecture information are shown
in Table II for the GRI 1.2 mechanism ANNs and Table III for the
USC Mech II ANNs. Linear scaling on the inputs and the outputs was
performed using the minimum and maximum values of the respective
quantities in the training set. Note also that we have chosen YiðtþDtÞ
and DYi as targets for GRI 1.2 and USCMech II, respectively, with dif-
ferent output activation functions for each in order to demonstrate the
applicability of the proposed method to a range of activation functions
and outputs.

While the MMLP machine learning methodology has been dem-
onstrated before to yield good predictions in a range of problems
including laminar flamelets, one-dimensional laminar premixed
flames, and turbulent flames with pure fuels and fuel blends;1,31,32

all without using data from the training problem, in the present paper,
we concentrate on the improvement afforded by the conservation
algorithm, and hence, only one-dimensional laminar premixed flames
are simulated. However, the test case chosen is the simulation of
one-dimensional premixed flames with non-equal diffusivities, while
training was performed on data originating from one-dimensional
premixed flames with equal diffusivities. This difference introduces an
additional challenge to the ANNs and will, therefore, allow the differ-
ence in accuracy between ANNs with and without conservation to be
more readily highlighted. It should also be noted, however, that in gen-
eral one-dimensional premixed flames still present a stiff challenge to
the machine learning tabulation approach. The training dataset is gen-
erated with the hybrid premixed flame—random data method out-
lined above, with the initial data collected from premixed flames
discarded. Furthermore, the ANNs are trained to predict the reaction
outcome at single composition states and are oblivious to the structure
of premixed flames. Finally, the simulation of the premixed flames
with ANNs is performed with an unsteady method where the pre-
mixed flame structure is allowed to evolve to a steady state. As such,
the simulation is subject to accumulation of errors that pose a very
stringent test to the ANN-tabulated kinetics, whose mitigation is the
objective of the proposed methodology.

B. CH4-air flames (GRI 1.2)

Table IV shows the root mean square error (RMSE) in each of
the quantities that should be conserved over all of the reacting points
throughout simulations with non-equal diffusivities at / ¼ 1:0 for
GRI 1.2, when using the ANNs with and without conservation. It can
be seen that the ANN predictions are subject to an error in the con-
served quantities. Although this error is small, it can accumulate as a
simulation progresses. In contrast, constraining the ANN predictions
using Algorithms 1–4 shows that all of the quantities are conserved to
machine precision for every single reacting point. Results are only
shown for / ¼ 1:0, but the application of conservation has the same
effect in the other cases as well.

Figures 4 and 5 show the steady-state CO and H2 mass fraction
profiles for the CH4-air flames as computed with the three aforemen-
tioned integration methods. The specific species profiles have been
selected for display as these species are generally more difficult to pre-
dict than other major species; furthermore, they are often chosen as
residual species; hence, their predictions would highlight any adverse
effects of incorporating the conservation laws on predictions of resid-
ual species. It should also be mentioned that the machine learning tab-
ulation methodology employed here has been shown before to yield
good results for both major and minor species in laminar premixed

TABLE II. GRI 1.2 training set information and ANN architecture.

Parameter Value

/ range 0.45–1.70
Number of data 370 000
Targets Yiðt þ DtÞ
Number of layers 4
Neurons per layer 32-30-30-1
Scaling Linear to (�1, 1)
Activation functions n/a - tanh(x) - tanh(x) - max(�1, x)
Training method Levenberg–Marquardt48

with Bayesian regularization44

Number of training iterations 1500

TABLE III. USC Mech II training set information and ANN architecture.

Parameter Value

/ range 0.50–2.50
Number of data 250 000
Targets DYi

Number of layers 4
Neurons per layer 112-20-20-1
Scaling Linear to (�1, 1)
Activation functions n/a - tanh(x) - tanh(x) - x
Training method Levenberg–Marquardt48

with Bayesian regularization44

Number of training iterations 1000

TABLE IV. Root mean square error in conserved quantities across the reaction step
over all reacting points throughout simulations with non-equal diffusivities at / ¼ 1:0
and GRI 1.2.

Quantity ANNs RMSE ANNs with conservation RMSE

Ye
O 1.97� 10�7 1.51� 10�18

Ye
H 6.91� 10�7 1.75� 10�18

Ye
C 1.39� 10�7 3.57� 10�19

1� YN2 2.38� 10�9 3.60� 10�20
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flames, as well as in flamelets and turbulent flames;1,31,32 hence, there
is no need to show the profiles of all species. It can be seen that the
application of conservation has a positive effect on the overall accuracy
of the simulations using ANNs, with barely perceptible differences
between the DI profiles and those of the ANNs with conservation.
Ding et al.31 showed similarly excellent agreement in one-dimensional
premixed flames by using the MMLPmethod to increase ANN predic-
tion accuracy. Here, however, a simpler ANN architecture has been
used to achieve the same accuracy. Using a simpler ANN architecture
leads to smaller inference times and, therefore, simpler ANNs, which
incorporate that the conservation laws can be used to obtain the same
accuracy as more complex ANNs, which do not, thus providing
greater speed-up in reacting flow simulations. Alternatively, the
improved accuracy owing to the conservation scheme can add up to
that of the MMLP method, for the benefit of increased accuracy in
future turbulent reacting flow simulations.

Figures 6 and 7 show the steady-state molar H/C and O/N pro-
files. Significant differences in the profiles can be seen when compar-
ing the ANNs without conservation to the DI profiles. On the other

hand, the ANNs with conservation are much closer in agreement with
the DI profiles. The action of differential diffusion means that even if
element conservation is absolutely satisfied during the reaction frac-
tional step, a small difference can still be expected between DI and
ANNs due to the diffusion step. Nevertheless, it is clear that as well as
ensuring physically consistency, satisfying the conservation laws also
improves ANN predictive accuracy in applications by reducing the
accumulation of element errors, which feed into input species mass
fractions for the following time steps.

Table V gives the percentage frequency of different residual spe-
cies permutations recorded throughout one-dimensional premixed
flame simulations with non-equal diffusivities for GRI 1.2 at different
equivalence ratios. It can be noted that, at fuel lean and stoichiometric
equivalence ratios, the most commonly used permutation is (CO2,
H2O, O2), and, furthermore, there are no instances of permutations
using H2 as the final residual species. At / ¼ 1:2, the permutation
(CO2, H2O, and H2) becomes the most common as there is less O2

available, while at / ¼ 1:4, there is not enough O2 to produce large
amounts of CO2 and so (CO, H2O, and H2) is the most common

FIG. 4. CO mass fraction profiles at the end of GRI 1.2 one-dimensional premixed flame simulations with non-equal diffusivities when using different methods for reaction
source term integration.

FIG. 5. H2 mass fraction profiles at the end of GRI 1.2 one-dimensional premixed flame simulations with non-equal diffusivities when using different methods for reaction
source term integration.
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permutation. As expected, there are no instances of C being used as a
final residual species due to its very low mass fraction.

Table VI shows the average central processing unit (CPU) time
required to perform reaction step calculations in the one-dimensional

FIG. 6. Molar H/C ratio profiles at the end of GRI 1.2 one-dimensional premixed flame simulations with non-equal diffusivities when using different methods for reaction source
term integration.

FIG. 7. Molar O/N ratio profiles at the end of GRI 1.2 one-dimensional premixed flame simulations with non-equal diffusivities when using different methods for reaction source
term integration.

TABLE V. Percentage frequency of residual species permutations at different equiva-
lence ratios for one-dimensional premixed flames with non-equal diffusivities and
GRI 1.2.

Percentage frequency (%)

Permutation / ¼ 0:6 / ¼ 0:8 / ¼ 1:0 / ¼ 1:2 / ¼ 1:4

CH4 H2O O2 9.4 10.0 8.2 10.3 18.3
CO H2O O2 11.1 3.8 6.5 5.1 5.1
CO H2O H2 � � � � � � � � � 8.1 76.6
CO2 H2O O2 79.4 86.2 85.3 0.2 � � �
CO2 H2O H2 � � � � � � � � � 76.3 � � �
C2H2 H2O O2 0.1 � � � � � � � � � � � �…

TABLE VI. Average time taken to perform one reaction step in GRI 1.2 one-
dimensional premixed flame simulations with non-equal diffusivities at / ¼ 1:0 with
each integration method using a single Intel Xeon 6132 2.6 GHz CPU.

Method CPU time (s) Speed-up

DI 0.7228 � � �
ANNs 0.0245 30�
ANNs with conservation 0.0251 29�
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premixed flame simulations with each integration method for the GRI
1.2 mechanism. For GRI 1.2, reaction step calculations in the one-
dimensional premixed flames with ANNs are on average 30� faster
than using the VODE solver. Employing the correction for the conser-
vation laws incurs a negligible computational cost compared to the
ANN inference time and remains on average 29� faster than the
VODE solver.

C. C3H8-air flames (USC Mech II)

Table VII shows the root mean square error in each of the quan-
tities that should be conserved over all of the reacting points through-
out simulations with non-equal diffusivities at / ¼ 1:0 for USC Mech
II when using the ANNs with and without conservation. As in the case
of the CH4–air flame, the conservation laws are satisfied to machine
precision for every reacting point throughout simulations at any equiv-
alence ratio.

Figures 8 and 9 show the steady-state CO and H2 mass fraction
profiles for the C3H8–air flames with the three different integration
methods. USC Mech II is a more complex mechanism than GRI 1.2;
hence, the accuracy of the ANNs both with and without conservation is
lower, but it can still be seen that satisfying the conservation laws on the
ANNs has a positive effect on their accuracy, leading to profiles, which
agree more closely with the DI profiles. This is particularly evident in
Figs. 8 and 9 at / ¼ 0:75, where the profiles for the ANNs without
conservation are obviously different from the DI profiles, while the

ones for the ANNs with conservation capture the peak location and
general shape of the profiles with a much higher degree of accuracy.

Figures 10 and 11 show the steady-state molar H/C and O/N pro-
files. As before, a difference can be seen even between the ANNs with
conservation and the DI profiles due to the differential diffusion, and
it is more pronounced here because the difference in the species pro-
files is more noticeable, particularly at / ¼ 0:75. However, it can still
be seen that satisfying the conservation laws prevents the more
unphysical deviations from the DI composition space, for example, as
seen in the O/N profile at / ¼ 1:5.

Table VIII gives the percentage frequency of different residual
species permutations arising throughout the C3H8–air flame simula-
tions. The use of USC Mech II results in more permutations than in
the case of GRI 1.2, although the species involved are similar in both
cases. Again, the automatic switch from the permutation of (CO2,
H2O, O2) to (CO, H2O, H2) can be seen as the initial mixture moves
from fuel lean to fuel rich.

Table IX shows the average CPU time required to perform reac-
tion step calculations in the one-dimensional premixed flame simula-
tions with each integration method for the USC Mech II mechanism.
The USC Mech II mechanism is more complex than GRI 1.2 so the
speed-up when using ANNs is larger: On average, it is 56� faster
when using ANNs compared to the VODE solver. Once again, the
time needed to apply the conservation correction is very small com-
pared to the ANN inference time, and the reaction source term com-
putations using ANNs with conservation are still 54� faster than
those with the VODE solver. The results from this section show that
applying the conservation laws to the ANN predictions gives signifi-
cant accuracy benefits with very little additional computational cost.

V. CONCLUSIONS

A method of satisfying element and mass conservation laws
when using ANNs for the integration of reaction source terms has
been developed. Certain species in a given reaction mechanism are
selected as residual species, and the mass fractions of these species are
recalculated after all of the ANN predictions are made in order to sat-
isfy the conservation laws to machine precision. An automatic proce-
dure for determining which species should be chosen as residual

TABLE VII. Root mean square error in conserved quantities across the reaction step
over all reacting points throughout simulations with non-equal diffusivities at / ¼ 1:0
for USC Mech II.

Quantity ANNs RMSE ANNs with conservation RMSE

Ye
O 5.74� 10�7 1.99� 10�18

Ye
H 8.08� 10�6 3.35� 10�18

Ye
C 3.06� 10�7 9.60� 10�19

1� YN2 4.95� 10�9 8.65� 10�20

FIG. 8. CO mass fraction profiles at the end of USC Mech II one-dimensional premixed flame simulations with non-equal diffusivities when using different methods for reaction
source term integration.
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FIG. 9. H2 mass fraction profiles at the end of USC Mech II one-dimensional premixed flame simulations with non-equal diffusivities when using different methods for reaction
source term integration.

FIG. 10. Molar H/C ratio profiles at the end of USC Mech II one-dimensional premixed flame simulations with non-equal diffusivities when using different methods for reaction
source term integration.

FIG. 11. Molar O/N ratio profiles at the end of USC Mech II one-dimensional premixed flame simulations with non-equal diffusivities when using different methods for reaction
source term integration.
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species for a given composition has been detailed, which increases the
robustness of the method and removes the need for heuristics to inform
the residual species selection. Species mass fraction predictions are set to
be bounded between zero and one. The method is formulated so that
negative predictions of residual species can be avoided in almost all
cases. Furthermore, an algorithm is provided for rectifying negative val-
ues in the residual species in the rare cases where they may occur.

The proposed method can be readily adapted to any reacting sys-
tem and can be easily combined with the existing ANN architectures
for methods that involve direct coupling of chemistry and flow. These
methods include transported probability density function (PDF)
methods, direct numerical simulation (DNS), conditional moment
closure (CMC), unsteady flamelet, multiple mapping closure (MMC),
thickened flame model, linear eddy model (LEM), and partially stirred
reactor (PaSR) as in OpenFOAM and laminar flame computations.

The method has been applied to two sets of one-dimensional pre-
mixed flame simulations: CH4–air flames with the GRI 1.2 mechanism
and C3H8–air flames with the USC Mech II mechanism. The results
showed that the use of ANNs without conservation introduces small
errors in the conserved quantities, and these errors accumulate
throughout the simulation. In contrast, the ANNs with conservation
satisfy the element and mass conservation laws for every reacting point
to machine precision. Element ratio and species profiles from the
ANNs with conservation were in very good agreement with the DI
profiles, while considerable improvement was observed for the ANNs
with conservation. This shows that, as well as guaranteeing physical
consistency, satisfying the conservation laws positively impacts the
accuracy of simulations.

At no point in any of the simulations (for GRI 1.2 or USC Mech
II) were any ANN predictions screened out and DI used, nor were any
negative residual species predicted, and therefore, in this case,
Algorithm 4 was never required. This shows that, given sufficient
ANN accuracy and the sensible selection of residual species by the pro-
posed algorithm, the chance of predicting negative residual species is
small. However, it is still theoretically possible to encounter negative
residual species, depending on the ANN accuracy. Therefore, the strat-
egy to remove the negative final residual prediction in Algorithm 4
should still be incorporated as part of the solution scheme.

The time taken to perform the simulations shows that the reac-
tion source term computations with both ANN methods are signifi-
cantly faster than using DI, with the speed-up factor in the case of
USC Mech II reaching 56� and 54� for ANNs without and with con-
servation, respectively. The extra time required by augmenting of the
ANNs with the conservation procedure is very small, and, therefore,
the extra accuracy comes at a very low computational cost. Future
work will exploit the method in the context of turbulent flame simula-
tions with ANN-tabulated thermochemistry.
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APPENDIX: EXAMPLE OF APPLICATION
OF THE PROCEDURE FOR SATISFYING
CONSERVATION LAWS IN THE ANN PREDICTIONS

Here, we demonstrate the procedure proposed in the present
paper via an example of methane combustion with the seven-

TABLE VIII. Percentage frequency of residual species permutations at different
equivalence ratios for one-dimensional premixed flames with non-equal diffusivities
and USC Mech II.

Percentage frequency (%)

Permutation / ¼ 0:7 / ¼ 1:0 / ¼ 1:5 / ¼ 2:0 / ¼ 2:5

C3H8 H2O O2 2.6 0.3 1.3 9.2 � � �
C3H8 H2 O2 � � � � � � � � � 3.4 � � �
C3H8 O2 H2 � � � � � � � � � � � � 1.5
CO H2O O2 3.7 7.2 6.1 5.8 � � �
CO H2 O2 � � � � � � � � � 0.8 � � �
CO H2O H2 � � � � � � 92.6 71.2 78.2
CO O2 H2 � � � � � � � � � 9.5 20.3
CO2 H2O O2 93.7 89.5 � � � � � � � � �
CO2 H2O H2 � � � 3.0 � � � � � � � � �

TABLE IX. Average time taken to perform one reaction step in USC Mech II one-
dimensional premixed flame simulations with non-equal diffusivities at / ¼ 1:0 with
each integration method using a single Intel Xeon 6132 2.6 GHz CPU.

Method CPU time (s) speed-up

DI 5.924 � � �
ANNs 0.106 56�
ANNs with conservation 0.110 54�
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species four-step mechanism of Jones and Lindstedt.49 This mecha-
nism consists of the elements C, O, H, and N, and contains the spe-
cies CH4, O2, CO, CO2, H2, H2O, and N2 with the indices given in
Table X. It should be noted that no ANN predictions were actually
carried out. Instead, an artificial initial set of values was constructed
for the sake of the demonstration, so as to incur a significant con-
servation error that will be remedied by the proposed algorithm. In
practice, a good ANN procedure would not incur so severe conser-
vation errors in the first place. Furthermore, the fictitious composi-
tion has been chosen so that the procedure calculates a negative
value in a residual species, so that the use of Algorithm 4 can also
be demonstrated, although this did not occur in the cases shown in
the paper due to the accuracy in the ANN predictions.

In this mechanism, N2 is inert and is the only nitrogen con-
taining species, meaning it is not necessary to approximate it with
ANNs or to satisfy conservation of the N element. This means that
Ne¼ 3. The candidate final residual species are those, which only
contain a single element, hence O2 and H2, meaning that NC¼ 2,
Cc ¼ ð2; 5Þ, and EC

c ¼ ð3; 2Þ. The rectifying species for O2 are CO2

and CO, meaning that R1 ¼ 4, R2 ¼ 3, and ER ¼ 1. In this mecha-
nism, there are no pairs of rectifying species available for H2 and,
therefore, although it can be used as a final residual if calculated to
be negative, the composition should be recalculated with O2 used as
the final residual instead.

1. Generate initial ANN predictions

Column 2 of Table XI gives an example input composition.
Following Algorithm 1, the required ANN predictions should be car-
ried out although, as mentioned, we have generated fictitious predic-
tions for the purpose of illustration. These fictitious predictions are

shown in column 3 of Table XI. Any unbounded predictions in
Y�i ðt þ DtÞ are returned within bounds, giving column 4 of Table XI.

2. Select residual species

The next step is to use Algorithm 2 to select the residual spe-
cies. The predicted element mass fractions are calculated and shown
in Table XII.

Then, the predicted contribution of each candidate final resid-
ual species to its respective element is calculated. For the first candi-
date final residual (O2),

Yb
C1

Zb
EC
1

¼ Yb
2

Zb
3

¼ 0:0810
0:3307

¼ 0:2449:

For the second candidate final residual (H2),

Yb
C2

Zb
EC
2

¼ Yb
5

Zb
2

¼ 0:0060
0:0246

¼ 0:2442:

For this composition, O2 is predicted to contribute the most to its
respective element mass fraction, so T¼ 1 and SNe ¼ C1 ¼ 2. This
means that the final element in the solution order is O, as
ENe ¼ EC

1 ¼ 3. The rest of the element solution order is unimpor-
tant and is chosen as E1 ¼ 1 and E2 ¼ 2 to give the element solu-
tion order as Ej ¼ ð1; 2; 3Þ or (C, H, O). The remaining residual
species are now determined. The possible species from which the
first residual species is determined are

Pp ¼ Si; which contain E1 andmay contain E2 and = or E3;

which are Pp ¼ ð1; 3; 4Þ or (CH4, CO, CO2). The contributions of
each of these species to element E1 are now calculated. For CH4,

AE1 P1Y
b
P1

Zb
E1

¼ A1 1Yb
1

Zb
1

¼ 0:7487� 0:0080
0:0557

¼ 0:1075;

for CO,

AE1 P2Y
b
P2

Zb
E1

¼ A1 3Yb
3

Zb
1

¼ 0:4288� 0:0250
0:0557

¼ 0:1923;

and for CO2,

AE1 P3Y
b
P3

Zb
E1

¼ A1 4Yb
4

Zb
1

¼ 0:2729� 0:1430
0:0557

¼ 0:7002:

TABLE X. Elements and species contained in the mechanism and their respective
indices.

Index Element Index Species

1 C 1 CH4

2 H 2 O2

3 O 3 CO
4 N 4 CO2

5 H2

6 H2O
7 N2

TABLE XI. Mass fractions of species at various stages in Algorithm 1.

Species YiðtÞ Y�i ðt þ DtÞ Yb
i ðt þ DtÞ

CH4 0.011 0.008 0.008
O2 0.031 0.081 0.081
CO 0.045 0.025 0.025
CO2 0.141 0.143 0.143
H2 0.007 0.006 0.006
H2O 0.147 0.148 0.148
N2 (0.618) (0.618) (0.618)

TABLE XII. Target and predicted element mass fractions, calculated from species in
TABLE XI.

Quantity YiðtÞ Yb
i ðt þ DtÞ

PNsp

i¼1
Yi 1.0000 1.0290

ZC 0.0660 0.0557
ZH 0.0262 0.0246
ZO 0.2898 0.3307
ZN (0.6180) (0.6180)
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Therefore, T¼ 3 and S1 ¼ PT ¼ P3 ¼ 4, meaning that CO2 is the
first residual species. For the second residual species,

Pp ¼ Si; which containE2 andmay containE3;

so the possible residual species for the second element are Pp ¼ ð5; 6Þ
or (H2, H2O). The contributions of the possible residual species for E2
to the mass fraction of E2 are now calculated. For H2,

AE2 P1Y
b
P1

Zb
E2

¼ A2 5Yb
5

Zb
2

¼ 1:0000� 0:0060
0:0246

¼ 0:2442;

and for H2O,

AE2 P2Y
b
P2

Zb
E2

¼ A2 6Yb
6

Zb
2

¼ 0:1119� 0:148
0:0246

¼ 0:6740:

Therefore, T¼ 2 and S2 ¼ PT ¼ P2 ¼ 6, meaning that H2O is the
second residual species. As the final residual species has already
been determined, all of the residual species are now determined and
are Sj ¼ ð4; 6; 2Þ or (CO2, H2O, O2).

3. Recalculate mass fractions of residual species

With the residual species determined, Algorithm 3 is now used
to recalculate the mass fractions of the residual species in order to
make the overall composition satisfy element and mass conserva-
tion. The target element mass fractions are calculated and shown in
Table XII. The conserved mass fractions are initialized to the non-
negative mass fractions from step 1. The residual species mass frac-
tions are recalculated in turn using

Ycon
Sj ¼

ZEj �
XNsp

i¼1
biAEj iY

con
i

AEj Sj
:

The mask bi is set to one for all species. Then, to recalculate the
mass fraction of the first residual species, bS1 is set to zero, i.e.,
b4 ¼ 0. For the first residual species,

Ycon
S1 ¼

ZE1 �
XNsp

i¼1
biAE1 iY

con
i

AE1 S1
¼

Z1 �
XNsp

i¼1
biA1 iY

con
i

A1 4
¼ 0:1807:

Next, bS1 is set to one, and then, bS2 is set to zero: b4 ¼ 1 and
b6 ¼ 0. The mass fraction of the second residual species is recalcu-
lated as follows:

Ycon
S2 ¼

ZE2 �
XNsp

i¼1
biAE2 iY

con
i

AE2 S2
¼

Z2 �
XNsp

i¼1
biA2 iY

con
i

A2 6
¼ 0:1627:

Finally, bS2 is set to one, while bS3 is set to zero: b6 ¼ 1 and b2 ¼ 0.
The mass fraction of the final residual species is recalculated as follows:

Ycon
S3 ¼

ZE3 �
XNsp

i¼1
biAE3 iY

con
i

AE3 S6
¼

Z3 �
XNsp

i¼1
biA3 iY

con
i

A3 2
¼ �0:000 33:

Now all of the new residual species mass fractions have been deter-
mined, and the composition satisfies the conservation laws.
However, the mass fraction of O2 has been predicted to be negative.
This needs to be rectified.

4. Rectify final residual species if needed

The pair of species used to rectify this final residual are CO2

and CO, i.e., R1 ¼ 4 and R2 ¼ 3, while the other element contained
in these species is C, i.e., ER ¼ 1. Following Algorithm 4,

a ¼ �AENe SNe Y
con
SNe
¼ �A3 2Ycon

2 ¼ 0:000 33;

b ¼ AO CO2 ¼ 0:7271;

c ¼ AOCO ¼ 0:5712;

d ¼ ACCO2

ACCO
¼ 0:6365;

DYcon
R1
¼ �a

b� cd
¼ �0:000 91;

DYcon
R2
¼ �dDYcon

R1
¼ 0:000 58;

Ycon
R1
¼ Ycon

R1
þ DYcon

R1
¼ 0:1797;

Ycon
R2
¼ Ycon

R2
þ DYcon

R2
¼ 0:0256;

Ycon
SNe
¼ 0:

The final calculated composition Ycon
i now satisfies all of the

conservation laws with no negative predictions. The composition is
summarized in Table XIII, along with the initial composition.
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