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Abstract

COMET is a future high-precision experiment searching for charged lepton flavour

violation through the muon-to-electron conversion process. It aims to push the inten-

sity frontier of particle physics by coupling an intense muon beam with cutting-edge

detector technology. The first stage of the experiment, COMET Phase-I, is currently

being assembled and will soon enter its data acquisition period. It plans to achieve a

single event sensitivity to �–4 conversion in aluminium of 3.1 × 10
−15

.

This thesis presents a study of the sensitivity and backgrounds of COMET Phase-I

using the latest Monte Carlo simulation data produced. The background contribution

from cosmic ray-induced atmospheric muons is estimated using a backward Monte

Carlo approach, which allows computational resources to be focused on the most

critical signal-mimicking events.

Analysis of a �–4 conversion simulation sample suggests that COMET Phase-I will

reach a single event sensitivity of 3.6 × 10
−15

within 146 days of data acquisition. Our

results suggest that, in that period, on the order of 10
3

atmospheric muons will enter the

detector system and produce an event similar enough to the conversion signal to pass

all the signal selection criteria. Most of these events will be rejected by the Cosmic Ray

Veto system, however, we expect at least 2.2 background events to sneak in unnoticed.

It is vital for the conversion search that these events be discriminated from conversion

electrons, for instance by using Cherenkov threshold counters to distinguish between

muons and electrons or, alternatively, by developing a direction identification algorithm

to reject some fraction of the �+
-induced events.
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Chapter 1

Lepton Flavour in the

Standard Model and Beyond

The Standard Model (SM) of particle physics is possibly the most successful mathemat-

ical model of physical phenomena so far. It provides an accurate description of almost

all observable interactions between known elementary particles. It yields predictions

for what nature does and does not allow, and enables physicists to examine and test

the fundamental laws of the universe. Furthermore, the SM establishes a rigid frame-

work to make theoretical predictions, from which any measured deviations can then

be interpreted as new physics.

The conservation of lepton flavour, which stems from an accidental symmetry of

the SM, is currently under strict scrutiny by various experiments around the world.

The observation of neutrino oscillations has already proven that lepton flavour is not

conserved by neutral leptons, and this has further driven the search for lepton flavour

violation among the charged leptons. If charged lepton flavour violation (CLFV) is

observed, not only would it be paradigm-shifting evidence for physics beyond the

Standard Model, but it will also help guide us toward the next theory of particle

physics by hinting at the underlying processes which could be at play.

The most sensitive probe to search for charged lepton flavour violation is the muon,

in large part because muons can be readily produced and focused into intense beams

at accelerator facilities. This chapter describes how the muon has come from being a

mysterious particle showering Earth from high in the atmosphere to becoming a tool

in high energy physics experiments used to explore the frontier of our knowledge of

nature.
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1.1 Discovery of the muon

The first traces of muons were observed around 1937 by three experiments investigating

the nature of cosmic ray-induced particle showers [1, 2, 3]. One of them was able to

estimate the mass of the discovered particle at hundreds of times that of the electron:

around the same as the strong-force-carrying meson predicted by Yukawa in 1935 [4].

Hence, the muon and Yukawa’s particle were originally believed to be one and the same

particle.

It was only a decade later, when the meson (now called �, for primary) was ob-

served decaying into a muon, that the two particles were completely disambiguated.

The discovery of the pion was attributed to the Lattes–Muirhead–Occhialini–Powell

group [5], but it was Don Perkins, doctoral student at Imperial College London at the

time, who recorded the first nuclear emulsion of a negative pion capture and set in

motion the race to identify this new particle [6].

Subsequently, it was the fact that the muon appeared as nothing but a heavy electron

which prompted Rabi to ask “who ordered that?” in response to its discovery. In fact,

even the Standard Model of today remains unable to give a satisfactory answer to

this question, since the SM does not motivate the existence of three generations of

elementary particles. As far as the SM can explain, there is no fundamental reason for

the existence of distinct flavours.

1.2 The muon in the Standard Model

The SM identifies the muon as the second-generation charged lepton, meaning it is a

fermion with identical properties, aside from flavour and mass, as the electron and tau

lepton. A muon in a vacuum can only decay through the weak force. The diagram for

muon decay, �− → 4− + �� + �4 , is shown in Figure 1.1.

In the SM Lagrangian with massless neutrinos, none of the terms which involve

leptons allow for flavour violation. The Lagrangian is invariant under transformations

of the *(1)4 ×*(1)� ×*(1)� group. Consequently, each lepton generation (4, �, �) has

its own conserved number. In theory, this completely prevents a charged lepton from

changing flavour without neutrinos being involved to balance the process.

These conservation laws do not correspond to a fundamental symmetry of nature;

2
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Figure 1.1: Feynman diagram for the weak decay of the muon. Note how

lepton flavour is conserved by the presence of a muon neutrino and an

electron anti-neutrino.

they are merely an accidental feature of the SM Lagrangian and have, so far, been

observed to hold experimentally. For instance, the process � → 4 + �, in principle

allowed by kinematics, has never been observed and the current upper limit on its

branching ratio was set by the MEG experiment at 10
−13

[7].

1.2.1 Tensions between theory and experiment

Various fundamental properties of the muon are currently under investigation by ex-

periments around the world. Recent measurements have started to suggest that the

charged lepton sector might be the next to reveal physics beyond the Standard Model

(BSM). From only these results, predicting whether CLFV will also appear is not pos-

sible. However, CLFV searches are complementary in constraining the models of new

physics which could lead to the observed discrepancies.

The Muon 6 − 2 experiment at Fermilab recently observed a 4.2� discrepancy be-

tween the Standard Model prediction and the measured value for the magnetic moment

of the muon [8]. This deviation, assuming it is a true sign of new physics1, could be

attributed to various scenarios where new particles, e.g. leptoquarks, a new Higgs

doublet or neutral boson, interact with the muon.

The LHCb experiment at CERN has found evidence for lepton non-universality in

the decay of b-quarks, with a significance of 3.1� [10]. As with the 6 − 2 discrepancy,

models which could explain the anomaly include a heavy neutral boson, leptoquarks,

or an extended Higgs sector.

1The theoretical expectation for the SM magnetic moment is disputed by a different approach using

lattice QCD [9]. The latter calculation is indeed more consistent with the measurement, hence further

investigation is necessary to understand the cause of the initial discrepancy and why the two calculations

disagree.
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Figure 1.2: Feynman diagrams of processes allowing charged lepton flavour

violation in the SM extended with neutrino masses. Although these pro-

cesses enable CLFV, their branching ratios are heavily suppressed to unob-

servable levels because of the lightness of neutrinos compared to the weak

scale [16].

Together, the Muon 6 − 2 and LHCb tensions suggest a special property of the

muon which would differentiate it from the electron in a new, so far unexplained way.

Although there are so far no tangible traces of CLFV, theoretical models attempting

to resolve the 6 − 2 and LHCb anomalies often also allow CLFV at a level within

experimental reach [11, 12, 13]. Hence, measurements such as the �–4 conversion

branching ratio are crucial to further constrain models and guide the theory toward the

true nature of the new physics.

1.2.2 Lepton flavour with massive neutrinos

The observation of neutrino oscillations [14] means that the three accidental lepton

flavour symmetries are not exact. It is now known that the flavour content of a neutrino

changes as it propagates, hence the flavour quantum numbers are not true conserved

quantities for leptons.

In the quark sector, flavour-changing neutral currents (FCNC) are one-loop order

processes which allow a quark to change generations (e.g. from a strange quark to a

down quark). The small rates of such processes are explained by the GIM (Glashow–

Illiopoulos–Maiani) mechanism: interference between diagrams with different flavours

of mediating quarks causes the branching ratio of FCNC to be heavily suppressed [15].

In the lepton sector, the fact that neutrinos are massless in the SM implies that

FCNC among charged leptons is completely forbidden. With the addition of massive

oscillating neutrinos, processes such as those shown in Figure 1.2 become allowed.

These provide the only currently known way that charged lepton flavour can be violated.
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However, the GIM suppression in this case is much more significant than in the quark

sector because neutrinos are almost massless (compared to the weak scale). For instance,

oscillating neutrinos allow the process shown in Figure 1.2a to occur, which gives rise

to a non-zero rate for � → 4 + �. The branching ratio calculated for this process using

the upper limit on neutrino masses is given by [16]

ℬℛ(� → 4 + �) = 3
32�

����� ∑
8=2,3

*∗
�8*48

Δ<2

81

<2

,

�����2 ≈ 10
−54, (1.1)

where * is the PMNS matrix, Δ<2

8 9
is the mass-squared difference between the 8-th and

9-th neutrino mass eigenstates, and <, is the ,-boson mass. A similar suppression

also applies to the rates of other muon CLFV processes allowed in the SM extended

with neutrino masses [17].

The vanishingly small branching ratio of Equation 1.1 implies that � → 4� cannot

be observed experimentally unless some unexpected interaction is at play. Conse-

quently, this and other CLFV processes are excellent probes to search for new physics.

Specifically, many models for BSM physics give rise to direct mixing between charged

lepton flavours at levels that may be observable in current and near-future experiments.

Any experimental evidence that CLFV occurs at a rate higher than that of a neutrino-

mediated FCNC would yield important clues as to what new physics lies beyond the

SM.

1.3 Searching for charged lepton flavour violation

Three muon processes can be investigated in order to search for CLFV:� → 4�, � → 444

and �# → 4# (muon-to-electron conversion) [16]. Observing any one of them would

fundamentally contradict the Standard Model and thus provide undeniable evidence

for a new interaction. Then, observing a second CLFV process would help us to

determine which of the many theorised models for new physics is realised in nature.

CLFV has been sought after ever since the muon’s discovery: the first investigation

of whether nature allows � → 4� was performed in 1948 [22]. A multitude of experi-

ments followed, but none so far have been able to find a signal [16]. Figure 1.3 shows

experimentally-estimated upper limits on the branching ratios of � → 4�, � → 444 and

5
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Figure 1.3: 90%-confidence upper limit on the branching ratio of three

charged lepton flavour-violating processes over time. The target material

# is indicated for �–4 conversion experiments. Past experiment results were

tabulated by Bernstein and Cooper [16]. Future data points are the expected

sensitivities quoted in the MEG II [18], Mu3e [19], COMET Phase-I [20] and

Mu2e [21] design reports.

�# → 4# over time, since the first experiment and into the next decade.

As higher and higher sensitivities are required, experiments must be able to pro-

duce a muon source which is increasingly intense while demonstrating precise control

over every source of background. This is made possible by new technologies in both

hardware and software applied across entire experiment designs. The next generation

of CLFV-seeking precision experiments, which consists of MEG II, Mu3e, COMET and

Mu2e, aims to be 10 to 10 000 times more sensitive than the last generation.

1.4 Muon-to-electron conversion

Muon-to-electron conversion is the neutrino-less decay of a muon bound to an atomic

nucleus:

�− + #(�, /) → 4− + #(�, /), (1.2)

where � is the mass number and / the atomic number. Similarly to � → 4�, this

process is allowed in the SM extended with massive neutrinos via the diagram shown

in Figure 1.2b, but suppressed to an experimentally unreachable level. Any signs of it

occurring at current experimental sensitivities would suggest a BSM origin.

In order to search for this process, muons must be stopped in matter to form

6



muonic atoms. Initially bound in the outer atomic layers, the muon electromagnetically

cascades down to the 1B orbital within close range of the nucleus over the following

nanosecond [23]. When interacting with the nucleus, the reaction is called coherent

if the nucleus remains unchanged and in its ground state. For elements heavier than

magnesium, the ratio of coherent to incoherent �–4 conversion is expected to be around

9:1 [24].

In a coherent�–4 conversion, the kinematics are those of a straightforward two-body

decay, hence the electron always has an energy

��–4 = <� − �� − �
recoil

, (1.3)

where �� is the binding energy of the 1B-state muonic atom and �
recoil

is the recoil

energy of the nucleus. In aluminium, the target material of the COMET and Mu2e

experiments, this yields

�Al

�–4 = 104.97 MeV. (1.4)

Since the signature of �–4 conversion is a single, mono-energetic electron, this process

should be relatively easily identified by means of a momentum-measuring detector.

However, this signal must also be discriminated from backgrounds originating from

other processes, contamination of the beam and cosmic rays.

1.4.1 Standard Model backgrounds

Decay in orbit

In the SM, a bound muon is allowed to decay in orbit (DIO):

�− + #(�, /) → 4− + �� + �4 + #(�, /). (1.5)

Although the process is the same as a free decay, shown in Figure 1.1, here the nucleus

is also involved in the kinematics of the process. In a free decay, the electron may carry

at most half of the muon mass as kinetic energy (in the muon rest frame) when the

two neutrinos are emitted in the opposite direction. In DIO, the nucleus can recoil and

potentially provide more energy to the electron. If the two neutrinos are emitted back

to back in the transverse direction to the electron, then the kinematics resemble that of

7
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Figure 1.4: Energy spectrum of decay-in-orbit electrons produced by muonic

aluminium atoms, calculated by Czarnecki et al. [25]. The logarithmic

scale reveals the shape of the high-energy tail up to the endpoint energy

of 104.97 MeV.

�–4 conversion and the electron could easily be mistaken for the CLFV signal.

The energy spectrum of DIO electrons for various target nuclei is well understood

theoretically [25], hence the expected background rate for �–4 conversion searches

can be estimated. The DIO energy spectrum for aluminium is shown in Figure 1.4.

Although it is highly unlikely that a DIO electron might carry as much energy as a

conversion electron, DIO remains one of the main sources of background because of the

extreme sensitivity aimed at by upcoming �–4 conversion searches, as well as the finite

resolution achievable by the detectors given the high-intensity environment [20]. These

effects are illustrated in Figure 1.5, which shows the expected momentum distributions

for conversion and DIO electron tracks in COMET Phase-I.

Nuclear capture

A muon in proximity with a nucleus may also be captured via ,-boson exchange:

�− + #(�, /) → �� + #(�, / − 1). (1.6)

This process is similar to an electron capture and transmutes the nucleus into a po-

tentially unstable isotope, which can be the source of proton, photon and neutron

emissions as it readjusts. Particles emitted by the nucleus after muon capture may fly

into the detector system and cause unwanted occupancy of the readout. This is espe-

cially concerning if the detector is close to the target, as is the case in Phase-I. Hence, the
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Figure 1.5: Momentum distribution of reconstructed signal and decay-in-

orbit electrons in COMET Phase-I, assuming a conversion branching ratio of

3.1 × 10
−15

. A momentum resolution of 200 keV/2 is assumed, and detector

efficiency factors are extracted from the technical design report [20]. The

vertical dashed line shows the lower bound of the momentum window at

103.6 MeV/2, which is used to discriminate background events from the

conversion signal.

AlCap experiment was performed in 2013 at the Paul Scherrer Institute to measure the

spectrum and yield of particles emitted after capture of stopped muons by aluminium

nuclei [26]. The yield of highly-ionising particles was found to be half as much as the

previous expectation, deduced from observations of nuclear capture by silicon nuclei,

and the amount of detector shielding required in the Phase-I design was subsequently

reduced.

Radiative muon capture (RMC) occurs when a photon is emitted during the capture

process. Kinematically, the photon can carry energies close to the muon mass. Hence, if

it goes on to produce an electron–positron pair with asymmetric momenta, the electron

will mimic the conversion signal. The high-energy endpoint of the RMC spectrum is not

as high as for DIO, hence an adequate momentum resolution from a tracking detector

will discriminate most RMC electrons from the signal. In COMET Phase-I, the expected

background count from RMC is 5 times lower than that from DIO [20].

Sources of background other than DIO and nuclear capture are expected in �–4

conversion-searching experiments, such as beam-related and cosmic ray-induced events.

All backgrounds specific to the COMET experiment, and the associated design choices

which were made to minimise their occurrence, are discussed in Section 2.7.
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Figure 1.6: New vertices which arise in the effective Lagrangian of Equa-

tion 1.7 and allow CLFV. The photonic interaction can also mediate �–4

conversion by making the photon interact with an external quark.

1.5 Effective CLFV and the scale of new physics

Experiments searching for CLFV are sensitive to a wide variety of new physics, includ-

ing a non-minimal Higgs, a /′
boson, leptoquarks, heavy neutrinos, and supersym-

metric particles. In order to determine the scale of new physics to which future CLFV-

searching experiments will be sensitive and the complementarity between experiments,

we can consider a low-energy effective field theory derived from new interactions with

generic massive (< > 1 TeV) particles. After integrating out heavy fields (see e.g. [27,

Chapter IV]), one obtains the following effective Lagrangian [11], which allows CLFV

to be mediated by the tree-level vertices shown in Figure 1.6:

ℒeff

CLFV
=

1

� + 1

<�

Λ2

�'���4! �
�� + h.c.

+ �
� + 1

1

Λ2

�!��4! ( D!�
�D! + 3!�

�3! ) + h.c. (1.7)

where both interactions are suppressed by factors of Λ, the energy scale of the new

physics, and � determines whether the preferred channel is photonic (� → 0) or four-

fermionic (� → ∞). The � parameter allows this Lagrangian to be model-independent,

i.e. it gives freedom for the new interaction to either enhance � → 4� or �–4 conversion

more strongly. Searches for � → 4� will be more sensitive to CLFV than �–4 conversion

searches if � � 1, whereas the opposite is true if � � 1.

From the estimated sensitivity of a future experiment, we can estimate the maximum

scale of new physics Λ which the experiment will be able to probe. COMET Phase-II

and Mu2e, which have a single-event sensitivity of around 10
−17

[20, 21], will probe

energy scales Λ up to 4000 TeV if � is small, and up to 7000 TeV if � is large [28, 29].
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Even in the situation where no positive signal is observed, probing these enormous

energy scales will heavily constrain any model which predicts new heavy particles

whose interactions allow any significant amount of CLFV. On the other hand, if CLFV

is observed in either the � → 4� or �–4 conversion channels, the value of � can then

be determined from a measurement in the other channel. This data will then further

constrain and disambiguate models, and help to pinpoint the true nature of the new

physics.
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Chapter 2

The COMET Experiment

COMET (COherent Muon-to-Electron Transition) is a future muon-beam experiment

designed to search for the muon-to-electron conversion process [20]. It is currently

under construction at the Japan Proton Accelerator Research Complex (J-PARC) facility

in Tokai, Japan. The goal of COMET is to be 10 000 times more sensitive to �–4

conversion than the current world-leading limit set by the SINDRUM II experiment [30].

Requirements

In order to reach its goal, the COMET experiment is designed with strict requirements

defined to make the conversion signal as clear as possible, while efficiently rejecting

background events. The essential requirements that define the COMET experiment

are:

• An intense muon source to probe the rare conversion process;

• A pulsed beam such that timing information can be used to reject backgrounds;

• Strict selection of charge and momentum of beam particles prior to reaching the

detector;

• A tracking detector to search for the 104.97 MeV conversion signature.

These requirements and the design choices that were made to address them are de-

scribed in more detail throughout this chapter.
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Strategy

COMET is planned to run in a staged approach so that the properties of the newly

designed beam can be finely understood before making the measurement. COMET

Phase-I has a double purpose, each fulfilled by a distinct detector system. The StrE-

CAL detector, composed of a straw-tube tracker and electromagnetic calorimeter, will

study the beam composition and timing properties and increase our understanding

of potential backgrounds. The Cylindrical Detector, composed of a cylindrical drift

chamber and a trigger hodoscope, will be used to perform a �–4 conversion search

with a single-event sensitivity (see Section 2.8) of 3.1× 10
−15

, a factor-100 improvement

over SINDRUM II. COMET Phase-II is a planned upgrade to Phase-I with higher beam

intensity and better background rejection via a longer momentum-selecting beamline.

Phase-II aims to improve on the single-event sensitivity of Phase-I by another factor 100

to reach a single event sensitivity of 2.6 × 10
−17

.

Design

Figure 2.1 shows a top-down schematic view of the COMET experiment, laying out

the different sections that make up the beamline in Phase-I and Phase-II. In the latter,

the transport solenoid is extended to allow more pions to decay into muons while

tightening the momentum selection further. An additional curved solenoid, the electron

spectrometer, further eliminates particles whose momenta do not match the 104.97 MeV

conversion signature before they enter the detector system. While Phase-I will use the

StrECAL to study the beam properties, Phase-II will use it as the conversion-searching

detector system.

The following sections describe in more detail each component of the COMET

beamline.

2.1 Proton beam

Muons in the COMET experiment are produced from the decay of pions created in

proton collisions on a static solid target. The primary proton beam is provided by the

J-PARC Main Ring synchrotron. Protons are delivered with an energy of 8 GeV, which

is chosen to optimise between a high pion yield and a low yield of anti-protons, which
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Proton beam Pion-production section

Transport solenoid

Muon stopping target

Cylindrical Detector

(a) Phase-I with the Cylindrical Detector.

Pion-production section

Electron spectrometer

StrECAL detector system

4 m

Transport solenoid

Proton beam

Muon stopping target

(b) Phase-II.

Figure 2.1: Schematic top-down view of the COMET experiment. The beam

pipe is represented in grey, and the light red rectangles along the beamline

represent the solenoids that generate the magnetic field. Curved solenoids

additionally help to select charge and momentum, as discussed in Section 2.3.
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Figure 2.2: Timeline of a COMET event. Shortly after the proton collision,

the beam flash floods the detector and muons begin to be bound in the

muon stopping target. The Phase-I trigger window shown here starts at

C = 700 ns and lasts until the next proton bunch collision. Electron tracks

with a momentum around 105 MeV/2 observed within this timing window

are considered as signal candidates.

are a potential background source.

The timeline of a COMET event is shown in Figure 2.2. The beam has a pulsed time

profile: protons are grouped into 100 ns bunches, each containing 16 × 10
6

protons.

Bunches are separated by 1170 ns, and every fifth bunch is delayed by an additional

585 ns. Just after the collision, secondary particles will quickly move down the COMET

beamline and produce numerous background hits in the detector system. This prompt

and intense flooding of the detector is called the beam flash, and typically dies down

within a few hundred nanoseconds. Muons bound by the muon stopping target have a

lifetime of 864 ns (see Section 2.4). This, combined with the 1170 ns time span between

two bunches, allows COMET to search for �–4 conversion after the beam flash has

ended, and until the next collision occurs.

Stray protons arriving in the time between two bunches can contribute to the ex-

perimental backgrounds by sending particles toward the detector region at unexpected

timings. COMET requires the J-PARC proton beam to have fewer than one such stray

proton for every 600 bunches in order to reach its sensitivity goals. This corresponds

to an extinction factor

'extinction ≡
protons between bunches

protons per bunch

≈ 10
−10. (2.1)
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Pion-production
target

Proton beam pipe

Figure 2.3: Cutaway view of the pion-production section. The orange arrow

indicates the path of the proton beam while the teal arrow shows the direc-

tion of backward-going pions captured by the magnetic field.

2.2 Pion-production section

Pions are produced by the collision of the proton beam on a solid target made of graphite

in Phase-I, and tungsten in Phase-II. This region is permeated by a 5 T magnetic field

generated by a superconducting solenoid, which confines the pions and directs them

toward the transport solenoid. Figure 2.3 shows a cutaway view of this region.

Pions produced moving backward with respect to the proton beam have a lower

energy than those produced going forward, although they are not as numerous. In

COMET, it is crucial to eliminate high-energy particles in the muon beam that could pro-

duce secondaries mimicking the conversion signal. Hence, the beamline is positioned

in the opposite direction to the proton beam such that only low-energy, backward-

moving pions are allowed into the COMET beamline. Figure 2.4 illustrates this by

showing that pions moving backward with respect to the proton beam have a much

lower momentum cut-off than forward-moving pions.

2.3 Transport solenoid

The transport solenoid is a curved magnet connecting the pion-production section to

the muon stopping section. Its purpose is twofold. Firstly, it allows a larger fraction of
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Figure 2.4: Momentum distribution of pions produced by simulating proton

collisions with Geant4 [31], depending on whether their initial direction is

forward or backward with respect to the proton beam direction.

Figure 2.5: Cutaway view of the Phase-I transport solenoid. The curved

solenoid (in red) combined with collimators (in teal) select particles depend-

ing on their charge and momentum.

17



0.0 0.5 1.0 1.5 2.0
s [m]

100

50

0

50

100

D
 [m

m
]

    
    +

10 MeV/c 45 MeV/c 90 MeV/c

(a) No dipole field.

0.0 0.5 1.0 1.5 2.0
s [m]

100

50

0

50

100

D
 [m

m
]

    
    +

10 MeV/c 45 MeV/c 90 MeV/c

(b) 0.05 T vertical dipole field.

Figure 2.6: Effective drift of particles of various momenta and either charge

as they progress along the Phase-I transport solenoid, calculated using Equa-

tion 2.2. The pitch angle is assumed to be 45° and the bands show the effect

of a ±10° difference. As shown on the right, a 0.05 T dipole field allows

negative particles around 45 MeV/2 to stay on axis while higher- and lower-

momentum particles drift in opposite directions and positive particles all

drift one way. By use of collimators at the end of the transport section, only

particles of the right momentum and charge are allowed through.

pions to decay along the length of the beamline. Secondly, the curved shape combined

with its magnetic field and collimators allows it to select negatively-charged particles

of a specific momentum.

The magnetic field of a curved solenoid is slightly stronger on the inside of the curve

than on the outside. Since charged particles follow helical trajectories, this has the net

effect of making them drift vertically and the amount of drift � depends on momentum

? according to the equation

� =
1

@�

B

'

2?2

!
+ ?2

)

2?!
, (2.2)

where @ is the charge, � is the strength of the field along the gyration axis, B is the

distance travelled along the solenoid, ' is the radius of the curve, and ?! and ?)

respectively denote momentum longitudinal and transverse to the solenoid axis [28].

From this expression, one can see that oppositely charged particles drift in opposite

directions, and that drift is overall stronger for higher-momentum particles. The ratio

?!
?)

, which defines a helical trajectory’s pitch angle, is also a major factor in a particle’s

drift.

The drift caused by the curved solenoid makes all particles of the same charge move

in the same direction to varying degrees depending on momentum. In order to select
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particles of a specific momentum, a vertical component is added to the magnetic field

to counterbalance the drift. Selected particles thus stay on axis, while higher- and

lower-momentum particles drift off axis. With the addition of a collimator at the end

of the transport solenoid, particles with unwanted momenta are effectively eliminated

from the beam.

Figure 2.6 shows drift � as a function of B, the longitudinal distance travelled by

particles along the solenoid. This illustrates how, by adding a dipole field, particles with

a momentum outside the required range can be efficiently eliminated by collimators at

the top and bottom of the beam pipe.

2.4 Muon stopping target

The purpose of the muon stopping target is to slow down and stop as many muons as

possible while not blocking the path of converted electrons. It is composed of a series

of 17 thin aluminium disks placed in the way of the muon beam. The disks are 20 cm

in diameter, 0.2 mm thick, and separated by 5 cm. The stopping target is shown in

Figure 2.8, surrounded by the Cylindrical Detector.

The more aluminium there is, the higher the number of muons that will be stopped

and allowed to undergo conversion. However, more material also means more energy

lost by electrons flying outward, hence the design of the target optimises between muon

stopping rate and acceptance of conversion electrons by the detector system.

The material of the stopping target influences the conversion rate, but also the

lifetime of a muon caught in orbit around a nucleus. A heavy target favours the

expected rate of �–4 conversion, however it also causes the nuclear capture rate to be

higher. In COMET, beam bunches are separated by 1.17 ns and prompt backgrounds

typically die off within a few hundred nanoseconds. A muonic atom with an iron or

heavier nucleus has a lifetime less than 200 ns [28], which would be too short to allow

muons to stay bound and convert after the beam flash is over. Hence, a light target

such as aluminium, with a longer stopped muon lifetime of 864 ns [32], is better suited

to the COMET conversion search.
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Figure 2.7: Cutaway view of the StrECAL detector. The Straw Tracker

stations are shown in blue and the electromagnetic calorimeter (ECAL) in

yellow.

2.5 Detector systems

2.5.1 StrECAL

The StrECAL combines a straw-tube tracking detector with an electromagnetic calorime-

ter for energy measurement. In COMET Phase-I, the StrECAL will serve as a beam char-

acterisation apparatus. It will be placed directly at the end of the transport solenoid,

without a muon stopping target, to study the composition of the COMET beam and

gain a more thorough understanding of potential backgrounds. The collected data

can also serve to validate and refine the Monte Carlo simulation in preparation for the

conversion measurement.

In COMET Phase-II, the StrECAL will serve as the detector system for the conversion

measurement. It will be placed after the electron spectrometer, a curved solenoid

section designed to select conversion electrons, as shown in Figure 2.1. Figure 2.7

shows a rendering of the StrECAL detector system in Phase-II.

The Straw Tracker uses long, thin-walled polyethylene terephthalate tubes as gaseous

drift chambers. The tubes are first arranged into circular planes, four of which consti-

tute a station. Each station is able to measure the horizontal and vertical position of a

particle and has a spatial resolution of 120 µm. Using time-of-flight information, the

Straw Tracker can therefore reconstruct trajectories and estimate particle momenta.

The ECAL is a crystal electromagnetic calorimeter which supplements the Straw
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Figure 2.8: Cutaway view of the Cylindrical Detector, composed of the

Cylindrical Drift Chamber (in teal) and Cylindrical Trigger Hodoscope (in

yellow). The muon stopping target disks, in purple, sit in the centre of the

detector system.

Tracker in measuring energy and thus in identifying electrons. The ECAL uses

lutetium-yttrium oxyorthosilicate (LYSO) as its scintillating crystals and avalanche pho-

todiodes to collect the emitted photons.

2.5.2 CyDet

The Cylindrical Detector (CyDet) consists of a Cylindrical Drift Chamber (CDC) for

tracking and a Cylindrical Trigger Hodoscope (CTH) for triggering on specific event

signatures. The CyDet surrounds the muon stopping target and sits within the detector

solenoid which generates a 1 T longitudinal magnetic field. This configuration, shown

in Figure 2.8, is designed to eliminate backgrounds from the beam itself as well as

low-momentum products of the collision while maximising the acceptance of conver-

sion electrons. Figure 2.9 additionally shows the signature of a simulated conversion

electron inside the CyDet system.

Cylindrical Drift Chamber

The CDC is a drift chamber used to track charged particles emanating from the muon

stopping target. In order to suppress hits from beam particles, the CDC is wrapped

around the beam pipe and has an inner radius of 50 cm. Combined with the 1 T lon-

gitudinal magnetic field, this prevents charged particles with a transverse momentum
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(a) Event shown in DisplayCore, the 3D

event display of ICEDUST (see Chapter 3).
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(b) CyDet event display showing the timing of hits

since conversion.

Figure 2.9: Conversion electron trajectory as observed by the Cylindrical

Detector. The effect of stereo angles is visible at the start of the trajectory

where hits have alternating azimuthal positions around the actual electron

track. Upon reaching the CTH, the electron produces consecutive hits in

four adjacent counters, satisfying the fourfold coincidence trigger criterion.

less than 60 MeV/2 from reaching the chamber. In order to achieve the sensitivity goal

for Phase-I, the CDC has a momentum resolution better than 200 keV/2 in order to

differentiate between conversion electrons and electrons from the high-energy tails of

the decay-in-orbit and radiative muon capture spectra.

The CDC contains 4986 sense wires strung out parallel to its axis in 20 concentric

layers. The wires in each layer are rotated slightly off from the longitudinal axis, and

the rotation is alternatively clockwise and anti-clockwise from one layer to the next.

This special property, called the stereo angle, allows the drift chamber to stereoscopically

reconstruct, within 3 mm, the longitudinal position of a particle [29].

Each sense wire is held at a potential of up to 1900 V and is surrounded by 8

grounded field wires to generate an inward electric field. When a charged particle ionises

the gas, the field accelerates freed electrons toward the sense wire. These electrons can

gain enough energy to further ionise the gas, leading to avalanche multiplication (see

e.g. [33, Chapter 6]). The avalanche produces a pulse on the sense wire, which is

acquired by the readout electronics.
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Cylindrical Trigger Hodoscope

The CTH consists of two modules that line the inner wall of the CDC, one upstream and

one downstream of the muon stopping target. Each module contains two layers of 48

partially-overlapping scintillation counters. Each counter has a time resolution of 1 ns.

The main purpose of the CTH is to reject background events coming from the beam

itself and from products of the muon beam collision while complementing the CDC in

identifying conversion electrons.

The overlap between counters allows the CTH to reject a large fraction of background

hits, e.g. from photons produced in the muon beam collision. This is done by only

accepting fourfold-coincident events, where four neighbouring counters (two in the

inner layer, two in the outer layer) are hit in a short 10 ns time span. The CTH thus

provides an online triggering mechanism which significantly reduces the number of

background events accepted by the CyDet system due to its proximity with the muon

stopping target. Figure 2.9 shows how a conversion electron might produce such a

fourfold coincidence.

2.5.3 Cosmic ray veto

The COMET experiment hall, being at sea level, is constantly irradiated by muons

produced in the atmosphere by cosmic rays. The cosmic ray veto (CRV) is an additional

active detector which will tightly enclose the CyDet and StrECAL detector systems.

Its purpose is to identify events induced by atmospheric muons rather than by the

COMET beam, and thus reduce the probability that such events will be mistaken for a

conversion signal.

2.6 Conversion signature

Conversion electrons are mono-energetic at � = 104.97 MeV and emitted isotropically

by muons stopped in the target disks. In the magnetic field of the detector solenoid,

they have a helical trajectory which can be reconstructed by the CDC or Straw Tracker.

Figure 2.9 shows a simulated conversion electron going through the Cylindrical Detec-

tor.
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Background source Intrinsic Stray protons Antiprotons Cosmics Total

Estimated events 0.014 0.007 0.001 0.010 0.032

Table 2.1: Expected number of background events from each potential

source [20]. The total count is much smaller than one, such that the ob-

servation of a single signal electron could be evidence that charged lepton

flavour is violated.

The expected timing of conversion electrons is directly related to the time distribu-

tion of muons bound inside the stopping target, shown in Figure 2.2. In Phase-I, in

order to suppress prompt backgrounds from the beam flash, the detector is tuned to

only start triggering on events that occur at least C = 700 ns after each proton collision.

This acceptance criterion retains only 30 % of all signal events because the majority

of bound muons, having an average lifetime of 864 ns, will have undergone decay or

capture before the start of the window.

2.7 Experimental backgrounds

Intrinsic backgrounds from muon decay-in-orbit and nuclear muon capture can mimic

the conversion signal, as discussed in Section 1.4.1. The COMET experiment is also

affected by experimental backgrounds caused by the intense beam as well as cosmic

rays.

Beam-induced backgrounds include delayed events caused by slow particles and

products of stray protons arriving between two bunches. Antiprotons are the main

source of delayed backgrounds due to their slow speed relative to pions and muons of

the same momentum. They are negatively charged, therefore they cannot be efficiently

filtered out by the beamline. Hence, they can move slowly toward the muon stopping

target and produce signal-like secondary electrons during the trigger window.

Stray protons, i.e. protons from the proton beam that arrive at the pion-production

target in the interval between bunches, can produce secondary particles that reach the

detector during the trigger window. To reduce the background rate from this type

of event, COMET requires a strict extinction factor 'extinction = 10
−10

from the J-PARC

beam.

Finally, cosmic rays are a major source of background events. The background rate

depends heavily on the amount of shielding and material above the COMET detector
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system, as well as the efficiency of the cosmic ray veto. The topic of rate estimation for

cosmic ray-induced backgrounds is discussed more thoroughly in Chapter 5.

Table 2.1 shows the rates estimated in the COMET Phase-I technical design report

(TDR) [20, Section 10.6] for each source of background in the �–4 conversion search.

The total number of background events over the data acquisition run time is pre-

dicted to be #
background

= 0.032 given an extinction factor 'extinction = 3 × 10
−11

. Since

#
background

� 1, the observation of a single signal electron would suggest that there

is a CLFV process at play, which would further motivate this search through COMET

Phase-II and beyond.

2.8 Sensitivity and run time

The sensitivity of the COMET experiment is conventionally expressed as a single event

sensitivity (SES), which is defined as the value of the �–4 conversion branching ratio for

which COMET expects to observe one event (smaller is better). SES takes into account

the net acceptance of signal events by the detector system, however it does not say

anything about the experimental backgrounds. When using SES as a figure of merit, a

study of potential background sources is usually necessary to show that the expected

number of background events is less than one.

The total number of coherent �–4 conversions produced by a population of #�

bound muons can be expressed as

#conversion = #� · ℬconversion · ℬcapture · 5coherent
, (2.3)

where ℬconversion is the conversion branching ratio normalised to the branching ratio of

nuclear muon capture ℬcapture, and 5
coherent

is the fraction of conversions estimated to

occur coherently and leave the nucleus in its ground state. The number of conversion

electrons that will be observed by the detector is then #
obs

= #conversion ��−4 , where

��−4 is the detector’s net signal acceptance. If we require #
obs

= 1 and rearrange to

find the corresponding value of ℬconversion, we obtain the single event sensitivity:

SES ≡ ℬ#
obs

=1

conversion
=

1

#� ��−4 ℬcapture 5
coherent

. (2.4)
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Factor Geometrical Hardware Track-finding Cuts Momentum Timing Net

Efficiency 26 % 81 % 99 % 70 % 93 % 30 % 4.1 %

Table 2.2: Efficiency factors used to determine the signal acceptance in the

COMET Phase-I TDR [20]. The net acceptance is the product of all efficiency

factors. “Cuts” refers to track quality cuts, used to reject events with irregular

tracks that cannot be accurately fitted and reconstructed.

In COMET Phase-I, the signal acceptance can be broken down into seven efficiency

factors: geometrical acceptance, hardware (trigger and data acquisition), track finding,

track reconstruction quality cuts, momentum window and trigger time window. Ta-

ble 2.2 lists these factors as they were estimated in the COMET Phase-I TDR [20, Section

10.1].

From the net signal acceptance ��−4 = 4.1 %, we can now estimate the total data

acquisition run time required to reach the sensitivity goal of the experiment, SES =

3.1 × 10
−15

, using Equation 2.4. The required number of bound muons is thus #� =

1.5 × 10
16

. This quantity can be related to the total run time ) via the proton beam

current �? = 0.4 µA and the yield of stopped muons per collision '�/? = 4.7 × 10
−4

:

#� = ) ·
�?

4
· '�/? . (2.5)

This equation is rearranged for ) to yield ) = 146 days of data acquisition for a Phase-I

SES of 3.1 × 10
−15

.

26



Chapter 3

Software and Simulation

Experiments in high energy physics are commonly accompanied by the development

of a set of software tools to help in manipulating and analysing experimental data.

Simulations are used extensively to optimise experimental designs and prepare for the

collection of real data while the physical instruments — detectors, magnets, readout

electronics and data acquisition systems — are being manufactured and assembled.

3.1 The ICEDUST Software Suite

The COMET collaboration develops a suite of software packages named ICEDUST

(Integrated COMET Experimental Data User Software Toolkit) to satisfy the offline

data-processing requirements of the experiment. Originally forked in 2013 from the

software written for T2K’s near detector system ND280, ICEDUST supports the needs

of the COMET experiment with regard to simulation, on-disk data format, calibration,

reconstruction and analysis. Figure 3.1 shows the flow of real and simulated data

within the ICEDUST framework, and lists the names of the key packages for each step.

3.1.1 Data format

A key design principle of ICEDUST is to define a common format adopted by both real

and simulated data, such that the pipeline of calibration, reconstruction and analysis

can be thoroughly tested with only simulation data, in advance of the data acquisition

stage. This offline data format is called oaEvent. Based on the ROOT [34] serialisation

system, oaEvent defines a file format where data is laid out as a sequence of events,
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shown schematically in Figure 3.2. Each event object contains a tree of data containers,

each of which holds an array of some given data type (e.g. detector hits, calibrated

energy deposits, reconstructed tracks, etc.).

From Phase-I onward, data will be collected using the MIDAS data acquisition

system, hence the online on-disk format is based on MIDAS data banks. ICEDUST pro-

vides a direct translation from this format to oaEvent via the oaRawEvent and oaUnpack

packages. Once translated, the data can flow through the calibration, reconstruction

and analysis stages.

3.1.2 Simulation pipeline

Simulations of the COMET experiment can be split into four steps:

1. Event generation takes place at the level of individual protons. A proton beam

profile is drawn ahead of time using a specialised Turtle [35] simulation of the

beamline. The position and momentum of the protons are histogrammed at a

short distance ahead of the pion-production target. Protons are sampled from

the resulting distribution to generate events, and the outcome from each primary

proton is referred to as a proton-on-target (POT) event.

2. Particle tracking is the step-by-step propagation of particles through the geom-

etry and electromagnetic fields of the experimental setup. The primary proton

will usually produce many secondary particles in the collision, some of which

might propagate to the detector region. Simulated energy deposits in the active

detector volumes are recorded for the detector response simulation stage.

3. Event bunching allows us to model the simultaneous arrival of a proton bunch

into the setup. In the real beamline, millions of protons are bunched into a short

100 ns time interval, and two consecutive bunches are separated by about 1.2 µs.

In order to simulate this time structure, a time offset is applied to each POT event,

after which the events are merged into bunches. Following this, individual bunch

events can be further merged into bunch trains to obtain an entire sequence and

account for potential pileup.

4. Detector response simulation translates the true energy deposits simulated in

the particle tracking stage into detector-specific hits. It takes into account the way
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in which charge or light is collected by the detector, and can apply smearing to the

observed energy and timing. This step effectively reverses the calibration process

by transforming energy deposits into uncalibrated, digitised hits and waveforms.

Once all four stages of the simulation pipeline are complete, the result should closely

resemble real data post-translation from MIDAS to oaEvent. This implies that it should

be able to naturally flow through the calibration, reconstruction and analysis stages.

At each stage, the information may be compared with the truth information available

from the particle tracking stage in order to refine each process. This exercise should

also outline the performance of the offline data-processing pipeline and hence provide

an estimate of the computational requirements of the experiment.

3.1.3 Intermediate simulation file format

The oaRooTracker package defines another ROOT-based file format used by the sim-

ulation to save and retrieve particle states. The typical use case is for a simulation to

record particles that have reached a key geometrical element (e.g. the detector region)

to build up a sample of interesting events. The saved particle states can then be used as

input to subsequent simulations, easing the need for a full simulation run every time a

change is made to the geometry or physics models.

In addition, from a large enough sample of particles recorded at some key volume

boundary, the flux distribution of inbound particles can be estimated. Events can then

be sampled from this distribution to increase the statistics inside the volume of interest.

3.2 Monte Carlo simulation in ICEDUST

Monte Carlo (MC) simulation is the process through which hypothetical particles are

realistically propagated through an experimental setup, with the aim of evaluating the

experiment’s performance and to prepare for its realisation. Currently, in COMET,

MC simulations are heavily used to further optimise the experiment’s design and to

develop reconstruction and analysis algorithms.

Monte Carlo simulation in high energy physics can be described as the stepwise

propagation (tracking) of particles through matter and electromagnetic fields. Starting

from initial conditions of position and momentum, a particle advances in space and

30



(a) Phase-I in the CyDet configuration. (b) Phase-II.

Figure 3.3: Cutaway views of the simulation geometries implemented in

SimG4 and visualised with DisplayCore. The experiment hall is also modelled

in the simulation but was hidden here for clarity.

time according to the laws of relativistic kinematics. It can change velocity or direction,

and produce secondary particles via interactions with the local medium and field. The

tracking of a particle ends when it decays, gets absorbed by some material, or exits the

simulation space.

Interactions and decays occur stochastically according to measured cross-sections

and lifetimes. Depending on the type of interaction, secondary particles may be emitted.

In this case, the position and momentum of secondaries are stored in memory until

the tracking of the primary particle is finished. The list of secondaries is then iterated

through, propagating each one in turn. Since secondaries may produce their own

secondaries, this process continues recursively until all products of the original primary

particle have been accounted for.

In ICEDUST, particle tracking, event bunching and detector response simulation are

handled in separate packages. Particle tracking can be performed using four different

engines: Geant4 [31], FLUKA [36], MARS15 [37] and PHITS [38]. The corresponding

ICEDUST packages are SimG4, SimFLUKA, SimMARS, and SimPHITS, respectively. Event

bunching is handled by the SimHitMerger package, and SimDetectorResponse performs

detector response simulation.
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3.2.1 Geometry

The SimG4 package contains the most detailed and up-to-date definitions of the COMET

simulation geometries. The various components that make up a simulation world are

defined with constructive solid geometry, using the standard Geant4 geometry classes.

In addition, SimG4 extends the Geant4 macro language to allow geometrical parameters

to be defined in macro files. The position, dimensions, and material of every volume

can thus be specified at run-time rather than compile-time. A custom parser attached

to every volume allows interdependencies between components and supports looping,

for instance to position identical elements in a regular pattern.

Once the simulation geometry is assembled, it is also translated into the ROOT TGeo

representation, which simplifies its visualisation and its storage on disk as metadata

inside oaEventfiles. This representation can furthermore be interpreted by the MARS15

tracking software, which simplifies the process of running comparative simulations.

The SimG4 package includes geometries for the Phase-I (CyDet and StrECAL con-

figurations) and Phase-II setups. Over time, these simulation worlds are refined by

developers to better reflect the exact configuration of the experiment. Figure 3.3 shows

the simulation geometries for the two conversion-searching COMET designs.

3.2.2 Physics

The COMET experiment involves many physical processes, from the initial proton col-

lision to energy depositions in the detector. The MC simulation must faithfully account

for any process which could lead to backgrounds in order to realistically estimate the

experiment’s performance. Hence, the SimG4 simulation associates standard Geant4

hadronic and electromagnetic physics models with custom code for nuclear muon

capture and muon decay-in-orbit.

To simulate collisions between the proton beam and the pion-production target,

SimG4 uses the QGSP_BERT_HP reference physics list, which handles hadronic interactions

by modelling elastic, inelastic, capture and fission processes [39]. Electromagnetic

processes are handled by the standard Geant4 electromagnetic physics model.

Muons at rest receive a special treatment due to their important contribution toward

the background rate in COMET. The default energy spectrum of electrons from muon

decay-in-orbit is replaced by the 2011 numerical evaluation of Czarnecki et al. [25],
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which includes the effect of nuclear recoil and thus allows electron energies up to

104.973 MeV. In addition, the nuclear muon capture (NMC) model is replaced to adhere

to the results of the AlCap experiment [26] which measured the energy spectrum of

protons emitted after NMC in aluminium.

3.2.3 Signal simulation

By default, the list of physical processes considered by SimG4 includes only SM-allowed

interactions and decays, and hence does not include �–4 conversion. In order to

simulate signal events, one must manually produce conversion electrons out of the

muons stopped inside the stopping target.

From the normal beam simulation, one can estimate the spatial and temporal dis-

tributions of muons being stopped in the stopping target, and subsequently sample

conversion electrons from them. In sensitivity studies, signal events are commonly

overlaid onto a pure background sample in order to evaluate the signal acceptance and

background rejection efficiencies of the hit filtering and track finding routines.

Figure 2.9 shows a simulated conversion electron emerging from the stopping target,

depositing energy inside the CDC gas, to eventually trigger the CTH by hitting four

adjacent counters.

3.2.4 Representation of simulated CDC hits

As a particle passes through a material, it tends to lose energy to the medium, e.g.

through inelastic scattering or ionisation. In MC simulations, simulated energy de-

posits must be recorded inside active detector elements in order for us to determine the

response of the detector and readout systems to the passage of the particle.

Detector elements in a Geant4 simulation are defined as “sensitive volumes”, and

energy deposits of incoming particles are accumulated and recorded as “hits”. The way

in which hits are instantiated is typically dependent on the type of detector, because of

differing granularities between e.g. a plastic scintillator and a drift chamber. A higher-

granularity detector type requires finer-detailed information, hence more hit instances

along the trajectory.

In SimG4, the data type associated with CDC hits is called IG4HitGas. When Geant4

reports an energy deposit inside the CDC, an instance of that class is created. If a
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Figure 3.4: Hits, shown as red dots, produced by the CDC sensitive detec-

tor class when a particle deposits charge inside the gas. One instance of

IG4HitGas is created every time the particle traverses a CDC cell, i.e. roughly

every 16 mm.

particle makes multiple steps in a CDC cell, the deposit from each step is accumulated

into the same hit instance, such that only one instance per particle per cell may exist.

If a particle enters the same cell multiple times, one hit instance is created per entry.

This is shown in Figure 3.4, where the position and granularity of IG4HitGas instances

is drawn along an electron’s trajectory in the CDC.

This hit representation is designed toward gaseous detectors, hence it also applies to

the Straw-Tube Tracker of Phase-I and Phase-II. Because of the relatively low density of

hit instances along a trajectory, important details of the true energy deposition pattern

may be lost. Therefore, SimG4 implements a run-time option to store auxiliary points

inside each hit instance, which provide a more fine-grained description of the particle’s

steps inside the cell.

3.3 Large-scale simulation: MC5

The 5th large-scale production of simulation data, MC5, was run in 2020 using comput-

ing facilities at the French National Institute of Nuclear and Particle Physics Computing

Centre (CC-IN2P3) in Lyon, France. Using 2 000 concurrent machines over the course of

a few weeks, the outcomes of 1 billion proton-on-target (POT) collisions were simulated

with SimG4 in the CyDet configuration of COMET Phase-I.
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Software

Leading up to the MC5 production, several aspects of the software were changed or

updated in comparison with the previous large-scale production:

• The CMake build configuration system was integrated by Andreas Jansen to

replace the legacy CMT system.

• I led the upgrade of the ROOT software, upon which the oaEvent data format

depends, from major version 5 to 6.

• The CyDet geometry received multiple updates to make it as faithful as possible

to the design. Detailed elements such as readout boards were added, and I

contributed in tracing back and fixing inaccurate positioning of the CDC wires.

• As discussed in Section 3.2.4, I participated in changing the treatment of energy

deposits in the CDC to the current IG4HitGas representation and thoroughly

tested the new behaviour.

• I identified and resolved all memory-related issues in the SimG4 code using

valgrind to bring the simulation software into a production-ready state.

Run configuration

The simulation was split into two stages by dividing the world along a boundary which

effectively separates the pion-production section and transport solenoid (upstream) from

the detector region (downstream), as shown in Figure 3.5. The boundary is set up

to record the position and momentum of particles which enter the detector region.

Most particles will enter via the beamline, but a small fraction (mostly neutrons) also

penetrates through the wall, floor and ceiling. In the upstream run, only particles that

enter the detector region are saved to disk, along with their ancestors. Upon doing so,

their position and momentum are recorded to an oaRooTracker file (see Section 3.1.3)

which is used as input for the downstream simulation.

This run configuration implies that the upstream simulation is unaffected by the

disposition of the detector region, hence one can perform the upstream run once and

use the results to seed multiple downstream configurations, changing the detector

geometry (e.g. between CyDet and the StrECAL) or magnetic field. Since most of the
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DownstreamUpstream

Figure 3.5: Top-down cutaway view of the running configuration for MC5,

showing 1.6 × 10
5

overlaid events (1% of a bunch). The orange line shows

the sampling boundary where particles that cross into the detector region

via the beamline or wall are recorded. Only charged-particle trajectories are

shown for clarity.

simulation time is spent in the pion-production section, this gives a flexible way to

produce high-statistics MC datasets in multiple experimental configurations.

Outcome

The data produced with MC5 has a total disk size of 13 TB and is archived on the tape

storage system at CC-IN2P3. The sample size of 10
9

POT events represents 62 unique

beam bunches when merged, or the equivalent of about 0.1 ms of data acquisition in

Phase-I.

3.4 Animated CyDet event display

In order to visualise events in the CyDet system, I developed a tool to display hit data

from MC simulations as animations, visually similar to a slow-motion online monitor

of the detector. The software used to produce these animations has been committed

to the CC-IN2P3 GitLab instance under the name cydet_animations [40]. Figure 3.6

shows a series of frames from one such animation involving a �–4 conversion electron.

The produced animations show the CyDet system under two projections such that

particle trajectories can be visualised in all three dimensions, over time. The left-

hand side of the display shows the projection in the readout plane, with the CDC on
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(a) C = 0 ns. Ignoring pileup and cosmics, the detector is

clear of hits before the POT collision.

(b) C = 155 ns. Many tracks occupy the detector soon

after the beam flash.

(c) C = 310 ns. The hit rate decreases significantly once

the beam flash has ended.

(d) C = 815 ns. A conversion electron appears in the CDC

and triggers the CTH.

Figure 3.6: Still frames of an animation rendered by the visualisation tool.

The event shown outlines how a conversion electron would be seen by the

CyDet system among background hits.
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the outside and the CTH counters on the inside, while the right-hand side shows an

orthogonal view with the same vertical axis. In the centre of the left-hand pane, a

histogram shows the rate of hits over the event’s duration and a cursor indicates the

current time in the simulation.

Each animation shows one bunch event unfolding over one cycle, i.e. 1170 ns from

the collision of one bunch until the arrival of the next one. Time is slowed down by a

factor of around 10
−7

such that the event unfolds over 10 real seconds.

In the CDC, the true position of every hit is drawn as a circle with a radius propor-

tional to the amount of energy deposited. Colour indicates hits produced by the same

particle such that tracks can be disambiguated.

The CTH counters flash only in the case of a fourfold coincidence, whereby four

adjacent counters are struck within a 10 ns window. Fourfold coincidences are most

often caused accidentally by multiple particles, but occasionally a single track will hit

four counters. In these occurrences, the track is emphasised in the animation and the

particle type is displayed, as shown in Figure 3.6d.

Hits in the CDC and CTH fade out over time such that the display does not become

too cluttered, but the fading rate is not representative of the actual time resolution of

the sub-detectors.

The animation rendering tool is written in Python. The code includes an algorithm

for finding fourfold coincidences among CTH hits. To draw the frames, it relies on

the matplotlib package. Once the individual frames have been rendered, a bash script

runs ffmpeg to assemble them into a video format, such as webm, gif or mp4.

3.5 ICEDUST development

3.5.1 Version control

The source code of the ICEDUST software project is version-controlled using Git. A

shared repository is hosted on the GitLab instance of the IN2P3, where developers

collaborate on building up and improving the code base. The repository contains a full

history of the code, an issue tracker, and a set of wiki pages documenting the software.

Additions and changes are submitted to the central repository through merge re-

quests from the developers. When submitting a merge request, changes to the code
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are typically reviewed by another developer or maintainer who verifies that no new

bugs are introduced into the main branch. To further reduce the likelihood of new is-

sues appearing, the ICEDUST repository makes use of GitLab’s continuous integration

system.

3.5.2 Continuous integration and deployment

Every time new code enters the main branch, the whole code base goes through a three-

step pipeline. The first step compiles the code and builds a new version of every binary.

The second step runs custom unit tests and validations using this new build. Each

unit test typically verifies that a single functionality works as intended in an isolated

environment, while validations can run multiple pieces of the software and ensure that

the results are consistent between one revision of ICEDUST and the next.

If the building, unit testing and validation stages all pass, the pipeline moves to

the final deployment step where the new binaries are assembled into a Docker image

which is published to the repository’s container registry. Users who wish to use the

compiled software as-is can download this image and run it via Docker or Singularity.

If any of the pipeline steps reports a failure, the developer submitting the merge request

is notified and full logs are provided to identify the issue. A merge request is usually

only accepted once the code has been reviewed and if the pipeline finishes successfully.

3.5.3 Documentation

ICEDUST uses Doxygen to generate documentation of the source code. Doxygen parses

the C++ code and comments to produce a set of static HTML pages containing types,

functions and inheritance diagrams that can be navigated in a web browser.

In order to automate this process as the software evolves over time, the generation

of the documentation was added as a step in the deployment stage of the continuous

integration pipeline. Whenever a merge request is accepted, Doxygen is run on the

updated code base to generate a new set of web pages containing the source code

reference. This content is then pushed to the built-in Pages of the ICEDUST repository,

a static web server hosted on the GitLab instance alongside the Git repository and wiki

pages. This then provides a central, always up-to-date version of the documentation

that all developers and users can access and use as reference.

39



Chapter 4

Data Augmentation with

Generative Adversarial Networks

When performing a full simulation of COMET Phase-I, most of the activity takes place

in the initial collision between the proton beam and the graphite target. The many

hadronic interactions caused by the proton beam collision represent 99.7 % of the

computational cost of the Monte Carlo simulation. In addition, because of the large

distance between the pion production section and the detector area, only about one

POT collision in a thousand will produce observable hits in the detector system.

Hence, despite being the most physically accurate means to synthesise data in the

detector, simulating each proton individually is also very computationally inefficient.

Using this brute-force method with the infrastructure used for MC5, it is only possible

to produce the equivalent of 100 to 1 000 beam bunches, which is far from the 2 × 10
12

expected bunch collisions of COMET Phase-I.

Efficient sampling methods

In order to produce detector-level data more efficiently, the outcomes of a full MC

simulation can be re-used to generate events. Generally, any sampling mechanism

which enables us to forego the proton collision will make the simulation more efficient

at the cost of more uncertainty in the outcomes.

In the MC5 simulation described in Section 3.3, particles entering the detector

region (either via the beam pipe or through the walls) are frozen and saved to disk to be

processed later. These saved states can be reused by propagating them with multiple
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distinct random seeds, thus affecting the outcome of every interaction and augmenting

our sample.

Another way of generating events closer to our region of interest is to histogram the

kinematics of particles at a given boundary and then sample events from the estimated

distribution. In ICEDUST, the oaRooTracker format used to store particle states (see

Section 3.1.3) can be aggregated into histograms, which are then used as input by the

simulation.

To optimise the efficiency of the simulation even further, one could sample hits

directly inside the detector system. In this chapter, we consider a fast generator of

hit data to supplement Monte Carlo simulation. This generator should replicate hit

patterns produced by simulated particles in the detector, without relying on a full

particle-by-particle tracking approach.

The approach shown here is based on current state-of-the-art machine learning

methods which were designed to be applied mainly in other domains, such as image

and audio generation. Our hit generator is built using the principles underlying these

methods as well as the technologies that were developed to implement them. In this

chapter, we describe from “first principles” how the generative model was designed so

that similar applications may build upon our work in the future.

4.1 Generative Adversarial Networks

Generative Adversarial Networks (GANs) are a class of generative models that can

learn the underlying distribution of a dataset in order to synthesise new samples [41].

Training a GAN requires two neural networks to compete in a zero-sum game where

one network (the generator) generates samples and the other (the discriminator) tries to

discriminate between real and generated data. Figure 4.1 schematically illustrates a

generic GAN training procedure.

As the conventional example, let us consider the case where both the discriminator

and the generator are implemented as multi-layer perceptrons, denoted as � and �

respectively. The discriminator � is designed as a binary classifier whose goal is to

tell real samples (from the training dataset) apart from fake (generated) ones. Given a

sample x, it outputs a score between 0 and 1, i.e. �(x) ∈ [0, 1]. Similar to a classification
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Figure 4.1: Schematic diagram of the data flow in the GAN training pro-

cedure. Real samples from the training dataset and fake samples from the

generator are iteratively evaluated by the discriminator to compute a score.

The loss for both networks is estimated by comparing the score to the sam-

ple’s associated truth label (real or fake). By backpropagation, the loss is then

numerically differentiated with respect to the network weights. The weights

are then adjusted in the direction of decreasing loss.

task, we define the loss function of � as the cross entropy between its prediction and

the true label (conventionally, 0 for a fake sample and 1 for a real sample):

ℒ� = −Ex∼?[log�(x)] − Ex̃∼6[log(1 − �(x̃))], (4.1)

where E denotes the expected value or mean, ? is the distribution of real samples and

6 is the distribution of samples generated by �. Minimising this function with respect

to � implies that the discriminator will tend to assign a high score to samples drawn

from the training dataset and a low score to generated samples.

The generator produces fake samples by mapping vectors from a latent space into

data space. Latent-space vectors z are sampled according to a prior ?z(z), typically

a multivariate normal distribution for simplicity and speed. The objective of � is to

generate samples x̃ = �(z ∼ ?z) such that �(x̃) → 1. In other words, the generator

aims to maximise the second term in Equation 4.1, and its loss function is

ℒ� = Ex̃∼6[log(1 − �(x̃))]

= Ez∼?z [log(1 − �(�(z))]. (4.2)

Combining these minimisation tasks, we obtain the mathematical formulation of

the adversarial training objective:

min

�
max

�
Ex∼?[log�(x)] + Ez∼?z [log(1 − �(�(z))]. (4.3)
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Although it is not a formal requirement, using neural networks for � and � allows

the above minimax solution to be approximated via backpropagation and stochastic

gradient descent. At every iteration, we evaluate the gradient of each loss with respect

to the internal weights of its respective network. Every weight is then adjusted toward

the direction of steepest decrease in the loss.

4.1.1 Wasserstein GAN

The original formulation of GANs is notoriously difficult to train due to either non-

convergence, instability or mode collapse1. Training a GAN model is highly sensitive

to the choice of hyperparameters: learning rate, optimisation algorithm, network ar-

chitecture.

The Wasserstein GAN (WGAN) formulation is an attempt to address the stability

issues of the original GAN [42]. The authors argue that solving Equation 4.3, which

implicitly minimises the Jensen-Shannon divergence between ? and 6, leads to vanish-

ing gradients when the discriminator is too powerful, and thus to unstable training.

Instead, they propose that the Wasserstein-1 distance2 between ? and 6 should be

minimised, because of the superior continuity and differentiability properties of that

metric. They go on to show that if the discriminator is 1-Lipschitz continuous3, then

the adversarial training problem can be formulated as:

min

�
max

�
Ex∼? [�(x)] − Ez∼?z [�(�(z))] . (4.4)

In practice, aside from a change to the loss functions, this method requires that the

discriminator be replaced by a “critic”, so-called because its output is not bounded to

[0, 1] and can be better interpreted as a score. In order for � to satisfy the Lipschitz

continuity constraint, the authors propose that the magnitude of its weights should be

restricted to a small range, e.g. [−0.01, 0.01].
In addition to demonstrating the superior training stability of this WGAN method,

1Mode collapse is the situation where � maps every point in the latent space onto the same output,

leading to low diversity in the generated samples.

2Also called earth mover’s distance, Wasserstein distance is a distance function between probability

distributions. If each distribution is a pile of soil, it corresponds to the minimum cost of turning one

pile into the other, where cost is defined as mass times distance. Wasserstein-1 denotes the first order

Wasserstein distance.

3A function is 1-Lipschitz continuous if its gradient has a norm less or equal to 1 everywhere.
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it was observed empirically that this formulation does not lead to mode collapse and

improves the robustness of the GAN with respect to changes in the network architec-

tures.

Gradient penalty

The same year, another method to enforce the Lipschitz constraint on � was discussed

by Gulrajani et al. [43], which outlines the shortcomings of weight clipping and instead

proposes that the discriminator’s gradient should be constrained. Since this is difficult

to achieve in practice, the authors suggest a soft constraint on the gradient norm of �

using an explicit term in its loss function:

ℒ� = −Ex∼? [�(x)] + Ez∼?z [�(�(z))] + �GP Ex̂∼?x̂

[ (
‖∇x̂ �(x̂)‖

2
− 1

)
2

]
︸                                   ︷︷                                   ︸

Gradient penalty

, (4.5)

where the third term is the gradient penalty (GP) added to the WGAN loss, and �GP

is the gradient penalty constant, a new hyperparameter. In this term, samples x̂ are

drawn from ?x̂ by sampling uniformly along straight lines between pairs of points from

? and 6.

The generator loss is, again, defined so as to increase the likelihood that a fake

sample will fool the discriminator:

ℒ� = −Ez∼?z [�(�(z))] , (4.6)

which is the second term of Equation 4.5 with a minus sign, similarly to the relationship

between Equations 4.3 and 4.2. Note that more generally, the generator loss should be

defined as ℒ� ≡ −ℒ� to achieve adversarial training. However, in the case of neural

networks trained by gradient descent, only the derivative of ℒ� with respect to �’s

weights is relevant. Since the other terms in ℒ� do not depend on �’s weights, we can

discard them in ℒ� to achieve the same result.

In our experiments, we found that the above WGAN-GP formulation provides the

most stable training procedure for a variety of network architectures. In addition, it has

the significant advantage of making the critic loss more interpretable and overfitting

noticeable: as the authors demonstrate, the critic loss tends to converge to a maximum
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value over training iterations, and in the case of overfit the critic losses evaluated on

training and test samples diverge during training.

4.2 GANs in High Energy Physics

In HEP, GANs (both in their original and subsequent formulations) have been proposed

in a variety of experiments to supplement traditional Monte Carlo simulation. Their

usage typically falls in one of two categories: event generation, and generation of hit

data at the detector level.

4.2.1 Event generation

Event-generating GANs typically focus on synthesising kinematic properties of outgo-

ing particles in specific processes. In high-energy and hadronic collisions especially, a

GAN generator has the potential to greatly reduce the computational cost of generating

events via traditional MC simulations only.

In collider experiments, GANs have been used to simulate final-state kinematics for

/- and top-producing events [44, 45]. In anticipation for the High-Luminosity LHC,

a GAN model was also trained to generate dimuon final states from / decay, toward

the production of large analysis-specific datasets [46]. In the context of the SHiP

experiment, a GAN model is used to sample the position and momentum of muons

produced by the collision of a 400 GeV/2 proton beam with a fixed target, thereby

reducing the need to simulate every hadronic interaction [47].

4.2.2 Detector data generation

Generation of detector data means building a model of the possible particle signatures

inside a specific detector system. The hit patterns depend on the type of detector,

detector geometry, particle types and energies, as well as the timescales considered.

In experiments where hadronic jets are commonly observed in the detector system,

such as ATLAS and CMS, deep convolutional GANs were proposed as an alternative

to MC simulations to generate jet images, a 2D representation of the energy deposition

patterns from jets [48].
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Subsequently, the CaloGAN model [49] used parts of the jet-image GAN as building

blocks in order to generate realistic 3D electromagnetic showers. As a noteworthy

addition, the generator was also conditioned to produce appropriate showers given the

energy of the inbound particle. This implies that conservation of total energy could be

implicitly learned by the model along with the distribution of shower patterns, leading

to more physically consistent samples.

In addition to the original GAN concept, the WGAN-GP formulation is also used

in the HEP domain to generate simulated detector data, for instance to produce cosmic

ray-induced showers in a water-Cherenkov detector array such as the Pierre Auger

Cosmic Ray Observatory [50], or showers caused by an electron beam hitting the CMS

High Granularity Calorimeter [51].

In the case of COMET, both event generation and detector hit generation could be

applied, as the main computational bottleneck occurs in simulating the proton beam

collision. An event-generating GAN could for instance be trained to sample backward-

going particles from the collisions. However, because of the large separation between

the proton target and the detector, generating hits directly is a more efficient approach.

The rest of this chapter focuses on hit generation inside the CDC of COMET Phase-I.

4.3 The CDC hit generator

Our approach draws inspiration from recent GAN implementations in other high en-

ergy physics experiments and in other areas, such as image and text synthesis. We

design a GAN model whose purpose is to efficiently and realistically generate hits in

the CDC, with the aim of augmenting MC datasets for COMET Phase-I.

In order to build a generative model to mimic the patterns of hits in the detector,

it is necessary to consider these hits as physical energy deposits created by simulating

energy loss processes of particles inside the detector gas volume. The true process of

simulating hits thus obeys strict rules which stem from the physical models at play. In

contrast, our GAN model is not required to be aware of the physics, which implies it

can be much faster at producing hits, but it can also lead to inaccuracies in the resulting

generated data which must be evaluated.

This section describes how the simulated hits are selected and arranged, and how

46



Energy deposit Time Dist. of closest approach Wire index

Unit MeV ns mm —

Label edep t doca wire
Data type float float float integer

Table 4.1: Physical features which make up each hit in the training dataset.

the networks are consequently built in order to learn a representation of the data.

Multiple aspects of the problem must be considered carefully in order for the GAN to

produce a faithful model, such as how to select, lay out and pre-process the hit data.

4.3.1 Hit data structure

The Geant4 simulation tracks particles one by one. Secondaries produced during the

tracking of a particle are only propagated once the parent has ended its journey. This

implies that simulated hits occur in a specific order (which is not strictly the time order),

where hits produced by the same particle are laid out contiguously. During training,

data is presented to the GAN in this particular order such that it learns to model entire

tracks rather than isolated hits.

Each hit is composed of four variables, each of which is necessary to later simulate

the ionisation in the gas and the response of the readout electronics. These variables,

or features, are: the amount of energy deposited, the absolute time since the start of

the event, the distance of closest approach (DCA) from the track to the wire, and the

position of the hit inside the CDC. This position is represented as the unique index of

the cell, from 0 to 4985, where the energy loss occurred. These features are summarised

in Table 4.1.

The CDC gas simulation dictates that each particle should produce one hit in every

cell it traverses. The GAN ought to be able to learn how hits are related within a track,

thus it should be able to process more than one hit at a time. The hit data is arranged into

sequences, where series of hits produced by multiple particles are present. Figure 4.2

illustrates the arrangement of hit data as it is generated by the generator and fed to the

discriminator.
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Figure 4.2: Structure of one training sample. Hits are arranged into fixed-

length sequences in the Geant4 order, i.e. whereby hits from the same track

are contiguous.

4.3.2 Event selection

Not all MC events are fed to the GAN for training. In particular, potential background

sources, i.e. particles with a momentum around 105 MeV/2, produce characteristic

series of hits in the CDC which are likely to be reconstructed by a track fitting algorithm.

Such a particle’s trajectory is firmly dictated by the Lorentz force, which is a constraint

difficult to impose on a GAN model. In addition, a GAN might generate too large or

too small a proportion of reconstructible events, leading to more uncertainty in the

background rates estimated from samples containing synthetic hits. Unlike MC data,

fake tracks can yield no information concerning their origin, as the GAN-generated hits

come completely unlabelled.

These reasons motivate a splitting of the dataset into reconstructible events, which

only the MC simulation may simulate, and noise-like events, where no reconstructible

track occurs, and the data is deemed “uninteresting” enough that it can be augmented

by the GAN without biasing the physical results.

In each MC event (corresponding to the outcomes of one proton-on-target collision),

we determine if at least one particle with ? > 50 MeV/2 has entered the CDC and pro-

duced at least 4 hits. In this case, all hits from the event are given the “reconstructible”

label and will not be used to train the GAN. If no reconstructible track has occurred

during the event, all hits are considered noise-like and are added to the training dataset.

Figure 4.3 compares noise-like and reconstructible hits and outlines the difference in

structure between the two categories.
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(a) Noise-like hits from 100 MC events.
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(b) Reconstructible hits from 10 MC events.

Figure 4.3: Comparison of hit patterns in the CDC depending on whether

or not a reconstructible track occurred. The area of each hit is proportional

to the amount of energy deposited, and the colour denotes particle type.

The MC5 dataset contains 10
9

events of which 51 137 have hits in the CDC. Of those,

2 036 events have at least one reconstructible track, and 49 101 events do not. Inside this

latter category, 634 266 hits are present, and these make up the GAN training dataset.

4.3.3 Pre-processing

The three continuous hit features (energy deposit, time and DCA) are physical quanti-

ties with different units and scales. Their distributions are shown in Figure 4.4. In order

to maximise gradient flow in the discriminator, it is common practice for all features to

be re-scaled into a fixed range, e.g. [0, 1]. However, in the case of highly uneven and/or

discontinuous distributions, the generator can struggle to model the data which results

in a distribution of generated data which does not match the distribution of training

data.

To alleviate this issue and define a common scale for all continuous features, each

feature undergoes a non-linear quantile transformation, which corresponds to a mapping

from each value G8 to H8 = Φ−1(�(G8)), where � is the empirical cumulative distribution

function (CDF) of the feature, andΦ is the Gaussian CDF. This transformation effectively

yields normally distributed features, which the generator can more easily reproduce.

Its task is not however made trivial, as the correlations between features remain, which

it must learn to model.
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Figure 4.4: Distributions of the three continuous features used to train the

GAN.

In addition to the quantile transformation, the values of each feature are re-scaled

independently to lie within the [−1, 1] range. To prevent the generator from producing

values out of this range, which would give the discriminator a clear indication of a

sample being fake, the hyperbolic tangent function is used as the generator’s final layer.

4.3.4 Hit sequence sampling and data augmentation

At each step of the training, the discriminator receives two mini-batches of hit sequences:

one from the training data and one synthesised by the generator. The discriminator’s

output is then used to compute the loss for � and �, according to Equations 4.5 and 4.6.

To allow parallel processing of the hit sequences by the networks, a fixed sequence

length ! is defined prior to training. Hence hits can be packed into dense tensors

upon which vectorised operations can be applied. Typically, a sequence will contain

concatenated sets of hits from multiple tracks and from multiple events.

Hits belonging to different events are completely unrelated, as they are not the

product of the same POT collision. This provides the freedom to swap events and

concatenate their hits in any order. The order of hits within the same event should

however be preserved. Combining events in many ways enhances the diversity and

size of the training dataset, which alleviates the possibility of overfitting or mode

collapse. Concatenating the 634 266 hits linearly into sequences of length ! = 512

would yield only 1239 samples. By rearranging the events, we produce 500 000 unique

samples which the GAN learns from. Although it is not the maximum number of event

re-combinations, this number of samples was found to be large enough to prevent

overfitting of our GAN model.
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Figure 4.5: Temporal (1D) convolution operation with kernel size 3. For

clarity, both the input and output sequences have one channel, i.e. �in =

�out = 1. The blue arrow shows the direction along which the kernel slides

across the input sequence.

4.3.5 Network components

Temporal convolutions

In order to process sequences of hits efficiently, both networks use a series of convolu-

tional layers which (unintuitively) apply cross-correlation operations between the input

G and the learned kernel F:

H8 = (F ∗ G)8 =
∑
:

F: · G8+: , (4.7)

where 8 is the position along the output sequence H, and : runs over the kernel weights.

This operation is illustrated in Figure 4.5.

Unlike in the common case of raster images, the input to the discriminator is not a

two-dimensional array of pixels, but a one-dimensional sequence of hits. Hence, the

kernels are also one dimensional. The “channels” of the input sequence correspond to

features of the hits. Within a convolutional layer, Equation 4.7 is applied as many times

as there are channels in the input sequence, and the result is the sum over channels.

The operation can also be applied in parallel with many different kernels, in which case

each kernel will produce one channel in the output sequence.

The fact that the kernel acts on adjacent elements implies that the network effectively

processes multiple consecutive hits at a time. This allows the generator to synthesise

coherent sequences and the discriminator to perceive whether a generated sequence

has the same overarching structure as real sequences.

Optionally, convolution kernels can be applied over the sequence with a stride,
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Figure 4.6: Residual blocks used in both networks to facilitate gradient flow.

Blue arrows indicate an activation function.

meaning that the kernel moves down by more than one element between two cross-

correlation operations. This has the effect of producing an output sequence that is

shorter than the input sequence. This is often used to allow the network to see the data

over increasingly large scales and to keep the total number of operations reasonable in

layers where the input has many channels.

Residual connections

In order to facilitate gradient flow from the discriminator to the generator and thus

speed up training, convolutional layers can be replaced by residual blocks [52] in

both networks. A residual block combines two convolutional layers with a residual

connection from the input to the output, allowing the gradients to propagate via two

paths, as shown in Figure 4.6. The output y of the block can be written as y =

ℱ (x) + x , where ℱ represents the operation of the two convolutional layers and x is

the input tensor. When ℱ (x) and x have different shapes, a dimension-matching linear

transformation can be applied to x. In this case, the result is y = ℱ (x) +,x, where the

weights of the , tensor are adjusted during training.

4.3.6 Network architectures

Having introduced the building blocks, we can now assemble them into our discrimina-

tor and generator. The two networks, shown schematically in Figure 4.7, are composed

of stacked residual blocks, which progressively increase the size of the sequence in the

generator, or decrease it in the discriminator.
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Figure 4.7: Network architectures. The layer types are: FC for fully-

connected, Conv for a standard convolution and ConvT for a transposed

(fractionally-strided) convolution. In convolutional layers, kernel size and

stride are denoted by k and s, respectively.
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Data flow

In the generator, the input vector, sampled from latent space, is first passed through

a fully-connected layer, after which it is reshaped to have a length of 4. The proto-

sequence is then up-sampled by fractionally-strided convolutional layers, adding finer

and finer details to the sample. As the length increases, the number of channels is

decreased to limit the total number of operations and the network’s complexity. Once

the sample has reached a length of !, the information is projected to data space: to

obtain the continuous features, a convolutional layer with three output channels is

applied and its output passed through a tanh function, yielding values in the range

[−1, 1]; while for the discrete wire index, we use a layer with 4986 output channels4

followed by a softmax5 function to determine the network’s preferred choice of wire

for each hit.

The discriminator extracts information from the input hits through its convolutional

layers, progressively down-sampling the sequence while increasing the number of

channels. After 7 residual blocks, a global average pooling is performed, i.e. for each

channel, the result is the average value over the sequence. The resulting tensor is passed

through a final fully-connected layer, combining the features into a single scalar which

is the score for that sample.

Gradient flow for discrete features

We would like the discriminator to have some knowledge of where, in the detector,

hits are located, so that it can use this knowledge as a criterion in its judgement. A

straightforward way to give this information to the discriminator would be to use the

wire index to query a lookup table of wire positions. However, indexing an array

is not a differentiable operation, hence it does not allow gradients to flow from the

output score to the generator weights, and this prevents the generator from learning to

accurately position hits.

To allow gradient flow, we can represent the wire index as a one-hot encoded vector,

whose size is the total number of wires, and where only the entry corresponding to the

index is 1, and the others are 0. This vector representation can be used in differentiable

4As many as there are wires.

5Defined as Softmax(x)8 = exp(−G8 )∑
9 exp(−G 9 ) .
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Optimiser Adam Sequence length 512

Learning rate 10
−4

Loss WGAN-GP

(�1, �2) (0.9, 0.999) �GP 10

Table 4.2: Training hyperparameters.

operations to query a particular entry in a table: if we represent the table of wire

positions as a matrix, with dimensions 2×4986, and the one-hot encoded wire vector

as a 4986-dimensional vector v, the product , · v is a differentiable operation and its

output is the wire’s position since the one-hot vector picks out the correct entry from

the position matrix.

In the case of generated hits, the wire vector is not exactly one-hot: instead, the

output of the softmax operation is a vector of real-valued probabilities for each wire. The

multiplication of the above wire position matrix with such a vector can be interpreted

as a weighted sum of all wire positions with the weight corresponding to the softmax

probability. Hence, the result is not an exact wire location but an approximate region

of the detector in which the generator envisions the hit to be.

As discussed in the original WGAN-GP article [43], one might suspect that the

discriminator can learn to reject the output of the generator because it does not look like

a one-hot vector. However, the Wasserstein distance between the real and generated

data remains well-defined and continuous even in this particular case of a discrete

variable, hence using the WGAN loss does allow the networks to learn.

4.3.7 Training

The networks are trained via gradient descent of the WGAN-GP loss, using the Adam

algorithm [53]. The PyTorch framework with which the GAN is implemented allows all

tensor operations to be performed on a Graphics Processing Unit (GPU), which speeds

up training iterations roughly tenfold. Hyperparameters, such as learning rate and

��% , were initially set to a default value from common practice guidelines and then

adjusted if needed to ensure stable loss curves. Table 4.2 summarises the values of

various hyperparameters, and Figure 4.8 shows the loss curves for � and � over 200

training epochs.

The loss functions for � and � evaluated at each training step are recorded to show
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Figure 4.8: Loss curves as a function of training epochs.

the progression and ensure that the networks are learning. In addition, every 100 mini-

batch iterations, the critic loss is evaluated on test samples which are absent from the

training dataset. This allows us to determine whether � is overfitting to the training

data, in which case the loss calculated using training and test samples (Figure 4.8b)

would diverge [43].

4.3.8 Evaluation

Comparing the raw rate of hit production in the CDC, the GAN, once trained, generates

hits six orders of magnitude faster than the downstream simulation used to produce

MC5. Using MC5 as reference, the GAN model can produce as many noise-like hits as

there are in the downstream dataset in six seconds on a single GPU machine, versus

a day of running on 2000 cores for the Monte Carlo simulation. The increase in speed

is indeed the main reason for using a generative model, however it is also crucial to

determine how faithful the generated samples are to the original dataset.

Evaluation of GAN-generated samples is notoriously difficult in all domains because

of the lack of a well-defined, unique metric for quality6. The score returned by the

discriminator network is dependent upon its exact architecture, the dataset and all

hyperparameters, hence it cannot be used as a reliable metric.

Unlike natural images which can be examined visually to determine whether they

depict something real, sequences of hits in a detector are difficult to evaluate percep-

6Unlike in supervised learning, where an obvious quality metric is usually the loss function itself.
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(a) Training samples. (b) Generated samples.

Figure 4.9: Comparison of individual samples, comprised of 512 hits. Hits

are represented by a circle whose area is proportional to the energy deposit

and whose colour shows distance of closest approach. Lines connect con-

secutive hits in the sequence.

tually. Figure 4.9 shows a comparison between uncurated individual samples, four

from the training dataset and four generated by �. In this type of evaluation, we try to

emphasise any differences in the features and sequence structure through colours and

visual hints such as lines connecting consecutive hits.

On a larger scale, we also compare the distributions of hit features across many

samples in order to verify that the GAN can model the dataset properly. Drawing two-

dimensional histograms of each pair of features, as in Figure 4.10, also reveals whether

feature correlations are faithfully modelled by �.

In order to summarise the similarity between the distribution of real and generated

samples into one quantity, a commonly used metric is the Kullback-Leibler (KL) diver-

gence, which can be interpreted as the amount of information lost when approximating

the real dataset with a generated one [54]. KL divergence is defined on a probability

space X as

�KL(% ‖ &) =
∑
G∈X

%(G) log

%(G)
&(G) , (4.8)

where in our case % denotes the distribution of real hits and & that of generated hits.

To compute �KL, the three continuous features of every hit are binned into a three-

dimensional histogram to approximate the probability density functions % and & and
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Figure 4.10: Comparison of feature distributions and correlations when

generating a dataset of the same size as the training dataset.
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Figure 4.11: Kullback-Leibler divergence between the distributions of real

and generated hits as a function of training epochs.

the sum in Equation 4.8 is a sum over all (non-zero) bins. The edep and t features are

log-transformed such that the resulting histogram is smoother. Figure 4.11 shows the

Kullback-Leibler divergence between the continuous distributions of real and generated

hits over training iterations. For this specific model, the KL divergence converges after

around 100 epochs.

In addition to comparing the features that are given as input to the GAN for training,

we also examine quantities which are only present implicitly in the training samples.

Figure 4.12 shows a comparison of the relative amounts of hits in each CDC layer and

of the “occupancy” per sample, i.e. the fraction of wires on which a hit occurs. This

allows us to determine whether or not the model sees beyond the features provided
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Figure 4.12: Comparison of quantities not explicitly learned by the GAN

model.

explicitly for training.

4.4 Quality metrics

The Kullback-Leibler divergence provides a metric to measure how close a distribution

of generated samples is to that of training samples. However, it does not provide an

indication of how closely individual generated samples resemble real samples.

For that, one method which is commonly used in the field of GANs is an external

classifier that can extract features from the generated and real samples. These extracted

features can then be used to understand the differences between the two and why they

arise.

The task of investigating the quality of generated hit samples from the CDC GAN

was tackled by a pair of Master’s students during a six-month project under my su-

pervision [55, 56]. The following methods and results are the product of their work

and were presented at the 21st International Workshop on Advanced Computing and

Analysis Techniques [57].

4.4.1 Inception score

Inception is a convolutional network architecture originally developed by Google for

image analysis and object detection [58]. It was later adapted as an evaluation method

for image-generating GANs, to compare the images generated by different models [59].
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In this type of application, an Inception model, trained independently on the ImageNet

dataset to classify images, is applied to GAN-generated images to obtain label proba-

bilities for each sample. The metric is then formulated in terms of the label distribution

to favour generated images which depict a specific object rather than some average of

classes, while disfavouring a generator whose images all resemble the same class.

4.4.2 Fréchet Inception Distance

The Fréchet Inception Distance (FID) is an evolution of the Inception score which

additionally uses statistics extracted from the training dataset to estimate a distance

between real and generated samples [60]. Conventionally, a pre-trained Inception-v3

model [61] is applied to real and generated samples. Activations from an intermediate

layer are extracted and their mean - and covariance � are estimated, from which the

Fréchet (or Wasserstein-2) distance is calculated as

32 = |-� − -' |2 + Tr(�� + �' − 2(���')1/2) (4.9)

where the � and ' subscripts respectively denote generated and real statistics.

Applying these methods to domains other than image generation is not straight-

forward because the Inception network used to compute the metric is specific to raster

images with three colour channels. This has prompted the development of domain-

specific metrics such as Fréchet Audio Distance [62] and Fréchet Video Distance [63],

as well as the Graph Fréchet Distance used to evaluate particle jets generated by a

graph-based GAN for LHC experiments [64].

4.4.3 Evaluating the CDC GAN performance

Pre-trained Inception-v3

As a baseline to evaluate the CDC GAN, the Inception-v3 model trained on the ImageNet

dataset was used to compute FID between generated and real samples. The network

expects images as input, i.e. tensors with two spatial dimensions and three channels,

which means our hit data must be arranged to fit this shape.

GAN-generated hits have three continuous features and a position. The three
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Figure 4.13: Fréchet Inception Distance computed by the pre-trained

Inception-v3 network over training epochs of the CDC GAN. Since Inception

requires a 2D image as input and our hit sequences have a third temporal

dimension, the hit data is projected along its axes and a separate FID is cal-

culated for each projection.

features can simply be passed as analogues to the three colour channels, but the hit

positions must be discretised in order to get an image-like object. In addition, the

ordering of hits bears importance, so it ought to be considered as a third, temporal

dimension. However, Inception cannot process 3D objects hence a solution is to project

out one of the dimensions and compute three orthogonal scores, one for each projection.

Figure 4.13 shows FID computed for each of the three projections as a function of

training iterations.

In order to process whole hit sequences rather than projections, two alternative

methods were considered: training a custom network which can take three-dimensional

tensors as input, and adding layers to the Inception network so that it can more naturally

process our hit data.

3D convolutional neural network

A custom neural network is developed to process whole hit sequences and compute

a domain-specific FID. The architecture is composed of four convolutional layers that

extract features from hit sequences, i.e. three-dimensional tensors with three channels.

The convolution kernels are thus themselves 3D, and strides help the network extract

features at different scales, as for the GAN critic.

The convolutional neural network (CNN) is trained to discriminate Monte Carlo

noise-like hit sequences from reconstructible ones (as defined in Section 4.3.2). We expect

such a classifier to rely on the positioning and clustering of hit patterns to discriminate

samples. The intermediate activations which will be used to compute the Fréchet
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Figure 4.14: Fréchet Inception Distance computed over training epochs of

the CDC GAN by two external neural networks. Unlike in Figure 4.13, hit

sequences can be processed at once without projecting them along an axis.

The 3D CNN is trained on Monte Carlo hit data, in the same way as the front

and back layers added to Inception-v3 for transfer learning.

distance ought to be a representation of that information and hence help to define a

sensible distance metric.

Once trained, the CNN reaches a classification accuracy of 98.7 %, and it can be

used to compute FID on GAN-generated samples. Figure 4.14a shows FID over epochs

of the CDC GAN training.

Transfer learning Inception-v3

Transfer learning (TL) refers to the addition and subsequent training of layers to a fixed

pre-trained network in order to apply it to a new domain. By adding layers to the front

and back of Inception-v3, it can be adapted to the hit sequence classification task. The

weights in the new layers are adjusted to discriminate noise-like from reconstructible hit

sequences, which allows domain-specific features to be extracted. In addition, because

the input layer is modified, this new network is made to provide a single FID score,

rather than three, for comparing GAN-generated samples to real ones. Figure 4.14b

shows the resulting FID score computed by the TL Inception-v3 over epochs of the CDC

GAN training.
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Figure 4.15: UMAP computed from feature vectors extracted by the TL

Inception-v3 network, for reconstructible, noise-like and generated hit se-

quences. The number of neighbours in the UMAP transform was set to 50.

4.4.4 Interpretation of FID

The Fréchet Inception Distance is a single quantity whose value indicates how similar

generated samples are to real samples. It summarises the statistics of features extracted

by an external neural network, but it does not directly show which features seem

different.

We could also plot the feature vectors directly and determine where their distribu-

tions differ between real and fake samples, however the vectors have a high dimen-

sionality and cannot be easily visualised. The solution that was adopted is to use the

Uniform Manifold Approximation and Projection (UMAP) method to optimally project

the feature vectors onto two dimensions [65]. Each sample can then be associated with

a single point in a 2D space and thus one can more easily visualise the distribution of

samples.

Figure 4.15 shows a UMAP plot of generated and real samples, including recon-

structible hit sequences. The position of each point is a projection of the feature vector

extracted from each sample by the transfer learning Inception-v3 network. Such a

plot shows that reconstructible and noise-like sequences are adequately discriminated

by the network, and that the generated and noise-like sequences overlap in large part.

Hence, the GAN is clearly able to produce samples which resemble the training dataset.

However, some portion of the space covered by noise-like MC samples is not occupied
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by any generated samples, which indicates that the GAN cannot produce these types

of samples.

By tracing UMAP points back to the sample they were computed from, one can then

attempt to understand the type of sample which the GAN cannot faithfully produce.

This yields insight into the GAN’s strategy and where exactly it fails to perform, which

subsequently helps to adjust its design and architecture.

4.5 Discussion

4.5.1 Summary

The CDC GAN discussed in this chapter provides a way to produce synthetic Monte

Carlo data in the Cylindrical Drift Chamber. The design of this generative algorithm

is based on Generative Adversarial Networks, a technique which is more and more

widely used in HEP and in other domains to produce fake samples by learning from an

existing dataset of real samples. The CDC GAN is trained on MC-simulated hits using

the WGAN-GP algorithm. Its discriminator and generator are convolutional neural

networks that can process ordered sequences of hits, which allows the GAN to learn

both from per-hit features, and from the relations between multiple consecutive hits.

Once trained, the GAN is evaluated in multiple ways. Firstly, the distributions of the

synthetic data are compared to those of the training dataset. In addition, we investigated

quality metrics, which typically involve an external performance criterion implemented

by a third neural network trained independently. These evaluation methods allow us

to determine which aspects of the training data are adequately modelled by the GAN,

and where there are discrepancies. This then helps to guide the design of the model to

increase the quality of generated samples.

After training, the CDC GAN provides a way to produce original hit data at least

six orders of magnitude more quickly than by means of traditional MC simulation,

using GPUs. We are therefore able to generate large samples of background events very

efficiently. This can be useful, for instance, in studies which require a pure signal sample

to be overlaid onto an ambient background, e.g. to optimise a hit filtering algorithm.

Alternatively, GAN-generated data can serve to compose a mock dataset, combining

signal events with all sources of backgrounds into one large-scale simulation sample
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used to test the readiness of our data-processing chain prior to the data acquisition

period.

The CDC GAN design and architecture are generalisable to other detector systems

that have discrete elements. For instance, the CTH is somewhat analogous to the

CDC if we treat the scintillation counters like the cells of the CDC. One difference is

that distance of closest approach (doca) has meaning for CDC hits but not for CTH

hits. Although it is not discussed in detail in this thesis, a CTH GAN prototype was

developed based on this analogy, with the wire feature acting as the counter index, and

the doca feature removed. Based on early evaluations, we observed similar performance

and sample quality as exhibited by the CDC GAN.

4.5.2 Limitations and recommendations

Training data preselection

The CDC GAN is only trained on a restricted part of the CDC hit data. Reconstructible

tracks, defined by their momentum ? > 50 MeV/2, are removed from the training

dataset in order to prevent the model from generating patterns that are too similar to

the conversion signal without the proper associated truth information. Unlike high-

momentum tracks whose source (conversion, DIO, RMC, etc.) matters in studies of

the experimental outcomes, the origin of low-momentum tracks is typically irrelevant,

hence those hits can be grouped into one large “noise” category. The GAN then learns

only from hits in that category, and all GAN-generated data can safely be labelled as

noise as well. However, training on a subset of hit data prevents us from using the

GAN to generate an entire background dataset: the GAN must be complemented by

real MC hits of reconstructible tracks, which is computationally expensive to produce.

Training a conditional GAN [66] with the ability to generate labelled hits was con-

sidered. However, the concern that the model would be unable to grasp the physical

laws at play in the hit patterns of high-momentum particles was too great, hence this

solution was discarded. In a future study, a physics-informed conditional GAN, where

the dynamics of charged particle transport in a magnetic field are encoded into the dis-

criminator in order to regulate the generator, could be considered to build a universal

background hit generator.
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Feature representation

One of the difficulties in designing the GAN was in determining the best way to handle

the discrete feature, wire index. Multiple methods were considered, such as using

actual or transformed wire positions as a real-valued feature, or using a trainable

embedding matrix to make the GAN learn its preferred representation of the geometry.

Eventually, we chose to represent the wire index as a one-hot encoded vector and use

a matrix of wire positions to assist the model in locating wires, since that yielded the

most faithful results. However, this aspect of the GAN design appears to be one of the

major quality-limiting factors because of the large dimensionality of this one-hot vector

compared to the other features.

A better design would be achieved by representing the wire index as a low-

dimensional quantity while informing both networks of the location of hits, however a

way to fulfil both requirements at once was not found in our investigations.

Hit sequence arrangement

In order to train the GAN as efficiently as possible, we arrange hits from multiple par-

ticles together into fixed-length sequences that can be processed quickly convolutional

layers. This arrangement is not physical: unrelated hits from different particles become

neighbours in the sequence. When processed by a convolution kernel, consecutive hits

will be treated as if there was some relationship between them (as for neighbour pixels

on an image), but this is sometimes false. This leads the GAN to learn patterns that are

artificial and only the product of our arrangement.

Keeping hits from different tracks separate would most likely yield a better model

of the underlying tracks. However, it would also prevent the networks from being

built with convolutional layers. Techniques developed and used in natural language

processing, such as transformers [67], could be applied here to build a model that

can process variable-length hit sequences (in analogy with sentences) while remaining

efficient to train.

Quality evaluation

Evaluating samples generated by the CDC GAN is inherently difficult. Unlike visual

or audio data, one cannot precisely estimate the sample quality perceptually. Hence,
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in Section 4.3.8, we compare feature distributions and use KL divergence and more

complex metrics to define a quantitative measure of sample quality. Although these

methods help in refining the GAN architecture and in tuning training parameters, no

metric can affirm that the generated data is physical enough to be used to study the

experiment and its outcomes. This is in part due to the fact that the GAN generates un-

labelled hits from the broad category of “noise”, hence one can only hope to determine

if generated hits belong in that category, or not.

One option could be to condition the GAN [66] on particle type and momentum. If

the model is able to generate a sequence of hits based on a prompt, such as “electron

with ? = 15 MeV/2”, then it becomes easier to verify whether the hit sequence is faithful

to the prompt by comparing to real samples of a similar description and by checking

that the physical rules are respected (e.g. track curvature, total energy deposit, etc.). Of

course, conditioning comes at the cost of a more complex network design and training

procedure.
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Chapter 5

Backward Monte Carlo Simulation

of Atmospheric Muons

Cosmic ray-induced events represent a significant part of the expected backgrounds in

the COMET experiment, as discussed in Section 2.7. Cosmic rays interact with Earth’s

atmosphere to produce secondaries with a wide energy spectrum. Some fraction of

these particles will be able to mimic the conversion signal by entering the COMET

detector system. In this chapter, we discuss how backward Monte Carlo simulation

helps to efficiently estimate the atmospheric background rate.

5.1 Backward Monte Carlo simulation

5.1.1 Principle

Estimating the rate at which atmospheric muons might produce signal-like events is

computationally expensive through standard Monte Carlo simulation methods. This

is due to the fact that the source of atmospheric muons, i.e. the atmosphere, has

a much greater spatial extent than the active detector region. Hence, most cosmic

events generated from an atmospheric source will miss the detector, thus they will not

contribute in the estimation of the background rate, resulting in wasted computation

time.

A backward (or adjoint) Monte Carlo simulation is one where the flow of particle

transport is reversed, i.e. events are generated in the sensitive detector volume and
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Figure 5.1: Comparison of the forward and backward (or adjoint) configura-

tions of Monte Carlo simulation, in the case where a small detector volume

is surrounded by a comparatively large particle source. Reversing the flow

of particle transport means that sampled events are more likely to contribute

toward the rate estimation.

propagated backward in time until they reach the source, as illustrated in Figure 5.1.

This method was initially used in 1967 to estimate gamma-ray and neutron radiation

doses in nuclear reactors [68, 69]. More recently, backward MC has also been integrated

into Geant4 simulations for dosimetry in space, reversing the electromagnetic physics

of electrons, protons and ions [70].

In the case of muons, a backward transport method was developed by Niess et al. [71]

in the context of muon tomography. The software package handling the backward

simulation, PUMAS [72], was later adapted to the COMET experiment in order to

refine estimations of the background rate from cosmic rays. Appendix A describes

how PUMAS was integrated into the ICEDUST code base to enable this and future

studies of the atmospheric muon background in COMET.

5.1.2 Method

In a backward MC simulation, events are generated according to an arbitrary probability

density function (PDF) around the detector volume. The overall sampling PDF is

typically the composite of a position, direction and energy sampling distribution, i.e.

?(x , p, �) = ?(x) × ?(p) × ?(�), (5.1)
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where ? denotes an arbitrary PDF whose integral is 1, x denotes position, p direction

and � energy. If more than one particle type is considered, the discrete distribution

of particles can also enter Equation 5.1. In our case, both atmospheric muons and

anti-muons are relevant, so they are sampled identically and in equal proportions.

Each event 8 is propagated backward using adjoint transport and interaction kernels

such that the particle undergoes reverse continuous energy loss and reverse discrete

processes, while moving backward toward the source. At each step 9 of the propagation,

a multiplicative weight F 8
9
is computed given the path taken and the interactions along

it. When the particle reaches the source, the directional flux at the source )s is used as

a normalisation factor to yield a weighted event flux

)(x′8 , p
′
8 , �

′
8) =

∏
9

F 8
9 × )s(x′8 , p

′
8 , �

′
8), (5.2)

where x′, p′ and �′
denote respectively the position, direction and energy of the particle

upon reaching the source.

The weighted event flux ) is related to the event rate' by the inverse of the sampling

PDF of Equation 5.1 used to generate the event initially:

' (x8 , p8 , �8 , x′8 , p
′
8 , �

′
8) =

)(x′
8
, p′

8
, �′

8
)

?(x8 , p8 , �8)
. (5.3)

Since the rate depends on the position, direction and energy of the particle at the source,

it is susceptible to variation across backward runs because of the stochastic aspect of

Monte Carlo transport. Hence, backward transport is repeated # times for each event

to find the average rate

' (x8 , p8 , �8) =
#∑
:=1

' (x8 , p8 , �8 , x′: , p
′
: , �

′
:)

=
1

?(x8 , p8 , �8)
× 1

#

#∑
:=1

)(x′: , p
′
: , �

′
:), (5.4)

smearing out the dependence on x′, p′ and �′
. Given a large enough # , i.e. a significant

enough sample of backward transports, the sum of weighted fluxes becomes equivalent

to an integration over the possible transport paths and interactions. Results obtained
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(a) Cutaway view of the simulation world.
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(b) Detail of the CRV geometry.

Figure 5.2: COMET Phase-I simulation geometry used in the cosmic back-

ground study.

by following this procedure were demonstrated to be consistent with forward Monte

Carlo [70]1.

5.2 Application to COMET Phase-I

Backward MC simulation was used to estimate the cosmic background rate in COMET

Phase-I. This section describes the simulation setup, validations of the method using

experimental data, and the results of the study.

5.2.1 Geometry

The simulation geometry used in the simulation is shown in Figure 5.2. In the COMET

Phase-I experiment, the cosmic ray veto (CRV) described in Section 2.5.3 will enclose

the Cylindrical Detector in order to help identify events caused by atmospheric muons.

The CRV uses a glass resistive plate chamber (GRPC) as the active detector on the

upstream-facing side, and plastic scintillator counters on the other faces. Two holes are

present in the CRV, one in the upstream face and one in the downstream face. These

holes allow atmospheric muons to sneak into the CyDet unnoticed and potentially

produce signal-like tracks, contributing to the background rate.

1The article by Desorgher, Lei, and Santin [70] also provides a more thorough discussion of adjoint

cross-sections, weights, weight corrections and source normalisation.
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5.2.2 Event sampling

CRV envelope sample

As discussed in Section 5.1.2, events must be generated around our volume of interest,

the Cylindrical Detector. We define a sampling envelope around the CRV, where

muons (and anti-muons) are generated and backward-propagated. Events are sampled

uniformly over this envelope, i.e. the position PDF ?(x) is independent of x:

?(x) = 1

#x
, (5.5)

where #x is the normalisation term satisfying

∫
?(x) dx = 1.

The direction is sampled according to Lambert’s cosine law, which favours events

with a large vertical momentum component:

?(p) = 1

#p
(−p̂) · ŷ =

1

#p
cos(�I), (5.6)

where �I is the angle between −p and the vertical axis ŷ (or zenith angle), and #p is

the normalisation factor.

The energy is sampled according to an inverse law to favour low-energy events,

since they are more likely on average:

?(�) = 1

#�

1

�
, (5.7)

where #� is the normalisation factor.

The arbitrary PDFs selected for event sampling do not affect the results so long as we

ensure that no region of the phase-space which could be responsible for backgrounds

is omitted. Here, the direction and energy distributions are optimised to favour events

that are generally more likely to occur given the configuration of our source and detector

(i.e. small zenith angles and low energies). When computing the rate for an event, any

bias originating from the sampling PDF should be cancelled out when dividing by

?(x , p, �) as in Equation 5.4.
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Figure 5.3: Spectrum of the atmospheric muon flux (multiplied by �2.7
� ) cal-

culated at an altitude of 1600m using a CORSIKA simulation. This spectrum,

tabulated in both energy and zenith angle, is used as the flux source in the

COMET Phase-I backward MC. Here, it is compared with the parametrisa-

tion of the muon flux at sea level from Guan et al. [73].

CRV openings sample

The backward MC method gives freedom to generate a specialised sample to increase

statistics in any region of phase-space. In our case, in order to focus on the events that

might sneak into the detector system, a sample is produced with events generated only

in the holes on either side of the CRV. The energy and direction are sampled identically

to the envelope sample.

Since the position PDF in this sample is concentrated around the holes, we need

to simulate fewer events in order to find a sneaking signal-like track than with the

envelope sample. This allows us to obtain reasonable statistics in the background rate

study while saving on computational resources and storage space.

5.2.3 Atmospheric muon flux

Estimating rates requires knowledge of )B , the directional flux at the source. We use

tabulated flux data from a CORSIKA [74] simulation as an efficient way to query the

flux as a function of energy and direction. The flux data, shown as a function of energy

in Figure 5.3, was estimated 1600 m above sea level for energies between 10 MeV and

10 TeV, separately for muons and anti-muons. In the backward simulation, any event

which is unable to travel back to this infinite source plane is assumed to have a rate of
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Figure 5.4: Validations of the backward MC-estimated flux with experimen-

tal observations of the atmospheric muon flux by two independent experi-

ments. Events from the backward MC simulation are selected to reflect the

angular acceptance of the corresponding experiment.

zero.

5.2.4 Validations

In order to ensure that the backward MC simulation yields accurate results, the flux

of atmospheric muons estimated around the CRV is compared to two independent

measurements of the flux at sea level.

BESS-TeV

The atmospheric muon flux in Manitoba, Canada was measured using the BESS-TeV

spectrometer in 2004 [75]. The apparatus only observed muons incident at a near-

vertical zenith angle �I . In order to compare our simulation results with the experi-

mental data, we select simulated events based on the condition that cos�I > 0.98 to

replicate the acceptance of the spectrometer. The comparison of the differential flux as

a function of momentum is shown in Figure 5.4a.

Kiel-DESY

The Kiel-DESY spectrometer was used to measure the atmospheric muon flux in Ham-

burg, Germany in 1975 [76]. This detector measures particles within a zenith angle

74



102 103 104 105 106 107

p [MeV/c]

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

R
at

e
[H

z/
(M

eV
/c

)]

Top (1.97 kHz)

Left (0.42 kHz)

Right (0.50 kHz)

Downstream (0.37 kHz)

Upstream (0.21 kHz)

Figure 5.5: Average rate of inbound atmospheric muons over each face of

the CRV as a function of momentum. Figures in parentheses in the legend

are the integrated rate averaged over each face.

�I = 75°± 7° and an azimuthal angle ) = 288°± 20°. Similarly to the previous compar-

ison, simulated events are selected to replicate these acceptances such that the flux can

be compared. Figure 5.4b shows the comparison of the flux spectra.

The fact that both comparisons are in reasonable agreement with the backward

simulation results increases our confidence in the method. Here, we have shown that

the backward MC method can effectively compute the flux of events at sea level using

knowledge of the flux at an altitude of 1600 m. Note that our simulation setup differs

from either experiment by the amount of material present between the detector and the

atmospheric source. Hence, an imperfect agreement is expected and the discrepancies

visible in either comparison were not investigated in detail.

5.2.5 Absolute rate estimation

From the estimated flux, one can compute the absolute rate using Equation 5.4. Fig-

ure 5.5 shows the atmospheric muon rate as a function of momentum on each face of

the CRV. The top face is the most exposed, with an integrated rate of 1.97 kHz. Over the

whole surface, the estimated event rate is 3.47 kHz. This estimation of the rate accounts

for all events inbound on the CRV, regardless of whether or not they enter the CDC or

CTH.

75



5.2.6 �–4 conversion background rate

In order to determine how frequently signal-like tracks are produced by atmospheric

muons, we combine forward and backward MC simulations. The forward MC allows

us to select events based on detector acceptance criteria, such as trigger conditions. The

backward MC is then used to estimate the rate of selected events.

Track reconstruction

After the forward MC step, we also simulate the reconstruction of tracks in the CDC.

The algorithm is a helix fit through the positions of CDC hits. In this step, the true hit

positions given by the SimG4 Monte Carlo are used. The fit also returns the momentum

of the reconstructed trajectory, which is used in the event selection.

Event selection

The event selection criteria are as follows:

• Fourfold coincidence: four neighbour CTH counters must be hit within a 10 ns

window,

• CDC layers: the track must reach up to the 5th layer of CDC wires and no hit

should occur on the outermost layer,

• Muon stopping target intersection: the fitted track must intersect the muon stop-

ping target placed in the centre of the CyDet,

• Momentum window: the reconstructed momentum must lie between 55 MeV/2
and 155 MeV/2.

These criteria reduce the number of events whose flux will be sampled by the backward

MC, which is crucial to limit the usage of computational resources. In addition, we

obtain a reasonably-sized sample from which we can study the shape and properties

of background events.

Other acceptance criteria and inefficiencies of the CyDet system are taken into ac-

count by applying multiplicative factors to the estimated background rates. Specifically,

the hardware efficiency of Table 2.2 is used, reducing the overall background rate by a

factor 0.81. To take into account the fact that the Phase-I trigger is only active during
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Figure 5.6: �–4 conversion background rates from atmospheric muons es-

timated via backward MC simulation. The error bars show the statistical

uncertainty on the sampled flux over backward sampling trials. In the pres-

ence of the CRV, the background rate is dominated by events where an

atmospheric muon sneaks through the openings.

the C ∈ [700, 1170]ns window after each proton pulse, we weight the rate by a factor

&timing = 8

9

1170−700

1170
= 36 %, where the term

8

9
arises from the bunch structure of the

J-PARC main ring.

Backward sampling

The flux is sampled by backward MC simulation for all events that pass the above

selection criteria. The backward propagation and flux sampling is performed # =

5000 times for each event. The flux for each event is the average over these # trials,

as discussed in Section 5.1.2. The variation in the sampled flux over these # trials

is interpreted as the statistical uncertainty on the average flux for each event. This

uncertainty is shown in the resulting plots and figures.

Results

Figure 5.6 shows the estimated background rates as a function of the reconstructed

momentum of the signal-like track. We compare the rate in the absence and in the

presence of the CRV to demonstrate its importance. Without a veto mechanism, the

rate over the entire momentum range is around 1 mHz, which is lowered to 2 µHz with

the CRV. The spectrum peaks around 105 MeV, the conversion energy, because we have

selected events that pass the CTH and CDC trigger criteria. Since the CyDet is heavily
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biased toward observing conversion electrons, selected background events tend to have

a signal-like signature.

Uncertainties

The backward MC simulation algorithm allows us to compute a statistical uncertainty

on the estimated rate of each event, which is given by the standard deviation of the rate

over # backward samplings. These uncertainty estimates are shown on Figure 5.6.

This fluctuation in the sampled rate is not the only source of uncertainty in our rate

estimation, and a more careful consideration of each one would be necessary for our

results to be complete. For now, let us briefly list what we believe would be important

sources to consider in a future study.

Atmospheric muon flux model We estimate the flux of muons and anti-muons at

the atmospheric flux boundary by sampling from a model of the flux as a function of

angle and energy, which was computed by a CORSIKA simulation. In this study, the

uncertainty on the sampled flux is not known, and therefore we cannot propagate it to

our final rate estimation. However, validations of the flux were performed with respect

to experimental data (see Figure 5.4) so we expect our results to be reasonably realistic.

A more rigorous approach would be to associate an uncertainty to the flux model such

that it can be propagated along with the atmospheric events and yield an uncertainty

on the total estimated rate.

Material budget around the detector system One of the major factors affecting the

rate of false-positives in the conversion search will be the amount and type of material

surrounding the COMET detector system. Depending on the accuracy of the simulation

geometry compared to the actual experiment, the cosmic ray-induced background rate

will be more or less accurate. With the backward MC method, one could determine

how much the estimated background rate fluctuates depending on the material budget

around the detector, and thus how uncertain our result is given the inaccuracies in our

simulation world.

Occupancy, detector resolution and reconstruction effects In our study, we ignored

the effects of detector occupancy, which might hinder the finding of track candidates
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in the cylindrical detector, and used true hit positions to reconstruct trajectories rather

than trying to perform a perfectly realistic simulation of the reconstruction procedure.

In addition, our track reconstruction algorithm (helix fitting) is different from the one

that will be used in the experiment. These inaccuracies ought to induce some systematic

uncertainty between our background rate estimate and the one that will be present in

COMET Phase-I. In a future iteration of this study, one should strive to emulate the real

experiment as closely as possible in order to bring the results closer to reality.

5.3 Conclusion

In this chapter, we presented the backward Monte Carlo simulation principle, method,

validations, and outcomes when applied to the COMET Phase-I setup. Backward MC

consists in the time-reversed transport of particles from a volume of interest to a source

where the flux is known. Since events are generated arbitrarily near the volume of

interest, this provides a way to focus computational resources on important events. In

this study, we used backward MC transport of atmospheric muons in order to determine

the rate of cosmic ray-induced backgrounds in the �–4 conversion search. Events are

generated from the surface of the Cosmic Ray Veto in Phase-I and transported to a

1600 m-high atmospheric plane where a pre-computed flux model is sampled. The flux

estimated at the surface of the CRV is then compared with experimental data from the

BESS-TeV and Kiel-DESY spectrometers in order to validate that the backward sampling

yields realistic results.

In the next chapter, a complete sensitivity and background study for COMET

Phase-I, including the results discussed here, will be presented. Despite the CRV

being expected to reject a large fraction of atmospheric muon backgrounds, we will

see that they remain the most important source of backgrounds in the COMET �–4

conversion search.
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Chapter 6

COMET Phase-I Sensitivity and

Background Estimates

With the framework to simulate backgrounds from atmospheric muons in place, we can

now combine the results into a complete sensitivity and background simulation study

for COMET Phase-I. In this chapter, we discuss our simulation samples consisting

of signal, decay in orbit (DIO), and atmospheric events, and present our resulting

expectations of the performance of Phase-I. All data samples simulated for this study

were produced on the CC-IN2P3 cluster.

6.1 Data samples

Three simulation samples are produced for this study: a �–4 conversion sample, a DIO

sample and an atmospheric muon sample. All three are simulated in the geometrical

world shown in Figure 5.2. This geometry differs from the older TDR design [20] by the

number of counters in the CTH. Here, each layer of the CTH has 64 counters instead of

the original 48, which mainly affects the detector’s geometrical acceptance. In addition,

we use the first-stage layout of the CTH, where both layers are composed entirely of

plastic scintillation counters. In contrast, the final stage will have Cherenkov counters

in the outer layer. As we shall see, this has a considerable impact on the detector’s

ability to discriminate atmospheric muons from conversion electrons.
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Figure 6.1: Initial position distribution of signal electrons before and after

weighting them by the likelihood of a muon being bound in each bin.

6.1.1 �–4 conversion

Sample

The signal sample is the most straightforward to produce. We initially generate primary

electrons with energy � = 104.97 MeV uniformly inside the stopping target disks. Their

direction is isotropically distributed, as would be the case in the conversion process. A

uniform position distribution in each disk is not realistic, because the actual distribution

depends on where in the stopping target the muons in the beam come at rest. To account

for this, the events are weighted according to the stopping positions of muons recorded

in the MC5 simulation. The weighting factor is determined from the relative probability

for a muon to stop at the sampled position, which is estimated by histogramming the

stopping positions in each disk. Figure 6.1 shows the initially-sampled uniform position

distribution, the muon stopping position distribution from MC5, and the result of event

weighting. In total, #
signal

= 2×10
6

events are simulated to compose the signal sample.

Selection

Signal events are selected based on detector acceptance criteria. We first require fourfold

coincidence in the CTH. Figure 2.9 shows an example of a conversion event which

passes this trigger criterion. The fraction of events remaining defines the geometrical

acceptance

�geom ≡ #
4-fold

#
signal

. (6.1)
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In this simulation, the estimated geometrical acceptance is �geom = 21 %. In compari-

son, the TDR cites �geom = 26 % with the previous design of the CTH.

We do not fully simulate the reconstruction of signal electron trajectories in the CDC.

In order to approximate the effect of reconstruction uncertainties, a smearing is applied

to the true momentum of each track. The reconstructed momentum is estimated as

?A = ?C + G, where ?C is the true momentum of the electron as it enters the CDC,

G ∼ N(0, �), and � = 200 keV/2 is the expected momentum resolution of the CDC.

Since tracks are not properly reconstructed, we do not apply any track quality cuts to

select events but instead weight the signal sample by the associated acceptance factor

from Table 2.2 to account for the rejection of some events.

In this simulation sample, the initial time for each event does not correspond to

the realistic time distribution of the �–4 conversion process. Hence, events are not

selected based on whether they reach the detector within the trigger time window, but

we weight the sample by the trigger time window efficiency factor instead. Similarly,

the sample is weighted by the trigger and data acquisition efficiency factors to account

for the loss of acceptance from hardware effects. Table 2.2 lists the values of these

efficiency factors.

6.1.2 Muon decay in orbit

Sample

The DIO sample is similar to the signal sample in that the initial position of signal

and DIO electrons is identically distributed. Hence, we also sample uniformly in

the stopping target disks and then weight the events according to the MC5 stopping

position distribution. Similarly, the direction of DIO electrons is sampled isotropically.

The energy distribution is thus the only difference between the two samples.

The theoretical energy spectrum of DIO electrons produced in aluminium muonic

atoms was investigated by Czarnecki et al. [25]. Here, we use their proposed parametri-

sation of the energy spectrum around the DIO energy endpoint:

%(�4) = 05�
5 + 06�

6 + 07�
7 + 08�

8, (6.2)

where � ≡ �� − �4 − �2

4

2<
Al

, �� = 105.194 MeV, <
Al

= 25 133 MeV, with the values of the
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Figure 6.2: Momentum spectrum of electrons in the DIO sample.
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Figure 6.3: Potential DIO-induced background with momentum ? =

103.7 MeV/2.

four 0 coefficients provided by the authors. This approximation is valid in the region

�4 > 85 MeV, which is sufficient to cover our whole DIO sample. We use this spectrum

parametrisation to weight DIO events based on their energy. Similarly to the position

weighting procedure, DIO events are first generated with a uniform energy distribution

in the range � ∈ [95, 110] MeV/2, and then weighted according to the probability for a

DIO electron to have the sampled energy. Figure 6.2 shows the momentum spectrum

of DIO electrons before and after weighting.

The DIO sample is composed of #DIO = 10
7

events in total. Figure 6.3 shows an

example of a potential background event from DIO where an electron with an energy

close to the conversion energy flies into the CyDet system and activates the trigger.
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Figure 6.4: Sneaking atmospheric �−
background with a reconstructed mo-

mentum ? = 103.5 MeV/2. The muon enters through the downstream open-

ing of the CRV and scatters in the aluminium CTH support structure. Then,

it produces a track in the CDC and a fourfold coincidence in the CTH. Im-

portantly, the trajectory crosses the muon stopping target, making it more

difficult to distinguish from the conversion signal.

Selection

The selection of DIO events is identical to the selection of conversion events. We require

a fourfold coincidence in the CTH, and then apply a Gaussian smear to the true mo-

mentum of the electron to approximate track reconstruction. The same efficiency and

acceptance factors as for signal events are applied to weight the sample and determine

the absolute background contribution from the DIO process.

6.1.3 Atmospheric muons

Sample

Atmospheric muon events are simulated as discussed in Section 5.2.2. Two samples

are produced, one around the entire surface of the CRV and one more densely concen-

trated on its upstream and downstream openings. Because of how rarely a sampled

atmospheric event produces signal-like features, the atmospheric dataset is the largest

of the three, with 1×10
9

events generated on the envelope and 1.4×10
9

on the openings.
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Selection

As for signal and DIO events, atmospheric events must at least pass the fourfold

coincidence criterion. Unlike signal and DIO events, hit information from the CDC is

also used to select track candidates. Two criteria apply: the particle must reach at least

the 5th innermost layer of the CDC, but it should not hit the outermost layer. Hence,

we select tracks with sufficient transverse momentum to be reconstructed, but reject

tracks that either have too large a momentum to be a signal event, or appear to enter

the CDC from the outside.

In addition, the hit positions are used to reconstruct the track using a helix fit.

The fitted trajectory should intersect the muon stopping target to pass the selection.

Figure 6.4 shows an example of such an atmospheric event. The helix fit estimates

the momentum of the particle, which is used in the analysis stage. Hence, for this

sample, we do not apply a Gaussian smear to the true momentum but use the estimated

momentum from the fit instead.

Rate estimation

As discussed in Section 5.2.6, the rate for each selected event is estimated by backward

MC simulation. The backward propagation and flux sampling is repeated 5000 times

for every event, which yields an average flux and a statistical error shown in the results.

6.1.4 Sample weighting

Because they originate from different processes, the three MC samples must be in-

dividually weighted in order to determine the absolute contribution from each. The

conversion and DIO processes both originate from the muons bound in the stopping

target, hence we can express the total number of expected conversion and DIO electrons

in terms of the total number of stopped muons #�. The number of signal electrons, as

a function of the conversion branching ratio ℬconversion, is:

#conversion = #� ℬconversion ℬcapture 5
coherent

, (6.3)
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where ℬcapture = 0.61 is the branching ratio of nuclear muon capture1 and 5
coherent

= 0.9

is the fraction of conversions that are coherent.

Similarly, the total number of DIO electrons can be expressed as:

#DIO = #� ℬDIO, (6.4)

where ℬDIO = 1−ℬcapture = 0.39 is the branching ratio of DIO. Our simulation sample,

however, only covers the part of the DIO spectrum where �4 > 95 MeV, so we cannot

simply use #DIO as the sample weight. The proper weight is given by

#
?>95 MeV

DIO
= #DIO %(�4 > 95 MeV) (6.5)

= #DIO

∫ �
endpoint

95 MeV

%(�4) 3�4 ,

where �
endpoint

= 104.973 MeV is the energy above which no DIO electron can be

produced. The integral term in this equation is estimated by numerically integrating

the Czarnecki parametrisation of Equation 6.2.

In the case of atmospheric muons, the backward MC procedure yields an absolute

rate ' for each event. This rate can simply be integrated over the total data acquisition

time of the experiment )DAQ to obtain the expected event count:

#
atmospheric

=

∫ )DAQ

0

' 3C = ' × )DAQ. (6.6)

In the TDR, COMET Phase-I was estimated to reach its sensitivity goal for )DAQ =

146 days. In this study, we keep this value fixed to be able to compare our sensitivity

and background estimates with the original study.

Trigger time window efficiencies

In order to take into account the trigger timing window, we assume that atmospheric

muons irradiate the detector with a uniform time distribution. Hence, the time window

1The nuclear muon capture branching ratio appears in this expression because the branching ratio of

�–4 conversion is conventionally normalised to ℬcapture.
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efficiency factor is the average fraction of time when the trigger is active:

&
atmospheric

time window
=

8

9

1170 − 700

1170

= 36 % (6.7)

assuming the trigger window is between 700 and 1170 ns, and where the factor
8

9
arises

from the bunch structure of the J-PARC main ring. In contrast, the efficiency factor

for conversion and DIO electrons &conversion|DIO

time window
= 30 % is smaller because the time

distribution of bound muons is not uniform but peaks around 300 ns, before the trigger

becomes active (see Figure 2.2).

6.2 Single event sensitivity

As discussed in Section 2.8, the single event sensitivity (SES) is defined as the value of

the �–4 conversion branching ratio required for the experiment to observe one signal

event. It can be expressed in terms of the experimental acceptance ��−4 and the total

number of muons stopped in the stopping target #�:

SES =
1

#� ��−4 ℬcapture 5
coherent

, (6.8)

where ℬcapture = 0.61 and 5
coherent

= 0.9.

In this simulation study, we found the geometrical acceptance �geom of the CyDet

with the new CTH layout to be reduced from 26 % to 21 %. Hence, the net signal

acceptance ��−4 decreases from 4.1 % to 3.3 %. On the other hand, the yield of stopped

muons per proton collision was estimated from the MC5 dataset to be'�/? = 4.86×10
−4

,

which is slightly higher than the TDR value. Overall, although the total number of

bound muons is increased for the same run time, it is outweighed by the decrease in

acceptance. Keeping )DAQ fixed at 146 days, we obtain #� = 1.53 × 10
16

, hence our

estimation of the COMET Phase-I sensitivity is

SES = 3.6 × 10
−15. (6.9)
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Uncertainties

The above estimate comes with an uncertainty which depends most heavily on our

uncertain knowledge of the proton beam and the exact yield of backward-moving

pions after the collision, both of which impact #�. Other factors are involved, such

as the accuracy of our acceptance estimate ��−4 , and the theoretical uncertainty on

ℬcapture and 5
coherent

.

In order to determine the uncertainty on #�, one would have to carefully determine

how much it fluctuates with respect to changes in the proton beam profile which we

use to generate events. The change in #� with respect to the backward-emitted pion

yield would also have to be investigated. One could then propagate uncertainty in our

knowledge of the beam and its collision to the total number of muons that will come at

rest in the stopping target.

Concerning the acceptance estimate ��−4 , many of its factors were derived from

prior simulation studies and the final value adjusted to account for known differences.

In the future, we hope that a complete estimation based on realistic detector, electronics

and reconstruction simulations can be performed. An uncertainty could then be derived

for ��−4 which would include our confidence in the calibration, reconstruction and

event selection procedures.

6.3 Signal and background event counts

After applying the efficiency factors and weighting each sample by the total number of

expected events as per Section 6.1.4, we are able to determine the absolute contribution

from each source over a given data acquisition period.

6.3.1 Momentum spectrum

The absolute event counts from conversion, DIO and atmospheric muon events are

plotted as a function of the reconstructed track momentum in Figure 6.5. Note again

that for conversion and DIO, ? is the smeared momentum of the electron as it enters

the CDC, whereas we use the momentum reconstructed via a helix fit for atmospheric

muon events.
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Figure 6.5: Momentum spectrum of conversion, DIO and atmospheric

events around the conversion energy, integrated over the Phase-I run time

)DAQ = 146 days, assuming ℬconversion = 3.61 × 10
−15

. Error bars on the

atmospheric event bins show the statistical uncertainty from the backward

MC flux estimation.

Without the vetoing action of the CRV, more than 1000 atmospheric background

events are expected to pass the signal selection criteria of COMET Phase-I during its

data acquisition period, as Figure 6.5a shows. Of those, our analysis suggests that 2.2

muons will sneak into the CyDet system through the upstream or downstream holes

and will thus dangerously avoid the veto mechanism. It is crucial for the conversion

search that these events are identified by means of a particle identification mechanism,

as we will discuss in the next section.

In order to determine the effect of the CRV on the atmospheric backgrounds, we

apply a weight to each event based on whether it passed through the active material of

the CRV. The resulting momentum spectrum is shown in Figure 6.5b. In this calcula-

tion, events that produce hits in the CRV are assigned a weight equal to the assumed

inefficiency of the CRV: 1 − (99.99 %) = 10
−4

. Events that sneak into the detector are

given a weight of 1 since the CRV cannot veto them.

The momentum of the candidate track is one of the most important criteria in dis-

tinguishing signal electrons from DIO or RMC2 electrons, because the energy spectra of

the latter two fall off sharply close to the conversion energy. In Phase-I, the momentum

window within which an event is counted is ? ∈ [103.6, 106.0]MeV/2. This cut elimi-

nates the majority of DIO and RMC backgrounds. However, atmospheric background

2We chose not to show the radiative muon capture spectrum in our plots because the contribution

from RMC is smaller than that of DIO by a factor of 5 [20].

89



−1500 −1000 −500 0 500 1000

z [mm]

−800

−600

−400

−200

0

200

400

600

800
r

[m
m

]

(a) I–A projection, where A =
√
G2 + H2

.

−800−600−400−200 0 200 400 600 800

x [mm]

−800

−600

−400

−200

0

200

400

600

800

y
[m

m
]

µ+

(b) G–H projection.

Figure 6.6: Sneaking atmospheric �+
background. It enters through the

upstream opening of the CRV and scatters in the aluminium CTH support

structure before inducing a fourfold coincidence in the CTH, producing a

signal-like track in the CDC, and flying through the muon stopping target.

The anti-muon thus appears as a time-reversed signal-like event.

events appear to be uniformly distributed in this range, making the cut ineffective in

rejecting them.

Figure 6.5a shows that in the absence of the CRV, atmospheric backgrounds over-

whelm the detector and outnumber conversion events by three orders of magnitude

in the momentum window. In the presence of the CRV, and assuming an efficiency

of 99.99 % (Figure 6.5b), atmospheric backgrounds are heavily suppressed. However,

their integrated count still exceeds one, making the �–4 conversion search impossible

unless there is an additional way to identify them.

6.3.2 Particle identification

So far, we have assumed that the CyDet system has no way of discriminating between

electrons, muons, and anti-muons. However, this is not accurate. At a momentum of

105 MeV/2, an electron has a velocity close to the speed of light, whereas a muon travels

only at around 0.72. This allows the two to be distinguished when they pass through

a Cherenkov detector with the right index of refraction. The final stage of the CTH

will have Cherenkov counters on the outer layer, allowing electrons to be discriminated

from muons. However, the first stage of the CTH will be composed of only scintillation

counters. Hence, initially, the CTH by itself will not suffice in identifying atmospheric
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muon backgrounds. We now investigate the signatures of atmospheric muons that

sneak into the CyDet system without being vetoed by the CRV, and try to determine

how impactful identifying the particle type is in lowering the background rate.

Negative atmospheric muons typically produce signal-like tracks in the CyDet by

scattering off a dense supporting element, and then mimicking the path of a conversion

electron emanating from the muon stopping target, as illustrated in Figure 6.4. With-

out a Cherenkov-counter layer in the CTH, it is very difficult to identify this type of

background. However, our results indicate that these occur 5 to 10 times less frequently

than backgrounds from positive atmospheric muons.

Positive atmospheric muons can induce backgrounds by following the reverse path

of a conversion electron. An anti-muon in the longitudinal magnetic field would usually

gyrate in the opposite way to a negative particle, and hence the track fitting algorithm

should easily determine that it has the wrong charge. However, if the anti-muon travels

from the CTH to the muon stopping target instead of the opposite, it then follows a time-

reversed signal-like trajectory which seems to gyrate identically to a negative particle

produced in the disks, as illustrated in Figure 6.6. The only difference between this

trajectory and that of a negative particle is the order in which it flies from the CDC to

the CTH. Therefore, in the absence of a particle-identifying CTH, one can only rely on

timing information to identify this kind of background event.

In principle, it might be possible to use time-of-flight information between hits

in the CDC and the CTH in order to determine the direction in which a particle is

travelling. However, the time resolution of the CDC is not as precise as that of the

CTH and additional studies should be conducted in the future to precisely estimate

what fraction of atmospheric �+
background events can be rejected through timing

information alone.

In Figure 6.7a, we outline the effect of�+
identification on the background spectrum.

If the CyDet system were able to reject 89 % of �+
events at the cost of keeping 87 %

of conversion events, the integrated count would be reduced to 0.48 in the momentum

window. Figure 6.7b shows the effect of a particle-identifying Cherenkov layer in

the final-stage CTH, assuming an efficiency of 99 % and no negative effect on signal

acceptance. The background count falls to 0.08 for one signal event.
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Figure 6.7: Signal and background event counts versus reconstructed track

momentum, over )DAQ = 146 days and assuming ℬconversion = 3.6 × 10
−15
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Figure 6.8: Integrated atmospheric background count versus CRV ineffi-

ciency (note the reversed horizontal axis), assuming no Cherenkov CTH

layer and 89 % �+
rejection rate by direction identification. The lower bound

arises from sneaking events, which are not detected by the CRV.

6.3.3 CRV efficiency

The CRV efficiency determines the fraction of atmospheric events which can enter the

CyDet through the active parts of the CRV while not being vetoed. Although we have

assumed so far that the CRV successfully rejects 99.99 % of atmospheric muon events,

this will not necessarily be realised in practice. Figure 6.8 shows the background event

count as a function of the CRV efficiency. An efficient CRV helps to reject the vast

majority of atmospheric backgrounds. An efficiency of at least 99.9 % seems necessary

to suppress the background counts to fewer than one. Beyond 99.99 %, the contribution

from sneaking events becomes significant, and reducing the background rate is better
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PID

&CRV

99.9 % 99.99 %

None 3.22 2.29

89 % �+
(direction) 1.10 0.48

99 % �±
(Cherenkov) 0.57 0.08

Table 6.1: Summary of atmospheric background counts for )DAQ = 146 days

under different scenarios for particle identification (PID) and CRV efficiency

(&CRV).

tackled by means of particle identification, such as with the Cherenkov CTH layer.

Table 6.1 summarises the atmospheric background event counts for)DAQ = 146 days

under various run conditions. Obviously, one major aspect of identifying atmospheric

muons is the CRV, and the background rate greatly depends on its efficiency.

The problem caused by sneaking muons is more subtle. It has the potential to

plague the conversion search by producing on the order of one signal-like event during

data acquisition. The most frequent sneaking backgrounds are produced by anti-

muons that disguise as negative particles by flying from the detector to the muon

stopping target. These events can, however, be distinguished from conversion electrons

either via a direction identification technique using timing information, or with a

particle-identifying CTH. Being able to identify 89 % of �+
-induced events with timing

information would reduce the background counts to 1.10 with a 99.9 %-efficient CRV

or 0.48 with a 99.99 %-efficient CRV. Particle identification via Cherenkov threshold

detection is expected to further help, bringing the background count to 0.08 assuming

99 % �±
identification and a 99.99 %-efficient CRV.

6.4 Discussion

6.4.1 Summary

In this chapter, we combined the BMC method with a �–4 conversion sample and a

DIO sample in order to determine how each process will contribute in the event counts

recorded during the Phase-I data acquisition run. The analysis of signal events yields

our estimate of the single event sensitivity of the COMET Phase-I experiment. Integrat-

ing over the entire run time of Phase-I, we find that atmospheric muon backgrounds
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outnumber the next largest source of background, DIO, by an order of magnitude or

more depending on the exact conditions. The main factor in eliminating atmospheric

backgrounds is the efficiency of the CRV, followed by the CyDet system’s ability to

distinguish between electrons and muons.

The total number of atmospheric muons that will get past the conversion event

selection in Phase-I is expected to exceed 1000 in the absence of the Cosmic Ray Veto.

The veto will, at best, reject all but 2.2 of them, which will sneak in through either

of the uncovered regions upstream and downstream. These sneaking events can only

be identified with a particle identification mechanism, or, in the case of �+
, if the

track direction can be determined via timing information from the CDC and CTH. The

atmospheric background counts, under different hypotheses for CRV efficiency and

muon identification methods, are summarised in Table 6.1. Our results suggest that,

without a particle-identifying CTH, the CRV will be required to veto at least 99.91 % of

muons passing through to reduce the background rate below 1, assuming an optimistic

89 % efficiency in rejecting �+
via timing information.

Backward MC simulation is a powerful tool which enabled us to determine that ex-

tremely rare conversion-like events can be produced by atmospheric muons sneaking

into the COMET detector system. These events can be an important obstacle for the

COMET Phase-I conversion search if no additional way to reject them, such as particle

type identification, is put in place. Using a standard MC simulation where events are

generated far from the detector system, those rare events that get past the CRV and

produce signal-like tracks would most likely not appear at all in the sample. Hence,

the backward MC method is absolutely key in this study and should continue to prove

useful in COMET toward Phase-I and Phase-II. More generally, any experiment search-

ing for rare processes and which is susceptible to cosmic ray-induced backgrounds will

also benefit from using backward MC in identifying the kinds of atmospheric events

that are likely to mimic their signal, and estimating their frequency.

6.4.2 Limitations and recommendations

Backward transport

In our study, we used backward MC simulation to transport muons from the surface of

the CRV to the atmospheric plane. The assumption associated with this procedure is
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that the muon is able to travel all the way from the atmospheric source to the surface of

the CRV. In reality, this assumption does not necessarily hold and there is expected to

be some fraction of atmospheric muons which will interact close to the CRV and whose

products will induce a background event. These events do not contribute toward our

results. Therefore, we are underestimating the background rate from cosmic rays, but

by how much is difficult to determine.

This bias could be addressed by sampling the muons not at the surface of the CRV,

but a little farther away. However, doing so would lead to more events missing the

detector, as is the case in forward MC, and therefore to wasted computation. Already,

in our study, very few sampled events pass the CyDet selection criteria: around 1 in

10
5

in the envelope sample, 1 in 10
7

for sneaking events. Pushing the sampling surface

outward would decrease these ratios and reduce our statistics further. Nevertheless, it

can be done in the future in order to estimate the extent of the bias.

Sampling distributions

Atmospheric muons are sampled around the CRV with arbitrary energy and direction

distributions. Our selection shows that only one event in 100 000 produces a fourfold

coincidence and a track in the CyDet system. In a future iteration of this study, one could

determine if there is some region of the sampling phase space which never contributes

to the selected events: perhaps very high or very low energy events, or events which are

incident upon the CRV within a specific range of azimuthal or zenith angle. Eliminating

this region of phase space from the sampling distribution function would increase the

fraction of simulated events which pass the selection, thus increasing the statistics on

events of interest for the same computational cost.

Event selection

To identify background candidates, events are selected that have a fourfold coincidence

in the CTH and an associated track in the CDC. When reconstructing a trajectory, the

track fitting algorithm ignores hits produced by other particles in the CDC during the

same event. Instead of using a track finding algorithm, we use truth information from

the MC simulation in order to select hits from the right particle and provide them

to the track fitting function. This has caused at least one known inaccuracy in our
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study: events where a high energy muon produces a shower in the CDC sometimes

induce a fourfold coincidence, thus they pass our selection criteria and may be counted

as background events. In realistic conditions, events that suddenly saturate a large

fraction of CDC channels, such as a high-energy shower, will most likely be discarded

because tracks cannot be reconstructed from the event. Therefore, these should not

have been counted as part of the integrated background, for instance in Figures 6.5a

and 6.8. These high energy muons typically fly straight through the CyDet system and

hit the CRV along the way. Hence, although this issue in our selection is likely to have

caused a slight overestimation of the total background rate, we expect the sneaking

component to be unaffected.

Reconstruction and detector response

Various aspects of our study are not faithful to the actual conditions of Phase-I. On the

reconstruction side, for the atmospheric muon sample, we use a helix fit to reconstruct

the trajectory of each event where a fourfold coincidence is produced. During data

acquisition, a more complex fitting algorithm, based on Kalman filtering, will be used.

Similarly, for the conversion and DIO samples, we do not perform reconstruction but

naively smear the true momentum of the track using the design momentum resolution

of the CDC. Because of those simplifications, we expect the resulting momentum spectra

to differ slightly in the real conditions of Phase-I.

Although ICEDUST has the capability to fully simulate each sub-detector’s response

to incoming energy deposits, digitisation and calibration were not simulated in this

study. Instead, we simplified those processes by applying a hardware efficiency factor

to all samples. Similarly, the timing of events is also disregarded in our simulation.

Instead of assigning a realistic time of production to conversion, DIO and atmospheric

events, and then selecting events that occur in the trigger time window, we apply an

efficiency factor to each sample based on their expected time distribution and the start

and end time of the trigger window.

Hence, our study makes use of estimates based on other studies within the collab-

oration, rather than conducting fully realistic calculations in the detector response and

reconstruction aspects. In future studies, and as the Phase-I data acquisition period

approaches, it will be especially important to rigorously simulate these effects to assess
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the performance of the experiment as accurately as possible.
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Chapter 7

Conclusion

Since the discovery of the muon in 1937, our understanding of its properties has been

steadily evolving. Today, although it fits nicely into the Standard Model of particle

physics, some questions remain standing, and recent tensions observed between theory

and experiment are suggesting that the SM does not give a complete picture of the

muon’s underlying nature. Charged lepton flavour violation is one of the ways in

which Nature might deviate from the SM. If CLFV were observed, it would be a clear

indication of new physics. Neutrino-less muon-to-electron conversion is one of the most

sensitive channels to search for CLFV as its signature is a mono-energetic electron with

few sources of potential backgrounds. According to theoretical constraints, this process

ought to be suppressed beyond experimental sensitivities. Therefore, any observation

of the �–4 conversion signal would yield clear evidence for CLFV and hence guide the

field toward a better understanding of physics beyond the Standard Model.

The COMET Phase-I experiment will soon start its data acquisition run toward the

search for muon-to-electron conversion in aluminium. It is expected to be a hundred

times more sensitive to �–4 conversion than the previous best measurement by SIN-

DRUM II. To achieve this sensitivity, COMET Phase-I will produce an intense pulsed

muon beam directed toward an aluminium target to create muonic aluminium atoms,

from which conversion electrons may emerge. The Cylindrical Detector, which sur-

rounds the muon stopping target, is designed to clearly identify conversion electrons

while rejecting as many experimental backgrounds as possible.

In order to cover the needs of the experiment in terms of simulation, calibration,

reconstruction, data formats and data analysis, the COMET collaboration develops a
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comprehensive set of software utilities named ICEDUST. The work presented through-

out this thesis relies heavily on Monte Carlo (MC) data produced by ICEDUST’s Geant4

simulations of Phase-I. MC simulations allow us to study the experiment outcomes and

to optimise its design before assembly. However, they are computationally expensive

and typically only allow us to simulate a small fraction of the amount of data expected

to be collected. Additionally, traditional MC sampling is particularly inefficient when

the source of events is far from the detector system, as is the case when considering

cosmic ray-induced backgrounds. This thesis aims to address these two limitations by

partially circumventing the brute force MC method.

We investigate a novel approach to the mass-production of simulation data based

on Generative Adversarial Networks. We propose a neural network generator of hits

for the Cylindrical Drift Chamber, which can produce synthetic energy deposits in

the detector at a rate 10
6

times higher than the ICEDUST simulation. The machine

learning model is trained on a sample of simulated hits and learns from their features

and relationships. The trained model allows us to generate only a subset of the hits

produced by MC simulation, but far more efficiently than was previously achievable.

Our ambition for this work and future developments is to enable the production of

entire mock datasets, which can be used by the collaboration in anticipation of data

acquisition runs.

Our estimate of the single event sensitivity achievable with COMET Phase-I, calcu-

lated with the most up-to-date simulation geometry, is 3.6× 10
−15

over 146 days of data

acquisition. Additionally, we present a study of the backgrounds caused by cosmic

ray-induced atmospheric muons in the COMET Phase-I muon-to-electron conversion

search. We use a backward Monte Carlo simulation method to efficiently estimate the

flux of atmospheric muons near the detector system. We then perform a full analy-

sis of the event count contributions from �–4 conversion, muon decay-in-orbit, and

atmospheric muons. Our findings suggest that an efficient rejection of atmospheric

backgrounds by the Cosmic Ray Veto, combined with particle-type identification by

the Cylindrical Detector, are necessary for the Phase-I search to succeed. Indeed, dur-

ing the 146 days of data acquisition, the CRV will have the crucial role of rejecting 10
3

atmospheric muon events expected to pass every selection criterion of the conversion

search. Furthermore, we expect 2.2 events to sneak through and be distinguishable
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only via direction or particle type identification.

Our most important contributions have been integrated into the main ICEDUST

software repository and documented for others to use and build upon. As the COMET

experiment goes into the Phase-I measurement period, we hope that these techniques

will help to refine our understanding of the data and that they can be applied in

preparation for Phase-II and beyond.
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Appendix A

Integration of backward Monte Carlo

software into ICEDUST

A.1 Original implementation

The backward Monte Carlo simulation software was originally written and applied to

the COMET Phase-I experiment by Valentin Niess, author of [71, 72]. Figure A.1 shows

the layout of the original set of software layers used to run backward MC simulations

in the Phase-I world.

At the core of the backward Monte Carlo simulation is the backward transport

engine, PUMAS [72]. PUMAS is responsible for the propagation of particles through

matter and the computation of MC weights based on the path taken and the interactions

undergone, as discussed in Section 5.1.2. Because it is designed exclusively for this

purpose, PUMAS does not provide utilities for navigating through complex geometries

or sampling the flux from pre-computed tables. Another package, GOUPIL, takes on

this role as an interface to PUMAS, and allows the user to specify a geometry, a source

flux, as well as the local topography and geomagnetic field around the experiment’s

location. An additional interface between GOUPIL and Geant4, goupil-geant4, was

developed to allow the user to control backward MC runs with the Geant4 macro user

interface and to load and navigate the geometry from a GDML file. The final layer,

resample-simg4, provides a command-line interface and enables events generated by

SimG4 to be read as input for the backward MC simulation to estimate their flux.
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for backward MC runs

PUMAS

Backward MC propagation

GOUPIL 
External package

SimBackwardMC 
ICEDUST package

Figure A.1: Software packages that compose the original backward MC

simulation stack for the Phase-I study, and organisation of their integrated

ICEDUST counterparts.

A.2 Integration

Figure A.1 also shows how the original software was arranged to become part of the

ICEDUST framework. Since the PUMAS and GOUPIL packages are unlikely to undergo

quick iterative changes over time, they are integrated into an external package. The

functionalities of the upper two layers of the stack are combined into a new ICEDUST

package called SimBackwardMC.

The way in which the layers are organised is not the only difference between the

original and current software. Three major changes were implemented during the

integration in order to bring the original software closer to the ICEDUST workflow.

• Geometry format: originally read from GDML files, the geometry is now created

from the same classes and macro files that define the simulation world in forward

MC runs by the SimG4 package. This additionally ensures that the geometry used

in forward and backward MC simulations is identical.

• Entry point: the main resample-simg4 entry point was previously a Lua script

executed via LuaJIT which defined the command-line interface, configured the

backward simulation run, and processed the output. SimBackwardMC uses a stan-

dard ICEDUST event loop executable as its entry point to handle command-line
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arguments, read events from input oaEvent files and output the results of the

backward simulation.

• Output format: resample-simg4 wrote the results of backward sampling to a text

file in a format similar to CSV. SimBackwardMC writes to a RooTracker file instead,

since that is a standard ICEDUST format and a good fit to store the kinematics of

processed events along with their estimated flux.

The integrated backward MC software presented here was used to obtain the results

of Chapters 5 and 6. It is also currently being used in the work of others, for instance to

estimate the atmospheric muon flux at various locations around the Phase-I detector

system and validate the results with real measurements. Through our standardisation

of some parts of the original software and the addition of specific documentation, we

hope that the SimBackwardMC package will remain a readily accessible tool for future

cosmic ray studies in COMET.
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