
Using SMT to Accelerate Nested Virtualization
Lluís Vilanova

Technion — Israel Institute of Technology

Israel

vilanova@technion.ac.il

Nadav Amit

VMware Research, Israel

namit@vmware.com

Yoav Etsion

Technion — Israel Institute of Technology

Israel

yetsion@technion.ac.il

ABSTRACT

IaaS datacenters offer virtual machines (VMs) to their clients, who in

turn sometimes deploy their own virtualized environments, thereby

running a VM inside a VM. This is known as nested virtualization.

VMs are intrinsically slower than bare-metal execution, as they

often trap into their hypervisor to perform tasks like operating vir-

tual I/O devices. Each VM trap requires loading and storing dozens

of registers to switch between the VM and hypervisor contexts,

thereby incurring costly runtime overheads. Nested virtualization

further magnifies these overheads, as every VM trap in a traditional

virtualized environment triggers at least twice as many traps.

We propose to leverage the replicated thread execution resources

in simultaneous multithreaded (SMT) cores to alleviate the over-

heads of VM traps in nested virtualization. Our proposed architec-

ture introduces a simple mechanism to colocate different VMs and

hypervisors on separate hardware threads of a core, and replaces

the costly context switches of VM traps with simple thread stall and

resume events. More concretely, as each thread in an SMT core has

its own register set, trapping between VMs and hypervisors does

not involve costly context switches, but simply requires the core to

fetch instructions from a different hardware thread. Furthermore,

our inter-thread communication mechanism allows a hypervisor to

directly access and manipulate the registers of its subordinate VMs,

given that they both share the same in-core physical register file.

A model of our architecture shows up to 2.3× and 2.6× better I/O
latency and bandwidth, respectively. We also show a software-only

prototype of the system using existing SMT architectures, with up

to 1.3× and 1.5× better I/O latency and bandwidth, respectively,

and 1.2–2.2× speedups on various real-world applications.

CCS CONCEPTS

• Software and its engineering→Virtual machines; • Security

and privacy→ Virtualization and security.

KEYWORDS

virtualization, nested virtualization, computer architecture

ACM Reference Format:

Lluís Vilanova, Nadav Amit, and Yoav Etsion. 2019. Using SMT to Acceler-

ate Nested Virtualization. In The 46th Annual International Symposium on

Computer Architecture (ISCA ’19), June 22–26, 2019, Phoenix, AZ, USA. ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/3307650.3322261

Figure 1: Nested virtualization introduces overheads when

context switching between hypervisors and VMs: the host

hypervisor (L0)
1
reflects a VM trap from the nested VM (L2)

into the guest hypervisor (L1). Circled steps are used for

reference on the text.

1 INTRODUCTION

Nested virtualization, namely running a VM inside a VM [8, 21, 22],

is becoming a core technology for enterprises and data centers.

This technology is already supported by leading IaaS providers,

like Google and Microsoft [13, 19], to enable their clients to install

nested hypervisors that provide hypervisor-enforced security [35],

backwards compatibility [11, 34], easy deployment [41], hyper-

convergence [45], or support for cloud native applications [10].

Nested virtualization, however, amplifies the runtime overheads

incurred by existing virtualization technology, since commodity

CPUs lack native support for nested virtualization. VMs are not al-

lowed to directly execute protected operations pertaining to proces-

sor configuration state or I/O devices. As a result, hypervisors must

emulate such operations through a trap-and-emulate model [40];

when a VM executes a protected operation, the processor generates

a VM trap into the hypervisor context, which emulates the func-

tionality of the protected instruction and then issues a VM resume

operation, restoring the VM’s context and continuing its execution.

Importantly, VM trap and resume operations are costly because

they require a “context switch” between hypervisor and VM states.

VM traps therefore dominate the overheads in nested virtualiza-

tion, as shown in Figure 1
1
: 1 the nested VM (L2) always traps

into the host hypervisor (L0), which 2 injects the information of

the trapped event into the guest hypervisor (L1) and resumes its

execution. 3 L1 then does the actual handling of the VM trap from

L2 (it is unaware of the existence of L0) and resumes the execution

of L2. 4 The VM resume operation issued by L1 triggers another

1
Throughout this paper we use the common virtualization terminology that describes

the n𝑡ℎ level of virtualization as Ln, where L0 is the host hypervisor, L1 is a guest

VM/hypervisor, L2 is a nested VM, and so on. This is not to be confused with the

architectural terminology that uses Ln to describe the n𝑡ℎ cache level.

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in The 46th Annual

International Symposium on Computer Architecture (ISCA ’19), June 22–26, 2019, Phoenix,

AZ, USA, https://doi.org/10.1145/3307650.3322261.

https://doi.org/10.1145/3307650.3322261
https://doi.org/10.1145/3307650.3322261

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Lluís Vilanova, Nadav Amit, and Yoav Etsion

VM trap into L0, which prepares the state of L2 to resume its exe-

cution. As we can see, nested virtualization multiplies the number

of VM trap and resume events by at least a factor of 2. Oftentimes

this factor is even higher since the L1 hypervisor typically triggers

additional VM traps when it reads or changes the state of L2. More-

over, VM traps are even more expensive in nested virtualization

as each involves saving and restoring dozens of registers, using

a mixture of hardware support and complicated software dealing

with the manipulation of architectural data structures.

In this paper we propose to minimize the overhead incurred by

VM traps by leveraging the replicated thread execution resources

present in simultaneous multi-threading (SMT) processors, elimi-

nating the costs of single-threaded context switches between VMs

and hypervisors. On the software side, we execute each virtual-

ization level on a separate SMT thread in the same SMT core. On

the hardware side, we replace the VM trap and resume operations

with hardware thread stall and resume events, such that only one

hardware thread is executing at any point in time. This design gives

software the illusion of running on a single hardware thread, but

uses the multiple hardware contexts present in SMT to accelerate

context switches across virtualization levels.

The prevailing single-threaded virtualization technology must

save and restore hardware contexts to and from memory, thereby

incurring substantial overheads when switching between virtual-

ization levels. In contrast, the proposed use of replicated thread

states in SMT cores enables fast switching between different virtu-

alization levels. For example, when the thread executing L2 triggers

a VM trap, we stall L2 and enable the hardware context on which

L0 is executing; similarly, when the thread running L0 triggers a

VM resume to L1, we stall L0 and resume L1 thread’s execution.

To complete our design we extend the existing SMT architecture

to allow a hardware context running a hypervisor to directly ma-

nipulate the register set of a colocated hardware context that runs

a subordinate VM. This feature provides a fast path for a common

scenario in which the VM trap handler in a hypervisor needs to

update the register context of a subordinate VM to complete the

emulation of a protected instruction (e.g., increase the instruction

pointer after emulating an access to an I/O device),

The proposed use of SMT cores may seem wasteful, as a core will

only execute one hypervisor/VM thread at any given time. In prac-

tice, however, this is not the case since even though most enterprise

and data center processors support SMT, hardware multithreading

is often disabled for security and performance reasons. For one,

different OSes recommend disabling SMT to thwart spectre-like

and other side-channel attacks, which exploit the nature of physical

resource sharing in SMT [16, 27]. In addition, process co-location

with SMT often causes performance degradation [23, 33, 42] and

is thus disabled for latency-sensitive workloads or when offering

latency-based SLAs to third parties.

The proposed system design imposes minimal changes to ex-

isting hardware and software. Specifically, the proposed system

requires fairly non-intrusive changes to the architecture, provides

speedups in a way that is transparent to end-user VMs (e.g., L2),

requires very modest changes on existing hypervisors (e.g., L0 and

L1), and maintains the existing security guarantees of virtualization.

The contributions presented in this paper are as follows:

• A qualitative and quantitative analysis of state-of-the-art

nested virtualization (§ 2).

• A hardware and software co-design that accelerates context

switches between VMs and their hypervisors by leveraging

existing SMT resources (§§ 3 to 5). The paper also describes a

software-only implementation that multiplexes hypervisors

and VMs on existing SMT processors using Linux+KVM.

• A detailed evaluation that shows up to 2.6× better I/O perfor-

mance on a model of our hardware/software co-design, and

up to 1.55× when using our software-only prototype. With

a variety of real-world applications, the software prototype

can achieve speedups of 1.18–2.2× on different performance-

relevant metrics (§ 6).

2 BACKGROUND AND MOTIVATION

Popek and Goldberg were the first to describe nested virtualization

theoretically [17, 18, 40], and soon after processors offered hardware

support for nested virtualization [7, 38]. This led to a common

trade-off in computer architecture: designing complex hardware

that efficiently handles most cases, or providing simpler primitives

that trap into software to handle the more complex cases. As it

turns out, most processors fall into the latter category nowadays.

2.1 Nested Virtualization on Single-Level

Hardware Virtualization

Virtualization frameworks are usually split between a kernel-level

hypervisor that manages the virtualization hardware and most

performance-critical operations (like Linux’s KVM [28]), and a

user-level hypervisor that implements the higher-level operations

like emulation of certain I/O device operations (e.g., QEMU). If we

look at nested virtualization, many frameworks are based on the

idea that the architecture provides a single level of virtualization in

hardware, like is the case for x86 and ARM processors [2, 4, 32, 47]

(which the majority of enterprises and data centers use).

In such scenarios, every nested VM trap goes through the host

hypervisor (L0), which then either directly handles it (e.g., when

the L1 guest hypervisor triggers a trap), or redirects it to one of its

guest hypervisors (e.g., redirecting it to L1 when a nested VM like

L2 triggers a trap). This is because whenever L1 creates a nested

VM (L2), the L0 hypervisor emulates the virtualization hardware

exposed to L1 using VM traps. To avoid unnecessary overheads, L0

creates a guest VM to run L2, and reflects all operations from L1 to

keep L2’s state up-to-date [8, 21].

Figure 2 shows a high-level overview of how the host hypervisor

(L0) manages a nested VM (L2) created by a guest hypervisor (L1).

For simplicity, we assume each VM has a single virtual CPU (vCPU).

Hypervisors create a VM state descriptor (named VMCS in Intel

processors) for each vCPU of its guest VMs. This descriptor contains

various fields that describe information such as the reason of a VM

trap (so the hypervisor can handle it accordingly), or the context of

the host (L0) and its guest (L1) vCPU, which is necessary to perform

context switches between L0 and L1 during VM trap and resume

events; e.g., it contains the values of general-purpose, control and

model-specific registers (MSRs). A VMCS does not hold the entire

context of a VM, but is instead used to bootstrap a minimal amount

Using SMT to Accelerate Nested Virtualization ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

Figure 2: Relationship between the various VM state descrip-

tors (VMCS in Intel) and the VMs they represent in nested

virtualization. Numbers are used for reference on the text.

of state that allows the hypervisor to manage the rest of the context

in software.

To make the example clearer, we suffix each VMCS with two

numbers, the hypervisor level managing it, and the VM level it

represents. For example, L0 stores the state of L1 in vmcs01.
When the guest hypervisor (L1) creates a nested VM (L2), it

creates the corresponding VMCS for L2. Since L1 is unaware it

is being virtualized (i.e., it is unaware of the existence of L0), it

creates vmcs01′ (note the tick on the name, differentiating it from

vmcs01 in L0). When L1 loads vmcs01′ into the virtualization hard-

ware, the processor generates a VM trap into L0. The L0 hypervisor

then starts “shadowing” vmcs01′ into vmcs12 (step 1), so that ev-

ery update that L1 makes into vmcs01′ traps into L0, who in turn

reflects it in vmcs12. Note that although recent Intel processors

support hardware-based “VMCS shadowing”, which can be used

to eliminate some common nested virtualization traps, these pro-

cessors’ architecture is mostly designed to run a single level of

virtualization.

Finally, when the guest hypervisor L1 starts its guest VM (L2,

which is a nested VM for L0), this also triggers a VM trap into

L0. At this point, L0 transforms vmcs12 into a new VM descriptor

(vmcs02) that is used to run L2 on (2). This is necessary because

L0 emulates the hardware virtualization support available to L1,

in order to run L2 on the real physical hardware that L0 controls.

For example, a VMCS contains many pointers to physical memory

addresses; therefore, the addresses set by L1 in vmcs01′ (and shad-

owed into vmcs12 by L0) contain guest physical addresses pertaining
to L1. L0 must thus transform these addresses into the actual host

physical addresses it has assigned to run L2 on. Furthermore, L1

can provide L2 with direct access to certain physical resources like

the timestamp counter to track time, while the L0 hypervisor can

instead choose to virtualize these resources through VM traps; this

is often used, for example, to implement VM scheduling and migra-

tion. In this case, L0 configures vmcs02 to ensure access to these

resources trigger a VM trap, regardless of the configuration set by

L1 in vmcs01′.

2.2 Life-Cycle of a Nested VM Trap

VM trap and resume operations in nested virtualization are more

expensive than in single-level virtualization for three main reasons:

(1) their number is amplified by at least a factor of two, (2) some

Algorithm 1 Pseudo-code to handle a nested VM trap. Right-hand

side comments identify the current virtualization level and the host

VMCS that they are currently using. Highlighted background shows

the operations added by nested virtualization. Circled numbers

reference the times in Table 1.

1: . . . {L2 — vmcs02} 0

2: [VM trap] {L0 — vmcs02} 1

3: vmcs12←transform← vmcs02 2

4: load vmcs01 {L0 — vmcs01} 3

5: inject VM trap into vmcs12 3

6: [VM resume] {L1 — vmcs01} 4

7: handle VM trap using vmcs01′ 5

8: [VM trap] {L0 — vmcs01}

9: handle VM trap using vmcs01

10: [VM resume] {L1 — vmcs01}

11: handle VM trap using vmcs01′ (cont’d) 5

12: [VM resume→ VM trap] {L0 — vmcs01} 4

13: load vmcs02 {L0 — vmcs02} 3

14: vmcs12→transform→ vmcs02 2

15: [VM resume] {L2 — vmcs02} 1

16:
. . . 0

context switches are more expensive during nested virtualization,

and (3) context switches require additional VMCS transformations.

Algorithm 1 shows a complete sequence to handle a nested

VM trap, with lines on a shadowed background to highlight those

operations that are added during nested virtualization.

When L2 performs an operation that should be trapped by L1,

it is actually trapped by L0, and accordingly performs a context-

switch to L0 (Line 2). To allow L1 to handle this trap, L0 must first

transform vmcs02 into vmcs12 to reflect any changes performed by

L2 (e.g., the instruction pointer that triggered a fault is stored on the

VMCS), inject the information of the VM trap event into vmcs12
and then issue a VM resume operation on vmcs01 to perform a

context switch into L1 (Lines 3 to 6).

At this point, the CPU runs L1 code that changes vmcs01′ and
performs the necassary operations to handle the VM trap from L2

(Lines 7 and 11). As pointed above, nested virtualization induces

additional VM trap and resume events when L1 performs certain

privileged operations (Lines 8 to 10). Such operations include access-

ing control registers and certain fields of vmcs01′, manipulating the

extended page tables [25], or reprogramming a timer interrupt. The

example only shows one additional VM trap during the execution

of L1’s handler, but in practice this might happenmultiple times.

After L1 finishes handling the VM trap from L2, it issues a VM

resume operation on vmcs01′, which traps into L0 (Line 12). At this

point, L0 must transform the changes performed by L1 on vmcs12
back into vmcs02 (remember that vmcs12 is the shadow copy of

L1’s vmcs01′), and resume the execution of L2 (Lines 13 to 15).

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Lluís Vilanova, Nadav Amit, and Yoav Etsion

Part Time (us) Perc. (%)

0 L2 0.05 0.47

1 Switch L2↔L0 0.81 7.75

2 Transform vmcs02/vmcs12 1.29 12.45

3 L0 handler 4.89 47.02

4 Switch L0↔L1 1.40 13.43

5 L1 handler 1.96 18.87

Table 1: Time breakdown for executing a cpuid instruction
in a nested VM (total is 10.40 us). Due to complexity, some of

the context switching costs in (1) and (4) are folded into (3)

and (5). Circled numbers reference Algorithm 1.

2.3 Overheads of a Nested VM Trap

To put the analysis above in perspective, Table 1 shows the break-

down of the time it takes on average to execute a cpuid instruction
in a nested virtualization environment. We choose cpuid because
the architecture requires it to be emulated by the hypervisor, and

the handler code is short and simple. We measure the time spent

in each trap handling stage in Algorithm 1 by modifying the code

of the L1 and L0 hypervisors, ensuring the changes do not pro-

duce additional VM traps. We measure the time spent in L2 by

measuring the execution time of the benchmark natively without

virtualization. The timing measurements are then scaled to the time

of executing cpuid in L2 without the hypervisor modifications. The

experiments have a standard deviation and timing overheads below

1% of the mean with 2𝜎 confidence, after removing outliers with

4𝜎 confidence (evaluation platform described in § 6).

As can be seen, the L2 code (0), the initial VM trap, the final

VM resume operation (1) and the L1 handler itself (5) consist

of 27% of the benchmark execution time. The remaining 73% are

overheads induced by nested virtualization.

These overheads are attributed to three main causes:

VMCS transformations: The VMCS transformations described

in § 2.2 and Algorithm 1 (2) account for 12.5% of the time, and are

an intrinsic problem of architectures not natively supporting multi-

ple levels of virtualization in hardware. Intel’s support for VMCS

shadowing provides limited benefits, as the CPU can only shadow

some of VMCS fields, which do not require complicated handling

(e.g., no complex address translations across VM and hypervisor

spaces, or conflicting goals between a L0 and L1 hypervisor).

Context switches: Internally, every VM trap and resume event

induces a pipeline flush in the processor. More importantly, the

processor writes information such as CPU registers and trap in-

formation into the VMCS structure of the exiting VM, and loads

registers from the VMCS into the processor in order to be able

to start executing the hypervisor. This only provides a minimal

execution context for the hypervisor, which must then save some

of the current registers into memory, and to load others into the

processor before it can start executing the actual VM trap handler.

As a result, a context switch has to save and restore in excess of

various dozens of values, accounting for 8% and 13.5% of the time

when switching L0 between L2 and L1, respectively (1 and 4).

L1 exits during VM-exit handling: As explained above, the

VM trap handler in L1 often triggers additional VM traps into L0.

Figure 3: Executing a VM with SVt: the hypervisor executes

in SMT thread 0, and starts the VM by loading its context

into the SMT thread 1. Future VM trap and resume events

simply switch the target SMT thread for instruction fetches,

and the hypervisor can directly read and write the register

state of the VM in SMT thread 1 to handle its traps.

This is also the case for the cpuid example above, where the L1

handler triggers a VM trap when reading or writing certain fields

in vmcs01′ (the cost is folded into 5). In practice, this example

shows a best-case scenario, since L1 handlers for other types of

traps trigger many more traps into L0.

Finally, note that the L0 handler (3) takes about 47% of the time.

This is because of the complexity of the code managing nested

virtualization, which must emulate the virtualization of many com-

plex architectural data structures. Importantly, some of the time

pertaining to the L0 and L1 handlers (3 and 5) should instead be

accounted into the context switching steps (1 and 4), increasing

the cost of context switches; this is because the VM trap handlers

context-switch certain VMCS fields and registers lazily.

3 DESIGN

As § 2.3 discussed, simple nested VM trap handling spends more

than 20% of the time context-switching between the L0 hypervisor

and the different VMs that it runs (see 1 and 4 in Table 1). During

this considerable time, the hypervisor stores and loads various

registers to and from memory. In practice, context-switching time

might be even greater since handling most L2 traps by L1 triggers

multiple traps from L1 to L0.

To eliminate the overheads of context switches, we propose SVt

(smt-based virtualization), which leverages the replicated thread

execution resources present in SMT processors. SVt eliminates

context switches in a way that is transparent to guest VMs (i.e., L2),

requires modest modifications on existing hypervisors, introduces

very simple hardware changes to existing SMT processors, and does

so in a way that is not riddled with the known security and perfor-

mance problems that SMT entails in virtualized environments.

On the software side, the L0 hypervisor loads each virtualization

level (i.e., L1 and L2) into a separate hardware context of a certain

core (i.e., a core has one hardware context for each SMT thread).

On the hardware side, SVt replaces the VM trap and VM resume

events with hardware thread stall and resume operations, such that

only one hardware thread is running at any point in time. SVt

gives software the illusion that the different hardware contexts act

as a single hardware thread of execution, and are therefore solely

used to accelerate context switches. Figure 3 shows an example

with two virtualization levels, which we will later extend to nested

virtualization. Initially, the L0 host hypervisor is executing on SMT

context number zero (context-0), and loads the necessary state for

a L1 VM on hardware context number one (context-1). When L0

Using SMT to Accelerate Nested Virtualization ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

resumes the L1 VM, the processor stalls fetches from context-0, but

maintains all the state on its hardware context. Since L1 already has

its entire state loaded into the hardware context of context-1, the

processor starts fetching instructions from it right away. Likewise,

a later VM trap from L1 causes the processor to stall fetching from

context-1 and to start executing instructions from context-0.

Figure 3 also shows how L0 sets up the state of L1 and manip-

ulates it in a VM trap handler using cross-context register accesses.

This is possible because, in existing designs, hardware threads of

the same core share a single physical register file. SVt therefore

only requires simple changes to allow, for example, context-0 to

access the registers of context-1.

In a nested virtualization scenario, L0 would load L2’s context

into context-2, and L1 would be able to manipulate the registers of

context-2 when handling nested VM traps. Together, these hard-

ware modifications allow immediate context switches between vir-

tualization levels, and avoid using memory to exchange the dozens

of registers that conform the context of each hypervisor and VM.

This design poses an intermediate design point between the clas-

sical hardware designs for virtualization. On one hand, it avoids

the context-switching overheads of single-level virtualization de-

signs, found on most processors in the market. On the other hand,

it avoids the complexity of full hardware support for nested virtu-

alization, in which nested VM traps, which should be handled by

a nested hypervisor (e.g., L1), do not need to be trapped by the L0

hypervisor.

3.1 The Illusion of a Single Hardware Thread

with Multiple Execution Contexts

An end-user VM can transparently benefit from SVt when running

on hypervisors that support it, and hypervisors that use SVt do not

need to be aware of whether they are being virtualized themselves.

This is key for adoption, since virtualization providers cannot expect

their clients to change the OS of every VM they deploy.

In practice, SVt uses the multiple existing hardware contexts in

SMT to accelerate nested virtualization, but provides the illusion

of executing on a single hardware thread. Therefore, SVt does not

need to change the logic used to schedule, create or destroy VMs;

just like in existing hypervisors, state is lazily loaded into the hard-

ware contexts every time a VM’s virtual CPU (vCPU) is scheduled

into a different hardware thread. Existing hardware virtualization

triggers VM traps when accessing certain registers (e.g., Intel uses

various VMCS fields to identify which registers will trap when

accessed). SVt can apply the same technique to trap cross-context

register accesses; e.g., L0 can configure certain cross-context reg-

isters to trigger a VM trap when the L1 guest hypervisor accesses

them. As expected, SVt ensures that a virtualization level can only

access the register context of its subordinate VMs.

Special care must be taken when dealing with interrupts. The

simplest option is to have the hypervisor configure the interrupt

controller in a way that treats all SVt-enabled contexts as part of

the same target CPU by redirecting all external interrupts to the

hardware context where the L0 hypervisor is executing.

SVt can accelerate context switches between as many nested

VM and hypervisor contexts as hardware contexts are available

in a core. Past that point, the hypervisor must multiplex some of

the virtualization levels on a single hardware context, performing

context switches between different virtualization layers.

Finally, SVt could selectively bypass some virtualization levels

when triggering a VM trap to bring performance even closer to

systems with full hardware support for nested virtualization, but an

in-depth discussion of this topic is outside the scope of this paper.

3.2 Design Feasibility

SVt is a resource-efficient approach to accelerate virtualization

because (1) SMT is available on most processors, and consumes very

little real estate on the chip, (2) each SMT thread already has its own

context in hardware, making context switches between SMT threads

instantaneous, (3) SMT can be easily modified to implement our

proposed changes on instruction stall and resume, and cross-context

register accesses, and (4) many datacenter operators disable SMT

for performance and security considerations (see § 3.4).

SVt should introduce a marginal increase of power consumption

relatively to setups in which SMT was disabled, as power gating in-

active thread resources in SMT has been shown to be effective [12].

3.3 Coexistence of SVt and SMT

Interestingly, one could design a system that dynamically chooses

between using SMT to accelerate system-wide application execu-

tion, and SVt to accelerate VM operations on each core (SMT is

known to have limited benefits on certain applications), but such

analysis is out of the scope of this paper.

Finally, we present SVt as an alternative way to use the hard-

ware resources present in SMT-enabled cores, since it springs a

familiar shared mental model. It would nonetheless be also possible

to implement SVt as an addition to SMT, or even as a substitute

if SMT was eliminated in some processors. SVt’s main structures

can be reused from existing SMT designs (see § 4), and efficiently

disabled in non-SVt mode.

3.4 Security and Performance Interference

Considerations

Using SMT is often associated with security and performance in-

terference problems, and therefore disabled in some enterprise

and datacenter environments [23, 33, 42]. Nevertheless, the way in

which SVt uses SMT is not subject to any of these problems, since

an SVt-enabled core executes code from a single VM or hypervisor

context at any point in time.

SMT poses a security concern due to recently found CPU vulner-

abilities, such as Spectre and Meltdown, which enable attackers to

leak privileged information that should not be accessible by the VM.

Solutions have been developed to prevent such attacks in single-

threaded CPUs with relatively reasonable performance overheads.

However, some of the mitigations require software to poison (i.e.,

overwrite or invalidate) certain CPUmicro-architectural state when

it switches between different security domains, such as switches

between the hypervisor and its VMs. When SMT is enabled, two

different security domains might run in parallel, thereby effectively

allowing one security domain to affect and monitor the other even

when software poisons the CPU state. Existing solutions like Intel’s

STIBP induce very high overheads and are not recommended [48].

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Lluís Vilanova, Nadav Amit, and Yoav Etsion

Name Type Purpose

SVt_visor VMCS field Target context for host hypervi-

sor.

SVt_vm VMCS field Target context for guest VM.

SVt_nested VMCS field Target context for nested cross-

context register accesses.

ctxtld lvl . . . Instruction Read reg. from another context.

ctxtst lvl . . . Instruction Write reg. to another context.

SVt_current `-register Target context to fetch instruc-

tions from.

SVt_visor `-registers Cached versions of the fields

SVt_vm above.

SVt_nested
is_vm `-register Whether we are executing in-

side a VM. Already present in

existing processors.

Table 2: Architectural and micro-architectural state changes

introduced by SVt. The `-registers are per-core.

Moreover, these solutions do not prevent all the attacks and there-

fore some OSes disable, or recommend disabling, SMT to thwart

such attacks [16, 27].

In contrast, SMT can be safely used by SVt since the CPU would

squash all speculative instructions before it starts fetching instruc-

tions of a different SMT thread. Poisoning the CPU state will there-

fore be effective in SVt as it is in current systems where all vir-

tualization levels are executed on the same hardware thread. For

the same reasons, SVt does not induce performance degradation

due to co-executing SMT threads [23, 33, 42], given that VMs and

hypervisors are never mutually contending for execution cycles.

4 HARDWARE SUPPORT

SVt reduces the latency of context switches across VMs and hy-

pervisors by holding the state of each virtualization level (an SVt

context) on a separate hardware execution context, like those pro-

vided by the SMT threads of a core (see § 3.3). SVt does so while

providing the illusion of a single effective execution thread, and

takes advantage of the physical shared register file commonly found

in SMT core designs to allow one virtualization level to access the

hardware register context of its subordinate VMs.

The overall hardware design to support SVt is shown in Figure 4.

SVt adds very modest extensions to the ISA, which are summarized

in Table 2: three new fields on the VM state descriptor, or VMCS

in Intel, and instructions to access registers across contexts. It also

performs a few simple changes on the micro-architecture: adds four

per-core micro-architectural registers (three of which cache the

fields above), and adds very simple logic that switches execution

between hardware contexts based on VM trap and resume events.

The SVt_visor and SVt_vm fields identify the hardware con-

texts where a hypervisor and guest VM execute, and VM trap and

resume operations switch execution to these contexts, respectively.

Similarly, the SVt_nested field identifies where a nested VM of this

Figure 4: Overview of instruction fetch and VMCS activation

in an SVt-enabled CPU with three contexts. Light gray ele-

ments control instruction fetch, while colored ones contain

added or modified resources per SMT thread / SVt context.

Circled letters are used for reference on the text.

guest VM executes (only used on guest hypervisors during cross-

context register accesses). All three fields are cached in per-core

micro-architectural registers.

The added micro-architectural register SVt_current keeps track
of the “active” hardware context used for instruction fetches and exe-

cution. Its value changes according to the SVt_trap and SVt_resume
registers when there is a VM trap or resume event, respectively.

The existing micro-architectural register is_vm identifies whether

the processor is currently executing code inside a VM.

Finally, SVt uses the lvl argument in the ctxtld/ctxtst in-

structions to identify the target hardware context during cross-

context register accesses. A hypervisor can access the register con-

text of a guest VM by passing argument lvl == 1, and can access

the context of a nested VM by passing argument lvl == 2. Note

that the target context is specified indirectly through the lvl ar-

gument; the actual context identifier is virtualized through SVt_vm
and SVt_nested. When a host hypervisor is executing (is_vm ==
0), passing lvl == 1 selects the context in SVt_vm, whereas pass-
ing lvl == 2 selects the context in SVt_nested. Similarly, when a

guest hypervisor is executing (is_vm == 1), passing lvl == 1 se-

lects the context in SVt_nested. Any other combination of values

produces a trap into the hypervisor, which can then emulate deeper

virtualization hierarchies.

To demonstrate how SVt operates, we will use an example where

the L0 host hypervisor executes in context-0, and decides to execute

the L1 guest hypervisor and the L2 nested VM — each with a single

virtual CPU — in context-1 and context-2, respectively.

Configuring L1 and Cross-Context Register Access. The SVt_-
current register starts pointing to context-0, where L0 executes,

and the is_vm register is zero, since we are executing on the host

hypervisor. L0 then configures L1’s VMCS to execute in context-1

(step A in Figure 4) as follows: (1) in order to control the VM trap

and VM resume events in L1, L0 sets the SVt_visor and SVt_vm
fields to context-0 and context-1, respectively, and (2) since L1 is

not running any nested VM now, L0 sets the SVt_nested field to

an invalid value.

When L0 loads the VMCS into the processor (e.g., instruction

VMPTRLD in Intel processors; step B), SVt copies the newly defined

VMCS fields into the corresponding micro-architectural registers.

Using SMT to Accelerate Nested Virtualization ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

L0 then uses the cross-context register access instructions to

load the initial state of L1 into context-1 (first operation in Fig-

ure 3). L0 passes lvl == 1 to set the register context of its guest VM,

L1, which runs in context-1; the ctxtld/ctxtst instructions use

SVt_vm, since the is_vm register is zero. Note that the physical reg-
ister file is a per-core resource shared among the different contexts,

and SVt accesses the register renaming map of the target context

to index into the appropriate physical register file entry (this is also

true for SMT threads). Since only one context is executing in SVt

at any single point in time, there is no need for additional access

ports to the register maps or physical register file.

Starting L1. After loading the context for L1, the L0 hypervisor

issues a VM resume. At this point (step C) SVt copies SVt_vm
into the SVt_current register, effectively stalling instructions from
context-0 and starting execution from context-1. A VM resume also

sets the is_vm register to one to mark that a VM is executing.

Steady State: VM Trap and VM Resume. Once we are executing in

the hardware context of L1 (context-1), a VM trap copies SVt_visor
into the SVt_current register, switching execution back to context-
0 where the L0 hypervisor resides, and also sets the is_vm register to
zero. Once L0 issues a VM resume, SVt copies SVt_vm, whose value
was set to context-1 above, back into the SVt_current register, and
set the is_vm register back to one.

Nested Virtualization. Assuming that L1 now decides to host its

own VM (L2), from its point of view L1 executes in context-0, and

its guest VM (L2) in context-1. As we will see, context indexes are

virtualized too, and L0 instead executes L2 in context-2.

L1 starts by setting the SVt_visor field to context-0 (where the

guest hypervisor, L1, thinks it is executing), sets the SVt_vm field to
context-1 (where L1 wants to execute L2), and sets the SVt_nested
field to an invalid value. L1 then loads the VMCS into the processor

and, like in existing processors, this triggers a VM trap into L0. At

this point L0 has to perform the VMCS shadowing transformations

described in § 2 between vmcs12 (vmcs01′ in L1) and vmcs02, and
has to configure access to nested VMCS fields in vmcs01. L0 thus
sets the SVt_nested field in vmcs01 to context-2, so that L1 can later
access the registers of its guest VM in L2. Finally, L0 translates the

VMCS fields in L1 (vmcs12) into their counterpart in L0 (written into
vmcs02), which in this case corresponds to setting the SVt_hyper
field to context-0 and the SVt_vm field to context-2 (the SVt_nested
field is left with an invalid value). After this is complete, L0 resumes

execution of L1.

At this point, L1 can use the instructions ctxtld/ctxtst to

access the register context of L2 at context-2, even when it thinks

L2 was assigned to context-1. Remember that L0 virtualized the

context identifiers, and L1 accesses L2’s context as identified by

SVt_nested in vmcs01 (i.e., L1 passes argument lvl == 1, while

the is_vm register is one).

When L1 later issues a VM resume for L2, the operation traps

into L0. L0 then loads vmcs02 and issues a VM resume to it, which

redirects execution to context-2 (i.e., SVt_vm == context-2).

4.1 Additional Considerations

The examples above only describe synchronous VM trap operations

(e.g., when a guest hypervisor executes a VM load or resume). In

a real system, VM traps can also be triggered by asynchronous

events like external interrupts, which SVt treats in the same way

as the examples above: an asynchronous VM trap stops the current

context and switches execution to the context in SVt_visor.
Furthermore, switching across execution contexts in SVt does

not require additional cache traffic, given that all contexts in a core

physically share the level one data cache.

For simplicity, this hardware design has per-core resources, dis-

allowing the execution of multiple independent VMs on the same

core when SVt has been enabled on it. Nevertheless, it is quite

simple to extend this design to per-context resources, such that

each can independently act as a SMT thread or an SVt context,

even allowing different SVt contexts of the same core to be used

for different independent VMs.

5 SOFTWARE IMPLEMENTATION

To determine the software changes necessary to take advantage

of an SVt-enabled processor, we will first describe the changes

necessary on the hypervisor. Finally, we will describe a software-

only prototype that takes partial advantage of the core concepts in

SVt while using existing processors. In both cases, we will base our

description on an Intel architecture using Linux’s KVM module for

version 4.18 (Linux’s kernel-space hypervisor) and QEMU version

3.0.0 (the user-space counterpart of the hypervisor).

5.1 The SVt Hypervisor

The changes required for a hypervisor to take advantage of SVt

are very limited. First, adding new VMCS fields only requires a few

lines of code, mainly dealing with their index encoding, and the

current VMCS layout allows fitting our three SVt_visor, SVt_vm
and SVt_nested fields.

The loading of the micro-architectural registers in SVt that cache

these VMCS fields already happens during the existing VMPTRLD
instruction (see § 4). When a VM executes a VMPTRLD instruction,
an SVt-enabled hypervisor must virtualize the context identifiers

on the new VMCS fields. For simplicity, the hypervisor keeps track

of the virtualization level of each VMCS, and assigns hardware

context 𝑛 to the 𝑛th virtualization level.

The hypervisor must also be modified to use the extended cross-

context register access instructions when dealing with the register

state of a subordinate VM. Fortunately, most of the relevant registers

in KVM are abstracted away on a few accessor functions, which

can be easily modified to use SVt.

One important deviation of SVt from the baseline KVM imple-

mentation resides in the assembly thunk that deals with VM resume

and VM trap operations. This piece of assembly code contains vari-

ous register saves and restores, which are not necessary in SVt; a

hypervisor in SVt will simply use the cross-thread register access

instructions whenever the value of a register is needed.

Finally, it is worth mentioning that KVM has various places

where registers and VMCS values are manually cached on a need-

to basis in order to avoid potential VM traps when accessing them

multiple times. While SVt could accelerate these cases by making

VM traps on accesses less expensive, the existing software caching

logic does not harm correctness.

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Lluís Vilanova, Nadav Amit, and Yoav Etsion

Figure 5: Operation of the software-only prototype (SW SVt) during VM trap reflection for a virtual CPU (vCPU) in L2. Subscripts

denote the vCPU or hardware thread where each entity executes. Circled numbers are used for reference on the text.

Codebase LOCs added LOCs removed

QEMU 654 10

Linux / KVM 2432 51

Linux / other 227 2

Table 3: Summary of code changes (including comments).

5.2 Software-Only Prototype

Performing a cycle-accurate simulation of multiple nested full sys-

tems with large applications would be too computationally inten-

sive. Therefore, we have prototyped an SVt hypervisor that runs

on existing SMT processors, and Table 3 summarizes the necessary

changes we performed on the KVM and QEMU codebases.

Instead of using the hardware features provided by SVt, we

emulate them using software. This software prototype (SW SVt)

provides some of the acceleration of SVt in a way that maintains

transparency for nested VMs (i.e., L2), and therefore can only ac-

celerate a subset of the cases that SVt can handle. Specifically, SW

SVt only accelerates the context switches between L0 and L1 by

running L1 on a separate SMT thread. Therefore, L2 runs on the

same hardware thread as L0, using the pre-existing VM trap code

path, and L0 and L1 communicate the information necessary to

handle the VM traps of L2 using a shared memory channel.

The design of SW SVt is summarized in Figure 5, where each

virtual CPU (vCPU) is associated to a VMCS structure. SW SVt

pins each vCPU on its own physical hardware context, which is

identified by a subscript on each of the elements in Figure 5.

When the L0 host hypervisor starts a new L1 guest hypervisor, it

first creates two shared memory buffers for each vCPU. Each buffer

is a unidirectional command ring that will be used to communicate

VM trap and resume events regarding the L2 guest VM (commands

CMD_VM_TRAP and CMD_VM_RESUME in Figure 5). L0 assigns these

buffers to a ivshmem device in QEMU, which exposes them as PCI

devices that can be mapped into regular memory in L1.

When the L1 guest hypervisor (running in L10) starts a vCPU

for L2, it creates an SVt-thread (L11) that stays inside the kernel

ready to serve VM traps from L20. L1 then “pairs” both threads

using a hypercall to L0, so that the L0 hypervisor can reschedule

them together into separate hardware contexts of the same core

whenever an L2 vCPU is rescheduled into a new physical CPU.

Now the system is ready to accelerate the VM traps from L2.

When L2 triggers a VM trap into L0 (1), L0 must send a VM trap

command to the SVt-thread of L1 using the shared memory com-

munication channel (CMD_VM_TRAP in 2). When the SVt-thread

finishes handling the trap from L2, it responds with a VM resume

command on the communication channel (CMD_VM_RESUME in 3).

Given that neither L0 nor L1 have access to SVt’s cross-thread

register access features, SW SVt sends the necessary information

together with the commands on the shared memory channels be-

tween the hypervisor and the SVt-thread (L00 and L11, respec-

tively). This information includes general-purpose register values

and the VM trap identifier.

Some VM trap handlers on the SVt-thread might access re-

sources or instructions under the assumption that L1 and L2 execute

on the same hardware context; e.g., accessing certain control and

MSR registers, or executing the INVEPT instruction. In these cases,

the SVt-thread (L11) triggers a VM trap that is captured by L01. L01

then propagates the necessary information into L00 to maintain

the hardware contexts in a consistent state.

L0 and L1 use the monitor/mwait instructions to efficiently wait

for new commands. This is the closest we can get to the execution

switch in SVt using existing processors, and our experiments vali-

date this: monitor sets the CPU to watch for changes on the target

communication channel, and mwait then stops fetching new in-

structions until that value changes (we configure mwait to keep the
CPU at the C1 state). Using other forms of polling consumes cycles

from the “active” hardware thread, degrading overall performance.

Using SMT to Accelerate Nested Virtualization ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

5.3 Avoiding Interrupt deadlocks in L1

SW SVt must be careful when interrupts arrive to L10 while an

SVt-thread is handling a VM trap in L01 (this is not a problem

with the hardware implementation of SVt). The following sce-

nario would lead to a deadlock: (1) the L10 and L11 vCPUs run on

the L00 and L01 hypervisor threads, respectively; (2) L00 sends a

CMD_VM_TRAP to the SVt-thread in L11; (3) another kernel thread

in L11 preempts the SVt-thread; (4) this kernel thread sends an IPI

(inter-processor interrupt) to the L10 vCPU, and waits until it is

handled (e.g., to perform a TLB shootdown); (5) since L00 is waiting

for a CMD_VM_RESUME response from the SVt-thread in L11, it never

resumes the L10 vCPU, leading to a deadlock (L11 is stuck waiting

from an IPI response from L10).

To avoid this problem, L00 must check for new interrupts to the

L10 vCPU while waiting for a response from the SVt-thread in L11.

When an interrupt arrives at L10, L00 injects a new SVT_BLOCKED
VM trap into L10; L10 then enables interrupt reception, allows

the interrupt handler to proceed, and immediately yields control

back to L00 through a VM resume operation on L20. After the VM

resume, L00 goes back to waiting for the response from L11. This

ensures forward progress in SW SVt, at the cost of longer-latency

SVt command processing in the case described above. Note that

correctness is not compromised: the SVT_BLOCKED handler in L10

never accesses the state of the L20 vCPU concurrently with the

command processing of the SVt-thread in L11.

6 EVALUATION

Our evaluation consists of three parts: (1) an analysis of the per-

formance improvements of VM trap acceleration with SVt using

micro-benchmarks, (2) an analysis of the performance of main sys-

tem operations using subsystem benchmarks, and (3) an analysis of

end-to-end performance using real-world application benchmarks.

All experiments use the machine parameters described in Table 4.

Given that there are many storage technologies with very different

latency and throughput parameters, we load the disk system image

used to boot the L1 and L2 VMs into a tmpfs, making their accesses

independent of storage technologies. All VMs are configured to

avoid swapping their memory, experiments run in two virtual CPUs

in L2, and all system processes are moved into a third virtual CPU

using cgroups to avoid noise (system processes in L0 and L1 are

also moved into CPUs not used for running the experiments).

The results for SVt are split into two categories. “SW SVt” shows

an evaluation of the software-only prototype described in § 5.2

using the machine in Table 4. “HW SVt” shows an approximation

of the hardware implementation of SVt. Wemodeled it by obtaining

detailed timing measurements of each VM trap event and the cost of

the communication channels in SW SVt; we then compared these

numbers to the VM trap breakdown numbers in Table 1, and scaled

the speedup assuming that every VM trap from L2 and L1 would

not pay the cost of context switching (remember that SW SVt does

not avoid context switches between L2 and L0).

6.1 Micro-Benchmarks

The micro-benchmarks consist of a loop with the operation under

scrutiny, surrounded by a series of dependant register increments

Level Description

L0 2×Intel E5-2630v3 (2.4GHz, 8 cores, 2-SMT),

2×64GB RAM, Intel X540-AT2 (10Gb)

L1 6 vCPUs, (1 reserved) 50GB RAM,

virtio-net-pci+vhost, virtio disk @ ramfs

L2 3 vCPUs (1 reserved), 35 GB RAM,

virtio-net-pci+vhost, virtio disk @ ramfs

Table 4: Machine parameters. Reserved vCPUs never run our

experiments, and L0 reserves a whole NUMA node.

that simulate a variable workload. The loop is repeated until stan-

dard deviation and timing overheads are below 1% of the mean with

2𝜎 confidence, after ignoring outliers with 4𝜎 confidence.

First, we analyse the feasibility of the communication channel

in SW SVt by measuring the latency of different mechanisms with

different workload sizes (numbers not shown for brevity). We com-

pare polling, mwait (cache-line monitoring) and mutexes against a

simple function call. We also analyze different configurations where

both threads are either on separate NUMAnodes, sameNUMAnode

but different cores, or same core but different hardware threads (i.e.,

SMT). The main observations from these experiments are:

• Polling has the lowest latency for small workloads, but overheads

increase with the workload in SMT because the waiting thread

consumes execution cycles from the computing thread.

• Placing threads on different NUMA nodes has up to an order of

magnitude longer response latency.

• Placing threads on separate cores of the same NUMA node has

low response times, but that also means any thread colocated in

those cores will suffer as well.

• Mutex has a large startup cost, but that is quickly offset in SMT as

we increase the workload size because the waiting thread blocks

in the kernel without consuming cycles of the working thread.

• mwait is slightly better thanmutex in large workload sizes (Linux

uses mwait when idle, but our experiment does not need to call

the kernel scheduler), and has slightly longer delays with small

workload sizes (mutex actively polls for a brief time first).

We can therefore conclude that SMT+mwait is a good compro-

mise between low latency responses and low overheads when a

colocated thread is performing computations.

Nowwe analyse how these configurations, applied to the waiting

loop of the SVt-thread channels, impact performance by measuring

the time it takes to execute a cpuid instruction in L2 (here, we

use a workload size of zero). Polling offers very little acceleration,

since the time between VM traps in L2 is always large enough

that polling’s overheads shadow its low response time. In contrast,

the mwait implementation offers a reduction of around 2 us (or

1.23× speedup). This can be seen in Figure 6 (bar “SW SVt”), which

compares the latency of a single cpuid instruction on different

virtualization levels, with and without SVt. The hardware model

of SVt (“HW SVt”) shows an even larger speedup of 1.94×. The
rest of the bars show the execution time of cpuid on native (L0),

guest VM (L1), and baseline nested VM (L2) systems, respectively.

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Lluís Vilanova, Nadav Amit, and Yoav Etsion

L0 L1 L2 SW SVt HW SVt0

2

4

6

8

10
Average time [usec] (higher is better)

0.05 us Ovhead: 13×

Ovhead: 211×
Spdup: 1.23×
Ovhead: 171×

Spdup: 1.94×
Ovhead: 109×

Figure 6: Execution time of a cpuid instruction. Speedup

results for SVt are compared to the baseline L2 system.

Network
lat.

Network
bw.

Disk lat.
randrd

Disk bw.
randrd

Disk lat.
randwr

Disk bw.
randwr

0.0
0.5
1.0
1.5
2.0
2.5

Normalized speedup [×] (higher is better)

16
3

1.
10

×
2.

38
×

93
87

1.
00

×
1.

12
×

12
6

1.
30

×
2.

18
×

87
13

6 1.
55

×
2.

31
×

17
9

1.
05

×
2.

26
×

55
76

9
1.

18
×

2.
60

×Baseline SW SVt HW SVt

Figure 7: Speedup of SVt on various I/O subsystems.

6.2 Subsystem Benchmarks

Next, we measure the speedup of SVt in specific subsystems:

Network latency: TCP round-trip time (in usec) of 1 B packets

using netperf. Measures performance of virtio network.

Network bandwidth: TCP throughput (inMbps) of 16 KB packets

using netperf. Measures performance of virtio network.

Disk latency: Disk latency (in usec) for 512 B accesses with either

random reads or writes using ioping. Measures performance

of virtio storage.

Disk bandwidth: Disk throughput (in KB/s) for 4 KB blocks with

either random reads or writes using fio. Measures performance

of virtio storage.

Figure 7 shows the absolute benchmark metric for the baseline

L2 system and shows SVt as a speedup normalized to the baseline,

using the methodology in § 6 to model the results for HW SVt.

As we can see, only the software prototype of SVt already pro-

vides speedups ranging between 1.05× and 1.55× for the device

latency and bandwidth measurements (network bandwidth is close

to the physical limit of 10Gbps). Once we move to our hardware

model for SVt, the speedups increase to up to a factor of 2×.
It is worth noting that some hypervisors use para-virtualization

to avoid VM traps in guest hypervisors when they access a VMCS,

like in the “enlightened VMCS” feature in Hyper-V [37]. SVt ac-

celerates these cases without additional hypervisor changes, but

para-virtualization can be more efficient and, therefore, used in

combination. Nonetheless, profiling of our benchmarks reveals that

of all time spent handling VM traps in L0, only about 4% is spent in

the VM trap handlers triggered by VMCS accesses in L1.

5000 7500 10000 12500 15000 17500 20000 22500
Throughput [QPS]

0

200

400

600

800

1000
Latency [usec] (lower is better)

2.20×
1.43×

SLA (500usec)

99th
avg

Baseline
SVt

Figure 8: Latency results for memcached as a function of

request load, using Facebook’s ETC workload.

0 1000 2000 3000 4000 5000 6000 7000
tpm-C throughput [transactions/min] (higher is better)

Baseline

SVt

6374.40

1.18×

Figure 9: Throughput results for TPC-C + PotgreSQL.

6.3 Application Benchmarks

We now show the performance improvements of SW SVt in various

real-world benchmarks, each of which stresses different subsystems.

6.3.1 Key-Value Store. Thememcached key-value store serves us as

a proxy for network latency-critical applications.We use Facebook’s

ETC workload [5] with the mutilate benchmark client [31] running

on a separate physical machine with the same configuration shown

in Table 4, and measure the 99th percentile and average latencies at

different request loads. We consider an SLA of 500 usec, following

the same parameters and constraints studied by others before [6].

Figure 8 shows the results we obtained with SW SVt. We have

also profiled the baseline system to compute which VM trap han-

dlers L0 spends most of its time in when serving L2 (numbers not

shown for brevity). Depending on the target throughput, L0 spends

4.8%–19.3% of the overall time serving EPT_MISCONFIG traps, which
largely correspond to accesses to the network device, and spends

0.5%–4.6% serving MSR_WRITE, largely due to configuring timer

interrupts (TSC deadline MSR).

SVt acceleration results in lower and less noisy network receive

and transfer latencies. This translates into a large improvement of

2.2× in 99th percentile latency within SLA, whereas average latency
sees an improvement of 1.43×.

6.3.2 TPC-C Database. The TPC-C database benchmark serves

us as a proxy for network and disk throughput. We use the sys-

bench benchmarking tool with its TPC-C addon, using a PostgreSQL

database with a default configuration to serve the requests.

Figure 9 shows that SW SVt has 1.18× better transaction through-
put by avoiding the costs of context switches during VM traps.

Using SMT to Accelerate Nested Virtualization ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

24 FPS 60 FPS 120 FPS0
5

10
15
20
25
30
35
40
Dropped frames (lower is better)

0 frames 0.00× 3 frames 0.00×

40 frames

0.65×
Baseline SVt

Figure 10: Video playback results (in dropped frames) as a

function of video quality in frames per second.

6.3.3 Video Playback. We use a video player as a proxy for soft-

realtime applications, which require timer interrupt accuracy. We

use mplayer to reproduce the first 5min of a 4K movie [24], which

we have repackaged from 24 to 60 and 120 FPS (characteristic of

HFR movies), and measure the number of dropped frames.

Figure 10 shows the number of dropped frames with all the

different framerates. Profiling tells us that L0 spends 2% of the time

serving EPT_MISCONFIG for the disk accesses in L2, and up to 1%

serving MSR_WRITE at 120 FPS, largely due to configuring timer

interrupts (TSC deadline MSR). Even if the overheads are small (L2

is idle for 61% of the time), they are enough to deliver interrupts

too late for 40 frames at 120 FPS in the baseline system.

SVt brings frame drops down to 0.65× at 120 FPS, and eliminates

all frame drops at 60 FPS, with a reduction of 1.12× and 1.18× for
MSR_WRITE and EPT_MISCONFIG handlers, respectively.

7 RELATEDWORK

During the last decade, many hardware enhancements have been

proposed to alleviate virtualization overheads, mostly by reducing

the number of virtualization traps. ELI proposed direct interrupt

delivery to VMs without traps [20], whereas others extended this

to efficiently handle more cases [46]. Self-virtualizing I/O devices

were designed to eliminate traps that are triggered by VM accesses

to memory-mapped I/O devices [39]. Several memory manage-

ment unit (MMU) enhancements have been proposed to reduce the

overheads that the additional level of memory indirection in VMs

induces [1, 9, 14]. The Turtles project, which introduced nested

virtualization for Intel CPUs, proposed enhancements to perform

VM state reads and writes without traps in most cases [8]. Variants

of most of these techniques have been adapted in commodity CPUs

and production hypervisors. Since KVM is one of such hypervi-

sors, our evaluation takes these techniques into account in both

the baseline and SVt-enabled experiments.

If we look solely at I/O performance, self-virtualizing I/O de-

vices [39] are in conflict with commonly-used live migration [50],

do not easily scale with the number of VMs [26], and prevent

commonly-used interposition techniques [43]. SVt triggers VM

traps in a more efficient way when accessing devices, therefore

supporting these use cases while reducing their overheads.

New software techniques have also been developed along the

years to improve virtualization performance. Paravirtual interfaces

between the hypervisor and the VMs, such as Microsoft TLFS [36]

and VirtIO [44] have been employed to reduce the number of

traps. These interfaces have been tailored to virtualization and

are therefore more efficient than native hardware interfaces, which

are based on architectural events in some cases. The overheads of

nested virtualization have also been addressed by novel software

techniques. VMware, for example, has recently improved the per-

formance of Windows that employs virtualization based security

(VBS) by 33% [49]. Despite the advances of hardware and software,

nested virtualization overheads are still high and sometimes prohib-

itive. In addition, we evaluated SVt using VirtIO devices, therefore

providing the best possible baseline.

To further improve virtualization performance, some studies

proposed to offload VM trap handling onto “side-cores”. Multiple

studies [3, 15, 29] have presented software techniques that can do

so using existing hardware. These techniques, however, are only

applicable to I/O device virtualization and increase CPU utilization

and power consumption by reserving some cores to actively poll

for device emulation requests. SplitX has proposed hardware en-

hancements for hypervisors to handle more virtualization traps

asynchronously on “spare” cores in order to reduce cache pollution

and obtain greater concurrency [30]. Arguably, side-core-based

approaches might not be suitable in many setups, since spare idle

cores are often unavailable, they are limited to VM trap events

known in advance, and SplitX performance improvement through

cache-pollution reduction can be offset by the overheads of inter-

core communication. In comparison, SVt supports all VM trap

events, including those not supported by the aforementioned soft-

ware techniques (e.g., physical memory paging of a VM), accelerates

VM traps without the need to reserve cores for the hypervisor, and

does not depend on inter-core communication.

8 CONCLUSIONS

Nested virtualization is becoming a standard technology that eases

application deployment and improves security. Despite advances

along the years, the overheads of nested virtualization are still

oftentimes prohibitive. Hardware support is apparently necessary to

improve its performance, but the complexity of nested virtualization

requires to develop basic hardware primitives that would leave most

of the complexity to software.

In this paper we propose novel and simple hardware enhance-

ments that leverage existing ubiquitous technology, SMT, to en-

hance nested virtualization and improve its performance. By always

keeping the state of each context — the hypervisor and the VMs

— cached in the CPU register files of different SMT threads of the

same core, context switches are made lightweight and efficient. We

propose ISA extensions that enable hypervisors to easily query and

modify the state of virtual CPUs in an efficient way. We implement

a software-only version of our solution on a commodity hypervisor,

which enables us to validate that the proposed hardware-software

interfaces are well defined.We use our prototype to evaluate the per-

formance of our solution, and show it provides up to 2.2× speedup

for real-world applications.

Indeed, the solution space for efficient nested virtualization ac-

commodates alternative solutions. Yet, as security and performance

are the key features of hardware virtualization, we believe that

this solution is very compelling, as it provides a balanced trade-off

between efficiency and hardware implementation complexity.

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Lluís Vilanova, Nadav Amit, and Yoav Etsion

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their

valuable feedback on improving this manuscript. This research was

supported by the Israel Ministry of Science, Technology, and Space

and by the Israel Science Foundation (ISF grant 979/17). Lluís Vi-

lanova was funded by Andrew and Erna Finci Viterbi and Technion

Fund Post-Doctoral Fellowships.

REFERENCES

[1] Jeongseob Ahn, Seongwook Jin, and Jaehyuk Huh. 2012. Revisiting hardware-

assisted page walks for virtualized systems. In Intl. Symp. on Computer Architec-

ture (ISCA).

[2] AMD 2005. Secure virtual machine architecture reference manual. AMD.

[3] Nadav Amit, Muli Ben-Yehuda, Dan Tsafrir, and Assaf Schuster. 2011. vIOMMU:

efficient IOMMU emulation. In USENIX Annual Technical Conf.

[4] ARM Ltd. 2013. ARM architecture reference manual ARMv8-A DDI 0487A.a. ARM

Ltd.

[5] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.

2012. Workload Analysis of a Large-Scale Key-Value Store. In ACM SIGMETRICS.

[6] Adam Belay, George Prekas, , Ana Klimovic, Samuel Grossman, Christos

Kozyrakis, and Edouard Bugnion. 2014. IX: A Protected Dataplane Operating

System for High Throughput and Low Latency. In Symp. on Operating Systems

Design and Implementation (OSDI).

[7] Gerald Belpaire and Nai-Ting Hsu. 1975. Hardware architecture for recursive

Virtual Machines. In ACM’75: 1975 annual ACM conference.

[8] Muli Ben-Yehuda, Michael D. Day, Zvi Dubitzky, Michael Factor, and Nadav

Har’El. 2010. The Turtles Project: Design and Implementation of Nested Virtual-

ization. In Intl. Symp. on Computer Architecture (ISCA).

[9] Ravi Bhargava, Benjamin Serebrin, Francesco Spadini, and Srilatha Manne. 2008.

Accelerating two-dimensional page walks for virtualized systems. In Intl. Conf.

on Arch. Support for Programming Languages & Operating Systems (ASPLOS).

[10] Google Cloud. 2017. Introducing nested virtualization for Google Compute

Engine. https://cloud.google.com/blog/products/gcp/introducing-nested-

virtualization-for.

[11] Oracle Cloud. 2019. Ravello. https://cloud.oracle.com/en_US/ravello.

[12] Stijn Eyerman and Lieven Eeckhout. 2014. The benefit of SMT in the multi-

core era: Flexibility towards degrees of thread-level parallelism. ACM SIGARCH

Computer Architecture News 42, 1 (2014), 591–606.

[13] Joy Fan. 2017. Nested Virtualization in Azure. https://azure.microsoft.com/en-

us/blog/nested-virtualization-in-azure/.

[14] Jayneel Gandhi, Mark D Hill, and Michael M Swift. 2016. Agile paging: exceeding

the best of nested and shadow paging. In Intl. Symp. on Computer Architecture

(ISCA).

[15] Ada Gavrilovska, Sanjay Kumar, Himanshu Raj, Karsten Schwan, Vishakha Gupta,

Ripal Nathuji, Radhika Niranjan, Adit Ranadive, and Purav Saraiya. 2007. High-

performance hypervisor architectures: Virtualization in HPC systems. InWork-

shop on System-level Virtualization for HPC (HPCVirt).

[16] Thomas Gleixner. 2019. L1 Terminal Fault. Document provided in the Linux

kernel sources (Documents/admin-guide/l1tf.rst).
[17] Robert P. Goldberg. 1973. Architecture of virtual machines. In Workshop on

virtual computer systems.

[18] Robert P. Goldberg. 1974. Survey of virtual machine research. IEEE Computer

Magazine (June 1974).

[19] Google Cloud 2018. Enabling Nested Virtualization for VM Instances. Google

Cloud.

[20] Abel Gordon, Nadav Amit, Nadav Har’El, Muli Ben-Yehuda, Alex Landau, Assaf

Schuster, andDan Tsafrir. 2012. ELI: bare-metal performance for I/O virtualization.

Intl. Conf. on Arch. Support for Programming Languages & Operating Systems

(ASPLOS) (2012).

[21] Alexander Graf and Joerg Roedel. 2009. Nesting the Virtualized World. Linux

Plumbers Conference.

[22] Qing He. 2009. Nested Virtualization on Xen. In Xen Summit Asia.

[23] Andrew Herdrich, Ramesh Illikkal, Ravi Iyer, Ronak Singhal, Matt Merten, and

Martin Dixon. 2012. SMT QoS: Hardware Prototyping of Thread-level Perfor-

mance Differentiation Mechanisms. In Workshop on Hot Topics in Parallelism

(HotPar).

[24] Ian Hubert. 2012. Tears of steel. https://mango.blender.org.

[25] Intel 2016. Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume

3C. Intel.

[26] Intel. 2018. Introducing Intel Scalable I/O Virtualization. https://software.intel.

com/en-us/blogs/2018/06/25/introducing-intel-scalable-io-virtualization.

[27] Mark Kettenis. 2018. https://www.mail-archive.com/source-changes@openbsd.

org/msg99141.html.

[28] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. 2007. KVM:

the Linux Virtual Machine Monitor. In Ottawa Linux Symp. (OLS).

[29] Sanjay Kumar, Himanshu Raj, Karsten Schwan, and Ivan Ganev. 2007. Re-

architecting VMMs for multicore systems: The sidecore approach. InWorkshop

on Interaction between Operating Systems & Computer Architecture (WIOSCA).

[30] Alex Landau, Muli Ben-Yehuda, and Abel Gordon. 2011. SplitX: Split

Guest/Hypervisor Execution on Multi-Core.. In USENIX Workshop on I/O Virtual-

ization (WIOV).

[31] Jacob Leverich. 2014. Mutilate: High-Performance Memcached Load Generator.

https://github.com/leverich/mutilate.

[32] Jin Tack Lim, Christoffer Dall, Shih-Wei Li, Jason Nieh, and Marc Zyngier. 2017.

NEVE: Nested Virtualization Extensions for ARM. In ACM Symp. on Operating

Systems Principles (SOSP).

[33] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and

Christos Kozyrakis. 2015. Heracles: Improving Resource Efficiency at Scale. In

Intl. Symp. on Computer Architecture (ISCA).

[34] Microsoft. [n. d.]. Windows XP Mode. https://www.microsoft.com/en-us/

download/details.aspx?id=8002.

[35] Microsoft 2017. Virtualization-based Security (VBS). Microsoft. https://docs.

microsoft.com/en-us/windows-hardware/design/device-experiences/oem-vbs.

[36] Microsoft. 2018. Hypervisor Specifications. https://docs.microsoft.com/en-us/

virtualization/hyper-v-on-windows/reference/tlfs.

[37] Microsoft 2018. Hypervisor Top Level Functional Specification. Microsoft.

[38] Damian L. Osisek, Kathryn M. Jackson, and Peter H. Gum. 1991. ESA/390

Interpretive-Execution Architecture, Foundation for VM/ESA. IBM Systems

Journal (1991).

[39] PCI-SIG 2010. Single Root I/O virtualization and sharing specification (revision 1.1

ed.). PCI-SIG.

[40] Gerald J. Popek and Robert P. Goldberg. 1974. Formal Requirements for Virtual-

izable Third Generation Architectures. Comm. ACM (July 1974).

[41] Clear Linux Project. 2019. Clear Linux OS. Containers made simple. https:

//clearlinux.org/containers.

[42] Shaolei Ren, Yuxiong He, Sameh Elnikety, and Kathryn S. McKinley. 2013. Exploit-

ing Processor Heterogeneity for Interactive Services. In Intl. Conf. on Autonomic

Computing (ICAC).

[43] Mendel Rosenblum and Carl Waldspurger. 2011. I/O Virtualization. ACM queue

(Nov. 2011).

[44] Rusty Russell. 2008. virtio: towards a de-facto standard for virtual I/O devices.

Operating Systems Review (2008).

[45] Scale Computing. 2018. HC3 Cloud Unity. https://www.scalecomputing.com/

products/hc3-cloud-unity-cloud-platform-with-google.

[46] Cheng-Chun Tu, Michael Ferdman, Chao tung Lee, and Tzi cker Chiueh. 2015. A

Comprehensive Implementation and Evaluation of Direct Interrupt Delivery. In

Intl. Conf. on Virtual execution environment (VEE).

[47] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L. Santoni, Fernando C.M. Martins,

Andrew V. Anderson, Steven M. Bennett, Alain Kägi, Felix H. Leung, and Larry

Smith. 2005. Intel Virtualization Technology. Computer (May 2005).

[48] Arjan van de Ven. 2018. Linux kernel mailing list discussion. https://lwn.net/ml/

linux-kernel/51127fd4-5dcc-b2b9-4873-72098d2a77d9@linux.intel.com.

[49] VMware. 2018. What’s new in performance? VMware vSphere 6.7. https://cloud.

google.com/blog/products/gcp/introducing-nested-virtualization-for.

[50] Edwin Zhai, Gregory D. Cummings, and Yaozu Dong. 2008. Live migration with

pass-through device for Linux VM. In Ottawa Linux Symp. (OLS).

https://cloud.google.com/blog/products/gcp/introducing-nested-virtualization-for
https://cloud.google.com/blog/products/gcp/introducing-nested-virtualization-for
https://cloud.oracle.com/en_US/ravello
https://azure.microsoft.com/en-us/blog/nested-virtualization-in-azure/
https://azure.microsoft.com/en-us/blog/nested-virtualization-in-azure/
https://mango.blender.org
https://software.intel.com/en-us/blogs/2018/06/25/introducing-intel-scalable-io-virtualization
https://software.intel.com/en-us/blogs/2018/06/25/introducing-intel-scalable-io-virtualization
https://www.mail-archive.com/source-changes@openbsd.org/msg99141.html
https://www.mail-archive.com/source-changes@openbsd.org/msg99141.html
https://github.com/leverich/mutilate
https://www.microsoft.com/en-us/download/details.aspx?id=8002
https://www.microsoft.com/en-us/download/details.aspx?id=8002
https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-vbs
https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-vbs
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/tlfs
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/tlfs
https://clearlinux.org/containers
https://clearlinux.org/containers
https://www.scalecomputing.com/products/hc3-cloud-unity-cloud-platform-with-google
https://www.scalecomputing.com/products/hc3-cloud-unity-cloud-platform-with-google
https://lwn.net/ml/linux-kernel/51127fd4-5dcc-b2b9-4873-72098d2a77d9@linux.intel.com
https://lwn.net/ml/linux-kernel/51127fd4-5dcc-b2b9-4873-72098d2a77d9@linux.intel.com
https://cloud.google.com/blog/products/gcp/introducing-nested-virtualization-for
https://cloud.google.com/blog/products/gcp/introducing-nested-virtualization-for

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Nested Virtualization on Single-Level Hardware Virtualization
	2.2 Life-Cycle of a Nested VM Trap
	2.3 Overheads of a Nested VM Trap

	3 Design
	3.1 The Illusion of a Single Hardware Thread with Multiple Execution Contexts
	3.2 Design Feasibility
	3.3 Coexistence of SVt and SMT
	3.4 Security and Performance Interference Considerations

	4 Hardware Support
	4.1 Additional Considerations

	5 Software Implementation
	5.1 The SVt Hypervisor
	5.2 Software-Only Prototype
	5.3 Avoiding Interrupt deadlocks in L1

	6 Evaluation
	6.1 Micro-Benchmarks
	6.2 Subsystem Benchmarks
	6.3 Application Benchmarks

	7 Related Work
	8 Conclusions
	Acknowledgments
	References

