
INDUCTIVE BIASES AND
METAKNOWLEDGE REPRESENTATIONS
FOR SEARCH-BASED OPTIMIZATION

by

STEPHEN FRIESS

A thesis submitted to
The University of Birmingham
for the degree of
DOCTOR OF PHILOSOPHY

School of Computer Science
College of Engineering and Physical Sciences
The University of Birmingham
November 2022

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

UNIVERSITYDF
BIRMINGHAM

Abstract

“What I do not understand, I can

still create.“

H. Sayama [124]

The following work follows closely the aforementioned bonmot. Guided by questions such

as: “How can evolutionary processes exhibit learning behavior and consolidate knowl-

edge?´´, “What are cognitive models of problem-solving?´´ and “How can we harness

these altogether as computational techniques?´´, we clarify within this work essentials

required to implement them for metaheuristic search and optimization.

We therefore look into existing models of computational problem-solvers and compare

these with existing methodology in literature. Particularly, we find that the meta-learning

model, which frames problem-solving in terms of domain-specific inductive biases and the

arbitration thereof through means of high-level abstractions resolves outstanding issues

with methodology proposed within the literature. Noteworthy, it can be also related

to ongoing research on algorithm selection and configuration frameworks. We therefore

look in what it means to implement such a model by first identifying inductive biases in

terms of algorithm components and modeling these with density estimation techniques.

And secondly, propose methodology to process metadata generated by optimization algo-

rithms in an automated manner through means of deep pattern recognition architectures

for spatio-temporal feature extraction. At last we look into an exemplary shape optimiza-

tion problem which allows us to gain insight into what it means to apply our methodology

to application scenarios. We end our work with a discussion on future possible directions

to explore and discuss the limitations of such frameworks for system deployment.

ACKNOWLEDGMENTS

First of all, I foremost would like to thank Prof. Dr. Xin Yao for giving me the chance to

work on a PhD thesis at the intersection of Natural Computing and Artificial Intelligence

within the ECOLE project. I found the study of computing paradigms based upon findings

of learning, developmental and evolutionary biology to be highly inspiring and I could not

have imagined to be anywhere else exposed to such a multidisciplinary approach towards

problem-solving. These were certainly very unique experiences and are life-long lasting

learnings to me. I further would also like to thank especially Prof. Dr. Peter Tiňo for pro-

viding additional supervision, as well as Dr. Stefan Menzel and Dr. Zhao Xu for exchange

opportunities throughout my research work. I also would like to thank Giuseppe Serra,

Sibghat Ullah, Jiawen Kong and Gan Ruan for making my time in ECOLE especially

enjoyable. Further, from HRI-EU, Thiago Rios for being helpful, as well as Nivesh Dom-

maraju, Fabian Müller, Manuel Rudolph and Felix Lanfermann for being very enjoyable

office companions. Likewise, I would like to thank Dr. Nabi Omidvar, Liangpeng Zhang,

Natasha Nigar and Xunzhao Yu from the School of Computer Science in Birmingham for

interesting academic exchange in our bi-weekly group meetings which I organized. On

this note, I would also like to thank the NaCo group at LIACS in Leiden for interesting

and partly also very entertaining moments. Last but not at least, I would like to deeply

thank my close friends and family who accompanied me on my journey. Which as they

know best has been a strenuous one for me. Thank you for being here for me during these

difficult times.

CONTENTS

1 Introduction 1

1.1 Nature-inspired Artificial Intelligence . 1

1.1.1 Simulated Evolution . 2

1.1.2 Simulated Learning . 3

1.1.3 Advantages, Differences & Synergies 4

1.2 Contemporary Problems in Heuristic Optimization 6

1.3 Contents of this Thesis . 8

1.3.1 Contributions and Structure . 9

1.3.2 Relevant Publications to this Thesis 10

2 Literature Review 12

2.1 Computational Models of Cross-Problem Solving 12

2.1.1 Reinforcement Learning . 12

2.1.2 Meta-Learning . 13

2.2 Further Approaches in the Literature . 14

2.2.1 Transfer Learning and Optimization 14

2.2.2 Estimation of Distribution Algorithms 16

2.2.3 Multitasking, Memetic and Knowledge-assisted Optimization 17

2.3 Chapter Summary . 19

2.3.1 Open Questions . 20

3 Inductive Biases in Search-based Optimization 22

3.1 Bias as a Prerequisite for Generalization 22

3.2 Evolutionary Search Operators as Inductive Biases 24

3.3 Designing Operators through Density Estimation 26

3.3.1 Histograms . 26

3.3.2 Kernel Density Estimation . 27

3.3.3 Gaussian Mixture Model . 28

3.4 Extracting Knowledge from Evolutionary Searches 29

3.4.1 The (µ + λ) Evolutionary Algorithm 30

3.4.2 Properties of the Retrieved Distributions 32

3.4.3 Hyperparameter Optimization and Model Selection 35

3.5 Effectiveness of the Learned Operators . 37

3.5.1 Operators as Domain Knowledge Representation 37

3.5.2 Upscaling to High Dimensional Problems 40

3.5.3 Cross-Problem Knowledge Transfer 43

3.6 Chapter Summary . 47

4 Feature Extraction from Procedural Metadata 50

4.1 Implications of the NFL Theorems in Optimization 50

4.2 Approaches within the Literature . 51

4.2.1 Algorithm Behavior Studies . 52

4.2.2 Feature-Free Algorithm Selection 55

4.2.3 Conclusions . 57

4.3 Partitioning the Search Space . 58

4.3.1 Unstructured Partitions . 59

4.3.2 Structured Partitions as Maps . 60

4.3.3 Structured Partitions as Graphs . 61

4.4 The Data Post-Processing Pipeline . 62

4.5 Neural Nets for Feature Learning . 64

4.5.1 Processing of Vector Data . 64

4.5.2 Processing of Tensor Data . 64

4.5.3 Processing of Graph Data . 65

4.6 Experimental Studies . 67

4.6.1 Comparison of Network Performances 68

4.6.2 Rescaling of Benchmark Functions, Fitness Values and the Set of

Asymmetric Functions . 72

4.7 Chapter Summary . 73

5 Spatio-Temporal Activity Recognition of Search Behavior 76

5.1 Spatio-Temporal Data Processing . 76

5.2 Learning Spatial Anisotropies . 77

5.2.1 Graph Attention Operations . 77

5.3 Temporal Data Processing . 79

5.3.1 CNN-based Time Series Classification 79

5.3.2 ANN-RNN-based Spatio-Temporal Activity Recognition 80

5.4 Experimental Studies . 82

5.4.1 Generation of Synthetic Metadata 82

5.4.2 Network Configuration and Training 83

5.4.3 Statistical Performance Comparison 85

5.4.4 Discussion of Results . 87

5.4.5 Interpretation of the Learned Metadata Characteristics 89

5.5 Chapter Summary . 91

6 Predicting Operator Configurations 93

6.1 Design Optimization . 93

6.1.1 3D Object Representations in Computer Graphics 93

6.1.2 Shape Deformation Techniques . 94

6.1.3 The Covariance Matrix Adaption Evolution Strategy 96

6.2 Experimental Studies . 97

6.2.1 Studies on Synthetic Benchmark Functions 97

6.2.2 Target Shape Optimization Problems 100

6.2.3 Control Lattices for Free-Form Deformation 101

6.2.4 Predicting Operators for Shape Optimization Problems 103

6.2.5 Discussion of Results . 105

6.3 Chapter Summary . 107

7 Conclusions & Outlook 110

7.1 Summary of Contributions . 110

7.2 Limitations to System Deployment . 112

7.2.1 Constraints on Feasibility . 112

7.2.2 Generalization Capability . 113

7.2.3 Long-Term Operability . 114

7.3 Future Directions for Research . 118

7.3.1 Inductive Biases in Optimization 118

7.3.2 Graph-based Data Formats and Feature Extraction 120

7.3.3 Spatio-Temporal Modeling of Search Behavior 122

7.3.4 Further Remarks . 124

7.4 Closing Summary . 125

Appendix A: Overview of the Constructed Framework 130

Appendix B: Benchmark Functions 133

B.1 Unimodal Functions . 133

B.2 Regularly Structured Multimodal Functions 135

B.3 Irregularly Structured Multimodal Functions 136

Appendix C: Interpretation of Graph Operations 137

List of References 138

CHAPTER 1

INTRODUCTION

1.1 Nature-inspired Artificial Intelligence

The focus of our work can be considered to be lying at the intersection of the often

synonymously taken fields of Natural Computing, Computational Intelligence and Soft

Computing. Though arguably, the notion of Natural Computing might capture best the

breadth of nature- and bio-inspired computing techniques of interest for our purposes.

Specifically, we take a focus within our work in techniques developed for simulated evo-

lution and learning.

Note, that it can be reasonably argued that for natural organisms, evolution and learning

pose two fundamental modes of environmental adaption. While evolution is a process

occurring on large time-scales which directly acts upon the genotype of a population of

organisms, learning is in comparison a process mostly restricted to individual organisms,

occurring on short time-scales and giving rise to phenotypic plasticity. In principle both

modes of adaption should be considered to be occurring independent of each other. How-

ever, this does not restrict them in a having a feedback on each. Thus, making them

capable of giving rise to complex emergent phenomena e.g. such as the Baldwin effect

and cultural knowledge exchange [11, 12]. Though, the exact nature and mechanisms

underlying this mode of adaption are still open to debate.

1

At this point, we do not want to further elaborate on the biological side of these pro-

cesses, but instead highlight attempts in harnessing their advantages and studying them

computationally.

1.1.1 Simulated Evolution

First considerations on the possibility of implementing computational approaches of simu-

lated evolution may be traced back as early as to the first computer pioneers. Noteworthy,

with Alan Turing proposing in 1948 explicitly genetic and evolutionary searches as pos-

sible ways to realize intelligent machinery with the capability to demonstrate “initiative”

in problem-solving [144]. Likewise, also with John von Neumann taking a keen interest in

the 1950s in realizing self-replicating programs which mimic a form of artificial evolution

in the form of cellular automata [95, 135]. Following this up, the subsequent decades saw

the establishment of most classical foundational algorithms for simulated evolution, which

primarily take an interest in being harnessable for the purpose of optimization. Notewor-

thy, with Genetic Algorithms (GA) emerging through various studies through the likes

of George Box, Lawrence Fogel and John Holland in the late 1950s and 1960s. Likewise,

Evolution Strategies (ES) emerging in the 1960s through the studies of Ingo Rechenberg

and Hans-Paul Schwefel, as well as Evolutionary Programming (EP) being proposed by

Lawrence Fogel in the same time-frame [135]. While the subsequent decades saw mostly

the independent advancement of these different strains of research, the modern synthesis

under the denominator of Evolutionary Computation only emerged within the early 90s.

In this contemporary framework, a usual evolutionary algorithm (EA) is understood as

consisting out of variation operators V (crossover and mutation) and selection operators

S, which given an objective function f(x) iteratively evolve a population of start solutions

P0, such that to retrieve substantially improved ones at termination. Notable modern ad-

vances more or less following this outline constitute the introduction of Particle Swarm

Optimization (PSO) [77], algorithms for multi-objective optimization such as NSGA-II

2

[39], as well as the model-based Estimation of Distribution Algorithms (EDAs) [87] and

Covariance Matrix Adaption Evolution Strategies (CMA-ES) [62, 60].

1.1.2 Simulated Learning

The study of simulated learning approaches takes likewise its origin in the midst of the

20th century and can be considered to be strongly intertwined with studies on simulated

evolution. With McCulloch and Pitts proposing first in 1943 a simple computational graph

model to illustrate how in principle interconnected neurons in the brain can calculate sim-

ple logical functions [8]. Somewhat reflecting the present school of thought at the time,

that in order for sophisticated forms of computation to arise it only requires large enough

and seemingly initially randomly organized systems [144]. In the same spirit, John von

Neumann meticulously began to point out the differences between deterministically oper-

ating digital computers and the forms of statistical computation occurring in brain [153]

before his demise in 1957. Research continued with Frank Rosenblatt implementing the

first trainable perceptron in 1962 [48]. Problems with training multi-layered perceptrons

could be subsequently solved through the introduction of the backpropagation algorithm

by Paul Werbos (1974). The early 1980s subsequently saw the introduction parameter-

sharing for image recognition tasks by Fukushima [54] in order to mimic the hierarchical

nature in which features are represented in the visual cortex [69]. This technique was later

refined by Yann Le Cunn [88] in 1995 to the present day Convolutional Neural Networks

(CNNs). Further, notable advancements made in the 90s concern also the introduction

of Long Short-Term Memory networks (LSTMs) by Hochreiter and Schmidthuber [68]

for processing sequential data. Advances since the turn of the millennium are arguably

enumerate. Though, a notable nature-inspired one is for instance the Capsule Neural Net-

work (CapsNet) [122], which was specifically designed to mimic the processing in cortical

columns.

3

1.1.3 Advantages, Differences & Synergies

In the following, we want to briefly elaborate on the advantages of methods for simulated

evolution and learning in comparison to more traditional approaches for optimization and

statistical modeling. We further also briefly highlight how they are different from their

biological counterparts, as well as elaborate on synergies which arise by harnessing these

two modes of adaption in computational applications.

The advantage of evolutionary approaches for optimization in comparison to traditional

gradient-based methods has been well-established. It can be best described as being par-

ticularly suited for problems which are NP-hard and have large and complex search spaces.

Because their stochastic nature helps them in escaping local optima, it further enables

them in finding unconventional and surprising solutions [89]. The complete convergence

of an evolutionary algorithm to the global optimum can be theoretically guaranteed, as

long as every point of the search space is accessible with non-vanishing probability and

the best found solution is never removed from the population [120]. Noteworthy, the

main difference between artificially simulated evolution for optimization and natural evo-

lution is, that the latter is not explicitly an optimizing process. As exogenous fitness

functions do not explicitly exist. Thus, in principle natural evolution can be subject to

effects which from an perspective of optimization can be considered as being detrimental.

Further, simplifications introduced in most evolutionary algorithms highly idealize actual

natural evolution (e.g. [99]). While to some degree, this is necessary to ensure compu-

tational efficiency, it also introduces anatural behavior. For instance, explicit modeling

of selection operators incorrectly portrays natural selection as an acting and functionally

existing agent [92], rather than a mere emergent effect. One may therefore legitimately

argue whether or not the explorative behavior exhibited by Bayesian optimization might

come closer to how natural evolution actually achieves optimal results. Notably, the field

of Artificial Life deals more explicitly with attempts to explicitly emulate natural evolu-

tion with a lesser focus on optimization.

4

Simulated learning approaches mimicking neural computations in the brain have espe-

cially become popular within the recent decade as they have been proven to be highly

flexible predictive methods. In fact, it has been theoretically proven that the multilayer

perceptron possesses the property of being an universal function approximator [35]. Thus,

given enough data and a suitable layerwise configuration, neural networks can be trained

to approximate any desired continuous function on a bounded interval. Therefore, they

established themselves for a variety of domains ranging from speech recognition, computer

vision to natural language processing. A particular advantage of them is also that these

can make tedious manual pre-processing of training data and feature engineering super-

fluous as by mimicking how biological cognitive systems work, they can automatically

learn the features which are most important for a given task. This principle has been

especially exploited through parameter sharing introduced in computer vision [54, 88],

which explicitly mimics the feature learning and processing capabilities of the visual cor-

tex [69, 18]. Notably, arguments brought forward from the literature advocate that from

a biological perspective, not only features, but a majority of cognitive processing capa-

bilities and learned behaviors could be explained as arising due to the long-term effects

of goal or objective-oriented reward maximization [133]. In regard to the aforementioned

evolutionary computation methods, neural computing methods can be considered to be

likewise highly idealized representations of their actual biological counterparts. For in-

stance, neglecting details of synaptic transmission for computational efficiency. More

strikingly though, it has been shown that single cortical neurons are capable of exhibiting

the computational capabilities which have been considered to be reserved only to deep

architectures [13].

The synergies between learning and evolutionary computation are various and quite natu-

ral. As in principle, evolutionary optimization methods can benefit from the incorporation

of flexible predictive methods. This has been exploited in techniques for instance devel-

5

oped for surrogate modeling [75] or algorithm and heuristic selection [24, 103, 78]. On the

flip-side, the ability of evolutionary approaches to be efficient in search through large and

complex search spaces makes them interesting for neural network architecture optimiza-

tion, as well as suitable for weight optimization when dealing with noisy loss functions.

Surprisingly, while the latter methods for neural architecture optimization have gained

significant traction within the recent years [38, 139, 44, 100, 138], advancements in the

reverse direction have been comparably sparse. Even though, the complex and enumerate

data produced by evolutionary search and optimization algorithms can in principle be

considered to be complex and intractable for manual analysis by the practitioner.

Noteworthy, on a related note, methodology utilizing the third mode of adaption, arising

through the coupling of learning and evolutionary mechanisms have been likewise mostly

absent in light of current research in optimization. Even though, analogue models have

been historically studied [67, 106], as well as variations of evolutionary algorithms in the

form of cultural [117] and memetic algorithms [98, 109, 104] have been proposed in the

literature. Though, improvements and reasonable refinements of models from cultural

evolution theory, particularly under the more explicit consideration of aspects concerning

the usage of learned and shared representations [20] with a modern machine learning lens

to enable knowledge transfer and cooperation in distributed systems, could likely lead to

further advancements in the future.

1.2 Contemporary Problems in Heuristic Optimiza-
tion

Having introduced different natural computing methods for learning and optimization,

we will elaborate in the following on how contemporary problems arose within the last

decades concerning the latter domain. In this spirit, the contributions of our thesis aim

to particularly address these issues.

6

...
.....

0.1

0.3

0.6

0.1

0.5

0.3

0.1

0.7

0.2

Recombine

Mutate

Evaluate

RNN

RNN

Gen 0

Gen 1

Gen k

Gen k+1

Gen k+2

.....

Predictive

Component

Select

*
.....

RNN

Gen N

*

Structured

Data Format

Extracted

Features

Temporal

PropagationPrediction of

Operator

Unstructured

Data Format

Improved

Optimization

Recombine

Mutate

Evaluate

Select

Figure 1.1: Diagram of the framework and the individual functional components it con-
sists of that we construct within the investigations of this thesis. In principle, we aim
to predict problem-tailored operators through application of predictive methods which
are fed from structured inputs generated from unstructured metadata characteristic of
problem-dependent algorithm behavior. A more in-depth description linking each com-
ponent to the contributions of each chapter of this thesis is provided for reference within
Appendix A.

While the different fields of research on optimization techniques merged within the early

90s, the early optimism for finding a high-performing universal problem-solving algorithm

was quickly halted. Particularly, with the publication of the no free lunch theorems, which

state that effectively all algorithms perform the same on the set of all problems [158].

Nevertheless, this chilling result did not hindered the development of many of today’s

successful optimization algorithms (cf. Sec. 1.1.1). Particularly this can be attributed

to the fact that the no-free-lunch theorems do not provide explicit guidance on how to

define characteristics and compare different optimization problems. Thus, quite natu-

rally certain problems with common characteristics may favor certain kind of algorithmic

approaches. While arguably, this proved fruitful for the establishment of many modern

optimization algorithms, it allows one to commit to the logical fallacy of defining arbi-

trary niches on which likewise arbitrary algorithms can perform the best. What might

be seen as a direct unfortunate consequence of this, is the rise of a plethora of optimiza-

7

tion algorithms defined for specific optimization problems, taking loose inspiration of a

variety metaphors. Valid criticism directed towards these algorithms is that a majority

of them are either in best case minor variations, or simply just relabellings of existing

algorithms [5, 150, 151, 25, 137]. Notably, with the largest repository summarizing them

counting up to over two-hundred algorithms to this date [26].

Motivated by these contemporary issues within the metaheuristics community, one may

legitimately ask whether or not one could move towards more general purpose algorithm

frameworks that learn from the problems they solve and can be flexibly adapted for new

problem domains of interest. Thus, strongly recalling the high popularity end-to-end

learning architectures gained within recent years in machine learning research. However,

while a variety of methods have been proposed in the literature within recent years, which

in principle learn and accumulate knowledge, they unfortunately fail to recall more first-

principled notions. Our work is therefore dedicated to address a dire need to clarify this

issue by directly proposing methodology (cf. Fig. 1.1) and clarifying the foundations to

construct such rigorously grounded frameworks.

1.3 Contents of this Thesis

As a brief foreword, we acknowledge that this thesis is written from an outside perspective

of the fields of evolutionary and neural computation due to the physics background of the

author. However, this gives this work the key advantage of not being overly constrained

by existing notions and methodology within the literature. Practically speaking, we thus

focus on combining different algorithms which we interpret as formalizing variational and

approximative capabilities of natural adaptive processes. A secondary focus therefore

throughout this work is also on one side on understanding what kind of underlying capa-

bilities natural adaptive processes offer for mathematization, and on the flip-side looking

at how existing algorithms offer viable formalizations that can be utilized, improved and

8

combined.

1.3.1 Contributions and Structure

To address the outstanding issues within the literature, we particularly claim to make

from Ch. 2 to 7 within our thesis the following contributions:

• Histogram- and Density-based Modeling of Search Operators:

To model problem-dependent domain knowledge we propose within the following

up Ch. 3, the usage of methodology for histogram construction and density esti-

mation. Particularly, we find that this approach can be well justified for unary

variation operators in the scenario of low-dimensional search spaces and problems

with pronounced structures superimposed on them.

• Graph-based Representation of Activity within Search Spaces:

To represent activity within continuous search spaces we need ways of converting

the highly unstructured metadata generated by population-based optimization al-

gorithms into a structured data format. We therefore introduce in Ch. 4 a pipeline

to obtain structured data formats and a novel graph-based data format that can be

flexibly used to this regard.

• Spatial and Time-dependent Processing of Metadata:

The arbitration between different models of domain-dependent knowledge essentially

requires ways of forming high-level metaknowledge representations. We therefore

propose additionally within Ch. 4 and 5 specialized graph neural network architec-

tures that can learn domain-dependent spatio-temporal characteristics from struc-

tured data formats representing activity within the search space.

• Comprehensive Overview and Feasibility Evaluations:

We provide further a comprehensive overview of existing knowledge transfer tech-

9

niques in the literature in Ch. 2, as well as provide exhaustive discussions concerning

feasibility and limitations for system deployment additionally over Ch. 6 and 7.

Noteworthy, within the spirit of Natural Computing, as we have elaborated previously

a particular emphasis within our thesis lies on approaching these contributions with a

strong perspective from learning and evolutionary biology. Further, due to existing liter-

ature only insufficiently clarifying the potential theoretical limits of constructing learning

optimization systems, we motivate our approaches with theoretical considerations from

learning and optimization theory.

1.3.2 Relevant Publications to this Thesis

To conclude this introductory chapter, we acknowledge our published papers upon which

this work is mainly based upon. While we published in total 6 conference papers in

which we develop and mature our ideas, central to this thesis are the followings 4 works

corresponding closely to Ch. 3 to 6:

Peer-Reviewed Conference Papers

• S. Friess, P. Tiňo, S. Menzel, Z. Xu, B. Sendhoff and X. Yao, "Spatio-Temporal

Activity Recognition for Evolutionary Search Behavior Prediction," 2022

International Joint Conference on Neural Networks (IJCNN), 2022, pp. 1-8

• S. Friess, P. Tiňo, S. Menzel, B. Sendhoff and X. Yao, "Predicting CMA-ES

Operators as Inductive Biases for Shape Optimization Problems," 2021

IEEE Symposium Series on Computational Intelligence (SSCI), 2021, pp. 1-7

• S. Friess, P. Tiňo, Z. Xu, S. Menzel, B. Sendhoff and X. Yao, "Artificial Neural

Networks as Feature Extractors in Continuous Evolutionary Optimiza-

tion," 2021 International Joint Conference on Neural Networks (IJCNN), 2021,

pp. 1-9

10

• S. Friess, P. Tiňo, S. Menzel, B. Sendhoff and X. Yao, "Representing Experi-

ence in Continuous Evolutionary Optimisation through Problem-tailored

Search Operators," 2020 IEEE Congress on Evolutionary Computation (CEC),

2020, pp. 1-7

Parts of this thesis corresponding identically to Chapters 3, 4 and 6 have also been been

published within ECOLE deliverables D 2.1 and D 3.5:

• J. Kong, S. Ullah, S. Friess, G. Ruan, W. Kowalczyk, T. Bäck, "D 2.1 Experience-

based high dimensional & big data assisted optimisation", https://github.com/

ECOLE-ITN/Deliverables/blob/main/D2.1 Experience-based high dimensional &

big data assisted optimisation.pdf, 2022

• S. Friess, G. Ruan, G. Serra, L.L. Minku, Z. Xu, X. Yao, "D 3.5 Integrated soft-

ware environment and manual", https://github.com/ECOLE-ITN/Deliverables/

blob/main/D3.5 Integrated software environment and manual.pdf, 2022

Note that we do not cover within this thesis topics concerning adaption mechanisms,

transfer from low to high-dimensional problems and benchmark function design, which

we also partly discussed within previous work.

11

CHAPTER 2

LITERATURE REVIEW

2.1 Computational Models of Cross-Problem Solving

2.1.1 Reinforcement Learning

An obvious computational model which lies at hand when discussing the construction of

algorithms which accumulate experience over their lifetime is the one of reinforcement

learning. From a practical point of view, this would require the implementation of finite

Markov decision processes through an agent-environment interface [140]. Where the al-

gorithm would be the agent a, and the environment e would communicate states St and

rewards Rt to the agent, upon which the agent chooses based upon a policy π an action At

which interacts with the environment in return, such that to maximize the value function

V , which represents a sum of expected rewards. However, while rewards have an intu-

itive interpretation within metaheuristic and evolutionary optimization, the definition of

actions A and states S is more problematic. Existing reinforcement and choice function

approaches within combinatorial optimization are mostly based upon highly simplified

models which neglect any notion of "state" at all, and simply arbitrate between different

operators based upon which one generated better solutions in the past [24]. While "ac-

tions" can in principle be defined in terms of choosing between operators, defining a more

first-principled approach approach is more problematic. Especially when considering con-

12

Agent

EnvironmentSt+1

Rt+1

St Rt

state reward

At

action

Figure 2.1: Agent-environment interaction modeled in terms of a Markov decision
process within reinforcement learning. Diagrammatic illustration based upon Sut-
ton & Barto [140].

tinuous optimization problems where in principle an infinite numbers of actions could be

chosen.

2.1.2 Meta-Learning

A much more simplified and applicable model may instead be formulated through the con-

cept of meta-learning. In principle, it allows one to significantly simplify the previously

elaborated agent-environment model by means of framing it as a problem of learning in-

ductive biases which are shared for similar problems and situations and are recalled based

upon high-level representations or metaknowledge of past problems and situations. Meta-

learning can in principle encompass different scales of learning, as for biological systems,

the challenges posed by the environment in pursuit of specific goals also mostly emerge

in different scopes and on different time scales [154]. These can be further considered to

be nested in each other, such that the learning of the structure of a specific task can be

found at the lowest level, while the learning of group structures occurs in-between, and

the learning of highly invariant priors at the most upper levels (cf. Fig. 2.2). In terms of

metaheuristic and evolutionary optimization, a reasonable bridge from machine learning

research to the algorithm selection problem has been established [136]. One may reason-

ably argue that the algorithm selection problem might be considered to just be an extreme

boundary case of an agent a which conducts a form of reinforcement learning where state

13

Learning highly invariant priors

Learning general structure of tasks

Learning to do a single task

Learning
loop

Prior/biases from
higher level of

learning

Figure 2.2: Diagrammatic based upon Wang (2021) [154] of different scales of learning
involved within meta-learning.

S and action A are only chosen during the early run-time of an algorithm and are not

further redetermined later on.

Arguably, in the context of our work, the framework of meta-learning introduces use-

ful simplifications and vocabulary. We will therefore reside mostly within subsequent

chapters on further investigating it. Particularly, we will see that it is also well supported

by learning and optimization theory and can give an interesting view on the evolutionary

biological foundations and inspirations of evolutionary algorithms. However, in the fol-

lowing we briefly go a bit more into detail of further related approaches and also briefly

elaborate on their short-comings.

2.2 Further Approaches in the Literature

2.2.1 Transfer Learning and Optimization

Transfer Learning

The strong appeal which the realization of learning-based optimization systems has makes

at first glance the usage of methods from transfer learning [112, 156] very desirable. In

14

Optimization

Algorithm

Optimization

Algorithm

Knowledge

Source Problems

Target Problem

Figure 2.3: Archetypical illustration of the usual transfer learning pipeline. From a single
or multiple source problems, knowledge is selectively formed from an algorithm such that
help to improve its’ performance on a new target problem class. Note, that due to the
underlying multiple-sources-to-one-target architecture, transfer learning methods usually
do not form models that exhibit cross-problem generalization capability.

principle, this bridge has been established early on within the literature through the

framework of Genetic Transfer Learning (GTL) [81] which performs a form of simple

transfer learning by means of using the final solutions obtained after an optimization to

initialize the start population on a new optimization problem. Notable, more extensive

works from Jiang et al. (2019) [72] could demonstrate the viability of the transfer com-

ponent analysis technique [111] as well as forms of manifold learning [73] for scenarios

of dynamic multi-objective optimization. However, otherwise the usage of more sophisti-

cated transfer learning methods has been comparably sparse in the literature. This may

be attributed to the fact that many proposed methods within machine learning research

are highly application- and algorithm-specific and can be only applied with a very limited

scope to optimization.

Transfer Optimization

Considering these limitations of transfer learning methodology for the application to op-

timization, Gupta et al. (2017) [57] have introduced the notion of transfer optimization

instead. Works within this field consider for instance the use of linear rank transforma-

tions [46] to transfer solutions between different multi-objective optimization problems,

15

or modeling solution populations from prior solved problems explicitly through mixture

models [36, 163], from which solutions are sampled based upon their similarity to the

current solution distribution.

2.2.2 Estimation of Distribution Algorithms

Related to the scope of this thesis are also estimation of distribution algorithms (EDAs) [87,

135]. While like evolutionary algorithms they are also based upon a population-based

framework, a core distinguishing feature is that they explicitly keep track of generated

high-performing solutions within each iteration. Thus, these are subsequently used to

build a statistical model from which new solutions can be generated for the successor gen-

eration again. The estimation of distribution algorithm is by this procedure thus capable

of learning the explicit structure of optima for a given optimization problem.

For instance, consider in the following a simple EDA [135] for the five-dimensional One-

Max problem with objective function f : {0, 1}5 → R such that f(x) = ∑5
i=1 |xi| with

the global maximum being at x∗ = [1, 1, 1, 1, 1]T . Central to our exemplary EDA is a

probability vector initialized as p = [0.5, 0.5, 0.5, 0.5, 0.5]T . To generate a new solution x

from it, we generate for each component xi a random number ri ∈ [0, 1]. If we find that

ri ≤ pi, we set xi = 1, else we set xi = 0. We generate now at each generation M new so-

lutions and select the N highest ranking ones (i.e. N <M), from which we recalculate the

probability vector by averaging, such that p = 1/N
∑N

i=1 xi. Note, it is clear that within

this given example that after successive generations the EDA will generate solutions ever

closer to the global maximum of the OneMax problem, or any further similarly specified

maximization problem. This capability of learning the structure of optima allows EDAs

also to be used for the purposes for transfer learning, by means of reinitializing them

with the previously obtained model on new problems that can be suspected to possess

the same or similar structure of optima.

16

However, note that EDAs generally do not incorporate knowledge about more abstract

and implicit properties of the fitness landscapes into their operators and may to this re-

gard also exhibit only very limited domain-level generalization capability, i.e. they cannot

to be trained on problems. Their internal mechanisms may also make them largely differ-

ent to algorithms based upon the evolutionary framework. Though, noteworthy common

implementations may share a close resemblance to the popular Covariance Matrix Adap-

tion Evolution Strategies (CMA-ES). We discuss more explicitly the difference between

EDAs and the CMA-ES within the latter Sec. 6.1.3.

2.2.3 Multitasking, Memetic and Knowledge-assisted Optimiza-
tion

Further noteworthy approaches in the literature which are putting a focus on knowledge

transfer within optimization are for instance techniques developed for multi-tasking [141,

108, 10, 47], memetic optimization, surrogate modeling [75] and more generally knowledge

incorporation [74]. We will briefly elaborate on each in the following.

The notion of multitasking optimization aims at enabling the concurrent optimization

of multiple problems at once. Multitasking Bayesian optimization [141] for instance con-

cerns explicitly the sharing of information between in parallel constructed meta-models.

Evolutionary multitasking on the other side deals more explicitly with the sharing of solu-

tions between problems which are optimized in parallel [108, 10, 47], somewhat in analogy

to the aforementioned research on transfer optimization [57].

Memetic optimization, or speaking more broadly memetic computation [104] concerns

methodology which takes motivation from the cultural theory of Richard Dawkins which

considers culture to be discretized into sharable and mutable bricks of knowledge or

ideas, the so called ’memes’. In memetic computation these can be interpreted in terms

of sharable operators and internal algorithm mechanisms. While memetic computation

17

may not necessarily be focused upon cross-problem learning, the wide scope of it does

not restrict it. Noteworthy, also hyper-heuristics for combinatorial optimization, which

employ simple forms of reinforcement and online learning, are considered to lie within the

wider scope of memetic computation techniques.

Within expensive optimization scenarios, surrogate- or meta-model-assisted optimization

concerns the construction of a sufficiently informative model of a problem online during

optimization, such that computation costs for explicitly evaluating the objective function

can be saved. This approach can in principle not be considered to be knowledge transfer

per-se at is only considering problems individually, however notably within the literature

approaches considering cross-problem learning have been proposed [101].

A variety of approaches that we have discussed have also been previously summarized un-

der the denominator of knowledge incorporation [74]. Methods falling under this umbrella

for instance concern the aforementioned estimation of distribution algorithms, surrogate

and meta-modelling techniques, but also cross-generational knowledge repositories, early

cultural approaches similar to memetic computing techniques, approaches incorporating

forms of Baldwinian learning, local searches and further interactive and preference-aware

mechanisms. Noteworthy, within the scope of their review they had also included an imple-

mentation of the case-based genetic algorithm (CIGAR) by Louis & McDonnell (2004) [93]

that may be seen as an early precursor of a transfer optimization technique and exhibits

cross-problem and incremental learning capability, which we also later refer to again

within this thesis in the context of problem similarity measures and long-term operability

in Sec. 3.5.3 and 7.2.3.

18

2.3 Chapter Summary

Summarizing the state of the literature, we find that a great variety of different method-

ology has been developed, which in some scenarios may not necessarily concern cross-

problem learning per-se, but also the re-use of knowledge acquired within an optimization

on a single problem. The use of first-principled approaches however is notably lacking

and therefore available methodology may often be based rather upon useful tricks and

rule-of-thumbs.

For example, the use of techniques from transfer learning can be mostly considered to

be in-adequate for heuristic optimization algorithms, due to them mostly being designed

with a focus on predictive methods. Thus, within the literature alternative methods were

developed based upon rather practical techniques to transfer found solutions between

problems. However, due to a lack of understanding the quantification of problem simi-

larity if not known a priori, it may make some techniques prone to as to what has been

dubbed in the literature as ’negative transfer’ [46]. Note, that similarly within memetic

techniques, the issue exists of adequate characterization of optimization problems, such

that algorithm components can be chosen accordingly.

At last, even though developed techniques we reviewed within the literature frequently

concern evolutionary methods which mimic the variational mechanisms exhibited by nat-

ural evolution, they do give this notion very little further consideration. Thus, raising

the question on what is knowledge in these in the first place. Notably, these inherently

rely upon sampling random variates from symmetric statistical distributions. However,

the usefulness of such distributions can be considered to be violated, when only restricted

types of problems are being visited. Thus, the use of asymmetric and non-standard dis-

tributions reflecting the encountered problem structures should should inevitably lead to

performance improvements.

19

2.3.1 Open Questions

In conclusion, from reviewing the available literature, we want to clarify within our thesis

the following questions:

• What are first-principled approaches of problem-solving and how can

they be efficiently harnessed?

Note, that from our literature review we have already identified that reinforcement

and meta-learning provide first-principled notions of problem-solving. And particu-

larly also, that the latter offers useful simplifications. However, the question remains

open what this means from an implementation perspective within optimization.

• What is reusable knowledge within the variational mechanisms of natural

evolution and how could it be used for algorithm design?

Essentially, considering the aforementioned meta-learning model, this is the question

on what potential forms of inductive biases exist within natural evolution. We find

that computational biology studies provide insights into this and thus could be

harnessed as guiding principles for future algorithm design.

• How can we characterize optimization problems such that we can easily

re-identify them and use suitable previously learned knowledge?

Again, considering the aforementioned meta-learning model, this calls for method-

ology for processing metadata and form high-level abstractions from them. Partic-

ularly, we will see that for population-based optimization algorithms methodology

from algorithm behavior studies can be harnessed to this regard.

• What is the scope for application problems and beyond?

At last, the naturally occurring question is what it means to harness learning op-

timization systems for application problems. For this reason, we study a scenario

which relates to shape optimization and from it draw conclusions on feasibility con-

20

straints. Further, we also discuss in this context limits to generalization capability

as well as to long-term operability.

We will clarify these questions within the following up chapters, which in conclusion,

will give us a cohesive perspective on how to design learning optimization systems and

algorithms.

21

CHAPTER 3

INDUCTIVE BIASES IN SEARCH-BASED
OPTIMIZATION

3.1 Bias as a Prerequisite for Generalization

Instance Space Generalization Space

Specific

General

g3

g1

g4

g2

Figure 3.1: Illustration of the relationship between instance and generalization space as
arising within the generalization problem [102]. Generalizations covering larger varieties
of instances are considered to be more ’general’ while generalizations restricted to smaller
varieties are naturally considered to be more ’specific’.

The concept of inductive bias first emerged from the study of the generalization prob-

lem [102] . Which can be formulated in an adapted form as follows: Given 1) a language

of instances, 2) a language to represent knowledge through generalizations (or synony-

mously hypotheses), 3) a matching predicate for matching generalizations to instances

and 4) a set of training instances, the goal of the generalization problem is to determine

generalizations such that they are consistent with predicting the properties of the training

22

instances. A key argument on the analysis of the generalization problem is, that in order

for any kind of learning algorithm to perform an inductive leap such that it can achieve

high performance on new instances from the same instance domain, the algorithm needs

to essentially form a bias in the form of a domain-specific knowledge representation, which

is preferred to a default knowledge representation due to its effectiveness. Removing any

biases completely from a learning systems in forming a generalization is futile, as in prin-

ciple such a system would simply degenerate into its default behavior. Thus, it would not

be able to exhibit generalization capability.

In principle, one can identify two different sources of biases in a learning systems: 1) The in-

capability of the generalization language to be adapted to all possible classes of instances

and 2) a bias in the generalization procedure that searches through the space of knowl-

edge representations. In this sense, an unbiased generalization language would impose no

restrictions on forming a knowledge representation over arbitrary subsets of the instance

space, and an unbiased generalization procedure would consider all possible knowledge

representation formed from the training set when encountering new instances as equally

valid. Considering a completely unbiased learning system, it becomes very clear that the

only way such that all possible generalizations hold for true for a given instance, is when

it is already contained in the training set. Thus, a completely unbiased generalization

procedure would always lead to the learning algorithm to degenerate into its default be-

havior, which in the original study of the generalization problem by Mitchell (1980) [102]

would mean that it completely overfits on the training data.

However, the necessity for learning biases for the inductive leap is in principle not some-

thing undesirable and it can be argued [102] for possible useful biases that can be explicitly

included to make the formation of generalizable knowledge representations more efficient

in learning systems. For instance, popular built-in inductive biases of many modern archi-

tectures of learning systems in the generalization language are various forms of parameter

23

sharing through e.g. convolutional filters and gating mechanisms [88, 68], that can be

particularly attributed to be a key success factor for their current popularity in process-

ing tensor and sequential data. Likewise, for optimization algorithms inductive biases

are posed for instance by diversity maintenance schemes and self-adaption mechanisms

for multi-objective [39] and convex optimization problems [62]. For the generalization

procedure itself, the bias can be formed through a beneficial parameter initialization or

configuration of the procedure itself, which enables the training or optimization to con-

verge faster than with a default setting.

3.2 Evolutionary Search Operators as Inductive Bi-
ases

Concluding the importance of inductive biases for generalizing domain knowledge gained

from learning tasks, we need to identify in the following ways of forming them within

metaheuristic optimization algorithms. The framework of evolutionary optimization is

particularly charming to this regard, as it reduces the optimization algorithm to two es-

sential key components: variation and selection operators. Following up their original

inspiration from evolutionary biology, the variation processes consist out of mutation and

crossover. However, with key understanding being that mutation is the the prime source

of variation [92]. While the utility of crossover processes can be supposedly understood

as aiding the rapid adaption of a population to an environment in the scenario of small

population sizes.

Notably, many modern algorithms implement mutation operators by sampling variates

from internal models based upon symmetric distributions (cf. right panel of Fig. 3.2)

which could be considered to unsuitable when only specific subsets of optimization prob-

lems are considered to be solved by an optimization algorithm. Thus, biasing these

distributions in a problem-dependent manner should pose one way of making a meta-

24

Figure 3.2: Spatial probability distributions in the form of a simplex as used by a general-
ized arithmetic crossover operator (left) and isotropic normal distribution for a mutation
operator (right) used to generate new solutions from old ones (green squares). Surfaces
of equal shades of green represent same probability density.

heuristic search capable of retaining knowledge. We can find particular guidance on how

inductive biases can be formed from basic research in computational biology and adaptive

systems research. Essentially, evolvability studies from Kounios et al. (2016) [83] have

explored synergies between learning theory and evolutionary biology. A key result of

their simulation studies on gene-regulatory networks is, that when repeatedly exposed to

rugged fitness landscapes, evolutionary variation processes can be re-framed as learning

processes, by accumulating knowledge about short-term beneficial mutations. However,

it is notable to point out that these developmental biases may not only foster adaption

to specific environments [146], but exhibit a broader learning capability such that they

are able to generalize adaptive trends to future unseen environments. Thus, in light of

these computational biology studies, one can consider unary mutation operators within

evolutionary optimization to be a key algorithm component to form the model space of

possible algorithms. In fact, their importance has been solidified within convergence the-

orems from Rudolph (1998) [120], as only through them parts of the search space can

be accessed which would otherwise remain unreachable. Essentially, acting as novelty

generators.

The role of crossover operators is in principle less dramatic. From an evolutionary biology

perspective, genetic crossover is not a necessity, but as previously mentioned can be con-

25

sidered to be merely aiding rapid adaption in the scenario of small population sizes [92].

In principle, they work by generating new genomic variants from mixing previously high-

performing found ones. From a mathematical point this can be viewed as an interpolation

operation. An example of a probability distribution for sampling new solutions through

an arithmetic crossover of three solutions is illustrated in Fig. 3.2. Note, that due to it

being a technical abstraction, in principle anatural behaviors can be easily introduced by

allowing multiparent inheritance.

3.3 Designing Operators through Density Estimation

As in the previous section, we have given a probabilistic interpretation to the search

operators, we want to reside in the following to modeling them in terms of empirically

obtained probability densities. In principle, different techniques to this regard can be

considered, from which we will however review in the following only the most relevant

ones.

3.3.1 Histograms

Figure 3.3: Illustration of the inverse transform sampling technique [41]. By means of
calculating a cumulative density function CDF(j), any random variate r sampled from a
uniform distribution r ∈ [0, 1] can be easily transformed into a corresponding to sample
from a non-uniform distribution xr = CDF−1(r).

These are among one the most intuitive techniques to be used. Given a data set D =

{x1, · · · , xN} of size N = |D| with D ⊆ Rd, one partitions the data space into a number

26

of equisized bins B = {b1, · · · , bn}. Subsequently, for every bin bi ∈ B we count the

number ci of data points xj ∈ D for which xj ∈ bi and calculate from these probabilities

pi = ci/N . Based upon the probabilities we can easily calculate pseudo-random numbers

from the modeled distribution using the inverse transform sampling technique [41]. For

example, in the case of a discrete distribution we first sample a random number r ∈

[0, 1]. Subsequently, we calculate the cumulative density function CFD(j) = ∑j
i=1 pi. To

generate a pseudo-random number we find the j such that CFD(j)< r≤CFD(j+1) and

based upon the associated part of the data space defined by bin bj we generate the random

number. For example, for bj = [a, b], we uniformly sample a random number from [a, b].

While histograms are at first glance intuitive and therefore tempting, their use is on the

flip-side rather cumbersome due to them being parametric, meaning that they require

the explicit definition of bin positions and widths. Further, often times additional pre-

processing steps, such as the cropping of the data space to ensure that those parts are

covered at good resolution which reveal the essential structure the modeled distribution.

3.3.2 Kernel Density Estimation

This technique, which is also known as Parzen windows, is among the most accurate

methods one can use to model a data distribution [125, 28]. Essentially, for a given data set

D we place a kernel function KH(x, xi) on every data point xi ∈ D ⊆ Rd, where H ∈ Rd×d

is a parameter or bandwidth matrix shared by all data points and controlling the shape

of the kernel function. The complete data set can then be modeled as the sum f(x) =

1/N
∑N

i=1 KH(x, xi). For the kernel function different choices can be made. A popular

one is the use of the Gaussian kernel KH(x, xi) = |H|1/2/(2π)d/2exp[−(x−xi)T H(x−xi)].

A key drawback of kernel density estimation method however is the determination of

the bandwidth matrix H. The mathematically correct way to determine H would be

by minimizing the mean integrated squared error of f to the true distribution f ∗ using

a bandwidth selection method [28]. However, the former distribution is in most cases

not known. One simple way would be to estimate the bandwidth matrix using the log-

27

likelihood in a cross-validation training scheme. However, this approach is easily leading

to overfitting. Alternatively also bandwidth selection rules can be employed, however

these introduce additional complexities and thus are difficult to get right for off-the-

shelf application [66]. For sampling from a kernel density estimate, one simply randomly

selects a point xr ∈ D from the data set and samples succeedingly from the kernel function

KH(x, xr). While accurate, sampling within kernel density estimates can be intensive in

regards to memory requirements.

3.3.3 Gaussian Mixture Model

𝐳n

𝐱n

𝑁

𝚺𝛍

π

Figure 3.4: Probabilistic graph of the Gaussian mixture model based upon [17]. By
performing ancestral sampling on p(x|z) p(z) we can easily generate random numbers
behaving according to the modeled data distribution.

The Gaussian mixture model is in some way similar to the kernel density estimation

technique with Gaussian kernel, however is more sparing in its complexity. In the Gaussian

mixture model, the data distribution is modeled as f(x) = ∑K
i=1 πi N (µi, Σi), where πi

are the so called mixture coefficients and K ≪ |D| is the number of mixture coefficients,

which naturally is chosen such that it is much smaller than the total size of the data set

D. The parameters πk, µi and Σi are determined using the expectation-maximization

(EM) algorithm. The number of mixture components has to be chosen by the practitioner

first and is in principle likewise to kernel density estimation a non-trivial topic. However,

one can similarly reside from a pragmatic point of view to maximizing the log-likelihood

using a cross-validation training scheme. The mixture coefficients are determined such

that ∑K
i=1 πi = 1, thus each coefficient πi can be interpreted as a probability for choosing

28

the specific component i. In this framework, pseudo-random numbers can be generated

using ancestral sampling. Meaning that for a given distribution p(x|z) p(z), we first sample

z1 ∼ p(z) and based upon it sample x1 ∼ p(x|z1). For the Gaussian mixture model this

would equate to p(µ, Σ|i)p(i), where p(i) = {π1, · · · , πN} and p(µ, Σ|i) = N (µi, Σi).

Where p(i) can be sampled using the previously mentioned inverse transform sampling

technique and the normal distribution N (µi, Σi) using readily available methods.

3.4 Extracting Knowledge from Evolutionary Searches

In the usual evolutionary search routine, given a start population of solutions with known

fitness values, crossover is conducted first, followed by mutation, recalculation of fitness

values, and subsequent selection to form the new population. Thus, the direct effect of

crossover and mutation operators on obtaining good solutions and ensuring fast conver-

gence is rather obscured.

Mechanically, unary mutation operators in their most basic form can be considered to

be comparably simple. As they rely simply upon adding random variates on solutions,

sampled from normal distributions (cf. right panel of Fig. 3.2). N-ary crossover opera-

tors on the flip-side are particularly more sensitive to specific chosen solution pairs, as

the offspring created from them directly depends upon their position in the search space

(cf. left panel of Fig. 3.2). Selection operators can in principle introduce further stochas-

ticities, however it has been suggested in the literature that so called (µ, λ) and (µ+λ)

selection schemes lead to performance boosts in mutation-based algorithms [9]. In the

(µ, λ) scheme, λ new solutions are generated at each iteration from which only the µ best

are accepted into the successor generation. In comparison, in the latter (µ+λ) selection

scheme the set of old µ and λ new solutions are merged such that together from both only

the µ best solutions are accepted into the successor generation.

29

3.4.1 The (µ + λ) Evolutionary Algorithm

Considering the simplicity and importance of unary mutation operators, as well as the na-

ture of the (µ+λ) selection scheme, it is particularly tempting to consider an algorithmic

template solely based upon these two operations. In principle, it is obvious that within

such a framework only sampled random variates are accepted which improve the solution

quality, while any worsening ones are discarded by the selection scheme. Thus, one is

inclined to keep statistics about the quality of the performed mutations during algorithm

runs, and construct from these inductive biases. These can be represented in the form of

improved operators, such that they can be used to realize performance improvements on

re-runs of similar problems.

Even though such a framework may spare out many of the complexities of modern algo-

rithms, it can still serve as an effective model to understand the pitfalls and opportunities

in regards to constructing experience-based approaches from a procedural view. For this

reason, we therefore shall consider an algorithm based upon an isotropic mutation opera-

tor using a normal distribution, as well as the (µ+λ) selection scheme. An outline of our

considered framework is given in Alg. 1. Noteworthy, this framework highly resembles

algorithms such as Evolutionary Programming and Evolution Strategy [7]. We define in

the following our objective function as follows as f : χ ⊂ Rd → R, i.e. a mapping from a

d-dimensional search space χ. The optimization problem is then posed by the condition

that we want to find a solution x∗ such that it satisfies

x∗ ≡ arg min
x∈χ

f(x), (3.1)

i.e. it corresponds to the global optimum. Note, that by convention within this work we

consider optimization problems to be minimization problems. To solve our optimization

problems, we initialize the evolutionary algorithm with a start population P0={x(0)
1 , · · · , x(0)

µ }

of size µ = |P0| with P0 ⊂ χ. Note, that we do not explicitly distinguish between genotype

30

Algorithm 1: (µ+λ) Evolutionary Algorithm

g = 0, initialize Pg={x(g)
1 , · · · , x(g)

µ } and Σ
repeat

Qg ← ∅
for k = 1, . . . , λ do

x(g)
k ← selected randomly from Pg

x(g)
k

′ ∼ N (x(g)
k , Σ)

Qg ← Qg∪ {x(g)
k

′}
end
P g+1← select µ best from Pg ∪Qg

g ← g + 1
until stopping criterion is met;

and phenotype, such that the search space directly corresponds to the solution space, i.e.

χ ≡ S, where each solution x(g)
k ∈Pg is expressed as a d-dimensional vector

x(g)
k = [x(g)

k (1), x
(g)
k (2), · · · , x

(g)
k (d)]T , (3.2)

where the variable k simply indicates the k-th solution and g the g-th iteration or genera-

tion. Subsequently one introduces variation operators which modify the solutions. As we

have previously elaborated, we will consider for our studies only unary mutation operators

based upon normal distributions (cf. right panel of Fig. 3.2). These mutation operators

work by drawing differential increments ∆x from a normal distribution N such that

∆x ∼ N (0, Σ) (3.3)

where the distribution is parametrized with mean µ = 0 and covariance Σ. In the

following, we will specifically consider a spherical covariance Σ = 1 · σ−2 with fixed

sampling width σ. Upon application, the operator shifts solutions x(g)
k

′ such that

x(g)
k

′ := x(g)
k + ∆x ∼ N (x(g)

k , Σ). (3.4)

To foster the use of experience by means of learning improved operators, we keep in

31

our framework track of mutations performed. In principle, we do this by extending the

algorithmic framework in Alg. 1 by a repository, which is filled with copies of pairs of

objective function values, or better called fitness values f and solution positions x from

before and after application of the mutation operator. This mutation tracking allows us

in the following to further distinguish between improving

f(x(g)
k)− f(x(g)

k
′) ≥ 0 (3.5)

and worsening mutations

f(x(g)
k)− f(x(g)

k
′) < 0. (3.6)

As we have previously elaborated, that we only consider the (µ+λ) selection scheme, it is

quite clear that within the optimization itself only solutions x(g)
k

′ generated from improv-

ing mutations are accepted into the successor generation. We therefore want to harness

this property in the following, by building new variation operators from these collected

statistics. These can be considered to be tailored to the specific problems from which

they were derived, as they incorporate the problem structure, and therefore should quite

naturally result into performance improvements.

Noteworthy, we do not explicitly consider to suppress worsening solution modifications.

This is on one hand in reflection of arguments for developmental biases in evolvability

studies [83, 146], but on the other hand can be also justified from essential convergence

theorems [120]. As to guarantee convergence of an evolutionary optimization algorithm

all areas of the search space should remain reachable for the unary mutation operator by

a finite and positive probability.

3.4.2 Properties of the Retrieved Distributions

We start our first series of experiments with an investigation into the algorithm-problem

interaction because we want to understand how the properties of retrievable mutation

32

distributions rely upon the interplay between algorithm and problem. Quite naturally,

the characteristic properties of both should lead to noticeable differences in the statistical

distributions we can extract. For this reason, we run experiments using the previously

extended evolutionary algorithm with the configuration as detailed previously, a muta-

tion rate of 1, as well as for the sake of experimentation a population and offspring size

of µ = λ = 10. Note, that this particular setting ensures that improving mutations are

always accepted, while only worsening ones are discarded for the formation of the succes-

sor generation.

In the first experiment we consider Griewank’s benchmark function from Eq. (B.7). We

keep the problem parameters constant and only vary the sampling width for mutations

from σ = 1.5 to 4. In the second one we keep the sampling width constant and consider

exclusively Ackley’s benchmark function from Eq. (B.6) and with the depth parameter

being usually defined as a = 20. However, in the following we vary a in the range from

1 to 20, thus varying the depth and steepness of the funnel while essentially keeping the

positions of local extrema the same. In the third experiment, we simply visualize different

generational intervals from 0 and 100, as well as 100 to 1000. While in the last fourth

experiment, we simply show the distribution of all mutations, as well as the worsening

ones for Griewank’s function for comparison. Histogram representations of all retrieved

distributions are illustrated from the first to fourth column of Figure 3.5.

We find on Griewank’s function where we only vary the sampling width σ, that for

σ = 1.5, the algorithm only retrieves a Gaussian multivariate distribution. After sig-

nificantly enhancing the sampling to σ = 4, we can however retrieve a neighborhood

structure of peaks arranged in a hexagonal grid akin to the structure of local optima in

the fitness landscape of the benchmark function Eq. (B.7). Note, that we can interpret

the recovered distribution as consisting out of a central part for local improvements and

an outer part for long-range exploration of the neighborhood.

33

Figure 3.5: Different mutation distributions retrieved from running the (µ+λ) Evolution-
ary Algorithm under variable settings: Different sampling widths (Column 1), different
problem parameters (Column 2), different generational intervals (Column 3), as well as
all mutations and only worsening mutations (Column 4, top to bottom).

On Ackley’s function for the steepness parameter a = 20 of the funnel, the retrieved

distribution resembles a simple multivariate normal distribution and does not seem to

encode any problem specific information. Setting the parameter to a = 1, the retrieved

distribution strongly differs from a Gaussian bell shape by having further peaks akin to

to the structure of local optima of the benchmark Eq. (B.6). The chosen sampling width

is thus able to resolve notable problem-specific information. In the third experiment on

Griewank’s function again, we find that in the initial generations the retrieved distribu-

tion strongly resembles a multivariate normal distribution, and only in the latter phase,

the structure of local optima becomes very prominent. The fourth experiment is merely

to verify that the full distribution is Gaussian as expected, however putting it in compar-

ison to the distribution of worsening mutations, the similarity between both is striking,

as the latter is barely encoding problem-specific information. Thus, this validates our

assumption that building operators by suppressing mutations may not be considered to

be a viable strategy.

34

Figure 3.6: Comparison of the average number of mixture components retrieved by either
optimizing the Log-Likelihood (blue) or BIC Score (orange) over variable dimensionality
from 2 to 10 for the symmetric Sphere, Rastrigin and Ackley function (left to right panel).

3.4.3 Hyperparameter Optimization and Model Selection

We have previously used histograms for visualization of our retrieved mutation distribu-

tions and in principle, they could be also used to model probability densities. However,

as previously elaborated from a practical point of view their application is rather cum-

bersome because they explicitly parametrize a density model, thus introduce additional

model complexities which are difficult to get right in an off-the-shelf manner. In princi-

ple, we therefore would desire for a general purpose method to use instead non-parametric

methods. For this purpose different techniques are available.

As previously mentioned, kernel density estimation is the most accurate technique, how-

ever may at times suffer from the problem that it can be memory intensive. The Gaussian

mixture model offers instead a viable compromise in which the data set is reduced to a set

of n descriptive clusters each modeled by a normal distribution. Sampling in this frame-

work can be done using the previously mentioned ancestral sampling technique. While

Gaussian mixture models are known to be an efficient method for density estimation and

clustering, determining the best number of components n in an automatic fashion is a

non-trivial topic. In principle, also highly dependent upon the particular application of

choice [27]. The off-the-shelf approach is to directly maximize the log-likelihood given by

l(X|θ, n) :=
k∑

i=1
ln

n∑

j=1
πjN (xj|θj)

 (3.7)

35

in respect to the number of components n, where θ are the parameters determined by

EM algorithm. Alternatively, to prevent overfitting one may instead consider the so called

Bayesian Information Criteria (BIC)

BIC = −2 l(X|θ, n) + vn ln(k), (3.8)

which modifies the log-likelihood through an additional term which explicitly penalizes

more complex models through the factor vn = n(1 + d + d(d + 1)/2) + 1, scaling in the

dimension d of the data space, as well as size k of the fitted data set. The ideal model n

is then the one which minimizes the respective BIC value. We compare the found model

complexity (cf. Fig. 3.6) by maximizing the log-likelihood in a 10-fold cross validation

training scheme with the one suggested by the BIC score over a range of three different

benchmark functions of varying dimensionality. Overall, we can confirm the expectation

that the BIC score suggests the usage of low-complexity models. However, both methods

show a tendency to break down for more than three dimensions, thus suggesting the use of

the lowest complexity model with only a single component. However, the log-likelihood

estimate is in most cases still more optimistic. Thus, we will preferably use it in our

follow-up studies.

On a last note, we again recall that the goal of density modeling for us is merely to

have a method available to build reliably operators. One might therefore legitimately ob-

ject that such a model should just aid in reducing the complexity of a data set. Thus, we

could by this willfully neglect any model selection procedure and force the mixture model

simply to have a fixed number of n components. While in principle this has the danger

of overfitting, one might acknowledge that this still a much more desirable property than

underfitting with low-complexity model. We will put both approaches, log-likelihood es-

timate and fixed number of components, into further comparison within Sec. 3.5.2, but

for the time being will stick to the former.

36

3.5 Effectiveness of the Learned Operators

3.5.1 Operators as Domain Knowledge Representation

For the following experiments, we use a set of 9 different benchmarks functions taken

from Appendix B. Specifically, we further divide them three different groups, where

the first one consists out of unimodal problems without local optima from Eq. (B.1),

(B.3) & (B.5), the second out of regularly structured multimodal problems taken from

Eq. (B.6), (B.7) & (B.8) and the last one out of multimodal functions with highly irregular

structure from Eq. (B.9), (B.10) & (B.11).

We set the population size to µ = 10 and at each iteration generate λ = 10 new offspring

solutions through randomly selecting individuals and applying the mutation operator. To

initialize the population, we select randomly positions within the search space. Further,

we additionally use for the multimodal functions with highly irregular structure a pe-

nalization by rejecting solutions generated outside of the search space boundary. This

measure is mandatory because else on these benchmark functions better optima could

be reached outside of the search space. We run each experiment for 1000 generations

and average all obtained data from in total 100 runs per benchmark function. For all

experiments, the dimension is set to d = 2, as this avoids problems with data sparsity and

makes obtained distributions still manually interpretable. For the problems correspond-

ing from Eq. (B.1) - (B.8), we initialize the sampling width with σ = 4, whereas for the

problems from Eq. (B.9) - (B.11) corresponding to the difficult multimodal functions we

choose accordingly σ = 100 for Schaffer’s function, σ = 220 for Schwefel’s function and

σ = 320 for the Eggholder function. Note, that the choice of σ is in reflection of the search

space sizes. However, we will elaborate in the follow-up paragraph more on the reasons

for these particular choices of parameters. For the first 6 functions the mixture model is

constructed by explicitly tuning the number of components using the log-likelihood in a

Bayesian optimization routine [6] in the range from 1 to 100. For the latter functions from

37

Table 3.1: Performance values for the default operator (N) based upon a multivariate
normal distribution and improved operators (M) that incorporate problem structures.
Particularly, we list minimum median f̃min and mean function values fmin after 1000
generations, as well as variances smin and a statistical significance comparison of both
operators using the p-value.

Operator: N Operator: M
Function f̃min fmin smin f̃min fmin smin p-value
Sphere 2× 10−3 4× 10−3 4× 10−3 2× 10−5 3× 10−5 3× 10−5 4× 10−32

Bohachevsky 6× 10−2 7× 10−2 6× 10−2 3× 10−3 5× 10−3 5× 10−3 3× 10−26

Rosenbrock 3× 10−2 3× 10−2 3× 10−2 5× 10−4 8× 10−4 8× 10−4 2× 10−30

Rastrigin 4× 10−1 5× 10−1 4× 10−1 5× 10−3 8× 10−3 9× 10−3 3× 10−32

Ackley 2× 10−1 2× 10−1 2× 10−1 2× 10−1 2× 10−1 1× 10−1 1× 10−33

Griewank 2× 10−3 3× 10−3 3× 10−3 7× 10−5 8× 10−5 7× 10−5 1× 10−32

Schaffer 1× 10+0 1× 10+0 3× 10−1 7× 10−1 6× 10−1 2× 10−1 9× 10−31

Schwefel 2× 10+0 5× 10+1 6× 10+1 2× 10−2 3× 10−2 3× 10−2 4× 10−33

Eggholder 3× 10−3 1× 10−2 2× 10−2 6× 10−5 2× 10+1 3× 10+1 5× 10−8

Eq. (B.9) - (B.11) we use explicitly the kernel density estimation technique, as otherwise

the performance of the operator depends too heavily upon the retrieved mixture by the

expectation maximization algorithm.

We give the experimental results for each of the three groups of benchmark functions

in Fig. 3.7, 3.8 and 3.9 accordingly, where the upper figure corresponds to the unimodal

functions, the central figure to the regularly structured multimodal functions and bottom

row to the irregularly structured multimodal functions. Each panel illustrates the mini-

mum fitness costs f per generation for in total 1000 generations over a given experimental

setting, where minimum function values for individual runs are indicated in light blue,

while median and mean values are corresponding to dark blue and grey lines. Notably,

for all of the investigated benchmark functions we find that the new operators improve

the convergence behavior. This can be partly attributed to the fact that the operators

alleviate late convergences resulting from premature convergence in local optima.

We can even demonstrate that the approach can also work on the irregularly structured

38

0 200 400 600 800 1000
Generation

10 5

10 4

10 3

10 2

10 1

100

101

Fit
ne

ss
 C

os
t

0 200 400 600 800 1000
Generation

10 3

10 2

10 1

100

101

Fit
ne

ss
 C

os
t

0 200 400 600 800 1000
Generation

10 5

10 4

10 3

10 2

10 1

100

101

Fit
ne

ss
 C

os
t

Mean
Median

0 200 400 600 800 1000
Generation

10 5

10 4

10 3

10 2

10 1

100

101

Fit
ne

ss
 C

os
t

0 200 400 600 800 1000
Generation

10 3

10 2

10 1

100

101

Fit
ne

ss
 C

os
t

0 200 400 600 800 1000
Generation

10 5

10 4

10 3

10 2

10 1

100

101

Fit
ne

ss
 C

os
t

Figure 3.7: Fitness costs for the Sphere, Bohachevsky and Rosenbrock function (left to
right) for default (top) and improved operator (bottom).

0 200 400 600 800 1000
Generation

10 3

10 2

10 1

100

101

Fit
ne

ss
 C

os
t

0 200 400 600 800 1000
Generation

10 3

10 2

10 1

100

101

Fit
ne

ss
 C

os
t

0 200 400 600 800 1000
Generation

10 5

10 4

10 3

10 2

10 1

100

101

Fit
ne

ss
 C

os
t

Mean
Median

0 200 400 600 800 1000
Generation

10 3

10 2

10 1

100

101

Fit
ne

ss
 C

os
t

0 200 400 600 800 1000
Generation

10 3

10 2

10 1

100

101

Fit
ne

ss
 C

os
t

0 200 400 600 800 1000
Generation

10 5

10 4

10 3

10 2

10 1

100

101

Fit
ne

ss
 C

os
t

Figure 3.8: Fitness costs for the Rastrigin, Ackley and Griewank function (left to right)
for default (top) and improved operator (bottom).

0 200 400 600 800 1000
Generation

10 1

100

101

Fit
ne

ss
 C

os
t

0 200 400 600 800 1000
Generation

10 3

10 2

10 1

100

101

102

103

Fit
ne

ss
 C

os
t

0 200 400 600 800 1000
Generation

10 7

10 5

10 3

10 1

101

103

Fit
ne

ss
 C

os
t

Mean
Median

0 200 400 600 800 1000
Generation

10 1

100

101

Fit
ne

ss
 C

os
t

0 200 400 600 800 1000
Generation

10 3

10 2

10 1

100

101

102

103

Fit
ne

ss
 C

os
t

0 200 400 600 800 1000
Generation

10 7

10 5

10 3

10 1

101

103

Fit
ne

ss
 C

os
t

Figure 3.9: Fitness costs for the Schaffer, Schwefel and Eggholder function (left to right)
for default (top) and improved operator (bottom).

39

benchmark functions in Fig. 3.9 to a limited degree. However, further precautions must be

taken into consideration beforehand. In particularly, the sampling width must be tuned

such that the optimization algorithm exhibits good convergence behavior with the default

operator first, as otherwise we found that the retrieved operators can even be detrimental

to the algorithm performance by encouraging convergence into local optima.

To additionally substantiate our claims, we further give p-values in Tbl. 3.1 obtained

using a Wilcoxon rank-sum test. Taking α = 0.05 as statistical significance level into

consideration, our results clearly show that the null hypothesis is rejected in all consid-

ered experimental settings and thus the performance improvements are indeed statistical

significant.

3.5.2 Upscaling to High Dimensional Problems

Having seen that model selection fails at high dimensions and tends to be biased towards

low-complexity models, we want to find out in the following whether we can generate any

significant improvements using alternative approaches for density modeling.

Particularly, we will look in the following into modeling operators by means of either

directly resampling from the mutation storage without applying any density modeling,

enforcing component-wise marginalization, or using mixtures with a preset and fixed

number of components. As an optimization problem of choice we will use in the follow-

ing the Rastrigin function from Eq. (B.8). This benchmark function has the beneficial

property that while being multimodal, it is still comparably simple constructed. Partic-

ularly, featuring a quadratic funnel structure upon which a regular sinusoidal periodicity

is superimposed on top. Due to the function being fully separable, upscaling it to higher

dimensions just is equivalent to a summation of the one-dimensional versions of the func-

tion for each component.

40

Table 3.2: Comparison of the different modeling techniques in terms of repository-based
sampling, marginalized mixture model with n×GMM[d/n] and fixed component mix-
tures, over different settings in terms of dimensionality d and sampling width σ relative
to the default behavior of the (µ+λ) Evolutionary Algorithm, in terms of percentual fit-
ness reduction ∆fmed, median fitness fmed and p-value. Note, that statistically significant
improvements in comparison to baseline behavior are printed in bold.

Setting σ = 1 σ = 3 σ = 5
Dimension Model ∆fmed [%] fmed p-value Samples ∆fmed [%] fmed p-value Samples ∆fmed [%] fmed p-value Samples

6 Default - 11.70 - 5425 - 24.36 - 3610 - 34.86 - 2612
6 Repository 45.06 6.43 6×10−30 - 40.64 14.46 5×10−28 - 44.34 19.40 2×10−30 -
6 3×GMM[2] 39.04 7.13 4×10−27 - 40.36 14.53 3×10−28 - 40.22 22.43 2×10−26 -
6 2×GMM[3] 36.11 7.47 9×10−24 - 22.20 18.95 1×10−14 - 35.66 20.84 1×10−29 -
6 100 16.63 9.75 1×10−9 - 24.15 18.48 3×10−16 - 36.10 22.28 9×10−28 -
6 50 10.17 10.51 3×10−4 - 23.97 18.18 9×10−17 - 34.30 22.90 1×10−26 -
6 25 4.73 11.14 4×10−3 - 25.37 18.52 4×10−15 - 35.48 22.49 1×10−27 -
6 1 -2.30 11.97 1×10+0 - 25.81 18.07 6×10−16 - 35.08 22.63 4×10−27 -
12 Default - 56.71 - 5847 - 96.35 - 3181 - 137.40 - 1367
12 Repository 11.42 50.24 1×10−11 - 17.48 79.50 3×10−22 - 24.30 104.01 9×10−30 -
12 6×GMM[2] 10.89 50.54 1×10−10 - 15.90 81.03 3×10−20 - 24.91 103.18 6×10−31 -
12 4×GMM[3] 11.00 50.47 4×10−9 - 5.12 81.78 3×10−17 - 25.36 102.55 6×10−31 -
12 100 0.42 56.47 7×10−1 - 13.97 82.88 2×10−17 - 24.31 104.00 1×10−30 -
12 50 0.08 56.67 9×10−1 - 16.39 80.55 2×10−20 - 23.38 105.27 1×10−29 -
12 25 0.78 56.27 5×10−1 - 15.34 81.57 2×10−18 - 26.89 100.46 2×10−31 -
12 1 2.65 55.21 1×10−1 - 13.73 83.13 3×10−18 - 25.20 102.77 4×10−31 -
24 Default - 182.80 - 6484 - 299.60 - 1933 - 372.11 - 137
24 Repository 3.63 176.15 6×10−3 - 10.83 267.14 2×10−21 - 4.38 355.81 4×10−3 -
24 12×GMM[2] 3.43 176.53 7×10−3 - 9.36 271.57 1×10−20 - 8.32 341.16 6×10−12 -
24 8×GMM[3] 2.77 177.73 2×10−2 - 9.33 271.64 7×10−19 - 7.28 345.02 5×10−11 -
24 6×GMM[4] 0.73 181.45 6×10−1 - 11.21 266.02 2×10−23 - 6.52 347.86 4×10−9 -
24 100 0.03 182.73 4×10−1 - 11.26 265.86 1×10−22 - 9.72 335.95 2×10−16 -
24 50 2.24 178.70 1×10−1 - 10.00 269.65 3×10−20 - 14.43 318.43 3×10−26 -
24 25 2.63 177.99 7×10−2 - 11.67 264.63 2×10−23 - 12.69 324.89 4×10−23 -
24 1 1.34 180.35 5×10−1 - 10.62 267.77 4×10−22 - 9.97 335.00 4×10−17 -

In the following up experiments, we initialize likewise our (µ+λ) Evolutionary Algorithm

again randomly on the entire search space, with the population size and new solutions

per generation as elaborated previously. However, we take the liberty of varying the sam-

pling width σ over the range σ ∈ {1, 3, 5} simply to test different settings. We run each

experiment for 1000 generations and take the median over 100 runs. To see whether the

performance difference by the newly retrieved operators is statistically significant, we ap-

ply again a Wilcoxon rank-sum test and compare it to the default runs. All performance

values, meaning percentual median fitness reduction ∆fmed, as well as median fitness val-

ues fmed and p-values for different settings in terms of dimension, modeling technique and

sampling width σ are listed in Tbl. 3.2.

From the results we can draw the following conclusions: First of all, comparing all mod-

41

eling techniques and sampling widths, performance improvements are most pronounced

for the lower dimensional settings. Ranging up to ≈ 45% for d = 6 and σ = 1 consid-

ering resampling based upon the mutation storage, while being ≈ 40 to 44% for σ = 3

and 5. Going to higher dimensions, the percentage of performance improvements shrinks

to ≈ 11% for σ = 1 for repository-based sampling, to ≈ 17% for σ = 3 and ≈ 24 to

27% across all statistically significant modeling techniques for σ = 5. The improvements

shrink drastically from 3 to 4% for σ = 1, from 9 to 12% for σ = 3 and from 4 to 14%

for σ = 5. In conclusion, we find that the utility of the operators rapidly declines with

increasing dimensions.

Comparing the modeling techniques altogether, we find that repository-based resampling

dominates for σ = 1 or d = 6. However, radically declines in its efficiency beyond these

parameters. We find that the marginalization-based approach works likewise well for a

sampling width of σ = 1, but tends to decrease in its performance for σ = 3 and σ = 5,

especially when considering higher dimensions. To be on point: The more spread out

densities that would need to be resolved from the samples are, the less effective repository

and marginalization-based re-sampling become. Notably, at larger sampling widths and

higher dimensions, density models based upon a fixed and preset number of components

become more effective. This can be seen as being a direct consequence of the inaccuracy

generated by the marginalization approaches. Thus, a mixture with a fixed number of

components can be considered to give in this regime a more accurate density estimate.

At last, we remark that the approximation using only a single Gaussian does not lead to

significantly dominating results in all considered scenarios.

To conclude, the effectiveness and trade-offs of each of the alternative modeling tech-

niques can be interpreted in terms of spread of the density that given a particular setting

would need to be resolved. Though, practically we could observe that in all scenarios,

the efficiency of the operators rapidly declined with increasing dimensions. Ranging for

42

σ = 1 only from 3 to 4%, for σ = 3 from 9 to 11% and for σ = 5 from 4 to 14%. In

all considered settings, we are not able to identify a single technique which outperforms

significantly the other ones.

3.5.3 Cross-Problem Knowledge Transfer

The quantification of problem similarity remains to be an outstanding problem within

research on knowledge transfer methods for optimization. Existing methods within the

literature largely rely upon pragmatic methods to this regard. The first method in the

literature encountering this issue is CIGAR [93] in the context of combinational prob-

lems, which maintains a case-base of solutions from problems it solved within its past

to solve new ones more efficiently. Particularly, by means of querying them based upon

problem similarity. However, the authors openly acknowledge, that in many scenarios dis-

tinguishable problem characteristics may not be directly accessible. Therefore, suggest as

a way to cope with it, to reflect problem similarity by means of solution similarity instead.

Similar measures have also been proposed in more recent work where the AMTEA frame-

work from Da et al. (2018) [36] is particularly noteworthy to this regard. Within their

work, a Gaussian distribution is fitted to each final population obtained from previously

solved multi-objective optimization problems and the obtained parameters are stored

within a database. Thus, when encountering new and previously unseen problems, the

algorithm halts at regular intervals of ∆ and performs a stacked density estimation

of the current solution population using the Gaussian distributions stored within the

database constructed from the previously solved problems. Effectively, the obtained mix-

ture weights subsequently encode the solution similarity between the single target and the

multiple source problems. In a similar fashion also the work from Zhang et al. (2019) [163]

has employed Gaussian distributions. However, in their proposed multisource selective

transfer framework, the similarity between solution distributions of the current target

problem and the ones stored from the source problems in the repository are directly cal-

43

0.0 0.2 0.4 0.6 0.8 1.0

10 1

100

f fr
ac

ffrac(10)
ffrac(20)
ffrac(50)
ffrac(100)
ffrac(1000)

0.0 0.2 0.4 0.6 0.8 1.0

10 1

100

0.0 0.2 0.4 0.6 0.8 1.0

10 2

10 1

100

0.0 0.2 0.4 0.6 0.8 1.0

10 2

10 1

100

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.2

0.4

0.6

0.8

1.0

d n
or

m

EMD(P,Q)
DB(P,Q)
JSD(P,Q)

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.10: Percentual fitness fraction ffrac at generation 10, 20, 50, 100 and 1000 (up-
per row), as well as normalized statistical distances of the mutation distributions dnorm
in terms of DB(P, Q), JSD(P, Q) and EMD(P, Q) (lower row) corresponding to Bhat-
tacharyya distance, Jensen-Shannon divergence and Wasserstein distance, over varied
source-to-target function similarity parameter s, for the transfer scenarios of Ackley-to-
Rastrigin, Rastrigin-to-Ackley, Rastrigin-to-Sphere and Sphere-to-Rastrigin (from left to
right column) .

culated through the Wasserstein distance. Based upon the calculated similarities, different

source selection strategies can subsequently be employed.

Note however, that a variety of approaches within the literature completely neglect to

look more extensively into measures of problem similarity. Thus, fostering what has been

dubbed as ’negative transfer’ [46]. However, as we have looked previously into the mod-

eling of operators explicitly through taking a procedural view, our approach in principle

allows a slightly different way of characterizing optimization problems. Particularly, in

terms of the mutation distributions which we used to build the operators. Notably, this

allows a less absolute view of characterizing optimization problems. Thus, to test our

assumption, that similarity in mutation distributions also encodes problem similarity, we

will consider the following scenario for investigation: We take three benchmark functions

from Eq. (B.6), (B.8) & (B.5) and form two groups of each. The first group consists out

of the Rastrigin and Sphere function, while the second group consists out of the Ackley

44

and Rastrigin function. We build new optimization problems from these, by considering

in the following the sum f(x; s) = (1− s)g(x) + sh(x)), where s is a similarity parameter

s ∈ [0, 1], such that f(x; 0) = g(x) and f(x; 1) = h(x). Within our experiments, we first

build operators for the function h(x), and subsequently apply them to f(x; s), while we

vary the similarity parameter s.

Additionally, we also consider a second series of experiments, in which we consider the

same setup, but instead of tracking performance improvements, we compare the obtained

operators on h(x) and f(x; s), in terms of statistical similarity measures, to test the as-

sumption on whether similarity of mutation distributions corresponds also to problem

similarity, while again we vary the parameter s. We use to this regard three different

similarity measures which have different underlying interpretations. The Bhattacharyya

distance [15] given by

DB(P, Q) = −ln
(∑

x∈X

√
P (x)Q(x)

)
, (3.9)

measures the overlap between two distributions P and Q, where x corresponds to the

center position of a bin and X being the set of all bins; the Jensen-Shannon divergence

[53] given by

JSD(P, Q) = 1
2[DKL(P∥M) + DKL(Q∥M)], (3.10)

is an information theoretic metric that measures the summed difference of P and Q

to an average mutual distribution M = 1/2(P + Q), where DKL is the Kullback-Leibler

divergence; and at last the Wasserstein or Earth Mover’s distance [119]

EMD(P, Q) =
 m∑

i=1

n∑
j=1

fi,jdi,j

 /

 m∑
i=1

n∑
j=1

fi,j

 , (3.11)

which can be interpreted as measuring the minimum energy necessary to transform P into

Q and vice versa, where dij are Euclidean distances between the bins of both the distri-

45

butions and fij are flow coefficients which are calculated by solving the optimal transport

problem [50].

All results from our experiments are illustrated in the plots of Fig. 3.10. Where the

upper row are plots of performance improvements in terms fitness fraction over variable

similarity parameter s, and in the lower row are plots of the normalized statistical dis-

tances calculated through 2d histograms in the range of [0, 1], where 0 encodes highest

similarity, over variable similarity value s, as calculated by Eq. (3.9), (3.10) and (3.11).

We elaborate in the following on the conclusions we can draw from these experiments.

First of all, it is quite evident, that all statistical distance measures behave very similar,

and that there is a clear negative correlation with the similarity parameter s evident in

all plots. Thus, if the mutation distributions of two operators are statistically similar,

it also implies that the problems are similar. However, relating these to performance

improvements is problematic. While we find that the transfer of operators is generally

beneficial in our considered benchmark problems, any gains in efficiency itself are at best

only ambiguously correlated with problem similarity. Thus, the more similar the target

problem is to the source problem in terms of s, it does not necessarily imply that the per-

formance improvements are also higher. In fact, we only found that this scenario holds

true for either g(x) and h(x) being Rastrigin’s and Ackley’s function (cf. second column

in Fig. 3.10), or the Sphere and Rastrigin function (cf. fourth column). However, the

same judgment cannot be made for the reverse case (cf. for the former the first, and the

latter the third column).

Noteworthy, the no-free-lunch theorems for optimization [158] explicitly caution that per-

formance improvements of any algorithm aj in comparison to a baseline configuration a

on a restricted function set F∗ are only guaranteed when it is known, that it also explicitly

incorporates problem-structure. However, the reverse direction does not necessarily hold

true, and thus making judgments about the similarity of two problems by comparing the

46

performance of operators on thereof as well as vice versa can be considered to be a logical

fallacy. And while we have used a similarity parameter s to quantify problem similarity,

it may only poorly reflect actual structural similarity from an algorithm-dependent view.

3.6 Chapter Summary

Contributions

To conclude this chapter, we wrap up the key contributions from our studies of modeling

evolutionary search operators:

• We proposed histogram and density estimation based methodology to

model mutation operators in the framework of a (µ+λ) Evolutionary

Algorithm.

• We introduced different methods for upscaling the operator construction

to higher dimensional problems.

• We framed problem similarity in terms of statistical similarity of pref-

erences in generated random variates and evaluated different statistical

distance measures as a possible means to quantify it.

Summary

First of all, by looking into literature of evolutionary biology, we pointed out that within

the variational calculus of natural evolution, mutations are the most important and the

prime source of variation [92], as they effectively act as novelty generators [89]. The

importance of mutation as a variation operation has been further solidified within conver-

gence theorems of evolutionary computation, which suggest that to ensure convergence

every point of the search space should be accessible with non-vanishing probability [120].

It is thus quite natural to consider this variational operation as a means to model domain

47

knowledge. Essentially, this also connects the variational calculus of evolutionary compu-

tation with the concept of inductive biases in machine learning [102]. Meaning, that in

order to generalize performance improvements, any kind of learning systems must neces-

sarily form biases towards one model of domain knowledge over others within the hypoth-

esis space. Residing again to studies in computational biology, it has been well argued

that the variational calculus of natural evolution exhibits learning capabilities through

mirroring the aforementioned inductive biases through developmental biases [146]. How-

ever, these may not only foster adaption to specific environments, but may exhibit a

much broader learning capability such that they are able to generalize performance gains

to future unseen environments [83].

Motivated by the insights from these literature findings, we looked into mutation-based

evolutionary algorithms to find ways to explicitly model domain knowledge. From com-

paring Evolutionary Programming and Evolution Strategies [9], we concluded that a

framework based upon elitist selection schemes is most beneficial for further scrutiny.

Specifically, we argued for the utility of the (µ+λ) selection scheme, as in principle it is

clear that within such a framework only mutations are accepted that are improving the

solution quality. Thus, we proceeded in the following with modeling the operator. For

this reason, we specifically resided to a probabilistic interpretation thereof and used to

this regard density estimation methods. We can demonstrate the efficiency of this ap-

proach on unimodal, as well as structured multimodal, as well as to a certain degree also

irregularly structured optimization problems. While density estimation becomes more

problematic at higher dimensions, we were nevertheless still able to generate performance

improvements with the upscaling approaches in Sec. 3.5.2. Though, admittingly the effec-

tiveness of the retrieved operators fastly declines with increasing dimensions. We further

also looked into a scenario concerning cross-problem knowledge transfer and specifically

potential ways of quantifying problem similarity. While we found, that in the considered

scenarios, the transfer of operators is generally beneficial, we were not able to relate in-

48

creases in problem similarity to increases in performance improvements. Admittingly, in

some cases even found the reverse relationship to be in effect. An explanation for this

may be partly attributed to the fact, that our considered similarity measures in terms

of statistical distances d(P, Q) and similarity parameter s may only poorly reflect actual

problem similarity from an algorithm-dependent view. Thus making judgments on the

similarity of them, or any generated performance improvements of the operators, may be

considered a logical fallacy [158].

In the following chapters, we therefore want to look into further ways on how to ob-

tain a problem-dependent perspective of optimization problems themselves. In principle,

within the aforementioned meta-learning model, this is the question on how to obtain

metaknowledge representations which serve as high-level abstractions of procedural meta-

data generated from the interplay of algorithm and optimization problem. We will also

revisit in Chapter 6 a scenario in which we explicitly predict operators for optimization

problems. However, we reframe it in terms of a problem of predicting a more compact

parametrization in terms of an operator configuration instead. This scenario, has the

advantage that it is less complex as density estimation, due to it requiring a comparably

smaller number of parameters to be determined, while at the same time sparing the need

of high numbers of samples, which we previously required to be in the first place able to

model the mutation operators.

49

CHAPTER 4

FEATURE EXTRACTION FROM PROCEDURAL
METADATA

4.1 Implications of the NFL Theorems in Optimiza-
tion

We elaborated in the previous chapter on the importance of inductive biases in enabling

algorithms to generalize performance gains from training instances to arbitrary new in-

stances from a given problem domain. We formed inductive biases by explicitly incor-

porating information about the problem structure into variation operators. While the

performance gains generated through this approach are obvious from an intuitive per-

spective, it is important to understand its theoretical justification.

Specifically, we recall at this point the first no free lunch theorem, which is stated as

follows [158]: Given 1) an objective function f : X → Y , 2) the space of all possi-

ble objective functions F with f ∈ F , 3) a set dm of m distinct function evaluations

(dx
m(i), dy

m(i)) in ascending time-order with dx
m(i) ∈ X , dy

m(i) ∈ Y at step i, 4) algorithms

a : d ∈ D → {x|x /∈ dx} mapping a sample d from the space of all possible samples D to

unvisited ones x /∈ dx, and 4) the space of all algorithms A with a ∈ A. Then, for any pair

of algorithms a1, a2 ∈ A, it holds true that: ∑f∈F P (dy
m|f, m, a1) = ∑

f∈F P (dy
m|f, m, a2).

Meaning the probability averaged over all possible objective functions f ∈ F to retrieve

50

a sample set dy
m for any pair of algorithms a1, a2 ∈ A is the same.

First of all, the most obvious implication is that if we find that for an algorithm a ∈ A,

that on two subsets F1,F2 ⊂ F of the function space with F = F1 ∪ F2, that a demon-

strates a high-performance on e.g. F1, it necessarily implicates in return performance

degradation on the complementary function set F2 such that the total performance on F

remains constant and thus independent of the particular algorithm a. Secondly, the mere

knowledge about the existence of structure does not justify the choice of one optimiza-

tion algorithm a1 over another algorithm a2 unless the structure is explicitly known and

reflected in the design of a chosen algorithm. We elaborated on the implications of the

latter already previously. But in the following, will take a closer look on the former.

In principle it acknowledges the impossibility of constructing a high-performing universal

problem solver. As any performance gains realized on a restricted problem domain comes

in turn with performance degradation on the complementary problem set. However, the

no free lunch theorems allow one to circumvent this problem. Given a partition of a func-

tion set into different problem structures F1, · · · ,FN , as well as a base algorithm a, one

may attempt to specialize the base algorithm into distinctive configurations a1, · · · , aN

corresponding to each function set such that performance improvements are guaranteed

on each. Thus, framing it in terms of a meta-learning model, the difficulty lies in finding

ways to arbitrate between the different biased algorithm components in a domain depen-

dent manner. As we have previously elaborated, this requires the active generation and

processing of metaknowledge. We will therefore look into it in the following chapter.

4.2 Approaches within the Literature

Within the literature, we can particularly identify two lines of research which are relevant

for deriving methodology, that allows us to harness metadata from heuristic optimization

51

algorithms. The first one being attempts to analyze behavioral optimization data using

various supervised and unsupervised learning methods. The second one employs deep

pattern recognition for classification and regression as a way to short-cut traditional algo-

rithm selection frameworks and predict solvers and solutions based upon inputs directly

generated from optimization problems.

4.2.1 Algorithm Behavior Studies

This line of research originates from early attempts at moving away from theoretical mod-

els of search behavior to more pragmatic ones which enable the analysis of algorithms

through means of empirical measures as done by Turkey & Poli (2012) [145]. While in

principle, this has been already done in the past by relating analytically calculated prop-

erties of white-box optimization problems with algorithm performance (e.g.: [76]), the

approach taken Turkey & Poli (2012) attempts to develop a new tool based upon directly

assessing the behavior of an algorithm by keeping track of the problem-dependent move-

ment of candidates solutions in the search space as a whole (cf. Fig. 4.1).

Central to their method is the use of a self-organizing map (SOM) [82] which is a clus-

tering technique that superimposes a neighborhood structure upon the cluster nodes,

such that every cluster can be identified through a set of tuples (n1, · · · , nN) of size

N within a regular structured coordinate system. Usual implementations of the self-

organized map rely upon two-dimensional and rectangular coordinate systems with N = 2.

Turkey & Poli (2012) use the self-organized map as a way to model the population struc-

ture within the search space of continuous single-objective optimization problems. In an

initial training phase, the self-organized map is fitted to the start population. Based upon

the obtained map, one can associate fitness values, solution counts and solution distances

to the nearest cluster centroid. Subsequently, the evolutionary algorithm is iterated for

another generation and a second training phase is initiated to refit the map to the new

population. Based upon changes to cluster assignments, as well as population and fitness

52

Figure 4.1: In works on algorithm behavior studies, a key idea is that algorithms and
problems can be characterized by the specific changes imposed on the solution distribution
from Pg → Pg+1, through the interplay between algorithm and problem over successive
generations g → g + 1.

density, Turkey & Poli (2012) define empirical measures quantifying exploration and ex-

ploitation behavior. Note, that their focus is solely to describe different search behaviors

of evolutionary algorithms from a qualitative perspective.

More loosely based upon their work, Pang et al. (2016) [113] follow up this approach

using likewise behavioral optimization data. However, this time with a clear focus on

learning features which allow them to explicitly differentiate the behavior of different evo-

lutionary algorithms and optimization problems, and not to describe them. Likewise they

adapt the self-organized map within their work, but instead to obtain a low-dimensional

representation of the search space itself. Thus, in advance fit it to training data uniformly

and exhaustively generated within the search space. Experiments are setup with a fixed

initial population and subsequently the evolutionary algorithm or problem of interest is

varied and the generated offspring population is recorded. Using the offspring generation,

the cluster assignments on the self-organized map are recorded and post-processing is

done using PCA and the slow-feature analysis technique. Where the latter is explicitly

used to construct a feature space in which the different evolutionary algorithms and op-

timization problems separate. Within their experiments, Pang et al. (2016) can show

that they are able to construct feature spaces which can sufficiently separate different

53

1

3

1

2

1

1

1

Dimension 0

D
im

en
si

o
n
 1

V

A

𝝓

𝝁𝒔

𝒙

𝒔

Figure 4.2: Illustration of the approach as proposed by Liu et al. (2017) [91]. Points are
converted from a high-dimensional space V to a low-dimensional 2d space A by means of
a mapping ϕ : V → A constructed through the self-organized map. Counting the number
of solutions closest for each neuron in the self-organized map, a structured data format
in the form of two-dimensional histograms can be obtained, which can be subsequently
used as input for the training of learning algorithms.

evolutionary algorithms. However, they are incapable of sufficiently separating different

optimization problems for given fixed optimization algorithms, unless the given problems

contain obvious asymmetries. Notably, their work neglects any information about fitness

values or distances of the candidate solutions to their assigned cluster node.

Work from Liu et al. (2017) [91] has been further following up the slow-feature analysis

based approach. However, motivated by the computational expensiveness of the former,

their work explores the question whether or not a modern deep network architecture can

be used to learn features capable of separating different evolutionary algorithms. Like-

wise, to previous work, the self-organized map is used once again as a way of obtaining

a low-dimensional representation of a search space. However, they explicitly harness the

two-dimensional structure of the self-organized map by recording generational changes in

the assigned number of candidate solutions to every cluster node in a matrix representa-

tion (cf. Fig. 4.2). Once these are obtained, they can subsequently be labeled and fed for

training to a neural network architecture based upon convolutional layers [88]. Note, that

54

the latter are used in an attempt to explicitly exploit the two dimensional structure of the

input matrices. Their study shows, that they can indeed achieve competitive results to

the previous SFA-based method, by means of obtaining a latent space in which behavioral

data of different algorithm is significantly disentangled. However, note their work does

not reconsider the problem of distinguishing different continuous optimization problems.

4.2.2 Feature-Free Algorithm Selection

The application of pattern recognition methods has a longer tradition within the field

of heuristic optimization. For example, in the field of hyper-heuristics and combinatorial

optimization, they can be used to learn a mapping from a known problem state to the best

known optimal solver [24]. They may also find their application within traditional studies

of algorithm selection pipelines [103, 78]. However, in many cases obtaining good and

descriptive characteristics is the problem which needs to be solved in the first place [96].

Recent ambitions within the field of combinatorial optimization have attempted to short-

cut this step by employing deep neural networks (cf. Fig. 4.3). Thus, the step of calculating

problem characteristics is done implicitly by the network architecture, which is trained

to predict algorithms and solutions to efficiently solve optimization problems in the first

place. From an intelligent systems design point of view, this reflects the notions which fea-

tures also have in biological cognitive systems [69, 18]. Meaning that any kind of models of

problem characteristics solely arise out of environment and goal-dependent learning [133].

Noteworthy, particularly the recent work of Seiler et al. (2020) [127] explicitly uses deep

neural networks to predict an optimal solver for traveling salesperson problems (TSP).

However, instead of calculating problem characteristics of the different TSP instances,

they generate 512x512 raster images of visual representations from plots of point clouds,

minimum spanning trees and nearest neighbor graphs. Based upon these generated im-

ages, a CNN-based classifier is trained to predict the best known solver for a given TSP

problem instance from two available ones. Through their results they can prove, that

55

Figure 4.3: Recent works on algorithm selection frameworks have attempted to short-
cut the traditional pipeline, by introducing a direct mapping from problem space to
performance space, where the calculation of problem characteristics is encapsulated into
deep neural network architectures, from which directly the best performing algorithms
and solutions are predicted.

with the feature-free neural network based approach they can achieve results which are

competitive and partly surpassing classical algorithm selection frameworks. Similarly, re-

cent work also explored the use of transformer networks to this regard [22].

A similar and parallel line of work [2, 3] has investigated the use of sequential mod-

els, particularly implementations of LSTMs [68], to solve 1d bin packing problems. In

principle, with an interest in either predicting the optimal solvers for a given problem

instance or optimal solutions. For the former case, they can show that their approach is

capable of achieving higher performance than the single best solver (SBS). While for the

latter, they find that their method can predict solutions very accurately to heuristics used

to generate the training data, and at times even generates them with comparably higher

performance. Though, while such a learned predictive model might not always be able to

fully substitute handcrafted solvers, it can be considered to be a useful complementary [4].

The comfort of combinatorial problems is that in principle the search spaces thereof are

well-structured and problem characteristics may often be accessible in advance.

Noteworthy, it has been pointed out early-on by the comparative work of Smith-Miles

56

(2009) [136] that essentially algorithm selection and configuration problems constitute

meta-learning problems. Thus, research on thereof establishes a bridge to our aforemen-

tioned question on the nature of inductive biases within optimization algorithms and

possible ways to arbitrate between them.

4.2.3 Conclusions

Summarizing the reviewed work, we can come to the following conclusions: First of all, as

previously mentioned within the literature, algorithm selection and configuration problems

have been identified to constitute meta-learning problems [136]. While we approached the

question of building experienced-based and learning optimization algorithms and systems

initially rather from intuitive notions and through these related them to the aforemen-

tioned meta-learning model, the framework of algorithm selection and configuration offers

answers for some of the technical challenges when constructing such algorithms and sys-

tems. Though, quite notably, our line of research still approaches this problem from a

different angle, and to our knowledge the question on the nature of and ways to construct

inductive biases in optimization algorithms has of yet not been studied sufficiently in the

literature yet.

Secondly, we found that the use of the feature learning capabilities of deep network

architectures gained especially an interest in arbitrating between solvers or predicting

explicitly solutions in combinatorial optimization [2, 127, 3, 4]. However, surprisingly

most of the latter reviewed work in regards to feature-free algorithm selection has mostly

been only done within the domain of combinatorial optimization. Even though, prior

research on methods from algorithm behavior studies [145, 113, 91] can be considered to

have laid a certain foundation for further investigation. Therefore, we want to take in

the following the opportunity to advance the state of the art by investigating whether

we can propose a pipeline to learn features capable of distinguishing different continuous

optimization problems from procedural optimization data. Showing the efficiency of such

57

an approach, could enable us to likewise integrate it into a framework to learn and predict

problem-tailored algorithm components from inputs generated during the run-time of an

optimization algorithm.

We adopt the procedure of partitioning the search space from prior works [113, 91],

however we lay a special focus on a comparative view by imposing different kinds of

neighborhood relationships upon the retrieved partitions. By keeping track of problem-

specific changes within each cells of the search space partitions, we subsequently train

classifiers based upon specialized neural network architectures to learn features capable

of separating the different continuous optimization problems within a latent space. We

will also include in the following a channel for fitness values, as previous work solely based

upon changing solution counts has shown ambiguity for symmetric functions [113] for the

task of problem identification.

4.3 Partitioning the Search Space

In the following, we will elaborate on different methods to partition the search space of

continuous optimization problems. Specifically, with an emphasis on the different ways

how to retrieve search space partitions through clustering methods, and ways to impose a

neighborhood relationship on them. The necessity of such a step might not seem obvious

within low dimensions, as one might be simply inclined to equally divide the space among

each axis into p pieces. However, as the number of partitions would scale exponentially

with pd at high dimensions d through this approach, it would become infeasible if one still

wants to maintain a sufficient resolution.

Our principle approach is outlined in Fig. 4.4. For a search space volume χ ⊂ Rd, we

first generate DT = {x1, · · · , xN} samples uniformly random within it. This data set DT

can then be subsequently used as training data for clustering methods to partition the

58

Clustering

Generate training data

within the search space.

E.g.:

• k-Means

• Self-Organized Map

• Growing Neural Gas

Retrieved search

space partition.

Figure 4.4: Illustration of the search space partitioning step. First training data is gen-
erated within the search space, to which subsequently a clustering method is applied to
such that to obtain a partitioning of the search space into disjoint and discrete parts.

search space homogeneously. The number of preset clusters NC can be seen as regulating

the resolution of the retrieved partition. Specifically, we investigate in the following as

clustering methods k-means, the self-organized map and the growing neural gas.

4.3.1 Unstructured Partitions

Applying the k-means algorithm to a given training data set DT , with a preset value

k = NC usually results in the algorithm retrieving unstructured clusters after N iterations

with centroids {µi}NC
i=1 and without any further neighborhood relationship being imposed

on them. The cluster centroids are usually initialized randomly on the data set and

iteratively updated such that

µi = (Σn rnk · xn)/(Σn rnk), (4.1)

where rnk = 1 if the closest µj for given xn has j = k, otherwise it is 0. As the k-means

algorithm is usually part of many introductory literature [17] as well as standard software

packages and libraries for machine learning and statistics [115], we neglect in the following

any further more elaborate discussion of it.

59

4.3.2 Structured Partitions as Maps

Structured clusters can be retrieved using the self-organized map (SOM) technique [82].

As mentioned, this approach has been used in prior work [113, 91] as a way to partition the

search space, originally motivated by work on modeling solution populations [145] within

continuous evolutionary optimization. In its usual formulation, the SOM imposes a 2d

grid structure upon the clusters, such that the total number of clusters is Nc = Nx ·Ny and

the clusters can be identified through tuples nc = (nx, ny) with nc ∈ [1, Nx]×[1, Ny]. In the

recursive formulation [82], each of the Nc clusters is identified by a centroid µi (sometimes

also called weights or model vectors), being likewise to k-means randomly initialized on

the training data set DT , and updated at each iteration t for a given training data point

x by

µi(t + 1) = µi(t) + hci(t)[x(t)− µi(t)], (4.2)

where c is the index of the best matching unit (BMU), i.e. likewise to the k-means

algorithm c = arg mini(||x(t)−µi(t)||), and i being the index of its topological neighbors.

Here, hci is a neighborhood function with

hci(t) = α(t) exp(−||µc − µi||2/2σ2(t)), (4.3)

where σ(t) and α(t) are monotonically decreasing functions of t. For the former, accord-

ing to literature [82] its exact form does not matter, as long as σ(t) is a monotonically

decreasing function with its value being about half of the grid diameter in the beginning

and reduced after about 1000 steps to only a fraction of it. The use of the SOM to

partition a high-dimensional space can be motivated as an attempt to topologically ’fold’

a low-dimensional space into a higher dimensional one (cf. central column of Fig. 4.5).

Note, that this different to exploiting the manifold hypothesis.

60

Vector Tensor Matrix

Unstructured Cartesian Graph

Figure 4.5: Neighborhood-relationships which can be enforced through different tech-
niques (i.e. k-Means, SOM, GNG & Delaunay). Bottom row: Different data formats
which are obtained using the different neighborhood relationships.

4.3.3 Structured Partitions as Graphs

Delaunay Triangulations

The cluster centroids {µi}NC
i=1 retrieved on the basis of the k-means algorithm can be re-

interpreted as nodes of a graph structure. To construct a graph, one simply considers for

each cluster with centroid µi its associated decision volume V (i), finds all neighboring

volumes V (j) and subsequently builds an adjacency matrix A, with aij = 1 for neigh-

boring pairs (i, j) and aij = 0 for unneighbored pairs (i, j). This procedure is known as

Delaunay triangulation. In principle, implementing it into an algorithmic form is not triv-

ial and requires a less simplified approach. However, library implementations are readily

available [152].

The Growing Neural Gas

The growing neural gas (GNG) [52] can be considered to be a variation of the former

SOM [82]. However, its focus is on evolving a graph of vertices and edges (V, E) which

describe the topology of the given data set DT . Thus, in principle the total number of

61

clusters and edges can dynamically change during the training process. Likewise to k-

means and the SOM, the training starts with Nc clusters with positions µi being randomly

initialized on the data set DT . Based upon a randomly drawn data point x ∈ DT , the

nearest cluster µ1 and second-nearest cluster µ2 are determined. If the cluster µ1 has

edges, the ages of the edges are incremented and an error variable ∆error(1) = ||µ1−x||2

is calculated. The cluster µ1 and its topological neighbors µn are subsequently moved

towards the drawn data point x by fractions ϵb and ϵn with

∆ws1 = ϵb(x− µ1) and ∆wsn = ϵn(x− µn), (4.4)

analogue to the self-organized map. If µ1 and µ2 possess an edge, its age is set to 0 and

if no edge exists, it is created anew. Edges with an age larger than amax are subsequently

removed, and likewise, clusters without an edge are removed from the gas. After a certain

number of iterations λ, the gas will insert a new cluster µr. This is done, by selecting

the cluster µq with the highest error, and subsequently inserting a new cluster half-way

at µr = 1
2(µf + µq) between the neighbor with highest error µf . Subsequently, the

old edges are removed and new ones are created. Errors of q and f are lowered by a

multiplicative factor α. The new cluster r subsequently inherits the updated error of

q. At last, the neural gas decreases all errors by multiplication with a constant d. The

algorithm terminates as soon as it has achieved a predefined network size or performance

goal.

4.4 The Data Post-Processing Pipeline

The full data post-processing pipeline is illustrated in Fig. 4.6. From running an evo-

lutionary optimization algorithm on different single-objective optimization problems of

the form f : χ ⊂ Rd → R, we first extract raw data in the form of tuples (x, f(x)) of

generated solutions x ∈ Rd and fitness values f(x). We further organize these into tuples

62

Figure 4.6: Illustration of the data post-processing pipeline. Unstructured raw data de-
scriptive of a solution population P r

g at generation g and run r in the form of tuples
(x, f(x)) of candidate solutions and fitness values are converted by a search space par-
titioning method into a structured data format z, which subsequently can be fed to an
adequate neural network architecture for feature extraction.

(P r
g , y), where P r

g is the population, it is the set of all (x, f(x)), at generation g and run

r and y is a label for a particular optimization problem.

By applying a search space partition of Nc clusters to a solution population P r
g , we obtain

a structured data format in either the form of a vector z ∈ RNc·Nf for an unstructured

k-means partition, the form of a tensor z ∈ RNx×Ny×Nf for a structured map, or a fea-

ture matrix z ∈ RNc×Nf for structured graphs, where the latter are also further supplied

with an adjacency matrix A. Note that Nf is the number of cluster node features, and

Nx ·Ny = Nc. After having converted all solution populations P r
g into representations zr

g,

we can use these for the subsequent feature learning and extraction step.

Note that in our approach we further process these by explicitly taking the differences

∆zr = zr
0 − zr

1. We also consider at most only two features with Nf = 2 for each zr
g, i.e.

the sum of all solutions associated to a cluster and the sum of all fitness values associated

to a cluster, to which we will refer in the following as solution channel and fitness chan-

nel. Effectively, we can interpret the ∆zr as finite differences, i.e. discrete derivatives in

generational change ∆g = 1, of total solutions and total fitness per cluster.

63

4.5 Neural Nets for Feature Learning

Depending upon the previously used search partition method, we choose in the next step

of the processing pipeline the neural network architecture most suitable to process the

obtained data format.

4.5.1 Processing of Vector Data

We use for vector data z ∈ RNc·Nf the multilayer perceptron (MLP) [17] with stacked

dense layers of the form

h(n) = σ(n)(W(n)h(n−1)), (4.5)

where h(n) is the output of the n-th hidden layer, where we have for the input layer

h(0) = z, non-linear activation functions σ(n), in our case either ReLU(x):=max(0, x) or

SoftMax(x) = exp(x)/ ∑jexp(xj) and W(n) being a trainable weight matrix.

4.5.2 Processing of Tensor Data

For tensor data z ∈ RNx×Ny×Nf extracted using the SOM, we use the convolutional neural

network (CNN), which is a special architecture that has been designed to process tensorial

data, e.g. such as time-series and images [88]. Key ingredient of it are name-giving

convolution operations [55] which can be written as

H(n)
i,j,k = σ

(
Σl,m,pH(n−1)

(i−1)×s+l,(j−1)×s+m,pW(n)
l,m,p,k

)
(4.6)

where H(n−1) is an input tensor, the parameter s is a so called stride and W(n−1) is a

kernel with trainable weights which can be parametrized by (l, m, p), and k being an index

for the number of pre-defined filters. Further, we use pooling layers which are defined by

H(n)
i,j,k = maxm,n{H(n−1)

(i−1)×s+m,(j−1)×s+n, k}. (4.7)

64

Figure 4.7: In traditional convolution layers (left side), filters have a smaller dimension
than the given input domain, and can aggregate features from patches of pre-defined
arbitrary size from the input. In Kipf & Welling’s graph convolution [80], filters have
the same dimension as the input graph, and only aggregate features from the direct
neighborhood of a given node.

Both operations are employed in specialized layers as a means to capture the underlying

structural correlations hidden within the training data. We neglect a more elaborate

discussion and refer to available literature instead [55], in favor of fostering in the following

a comparison to their novel analogues for graph data.

4.5.3 Processing of Graph Data

For graph data represented by feature matrices z ∈ RNc×Nf , we use in our work the re-

cently developed techniques for graph neural networks (GNN) [23, 159]. While a variety

of methods [159, 105] have been developed within the recent years, we will employ within

our work particularly operations which have been defined in analogy to traditional opera-

tions, and became comparably popular. Specifically, we consider graph convolutions [80]

as defined by

H(n) = σ(n)(D̃− 1
2 ÃD̃− 1

2 H(n−1)W(n)), (4.8)

with a weight matrix W(n) ∈ RNf ×Nf ′ , further H(0) = z, the adjacency matrix Ã = A+I

with self-connections, as well as the degree matrix D̃ii = ∑
j Ãij. The first four multi-

plicative terms can be interpreted as an aggregation operation over all features of the

neighbors of a node (cf. Fig. 4.7). Further, we also use pooling layers, based upon a graph

65

10

11

1110

543210

210

5410 987632

1

2
0

5

1

3
2

4
0

0 2 3

1 7

4

5

8

9

6

Figure 4.8: The proposed graph pooling operation by Defferrard (2016) [40] based upon
the Graclus algorithm [42]. Left panel: First, the input graph is extended by fake nodes
(blue), such that subsequently it enables the iterative calculation of graph cuts. Right
panel: The node relationships arising through the graph coarsening operation can subse-
quently be used to convert the graphs into a balanced binary tree, on which node features
can be simply pooled at each step in analogy to 1d signals.

coarsening step using the Graclus algorithm [42, 40]

[A∗
0, · · · , A∗

l ; P] = GraphCoarsening(A, l), (4.9)

with coarsened adjacency matrices A∗
j of size N∗j

C × N∗j
C , with N∗j

C = N∗
C/2 j, where

j = 0, · · · , l indicates the coarsening level up until l ≤ ln(N∗
C)/ln(2) and a permutation

matrix P likewise of dimension N∗
C × N∗

C . Note, that the Graclus algorithm extends

any given input graph with NC nodes by adding ∆ feature-less fake nodes, such that

N∗
C = NC + ∆ and further permuting the original node arrangement, such that the graph

can be converted into a balanced binary tree [40]. Thus, the original feature matrix must

be converted by means of applying a permutation matrix P such that X∗ = PX. Based

upon the permuted feature matrix, which is ordered according to the balanced binary

tree, pooling operations are then simply conducted branch-wise in analogy to 1d signals

with (cf. Fig. 4.8)

H∗(n)
i,j = max{H∗(n−1)

2 i−1:2i,j}. (4.10)

Note that, even though recent work [97] has been questioning the utility of pooling oper-

ations in graph neural networks, we insist on including them nevertheless into our work

to keep the analogy to traditional architectures. This is a reasonable decision, as there

66

Pool1Conv1 Pool2Conv2 Flatten Dense

Figure 4.9: The graph-based spatial feature extraction we propose as elaborated in
Sec. 4.5.3. Based upon two graph convolutions [80] with 25 and 16 filters, as well as
graph pooling operations [40], structured data formats descriptive of a solution distribu-
tion are processed such that low-dimensional features descriptive of search behavior are
extracted.

does not seem to be a clear consensus established upon this topic yet.

To conclude this section, we remark that we provide additional explanations on the in-

terpretation of graph convolution and pooling operations in Appendix C.

4.6 Experimental Studies

The neural network architectures we use for feature extraction within our study are elab-

orated in Tbl. 4.1. We implement them based upon available standard frameworks [31]

and use custom implementations [80], as well as available ones [40] for the new layer-wise

operations. We choose our GNN architecture in analogy to the tried-and-tested architec-

ture for the CNN from Liu et al. (2017) [91], however take for both the liberty of using

as classification layers a MLP architecture with bottleneck. We train each network using

the Adam optimizer [79] for 1000 epochs in a classification task, where we use for our

exploratory studies a training to cross-validation data set split of 80-20 and a batch size

of 250, with the categorical cross-entropy loss

L =
|D|∑
i=1

C∑
j=1
−yij log(ŷij) (4.11)

67

where ŷij is being the network output for the i-th sample and j-th class, as well as yij be-

ing the true label in the form of a one-hot encoding for each sample i. For the prior search

space partitioning step, we generate data uniformly random within a volume of [−30, 30]d

with in total 10,000 training data points. Note that many of the standard single-objective

optimization problems are defined on variable search space sizes. To accommodate for

them within our experiments, we rescale any extracted solution populations to the size

of the aforementioned training volume. This is a reasonable decision, as changing the

search space sizes of the problems themselves would otherwise distort the original prop-

erties of the benchmark functions. Subsequently, using the obtained partition, we apply

the data post-processing pipeline as elaborated in Sec. 4.4. For the clustering methods

which partition the search space, we use optimized implementations [115, 129] and train

each for 1000 epochs when there is no self-termination criterion implemented by default.

The number of clusters is set to NC = 100 for each, which allows us to cover the search

spaces in the follow-up at sufficient resolution while not making our experiments overly

computationally expensive.

As evolutionary algorithm from which we study the learning of characteristics of the

metadata generated thereof we use within our following study a (µ+λ) Evolution Strat-

egy [7, 51]. We set the population and offspring size again to µ = 10 and λ = 10 to

keep the analogy to our experiments in Sec. 3.4.2, as well as use strategy parameters

of σi ∈ [0.1, 4] and a mutation and crossover probability of 0.5. We randomly initialize

the population on the entire search space with the given benchmark functions being of

dimensionality d = 3, and further generate for each 1000 pairs of parent and offspring

generation.

4.6.1 Comparison of Network Performances

In the following, we compare the performances of our approaches in terms of training

stability, achieved accuracy and cluster separation. We train the networks upon data

68

Data Type Vector Tensor Graph

Input Size Nc ·Nf Nx ×Ny ×Nf Nc ×Nf

Layer0 Dense(10)∗ Conv(5×5×25) GraphConv(25)
Layer1 ReLU ReLU ReLU
Layer2 Dense(50) MaxPooling(2×2) MaxPooling(4)
Layer3 ReLU Conv(3×3×16) GraphConv(16)
Layer4 - ReLU ReLU
Layer5 - MaxPooling(2×2) MaxPooling(4)
Layer6 - Dense(10)∗ Dense(10)∗

Layer7 - ReLU ReLU
Layer8 - Dense(50) Dense(50)
Layer9 - ReLU ReLU

Output SoftMax(#C) SoftMax(#C) SoftMax(#C)

Table 4.1: The neural network architectures used for the different data types within our
study, with the number of classes #C and ∗ indicating the visualized layer.

generated on a set of symmetric function based upon Eq. (B.5) - (B.8). For the com-

bined solution and fitness channel (S+F), we find that all networks exhibit stable training

performance (cf. Fig. 4.10) and are capable of achieving high accuracies in the range of

∼80−90%. Achieved values for the networks are listed in Tbl. 4.2. Note that within

prior available work [113, 91], different search spaces are used and results are only dis-

cussed on a qualitative basis. Thus, these do not enable a direct quantitative comparison.

Overall, we find that the GNNs, trained upon graph-representations of the search space,

obtained through the GNG and Delaunay triangulations, exhibit highest training perfor-

mance on the validation sets with accuracies of about ≈ 96%. Followed up by the CNN

and MLP with about ≈ 84%. Looking at the obtained feature spaces in Fig. 4.11, all

compared methods exhibit clearly a high ability to separate data inputs generated on the

different optimization problems. However, one may argue, that the GNNs have a slightly

better capability in retrieving more pronounced and better separated clusters. Note, that

by comparing the unstructured as well as Delaunay-based approach, we can cross-check

that the higher performance of the GNNs can be particularly attributed to considering

additional knowledge about the topological structure of neighboring partition cells. As

69

0 200 400 600 800 1000

0.5

1.0
Experimental Setting: MLP

Training accuracy
Validation accuracy

0 200 400 600 800 1000

0.5

1.0
Experimental Setting: CNN

0 200 400 600 800 1000

0.5

1.0
Experimental Setting: GNN (1)

0 200 400 600 800 1000

0.5

1.0
Experimental Setting: GNN (2)

Figure 4.10: Accuracy over the training epochs for the MLP and CNN, as well as the
GNN architecture trained on structured data generated using the GNG (1) and Delaunay
triangulation (2) as input (from top to bottom). The plots allow us to verify that all
architectures exhibit stable and asymptotically convergent training performance.

Architecture Accuracy (S) Accuracy (F) Accuracy (S+F)
MLP 30.06± 0.75 83.89± 1.45 84.19± 0.88
CNN 28.00± 2.77 67.19± 2.90 84.20± 1.54
GNN(1) 26.95± 1.48 94.01± 0.49 96.90± 0.47
GNN(2) 27.06± 1.24 93.90± 0.92 96.46± 0.90

Table 4.2: Accuracy values averaged over 10 training runs from the neural network ar-
chitectures used for the different data types within our study. Again, for the GNNs (1)
indicates input data generated from the GNG, while (2) indicates the Delaunay triangu-
lation.

otherwise, the partition cells are in both approaches the same.

A particularly interesting question is to which regard the solution channel (S) and fit-

ness channel (F) contribute to the training of the networks. We therefore trained all

networks separately on each channel and collected likewise accuracy values averaged over

10 training runs on each. The resulting values are listed again in Tbl. 4.2. We find, that

training the networks solely based upon changes in the solution channel (S) makes them

70

2 0 2 4 6 8

6

4

2

0

2 Ackley
Griewank
Rastrigin
Sphere

2 0 2 4 6 8
6

4

2

0

2

4
Ackley
Griewank
Rastrigin
Sphere

4 2 0 2 4 6 8 10
4

2

0

2

4
Ackley
Griewank
Rastrigin
Sphere

4 2 0 2 4 6 8 10 12

4

2

0

2

4 Ackley
Griewank
Rastrigin
Sphere

Figure 4.11: LDA-plots of the feature spaces obtained on the symmetric function set from
Eq. (B.5) - (B.8) for the MLP, the CNN and GNN (GNG & Delaunay) (from left to right
and top to bottom).

10 8 6 4 2 0 2 4
4

3

2

1

0

1

2

3 Ackley
Griewank
Rastrigin
Sphere

6 4 2 0 2 4 6

4

2

0

2

Bohachevsky
Elliptic
Rosenbrock
Schwefel

2 1 0 1 2 3

4

3

2

1

0

1

2

3 Ackley
Griewank
Rastrigin
Sphere

3 2 1 0 1 2 3 4 5
4

3

2

1

0

1

2

3

4
Bohachevsky
Elliptic
Rosenbrock
Schwefel

Figure 4.12: Upper row: LDA-plots of the feature spaces for the GNG-based trained GNN
using rescaled search space sizes and normalizes fitness values on the symmetric (left) and
asymmetric function set (right). Lower row: Obtained feature spaces for training on the
solution channel (S).

incapable of separating the inputs from the symmetric function set. With accuracies be-

ing only in the range of ∼26−30%. The bulk of performance gain in the network training

can therefore be attributed to the fitness channel (F). With the difference in accuracy

for the MLP and the GNNs to the combined channel (S+F) being only about ≈ 1−3%.

But arguably, the inclusion of the solution channel still contributes to performance im-

provements. This is most striking for the CNN, where the accuracy gain is about ≈17%.

71

While this seems surprising at first glance, considering the fact, that by means of ’folding’

the SOM into the higher dimensional space, neighborhood relationships are created which

don’t reflect the actual structure of the search space, including the solution channel (S)

therefore can be considered as helping the network in learning more faithful neighborhood

relationships between different search space regions.

4.6.2 Rescaling of Benchmark Functions, Fitness Values and the
Set of Asymmetric Functions

At last, we test the behavior of our approach in regards to rescaling the benchmark func-

tions, fitness values and its behavior on asymmetric functions. For the symmetric function

set, we find that rescaling the benchmarks to a uniform search space size of [−5.12, 5.12]d

while keeping the algorithm configuration fixed has only a negligible effect. We thus

neglect a further discussion of it, however keep it within the further parts and suggest

the practitioner to generally consider such an approach, as hyperparameters are mostly

tuned to characteristic length scales of a given set of optimization problems. Normalizing

the fitness values such that for every benchmark function 0 ≤ f(x) ≤ 1, we find that on

the symmetric function set the clusters within the feature space order themselves accord-

ing to the different funnel structures of their benchmark functions (cf. upper left panel

in Fig. 4.12). Particularly, clusters are separated into exponential ∼ 1 − exp(−|x|) and

quadratic ∼ x2 funnel structure. But notably, we find that an intra-cluster separation is

still evident. Particularly, between functions with low (Sphere & Griewank) and strong

periodic modulation (Rastrigin) superimposed on them in relation to their search space

sizes.

At last, we consider a set of asymmetric function set as given by Eq. (B.1) - (B.4). Training

our graph neural network upon data generated from these benchmarks, we find initially,

that the training does not properly converge. Therefore, we apply the previously elabo-

rated fitness normalization step. Subsequently, we find that the network training properly

72

converges and we likewise find within the feature space, that the clusters separate accord-

ing to the different funnel structures (cf. upper right panel in Fig. 4.12). However, in

comparison to the symmetric function set (cf. lower left panel in Fig. 4.12), we find that

training the network solely on the solution channel likewise does not retrieve a feature

space in which the optimization problems can be separated (lower right panel).

4.7 Chapter Summary

Contributions

To conclude this chapter, we reiterate again on the contributions we made and motivations

we started out originally with.

• We introduced a pipeline to convert unstructured raw data descriptive

of solution populations into a structured data format that can be readily

used for processing by learning algorithms.

• We proposed a structured graph-based data format which quantizes high-

dimensional continuous search spaces and more faithfully reflects the

neighborhood relationships thereof.

• We proposed a specialized neural network architecture as well as a fitness

channel that can be used in conjunction with the structured graph-based

data format for feature extraction.

Summary

First of all, we elaborated on the no free-lunch theorems in optimization. Essentially, from

these it is clear that an algorithm can only realize performance improvements reliably in

comparison to a baseline configuration, if it incorporates the structure of the problem

domain of interest. On the flip-side, this also means that it is not possible to build one

73

monolithic and high-performing universal problem-solving optimization algorithm. As

any realized performance gains on a specific problem domain come at the expense of per-

formance degradation on the complementary one. We connected these implications of the

no-free-lunch theorems, with the aforementioned meta-learning model. Which required

the formation of domain-specific inductive biases that reflect problem structure, as well

as metaknowledge representations to mitigate between these such that to realize cross-

problem learning.

Looking into the literature in regards to possible ways to realize the latter component,

we specifically found an answer within works on algorithm behavior studies and feature-

free algorithm selection. Noteworthy, within comparative studies algorithm selection and

configuration problems have been identified to constitute meta-learning problems within

optimization [136]. However, we find that existing methodology for continuous optimiza-

tion is specifically lacking. Particularly, as most work on algorithm behavior studies is

rather interested in characterizing optimization algorithms themselves, while feature-free

algorithm selection is mostly only concerned with problems in combinatorial optimiza-

tion. We therefore decided to advance the methodology to this regard. Specifically, by

proposing a pipeline to convert unstructured solution populations into structured data

formats, a graph-based data format to represent solution populations in search spaces of

continuous optimization problems, methodology to generate these graph structures us-

ing either a growing neural gas or Delaunay triangulation, as well as novel graph neural

networks architectures for feature extraction and the explicit inclusion of an input chan-

nel to take fitness values into consideration for identifying different optimization problems.

We found that the graph-based format in conjunction with the new input channel is

capable of achieving higher performance than more conventional approaches. And we

demonstrated, that these are indeed capable of learning features that reflect global struc-

tural properties of problem-dependent search behavior on different benchmark problems.

74

Interestingly, the effect of our considered graph convolution operation [80] can be inter-

preted as calculating an interpolation of fitness values and solution distribution by means

of propagating fitness values and calculating virtual population members within the graph

structure. For the time-being, we will only make a brief note of this fact and refer for a

more elaborate discussion to Chapter 7 of this thesis instead.

To follow-up the work of this chapter, we could consider different directions. First of

all, the most obvious one would be to consider more benchmark functions. While in

principle, this would be desired to fully stress test our method, we have also already seen

some limits to this regard. Specifically, we saw that the set of asymmetric benchmark

functions only shows good training performance when the inputs in the fitness channel

are rescaled to the range of 0 to 1. However, in practical scenarios the maximum fitness

value of each optimization problem may not be directly deducible. Alternatively, we may

consider only to normalize fitness values generation-wise. However, we have found that

the feature spaces retrieved by this procedure are only barely more informative than when

we completely drop the fitness channel. We could further consider different input trans-

formations or architectures which include additional processing steps and operations for

the spatial feature extractor. But for the time being, the most natural option which lies

at hand would be to instead work with what is already given. Thus, we will therefore

look into the following aspects: Improving the learning of spatial anisotropies already

contained in the raw data, as well as using more inputs by going forward in time through

processing the temporal component of metadata generated by the optimization algorithm.

75

CHAPTER 5

SPATIO-TEMPORAL ACTIVITY RECOGNITION
OF SEARCH BEHAVIOR

5.1 Spatio-Temporal Data Processing

We previously elaborated in Chapter 4 on spatial feature extraction from metadata gen-

erated by optimization algorithms. Particularly, we were looking into this by considering

finite differences of structured data formats generated from start and successor population

P0 and P1 of the optimization algorithm on different optimization problems. While we

have seen, that it can be an effective approach to enable predictive algorithms to learn

features that are capable of distinguishing between different optimization problems, we

have also seen that it struggles when the inputs in the fitness channel are not sufficiently

informative.

To improve the performance in such scenarios, we consider in this chapter the usage

of additional inputs by going forward into time. Particularly, we propose network ar-

chitecture extensions to enable spatio-temporal data processing. This kind of modeling

approach for instance has popularity for problems e.g. concerning urban mobility and ac-

tivity recognition in multimedia data-streams, however can be considered to be natural to

be extended to problems concerning population-based optimization, as fitness landscape

measures [76] and convergence theorems emphasize spatio-temporal notions [120].

76

We therefore will consider the following approach: We keep our aforementioned net-

work proposed in Chapter 4 for spatial feature extraction at each time step, but explicitly

extend it with methodology to model the temporal component. Specifically, we will look

in the following into methods proposed for time series classification, as well as activity

recognition in multimedia data-streams. Additionally we also look into whether the spatial

feature extractor can be improved, by extending it to explicitly learn spatial anisotropies.

5.2 Learning Spatial Anisotropies

5.2.1 Graph Attention Operations

In the following, we will use as mentioned for spatial feature extraction the graph-based

approach as introduced in Chapter 4. Besides graph-based data formats in the form of

tuples of adjacency matrices and feature matrices (A, X) with A ∈ RNc×Nc and X ∈

RNc×Nf , we used a specialized graph neural network architecture [23, 159], particularly

based upon graph convolutions (GCNs) [80] as defined by

H(n) = σ(n)(Â H(n−1)W(n)), (5.1)

where W(n) ∈ RNf ×Nf ′ is a weight matrix, H(0) = X, as well as Â being an effective

adjacency matrix descriptive of the structure of the graph. While in principle, different

methods to perform convolution operations on graphs exist (e.g. [105, 159]), the approach

based upon the operation by Kipf & Welling [80] is particularly elegant, because in prin-

ciple it is based upon a low-order heat diffusion model. Thus, the first two multiplicative

terms in Eq. (5.1) can be interpreted as computing ’heat’ propagation within the graph

structure. Note, that due to this physical interpretation, these convolutions do not take

in account the importance which difference node features might have.

77

h8

h1

h4

h1 h3

h4

h2

h1

h5

h8

h6

h7 h1 h3

h2

h5

h6

h7

Figure 5.1: Illustration of the difference between graph convolution [80] (left) and graph
attention operations [147] (right). While the graph convolution only propagates node
features based upon the number of neighborhood connections, graph attention operations
explicitly allow nodes with more important features to be valued higher when features
are propagated in a neighborhood.

To address this issue, Veličković et al. (2017) [147] introduced graph attention opera-

tions (cf. Fig. 5.1) in which the elements of the effective adjacency matrix are explicitly

learned through a regression function Âij := f(hi, hj) during training. The regression

function can parametrized as given by

f(hi, hj) =
exp

(
LeakyReLU

(
[hT

i W||hT
j W]a

))
exp

(∑
k∈Ni

LeakyReLU([hT
i W||hT

k W]a)
) , (5.2)

where a ∈ R2f ′ is a vector with trainable weights, || a concatenation operation, Ni the

neighborhood of a reference node i inclusive of itself, hi, hj, hk are row vectors of the fea-

ture matrix X and the LeakyReLU activation function is being given by σ(x)=max(αx, x)

with α = 0.2. To stabilize the training of a graph attention network, Veličković et al. (2017)

[147] additionally suggest to use instead an average of K individual attention operations,

so called ’attention heads’, such that Eq. (5.1) is modified to

H(n) = σ(n)
(

1
K

K∑
k=1

Âk H(n−1)W(n)
k

)
. (5.3)

In principle, given the aforementioned equations for the graph attention operation, we

have all ingredients together to apply it in our graph neural network architecture from

78

Chapter 4 in place of the original graph convolution operation by Kipf & Welling [80].

5.3 Temporal Data Processing

Because we are interested in the following to process metadata in a time-dependent man-

ner, we want to use ideally spatial feature extraction methods in conjunction with method-

ology for temporal data processing. In principle, two lines of research can be identified

which are relevant to this regard. The first one being approaches which have been specifi-

cally proposed for time series classification tasks, while the second one being ANN-RNNs

stemming from activity recognition tasks in multimedia data streams.

5.3.1 CNN-based Time Series Classification

While a great variety of different approaches have been proposed within the literature

[161], we focus in the following particularly on discriminative deep network methods

that can be trained in an end-to-end manner [45]. Particularly popular to this regard

are architectures which are centered upon simple 1d convolution operations. Given a

multi-variate time series signal X ∈ RT ×d of d dimensions of length T , with H(0) = X

convolution operations are then iteratively applied such that

Hij = σ(Σl,pH(i−1)×s+l,pWl,p) (5.4)

with non-linearity σ(·), s being a stride and the filter matrix being given by W ∈ RT ×d.

Note that, within this framework the multi-variate nature of the time series is accounted

for by means of treating these as multi-channeled signals, while the time dimension is

kept being treated as 1-dimensional. For our purposes, two particular CNN-based archi-

tectures are of most interest. Where the first one has been dubbed within the literature

as Fully Connected Network (FCN) [155] and the second one simply as Encoder (ENC)

[128]. Both architectures are high-performing for either multivariate or short-time series,

79

while at the same time lightweight in terms of trainable parameters [45].

We briefly elaborate in the following upon the structures of the FCN and ENC architec-

tures, however will refer the interested reader for in-depth details to available literature

instead [155, 128]. Both architectures are based upon three convolution blocks, which

incorporate convolution and normalization operations as well as an activation function.

The ENC architecture additionally applies pooling operations between the first, second

and third block. The FCN architecture ends with a global average pooling layer applied

to each filter of the last convolution block, while the ENC architecture ends with an at-

tention layer, followed up by a dense layer with a sigmoid activation function and at last

a normalization step. The FCN architecture has demonstrated within the comparative

study conducted by Fawaz et al. (2019) [45] high performance on multivariate times-series,

while the latter ENC architectures strives on short-time series.

5.3.2 ANN-RNN-based Spatio-Temporal Activity Recognition

Combinations of ANNs for feature extraction and RNNs for sequential processing have

established themselves for applications of activity recognition in multimedia data-streams

[123, 43], vehicle behavior prediction [160] and pre-miRNA classification [142]. The most

common instantiation is in the form of a CNN-LSTM which is directly trained in an

end-to-end manner. Within our work, we specifically propose GNN-RNN architectures

for processing metadata generated by optimization algorithms. Particularly, using the

aforementioned GCN and GAT operations from Sec. 5.2 for spatial feature extraction.

The particular RNN we use is either a simple recurrent neural network (sRNN), a gated

recurrent unit (GRU) or long short-term memory (LSTM). Considering an input sequence

x1, · · · , xT , for T time-steps, a simple recurrence equation can be formulated through [55,

14]
ht = tanh(b + Wht−1 + Uxt),

and ŷt = σ(c + Vht),
(5.5)

80

where ht is the hidden output and ŷ the predicted label for input element xt, as well

as b, c, W, V being bias vectors and weight matrices and σ(·) an activation function.

This architecture transforming the entire input sequence into an output sequence of equal

length T is known as being many-to-many. Neglecting the second equation and only

calculating the last hidden output hT , we retrieve an architecture which is known as

many-to-one. Within our implementation [31], we will neglect the second equation and

only use ht as output. In comparison to this simple RNN (sRNN), the state-of-the-art

can be considered to be posed by the long short-term memory (LSTM) network. The

LSTM can be described in total by six update equations

ft = σ(Wf · [ht−1, xt] + bf),

it = σ(Wi · [ht−1, xt] + bi),

C̃t = tanh(WC · [ht−1, xt] + bC]),

Ct = ft ∗Ct−1 + it ∗ C̃t,

ot = σ(Wo · [ht−1, xt] + bo)

(5.6)

and at last the computation of the hidden state

ht = ot ∗ tanh(Ct), (5.7)

which can be used analogous to the second equation in (5.5) to calculate the step-wise

output. Note, that ∗ denotes a component-wise product and [·, ·] is a concatenation

operation. A key difference of the LSTM to the sRNN is the explicit introduction of

gating mechanisms in the first three lines of Eq. (5.6) through memory cells Ct. These

not only dynamically control the influence of past hidden states on future ones, but

are also an essential milestone in enabling and mitigating problems with the training of

RNNs on data sets with long-term dependencies. However, due to the large amount of

parameters introduced, LSTMs cannot always be considered to be a reasonable choice. To

keep the novelties introduced by LSTMs, but at the same time prune their complexities,

81

the so called Gated Recurrent Unit (GRU) has been alternatively introduced. Defined by

in total four equations
zt = σ(Wz · [ht−1, xt]),

rt = σ(Wr · [ht−1, xt]),

h̃t = tanh(Wh · [rt ∗ ht−1, xt]),

ht = (1− zt) ∗ ht−1 + zt + h̃t,

(5.8)

the gated recurrent unit shares obvious similarities to Eq. (5.6), however skips intermediate

steps introduced by the calculation of the memory cell Ct.

5.4 Experimental Studies

5.4.1 Generation of Synthetic Metadata

As no agreed upon reference data sets exist of yet, we again have to reside in the fol-

lowing to create one explicitly by ourselves. For this reason, we use in the following the

symmetric optimization function set from Chapter 4 based upon Eq. (B.5) - (B.8), which

consists out of four functions with either quadratic ∼ x2 or exponential ∼ 1−exp(−|x|)

global symmetric funnel structure as well as different periodicities superimposed on them.

As evolutionary algorithm (EA) we use again the (µ+λ) Evolution Strategy [135]. How-

ever, we initialize the start population only in the corner of the search space defined by

[sb/2, sb]d, where sb is the upper boundary and d = 3. As otherwise, the crossover opera-

tor will lead to rapid convergence due to the centered position of the global optimum.

We configure the EA with µ=λ=10, i.e. a population size of 10, strategy parameter

σ ∈ [0.1, 2.0] for a reference size of sb = 5.12 and crossover and mutation probability

of 0.5. To convert metadata in a structured data format, we explicitly use the graph-

structure evolved using the growing neural gas from Chapter 4 to map out the search

space. Using the nodes of this graph structure, a solution population Pg can then be

82

G
N

N

([X1,…,XT], A)

Classifier

(X1, A) → (X2, A) → … → (XT, A)

...RNN RNN RNN

Classifier

…….

G
N

N

G
N

N

G
N

N

(X1, A) → (X2, A) → … → (XT, A)

……..

…….

Classifier

G
N

N

G
N

N

G
N

N

CNN

Figure 5.2: Simplified schematics of the end-to-end architectures used within our work.
From left to right: Graph neural network under simple concatenation of input graphs
(GNN), graph neural network as spatial feature extractor with CNN-based time series
classification architecture on top (GNN-FCN & GNN-ENC) and at last GNN-based spatial
feature extraction with recurrent network for temporal processing on top (GNN-RNN).

converted into a structured data format zg ∈ RNc×Nf by finding the closest graph node to

each solution in Pg, and summing up solutions associated with them. Note, that we do not

consider a fitness channel as introduced in Chapter 4, but only concentrate on the channel

of solution counts. Similar to Turkey & Poli (2012) [145], we distinguish between growth

and non-growth regions. Explicitly, by calculating for successive generations g → g + 1

the vector ∆zg (cf. Chapter 4) and further to enrich the training data set also z∗
g. Where

the first one encodes changes in the solution distribution under application of the EA,

and the second one invariant parts. We explicitly use within our experiments time-series

generated from running the EA for 20 iterations, and generate 1000 samples for each

benchmark. To accommodate for the varying search space size, we rescale σ by a factor

sb/5.12 accordingly like suggested in Chapter 4.

5.4.2 Network Configuration and Training

Because we will evaluate and compare in the following in total 12 different neural net-

works architectures, we have to ensure that they are configured and trained in a way such

that to enable a fair comparison. Though, admittingly our emphasis is not on finding out

83

Table 5.1: Hyperparameters and testing ranges for the different architectures. Note that
for simplicity RNN* denotes sRNN, GRU and LSTM, as well as Args* hidden nodes and
attention heads.

Epochs Batches Loss Function Optimizer Learning Rate Args∗

Range - 2n - - q × 10z 2n n
GCN 300 256 Cross-Entropy Adam 0.001 - -
GAT 300 256 Cross-Entropy Adam 0.001 - 3
GCN-FCN 300 16 Cross-Entropy Adam 0.001 - -
GCN-ENC 300 12 Cross-Entropy Adam 0.00001 - -
GCN-RNN* 300 256 Cross-Entropy Adam 0.001 8 -
GAT-FCN 300 16 Cross-Entropy Adam 0.001 - 3
GAT-ENC 300 12 Cross-Entropy Adam 0.00001 - 3
GAT-RNN* 300 256 Cross-Entropy Adam 0.001 8 3

which architecture is in theory the best, but instead which one can be considered to be

reasonably efficient and performant under a fixed budget.

Therefore, at best we only minimally modify the previously elaborated architectures.

Within all experiments, we use a GNN either based upon GCN or GAT operations for

spatial feature extraction. The architecture of the spatial feature extractor is based upon

the originally proposed one by Liu et al. (2017) [91], however with the adjustments for

processing graph data as suggested by us in Chapter 4 (cf. Fig. 4.9) using graph convolu-

tion and coarsening layers [42, 40], as well as 10d output features. For the GAT-based

feature extraction, we simply replace the convolution layers. Note, that GAT architec-

tures explicitly introduce the number of attention heads K as a hyperparameter. For

temporal data processing, we either use a CNN or RNN-based component as illustrated

in Fig. 5.2. For training the architectures, we set an upper fixed budget of 300 epochs

and use for all architectures the Adam optimizer [79]. We vary the batch size according

to 2n between 8 to 256. In principle, the usage of large batch sizes of 256 can be justi-

fied for most architectures. However, the FCN and ENC architectures exhibit unstable

training behavior when doing so. We therefore can verify as previously suggested [45],

that smaller batches of size 16 and 12 exhibit significantly better training performance for

84

each. For the learning rate, we likewise can confirm a previous suggestion made for the

ENC architecture [45]. For the number of attention heads in the GAT architectures, we

consider K in the interval [3, 8]. We find that K = 3 proves to be a good choice. As the

performance gain with more attention heads is at best only minimal and mostly accom-

panied with significant computational overhead. Noteworthy, the GAT architectures may

also benefit from smaller learning rates. However, in the investigated range of q× 10z for

q ∈ {0.5, 1.0} and z = −5, · · · ,−3, this gain was at best only minimal. At last, we tune

the hyperparameter for the number of hidden nodes in the RNN architectures in the range

of 4 to 128. We find that the usage of 8 hidden neurons exhibits the best performance.

Note, that this seems to somewhat reflect the product of number of classes #C and node

features F . Effectively, it can be interpreted as calculating two scores for each benchmark

function at successive steps. All final hyperparameters are listed in Tbl. 5.1.

5.4.3 Statistical Performance Comparison

For performance comparison we reside in the following to the validation accuracy after

300 epochs under consideration of a 80-20 training to test data split and the estimated

wall clock time in reference to a NVIDIA Tesla V100-SXM2-16GB provided as a cloud

instance [116]. The latter wall clock time is a necessity, as even though if a particular

configuration may exhibit high training performance, it can be potentially rendered in-

feasible for practical applications by the produced computational overhead.

Because retrieved validation accuracies are subject to stochastic variation, we therefore

reside in the following towards taking the mean from in total 30 training runs. As how-

ever, most of the the performance values are distributed non-Gaussian, we further need to

conduct additional statistical testing. Particularly, we reside in the following to what one

may dub in analogy to Fawaz et al. (2019) [45] as a Kruskal-Wallis-Holm test, meaning

that we first use the Kruskal-Wallis test to reject the null hypothesis, and subsequently

perform tuplewise unpaired Wilcoxon rank-sum tests, for which we additionally use the

Holm-Bonferroni correction.

85

Figure 5.3: Critical difference diagrams for the comparison of all GCN and GAT architec-
tures from Tbl. 5.2 and 5.3 on the 20 time-steps long data set (top), as well as the subset
of GCN (center) and GAT architectures (bottom).

Figure 5.4: Critical difference diagrams for the comparison of all GCN and GAT architec-
tures from Tbl. 5.2 and 5.3 on the 10 time-steps long data set (top), as well as the subset
of GCN (center) and GAT architectures (bottom).

86

To visualize the performance of the different architectures we use critical difference di-

agrams. Meaning that, architectures are ranked from 1 to M , where M is the total

number of compared architectures, and statistically similar architectures are indicated by

a connected line. To calculate the ranking r(D) of a performance data set D for each

architecture, we derived

r(D) = M − M − 1
|D|(N − |D|)|

|D|∑
i=1

Wi, (5.9)

in which we perform the sum over the total number of observations of a performance data

set |D| with N being the total number of measurements from all performance data sets,

further Wi being the number of observations a particular observation i in D dominates in

the remaining M − 1 data sets.

5.4.4 Discussion of Results

Recorded performance values and critical difference diagrams are given in Tbl. 5.2 & 5.3

and Fig. 5.4. First of all, the most obvious observation is that the GAT architectures cre-

ate a large computational overhead with an increase in training time of up to ≈ 2800 mins

in reference to the GPU instance. Note however, that due to practical reasons we use for

computations of the GAT architectures TPU instances provided by the cloud computing

service instead. Thus reducing the computational overhead by at least 50-70%. Compar-

ing the architectures with GCN and GAT as domain-level feature extractors altogether,

we find that the performance increase in regards to mean validation accuracies is at best

only minimal. Ranging for the GAT-FCN and GAT-LSTM from 1.83− 0.14% on the 20

time-step long series, where for the latter these are not statistical significant, and on the

10 time-steps long series from 1.48% for the GAT-FCN, 0.05% for the GAT-sRNN and

0.14% for the GAT-LSTM, where however none is statistical significant.

87

Table 5.2: Comparison of all tested architectures in terms of rank (R) of the performance
data sets, mean validation accuracy and estimated wall clock time (WCT) in reference to
a cloud GPU instance calculated from in total 30 trials each.

Architecture WCT (20) Acc (20) Acc (10) RΣ(20) RΣ(10)

GCN ≈ 0.78 min 68.84% 62.53% 4.84 8.06
GAT ≈ 130.00 min 63.56% 62.51% 10.01 7.82
GCN-FCN ≈ 20.00 min 65.67% 62.22% 6.83 8.45
GCN-ENC ≈ 21.36 min 63.95% 64.05% 9.81 4.64
GCN-sRNN ≈ 8.75 min 65.82% 62.86% 6.85 7.19
GCN-GRU ≈ 6.25 min 68.42% 64.33% 4.77 4.09
GCN-LSTM ≈ 6.25 min 67.96% 64.03% 3.44 4.65
GAT-FCN ≈ 2600 min 67.50% 63.70% 4.03 5.43
GAT-ENC ≈ 2400 min 62.13% 60.65% 11.38 10.59
GAT-sRNN ≈ 2775 min 65.38% 62.91% 7.48 7.09
GAT-GRU ≈ 2750 min 67.00% 63.61% 4.82 5.45
GAT-LSTM ≈ 2460 min 67.68% 64.17% 3.74 4.54

Table 5.3: Ranks of the subsets of either GCN or GAT architectures for the 20 step or 10
step long time-series.

Time Steps GCN GAT FCN ENC sRNN GRU LSTM

GCN 10 4.97 4.84 5.20 2.95 4.48 2.62 2.95
20 2.86 6.10 4.04 5.97 4.08 2.88 2.08

GAT 10 4.60 4.47 3.10 6.18 4.03 3.06 2.56
20 3.03 5.85 2.56 6.66 4.47 3.02 2.40

Overall, considering the large computational overhead and the minimal performance im-

provement, the usage of GAT-based architectures cannot to be justified. Thus, due to to

their high practicality, we therefore take in the following our GCN architectures under

closer scrutiny. We find that the GCN-GRU and GCN-LSTM exhibit highest performance

in the 10 and 20 time-steps long data sets, followed up by either the GCN architecture for

the long time-series or ENC architecture for the short-time series. Interestingly, the ENC

architecture performs significantly worse on the long time-series data set, while the FCN

architecture performs slightly better. This is somewhat surprising, as we are dealing in

both scenarios with comparably short time-series. Though, somewhat reflecting results

from [45]. An interesting observation is also, that the GCN architecture under input con-

catenation significantly strives on longer time-series, while the input concatenation with

88

4 2 0 2 4

4

2

0

2

4

Ackley
Griewank
Rastrigin
Sphere

5 10 15
0

5

10

15

20

5 10 15

5.0

2.5

0.0

2.5

5.0

7.5

5 10 15

5

0

5

10

15

5 10 15

0

5

10

15

Figure 5.5: Left panel: Visualization of learned features from the concatenated GCN
architecture for the 20 time-steps long data set. Notably, the benchmark functions are
separated according to whether they have a strongly pronounced quadratic funnel struc-
ture or not. Right panel: Median CAM values learned for the different benchmark func-
tions over 20 time-steps (from top left to bottom right: Ackley, Griewank, Rastrigin &
Sphere). We find that the benchmark functions with quadratic funnel structure share
similar functional dependencies between the 2nd and 8th time-step.

GAT layer performs in comparison in both scenarios suboptimal.

5.4.5 Interpretation of the Learned Metadata Characteristics

A natural interest arising when dealing with learning tasks involving complex data sets

is to interpret what a predictive method has actually learned. We therefore analyze ob-

tained feature spaces and time-dependent characteristics. A representative feature space

obtained using LDA and the GCN architecture under input concatenation is plotted in

the left panel of Fig. 5.5. Notably, the network learned to separate benchmark functions

according to whether they have globally a strong quadratic funnel structure with ∼ x2 or

not. While for instance, the Rastrigin function in Fig. 5.6 has the same funnel structure,

it also features a strong periodicity superimposed on top of it. Thus, significantly distort-

ing the behavior of the EA on a global level. Note, that this is unlike to the Griewank

function, which has a less pronounced periodicity.

89

Figure 5.6: Slope topologies of the different benchmarks with global optimum in the
bottom corner of which we analyze the learned metadata characteristics by the FCN
architecture of the problem-dependent search behavior with the CAM. From top left to
bottom right: Ackley, Griewank, Rastrigin & Sphere.

At last, we use the so called class activation map (CAM) for the GCN-FCN to peek into

what parts of the time-series are making the most important contribution for predicting

a certain class c. The CAM value for a class c is calculated by

CAMc(t) =
∑
m

wc
mAm(t), (5.10)

where Am(t) is the output of the m-th filter of the FCN architecture and wc
m is the weight

connecting the filter output with the output neuron zc of the SoftMax classification layer.

Note, that for this analysis we explicitly removed intermediate hidden layers of the clas-

sification head used in the prior experiments.

For the calculated CAM values in the right panel of Fig. 5.5, we find that for the three

functions with quadratic funnel structure ∼ x2 the CAM assigns a high importance to

the interval between the 2nd and 8th time-step which reflects convergent behavior. This

phase is elongated to the 15th generation for the Rastrigin function, which features sig-

nificant distortions on a global level. While for Griewank, which is globally similar to

Sphere, the local distortions become only important around the 12th step due to the al-

gorithm becoming stuck. Note, that for the Ackley function with a flat and concave funnel

90

structure of ∼ 1−exp(−|x|), the early regions of the time-series have higher importance.

Overall, we find that our calculated median CAM values in the right panel of Fig. 5.5 can

be interpreted as reflecting slope characteristics of the different benchmarks.

5.5 Chapter Summary

Contributions

In conclusion of this chapter, we summarize again our key contributions and findings:

• We introduced the learning of spatial anisotropies of activity within con-

tinuous search spaces with graph attention operations to our previously

proposed graph neural network architecture.

• We compared extensions to our graph-based neural network architecture

for temporal data processing using CNN and RNN-based approaches for

time series classification and activity recognition.

• We used techniques for interpretable machine learning to understand

what time series parts are most important for a learning task and suggest

that we can also draw implications from it about problem-dependent

search behavior of an optimization algorithm.

Summary

First of all, we found that among our proposed architectures GCN-GRUs and LSTMs

demonstrate most consistent performance on variable time series lengths and high effi-

ciency in terms of accuracy and training time. While the GAT architectures which we

proposed can show performance improvements in the case of the GAT-FCN, GAT-sRNN

and GAT-LSTM, these are only statistical significant for the GAT-FCN on the 10 time-

steps long data set, however in no case it is significantly outperforming any other archi-

91

tectures. Thus, the use of the GAT architectures can be largely considered to be infeasible.

We further also demonstrated that the CAM for interpretable learning with time se-

ries data can help us to understand, as well as reflects global properties of the different

problem-dependent behaviors of an optimization algorithm. Specifically, we saw that for

the benchmark problems with quadratic ∼ x2 and exponential ∼ 1 − exp(−|x|) funnel

structure significantly different regions of the time series are emphasized by the CAM,

while variations in the local structure of the former, depending upon their severity either

lead to elongations or additional smaller regions of interest in the plot of the CAM values

over time.

In the following-up chapter we will take a look at a shape optimization problem relating

to simulation-based design optimization. Within this study, we aim to explicitly predict

an operator as inductive bias in terms of configurations for the CMA-ES algorithm. This

scenario has the advantage, that unlike with our previously investigated methodology in

Chapters 3 and 4, it allows the construction of predictive components and biases in a joint

manner. Further, as it effectively emulates a possible application problem, it allows us to

understand some of the pitfalls we could encounter when building and deploying such a

system.

92

CHAPTER 6

PREDICTING OPERATOR CONFIGURATIONS

6.1 Design Optimization

In this chapter we will emulate problems encountered in simulation-based design optimiza-

tion. The goal of simulation-based design optimization can be formulated as being the

improvement of physical properties of real-world objects to satisfy desirable performance

goals and external design constraints [131]. In principle to setup experiments we need a

way to represent objects, a method to manipulate object shapes and generate new de-

signs, an algorithmic routine which can optimize design representations in an automated

manner and at last a way to generate performance and constraint values of the physical

objects which are being optimized.

6.1.1 3D Object Representations in Computer Graphics

While there are different ways to represent physical objects in 3d computer graphics, such

as voxel or boundary representations [19], we reside in the following to polygonal surface

meshes, which model the surfaces of 3d objects by means of a collection of edge-wise in-

terconnected polygons. In our case, based upon a triangulated surface mesh (cf. Fig. 6.1),

where each polygon is a triangle consisting out of vertices described by 3d coordinates

and their connecting edges. This representation is necessary for the following up applica-

93

Figure 6.1: Wireframe representation of a three-dimensional model from the ShapeNet
library [29].

tion of shape deformation techniques, which have the advantageous property that for the

calculation of e.g. aerodynamic properties, they still guarantee that the modified object

representation maintains mesh continuity. As in the following, we will only operate on

vertex renderings of objects, we additionally perform a Poisson-disk sampling [34] using

MeshLab [32], such that we obtain more uniformly covered surface representations.

6.1.2 Shape Deformation Techniques

The Free-Form Deformation (FFD) technique [126] is a particular type of shape defor-

mation technique which has been well-established and popularized within the literature.

While originally motivated by mimicking the process of sculpturing for computer-aided

design systems, mathematically the idea of FFD can be described as embedding an object

which is to be deformed into a parallelepiped lattice as control structure, colloquially just

referred to as the ’control volume’. The control points in the lattice grid are parametrized

by triples (i, j, k) such that

cijk = x0 + i

l
u1 + j

m
u2 + k

n
u3, (6.1)

where x0 is the origin, ui are the basis vectors of the lattice, and l + 1, m + 1 and n + 1

are the number of lattice layers in each respective direction. The lattice imposes a local

coordinate system into the control volume such that every point x ∈ V can be described

by a triplet (α1, α2, α3), where the coefficients αi can be be calculated by means of a

94

Figure 6.2: The Free-Form Deformation technique (FFD) applied to a test model based
upon a control volume spanned by a 3x3x3 lattice. Left: The unaltered sphere and control
volume based upon the initialized 3x3x3 lattice. Right: Sphere deformed by an altered
control volume which was created by displacing one control point upwards.

triple vector product [126]. Pointwise free-form deformations are then expressed in terms

of a trivariate tensor product of the shifted lattice control points c′
ijk with basis functions

N l
i (α) [131] such that

x′ =
l∑

i=0

m∑
j=0

n∑
k=0

c′
ijk N l

i (α1)Nm
j (α2)Nn

k (α3). (6.2)

The basis functions are usually expressed within the free-form deformation in terms of

Bernstein polynomials [126]

N l
i (α) =

l

i

 (1− α)l−iαl. (6.3)

The calculation of shape deformations is now straightforward within this framework. We

first modify the control points c′
ijk=cijk+δcijk, and subsequently use Eq. (6.2) to retrieve

the updated points descriptive of the deformed object such that x′ ∈M′. An example of

a simple free-form deformation is given in Fig. 6.2.

95

6.1.3 The Covariance Matrix Adaption Evolution Strategy

As within design optimization we want to improve the physical properties of objects by

generating new designs from manipulating digital representations of real-world objects,

we ideally want to achieve this in an automated and systematic manner. Thus, avoiding

any further manual input required by the design engineer.

Particularly helpful to this regard are within design optimization evolutionary optimiza-

tion algorithms. This is largely due to their stochastic nature helping them in escaping

local optima. However, they also have the advantage that they demonstrate the capability

to retrieve unconventional and surprising solutions [89].

While we have previously already seen that a large variety of different algorithms have

been proposed within the literature, a particularly popular state-of-the-art algorithm

within design optimization is the Covariance Matrix Adaption Evolution Strategy (CMA-

ES) [62]. It is particular useful for optimization problems which have a pronounced global

convex structure, as its internal mechanism can in principle be interpreted as an attempt

in fitting a normal distribution to the global optimum of a given problem (cf. Fig. 6.3).

A simplified version of the algorithm is outlined in Alg. 2. In the following, we briefly

outline its main functionality but refer for more details to available literature instead [62,

59, 60]. The principle mechanism of the (µw, λ)-CMA-ES is to iteratively sample λ solu-

tions from a multivariate normal distribution centered at a centroid m(g) and parametrized

by a variance or ’step-size’ σ and covariance matrix C. Based upon the λ sampled so-

lutions the µ best solutions are selected and used to recalculate a new weighted mean

m(g+1). Subsequently, the step-size σ and covariance C are updated. Notably, the CMA-

ES also uses so called evolution paths pσ and pc, which accumulate adaptive trends from

successive iterations. This mechanism makes it largely different to related model-based

optimization algorithms such as EDAs [87].

96

6.2 Experimental Studies

In our following experimental studies we investigate the possibility of predicting operator

configurations as inductive biases in a problem-specific manner for the CMA-ES algorithm.

Specifically, we will proceed within our study in three steps: First, we investigate whether

we can derive operator configurations, i.e. pairs of step-size and covariance matrix (σ, C),

which can serve as inductive biases, i.e. good re-initializations on synthetic benchmark

functions. In a second step, we setup two target shape optimization scenarios in which

the cabin size of a car shape is increased by either heightening or widening the model.

Thus, the subsequent task in a third step is to jointly construct predictive component and

bias and subsequently estimate the bias component in a problem-specific manner merely

from procedural data generated during the run-time of the CMA-ES algorithm.

6.2.1 Studies on Synthetic Benchmark Functions

To investigate whether we can derive operator configurations which can serve as the bias

component, we consider in the following a study on synthetic benchmark functions.

To model the bias we explicitly keep statistics about individual algorithm runs and derive

from them improved configurations for the step-size and covariance matrix (σ(g), C(g)).

Note, that we explicitly neglect the evolution paths pσ and pc such that we do not overly

constrain the adaptiveness of the CMA-ES algorithm during run-time.

In principle, different schemes on how to retrieve more optimal configurations (σ,C) as

initializations can be tested to this regard. The first obvious one would be to select the

operator configuration after the maximum amount of iterations g∗ = N has passed. The

second one would be to select the configuration at generation g at which the fitness re-

duction is maximal, i.e. g∗ = arg maxg ∆fmin(g), where ∆fmin(g) = f
(g)
min− f

(g+1)
min and f

(g)
min

is the minimum fitness at generation g. A third option would be to select median values

97

Algorithm 2: (µw, λ)-CMA-ES
Initialize m ∈ Rn, σ ∈ R+
Initialize pσ=0, pc=0, C=1, g=0
repeat

for k = 1, . . . , λ do
xk ∼m(g) + σ · N (0, C)

end
m(g+1) = ∑µ

i=1 wixi:λ,
∑µ

i=1 wi=1, wi > 0
∆ = m(g+1)−m(g)

pσ, σ, pc, C←update(pσ, σ, pc, C, ∆, xi:λ)
g ← g+1

until stopping criterion is met;

over g for σ(g) and C(g) each.

We test each of these different configurations on three different benchmark functions

from Eq. (B.5), (B.7) & (B.8) corresponding to the Sphere, Griewank and Rastrigin func-

tion. Note, that while this set of functions is not exhaustive, its purpose is instead to

have sufficiently different characteristics such that we can gain necessary key insights on

the properties of the different approaches. To get additional insight, we further vary the

given evaluation budget from g = 10 to 50 and the dimensionality from d = 3 to 10. We

initialize for the experiments the CMA-ES at the slope of each benchmark function, i.e.

such that m(0) = (0, · · · , sb, · · · , 0), where sb is the search space boundary of each interval

[−sb, sb] and we set µ = λ = 10, as well as σ(0) = 1 and C(0) = 1 for the initial runs.

Notably, we use a large population size such that we exhaustively sample the search space.

In total, we consider for each benchmark function three different experimental setups

with parameter settings (g, d) ∈ {(10, 3), (50, 3), (50, 10)}. The results of our study are

illustrated in Fig. 6.4. In the first setup, we find that on all benchmark functions, the reini-

tialization methods are capable of generating performance improvements. The effect is

most pronounced for the Griewank and Sphere function, which have a strong pronounced

global quadratic ∼ x2 funnel structure. For Rastrigin’s function, which has a periodicity

superimposed on top of it, the performance gain is still evident, but comparably less sig-

98

Generation 1 Generation 2 Generation 3

Figure 6.3: Illustration of the covariance matrix adaption mechanism of the CMA-ES
algorithm. From an initial sampling derived using an isotropic multivariate normal dis-
tribution, the best found solutions are selected upon which the covariance matrix and
subsequently mean are recalculated, such that the parameters of the multivariate normal
distribution are iteratively adapted to the problem-structure.

nificant. Within our second series of experiments at increased evaluation budget, we find

that particularly the reinitialization based upon choosing the final parameters and me-

dian tend to lead to ill-convergence behavior. For the Sphere function this is particularly

evident, due to the default run converging too well within the given evaluation budget,

thus the majority of the budget is spent on generating parameter configurations which

are suboptimal for reinitialization. For the Rastrigin function, the multimodal structure

becomes more evident at increased evaluation budget and thus parameter configurations

are retrieved which are globally unfit. In the last series of experiments, we increase the

dimensionality of the problems. We find that this largely helps in improving the conver-

gence properties of the different reinitialization methods again. This can be attributed

due to the fact that increased dimensionalities largely negate the effects of increased eval-

uation budget by enlarging the search space.

In conclusion, in all experiments the most consistent behavior was shown by choosing

as initialization the operator configuration which leads to the greatest reduction in fitness

costs. More generally, reinitializing the operators seems to be particularly efficient when

dealing with a scenario of large search spaces. This was especially evident for Griewank’s

function, where we did not observed any pathological behavior of the reinitializations in

99

2 4 6 8 10

40

60

80

Fit
ne

ss
 C

os
t

10 20 30 40 50

20

40

60

80

10 20 30 40 50

20

40

60

80

Default
Maximum
Final
Median

2 4 6 8 10

5

10

15

Fit
ne

ss
 C

os
t

10 20 30 40 50

5
10
15
20
25

10 20 30 40 50

5

10

15

20

25

2 4 6 8 10
Generation

20

25

30

35

Fit
ne

ss
 C

os
t

10 20 30 40 50
Generation

10

20

30

10 20 30 40 50
Generation

40

60

80

100

Figure 6.4: Median fitness cost curves over 100 runs for the Griewank, Sphere and Ras-
trigin function (top to bottom) for experimental settings of evaluation budget g and
dimension d of (10, 3), (50, 3) and (50, 10) (left to right). Continuous red curves: De-
fault runs. Dashed curves: Reinitialization methods. Particularly: Median configuration
(purple), final configuration (green) and maximum fitness decreasing configuration (blue).
Notably, across all tested experimental settings the last reinitialization method demon-
strates the most consistent performance improvements.

all of the experiments. But also for the Sphere and Rastrigin at increased dimension.

We note, that for the former Griewank function, pathological initializations can be also

retrieved when significantly increasing the evaluation budget. But otherwise, we observe

that the aforementioned most fitness cost reducing parameter initialization is still most

effective.

6.2.2 Target Shape Optimization Problems

As previously elaborated, within design optimization physical objects are usually repre-

sented through point clouds by means of meshes. Meaning that essentially, one can quan-

tify the similarity between two point clouds X and Y through distance measures d(X, Y).

100

We consider for this reason in the following the modified Hausdorff distance [164]:

dH(X, Y) = max

∑
x∈X

min
y∈Y

d(x, y),
∑
y∈Y

min
x∈X

d(x, y)

 . (6.4)

In principle, this metric measures the similarity between two shapes, by means of min-

imizing the maximum distance of the sum of the distances d(x, y) of mutually nearest

points x ∈ X and y ∈ Y . As performing design optimization experiments based upon

computational simulation models can be considered to be a highly expensive venture, one

commonly resides for benchmarking to computationally cheap target shape optimization

problems with objective functions which are defined based upon the Hausdorff distance,

such that:

f(x) := f(x; Y) = dH(t(x; X), Y), (6.5)

i.e. we inscribe the source shape X into a control volume defined by a deformation function

t which maps design variables to positions of control points in the lattice. Notably, the

consideration of such a simplified problem is also beneficial as it allows one to constrain

the degrees of freedom in simulation-based optimization through an additional objective

such that design solutions can be retrieved which are overall more meaningful.

6.2.3 Control Lattices for Free-Form Deformation

In the following, we design two target shape optimization problems using the free-form

deformation technique. For this purpose, we first need to setup a control point lattice. We

take a representative car model [29] and setup a control volume around it with a lattice

of 2 × 9 × 2 in width, length and height (cf. Fig. 6.5). Within the design problem we

construct, we enforce the requirement of increasing the cabin volume. Depending on the

particular final target shape, this could either require an increase in the height or width

of the midsection of the control volume.

101

Figure 6.5: Control point setup used within our study. Because we are only interested
modifying the mid-section of the shape, we keep the control points in the front and rear
section fixed (grey) while only the ones in the mid-section are movable (red).

To generate the control lattice, we first calculate the mean c of the point set X rep-

resentative of the car model M. Subsequently, we calculate the norms of the basis vec-

tors ∥ui∥ =max({xi|x ∈ X})−min({xi|x ∈ X}). We place the origin of the lattice at

x0 ≡ c− 1
2
∑3

i=1 ui. Subsequently, the control lattice can be parametrized using Eq. (6.1),

where we set l = 2, m = 9 and n = 2 accordingly. Thus, the complete unconstrained

control lattice has 108 degrees of freedom with 36 control points. In the following, we

significantly reduce the degrees of freedom to 3 for the purpose of our studies. First, by

concentrating on the mid-section 4 ≤ j − 1 ≤ 7, the degrees of freedom can be reduced

by a factor 4/9 to in total 48 with 16 control points. By enforcing mirror symmetry on

the width axis we half them to 24 with 8 control points. Fixing the control points on the

length axis and fixing the lower control points in height we retrieve 12 degrees. Finally,

at each width-length plane among the height dimension, we subsume the control point to

one each. Thus, retrieving the aforementioned 3 design variables distributed to 2 control

points.

102

Figure 6.6: Column 1: Original source shape which is used within our studies to generate
target shapes. Column 2-3: Two different target shapes used within our study generated
by either increasing the height (column 2) or width of the cabin volume (column 3).

6.2.4 Predicting Operators for Shape Optimization Problems

We begin our first experiments by constructing two target shape optimization problems

reflecting the previously elaborated scenario of increasing the cabin volume along differ-

ent dimensions. To construct the first one, we set the design variable for the height to

c = (0, 0, 20), and for the second one the design variables for the width to c = (20, 20, 0)

(cf. Fig. 6.6). We setup our optimization problems using Eq. (6.5) and calculate the de-

formed target shapes Y1 = Y (c1) and Y2 = Y (c2) accordingly. The objective is then to

retrieve the design variables x∗ such that

x∗ ≡ arg min
x∈Rd

f(x; Yi), (6.6)

where Yi ∈ {Y1, Y2}. To model the bias component we select the operator configuration

which created the highest decrease in fitness. We collect data from 200 runs where one

half of it are from the first target shape problem and the other are from the second, and

subsequently use it to train a network to directly predict improved operator configurations.

103

Explicitly, by converting procedural optimization data into a structured format zr
g for

each generation g and run r, based upon methodology developed within our previous

work of Chapter 4 using search space partitions. Particularly, we use a partition created

using the growing neural gas, which divides up the search space using a graph-structure.

Based upon the retrieved partitioning, we can count the number of solutions accumulated

in each partition cell and aggregate them into a vector zr
g ∈ RNC to obtain a structured

data format, where NC is the number of partition cells. Note, that we pre-process the

obtained unstructured optimization data first by explicitly centering it through shifting it

with a vector v = (2.5, 2.5, 2.5) and subsequently rescaling it by a factor 12. This ensures

that after converting it into a structured data format that the retrieved entries thereof

are less sparsely populated, i.e. the part of the search space where the most action is

happening is covered at a better resolution.

As we previously denoted the algorithm configuration as (σ, C), we want to predict in

the following the step-size and covariance matrix accordingly. Note, that without further

thought this would require us to predict 1+d2 parameters. However, due to the symmetry

properties of the covariance matrix C = CT we can reduce the number of parameters to

effectively 1+d(d+1)/2. Additionally, to ensure positive definiteness, we use the activation

functions Cij = ReLU(Cij) for the diagonal elements i = j such that Cij ≥ 0, and linear

outputs Cij = Cij to allow negative values for the off-diagonal elements i ̸= j. Similarly,

we can use for the step-size σ = ReLU(σ) to ensure positiveness. Note, that this approach

is somewhat similar though more pragmatic than mixture density networks [16, 84]. In

principle, we find it to be working sufficiently well for our considered scenario.

We train the multilayer perceptron to approximate the regression function f(∆z) = (σ, C),

where we use the finite difference ∆zr = zr
0−zr

t . After trying out different values, we find

that the offset t = 2 is most effective, as it still captures enough change of activity within

the search space, while still allowing us to make early enough a prediction for an operator

104

σ = ReLU(σ) C =

ReLU(C11) C21 . . . Cd1

C12 ReLU(C22)
.

...
C1d ReLU(Cdd)

Figure 6.7: Prediction strategy we use to retrieve operator configurations (σ, C) in con-
junction with the multilayer perceptron. We use for the step-size and diagonal elements
of the covariance matrix ReLU activation functions to ensure positiveness, while for the
off-diagonal elements we use linear ones to allow for negative values.

with sufficient accuracy. Note, that while in Chapter 4 we used both, a solution and fitness

channel, we will consider only the former to keep the input size small. We also will not use

the time-dependent architectures from Chapter 4, as within our considered scenario only

small amounts of training data are accessible. To keep the number of parameters low, we

use in the following a multilayer perceptron. The input size of it is naturally dictated by

the one of the input file format which in this case has 100 dimensions. To keep the anal-

ogy to the previous chapters, we first calculate again 10 dimensional features in the first

layer followed-up by a ReLU activation function. Note, that this layer does not have to

perform sophisticated computations as we only want to get a hint about the directionality

the optimization is taking (i.e. whether the control points are moving towards the first or

second target shape). Subsequently, we perform the high-dimensional regression task to

predict the algorithm configuration for which we dedicate 200 neurons that are followed

up by a ReLU activation function. We find this setting to work well for our experiments,

however acknowledge that possibly less neurons might be also sufficient. For the output

layer, we choose 1+d(d+1)/2 neurons, with activation functions as elaborated previously

for the prediction of the step-size and covariance matrix.

6.2.5 Discussion of Results

After having jointly constructed predictive and bias component, we can conduct our ex-

periments in the following. We therefore predict operator configurations as biases in a

105

2 4 6 8 10

5

10

15

20

25

30

Fit
ne

ss
 C

os
t

2 4 6 8 10

5

10

15

20

25

30

2 4 6 8 10

5

10

15

20

25

30

2 4 6 8 10

5

10

15

20

25

30
Default
(, C)
(-, C)

2 4 6 8 10
Generation

5

10

15

20

25

30

Fit
ne

ss
 C

os
t

2 4 6 8 10
Generation

5

10

15

20

25

30

2 4 6 8 10
Generation

5

10

15

20

25

30

2 4 6 8 10
Generation

5

10

15

20

25

30

Figure 6.8: Retrieved median fitness curves over 10 runs for the operator configuration
prediction scenario. From left to right: With generational offset from -3 to 0. From top
to bottom: For the first target shape from Fig. 6.6 in column 2 (top) and the second
target shape in column 3 (bottom) from Fig. 6.6. Red continuous curves: Default runs.
Dashed curves: For predicted configurations, with full configuration (σ, C) (green), and
only covariance matrix C (blue).

Shape #1 Shape #2
Offset Default Fixed Same Default Fixed Same

-3 126.28 142.69 73.52 147.61 150.17 87.72
-2 108.34 143.00 102.75 123.59 137.82 100.34
-1 103.54 115.42 97.36 155.40 125.42 105.45
0 91.69 90.20 90.20 131.58 107.16 107.16

Table 6.1: Table of integrated fitness values (IF) for the predicted operators for the first
and second shape (from left to right) corresponding to the values plotted in Fig. 6.9.

problem-specific manner during run-time. Our results are plotted in Fig. 6.8, where in the

top row we display median results over 10 predictions on the first target shape problem,

and the bottom row the predictions on the second target shape problem. We further

consider scenarios in which we either predict the full configuration (σ, C) (dashed green)

or just the covariance matrix C (dashed blue), as well as reset the CMA-ES with the

predicted configurations at different generational offset from −3 to 0 (left to right).

Overall, we find that modeling the bias component by predicting the full operator con-

figuration, i.e. the covariance matrix C and step-size σ, leads to a result which is partly

106

-3 -2 -1 0
Offset

0

20

40

60

80

100

120

140

In
te

gr
at

ed
 Fi

tn
es

s

Default
Fixed Budget
Same Budget

-3 -2 -1 0
Offset

0

20

40

60

80

100

120

140

160

In
te

gr
at

ed
 Fi

tn
es

s

Default
Fixed Budget
Same Budget

Figure 6.9: Bar plots of integrated fitness values (IF) for the predicted operators for
the first and second target shape, for default configuration (blue), prediction with fixed
evaluation budget (cyan) and with same evaluation budget (light blue), initialized at
different generational offsets, corresponding to the plots from Fig. 6.8

performing worse in comparison to the baseline (red continuous) due to overshooting.

More consistent performance increases were realized using just the predicted covariance

C component. This effect can be reasonably explained, as a high step-size prediction can

in principle amplify the effects of wrongly predicted covariance matrix C. Thus, only

focusing on the latter allows the adaptive properties of the CMA procedure to correct any

wrong prediction during run-time. However, notably this additional performance gain

realized through resetting the CMA-ES is partly negated by the expended function eval-

uations required to generate a prediction first. To compare the efficiency of the operators

for a fixed evaluation budget, we use the area under the convergence curves in terms of

integrated fitness values in Fig. 6.9 and Tbl. 6.1.

6.3 Chapter Summary

Contributions

To conclude this chapter, we reiterate again on the contributions we made and motivations

we started out with as well as emphasize the implications we can draw from our experiences

in regards to designing experiments and the results we subsequently achieved from them.

• We introduced a scenario focusing on algorithm configuration which has

107

the advantage that it allows the construction of both, predictive and bias

component, in a joint manner.

• We used our previously proposed structured data format to directly pre-

dict operator configurations for the CMA-ES, for which we also proposed

a prediction strategy for step-size and covariance matrix (σ, C).

• We adapted the approach in regards to a shape optimization scenario

relating to simulation-based design optimization and evaluated the feasi-

bility of our methodology for application problems.

Summary

First of all, the motivation for the study of a scenario concerning the prediction of operator

configurations was to consider a different way of framing the meta-learning model from

Chapter 2. Particularly, this scenario allows the construction of predictive and bias com-

ponent in a joint manner. For the lack of a better alternative, we emulated the operator

configuration using pairs of step-size and covariance matrix (σ, C) within the CMA-ES

algorithm. As the CMA-ES algorithm also enjoys great popularity for design optimization

problems, we leveraged the opportunity to gain additional insight into potential gains and

pitfalls in regards to application scenarios. Thus, to construct a simple scenario which can

serve as a benchmark, we considered a shape optimization scenario in which the cabin

volume of a car model is increased by either widening or heightening the shape of the

body. The task is therefore to train a predictive method to suggest a suitable operator

configuration in terms of pairs of step-size and covariance matrix (σ, C) for each target

shape from metadata generated during initial iterations of the algorithm.

While we could in principle see that this approach can demonstrate efficacy, we were

also able to encounter significant limitations when designing the experiments and con-

structing the predictive and bias component. First of all, the most outstanding one is

108

the difficulty of obtaining training data in the first place. While in the previous chapters,

we mostly considered synthetic benchmark functions, the considered target shape opti-

mization problems are comparably much more expensive. With training data generation

and benchmarking taking from several up to ∼ 10 hours of time. While calculating a

single deformation can be done in about a minute and evaluating several deformations in

parallel is no problem, calculating successive ones when considering several iterations of

the optimization algorithm becomes very quickly expensive. For example, considering an

evaluation budget of 10 iterations, this means a ten fold increase in computational time.

As we want to also have training data sufficiently available, this increases the required

computational cost at worst by a factor of 100. In principle, these associated compu-

tational costs impede on the ease of performing exhaustive experiments. And notably

including a fluid dynamic simulation would further significantly worsen as the time for

performing a single experiment would increase would increase up to several hours. These

issues would be further amplified when increasing the dimensionality of the considered

optimization problems. As we note that the number of parameters of the CMA-ES algo-

rithm scale quadratically in O(d2), thus effectively more training data would be required

to train the predictive component.

Having now gained a complete overview over different aspects concerning the construction

of learning optimization algorithms, we will end this thesis with a conclusive summary of

the most important results we retrieved, a discussion of limitations that need to be taken

into consideration for system deployment, and suggestions on future advancements for

the framework as a whole as well as the specific methodology proposed within this work.

109

CHAPTER 7

CONCLUSIONS & OUTLOOK

The final chapter of this thesis is structured as follows: First, we concisely summarize in

Sec. 7.1 the main technical contributions we made throughout Chapter 3 to 6. Following

this up, we give a comprehensive overview of their limitations. We take to this regard

two distinct perspectives: The first one in Sec. 7.2 is in regard to more general limitations

from architectural considerations. The second one in Sec. 7.3 is with a focus on limita-

tions specifically to our proposed methodology within this work. For both viewpoints,

we also suggest potential ways to overcome their limitations. Either, by pointing towards

promising lines of research existing within the literature, or through directly suggesting

specific follow-up studies and work that could be done as based upon the results of this

thesis. We end this chapter in Sec. 7.4 at last with a final conclusive summary of goals,

proposed methods, obtained results and promising future lines of study. Note, that a sep-

arate overview of our proposed framework with a description of its functional components

linked to the specific contributions of the previous chapters can be additionally found in

Appendix A.

7.1 Summary of Contributions

Within this thesis, we argued for the meta-learning model as a framework to realize

learning optimization systems that can avoid issues as existing in works within the litera-

110

ture. Particularly, we reasoned that such a model necessitates the implementation of two

components: inductive biases and metaknowledge representations. We argued, that the

former may be represented by the operators themselves, while the latter must inevitably

be derived from the unstructured data generated as a by-product of the optimization

algorithm during run-time. Thus, to satisfy these two requirements, we developed within

this thesis methodology to implement them. Particularly, we claim to have made the

following technical contributions by this:

• We proposed histogram and density estimation based methodology to

model inductive biases through mutation operators in the framework of

a (µ+λ) Evolutionary Algorithm.

• We introduced a structured graph-based data format to quantize high-

dimensional continuous search spaces and more faithfully reflect the neigh-

borhood relationships thereof such that it enables us to harness generated

unstructured procedural data of optimization algorithms for the training

of learning algorithms.

• We suggested a specialized neural network architecture as well as fitness

channel that can be used in conjunction with the structured graph-based

data format as feature extractor for problem-dependent algorithm/bias

component selection as well as extensions for temporal data processing

based upon CNN and RNN-based components.

• We used our framework to directly predict operator configurations for

the CMA-ES in the context of a shape optimization scenario for which

we further provided a feasibility evaluation.

Note, that we remarked that the overall architecture which we proposed constitutes an

algorithm selection system. Thus, to comprehensively discuss the limitations of our work

we take as previously elaborated a two-fold perspective:

111

In Sec. 7.2 we focus on more general limitations from the architecture itself, which can

be considered to also apply to any algorithm selection systems in general. These concern

constraints on the feasibility of constructing them, their generalization capability as well

as long-term operability. While trivial solutions to these may not exist, we can neverthe-

less point to possible conditions under which these short-comings are alleviated as well as

literature in which promising first steps are being made.

The second one in Sec. 7.3 is with a focus on limitations specifically to our proposed

methodology within this work, particularly relating to the topics of inductive biases in

optimization, graph-based data formats and feature extraction, as well as spatio-temporal

modeling of search behavior. We specifically point within this discussion also to open prob-

lems and questions that can be easily picked up by any reader interested into follow-up

studies.

7.2 Limitations to System Deployment

7.2.1 Constraints on Feasibility

Within our work we investigated the construction of operators and predictive components

for an algorithm selection system which can be considered to be a particular intuitive and

simple implementation of a meta-learning framework. In principle, we were already able to

encounter within our research limitations in constructing such a system which need to be

taken into consideration for system deployment. Foremost, the most striking one is that

large amounts of training data are needed to build such a system in the first place. This

was particularly a hurdle for the conduction of more flexible and extensive studies in the

shape optimization scenario considered within Chapter 6. Specifically, the expensiveness

of it makes a further incorporation computational fluid dynamic simulations impractical.

112

Thus, effectively the only feasible way would be by warm starting with an algorithm se-

lection system pre-built and pre-trained on synthetic benchmark functions. Naturally,

raising the question on how much the synthetic training problems can correspond to the

ones in the application environment.

Also remark that the construction of our operators was especially very expensive in terms

of required functions evaluations and we further had to introduce certain simplifications

such that to neglect advanced adaption mechanisms as present in modern state-of-the-art

algorithms [62]. While one may therefore arguably question the utility of this approach,

we can still rationalize it as a possible blueprint in light of more general purpose opti-

mization frameworks based upon some principles of evolutionary optimization, with less

specific algorithms existing for solving them. We elaborate on this aspect in more detail

in Sec. 7.3.1.

7.2.2 Generalization Capability

We argued from a review of optimization and learning theory over Chapters 2, 3 and 4,

that a possible strategy to circumvent the limitations dictated by the no-free-lunch the-

orems is to create models which are adapted to each niche of the problem space and use

predictive components which arbitrate between them. Thus, this especially motivated the

usage of the previously elaborated computational model of meta-learning from Chapter 2.

While such a system exhibits the capability to generalize performance improvements over

each problem niche it has been constructed on, the system does not exhibit predictable

performance gains on previously unencountered ones. Formulating, it in a more con-

cise manner: While possessing intra-domain generalization capability, it does not possess

inter-domain generalization capability (cf. Fig. 7.1). In principle, the no-free-lunch theo-

rems do not provide explicit guidance on what happens in this scenario. Thus, applying

such a constructed algorithm selection system to an unseen problem domain can result in

either replicating the baseline behavior, performance degradation or improvements. How-

113

Application Scenario 1 Application Scenario 2

Figure 7.1: Even though the second application scenario possesses all domains from the
problem space in the first application scenario, the algorithm selection system cannot be
naively transferred to the new scenario as the performance of it on the newly introduced
domains can be considered to be unpredictable.

ever, at no costs should performance improvements generated nevertheless be understood

as an indication of problem similarity and the NFL theorems explicitly advise against

it. Notably, this problem concerning the lack of performance guarantees resulting in a

limited applicability of trained computational models to new encountered problems in the

test domain is also recognized within reinforcement learning research [49].

7.2.3 Long-Term Operability

Ideally, we want to aim towards systems that can be constructed from the scratch and

are capable of maintaining their operability by themselves in long-term. Thus, challenges

are posed by implementing mechanisms which allow one to incrementally build such a

system and continuously refine and adapt it for new problems that are being encoun-

tered (cf. Fig. 7.2).

From a practical point of view, these requirements can be difficult to be realized. In

principle, existing methods within the domain of combinatorial optimization to predict

solvers and solutions rely mostly upon warm-started models through pre-generated data.

And as elaborated in Sec. 7.2.1, it is even more questionable whether in continuous opti-

mization, specifically concerning the scenario of expensive optimization, one can construct

114

a system which doesn’t rely upon warm-starting, aside from a few exceptional scenarios.

Noteworthy, e.g. the framework of AMTEA [36] for multi-objective optimization is capa-

ble of incrementally building up a repository of solutions from previously solved problems.

Likewise, within combinatorial optimization, the CIGAR system [93] is also incrementally

building a solution repository. However, notably both systems do not build explicit pre-

dictive models for regions of the problem space. Which we previously considered to be

an implicit requirement for the implementation of computational models that exhibit

generalization capability.

Life-Long Learning Systems

More in-depth has the aforementioned problem been studied under the denominator of

life-long learning [132, 64, 110, 134, 30, 157, 63] in the recent decades. In principle, in

its widest sense the notion of life-long learning aims towards the careful orchestration of

different learning and knowledge refinement techniques [132, 30, 157] to realize long-term

adaptiveness of a system when encountering new and different tasks. It is important to

emphasize that this notion is not arising out of a mere academic desire, but is quite natural

as human-made infrastructure such as e.g. in agriculture [157], telecommunications or

cloud-based services [70], possess the quality of turning into legacy systems that need to

maintained with a long-term scope.

Notions from Adaptive Systems Research

The mechanisms to support life-long learning in biological adaptive systems have co-

incidentally been well summarized within a very recently released article published by

Kudithipudi et al. (2022) [85]. While there are acknowledgedly a great variety of mecha-

nisms which biological systems implement to handle different problems encountered in a

life-long scenario, we focus in the following on the most relevant ones for the context of

our work.

115

Optimization

Algorithm

Knowledge

Pt-2 Pt-1 Pt Pt+1 Pt+2 Pt+3… …

Figure 7.2: In its most simplest form, a life-long learning system can be considered to
encounter a stream of different tasks during its lifetime from which it builds a knowledge
base which it actively maintains and refines such that to incrementally improve its per-
formance for future unseen tasks in the stream.

Mechanisms concerning neurogenesis allow the dynamic adaption of model capacity of

a life-long learning system, by either generating new neurons when new problems are

encountered, or performing active forgetting [56] and pruning of unnecessary connections

such that to ensure more efficient model usage. Metaplasticity, meaning a mechanism to

enable learning at different hierarchies through different degrees of plasticity, as well as

neuromodulation, meaning a mechanism to dynamically regulate plasticity and learning

on local and global level, helps a life-long system not be subjected to catastrophic forget-

ting of previous acquired knowledge when acquiring new knowledge and helps fostering

flexible adaption to unseen tasks and environments. In a general sense, these mechanisms

can be realized with architectures that implement context-dependent gating, hierarchi-

cal and distributed processing [85]. At last, episodic replay in rest states is an important

mechanism to refine and improve the performance of a system. Ranging from simple replay

of previous recorded experiences to aid memory consolidation and counter catastrophic

forgetting, to more randomly and synthetically generated ones which can be considered

to play the role of out-of-distribution examples that improve generalization capability of

the system, to resource efficient replays on a small subset of experiences, to ones only

relating to new learning tasks or restricted to abstract high-level representations.

116

Applications within Optimization

Life-long learning systems within optimization have been proposed within the previous

decade in the context of combinatorial optimization problems. Particularly, for stream-

ing constrained satisfaction [110] and bin packing problems [64, 134]. For the former

constrained satisfaction problem (CSP), Ortiz-Bayliss et al. (2015) specifically propose a

hyper-heuristic selection framework that is based upon a three component architecture. In

principle, we can readily analyze it with the former elaborated systematics from Sec. 7.2.3.

The architecture, implemented is based upon distributed, hierarchical and context-dependent

processing. Where the most important component is the main solver, which upon en-

countering a new CSP instance, based upon its available features f calls the prediction

module, from which a predictor at point p is retrieved which satisfies a minimal distance

requirement ∥f −p∥ ≤ dmin, which in context-dependent manner suggests the best known

heuristic h from a pool H for the main solver to use. The third component, called learn-

ing module, is given information about features of the encountered CSP instance, as well

used predictor. While the main solver is solving the given instance, the learning module

uses the time to conduct episodic replays in a parallel thread, by testing other available

heuristics from the pool out, such that the predictor is refined and can suggest better

suitable heuristics if available in the future. In principle, if a predictor satisfying the

distance constraint ∥f − p∥ ≤ dmin cannot be found, a new predictor is created at point

p and a random heuristic h ∈ H is chosen for the main solver, while the learning module

in parallel refines the predictor. In the long run, the system continuously constructs and

refines a hyper-heuristic which learns to associate different regions of the problem space

P with the best matching heuristic in h ∈ H.

The approaches from Hart & Sim (2014 & 2015) [64, 134] for solving streaming 1d bin-

packing problems are very similar to this regard. However, based instead upon an artificial

immune system, which in the long-run aims to maintain a set of mutually highly stimu-

117

lating heuristics and set of problems.

7.3 Future Directions for Research

Before we end this thesis with a final conclusive summary, we provide a further outlook on

the future most promising directions for advancing the methodology as proposed within

our research. Specifically, we directly highlight open problems and questions that could

be easily picked up by any reader interested into doing follow-up work.

7.3.1 Inductive Biases in Optimization

We proposed in Chapter 3 the construction of inductive biases in the form of problem-

tailored mutation operators through histogram and density estimation methods. Par-

ticularly, we were able to justify this approach adhoc from finding work on evolvability

studies in computational biology from Kounios et al. (2016) [83], suggesting that indeed

the underlying variational mechanisms of natural evolution possess, in theory, the ability

to learn the structures of rugged fitness landscape from repeated exposure. Thus, it helps

avoid getting the population stuck in local optima of future unseen environments, which

is a behavior that we could also partly replicate within our studies on the regularly struc-

tured multimodal problems (cf. Sec. 3.5.1). This is indeed a very intriguing perspective

we could relate our research to. However, as our experiments preceded the discovery

of this work, we were unfortunately within the scope of this thesis not able to fully ex-

plore the full complexities of it, e.g. by the study of artificial gene regulatory networks

or through the assistance of evolvability measures from fitness landscape analysis. But

as within our approach constructing the mutation operators was particularly laborious

and had reduced effectiveness at higher dimensionalities, a future study could explore for

instance predicting instead operator configurations based upon problem-dependent evolv-

ability characteristics.

118

Noteworthy, putting evolvability considerations aside, more generally speaking some of

the hurdles we encountered when constructing the operators could very likely be alle-

viated when either considering parametrizations in the form of algorithm configurations

with less degrees of freedom instead, as we did in Chapter 6, or more well-behaved op-

timization problems with more of a coarser structure. For the former, recall that within

Chapter 6 the scenario of predicting algorithm configurations also gave us the advantage

that we could jointly construct bias and predictive component. In principle, the prediction

of algorithm configurations or portfolios may be generally considered a more reasonable

venture in the domain of continuous optimization. However, from our studies in Chap-

ter 6, we suggest to focus on algorithms which do not scale in O(d2) in the number of

parameters. The approach of constructing explicitly operators, however might still make

sense in the framework of EDAs [87]. Also note, that as we have previously elaborated in

Sec. 4.2.2, the problem of constructing operators can generally be considered to be relaxed

in combinatorial optimization. Concerning the suggested usage of more well-behaved opti-

mization problems with coarser structure, one could for instance realize this case by either

restricting oneself only to specific use cases that satisfy this requirement, the construction

of low-resolution versions of given optimization problems, or through the explicit use of

dimensionality reduction techniques. On this note, we also need to emphasize that within

our study we particularly considered a framework based upon (µ+λ) selection, which en-

abled us to be able in the first place to collect exhaustive statistics about the performed

variation operations by an algorithm. However, while elitist selection has proven to be

useful in mutation-based algorithms [9], recent studies suggest that non-elitist selection

excels on deceptive fitness landscapes [37]. It would be interesting to consider within

further work what this means for algorithm design and how one would proceed in this

scenario with the ideas that we have outlined within this thesis.

At last, we elaborate more generally on the nature of inductive biases in optimization.

Jethwani et al. (2021) [71] investigated forms of inductive biases towards simplicity for

119

evolving Boolean functions with a genetic algorithm. Within their study they explicitly

model the inductive bias either through a statistical distribution or explicit constraint. In

principle, they find that the former one is more effective. Thus, unknowingly validate the

argument we made previously in Chapter 3 for inductive biases in the sense of biases in

the generation of random variates. Intrinsic symmetries and invariances of optimization

problems may further foster quite naturally certain forms of biases. The first step towards

this line of investigation has been made somewhat similar to our work of Chapter 3 by

Tian et al. (2021) [143]. It could be interesting to consider this in a more generalized

framework in the context of learning of invariance properties. Further, already known

forms of biases can be considered to be posed by the simplexes spanned by crossover

operators (cf. Fig. 3.2), self-adaption mechanisms [62], which are notably very similar to

the adaptiveness developmental biases foster as envisioned by Uller et al. (2018) [146], as

well as explicit forms of diversity maintenance in multi-objective optimization [39] and

implicit ones through resource limitation as introduced recently in co-evolutionary frame-

works [21].

In any case, the identification of mechanisms and qualities which can serve as potential

forms of inductive biases in optimization algorithms remains to be an intriguing topic

for which we argue that it warrants further investigation in the future. We stress at this

point, that it does not simply constitute a mere re-framing of existing methodology, but

essentially raises the question on how far domain knowledge can be incorporated through

derandomizing the variational mechanisms of existing algorithms, such that to allow them

to be tailored to specific problems from past experiences of solving them. It also estab-

lishes a bridge and enables vitalizing exchange with similar ongoing research within the

broader scope of artificial intelligence research [136].

7.3.2 Graph-based Data Formats and Feature Extraction

We introduced within Chapter 4 a pipeline to convert unstructured raw data derived from

metadata of population-based optimization algorithms in the form of tuples (x, f(x)) of

120

generated solutions x ∈ Rd and fitness values f(x), which we further organized into sets

P r
g for each population at generation g and experimental run r into a structured data

format z by applying a search space partition to the solution set P r
g . Subsequently, the

structured data format could be used in conjunction with neural network architectures

for feature extraction. In particularly, we introduced a graph-based data format such that

z ∈ RNc·Nf , where Nc are the number of nodes and Nf the number features. We could

show that in addition to a channel for solution counts, considering a further one for fitness

values (Nf = 2), the graph-based data format in conjunction with specialized network

architectures achieves higher validation accuracies and retrieves more pronounced and

better separated clusters.

In principle, there is a vast amount of combinatorial possibilities to further extend these

studies. However, we will focus in the following on highlighting the most intriguing as-

pects of this proposed approach and from it show the most promising directions for future

possible investigation. First of all, a key advantage of the graph-based approach is that it

allows a structured representation of problem-dependent search behavior of an optimiza-

tion algorithm, thus fosters explainability, which can in principle be considered to be a

key advantage in comparison to potential alternative ways of feature extraction utilizing

unstructured data formats. Noteworthy, for this reason graph-based search trajectory

networks [107] have likewise been recently introduced for the analysis of algorithm behav-

ior on grey box optimization problems.

Secondly, particularly very interesting properties can be observed when considering the

graph-based data format in conjunction with specialized neural network architectures for

processing them. As we elaborated over Chapters 4 and 5, the graph convolution op-

erations by Kipf & Welling (2016) [80] can in principle be interpreted as a low-order

approximation of a ’heat’ diffusion model. Thus, the application of the convolution oper-

ation is in principle extrapolating from known values of solution counts and fitness values,

121

by conducting in-filling of empty parts through radiating fitness values and creating ’vir-

tual’ population members of the solution distribution within the graph structure. It is

clear that these properties which graph operations conduct on the fly exhibit notions with

intrinsic similarities to surrogates and uncertainty measures in model-based optimization.

A more mathematically formalized analysis of these properties in conjunction with the

development of specialized graph operations for specifically processing this specific data

type, could therefore lead to further promising synergies.

At last, to conclude we briefly elaborate on lines of investigation which can be considered

to be more accessible and could be picked up at ease without requiring a more formal

theory-based approach. First of all, different input transformations could be further con-

sidered. While to some degree we did this already within our work, further investigations

could for instance consider instead ranks of solutions as input and also look in more detail

how different combinations of input formats can enrich the training of the architectures

for feature extraction. Finally, the process of generating a knowledge graph of activity in

the search space itself could be further improved. While we used clustering methods fitted

to randomly generated data within the search space in Chapter 4 to keep the analogy to

the original work by Liu et al. (2017) [91], one could explore further alternatives, such as

e.g. random graphs, or graphs generated based upon the distribution of solutions in the

training data set for the network architectures.

7.3.3 Spatio-Temporal Modeling of Search Behavior

We addressed within Chapter 5 the challenge of spatio-temporal modeling of search be-

havior using the metadata generated by an optimization algorithm. For this reason, we

looked into methods for learning spatial anisotropies of the knowledge graph representing

activity within the search space, as well as considered specialized CNN and RNN-based

network architectures lent from methodology developed for time-series classification and

activity recognition for processing the temporal component. In the following, we want to

122

show further directions which can be considered to be valuable to be taken up as based

upon our work.

The algorithm selection problem within population-based optimization, reframed as a

meta-learning problem, is within the context of methods for time-series processing unde-

niably an early-classification problem. Meaning the predictive component should make

a decision as soon as enough data from the optimization problem has been collected.

However, within our currently proposed methodology within Chapters 4 and 5, we either

only considered data generated from the first iterations, or from time-series with lengths

of 10 and 20 iterative steps. Thus, to satisfy the aforementioned requirement, we ide-

ally want to avoid sticking to a fixed and preset interval, but instead have a mechanism

available that automatically decides on the best interval for us to make a prediction.

Rußwurm et al. (2019) [121] have to this regard proposed a method to extend sequential

models any future follow-up work can easily pick up to extend our feature extractors

proposed in Chapter 5. Alternatively to our work on meta-learning in algorithm selection

systems, recall from Chapter 2, that we criticized that a major implementation hurdle for

reinforcement learning is the definition of states and actions in the first place. While we

were able to identify within our research earlier work by Zhang et al. (2008) [162] that

implements reinforcement learning where different operators pose as different choosable

actions, a state representation is still missing out. To this regard, the flexibility of our

proposed RNN architectures in Chapter 5 in conjunction with the graph-based data for-

mat we have proposed in Chapter 4 can be considered to be very helpful solutions for

future ventures into this direction.

At last, note that the reinforcement learning approach by Zhang et al. (2008) [162] which

frames different actions in terms of different operators, can in principle be framed as a

memetic optimization technique, in which operators take the roles of the memes. Thus,

this emphasizes valuable synergies and cross-connections between these two different fields

123

to be taken into consideration.

7.3.4 Further Remarks

To end this section of the thesis, we want to discuss in the following briefly some of the

more intriguing insights we have obtained during our research. Following up these direc-

tions might not directly be associated with any significant short-term gains, however can

be considered to have more general benefits on a longer time scale.

Particularly, we highlight the work done by Rudolph (1998) [120], which analyzed fi-

nite Markov chain models and from these formulated requirements on operators and

convergence theorems for evolutionary optimization algorithms, in terms of probabilis-

tic spatio-temporal relationships. This work essentially substantiates and validates the

spatio-temporal modeling approach for the construction of end-to-end frameworks. It

is thus very tempting to be able to replicate in long-term successes achieved in rein-

forcement learning, such that ideally entire algorithm components can be purely derived

from problem-dependent goal and reward-oriented behavior of a learning optimization

system [133]. Note, that this notion is also currently being popularized under the denom-

inator of ’neural algorithmic reasoning’ [148], offering aside from the previous mentioned

works on feature-free algorithm selection from Sec. 4.2.2 new applications for e.g. min-

imum cut [148] or graph recovery problems [130]. How far can we abandon notions

of hand-crafted methodology? While we strongly advocated for it over Chapters 3, 4

and 5, and further substantiated it with arguments brought forward within adaptive

systems [69, 18] and artificial intelligence research [133], evidence from the studies of

Alissa et al. (2021) [4] on bin-packing problems suggest that such built models of solvers

may not fully be able to replace handcrafted ones, but can still be considered to be useful

complementaries. Likewise, while the study from Seiler et al. (2020) [127] on the traveling

salesperson problem attempted to abandon analytical fitness landscape techniques, their

results nevertheless indicate that the usage of their feature-free approach in conjunction

124

with analytical techniques gives the best results. It is interesting to consider how the

aforementioned notions could more generally be extrapolated to more free-form frame-

works e.g. such as incorporating mechanisms for open-endedness [149, 99].

At last, we remark on more general potential future synergies between computer sci-

ence and model-oriented research in the natural sciences. While we proposed over Chap-

ters 4 and 5, graph-based data formats and architectures for processing them, and em-

phasized beneficial properties of these, to a similar degree such an approach for relational

modeling has been previously introduced under the denominator of evolutionary graph

theory (e.g. [90, 114, 94]) in theoretical biology. Even though, rather concerned with mod-

eling evolutionary dynamics of spatially separated populations modeled through graphs,

instead of activity within a search space in the context of optimization, the closeness

between the underlying notions of both are intriguing. It is therefore very obvious and

worthwhile to keep under observation whether similarities between developed approaches

from theoretical biology research and rather applied work on evolutionary computation

could enable similar synergies in the future as has been argued to exist for neural compu-

tation research [65].

7.4 Closing Summary

To end this thesis, we give a closing summary, which in a conclusive manner highlights

and compares goals and achievements of this thesis to each other, as well as gives a com-

pressed recapitulation of the most promising research directions to be further taken up as

we have previously outlined in Sec. 7.3. Note, that we provide for the interested reader

an overview of our proposed framework with a description of its functional components

linked to specific contributions of our chapters separately within Appendix A.

Before we continue, we briefly reiterate on the main technical contributions of the thesis

125

as we have listed in Sec. 7.1:

• We proposed histogram and density estimation based methodology to

model inductive biases through mutation operators in the framework of

a (µ+λ) Evolutionary Algorithm.

• We introduced a structured graph-based data format to quantize high-

dimensional continuous search spaces and more faithfully reflect the neigh-

borhood relationships thereof such that it enables us to harness generated

unstructured procedural data of optimization algorithms for the training

of learning algorithms.

• We suggested a specialized neural network architecture as well as fitness

channel that can be used in conjunction with the structured graph-based

data format as feature extractor for problem-dependent algorithm/bias

component selection as well as extensions for temporal data processing

based upon CNN and RNN-based components.

• We used our framework to directly predict operator configurations for

the CMA-ES in the context of a shape optimization scenario for which

we further provided a feasibility evaluation.

We started out this thesis by first reviewing foundations from Natural Computing in re-

gards to simulated evolution and learning in Chapter 1.1. From these, we headed over

to discussing the current state of research and contemporary issues within metaheuristic

optimization from which we argued that there is a dire need to move towards more gen-

eral purpose algorithm architectures that learn from the problems they solve and can be

flexibly adapted for new problem domains of interest. Thus, we decided to dedicate our

work to particularly address this issue by directly proposing methodology and clarifying

the foundations to construct such first-principled frameworks.

126

For this reason, we first reviewed different computational models of cross-problem solving

within Chapter 2. While we argued that Markov decision processes as popular in rein-

forcement learning are difficult to implement, useful simplifications can be instead found

in a meta-learning model. In principle, the latter has been also identified within the litera-

ture as corresponding to algorithm selection and configuration systems. We also inspected

within our literature review potential other options. Particularly interesting to this regard

was the notion of transfer learning in optimization. However, unfortunately it has only

limited applicability, as most transfer learning methods that have been proposed within

the literature are mostly domain-specific. The related notion of transfer optimization,

while highly pragmatic, however suffers from the definition of sound problem-similarity

measures and more broadly speaking lack of generalization capability.

We formulated subsequently four questions within this thesis that aim to answer these

issues. While in particularly, we answered the first one on the nature of models of compu-

tational problem-solvers partly in the literature review of Chapter 2, we gave an answer for

the second on what the reusable knowledge within the variational mechanisms of natural

evolution is and how it could be used for algorithm design, in the following up Chapter 3.

Particularly, we argued that for this reason we need to introduce the concept of inductive

biases from learning theory within optimization. We identified to this regard specifically

mutation as most important and prime variational mechanism that should be put under

further scrutiny. We therefore, explicitly considered a (µ+λ) Evolutionary Algorithm,

for which we proposed explicitly methodology to build mutation operators for different

benchmark functions using histogram and density estimation based methodology. We

were able to demonstrate realizable performance gains with this proposed methodology,

and were able to justify the approach with studies done in computational biology arguing

for the learning capability of evolutionary processes.

The third question, in regards to how we can characterize optimization problems such that

127

we can easily re-identify them with suitable previously learned knowledge, was answered

by us in Chapters 4 & 5. Particularly, we introduced a pipeline to convert unstructured

raw data representative of activity within the search space into a structured data for-

mat, that can subsequently be used for feature extraction in conjunction with specialized

neural network architectures. Novelties that we introduced in Chapter 4 to this regard,

are a novel graph-based data format, a specialized graph neural network architecture for

processing it, as well as the additional inclusion of an input channel to take fitness values

into consideration. We were able to show that through these measures, the graph-based

approach demonstrated higher performance in comparison to more traditional ones. How-

ever, because it showed still ambivalent performance in the case where inputs in the fitness

channel are not informative, we extended this approach in Chapter 5 with graph attention

operations (GAT) to learn spatial anisotropies, as well as introduced specialized CNN-

and RNN-based components such that to enable temporal data processing. Particularly,

we were able to demonstrate that our proposed GCN-GRU and GCN-LSTM network ar-

chitectures demonstrated highest and most stable performance on time-series of variable

length, while still being computationally efficient.

To conclude the last question in regard to the scope for application problems and be-

yond, we studied a scenario in Chapter 6 relating to shape optimization, which enabled

us to gain some insight into opportunities and potential hurdles for application problems.

It also allowed us to reframe the problem of predicting operators in terms of predicting

operator configurations, which we did so through step-size σ and covariance matrix C of

the CMA-ES algorithm. Particularly, due to the expensiveness of the studied problem,

we were not able to exhaustively collect training data and therefore were limited in con-

ducting more extensive studies. We therefore see these experiments as indicative, that in

the foreseeable future the study of such frameworks on rich and varied sets of synthetic

functions mimicking application problems will be a more valuable direction to explore.

128

In the last Chapter 7 of this thesis, we discussed limitations for system deployment and

future viable directions to advance the methodology we have proposed within this work.

Particularly, in regards to the former, we briefly elaborated on how to realize a long-term

scope of operability in learning optimization systems, and particularly elaborated on no-

tions of adaptive system research, from which we drew valuable criteria that enabled us

to make a brief analysis and evaluation of available existing work.

To conclude, we summarize the most promising research directions as suggested within

Sec. 7.3 to be taken up by potential future follow-up work as based upon this thesis:

• The investigation of operator design based upon evolvability characteris-

tics and the consideration of potentially more suitable optimization sce-

narios possibly constructed in conjunction with dimensionality reduction

techniques.

• Properties of explainability of the graph-based data format and its re-

lationship to surrogates and uncertainty measures in model-based opti-

mization.

• The extension of the spatio-temporal approach to frame algorithm selec-

tion as an early-classification problem and its usage as state representa-

tion and memory for reinforcement learning based operator selection.

We hope that this thesis and the broad range of topics covered within it helps any reader of

it as much as creating it helped ourselves in understanding the current state of method-

ology, open issues and opportunities such that to enable and encourage them likewise

in the construction of sophisticated and on first-principles based learning optimization

algorithms and frameworks.

129

APPENDIX A

OVERVIEW OF THE CONSTRUCTED
FRAMEWORK

We describe in the following the general purpose algorithm framework that we construct

throughout Chapters 3 to 6 in this thesis as illustrated in Fig. A.1. A special focus is

thereby paid on linking the description of each functional component with the specific

contributions of the respective chapters.

First of all, we discussed within Chapter 2 different computational models of cross problem-

solving. We argued from this literature review for the meta-learning model, which frames

cross problem-solving in terms of domain-level knowledge through inductive biases, as well

as metaknowledge representations to arbitrate between them. In principle, our framework

therefore must implement these two design requirements and thus the framework we con-

struct over the course of this thesis as given in Fig. A.1 overall corresponds to an algorithm

selection system [136].

As a first step, such a system must extract features that are able to sufficiently char-

acterize different optimization problems. We propose our method to achieve this within

Chapter 4. In comparison to the literature, we take likewise the view that is popularized

within recent years, that handcrafted methods could be neglected to this regard in favor

of a pure data-driven approach that harnesses the feature learning capabilities of deep

130

...
.....

0.1

0.3

0.6

0.1

0.5

0.3

0.1

0.7

0.2

Recombine

Mutate

Evaluate

RNN

RNN

Gen 0

Gen 1

Gen k

Gen k+1

Gen k+2

.....

Predictive

Component

Select

*
.....

RNN

Gen N

*

Chapter 4

Chapter 5

Chapter 3 & 6

Structured

Data Format

Extracted

Features

Temporal

PropagationPrediction of

Operator

Unstructured

Data Format

Improved

Optimization

Recombine

Mutate

Evaluate

Select

Figure A.1: Diagram of the framework we construct within this thesis, as well as it’s func-
tional components separated according to chapters in which the respective contributions
to the methodology are made.

network architectures. We argue that this should be addressed specifically in continu-

ous optimization by means of methodology from algorithm behavior studies, such that it

allows us to extract characteristics descriptive of problem-dependent behavior of optimiza-

tion algorithms. The novelties we introduce to this regard specifically within Chapter 4

are a graph-based structured data format to represent activity within high-dimensional

continuous search spaces, a fitness channel to enrich this activity information as well as

specialized graph neural network (GNN) architectures for feature extraction.

While the feature extractor we introduced can in principle already be considered to be

sufficient for extracting features that are descriptive to distinguish different optimization

problems, it however may fail in scenarios when the generated inputs are not sufficiently

informative. We propose therefore in Chapter 5 ways to improve this framework com-

ponent by enhancing the capabilities of the feature extractor to explicitly model the

time-dependent nature of the metadata the optimization algorithm generates during a

run. We specifically find within Chapter 5, that extending our GNNs with a recurrent

component to a GNN-RNN-based architecture, particularly GCN-GRU and GCN-LSTM,

proves to be the most viable strategy.

131

Having now methods available to extract spatio-temporal features sufficiently descriptive

of problem-dependent algorithm behavior, we can move over to make a recommendation

for the optimal operator to use. Naturally, raising the question on how we can obtain

these operators in the first place, as well as how we can train such a framework as a

whole. We answer both of these questions at the beginning and the end of this thesis

within Chapters 3 and 6. First of all, note that we identified the question of model-

ing and choosing the optimal operator as corresponding to the question of modeling and

choosing a domain-dependent bias. Thus, established a bridge to the same concept as

existing within machine learning research [102, 154].

We argued that within a (µ+λ) Evolutionary Algorithm we can readily model domain-

knowledge by means of incorporating problem-structure into the mutation operator. In

principle, we also demonstrated within our experiments that this strategy can work. Note,

that this approach can also be justified more or less from studies in computational biol-

ogy [83].

However, due to the particular expensiveness in modeling them, as well as hurdles to

jointly construct the predictive architecture as depicted in Fig. A.1 together with the

operator itself, a more practical alternative may instead be found in the prediction of

a high-performing algorithm configuration, as we demonstrate in Chapter 6. For the

example of the CMA-ES, as well as using a multi-layer perceptron as stand-in for the

architecture in Fig. A.1, we can show the efficacy of this scenario as well as find overall

better handleable properties for the implementation of such frameworks in an end-to-end

manner.

132

APPENDIX B

BENCHMARK FUNCTIONS

B.1 Unimodal Functions

Bohachevksy Function

f(x) =
d−1∑
i=1

[x2
i + 2 x2

i+1 − 0.3 cos(3πxi)− 0.4 cos(4πxi) + 0.7] (B.1)

Properties

• Funnel Structure: Asymmetric, quadratic, convex

• Search Space: χ = [−100, 100]d

• Reference: [61]

Ellipsoidal Function

f(x) =
d∑

i=1
(106)

i−1
d−1 x2

i (B.2)

Properties

• Funnel Structure: Asymmetric, quadratic, convex

• Search Space: χ = [−100, 100]d

• Reference: [61]

133

Rosenbrock Function

f(x) =
d∑

i=1
[100 (xi+1 − x2

i) + (xi − 1)2] (B.3)

Properties

• Funnel Structure: Asymmetric, polynomial

• Search Space: χ = [−5, 10]d

• Reference: [61]

Schwefel 1.2 Function

f(x) =
d∑

i=1

 i∑
j=1

xj

2

(B.4)

Properties

• Funnel Structure: Asymmetric, polynomial

• Search Space: χ = [−65.536, 65.536]d

• Reference: [135]

Sphere Function

f(x) =
d∑

i=1
x2

i (B.5)

Properties

• Funnel Structure: Symmetric, convex, quadratic

• Search Space: χ = [−5.12, 5.12]d

• Reference: [61, 135]

134

B.2 Regularly Structured Multimodal Functions

Ackley Function

f(x) = −20 exp
−0.2

√√√√1/d
d∑

i=1
x2

i

−exp
(
−1

d

d∑
i=1

cos(2πxi)
)

+ 20 + e (B.6)

Properties

• Funnel Structure: Symmetric, concave, exponential

• Search Space: χ = [−32.768, 32.768]d

• Reference: [135]

Griewank Function

f(x) = 1
4000

d∑
i=1

x2
i−

d∏
i=1

cos
(

xi√
i

)
+ 1 (B.7)

Properties

• Funnel Structure: Symmetric, convex

• Search Space: χ = [−600, 600]d

• Reference: [135]

Rastrigin Function

f(x) = 10 d+
d∑

i=1
[x2

i−10 cos(2πxi)] (B.8)

Properties

• Funnel Structure: Symmetric, convex, quadratic

• Search Space: χ = [−5.12, 5.12]d

• Reference: [61, 135]

135

B.3 Irregularly Structured Multimodal Functions

Eggholder Function

f(x) = −(x2 + 47) sin(
√
|x2 + x1/2 + 47|)− x1 sin(

√
|x1 − (x2 + 47)|) (B.9)

Properties

• Funnel Structure: Asymmetric

• Search Space: χ = [−512, 512]d

• Reference: [135]

Schaffer Function

f(x) =
d−1∑
i=1

(x2
i + x2

i+1)0.25{sin2[50(xi + xi+1)0.10] + 1} (B.10)

Properties

• Funnel Structure: Symmetric

• Search Space: χ = [−100, 100]d

• Reference: [1]

Schwefel 2.26 Function

f(x) = 418.9829 d−
d−1∑
i=1

xi sin
(√
|xi|

)
(B.11)

Properties

• Funnel Structure: Asymmetric

• Search Space: χ = [−500, 500]d

• Reference: [86, 135]

136

APPENDIX C

INTERPRETATION OF GRAPH OPERATIONS

Figure C.1: Social network graph from a data set of Facebook pages with mutual likes
[118] visualized using the NetworkX library [58]. Different communities existing within the
graph have been obtained using greedy modularity maximization [33] and are indicated
by different colors.

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Dimension 0

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Di
m

en
sio

n
1

Figure C.2: The graph convolution as proposed by Kipf & Welling (2016) [80] can be
interpreted as calculating low-dimensional node embeddings in which the communities are
roughly preserved (left panel), while the graph pooling operation based upon Defferrard
et al. (2016) [40] simply reduces the number of nodes and edges in the graph (right panel).

137

LIST OF REFERENCES

[1] DEAP 1.3.1 documentation. https://deap.readthedocs.io/en/master/index.html,
accessed: May 2022.

[2] Mohamad Alissa, Kevin Sim, and Emma Hart. Algorithm selection using deep
learning without feature extraction. In Proceedings of the Genetic and Evolutionary
Computation Conference, pages 198–206, 2019.

[3] Mohamad Alissa, Kevin Sim, and Emma Hart. A deep learning approach to pre-
dicting solutions in streaming optimisation domains. In Proceedings of the 2020
Genetic and Evolutionary Computation Conference, pages 157–165, 2020.

[4] Mohamad Alissa, Kevin Sim, and Emma Hart. A neural approach to generation
of constructive heuristics. In 2021 IEEE Congress on Evolutionary Computation
(CEC), pages 1147–1154. IEEE, 2021.

[5] Claus Aranha, Christian L Camacho Villalón, Felipe Campelo, Marco Dorigo,
Rubén Ruiz, Marc Sevaux, Kenneth Sörensen, and Thomas Stützle. Metaphor-
based metaheuristics, a call for action: the elephant in the room. Swarm Intelli-
gence, pages 1–6, 2021.

[6] The GPyOpt authors. GPyOpt: A Bayesian Optimization framework in Python.
http://github.com/SheffieldML/GPyOpt, 2016.

[7] Thomas Bäck. Evolutionary Algorithms in Theory and Practice: Evolution Strate-
gies, Evolutionary Programming, Genetic Algorithms. Oxford University Press,
1996.

[8] Thomas Bäck, Joost N Kok, and G Rozenberg. Handbook of Natural Computing.
Springer, Heidelberg, 2012.

[9] Thomas Bäck, Günter Rudolph, and Hans-Paul Schwefel. Evolutionary program-
ming and evolution strategies: Similarities and differences. In In Proceedings of the
Second Annual Conference on Evolutionary Programming. IEEE, 1993.

138

[10] K. K. Bali, A. Gupta, L. Feng, Y. S. Ong, and Tan Puay Siew. Linearized domain
adaptation in evolutionary multitasking. In 2017 IEEE Congress on Evolutionary
Computation (CEC), pages 1295–1302, June 2017.

[11] Richard K Belew. Evolution, learning and culture: Computational metaphors for
adaptive algorithms. Technical Report CS89-156, Computer Science, Univ. Calif.
San. Diego, 1989.

[12] Richard K Belew. Adaptive Individuals In Evolving Populations: Models And Algo-
rithms. Routledge, 1st edition, 1996.

[13] David Beniaguev, Idan Segev, and Michael London. Single cortical neurons as deep
artificial neural networks. Neuron, 109(17):2727–2739, 2021.

[14] JD Bermúdez, P Achanccaray, ID Sanches, L Cue, P Happ, and RQ Feitosa. Eval-
uation of recurrent neural networks for crop recognition from multitemporal remote
sensing images. In Anais do XXVII Congresso Brasileiro de Cartografia, pages
800–804, 2017.

[15] Anil Bhattacharyya. On a measure of divergence between two statistical populations
defined by their probability distributions. Bull. Calcutta Math. Soc., 35:99–109,
1943.

[16] Christopher M Bishop. Mixture density networks. Technical report, Aston Univer-
sity, 1994.

[17] Christopher M Bishop. Pattern Recognition and Machine Learning. Springer, 1st
edition, 2006.

[18] Colin Blakemore and Grahame F Cooper. Development of the brain depends on
the visual environment. Nature, 228(5270):477–478, 1970.

[19] Barry G Blundell. An Introduction to Computer Graphics and Creative 3-D Envi-
ronments. Springer Science & Business Media, 2008.

[20] Maarten Boudry and Steije Hofhuis. Parasites of the mind. why cultural theorists
need the meme’s eye view. Cognitive Systems Research, 52:155–167, 2018.

139

[21] Jonathan C Brant and Kenneth O Stanley. Diversity preservation in minimal cri-
terion coevolution through resource limitation. In Proceedings of the 2020 Genetic
and Evolutionary Computation Conference, pages 58–66, 2020.

[22] Xavier Bresson and Thomas Laurent. The transformer network for the traveling
salesman problem. arXiv preprint arXiv:2103.03012, 2021.

[23] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Van-
dergheynst. Geometric deep learning: Going beyond Euclidean data. IEEE Signal
Processing Magazine, 34(4):18–42, 2017.

[24] Edmund K Burke, Michel Gendreau, Matthew Hyde, Graham Kendall, Gabriela
Ochoa, Ender Özcan, and Rong Qu. Hyper-heuristics: A survey of the state of the
art. Journal of the Operational Research Society, 64(12):1695–1724, 2013.

[25] Christian Leonardo C. Villalón, Marco Dorigo, and Thomas Stützle. The intelligent
water drops algorithm: why it cannot be considered a novel algorithm. Swarm
Intelligence, 13(3):173–192, 2019.

[26] Felipe Campelo and Claus Aranha. EC Bestiary: A bestiary of evolutionary, swarm
and other metaphor-based algorithms. https://doi.org/10.5281/zenodo.1293352,
June 2018.

[27] Gilles Celeux, Sylvia Frühwirth-Schnatter, and Christian P Robert. Model selection
for mixture models–perspectives and strategies. In Handbook of Mixture Analysis,
pages 117–154. Chapman and Hall/CRC, 2019.

[28] José E Chacón and Tarn Duong. Multivariate Kernel Smoothing and its Applica-
tions. Chapman and Hall/CRC, 2018.

[29] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing
Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong
Xiao, Li Yi, and Fisher Yu. ShapeNet: An Information-Rich 3D Model Repository,
2015.

[30] Zhiyuan Chen and Bing Liu. Lifelong machine learning. Synthesis Lectures on
Artificial Intelligence and Machine Learning, 12(3):1–207, 2018.

[31] François Chollet and others. Keras: The Python Deep Learning library. Astro-
physics Source Code Library, record ascl:1806.022, June 2018.

140

[32] Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Matteo Dellepiane, Fabio
Ganovelli, Guido Ranzuglia, et al. Meshlab: an open-source mesh processing tool.
In Eurographics Italian Chapter Conference, volume 2008, pages 129–136. Salerno,
Italy, 2008.

[33] Aaron Clauset, Mark EJ Newman, and Cristopher Moore. Finding community
structure in very large networks. Physical Review E, 70(6):066111, 2004.

[34] Massimiliano Corsini, Paolo Cignoni, and Roberto Scopigno. Efficient and flexible
sampling with blue noise properties of triangular meshes. IEEE Transactions on
Visualization and Computer Graphics, 18(6):914–924, 2012.

[35] George Cybenko. Approximation by superpositions of a sigmoidal function. Math-
ematics of control, signals and systems, 2(4):303–314, 1989.

[36] B. Da, A. Gupta, and Y. Ong. Curbing negative influences online for seamless
transfer evolutionary optimization. IEEE Transactions on Cybernetics, no. 99:1–
14, 2018.

[37] Duc-Cuong Dang, Anton Eremeev, and Per Kristian Lehre. Non-elitist evolution-
ary algorithms excel in fitness landscapes with sparse deceptive regions and dense
valleys. In Proceedings of the Genetic and Evolutionary Computation Conference,
pages 1133–1141, 2021.

[38] Omid E David and Iddo Greental. Genetic algorithms for evolving deep neural net-
works. In Proceedings of the Companion Publication of the 2014 Annual Conference
on Genetic and Evolutionary Computation, pages 1451–1452, 2014.

[39] Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and Tanaka Meyarivan. A fast
elitist non-dominated sorting genetic algorithm for multi-objective optimization:
NSGA-II. In International Conference on Parallel Problem Solving from Nature,
pages 849–858. Springer, 2000.

[40] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neu-
ral networks on graphs with fast localized spectral filtering. Advances in Neural
Information Processing Systems, 29:3844–3852, 2016.

[41] L. Devroye. Non-Uniform Random Variate Generation. Springer-Verlag New York,
1986.

141

[42] Inderjit S Dhillon, Yuqiang Guan, and Brian Kulis. Weighted graph cuts without
eigenvectors a multilevel approach. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 29(11):1944–1957, 2007.

[43] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Sub-
hashini Venugopalan, Kate Saenko, and Trevor Darrell. Long-term recurrent convo-
lutional networks for visual recognition and description. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2625–2634, 2015.

[44] Thomas Elsken, Jan Hendrik Metzen, Frank Hutter, et al. Neural architecture
search: A survey. Journal of Machine Learning Research, 20(55):1–21, 2019.

[45] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar,
and Pierre-Alain Muller. Deep learning for time series classification: a review. Data
Mining and Knowledge Discovery, 33(4):917–963, 2019.

[46] Liang Feng, Yew-Soon Ong, Siwei Jiang, and Abhishek Gupta. Autoencoding evo-
lutionary search with learning across heterogeneous problems. IEEE Transactions
on Evolutionary Computation, 21(5):760–772, 2017.

[47] Liang Feng, Lei Zhou, Jinghui Zhong, Abhishek Gupta, Yew-Soon Ong, Kay-Chen
Tan, and Alex Kai Qin. Evolutionary multitasking via explicit autoencoding. IEEE
Transactions on Cybernetics, 49(9):3457–3470, 2018.

[48] Emile Fiesler and Russell Beale. Handbook of Neural Computation. CRC Press,
1997.

[49] Chelsea Finn. Conceptual Understanding of Deep Learning Workshop, May 2021.
Principles for Tackling Distribution Shift: Pessimism, Adaptation, and Anticipa-
tion.

[50] Rémi Flamary and Nicolas Courty et al. POT Python Optimal Transport library.
Journal of Machine Learning Research, 22(78):1–8, 2021.

[51] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc
Parizeau, and Christian Gagné. DEAP: Evolutionary algorithms made easy. Journal
of Machine Learning Research, 13:2171–2175, Jul 2012.

[52] Bernd Fritzke. A growing neural gas network learns topologies. In Advances in
Neural Information Processing Systems, pages 625–632, 1995.

142

[53] Bent Fuglede and Flemming Topsoe. Jensen-shannon divergence and hilbert
space embedding. In 2004 IEEE International Symposium on Information The-
ory, page 31. IEEE, 2004.

[54] Kunihiko Fukushima and Sei Miyake. Neocognitron: A self-organizing neural net-
work model for a mechanism of visual pattern recognition. In Competition and
Cooperation in Neural Nets, pages 267–285. Springer, 1982.

[55] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learn-
ing, volume 1. MIT Press Cambridge, 2016.

[56] Lauren Gravitz. The importance of forgetting. Nature, 571(July):S12–S14, 2019.

[57] Abhishek Gupta, Yew-Soon Ong, and Liang Feng. Insights on transfer optimization:
Because experience is the best teacher. IEEE Transactions on Emerging Topics in
Computational Intelligence, 2(1):51–64, 2017.

[58] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure,
dynamics, and function using networkx. Technical report, Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), 2008.

[59] Nikolaus Hansen. The CMA evolution strategy: a comparing review. In I. Inza
E. Bengoetxea J.A. Lozano, P. Larrañaga, editor, Towards a New Evolutionary
Computation, pages 75–102. Springer, 2006.

[60] Nikolaus Hansen. The CMA Evolution Strategy: A Tutorial. arXiv preprint
arXiv:1604.00772, 2016.

[61] Nikolaus Hansen, Steffen Finck, Raymond Ros, and Anne Auger. Real-parameter
black-box optimization benchmarking 2009: Noiseless functions definitions. Tech-
nical report, INRIA, 2009.

[62] Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-
adaptation in evolution strategies. Evolutionary Computation, 9(2):159–195, 2001.

[63] Emma Hart. Lifelong Learning Machines: Towards Developing Optimisation Sys-
tems That Continually Learn, pages 187–203. Springer International Publishing,
Cham, 2022.

143

[64] Emma Hart and Kevin Sim. On the life-long learning capabilities of a NELLI*:
A hyper-heuristic optimisation system. In International Conference on Parallel
Problem Solving from Nature, pages 282–291. Springer, 2014.

[65] Demis Hassabis, Dharshan Kumaran, Christopher Summerfield, and Matthew
Botvinick. Neuroscience-inspired artificial intelligence. Neuron, 95(2):245–258, 2017.

[66] Nils-Bastian Heidenreich, Anja Schindler, and Stefan Sperlich. Bandwidth selection
for kernel density estimation: a review of fully automatic selectors. AStA Advances
in Statistical Analysis, 97(4):403–433, 2013.

[67] Geoffrey E Hinton and Steven J Nowlan. How learning can guide evolution. Adaptive
Individuals in Evolving Populations: Models and Algorithms, 26:447–454, 1996.

[68] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Com-
putation, 9(8):1735–1780, 1997.

[69] David H Hubel and Torsten N Wiesel. Receptive fields, binocular interaction
and functional architecture in the cat’s visual cortex. The Journal of Physiology,
160(1):106–154, 1962.

[70] Thomas Jatschka, Günther R Raidl, and Tobias Rodemann. A general coopera-
tive optimization approach for distributing service points in mobility applications.
Algorithms, 14(8):232, 2021.

[71] Hetvi Jethwani and Sumeet Agarwal. In Proceedings of the Genetic and Evolutionary
Computation Conference Companion, pages 101–102, 2021.

[72] Min Jiang, Zhongqiang Huang, Liming Qiu, Wenzhen Huang, and Gary G Yen.
Transfer learning-based dynamic multiobjective optimization algorithms. IEEE
Transactions on Evolutionary Computation, 22(4):501–514, 2017.

[73] Min Jiang, Zhenzhong Wang, Liming Qiu, Shihui Guo, Xing Gao, and Kay Chen
Tan. A fast dynamic evolutionary multiobjective algorithm via manifold transfer
learning. IEEE Transactions on Cybernetics, 51(7):3417–3428, 2020.

[74] Yaochu Jin. Knowledge Incorporation in Evolutionary Computation. Springer, 2005.

144

[75] Yaochu Jin, Handing Wang, Tinkle Chugh, Dan Guo, and Kaisa Miettinen. Data-
driven evolutionary optimization: An overview and case studies. IEEE Transactions
on Evolutionary Computation, 23(3):442–458, 2018.

[76] Terry Jones and Stephanie Forrest. Fitness distance correlation as a measure of
problem difficulty for genetic algorithms. In Proceedings of the 6th International
Conference on Genetic Algorithms, volume 95, pages 184–192, 1995.

[77] James Kennedy and Russell Eberhart. Particle swarm optimization. In Proceedings
of ICNN’95 - International Conference on Neural Networks, volume 4, pages 1942–
1948. IEEE, 1995.

[78] Pascal Kerschke, Holger H Hoos, Frank Neumann, and Heike Trautmann. Auto-
mated algorithm selection: Survey and perspectives. Evolutionary Computation,
27(1):3–45, 2019.

[79] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
3rd International Conference on Learning Representations, 2015.

[80] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convo-
lutional networks. arXiv preprint arXiv:1609.02907, 2016.

[81] Barış Koçer and Ahmet Arslan. Genetic transfer learning. Expert Systems with
Applications, 37(10):6997–7002, 2010.

[82] Teuvo Kohonen. Essentials of the self-organizing map. Neural Networks, 37:52–65,
2013.

[83] Loizos Kounios, Jeff Clune, Kostas Kouvaris, Günter P Wagner, Mihaela Pavlicev,
Daniel M Weinreich, and Richard A Watson. Resolving the paradox of evolvability
with learning theory: How evolution learns to improve evolvability on rugged fitness
landscapes. arXiv preprint arXiv:1612.05955, 2016.

[84] Jakob Kruse. Technical report: Training mixture density networks with full covari-
ance matrices. arXiv preprint arXiv:2003.05739, 2020.

[85] Dhireesha Kudithipudi, Mario Aguilar-Simon, Jonathan Babb, Maxim Bazhenov,
Douglas Blackiston, Josh Bongard, Andrew P Brna, Suraj Chakravarthi Raja, Nick
Cheney, Jeff Clune, et al. Biological underpinnings for lifelong learning machines.
Nature Machine Intelligence, 4(3):196–210, 2022.

145

[86] Manuel Laguna and Rafael Marti. Experimental testing of advanced scatter search
designs for global optimization of multimodal functions. Journal of Global Opti-
mization, 33(2):235–255, 2005.

[87] Pedro Larrañaga and Jose A Lozano. Estimation of Distribution Algorithms: A
New Tool for Evolutionary Computation, volume 2. Springer Science & Business
Media, 2001.

[88] Yann Lecun and Yoshua Bengio. Convolutional networks for images, speech, and
time-series. MIT Press, 1995.

[89] Joel Lehman, Jeff Clune, Dusan Misevic, Christoph Adami, Lee Altenberg, Julie
Beaulieu, Peter J Bentley, Samuel Bernard, Guillaume Beslon, David M Bryson,
et al. The surprising creativity of digital evolution: A collection of anecdotes from
the evolutionary computation and artificial life research communities. Artificial Life,
26(2):274–306, 2020.

[90] Erez Lieberman, Christoph Hauert, and Martin A Nowak. Evolutionary dynamics
on graphs. Nature, 433(7023):312–316, 2005.

[91] Lei Liu, Chengshan Pang, Weiming Liu, and Bin Li. Learning to describe collec-
tive search behavior of evolutionary algorithms in solution space. In Asia-Pacific
Conference on Simulated Evolution and Learning, pages 196–207. Springer, 2017.

[92] Jonathan B Losos. The Princeton Guide to Evolution. Princeton University Press,
2017.

[93] Sushil J Louis and John McDonnell. Learning with case-injected genetic algorithms.
IEEE Transactions on Evolutionary Computation, 8(4):316–328, 2004.

[94] Loïc Marrec, Irene Lamberti, and Anne-Florence Bitbol. Toward a universal model
for spatially structured populations. Physical Review Letters, 127(21):218102, 2021.

[95] Norman McRae. John von Neumann. New York, NY: Pantheon, 1992.

[96] Olaf Mersmann, Bernd Bischl, Heike Trautmann, Mike Preuss, Claus Weihs, and
Günter Rudolph. Exploratory landscape analysis. In Proceedings of the 13th Annual
Conference on Genetic and Evolutionary Computation, pages 829–836, 2011.

146

[97] Diego Mesquita, Amauri Souza, and Samuel Kaski. Rethinking pooling in graph
neural networks. Advances in Neural Information Processing Systems, 33:2220–2231,
2020.

[98] Ryan Meuth, Meng-Hiot Lim, Yew-Soon Ong, and Donald C Wunsch. A proposi-
tion on memes and meta-memes in computing for higher-order learning. Memetic
Computing, 1(2):85–100, 2009.

[99] Risto Miikkulainen and Stephanie Forrest. A biological perspective on evolutionary
computation. Nature Machine Intelligence, 3(1):9–15, 2021.

[100] Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Daniel Fink,
Olivier Francon, Bala Raju, Hormoz Shahrzad, Arshak Navruzyan, Nigel Duffy,
et al. Evolving deep neural networks. In Artificial Intelligence in the Age of Neural
Networks and Brain Computing, pages 293–312. Elsevier, 2019.

[101] Alan Tan Wei Min, Yew-Soon Ong, Abhishek Gupta, and Chi-Keong Goh. Mul-
tiproblem surrogates: Transfer evolutionary multiobjective optimization of compu-
tationally expensive problems. IEEE Transactions on Evolutionary Computation,
23(1):15–28, 2017.

[102] Tom M Mitchell. The need for biases in learning generalizations. Technical Re-
port CBM-TR-117, Laboratory for Computer Science Research, Rutgers University,
1980.

[103] Mario A Muñoz, Yuan Sun, Michael Kirley, and Saman K Halgamuge. Algorithm
selection for black-box continuous optimization problems: A survey on methods and
challenges. Information Sciences, 317:224–245, 2015.

[104] Ferrante Neri and Carlos Cotta. Memetic algorithms and memetic computing op-
timization: A literature review. Swarm and Evolutionary Computation, 2:1–14,
2012.

[105] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolu-
tional neural networks for graphs. In International Conference on Machine Learning,
pages 2014–2023. PMLR, 2016.

[106] Stefano Nolfi and Dario Floreano. Learning and evolution. Autonomous Robots,
7(1):89–113, 1999.

147

[107] Gabriela Ochoa, Katherine M Malan, and Christian Blum. Search trajectory net-
works: A tool for analysing and visualising the behaviour of metaheuristics. Applied
Soft Computing, 109:107492, 2021.

[108] Yew-Soon Ong and Abhishek Gupta. Evolutionary multitasking: a computer science
view of cognitive multitasking. Cognitive Computation, 8(2):125–142, 2016.

[109] Yew-Soon Ong, Meng Hiot Lim, and Xianshun Chen. Memetic computation - past,
present & future. IEEE Computational Intelligence Magazine, 5(2):24–31, 2010.

[110] José Carlos Ortiz-Bayliss, Hugo Terashima-Marín, and Santiago Enrique Conant-
Pablos. Lifelong learning selection hyper-heuristics for constraint satisfaction prob-
lems. In Mexican International Conference on Artificial Intelligence, pages 190–201.
Springer, 2015.

[111] Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and Qiang Yang. Domain adap-
tation via transfer component analysis. IEEE Transactions on Neural Networks,
22(2):199–210, 2011.

[112] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions
on Knowledge and Data Engineering, 22(10):1345–1359, 2010.

[113] Chengshan Pang, Mang Wang, Weiming Liu, and Bin Li. Learning features for
discriminative behavior analysis of evolutionary algorithms via slow feature analysis.
In Proceedings of the 2016 on Genetic and Evolutionary Computation Conference
Companion, pages 1437–1444, 2016.

[114] Andreas Pavlogiannis, Josef Tkadlec, Krishnendu Chatterjee, and Martin A Nowak.
Construction of arbitrarily strong amplifiers of natural selection using evolutionary
graph theory. Communications Biology, 1(1):1–8, 2018.

[115] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, et al. Scikit-learn: Machine learning in python. Journal of Machine
Learning Research, 12(Oct):2825–2830, 2011.

[116] Google Research. Colaboratory. https://colab.research.google.com/, accessed:
2022.

148

[117] Robert G Reynolds. An introduction to cultural algorithms. In Proceedings of
the Third Annual Conference on Evolutionary Programming, pages 131–139. World
Scientific, 1994.

[118] Ryan Rossi and Nesreen Ahmed. The network data repository with interactive
graph analytics and visualization. http://networkrepository.com, 2015.

[119] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. A metric for distributions with
applications to image databases. In Sixth International Conference on Computer
Vision (IEEE Cat. No. 98CH36271), pages 59–66. IEEE, 1998.

[120] Günter Rudolph. Finite markov chain results in evolutionary computation: A tour
d’horizon. Fundamenta Informaticae, 35(1-4):67–89, 1998.

[121] Marc Rußwurm, Sébastien Lefèvre, Nicolas Courty, Rémi Emonet, Marco Körner,
and Romain Tavenard. End-to-end learning for early classification of time series.
arXiv preprint arXiv:1901.10681, 2019.

[122] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between
capsules. arXiv preprint arXiv:1710.09829, 2017.

[123] Tara N Sainath, Oriol Vinyals, Andrew Senior, and Haşim Sak. Convolutional,
long short-term memory, fully connected deep neural networks. In 2015 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 4580–4584. IEEE, 2015.

[124] Hiroki Sayama. Guiding designs of self-organizing swarms: Interactive and auto-
mated approaches. In Guided Self-Organization: Inception, pages 365–387. Springer,
2014.

[125] David W Scott. Multivariate Density Estimation: Theory, Practice, and Visualiza-
tion. John Wiley & Sons, 2nd edition, 2015.

[126] Thomas W Sederberg and Scott R Parry. Free-form deformation of solid geometric
models. In Proceedings of the 13th Annual Conference on Computer Graphics and
Interactive Techniques, pages 151–160, 1986.

[127] Moritz Seiler, Janina Pohl, Jakob Bossek, Pascal Kerschke, and Heike Trautmann.
Deep learning as a competitive feature-free approach for automated algorithm selec-
tion on the traveling salesperson problem. In International Conference on Parallel
Problem Solving from Nature, pages 48–64. Springer, 2020.

149

[128] Joan Serrà, Santiago Pascual, and Alexandros Karatzoglou. Towards a universal
neural network encoder for time series. In 21st International Conference of the
Catalan Association for Artificial Intelligence, pages 120–129. IOS Press, 2018.

[129] Y Shevchuk. NeuPy: Neural Networks in Python. http://neupy.com/pages/
home.html, accessed: November 2020.

[130] Harsh Shrivastava, Xinshi Chen, Binghong Chen, Guanghui Lan, Srinvas Aluru,
Han Liu, and Le Song. Glad: Learning sparse graph recovery. arXiv preprint
arXiv:1906.00271, 2019.

[131] Daniel Sieger, Stefan Menzel, and Mario Botsch. A comprehensive comparison of
shape deformation methods in evolutionary design optimization. In Proceedings of
the International Conference on Engineering Optimization, pages 1–5, 2012.

[132] Daniel L Silver, Qiang Yang, and Lianghao Li. Lifelong machine learning systems:
Beyond learning algorithms. In 2013 AAAI Spring Symposium Series, 2013.

[133] David Silver, Satinder Singh, Doina Precup, and Richard S Sutton. Reward is
enough. Artificial Intelligence, page 103535, 2021.

[134] Kevin Sim, Emma Hart, and Ben Paechter. A lifelong learning hyper-heuristic
method for bin packing. Evolutionary Computation, 23(1):37–67, 2015.

[135] Dan Simon. Evolutionary Optimization Algorithms. John Wiley & Sons, 1st edition,
2013.

[136] Kate A Smith-Miles. Cross-disciplinary perspectives on meta-learning for algorithm
selection. ACM Computing Surveys (CSUR), 41(1):6, 2009.

[137] Kenneth Sörensen. Metaheuristics—the metaphor exposed. International Transac-
tions in Operational Research, 22(1):3–18, 2015.

[138] Kenneth O Stanley, Jeff Clune, Joel Lehman, and Risto Miikkulainen. Designing
neural networks through neuroevolution. Nature Machine Intelligence, 1(1):24–35,
2019.

[139] Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O
Stanley, and Jeff Clune. Deep neuroevolution: Genetic algorithms are a competitive

150

alternative for training deep neural networks for reinforcement learning. arXiv
preprint arXiv:1712.06567, 2017.

[140] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction.
MIT Press, 2018.

[141] Kevin Swersky, Jasper Snoek, and Ryan P Adams. Multi-task bayesian optimiza-
tion. Advances in Neural Information Processing Systems, 26, 2013.

[142] Abdulkadir Tasdelen and Baha Sen. A hybrid CNN-LSTM model for pre-miRNA
classification. Scientific Reports, 11(1):1–9, 2021.

[143] Ye Tian, Xingyi Zhang, Cheng He, Kay Chen Tan, and Yaochu Jin. Principled
design of translation, scale, and rotation invariant variation operators for meta-
heuristics. arXiv preprint arXiv:2105.10657, 2021.

[144] Alan Turing. Intelligent machinery. 1948. The Essential Turing, page 395, 1969.

[145] Mikdam Turkey and Riccardo Poli. An empirical tool for analysing the collective
behaviour of population-based algorithms. In European Conference on the Applica-
tions of Evolutionary Computation, pages 103–113. Springer, 2012.

[146] Tobias Uller, Armin P Moczek, Richard A Watson, Paul M Brakefield, and Kevin N
Laland. Developmental bias and evolution: A regulatory network perspective. Ge-
netics, 209(4):949–966, 2018.

[147] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio,
and Yoshua Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903,
2017.

[148] Petar Veličković and Charles Blundell. Neural algorithmic reasoning. Patterns,
2(7):100273, 2021.

[149] Aymeric Vie, Alissa M Kleinnijenhuis, and Doyne J Farmer. Qualities, chal-
lenges and future of genetic algorithms: a literature review. arXiv preprint
arXiv:2011.05277, 2020.

[150] C L Camacho Villalón, T Stützle, and M Dorigo. Cuckoo Search≡(µ+ λ)–Evolution
Strategy. Technical Report No. 2021-006, IRIDIA, Université Libre de Bruxelles,
2021.

151

[151] Christian Leonardo Camacho Villalón, Thomas Stützle, and Marco Dorigo. Grey
wolf, firefly and bat algorithms: Three widespread algorithms that do not contain
any novelty. In International Conference on Swarm Intelligence, pages 121–133.
Springer, 2020.

[152] Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy,
David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan
Bright, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python.
Nature Methods, 17(3):261–272, 2020.

[153] John von Neumann. The Computer and the Brain. Yale University Press, 2012.

[154] Jane X Wang. Meta-learning in natural and artificial intelligence. Current Opinion
in Behavioral Sciences, 38:90–95, 2021.

[155] Zhiguang Wang, Weizhong Yan, and Tim Oates. Time series classification from
scratch with deep neural networks: A strong baseline. In 2017 International Joint
Conference on Neural Networks (IJCNN), pages 1578–1585. IEEE, 2017.

[156] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of transfer
learning. Journal of Big Data, 3(1):1–40, 2016.

[157] Danny Weyns, Thomas Bäck, Renè Vidal, Xin Yao, and Ahmed Nabil Belbachir.
Lifelong computing. arXiv preprint arXiv:2108.08802, 2021.

[158] David H Wolpert and William G Macready. No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation, 1(1):67–82, 1997.

[159] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu
Philip. A comprehensive survey on graph neural networks. IEEE Transactions on
Neural Networks and Learning Systems, 2020.

[160] Haipeng Xiao, Miguel Angel Sotelo, Yulin Ma, Bo Cao, Yuncheng Zhou, Youchun
Xu, Rendong Wang, and Zhixiong Li. An improved LSTM model for behavior
recognition of intelligent vehicles. IEEE Access, 8:101514–101527, 2020.

[161] Zhengzheng Xing, Jian Pei, and Eamonn Keogh. A brief survey on sequence clas-
sification. ACM SIGKDD Explorations Newsletter, 12(1):40–48, 2010.

152

[162] Huaxiang Zhang and Jing Lu. Adaptive evolutionary programming based on rein-
forcement learning. Information Sciences, 178(4):971–984, 2008.

[163] Jun Zhang, Weien Zhou, Xianqi Chen, Wen Yao, and Lu Cao. Multisource selective
transfer framework in multiobjective optimization problems. IEEE Transactions on
Evolutionary Computation, 24(3):424–438, 2019.

[164] Pan Zhang, Xin Yao, Lei Jia, Bernhard Sendhoff, and Thorsten Schnier. Target
shape design optimization by evolving splines. In 2007 IEEE Congress on Evolu-
tionary Computation, pages 2009–2016. IEEE, 2007.

153

