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Abstract—In recent years, human position tracking with wearable sensors has been rapidly developed and shown great
potential for applications within healthcare, smart homes, sports, and emergency services. Unlike tracking researches
with sensors on the foot, human positioning studies with head-mounted sensors are fewer and still remain problems that
have not been solved. We have proposed two studies solve part of the problems separately: HINNet is able to track
people with free head rotations; HeadSLAM allows long-term tracking with stable errors. In this paper, to allow free head
rotations meanwhile support long-term tracking, HINNet is combined with HeadSLAM and tested. The result shows that
the combination could effectively distinguish head rotations and keep a low and stable position error in long-term tracking,
with an absolute trajectory error (ATE) of 2.69m and relative trajectory error (RTE) of 3.52m.

Index Terms—Machine learning , Inertial Navigation, Pedestrian Dead Reckoning, Deep Neural Network , Inertial Measurement Unit,
Wearable sensors, SLAM

I. INTRODUCTION

There has been a rapid development in technology and algorithms
that allow for real-time human position tracking. The maturation
of this technology has brought with it many possibilities that
could substantially change our modern way of life. The real-
world applicability of monitoring is nonetheless governed by the
performance of these systems. However, certain scenarios require
robust and accurate information, even when complex environmental
constrains are in place. The environment can lead to a range of
behavioural responses that influence our motor outcomes [1]. This
indicates that people can move in unpredictable ways, as they navigate
and interact within their environment. This is particular important to
consider when we are exploring solutions for areas such as security,
first responders or healthcare. The location of people might need
to be tracked accurately as their safety and lives might depend
on it. They can e.g. move in and out of buildings with unknown
layouts and the monitoring system will need to be able to deal
with that. Furthermore, in environmentally complex environments it
is unlikely that any infrastructure is either available or operational
under those conditions (disaster areas are a good example of this) .
Normally additional infrastructure (such as Wi-Fi) can be leveraged
for positional tracking, but it should be clear that there is no certainty
of this in the aforementioned situation. The solution should thus be
infrastructure agnostic.

The infrastructure issues also applies to solutions that are considered
"globally" applicable. The best known positioning solution is after
all the Global Navigation Satellite System (GNSS). It is widely
used in outdoor environments, but requires signals from satellites,
which could be blocked or suffer from rapid deterioration, in addition
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to multi-path effects in indoor environments. Other modalities that
rely on more local infrastructure, like leveraging information from
Received Signal Strength (RSS) of Wireless Local Area Network
(WLAN) [2] / Bluetooth low energy (BLE) beacons [3] / ultra
wide band (UWB)[4], radio frequency identification (RFID) [5] and
ultrasound[6] are also limited in application for extreme environmental
and behavioural conditions. All these rely on external aiding signals,
information, or infrastructure, and thus, they are not applicable in
scenarios where these signals are severely affected or when there is
no signal at all. Inertial navigation does not rely on any infrastructure,
which makes it possible to be used flexibly during a wider range of
behavioral scenarios. Inertial navigation is now becoming one of the
most popular tracking methods, and this is further propelled by the
rise of smart devices. It offers a self-contained navigation technique
and only requires inertial measurement units (IMUs) to be worn by
the user. This offers a great opportunity to create low-cost devices
that are more ecological valid under certain complex behavioral and
environmental conditions.

According to a recent systematic literature review [7], most human
positioning studies put inertial sensors on the foot, only limited papers
adopted head-mounted inertial sensors. However, the head is a very
suitable location for small, discreet, and unobtrusive sensors, as
the whole body is working on stabilising our visual center during
motions. Furthermore, there are a lot of everyday objects, like glasses,
earphones, mouthguards, hearing aids, helmet, etc, which can be used
to integrate these sensors inconspicuously. Recently, we have proposed
two tracking systems for head-mounted IMUs: HeadSLAM [8] and
HINNet [9].

HeadSLAM was proposed to improve the tracking accuracy during
a longer tracking duration. Traditional pedestrian dead reckoning
(PDR) methods suffer from error accumulations, because of the lack
of calibration methods. HeadSLAM uses estimated trajectories at
the earlier stage, which was proved to be more reliable, to calibrate
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estimated trajectories in the later stage that tended to have larger
accumulation errors. HeadSLAM could reach an average Root Mean
Square Error (RMSE) of 0.34 m indoors and 0.83 m outdoors
during 10 min walks in a 20 hour dataset. This showed a significant
improvement compared to the PDR method. However, HeadSLAM
in the original study still used odometry from a basic PDR method
[10], which has two drawbacks; (i) parameters need to be optimized
for each individual and (ii) it does not allow free head rotations
during walking.

HINNet is a pedestrian inertial navigation system allowing free
head movements with head-mounted IMUs by applying a deep neural
network (DNN)[9]. It could effectively distinguish head rotations and
changes in walking direction. It was shown that it had a relative
trajectory error of 5.57m. Although, it solved the problem of head
rotations, the estimation errors got larger as the testing time got
longer. The underlying reason for this was because there is no
efficient calibration taking place.

In this paper, the above two methods are neatly combined to
solve both the head rotation problem and the long term estimation
error accumulation. The average trajectory error (ATE) and relative
trajectory error (RTE) were used as performance measurements. A
performance comparison with just the HINNet will be given.

II. METHODS

The whole system is summarized in Figure 1.

A. HINNet

HINNet was proposed to solve the problem of differentiating
between head rotations and changes in walking direction by applying
the following three procedures.

1) Roll and Pitch compensation: The raw IMU sensor data was
first transformed into a normalized coordinate system in which 𝑧-
axis is aligned with the gravity direction, whilst there is no gravity
component on the normalized 𝑥-axis and 𝑦-axis, by Equation (1)
and (3), where 𝑎 and 𝜔 are 3 ∗ 𝑙𝑒𝑛𝑔𝑡ℎ𝑑𝑎𝑡𝑎 vectors representing the
accelerometer data and gyroscope data.

𝑎𝑛𝑜𝑟𝑚 = 𝑅−1
𝑎 · 𝑎𝑟𝑎𝑤 (1)

𝑅𝑎 = 𝑅𝑥 (𝜙)𝑅𝑦 (𝜃) =


𝑐𝑜𝑠𝜃 0 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜃

𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜃 −𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜃

 (2)

𝜔𝑛𝑜𝑟𝑚 = 𝑅−1
𝜔 · 𝜔𝑟𝑎𝑤 (3)

𝑅𝜔 =


1 0 −𝑠𝑖𝑛𝜃
0 𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜃

0 −𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜃

 (4)

2) Peak ratio feature: Two kinds of obvious body movements in
walking generate regular acceleration waves in different directions:
(i) body swinging from left to right, (ii) stepping generating linear
acceleration front-to-back[11]. Figure 2 shows that when facing
forward, the acceleration variation wave from stepping could be
fully projected to 𝑥 axis, while the wave from side swing has no
projection to 𝑥 axis. However, when facing sideways, the acceleration

Fig. 1: Overview of the HINNet-HeadSLAM system. HINNet receives
raw accelerometer and gyroscope data from the IMU on the head,
and output the odometry to HeadSLAM. HeadSLAM calibrates and
estimates the final trajectory. Long short-term memory is abbreviated
by LSTM.

variation wave from both stepping and swinging will be projected on
to 𝑥 axis, and the magnitudes of these two projections will change
when head rotation angle changes. Thus the head rotation could be
detected when the magnitudes ratio changed.

One full wave of swing requires two steps but one full "stepping"
wave requires one step. The frequency difference makes it possible to
distinguish these two motions in the frequency domain. After applying
Fast Fourier Transform (FFT) to normalised 𝑥-axis acceleration, the
first two peaks on the frequency spectrum represent the swings and
steps accordingly. The ratio of these two peak values is the peak
ratio feature 𝑃𝑟𝑎𝑡𝑖𝑜(Equation 5)). The peak ratios in 2𝑠 before and
after each sample were calculated and recorded as two different input
features for the neural network.

𝑃𝑟𝑎𝑡𝑖𝑜 =
𝑃𝑠𝑤𝑖𝑛𝑔

𝑃𝑠𝑡𝑒𝑝𝑝𝑖𝑛𝑔

(5)

3) Deep neural network framework: HINNet uses 2-layer bidi-
rectional long short-term memory (LSTM) [12].

(𝑎, 𝜔, 𝑃𝑟𝑎𝑡𝑖𝑜)8∗60
𝐹𝜃−→ (Δ𝑙,Δ𝜓)2∗1 (6)

The 8-dimension input is composed of normalised accelerometer
data 𝑎, gyroscope data 𝜔 and two peak ratio features 𝑃𝑟𝑎𝑡𝑖𝑜. And
outputs are walking distance Δ𝑙 and rotation Δ𝜓. A window length
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Fig. 2: Different magnitudes of side swing and "stepping "are measured
by the 𝑥 and 𝑦 axis depending on the orientation of the head.

of 60 frames (1 s) was used in this study to generate a smoother
trajectory in HeadSLAM.

B. HeadSLAM

The odometry generated in HINNet is subsequently fed into
HeadSLAM for trajectory calibration.

HeadSLAM uses Rao Blackwellized Particle filter (RBPF) from
FastSLAM algorithm [13]. The two-dimensional space is first divided
into a grid of adjacent hexagons of a given radius. The SLAM problem
can be decomposed into a problem of pedestrian localization and
mapping conditioned on the pedestrian’s position (pose), with a
posterior simplified as:

𝑝(P0:𝑘 ,M|Z1:𝑘) = 𝑝(M|P0:𝑘) · 𝑝(P0:𝑘 |Z1:𝑘) (7)

where P and M represent the pose and the map, Z𝑘 is a noisy
measurement of the difference between P𝑘−1 and P𝑘 , which is the
step vector estimated from the previous PDR layer. The pose could
be estimated recursively:

𝑝(P0:𝑘 |Z1:𝑘) ∝ 𝑝(Z𝑘 |P𝑘−1:𝑘) · 𝑝(P𝑘 |P0:𝑘−1) · 𝑝(P0:𝑘−1 |Z1:𝑘−1) (8)

𝑝(Z𝑘 |P𝑘−1:𝑘) is the likelihood function, which adopts a normal
distribution to draw possible poses after each step. The pose transition
function 𝑝(P𝑘 |P0:𝑘−1) is computed by marginalizing over the map.
Integrating it yields:

𝐼𝑖 ∝
𝑁 �̃�

ℎ̃
+ 𝛼�̃�

ℎ̃

𝑁ℎ̃ + 𝛼ℎ̃

(9)

where 𝑁 �̃�

ℎ̃
is the number of times the 𝑖-th particle crossed edge 𝑒

(edges of hexagons), 𝑁ℎ̃ is the sum of the crossed times of all edges
of the hexagon in this particle’s map counters. 𝛼�̃�

ℎ̃
and 𝛼ℎ̃ =

∑5
𝑒=0 𝛼

�̃�

ℎ̃

are the prior counts. The result is used in the particle weight update:

𝑤𝑖
𝑘 ∝ 𝑤𝑖

𝑘−1 · 𝐼𝑖 (10)

where 𝑤𝑖
𝑘

denotes the weight of the 𝑖-th particle at step 𝑘 . If a
particle crossed an edge which has been crossed more frequently
than the other edges of the last hexagon from which the particle

comes from, it tends to have more weight. Thus a consistent walking
pattern would be generated.

Each particle contains information about the previous track and the
probability of transitions from each hexagon to its adjacent hexagons,
which is captured by a probabilistic map. The final result is the best
map from the particle with the highest weight.

III. RESULTS

This paper uses data from HINNet [9], in which the IMU data
was collected at 60Hz from a head-mounted XSens Dot whilst the
groundtruth was collected from a chest-mounted phone which used
visual inertial odometry (VIO). It includes 79 datasets with a total
time of around 528 minutes. The dataset was collected outside in
three different scenarios with different lengths and paths to ensure
a greater external validity. The trajectories include straight routes,
curves, and turns at different angles, which extends the complexity
and applicability of the tests.

Figure 3 shows the results from HINNet with HeadSLAM
comparing to original HINNet on three different tracks.

Three metrics were utilized for quantitative analysis:
ATE (𝑚): Absolute trajectory error. ATE is the root mean square

error (RMSE) between the whole ground truth trajectory and the
estimated trajectory.

RTE (𝑚 in Δ𝑡): Relative trajectory error. RTE is defined as the
average RMSE over a fixed time interval (1 minute in this study)
with alignments of the initial states.

RTE and ATE are standard position evaluation metrics in navigation
[14].

Distance error rate (%): Drift of the estimated total distance.
RTE, ATE and percentage error of total distance of each method

were summarized in Table 1.

Table 1: Relative trajectory error (RTE), absolute trajectory error
(ATE), and percentage error of total distances of HINNet and
HINNet+HeadSLAM.

Methods RTE (𝑚) ATE (𝑚) Distance Error(%)
HINNet 3.69 7.13 1.15

HINNet + HeadSLAM 3.52 2.69 2.19

IV. CONCLUSION

HINNet solved the problem of the confusion between pure head
rotations and walking direction changing when using head-mounted
IMUs. HeadSLAM solved the problem of error accumulations in long-
term tracking. The combination of them could solve both problems:
allowing free head rotations and meanwhile supporting long-term
tracking. ATE is the RMSE of the whole trajectory (8 - 12 minutes
in this study). RTE could be recognised as ATE in one minute. Both
methods have similar RTEs. But the ATE of combined method is
significantly smaller than that of original HINNet, which proved
the HINNet+HeadSLAM is able to maintain a stable and consistent
error in long-term tracking. It has also been proved in Figure 3, the
trajectories generated by HINNet are gradually getting farther and
farther away from ground truth because of the error accumulations
and the lack of calibration. However, the trajectories estimated by
HINNet+HeadSLAM still keep close to the ground truth as time
goes on.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3: Estimated trajectories in meters. Light gray lines are ground
truth. Red lines in (a), (c), (e) represent trajectories generated from
HINNet only. Blue lines in (b), (d), (f) shows the results from the
combination of HINNet and HeadSLAM.

Although the proposed method has the advantage from both HINNet
and HeadSLAM, it also obtained some of the limitations from them.
It could differentiate pure head rotations from walking direction
changing as long as they do not happen at the same time. Overlaps
of head and body rotations lead to a confusion in heading estimation
and information from other sensors or new features are needed to
maintain a correct heading direction. It should also be noted that,
just like HeadSLAM, the effectiveness of this combined method only
exists when walking repeatedly on a restricted, predefined path, such
as walking through indoor corridors or outdoor tracks for several
laps. This is because the calibration of HeadSLAM depends on the
probability map which is updated in overlaps. Thus the combined
method is applicable for scenarios in which people cover the same
path multiple times.

Besides the above limitations, there are also other possible future
research directions. In real world scenarios, people not just rotate
their heads and walk with constant pace, they may run, jump, turn,
slide or stumble in daily activities. Users will have different body
data and movement pattern. Sensors may also have different accuracy

or other parameters. If a tracking system seek extensive use in daily
real scenarios, datasets with a larger scale and variety should be
essential for the generalization and robustness of the system.
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