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Abstract  1 

Novel, disease-modifying treatments for neuropathic pain are urgently required. The cellular 2 

immune response to nerve injury represents a promising target for therapeutic development. 3 

Recently, the role of natural killer (NK) cells in both the central and peripheral nervous system 4 

disease has been the subject of growing interest. In this opinion piece, we set out the case 5 

for NK cell-based intervention as a promising avenue for development in the management of 6 

neuropathic pain. We explore the potential cellular and molecular targets of NK cells in the 7 

peripheral nervous system by contrasting with their reported functional roles in central 8 

nervous system diseases, and suggest strategies for utilizing the beneficial functions of NK 9 

cells and immune-based therapeutics in the context of neuropathic pain. 10 

11 
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Main text  1 

 2 

In need of new approaches to neuropathic pain 3 

Neuropathic pain is caused by lesion or disease of the somatosensory nervous 4 

system resulting from pathological conditions as diverse as trauma, diabetes, chemotherapy 5 

and viral infection. Peripheral neuropathies are a leading cause of chronic pain with a strong 6 

negative impact on quality of life [1]. Current therapeutic drugs including anticonvulsants, 7 

antidepressants and opioids act by silencing pain pathways but do not address the 8 

pathophysiological mechanisms underlying neuropathic pain, and can produce serious 9 

adverse narcotic effects [2]. According to the US Center for Disease Control and Prevention 10 

(CDC), during 1999–2020 more than 564,000 people in the US died from an opioid overdose 11 

driven in large part by a dependency on prescription opioid analgesics [3]. As nociceptive 12 

pain has protective function, molecules and signaling pathways responsible for nociceptive 13 

pain might not be suitable therapeutic targets for persistent and chronic neuropathic pain. 14 

Due to the heterogeneity of disease etiology and the diversity of pathophysiological 15 

mechanisms underlying neuropathic pain, combination therapies, rather than a single drug 16 

target, have been recently suggested for future therapeutic development [2, 4]. However, in 17 

order to successfully manage neuropathic pain in the long-term, and most effectively combat 18 

the opioid crisis, novel and disease-modifying therapeutic approaches with high analgesic 19 

potency and low risk of abuse are urgently required [5]. 20 

The involvement of innate and adaptive immune responses in various chronic pain 21 

conditions, and the demonstration that neuropathic pain manifests with some features of 22 

chronic neuroinflammatory disease in the nervous system [6], has generated considerable 23 

interest in the immune system as a source of potential therapeutic intervention. 24 

Neuroinflammation in chronic pain involves interactions with non-neuronal cells throughout 25 

the neural pathways of pain; for example, activation of resident neuroglial cells such as 26 
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microglia and astrocytes within the brain and spinal cord of the central nervous system (CNS), 1 

alterations to resident glia and structural cells of the peripheral nervous system (PNS), as 2 

well as infiltration of circulating immune cells at all levels of the nervous system [7].  3 

While traditionally seen solely as a driver of neuropathic pain development, recent 4 

evidence has revealed potential cellular immune mechanisms underlying the natural 5 

resolution of neuropathic pain [8-14]. In this opinion piece, we explore the possibility of 6 

harnessing one such immune cell, natural killer (NK) cells, as a novel therapeutic strategy for 7 

the treatment of chronic neuropathic pain and discuss the potential benefits and pitfalls of this 8 

approach. 9 

 NK cells represent 5-20 % of total circulating lymphocytes in the body and are known 10 

primarily as killers of unwanted cells (e.g. tumor cells, virus infected cells) by introducing 11 

cytolytic proteases, such as granzymes, via perforin pores into the target cell cytoplasm. 12 

Additional distinct subsets of NK cells preferentially perform an immunomodulatory role by 13 

releasing inflammatory cytokines [15]. NK cell cytotoxicity against a target cell is controlled 14 

by the ability to detect germline-encoded, major histocompatibility (MHC) I-like activating and 15 

inhibitory ligands on the target cell surface and unlike adaptive T cells do not require prior 16 

sensitization [15] (see Box 1). Recent evidence points to the role of cytotoxic NK cells in 17 

response to nerve injury, the function of which can in turn affect pain outcomes [8, 16]. 18 

 19 

Natural pain killers? 20 

Early reports into the neuronal regulation of NK cell cytotoxicity provided a link to 21 

acute pain. Within 30 min of acutely painful electric stimulation in humans, both NK cell 22 

cytotoxicity, as measured by the specific lysis of the K652 tumor cell line, and the proportion 23 

of CD56+ cells in peripheral blood, were significantly increased [17]. In a later report, acute 24 

heat shock pain in mice was shown to cause a similar increase in the cytotoxicity of splenic 25 
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NK cells [18].  1 

Conversely, studies of NK cells in chronic pain conditions suggest an association with 2 

decreased numbers and/or cytotoxic function of systemic NK cells. Both inherited and 3 

infectious arthritis patients showed a decrease in the frequency of perforin-expressing 4 

cytotoxic NK cells in the blood, while there was an increase in regulatory NK cells expressing 5 

TNFα [19]. NK cell frequency was negatively correlated with mechanical pain sensitivity in 6 

herpes zoster neuralgia and polyneuropathy patients [20], and significantly decreased in 7 

patients with fibromyalgia – a chronic pain condition of unknown etiology - compared to 8 

healthy controls [21, 22]; furthermore, NK cells in the blood of people with fibromyalgia 9 

expressed higher level of degranulation marker CD107a+ and inhibitory receptor TIGIT, 10 

implying recent NK cell activity followed by a state of exhaustion [22]. A study of CD56 bright 11 

and dim NK cell populations (see Box 1) in people with heterogeneous chronic pain 12 

conditions showed no correlation with pain scores [23], suggesting that NK cell modulation is 13 

not necessarily a ubiquitous feature across all pain syndromes. Further study of NK cell 14 

responses in specific diseases will require consideration of the heterogeneity of NK cell 15 

subsets across different tissues [24]. 16 

Investigations relating NK cells to chronic pain outcomes point to a potential benefit 17 

in NK cell gain-of-function after injury. In preclinical studies systemic administration of 18 

interleukin (IL)-2 prevented chronic pain-like hypersensitivity after sciatic nerve crush injury 19 

that was dependent on the presence of endogenous NK cells despite the pleiotropic action 20 

of this cytokine in vivo [8]. Analogously, the analgesic effect of electro-acupuncture in rats 21 

with chronic constriction injury correlated with a regulation of IL-2 levels, and was again 22 

dependent on NK cell activity [25]. People with spinal cord injury showed lower levels of NK 23 

cell-related genes in whole blood compared to uninjured controls [26], and whole blood RNA 24 

sequencing of people with low back pain revealed a dynamic increase in NK cell frequency 25 
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in the group whose pain resolved after three months compared to those that did not [9, 27]. 1 

The apparent inverse relationship between NK cell activity and chronic pain observed 2 

in clinical studies may be related to stress hormone-mediated changes in the immune 3 

function [28]. Acute stress hormones (e.g. catecholamine) tend to increase NK cell numbers 4 

[29], while chronic stress hormones (i.e. corticosteroids) impair NK cell cytotoxicity [30]. 5 

Nociceptive pain may activate the sympathetic nervous system as an acute stressor, and 6 

chronic pathological pain is associated with activation of the hypothalamus-pituitary-adrenal 7 

(HPA) axis, upon which chronic pain may act as a long-term stressor [31]. 8 

Overall, growing pre-clinical and clinical research suggest a potential therapeutic 9 

benefit to restoring NK cell function in various chronic pain diseases. However, further 10 

mechanistic studies are required to distinguish the causative and correlative changes in NK 11 

cell properties in clinical pain conditions. 12 

 13 

Finding the motive for NK cells in the peripheral nervous system 14 

How might NK cells function after nerve injury aid the resolution of neuropathic pain? 15 

Axons expressing the self-antigen retinoic acid early protein 1 (RAE1), a membrane-bound 16 

stress ligand encoded by the Raet1 gene family in mice, also known as the UL16 binding 17 

protein (ULBP) gene family in humans, are targeted for pruning by NK cells expressing the 18 

cytotoxicity receptor Natural Killer group 2D (NKG2D) [8]. Ligand-specific engagement of 19 

sensory neurons by cytotoxic NK cells – leading to direct axonal degeneration – appeared to 20 

be restricted to an injury context [8]. ULBP ligands have also been identified in epidermal 21 

nerve fibers of fibromyalgia patients with CD56+ cells shown in close apposition [22], 22 

suggesting a homologous mechanism may occur in humans [27].  23 

While the regulation of stress ligands in sensory neurons after nerve injury remains 24 
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unknown, we do know that the expression of the RAE1 in other tissues can be upregulated 1 

by Ras [32] and PI3K signaling [33] pathways, which are crucial to axonal guidance and 2 

neuronal survival via growth factor receptor signaling [34]. Activation of the PI3K-AKT-mTOR 3 

cascade in chronic inflammation was identified as a key risk factor for neuronal 4 

hyperexcitability by promoting elongation and collateral branching of the nerve terminals [35]. 5 

Thus, stress-ligand expression could indicate ongoing aberrant neuronal activity in sensory 6 

axons.  7 

Recent evidence suggests that misdirected reinnervation after traumatic nerve injury 8 

contributes significantly to the neuropathic phenotype in mice [36]. Such ‘miswired’ sensory 9 

neurons might therefore be a target for NK cell-mediated pruning [8]. The analgesic efficacy 10 

of the genetic ablation of these nociceptive afferents [36] suggests the potential for cytotoxic 11 

NK cells to offer a form of ‘cellular neurosurgery’ for chronic neuropathic pain, akin to the 12 

‘molecular neurosurgery’ of chemical neuro-ablation [37, 38]. Knowledge of the sensory 13 

neuron subtypes targeted by NK cell receptor-ligand interactions will be essential in the 14 

design of any potential cellular therapies for targeted neuro-ablation.  15 

Cellular senescence - a pause in the life cycle of a cell by stressors such as tissue 16 

injury [39] – is another potential target for immune surveillance by cytotoxic NK cells [40]. 17 

Senescence-like processes are increasingly recognized in neuroinflammatory diseases, 18 

including peripheral neuropathies [41]. After nerve crush injury in rats, senescence-19 

associated genes and β-galactosidase (SA-β-gal) expression increase in the sciatic nerves 20 

[42]. Interestingly, the number of SA-β-gal positive cells declined around two weeks, 21 

suggesting the majority are removed or transition out of a senescence-like state [42]. 22 

Schwann cells adopt a senescence-like phenotype after peripheral nerve injury in aged and 23 

chronically de-innervated mice. Elimination of senescent Schwann cells by the senolytic drug 24 

ABT-263 reduces neuroinflammation, and improves reinnervation and sensory recovery [43]. 25 
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Like sensory neurons after peripheral nerve injury [8], recruitment of NK cells to senescent 1 

fibroblasts is driven by the expression of NKG2D ligands [44]. The failure of senescence 2 

elimination may lead to chronic inflammation and fibrosis [39, 44, 45], both of which are 3 

significant risk factors for neuropathic pain in humans [46, 47].  4 

NK cells are also capable of immune modulation, either indirectly via cytokine or 5 

chemokine release, or direct killing of other immune cells [48]. Recently, RNA sequencing of 6 

the mouse sciatic nerve after crush injury revealed pathways of potential cross-talk between 7 

infiltrating NK cells and dendritic cells (DC), which may in turn affect DC migration and 8 

function [49]. NK cells were also shown to reduce fibrosis and inflammation after skeletal 9 

muscle injury by contact-mediated apoptosis of infiltrating neutrophils [50]. This capability of 10 

NK cells to modulate the inflammatory response of DCs, neutrophils, as well as macrophages 11 

[51], is therefore likely to influence functional outcomes owing to the role of these cells in the 12 

immune response to peripheral nerve injury [52, 53]. 13 

In summary, NK cell function could in theory result in the resolution of neuropathic 14 

pain in the context of peripheral nerve injury by directed cytotoxicity against a number of 15 

pathological cellular targets (Figure 1, Key Figure). The outcome of indirect immune 16 

modulation by NK cells, while clearly a possibility within the inflammatory milieu of an injured 17 

nerve, remains more complex to predict (see Box 2). 18 

 19 

What can we learn from NK cells in the central nervous system? 20 

Numerous lines of evidence have shown the involvement of NK cells in the brain and 21 

spinal cord in health and disease [54] (Figure 2). Current knowledge of the molecular 22 

mechanisms underlying NK cell function in the CNS provides important insights into the 23 

potential roles of NK cells in PNS diseases, and may help guide the development of NK-24 



9 
 

based immunotherapies for neuropathic pain.  1 

       Like immature sensory neurons of the PNS [55], neural stem cells (NSCs) in mice 2 

express high levels of the NK activating ligand RAE1, suggesting a direct interaction between 3 

NK cells and resident cells in the CNS [56]. In adults, NSCs sustain their self-tolerance 4 

against NK cells through co-expression of the inhibitory CD94/NKG2A receptor ligand Qa1 5 

[56]. A reduction in Qa1 expression at the late stage of experimental autoimmune 6 

encephalomyelitis (EAE), a mouse model of multiple sclerosis, leads to the loss of self-7 

tolerance and the elimination of NSCs by NK cells, limiting the recovery from brain 8 

inflammation [56]. Neural progenitor cells (NPCs) also express RAE1, promoting their 9 

elimination, and diminish the survival of neurons in NPC allografts [57, 58]. Cytotoxic NK cells 10 

are also capable of targeting motor neurons expressing ligands for both NKG2D and DNAM-11 

1 receptors in the motor cortex of amyotrophic lateral sclerosis (ALS) patients and mouse 12 

models [59], as well as human oligodendrocytes by NKG2D receptor activation in multiple 13 

sclerosis (MS) [60]. NK cells in the cerebrospinal fluid (CSF) of patients with Alzheimer’s 14 

Disease (AD) express high levels of cytotoxicity-related genes NKG7 and GNLY [61], and the 15 

NK cells in the brain tissues from triple-transgenic AD mouse model (3xTg-AD) show higher 16 

mRNA level of granzyme B [62]. NK cell-deficient mice showed enhanced neurogenesis and 17 

improved cognitive function [62]. Together these data indicate a potential direct 18 

neurodegenerative role of cytotoxic NK cells in the CNS in the context of underlying genetic 19 

or immune risk factors (see Figure 2). 20 

         NK cells also regulate CNS diseases by producing immune mediators. NK cells 21 

enhance the migration of pathogenic CD4+ T cells into the CNS by providing IFN-γ in the 22 

early stage of EAE [63]. In AD, circulating NK cells may contribute to derangement by 23 

overproduction of IFN-γ and TNFα [64]. On the other hand, NK cells may also act in an anti-24 

inflammatory capacity by IFN-γ-induced astrocyte expression of TRAIL, thereby promoting 25 
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apoptosis of autoreactive CD4+ T cells via death receptor DR5 signaling [65]. NK cells 1 

responding to the release of the chemokine CXCL12 are also reported to be protective in a 2 

minimally invasive photothrombotic model of ischemic brain injury [66], though a more severe 3 

brain infarction injury may result in direct NK cell-mediated neurotoxicity and exacerbate 4 

neurological deficits [67]. 5 

The varying functional outcomes of the NK cell response to CNS pathology may be 6 

due to the diversity of NK cell receptor repertoire and effector molecules, as well as the 7 

heterogeneity of targets in the CNS and PNS. Similar to catecholaminergic neurons in the 8 

CNS [68], administration of IFN-γ promotes PNS sensory neurons to express MHC-I [69], 9 

which affects the activation of NK cells. Like immature primary sensory neurons, as well as 10 

those after injury [8], NSCs and NPCs in the brain express the NKG2D ligand RAE1 [56-58], 11 

while motor neurons express NKG2D ligand MULT1 to regulate NK cells [59]. In the injured 12 

brain of a mouse stroke model, NK cells expressing the inhibitory receptor NKG2A outnumber 13 

NKG2D-expressing NK cells in the injured brain [70]. These findings suggest that stressed 14 

neurons in the CNS and PNS could signal to NK cells through the expression of distinct 15 

ligands. Whether parallel roles for NK cell receptor-ligand interactions identified in CNS 16 

diseases exists in the PNS remains to be explored. 17 

 18 

NK cell therapy in pain: tilting the balance towards homeostasis. 19 

The evidence discussed above suggests a double-edged sword function of NK cells 20 

in nervous system disease: Detrimental neurodegeneration by direct NK cytotoxicity in the 21 

CNS; and neuropathy-resolving degeneration of pathogenic sensory neurons in the PNS.  22 

The beneficial reduction in neuropathic phenotype by peripheral axon degeneration 23 

is supported by experiments in mice which fail to undergo Wallerian degeneration and as a 24 
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consequence display a prolongation of neuropathic hypersensitivity after nerve injury [71]. 1 

Wallerian degeneration of axons is an integral part of the response to nerve injury, and is 2 

likely better tolerated in the PNS due to its regenerative capacity. Recent evidence implicates 3 

two key cytotoxic immune mediators, perforin and granzyme, in the inhibition of axon 4 

regeneration after nerve injury [72, 73]. It is possible that cytotoxic immune cell-mediated 5 

sensory neuron interactions leading to axon degeneration [8] and impaired regeneration [73] 6 

are two observations of the same underlying process (see Box 2). The context in which an 7 

NK cell-based intervention is made will therefore depend on the therapeutic outcome being 8 

sought; impaired regeneration may be desired when aberrant innervation leads to chronic 9 

pain, but it should be actively avoided when assistance with functional nerve repair is required 10 

with age.  11 

Cellular senescence is a useful analogy for understanding the therapeutic potential 12 

of NK cells in neuropathic pain. Kale and colleagues have proposed that while senescent 13 

cells are beneficial in the short-term, the return of tissue homeostasis relies on their timely 14 

removal [45]. NK cells can distinguish stressed and healthy self [74], and naturally target pro-15 

inflammatory senescent cells [45]. Thus, general NK cell stimulation may be useful in a post-16 

injury pathology (see Figure 2).  17 

Clearly the benefits of enhanced NK cell function must be balanced with the potential 18 

to exacerbate existing neurological or inflammatory disease. NK cell-based therapies for 19 

nerve injury-induced pain may be contraindicated with articular [75, 76], or intestinal [77] 20 

inflammation. The potential contribution of NK cells must be considered in other forms of 21 

peripheral neuropathy, such as chemotherapy-induced or inflammatory neuropathies [16]. 22 

For example, the efficacy of intravenous immunoglobulin (IVIg) treatment in chronic 23 

inflammatory neuropathy patients has been associated with suppression of NK cell 24 

cytotoxicity [78-81]. These findings suggest either the potential role for NK cells in disease 25 
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etiology, or that IVIg may achieve its benefit by conversion of NK cells to an inflammation 1 

resolving phenotype [82] (see Figure 2). Caution must also be exercised in interpreting NK 2 

cell dysfunction in painful peripheral neuropathies such as fibromyalgia [22] and whether 3 

axon dye-back is a response to, or cause of, the disease [16, 27]. A deeper understanding of 4 

NK cell function in disease states, in combination with accessible biomarkers, may help 5 

stratify patients ahead of treatment. 6 

At present, therapies designed to induce a gain of immune function are typically 7 

reserved for the treatment of aggressive, chemotherapy-resistant cancers, where serious 8 

side-effects may nevertheless be tolerated. As a non-life threatening condition, treatments for 9 

neuropathic pain will necessarily require a wider therapeutic window, setting the bar higher 10 

than immunotherapies currently available. Early trials of NK cell stimulation in vivo using 11 

cytokines such as interleukin-2 resulted in off-target and non-specific side effects [83], 12 

precluding the approach taken in previous preclinical models [8]. Instead, an alternative to 13 

adoptive cell therapy is to harness antibody-dependent cellular cytotoxicity (ADCC) using 14 

multi-specific antibodies, known as NK cell ‘engagers’ [84], owing to their interaction with one 15 

or more NK cell activating receptors [85, 86]. Unlike T cells, NK cells operate independently 16 

of HLA presentation [87], and may be less prone to cytokine release syndrome [88], thereby 17 

offering the possibility of allogeneic, or “off-the-shelf” NK cells for a cellular immunotherapy 18 

for pain. Despite growing evidence, establishing an NK cell therapy for neuropathic pain 19 

presents the challenge of deciding on the appropriate neuronal, glial or structural cellular 20 

target. Advancing knowledge on the biological mechanisms will be critical to maximize the 21 

therapeutic efficacy of such specific engager molecules, as well as minimize their potential 22 

side effects. Recruitment of specific NK cell subsets (e.g., resident, infiltrating or memory 23 

cells) may also be required [48]. 24 

 25 
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Concluding remarks 1 

NK cells potentially target multiple critical cellular components implicated in 2 

neuropathic pain, acting via NK cells’ direct cytotoxic and/or immunomodulatory effects in 3 

peripheral nerves (Figure 1). In terms of potential translational implications, so far, the best 4 

evidence for NK cell intervention lies in painful traumatic neuropathies, where preclinical 5 

studies indicate that the therapeutic effects may result from removal of abnormal sensory 6 

axons. It is important to remember, however, that NK cells will inevitably operate in concert 7 

with other immune cells to restore homeostasis in the microenvironment of injured peripheral 8 

nerves [49] (see Box 2). The design of therapeutic immune interventions should minimize 9 

the effects on reparative tissue re-modelling via phagocytic [89] and autophagic [90] 10 

mechanisms, which may be equally important in preventing pain chronification after nerve 11 

injury. To fully realize the therapeutic potential of NK cells for peripheral neuropathy and 12 

chronic pain, several important questions about the diverse neuroimmune interactions 13 

between NK cells, non-neuronal cells and sensory neurons should be addressed (see 14 

Outstanding Questions). Further translational and clinical research, along with mechanistic 15 

studies in preclinical models, will be required to assess whether NK cell immunotherapy is a 16 

realistic option for treatment of neuropathic pain. 17 

 18 

Acknowledgements 19 

We thank Dr. Serge A. van de Pavert (CIML, France) for helping generate Figure 2 20 

with BioRender.com and Dr. Adam Handel (Oxford, UK) for helpful discussion. SBO and HWK 21 

are supported by the National Research Foundation of Korea grants (NRF-22 

2018R1A5A2024418, NRF-2021R1A2C3003334, and NRF-2022M3E5E8081190) funded by 23 

the Korean government MSIT (Ministry of Science and ICT). AJD and SW are supported by 24 

a UKRI Future Leaders Fellowship award (MR/V02552X/1) and a Children's Cancer and 25 



14 
 

Leukaemia Group (CCLG) award (CCLGA 2022 05). For the purpose of Open Access, the 1 

authors have applied a CC BY public copyright license to any Author Accepted Manuscript 2 

(AAM) version arising from this submission. 3 

 4 

Declaration of interests 5 

HWK, AJD and SBO are named inventors on a patent for the use of immune cells in the 6 

treatment of nerve injury. 7 

  8 



15 
 

Box 1. NK cells: classification, origin and function 1 

NK cells derive from lymphoid progenitor cells common to B and T cells. NK cells are 2 

classified as one of five founding members of an expanded family of lymphocytes known as 3 

innate lymphoid cells (ILCs): NK, ILC1, ILC2, ILC3 and Lymphoid tissue inducer (LTi) [91]. 4 

NK cells were first characterized by their natural cytotoxicity against several types of tumor 5 

cells [92]; later, their cytokine-producing regulatory effector function was also recognized [93]. 6 

In humans NK cells are categorized into cytotoxic CD56dimCD16+ cells and regulatory 7 

CD56brightCD16neg, and in mice CD27neg CD11b+ and CD27+CD11bneg cells, respectively [94]. 8 

Around 90% of peripheral NK cells are CD56dim and perforin+ cytotoxic NK cells, which are 9 

the matured form of the NK-lineage cells. Cytotoxic NK cells release lytic granules containing 10 

pore-forming perforin proteins and serine proteases such as the granzyme family to the 11 

target. This cytolytic activity is usually mediated by either the upregulation of “induced-self” 12 

activating ligands, or downregulation of inhibitory ligands (typically major histocompatibility 13 

class I molecules) in defective cells, known as “loss-of-self”. Cytotoxic NK cells also possess 14 

direct cytolytic activity against other effector cells in an NK receptor-ligand interaction-15 

dependent manner [95-97], preventing immune-mediated damage to the host. For example, 16 

NK cells may eliminate both activated CD4+ and CD8+ T cells as well as LPS-activated 17 

inflammatory macrophages [98], and accelerate neutrophil apoptosis via activating NK cell 18 

receptor NKp46 and the Fas pathway [99], which may have implications for the resolution of 19 

inflammation. The immature CD56brightCD16neg population regulates maturation of other 20 

immune cells, which is essential for modulating adaptive immune responses [93, 100, 101]. 21 

CD56bright NK cells are usually fewer than 10% of total blood NK cells, and are generally 22 

enriched in secondary lymphoid organs. This regulatory NK cell subset secretes a host of 23 

signaling molecules including interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNFα) 24 

and colony-stimulating factor 2 (CSF2) [15]. IFN-γ from NK cells may promote TH1 cell 25 
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responses [102, 103], and with TNFα may also mature dendritic cells (DC) [104] leading to 1 

the induction of a cytotoxic CD8+ T cell response [103]. In addition to the conventional NK 2 

cells, they can also be found highly localized in non-lymphoid organs including liver [105], 3 

lung [106], gut [107], and uterus [108]. Uterine NK cells, for example, uniquely promote 4 

vascular remodeling in early pregnancy [109, 110]. The expression of distinct phenotypic 5 

markers related to organ-specific niches further emphasize the unconventional roles played 6 

by these tissue-resident NK cells [111]. 7 

 8 

  9 
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Box 2. Lymphocytes other than NK cells with similar roles 1 

 2 

CD8+, γδ T and NKT cells have a similar cytotoxic capacity to NK cells with the 3 

additional requirement of antigen-specific co-stimulation of a corresponding T cell receptor. 4 

In the murine CNS, CD8+ T cells appear to exacerbate neurological deficits after traumatic 5 

brain injury by targeting neurons at chronic time points [112]. In addition, in humans cytotoxic 6 

CD8+ and γδ T cells are capable of killing oligodendrocytes through NKG2D receptor-ligand 7 

interactions, which can promote demyelination and neuroinflammation [60]. In the feline PNS, 8 

CD8+ T cells have been shown to cause direct injury to lentivirus-infected DRG neurons via 9 

co-stimulator receptor CD40 [113] and infiltrate the peripheral nerve in a model of 10 

spontaneous chronic peripheral neuritis [114]. NKG2D is a key costimulatory receptor for 11 

CD8+ T cells [115] suggesting that expression of RAE1 by sensory neurons [8] may 12 

additionally trigger sensory neuroimmune interactions with CD8+ T cells after nerve injury. 13 

Indeed, CD8+ T cells were recently shown to interact with sensory neurons after injury in an 14 

MHC-I dependent manner, though the exact molecular interaction remains unclear [73]. CD8+ 15 

T cells may also play an indirect role in peripheral nerve function, for example by secreting 16 

IL-13 and thereby promoting IL-10 production by macrophages, contributing to neuropathic 17 

pain resolution [11, 12].  18 

Innate lymphocyte cells (ILCs) are tissue resident cells involved in the rapid response 19 

to tissue damage and its repair by TCR-independent stimulation [91]. ILC1s partially share a 20 

receptor repertoire with NK cells, including NKG2D, and molecular secretions including IFN-21 

γ and granzymes [116]. NKp46+ ILC3s also express NKG2D and may therefore be involved 22 

in the interaction with sensory neurons in the context of nerve injury [8]. ILC2s might also be 23 

involved in resolving neuropathic pain by producing IL-4 and IL-13 [12, 117, 118]. It remains 24 

to be clarified whether other ILC subsets are present after peripheral nerve injury, and if so, 25 

what are their roles. 26 
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Other lymphocytes have been shown to be protective in neuropathic pain [14]. For 1 

example, CD4+ regulatory T (Treg) cells, which are immunosuppressive and capable of 2 

limiting tissue inflammation [119], promote the recovery of neuropathic pain by activation of 3 

the transmembrane receptor tumor necrosis factor receptor 2 (TNFR2)-mediated [13]. 4 

Moreover, Treg cells are a source of the anti-inflammatory cytokine IL-10, which may 5 

contribute to chronic pain resolution via the IL-10 receptor expressed by sensory neurons 6 

[10]. For further reading in this area we recommend an excellent recent review by Kavelaars 7 

and Heijnen [120].  8 

  9 
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 1 

 2 

Figure 1. Potential targets for NK cells in the context of neuropathic pain. 3 

(1) Nerve injury upregulates the NKG2D receptor ligand RAE1, as well as the activation of 4 

the PI3K-AKT-mTOR pathway, which promotes collateral axonal growth, neuronal 5 

hyperexcitability and potential neuropathic pain. Hyperexcitable neurons expressing RAE1 6 

therefore represent a potential target for NK cells to eliminate via receptor recognition. (2) 7 

Misdirected sensory nerve innervation contributes to neuropathic pain and may also be a 8 

target for NK cell-mediated pruning. By eliminating these miswired nerve endings, NK cells 9 

may help restore normal sensory function and reduce pain. (3) Senescence-associated 10 

genes are upregulated in cells within the nerve after injury. NK cells are capable of eliminating 11 

senescent cells, including senescent Schwann cells. NK cells may improve reinnervation and 12 

sensory recovery by eliminating senescent Schwann cells or other structural cells, which may 13 

help to reduce neuropathic pain. (4) NK cells may inhibit the activity of inflammatory immune 14 

cells by direct interactions, which can aid in the resolution of inflammation. NK cells can also 15 

activate cytotoxic immune cells via cytokine release, promoting target cell killing and further 16 

reducing neuropathic pain. 17 
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 1 

Figure 2. CNS and PNS disorders recruit NK cells affecting neurons and the 2 

surrounding cells.  3 

A) During CNS homeostasis, the presence of the blood-brain barrier prevents the direct 4 

communication of peripheral NK cells with NSCs, NPCs and mature neurons. Thrombotic 5 

stroke injury recruits NK cells into the brain parenchyma by chemotaxis with anti-inflammatory 6 

outcome [66] (1). IFN-γ produced by NK cells may also attenuate inflammation via TRAIL 7 

induction in astrocytes and promoting apoptosis of autoreactive CD4+ T cells [65] (2 and 3). 8 

Elevated permeability of the blood-brain barrier in inflammatory disease also enables the 9 

recruitment of NK cells to the CNS. Regulation of cytotoxicity receptor ligands in NSC and 10 

NPC in mouse model EAE leads to loss of NK cell tolerance and cell death (4 and 5). 11 

Oligodendrocytes (6) and motor neurons (7) expressing activatory ligands become a target 12 
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for NK cytotoxicity in MS and ALS, respectively [59, 60]. B) During homeostasis the peripheral 1 

nerve is largely devoid of NK cells [114]. Peripheral nerve injury recruits NK cells that interact 2 

with sensory neurons and a network of resident and infiltrating immune cells [49]. Cytotoxic 3 

granules and cytokines produced by NK cells regulate the degeneration and regeneration of 4 

injured sensory neurons (8) [8, 73], attenuating the development of neuropathic pain. Where 5 

peripheral neuropathies may be underlined by genetic or immune risk factors, such as CIDP 6 

and GBS, NK cells along with cytotoxic T cells [114] may themselves participate in detrimental 7 

neuroinflammation within the nerve (9 and 10) [79-81]. C) When tissue homeostasis is 8 

disturbed, NK cell function in the central and peripheral nervous systems may result in 9 

physiologically beneficial or detrimental outcomes depending on the underlying disease 10 

context. Abbreviations: ALS, amyotrophic lateral sclerosis; CIDP, chronic inflammatory 11 

demyelinating polyneuropathy; CNS, central nervous system; EAE, experimental 12 

autoimmune encephalitis; GBS, Guillain-Barré syndrome; NPCs, neural precursor cells; NSC, 13 

neural stem cells; PNS, peripheral nervous system; TRAIL, tumor necrosis factor-related 14 

apoptosis-inducing ligand. Figure created with BioRender (BioRender.com). 15 
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