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A B S T R A C T

Paratransit, in particular the minibus taxi, is the mainstay of public transport in sub-Saharan
Africa. These vehicles are often second-hand, ageing, fuel inefficient, and expensive to operate
- issues that electrification can ameliorate. However, modeling and planning large-scale transi-
tions to electric paratransit require reliable estimates of vehicle energy consumption. This paper
provides such estimates by applying a vehicle kinetic model to per-second GPS data gathered on
minibus taxis. Data include 62 trips across three routes with different driving conditions near
Stellenbosch, South Africa. We find a range of energy consumption from 0.29 to 0.51 kWh/km
(mean = 0.39 kWh/km). Past estimates in literature relied on per-minute GPS data, which we
show leads to inaccurate energy consumption estimates. We recommend new kWh/km values
for modeling vehicle operations and grid impact, and discuss how future work can utilize our
analysis to advance the transition to electric paratransit sub-Saharan Africa.

. Introduction

This paper aims to provide high fidelity energy consumption estimates (kWh/km) for electric paratransit vehicles in South Africa.
stablishing per-distance energy consumption for electric vehicles (EV) is necessary for planning operations, sizing vehicle batteries,
etermining appropriate charging infrastructure, and managing vehicle impact on the grid. The availability of high fidelity energy
onsumption estimates is paramount for the optimization of these models, and thus critical for stakeholders in governments, charge
oint manufacturers and operators, fleet managers, vehicle manufacturers, utilities companies, network operators, and city planners
o effectively plan large-scale transitions to EVs. By providing specific recommendations for kWh/km values to use in these models
n various conditions, this paper will improve the efficiency and cost savings of a transition to electric paratransit, which can benefit
oth operators and passengers.

Transport accounts for roughly third of global energy consumption, and is responsible for about 16% of global emissions, and the
evelopment of low-carbon transport in cities is part of the global agenda to mitigate climate change and relates to at least three of
he United Nation’s Sustainable Development Goals (Zinkernagel et al., 2018). Accordingly, EV sales have seen substantial growth in
he Global North and many global vehicle manufacturers and governments seek to stop production of combustion engines altogether
s early as 2035 (Motavalli, 2021; Geospatial Commission, 2021; Sunday Times Driving, 2022). In contrast, due to low electricity
ccess and high upfront costs (Pillay et al., 2019), the transition to more expensive EVs has been painstakingly slow in sub-Saharan
frica (SSA). Africa is a major destination for old and used vehicles, which typically consume particularly dirty fuel such as diesel
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with high-sulfur content. This not only causes serious air pollution and health problems in African cities, but contributes heavily to
greenhouse gas emissions (Odhiambo et al., 2021). The fuel for these vehicles is typically imported, leaving these countries with
issues related to fuel quality, energy security and price fluctuations (Odhiambo et al., 2021).

Privately-owned minibus taxis are ubiquitous in the developing cities and rural areas of SSA. They form a substantial part of
he ‘‘paratransit’’ system—an informal transport sector common in the region. Paratransit travel comprises at least 90% of road-
ased public trips in Lagos, Kampala and Dar es Salaam (Behrens et al., 2015; Evans et al., 2018), of which 83% are by minibus
axi (Mccormick et al., 2016; Evans et al., 2018; KCCA, 2016). In general, paratransit is estimated to provide 50%–98% of daily
ommutes in most major cities around sub-Saharan Africa (Behrens et al., 2015). In South Africa, minibus taxis form the entire
aratransit industry, which is worth $3.7bn. Every day, over 300,000 minibus taxis carry out approximately 15 million trips,
mounting to more than 73% of daily commuters (Transaction Capital, 2021). In the face of the increasing demand for urban
ommuting heralded by urbanization and population growth, electrifying minibus taxis becomes even more critical for meaningful
ransport sector decarbonization and reductions in air pollution in sub-Saharan Africa (SSA) (Ayetor et al., 2021; Lin and Sai, 2022).

It is well recognized that this informal sector is now faced with the need to transform to an electrical energy source (Behrens
t al., 2015; Evans et al., 2018; Mccormick et al., 2016; Ehebrecht et al., 2018). However, electricity grids in the region are
nergy-constrained, which affects the feasibility of converting to EVs. In addition, many stakeholders and decision makers are
apital constrained, and thus investment must be carefully considered. Therefore, before commencing a large scale transition, it
s crucial to establish high fidelity estimates of minibus taxi energy requirements, based on their micro-mobility patterns across
riving conditions. Without high fidelity estimates, it would be difficult for stakeholders to plan operations, size viable vehicle
atteries, manage EV impact on the grid, and design appropriate charging infrastructure.

The driving cycles and the concomitant energy requirements of electric passenger vehicles and larger buses in higher-income
ountries are well established and deeply analyzed (Brady and O’Mahony, 2016; Berzi et al., 2016; Kivekäs et al., 2018; Smith
t al., 2011; Wang et al., 2008), and there are energy consumption estimates for minibuses in developed contexts (Cignini et al.,
020). Nevertheless, there is a distinct lack of high fidelity analysis for paratransit in SSA. Given the unique mobility patterns
nd unconventional driving styles of African paratransit, high-income country conventional driving cycles do not apply to these
ontexts (Ndibatya and Booysen, 2021).

To estimate vehicle energy consumption, we apply a vehicle kinetic model to per-second GPS data gathered on trips taken on
nternal combustion engine (ICE) minibus taxis to model how much energy would be required to power an electric equivalent.
o date, estimations of energy consumption for electric paratransit in SSA have been either based on data captured at a sampling
requency of once per minute (Abraham et al., 2021; Booysen et al., 2022), or have been forced to a conservative simplifying
ssumption due to a lack of data (Collett et al., 2021). However, paratransit vehicle drivers have been reported to engage in
ggressive maneuvers characterized by sharp acceleration and/or deceleration movements that last mere seconds, and for making
umerous quick stops to continuously pick up and drop off passengers (Zeeman and Booysen, 2014). The energy intensity of
ggressive micro-mobility patterns have been observed to have a great effect on per-distance energy consumption (Al-Wreikat
t al., 2021; Faria et al., 2019; Murphey et al., 2009; Eno Akpa et al., 2019). Therefore, following the Nyquist–Shannon sampling
heorem (Shannon, 1949), we hypothesize that a sampling frequency that provides several samples per movement is needed to
apture their effect on energy consumption. This paper aims to fill this gap in the literature and improve stakeholder confidence in
aratransit vehicle energy consumption estimates by utilizing per-second GPS data that can capture vehicle micro-mobility patterns
o provide high fidelity energy consumption estimates. After presenting our main results, we verify that per-second data provides
igher fidelity estimates than per-minute data.

Another overlooked aspect in the literature is disaggregating energy consumption estimates by driving conditions. EV energy
onsumption is known to be highly dependent on driving conditions with different elevation, speed, and micro-mobility patterns (Al-
reikat et al., 2021; Pan et al., 2017; Jonas et al., 2017), and previous literature has not provided kWh/km estimates for different

riving conditions. To fill this gap in the literature and capture the effect of variation in driving conditions on energy consumption,
his paper uses data captured on urban, hilly, and inter-city routes. We hypothesized that time of day may also have an effect on
raffic patterns, so for each route we captured data in the morning, afternoon, and evening.

Our high fidelity estimates can be used to establish a benchmark for paratransit energy consumption. Once established, such
standard could be used to validate future energy consumption estimates from per-minute data in various locations and driving

onditions. This is useful since gathering high-resolution data for vehicles across many different contexts would be time and labor
ntensive. There are mobility companies such as WhereIsMyTransport and GoMetro that already capture telemetry data for minibus
axis at a resolution of once per-minute in many cities around SSA to create spatial mobility models for operations and route planning,
nd there is potential for substantial benefit to being able to take advantage of this data that already exists or is being gathered. Thus,
hile providing high fidelity vehicle energy consumption estimations for minibus taxis in South Africa that can be used immediately,

his paper provides a platform for future research to develop accurate methods of estimation based on per-minute data input. For
xample, developing a micro-traffic simulator, based on the micro-traffic mobility patterns we see in the per-second data, which
an intake per-minute data and accurately model taxi driver behavior in between waypoints. With such a tool, per-minute travel
ata could be fed into a micro-traffic simulator to come up with reliable energy consumption estimations for paratransit in many
ifferent locations. Fig. 1 shows how this validation process can feed into large-scale EV and infrastructure design.

. Methodology

To construct high fidelity energy consumption estimates for minibus taxis: (i) a kinetic model is required to establish energy
emand from motion based on GPS data, and (ii) granular GPS data from representative journeys is necessary. Fig. 2 visualizes at
2

high level the process for using GPS data and a kinetic model to construct energy consumption estimates.
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Fig. 1. How per-second GPS data can support EV and infrastructure design by validating energy consumption estimates derived from GPS per-minute data.

Fig. 2. How per-second GPS data is used to estimate energy consumption via a kinetic model.

.1. Kinetic model

The objective of the kinetic model is to estimate the energy consumed by the vehicle over the duration of a trip. In this section,
e provide background on kinetic models seen in the literature, justify the principles behind the construction of our kinetic model,
nd describe our model mathematically.

All vehicle kinetic models are derived from the same fundamental principles of physics, which inform us that the instantaneous
ower output of an EV is a function of its velocity, acceleration, and the slope angle it faces. However, kinetic models in the literature
ften differ slightly; various kinetic models have been employed to provide estimations of EV energy consumption based on GPS
ravel data (Kurczveil et al., 2014; Wu et al., 2015; Fiori et al., 2016; Maia et al., 2011; Ilyès et al., 2020). The fundamental laws
f physics cannot change, so these variations come from discrepancies based on assumptions from empirical data or fitted model
arameters. Validation with ground-truth data has shown that these variations can have an effect on model performance (Sagaama
t al., 2019).

For example, Sagaama et al. (2019) show that the accuracy of the kinetic model integrated in the micro-traffic simulator SUMO
Simulation Of Urban MObility) improves when applying a certain dynamic regenerative braking formula in favor of a static
egenerative braking factor. We find that adding this dynamic regenerative braking formula into our kinetic mode decreases mean
ehicle energy consumption across all trips by 15% (from 0.39 kWh/km to 0.33 kWh/km), a substantial margin. A key assumption
n this dynamic formula is that the drivers are making full use of regenerative braking every time they decelerate. However, in
his context, given the taxi drivers’ lurching driving style and heavy usage of brake pads, this means the dynamic formula will
verestimate the energy recuperated back into the battery. For this reason, our kinetic model does not use a dynamic regenerative
raking formula. Instead, we apply a static regenerative braking factor that is not subject to being highly influenced by extreme
eceleration events.

Sagaama et al. (2019) also show that ambient air temperature can have an effect on power offtake. A limitation of our dataset is
hat temperature data was not available. However, given that (a) the dynamic power offtake evaluated in Sagaama et al. (2019) was
ot constructed for paratransit contexts and (b) there is a paucity of low-voltage auxiliary power applications on board paratransit,
t is not likely in the authors’ estimation that this would have increased model accuracy or significantly affected the results.

While some empirical assumptions and fitted model parameters have been validated in developed contexts with ground-truth
enchmark of real per-second EV energy consumption data (Wu et al., 2015; Fiori et al., 2016), these results do not necessarily
xtrapolate to sub-Saharan African paratransit driving contexts. Furthermore, the motivation of this paper is to provide high fidelity
ehicle energy consumption estimations, not a novel kinetic model. Therefore, to avoid concern that our energy consumption
stimates are potentially skewed by underlying empirical assumptions or fitted model parameters, the model we employ is based
olely on fundamental principles of physics.

While we entirely avoid basing our kinetic model on empirical assumptions or fitted model parameters, any kinetic model must
mploy some specific vehicle constant parameters to obtain EV energy consumption estimates. These constant parameters along
ith the relevant references are listed in Table 1. Certain parameters can vary along the duration of a trip, namely: minibus weight,

olling resistance coefficient, powertrain efficiency, regenerative braking efficiency, and power offtake. Justification for avoiding
ynamic calculations of the latter two parameters have been explained in this section, but further explanation is required to justify
3

eeping the former three constant: For minibus weight, laden weight for an electric minibus is used. The taxis fill up with passengers
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Fig. 3. The forces acting on a vehicle driving on a slope: Aerodynamic drag (𝐹𝑎𝑑 ), rolling resistance (𝐹𝑟𝑟), slope drag (𝐹𝑠𝑑 ), and vehicle force (𝐹𝑣) which can
be either positive or negative depending on whether the vehicle is accelerating or decelerating. 𝐹𝑣 is shown with thicker lines as it is usually the greatest force,
since it must overcome other forces in order to accelerate or decelerate the vehicle.

Table 1
Constants and parameters used in kinetic model.
Parameter Symbol Value Ref.

Gravitational acceleration 𝑔 9.81 m∕s2 –
Density of air at 25 ◦C 𝜌 1.184 kg∕m3 Engineering Toolbox (2008)
Power offtake 𝑝0 100 W Fridlund and Wilen (2020)
Minibus weight 𝑚v 3900 kg Higer (2020)
Drag coefficient 𝑐𝑑 0.36 Toyota (2022a)
Rolling resistance coefficient 𝑐rr 0.02 Engineering Toolbox (2008)
Vehicle’s front surface area 𝐴 4 m2 Toyota (2022b)
Powertrain efficiency 𝜇v 90% Renault Group (2021)
Regenerative braking efficiency 𝜇rg 65% Tesla (2007)

at the start of the journey at the taxi ranks, so while some pick up and drop off occurs, they are almost always operating at laden
weight. For rolling resistance coefficient, the parameter value used represents the average of car tires on tar or asphalt, which
is the average road quality upon which these vehicles were traveling. Dynamically modeling powertrain efficiency comes with
similar disadvantages as dynamically modeling regenerative braking efficiency. Electric powertrains behave differently than ICE
powertrains, and a dynamic model of powertrain efficiency would have been sensitive to the taxis’ lurching driving style. Thus, a
dynamic model of powertrain efficiency would have been inaccurate in this setting, and the parameter value is chosen based on
an estimate of average expected electric powertrain efficiency for the duration of the trips. However, the authors recognize that
the kinetic model can be sensitive to these parameters, so a sensitivity analysis is conducted and presented in Section 3.3.2. These
parameters can be empirically fitted to electro-kinetic models with a greater degree of confidence when electric taxis are introduced
to South Africa in the future and direct measurement is available.

To compute energy consumption over the duration of a trip, we use per-second GPS data to separately compute either the energy
out of the battery to turn the wheels or power auxiliary functions, or the energy flow into the battery from regenerative braking at
each sample’s time step 𝑛, 𝐸[𝑛]. We then sum the estimate at each time step to obtain entire trip’s energy consumption 𝐸trip =

∑

𝐸[𝑛].
To determine energy flow at each time step, 𝐸[𝑛] in (kWh), we implement the following five-step algorithm:
(1) Compute the sum of all external forces on the vehicle for sample 𝑛 at a sample period of 𝜏, 𝐹ext [𝑛] in (N), using

𝐹ext [𝑛] = −𝐹ad[𝑛] − 𝐹rs[𝑛] − 𝐹rr [𝑛] (1a)

where 𝐹ad[𝑛] is the aerodynamic drag, 𝐹rr [𝑛] is the rolling resistance friction, and 𝐹rs[𝑛] is the slope drag force (positive for incline
or negative for decline). The forces are shown in Fig. 3.

The forces in Fig. 3 are individually calculated from fundamental physics using the following equations and the constants listed
in Table 1.

𝐹ad[𝑛] =
1
2
𝜌𝑐𝑑𝐴(𝑣[𝑛])2 (1b)

𝐹rr [𝑛] =

{

𝑚v𝑔𝑐rr𝑐𝑜𝑠(𝛼[𝑛]), if 𝑣[𝑛] > 0.3 m/s (GPS noise threshold)
0, otherwise

(1c)

𝐹 = 𝑚 𝑔𝑠𝑖𝑛(𝛼 ) (1d)
4

sd v t



Transportation Research Part D 118 (2023) 103695C. Hull et al.

f

o

2

a
c

o
r
p
f

l
2
b
(
e

2

a
o
h
(
4
r
r
o

where

𝛼[𝑛] =

{

arcsin( ℎ[𝑛]−ℎ[𝑛−1]𝑠[𝑛] ) if ∣ ℎ[𝑛] − ℎ[𝑛 − 1] ∣> 0.1 m (GPS noise threshold)
0, otherwise

(2) Compute the expected change in velocity (in m/s) if 𝐹𝑒𝑥𝑡[𝑛] were the only force applied to the vehicle.

𝑑𝑣exp[𝑛] =
𝐹ext [𝑛]
𝑚v

𝜏 (2)

(3) Any difference between the expected velocity and measured velocity, 𝑣𝑚𝑒𝑎𝑠, is ascribed to the acceleration or deceleration
orce applied by the vehicle, 𝐹v, calculated by:

𝐹v[𝑛] =
𝑣meas[𝑛] − 𝑣exp[𝑛]

𝜏
𝑚v (3)

(4) When 𝐹v[𝑛] > 0, energy in (Ws) was discharged from the battery to apply propulsion to the vehicle.

𝐸prop[𝑛] =
𝐹v[𝑛]𝑣[𝑛]𝜏

𝜇
(4a)

When 𝐹v[𝑛] < 0, energy in (Ws) was charged into the battery via regenerative braking:

𝐸regen[𝑛] = 𝜇rg𝐹v[𝑛]𝑣[𝑛]𝜏 (4b)

The energy discharge from the battery simply to keep the vehicle running is defined as power offtake. For every measured time
interval, power offtake in (Ws) is calculated by

𝐸off take[𝑛] = 𝑝0𝜏. (4c)

(5) Compute the total energy flow in a given time-step 𝐸[𝑛] in (kWh) by summing the propulsive, regenerative, and constant
ff-take energies.

𝐸[𝑛] =
𝐸prop[𝑛] + 𝐸regen[𝑛] + 𝐸off take[𝑛]

3.6𝑒 + 6
(5)

Finally, we can compute the energy consumption over the whole trip in (kWh) by summing over the duration of the trip N.

𝐸trip =
𝑁
∑

0
𝐸[𝑛] (6)

.2. GPS data collection

To determine the micro-mobility behavior of the minibus taxis, six tracking devices were used to record GPS data to an SD card
t a frequency of 1 Hz. To account for GPS error, the GPS data was filtered before being written on the SD card; only complete and
orrect signals were taken and the rest were discarded.

The six recording devices are based on the Arduino platform and powered from alkaline battery packs. The device can therefore
perate independently of any other device during tests. The acquired data is separately processed after the completion of data
ecording. Field workers, appointed to take trips on the minibuses as standardized passengers and initiated data capture with the
ress of a button, which would be terminated once the vehicle had reached the destination. Each recorded trip creates an isolated
ile. This allows for different routes to be separately investigated and compared to other recordings made on the same route.

The velocity, 𝑣[𝑛], was obtained from the GPS sample’s speed value. The elevation, ℎ[𝑛], was obtained from the GPS sample’s
ocation value, which was used to lookup the elevation in the Earth Resources Observation and Science Center’s dataset (USGS,
022). This method was preferred because the GPS module’s elevation values proved to be less consistent than using the location-
ased lookup. The displacement, 𝑠[𝑛], is calculated as the 3D geodesic distance from subsequent GPS locations. The slope angle
positive for incline and negative for decline), 𝛼[𝑛], is calculated from subsequent displacements, 𝑠[𝑛−1] and 𝑠[𝑛], and corresponding
levations, ℎ[𝑛 − 1] and ℎ[𝑛].

.3. Route selection

Vehicle energy consumption was expected to be dependent on driving conditions, specifically changes in elevation with or
gainst gravity, driving speed in inter-city transport, and the stop-start nature of urban driving (Al-Wreikat et al., 2021). Time
f travel during the day was also expected to have an impact. Therefore, data was captured on three different types of route: urban,
illy, and inter-city. Data for each route was collected at three distinct times of the day: morning (before 11:30 AM), afternoon
11:30 AM–4:30 PM), and evening (after 4:30 PM). No more than three trips was taken on any individual minibus taxi, and over
0 different minibus taxi drivers were used in data collection to capture variation in minibus taxi driver driving style. All trips are
ecorded from, or back to, Bergzicht Taxi Rank, the main taxi rank in Stellenbosch, South Africa, and are shown in Fig. 4. The urban
oute is from Stellenbosch to Kayamandi taxi rank (STB - KMNDI). Kayamandi is a neighborhood of Stellenbosch with a proportion
5

f taxi riders. The routes connecting the taxi ranks have a speed limit of 60 km/h and consist of bidirectional roads only. The to
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Fig. 4. The routes used to assess vehicle energy consumption in and around Stellenbosch and their altitude profiles (see Google (2022)).

Table 2
Summary of the number of trips recorded in data acquisition phase.

Route

Stellenbosch Kayamandi Stellenbosch Pniel Stellenbosch Somerset West Total
Kayamandi Stellenbosch Pniel Stellenbosch Somerset West Stellenbosch

Distance: 5 km 2.6 km 15 km 15 km 20 km 20 km
Avg. Time: 18 min 6 min 28 min 23 min 29 min 27 min
Speed Limit 60 km∕h 60 km∕h 80 km∕h 80 km∕h 100 km∕h 100 km∕h

Morning 4 4 3 3 3 3 20
Afternoon 3 5 4 4 4 4 24
Evening 3 3 3 2 4 3 18
Total 10 12 10 9 11 10 62

and from routes vary slightly, since the taxis pass the Kayamandi taxi rank and completes a circle route through the neighborhood,
dropping off passengers near their homes, before returning to the Kayamandi rank for the routine stop. The distances to and from
Kayamandi taxi rank are 5 km and 2.6 km respectively.

The hilly route is one with a steep incline from Stellenbosch to Pniel (STB - Pniel) and crosses the Helshoogte mountain pass –
a steady climb of approximately 300 m in 7 km. This 12.5 km route, with a small deviation on some trips, features a long accent
followed by a short decent, and has a speed limit of 80 km/h.

The inter-city route is a 20 km route from Stellenbosch to Somerset West (STB - SW). The speed limit on this provincial road,
which is predominantly a dual carriageway, is 100 km/h.

Table 2 shows the breakdown of data collected after filtering for trips with missing or anomalous data. The goal was to collect
at least three trips for each route and time of day combination to establish a reasonable depth of data for each driving context.
After data cleaning, this was successful for all route/time of day combinations except for Pniel - STB/‘Evening’, which was left with
2 trips. The final number of trips used for analysis was 62.
6
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Fig. 5. How an equivalent per-minute dataset created from the raw per-second data and used to construct energy consumption results. These results are then
compared with the results generated by the process in Fig. 2.

Table 3
Breakdown of average energy consumption, net elevation change, average speed, maximum speed, and average absolute
acceleration by route.
Route Energy Net elevation Average maximum Average acceleration

consumption change speed speed (absolute)
(kWh∕km) (m) (km∕h) (km∕h) (m∕s2)

STB - KMNDI 0.36 12.7 15.9 64.2 0.52
KMNDI - STB 0.37 1.3 26.1 70.7 0.57
STB - SW 0.37 −68.1 42.5 101.4 0.50
SW - STB 0.42 67.5 44.2 98.5 0.49
STB - Pniel 0.47 126.7 33.3 84.0 0.48
Pniel - STB 0.33 −127.2 40.4 90.2 0.52

The dataset is publicly available in this repository at Mendeley data: https://doi.org/10.17632/xt69cnwh56.1. A data-in-brief
as been submitted for review.

.4. Comparing per-second and per-minute GPS data input

To evaluate model performance using per-second versus per-minute data, we must construct an equivalent per-minute dataset.
o do so, we first downsample our per-second data to one GPS observation per minute using python pandas resample function. We
tart from the first sample, and take one sample every minute thereafter. We then feed this per-minute data into our kinetic model
o generate energy consumption estimations, and compare that to our original results. This process is shown in Fig. 5.

. Results

.1. Evaluation of energy consumption estimates

In this section, we first present our energy consumption estimates in kWh/km and evaluate the differences seen between the
arious driving conditions and times of day. We then compare our results to values previously seen in the literature.

.1.1. Impacts of route and time of day
Fig. 6 shows the distributions of energy consumption estimates for the three routes considered, in both directions, for each time

f day (yielding a total of 3 × 2 × 3 = 18 distributions). A dashed teal line indicates the overall mean of 0.39 kWh/km. This figure
demonstrates how energy consumption is largely determined by the characteristics of the route on which a minibus is driving. The
route characteristic with the clearest effect is elevation change, as evidenced by the difference observed between the steep incline
and steep decline directions of the hilly route (to/from Pniel). Additionally, it appears that the inter-city travel (to/from SW) was
slightly more energy intensive per kilometer on average than urban travel (to/from KMNDI).

Although distinctive patterns are observed between routes, the results do not show a consistent effect of time of day on energy
consumption on any route. The estimates are within a fairly tight range for each route, with a mean inter-route standard deviation
of 0.02 kWh/km, which supports the hypothesis the per-second sampling strategy leads to high fidelity estimates.

Table 3 summarizes the mean energy consumption and some mobility characteristics observed for each of the routes. This table
shows the variation in the physical nature of the routes and some factors that characterize traffic flow (i.e. speed and how often the
vehicle must stop). The urban route had the highest average absolute acceleration and lowest speeds, belying the stop-start nature
of urban travel. The effect of this driving pattern on energy consumption is explored in later sections. The average of absolute
7

acceleration is used to account for total acceleration and deceleration.
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Fig. 6. Distribution of energy consumption for each route in the morning, afternoon, and evening. The overall mean energy consumption of 0.39 kWh/km is
indicated with a dashed teal line.

Table 4
Comparative energy consumption (kWh∕km) values seen in the literature and from real-world OEM vehicle specs.

Literature source Energy consumption (kWh∕km) OEM source Energy consumption (kWh∕km)

Abraham et al. (2021) 0.93 Higer H5C EV (Higer, 2020) 0.36
Cignini et al. (2020) 0.70 Dongfeng E-Mini Van (Dongfeng, 2021) 0.27
Collett et al. (2021) 0.50 Ruivii Toano (Ruivii, 2021) 0.26

3.1.2. Results in context
To contextualize our energy consumption results, we compared them to values seen in the literature and real world manufacturer-

stated kWh/km for similar vehicles. Table 4 lists these values and their sources. While some of these vehicles lack data on certain
parameter values in Table 1, they share a physical and mechanical profile to the minibus taxis in question, which is why they were
chosen as fair comparison vehicles.

Fig. 7 displays our distributions of energy consumption results for each route in comparison to the values in Table 4. Since time
of day was found to have no effect on energy consumption in Section 3.1.1, we aggregate times of day by route for a more concise
comparison.

Our results are slightly higher than the energy consumption of small passenger vans on the market, which range from 0.2–0
0.36 kWh/km. This is logical given that taxi drivers are notorious for aggressive driving, which increases energy consumption (Al-
Wreikat et al., 2021; Faria et al., 2019; Murphey et al., 2009; Eno Akpa et al., 2019). Seeing values that are similar to but slightly
higher than manufacturer given values lends confidence to the accuracy of our estimates.

In contrast, our estimates – barring one uphill trip at 0.51 kWh/km – were lower than the comparative values from literature,
which ranged from 0.50–0.93 kWh/km. Notably, the highest results previously in the literature from Abraham et al. (2021) were
furthest away from our estimates, despite being the only other estimates constructed from GPS tracking data. Their method uses
an EV fleet simulator called ‘ev-fleet-sim’, which is based on the micro-traffic simulator Simulation of Urban MObility (SUMO) and
a matching EV kinetic model developed by Kurczveil et al. (2014). Ev-fleet-sim intakes per-minute GPS waypoints, and uses the
SUMO routing function to simulate per-second mobility data on an Open Street Maps virtualization of the road infrastructure. This
per-second data is run through the kinetic model to estimate energy consumption. A preliminary assessment of their method has
shown the inaccuracy of the physical infrastructure virtualization and of the per-second driving simulation as potential reasons for
the high consumption rates. Furthermore, in contrast to our simple first-principle kinetic model, theirs is based on the moment of
inertia of internal elements, which could also contribute to the difference. A detailed analysis of their method falls beyond the scope
of this paper, and is left to future research.

3.2. Implementation of results

The techno-economics of paratransit electrification depend on vehicle energy consumption. Since EV energy demands are known
to vary across driving conditions (Al-Wreikat et al., 2021), we aim to provide recommendations in multiple conditions. Specifically,
8
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Fig. 7. Distributions of energy consumption, compared to state-of-the-art from literature and real world vehicle specs. The dashed teal line represents the mean
of the estimates constructed from the per-second data (0.39 kWh/km).

Table 5
Recommended energy consumption (kWh/km) for calculating range in different driving conditions, based on highest energy
consumption observed in each condition. Example ranges (km) using different battery sizes (kWh) are given. Ranges are calculated
as 85% of the physical limit that a battery would be able to provide at the given energy consumption.
Energy consumption (kWh/km) Urban Uphill Downhill Inter-city

0.44 0.51 0.35 0.45

Range (km) - 50 kWh battery 97 83 122 94
Range (km) - 75 kWh battery 145 125 182 142
Range (km) - 100 kWh battery 193 167 243 189

we provide recommendations for values to use in urban, inter-city, and hilly (uphill and downhill) conditions. Uphill and downhill
are treated separately because if a taxi goes up before a charge and down thereafter, you need two separate numbers for the energy
budget as the energy demands are significantly different between the two directions.

3.2.1. Operations planning
Electric minibus taxis in South Africa will need to travel up to 250 km before stopping to recharge (Abraham et al., 2021).

Typically, taxis will operate continuously during the morning and evening rush hour periods from roughly 6 AM to 10 AM and
5 PM to 9 PM respectively, and operate at a diminished rate throughout the middle of the day (Abraham et al., 2021; Booysen et al.,
2022). An electric taxi must be able to sustain operations during the rush hour periods without stopping to charge, lest the driver
and owner lose out on profits. Economic loss would discourage uptake of electric taxis and thus the electrification transition, so the
highest estimated energy consumption values must be used for planning operations to guarantee continuous operation. However,
it is not economic to supply every e-taxi with the largest possible battery pack An excessively large pack would be unnecessarily
expensive and impact payload. A taxi that operates over long distances in a hilly region will not necessarily have the same battery
requirements as a taxi that operates for short distances in an urban environment. With this in mind, we provide recommendations
in Table 5 that are specific to different conditions. Ranges are calculated as 85% of the battery’s physical limit for a given rate of
energy consumption, since neither overly deep discharge nor maxing out on charge are good for the health of the battery.

3.2.2. Grid impact and emissions
In an energy-constrained and coal-dependent context, the interactions between EVs and the electricity grid must be carefully

considered when planning the deployment of an EV fleet. Sufficient charging infrastructure and clean energy generation must
be available to sustain the fleet, as EV charging can have a substantial impact on the grid (Buresh et al., 2020). Additionally,
policymakers are often interested in the emissions saving of the EV equivalent to an ICE operation, so it is useful for stakeholders
to be able to use our estimates to model the greenhouse gas (GhG) emissions impact of transitioning from the status quo an electric
fleet.

Since operational (not life-cycle) GhG emissions for EVs depend on their interaction with the electricity grid, the same energy
consumption values should be applied for calculating both grid and GhG emissions impact of the fleet. In contrast to operations
9
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Table 6
Recommended energy consumption (kWh/km) to use for calculating e-taxi impact on the electricity grid in different driving
conditions, based on average energy consumption estimated for each route type.

Urban Uphill Downhill Inter-city

Energy consumption (kWh/km) 0.37 0.47 0.33 0.40

planning, using an average energy consumption is appropriate for fleet-wide energy demand calculations. Table 6 breaks down the
recommended energy consumption values for e-taxi to grid interaction.

If information on driving conditions is unavailable, we recommend using the overall mean energy consumption of 0.39 kWh/km.
Given approximately 300,000 minibus taxis in South Africa (Transaction Capital, 2021), for an average daily traveling range of

00–200 km, this energy consumption would lead to 11.7–23.4 GWh additional electricity burden per day (1%–3% of national daily
lectricity production) and 4.3–8.6 Twh annually. Even a local fleet of only 25 taxis that travel 200 km per day, which is typical in
he region (Abraham et al., 2021), would require 1.95 MWh per day and 0.71 GWh per year. Such additional loads could impose
reat burdens on both local grids and the national electricity supply, which is concerning since many cities around sub-Saharan
frica already face electrical supply problems and frequent blackouts. With the goal of facilitating safe and efficient large scale

ransitions to electric fleets around the region, more research is needed that builds on the values provided in this study for how
hese taxis can effectively integrated with local power systems.

.3. Effect of mobility characteristics and physical constants on energy consumption

The analysis in this section aims to enable our energy consumption estimates to be generalized for contexts not explicitly captured
n our dataset, and for different sets of vehicle physical constant parameters.

For the former, we quantify the effects of net elevation change (m), average speed (m/s), and average absolute acceleration (m/s2)
n energy consumption using Ordinary Least Squares (OLS) regression. The absolute value of acceleration is taken to retrieve the

total’ effect of acceleration and deceleration. For the latter, we compute the sensitivity of our kinetic model to each of the vehicle
arameters from Table 1.

Elevation change, speed, and acceleration were chosen as factors to explore because they directly correspond to forces in
he kinetic model, but are also comprehensible real-world measurable variables. Respectively, they correspond to slope drag,
erodynamic drag, and vehicle force. Elevation change is accounted for in slope drag via slope angle (Eq. (1d)), speed enters directly
nto aerodynamic drag (Eq. (1b)), and acceleration is derived in vehicle force as change in velocity (Eqs. (2) and (3)).1

Despite slope angle being the direct measured factor that enters into the slope drag equation, net elevation change was chosen
ver average slope angle because it is an eminently more useful measurement. It is far easier to retrieve net elevation change
han average slope angle for routes around the world, and we found that net elevation change approximates slope angle very well.
uantifying the effects of these factors on energy consumption is only useful if the results can be used by stakeholders and other

nterested parties. Net elevation change and speed limits are easily obtainable features of a route via a quick google search. Including
verage absolute acceleration in the regression model controls for the effects of ‘driver behavior’ and other micro-traffic flows on
nergy consumption that are difficult to ascertain prior to collecting GPS tracking data.

Not only do elevation change, speed, and acceleration correspond to forces experienced by the vehicle in the kinetic model,
hey are the only measured factors that do so. Consequently, we can be sure that our regression model captures the majority of
he variation seen in energy consumption in the data, giving us confidence in the results of the regression. This is borne out by the
-squared seen in our OLS regression of 0.98. R-squared explains the proportion of variation seen in an outcome variable that is
aptured by the explanatory variables included in a regression model.

.3.1. Effects of elevation change, speed, and acceleration
To quantify the effects of net elevation, average speed, and average absolute acceleration on energy consumption, we construct

n Ordinary Least Squares (OLS) regression model. OLS regressions estimate model parameters by minimizing the sum of the squared
ifferences between the observed outcome variable (energy consumption in this case), and the outcome predicted by a linear function
f the explanatory variables. Our OLS regression results are presented in Table 7.

The coefficients in a regression specify how much the outcome variable changes for a 1 unit increase in each factor:

coeff =
𝑑outcome
𝑑factor

pecifically, the regression in Table 7 shows that an increase of 1 m in net elevation change is predicted to increase energy
onsumption for a trip by 0.0007 kWh/km, an increase in average speed of 1 km/h is predicted to increase the average energy
onsumption for a trip by 0.0042 kWh/km, and an increase of 1 m/s2 in average acceleration during a trip is predicted to increase

energy consumption by 0.4540 kWh/km. These coefficients on net elevation change and average speed are the most useful because
they are the two factors easiest to ascertain in the absence of GPS tracking data.

1 The last force in the model, rolling resistance (Eq. (1c)), does not have a direct mobility characteristic analog in our model. While slope angle does enter
10

nto the rolling resistance equation, this force is primarily a consequence of the physical parameters of mass and rolling resistance coefficient.
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Table 7
OLS Regression model of average speed, net elevation change, and average absolute acceleration on energy consumption. The
units on each coefficient are a ratio of the units of the corresponding factor (m, m∕s, and m∕s3) to the units on energy consumption
(kWh∕km). The standard deviation of each coefficient is shown in brackets beneath the coefficient. The percentage of the variation
in the data captured by the model is shown in the R-squared statistic.

Average trip energy consumption (kWh/km)

Net elevation change (m) 0.0007*** (kWh/km per m)
[0.0001]

Average speed (m/s) 0.0042*** (kWh/km per m/s)
[0.0006]

Average (absolute) acceleration (m∕s2) 0.4540*** (kWh/km per m∕s2)
[0.0395]

R-squared 0.9780
R-squared Adj. 0.9769

***Indicates 99.9% confidence that the coefficient is statistically significant.

Table 8
Standardized OLS Regression model of net elevation change, average speed, and average absolute acceleration on energy
consumption. Each coefficient represents how many standard deviations (𝜎) energy consumption changes for a 1 standard
deviation change in the corresponding factor. The standard deviation of each coefficient is shown in brackets beneath the
coefficient.

Average trip energy consumption (𝜎)

Net elevation change (𝜎) 0.9037*** (𝜎 kWh/km per 𝜎 m)
[0.0543]

Average speed (𝜎) 0.3735*** (𝜎 kWh/km per 𝜎 m∕s)
[0.0542]

Average (absolute) acceleration (𝜎) 0.1229** (𝜎 kWh/km per 𝜎 m∕s2)
[0.0536]

**Indicate 99% confidence in the statistical significance of the coefficient.
***Indicate 99.9% confidence in the statistical significance of the coefficient.

One potentially confusing aspect of these results is the high coefficient on acceleration compared to the other two factors. This
s caused by a discrepancy in units. Where net elevation change and average speed vary by tens and hundreds, average acceleration
s typically a value between 0 and 1 m/s2.

To more clearly understand the relative effect of each factor on energy consumption, we construct an standardized OLS regression
odel with the same factors as in the previous section, as shown in Table 8. The coefficients in a standardized regression show by
ow many standard deviations (𝜎) the outcome variable changes for a 1 𝜎 change in an explanatory variable.

The asterisks next to the regression coefficients indicate the p-value of the coefficient. A p-value less than 0.05 is generally
onsidered statistically significant. We mark p < 0.001 by ***, p < 0.01 by **, and p < 0.05 by *. We find all four factors to be
tatistically significant to p < 0.001. The number in parenthesis below each coefficient is that coefficient’s standard deviation. The
esultant R-squared of 0.98 demonstrates that the linear model with these four variables captures nearly all of the variation in energy
onsumption seen in our dataset.

The results from these regressions using the non-standardized model are informative for anyone looking to deploy electric
inibuses in other locations with different mobility characteristics. While high sampling frequency GPS data would be ideal for

nalyzing vehicle energy consumption, it can be difficult or impossible to come by in some circumstances.
One apparent incongruity between the results in the two regression models is the level of significance of the coefficient on

cceleration. It shows *** in the non-standardized model, indicating 𝑝 < 0.001, and ** in the standardized model, indicating 𝑝 < 0.01.
his is caused by a discrepancy in units between the two models. Specifically, the coefficient on acceleration in the non-standardized
odel predicts that energy consumption will change by 0.4540 kWh/km from a 1 m/s2 change in average absolute acceleration,
hereas the coefficient in the standardized model predicts the that energy consumption would change by 0.1229 𝜎 given a 1 𝜎

hange in average absolute acceleration.

.3.2. Effects of model parameters
Next, we assess the sensitivity of the kinetic model to the vehicle physical parameters. The results of the sensitivity analysis are

ummarized in Table 9. The first column shows the relative sensitivity of the model to each parameter as the percentage change in
nergy consumption for a 1% change in a given parameter. The second column shows the absolute change in energy consumption
n kWh/km for a 1% change in a given parameter. The table shows that the model is most sensitive to powertrain efficiency,
ollowed by the minibus weight, then regenerative braking efficiency and rolling resistance coefficient, then drag coefficient and
inally vehicle frontal surface area.

The parameters used for estimations in this paper, listed in Table 1, were carefully chosen from various sources in the literature,
ut reasonable arguments can be made for different values, and they do vary in the literature (Abraham et al., 2021). Similar to
he results of the OLS regression, the results of the sensitivity analysis are useful to determine the effect of an individual change
11
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Table 9
Sensitivity of kinetic model to physical parameters.
Parameter Sensitivity ( % change output

% change input ) Sensitivity ( absolute change output
% change input )

(kWh∕km)

Minibus weight (𝑚v) 0.84 0.003
Rolling resistance coefficient (𝑐rr) 0.48 0.002
Drag coefficient (𝑐d) 0.15 0.001
Vehicle’s front surface area (𝐴) 0.15 0.001
Regenerative braking efficiency (𝜇rg) −0.50 −0.002
Powertrain efficiency (𝜇v) −1.48 −0.006

Table 10
Values used to compute sensitivities of the physical parameters of the kinetic model.
Parameter Values

Minibus weight (kg) 2900 3900 4900
Rolling resistance coefficient 0.01 0.02 0.03
Drag coefficient 0.24 0.36 0.48
Frontal Area (m3) 3.50 4.00 4.50
Regenerative braking efficiency (%) 0.50 0.65 0.80
Powertrain efficiency (%) 0.85 0.90 0.95

in each parameter on the energy consumption of taxis. For example, the weight of a taxi could easily change by several hundred
kilograms, depending on the weight of passengers and their luggage (aka payload). For example, if the minibus weight parameter
was adjusted up by 10% from the value this paper uses (i.e. by 390 kg), to 4290 kg, then overall mean energy consumption would
be expected to increase by 8.4% (i.e. 0.03 kWh/km) to 0.42 kWh/km.

To create Table 9, overall mean energy consumption was simulated with three different input values for each parameter. The
enter value for each parameter are the values from Table 1. The sensitivities were gathered running the model with each parameter
aried twice away from the center, while all other parameters were held equal. They varied once above and once below the center
alue, allowing two equally weighted sensitivities to be calculated for each parameter. The sensitivity reported in Table 9 is the
verage of the two. The input values are given in Table 10. The values are chosen based on a range of likely operating conditions
nd values seen in the literature.

.4. Evaluation of sampling frequency: Per-second vs per-minute data input

This section explores the energy consumption estimates from per-second data in comparison to energy consumption estimates
rom an equivalent per-minute dataset.

Throughout the section, the per-second data and associated results are colored in teal and the per-minute equivalent in orange.
The differences between the per-second and per-minute datasets are visualized in Fig. 8, which shows the elevation change (m).

peed (km/h), and acceleration (m/s2) profiles for an example trip from Pniel - STB. Each plot is accompanied by a chart that
uantifies the percentage of that mobility characteristics’ signal that is captured in the per-minute sampling frequency. To construct
hese charts, we perform a Fast Fourier Transformation (FFT) of the per-second data, retrieve the corresponding power spectral
ensity, and compute the percentage of signal captured in sampling frequencies up to 1

60 Hz (orange bars). The teal bars show
he percentage of signal captured by sampling frequencies greater than 1

60 Hz, up to 1
2 Hz (the Nyquist frequency for per-second

data (Shannon, 1949)).
These plots show that compared to the per-second data, the per-minute data captures 28.4% of elevation change, 83.4% of speed,

and 8.6% of acceleration data. Speed is well approximated in the per-minute data, but the elevation change and acceleration data
are much noisier, thus requiring a greater sampling frequency to fully capture. The driving cycle from the per-minute dataset is
much smoother, and is unable to account for the micro-mobility movements of the vehicles.

While data for all trips can be found in the Mendeley repository, the particular trip used for this example in Fig. 8 is attached
as an addendum along with the code for the kinetic model at: https://github.com/ChullEPG/Bumpy-Ride, so the reader can easily
explore the for the example trip at their convenience.

Table 11 characterizes the net elevation change, total absolute elevation change, average speed, and average acceleration profiles
by route for the per-minute data in comparison to the per-second data. The table shows that average speed and net elevation change
are well characterized in the per-minute data, but crucially, average absolute acceleration and total absolute elevation change are
consistently underestimated. Total absolute elevation change was included in this table because, while per-minute data captures
overall trends in elevation change, it misses out on the climbs and dips that occur between minutes and contribute to total absolute
elevation change. The knock-on effect these oversights have on vehicle energy consumption is explored later in the section. Together,
Fig. 8 and Table 11 reinforce the hypothesis that per-minute data does not capture micro-mobility patterns.

The comparison of energy consumption estimates constructed from the per-minute and per-second data is shown in Fig. 9.
12

This figure shows that, compared to the per-second data, the per-minute data (a) consistently underestimates energy consumption
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Fig. 8. Comparison of the elevation change, speed, and acceleration profiles in the per-second data (dashed teal lines) and per-minute data (solid orange lines)
for an example route from Pniel - STB. Each minutely sample on the orange lines is marked with an X. The bar charts show the portion of signal that is captured
in the per-minute sampling frequency (<1/60 Hz), and the portion of signal that it misses (>1/60 Hz) for each factor. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Table 11
Characteristics of factors known to influence efficiency in per-minute dataset (orange), compared to the analogous measurements
in the per-second dataset (teal) from 3.
Route Net elevation Total elevation Average Average acceleration

change change (absolute) speed (absolute)
(m) (m) (km∕h) (m∕s2)

STB - KMNDI 17.5 (12.7) 25.2 (92.8) 14.0 (15.9) 0.07 (0.52)
KMNDI - STB −3.5 (1.3) 169.7 (230.8) 24.4 (26.1) 0.09 (0.57)
STB - SW −70.5 (−68.1) 423.3 (736.4) 40.3 (42.5) 0.14 (0.50)
SW - STB 67.7 (67.5) 409.6 (755.0) 43.1 (44.2) 0.11 (0.49)
STB - Pniel 126.9 (126.7) 481.2 (797.6) 32.6 (33.2) 0.10 (0.48)
Pniel - STB −127.2 (−127.2) 457.4 (793.2) 40.6 (40.4) 0.10 (0.52)

and (b) estimates with greater variance. The average overall energy consumption is 31% less than the per-second estimates - 0.27
vs. 0.39 kWh/km - and the average inter-route standard deviation was 0.09 kWh/km, greater than three times higher than the
0.02 kWh/km seen in the per-second estimates. Across all trips, the coefficient of variation for the per-minute estimates was 0.48,
more than three times higher than the 0.13 seen in the per-second data.

That said, the per-minute data does preserve the relative effect of elevation change, as evidenced by the relatively high energy
consumption for the uphill route (STB - Pniel) and low energy consumption for the downhill route (Pniel - STB). This is because
per-minute data characterizes net elevation change for the route relatively accurately, despite missing many small dips and climbs
that contribute to absolute elevation change and overall energy consumption. The trips with the lowest sample size, the short urban
trips to and from Kayamandi (KMNDI), have the greatest variance. Furthermore, the urban route has lower elevation change and
speed limits than the hilly or inter-city routes, as well as greater average absolute acceleration. Therefore, following the analysis in
Section 3.3, vehicle micro-mobility patterns will have an increased effect on energy consumption in comparison to the other routes.
In addition, an analysis of jerk (m/s3) and number of stops per km along all of the routes also showed that the greatest vehicle jerk
and most stop/start driving cycles occurred in the urban context. Therefore, the weakness of the per-minute dataset – its inability
to capture micro-mobility patterns – manifests most greatly in the urban environment where environmental characteristics tend to
dominate energy consumption less and driver behavior plays a greater role. These findings suggest that per-minute data is least
suitable for estimating vehicle energy consumption in urban or residential contexts, which lend themselves to low elevation change,
low speed limits, and a larger number of high acceleration/deceleration events (i.e. aggressive driving behavior).
13
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Fig. 9. Distribution of energy consumption estimates for each route when the kinetic model is inputted with per-second data versus per-minute data. The dark
red diamond in each box represents the mean for that route. The teal and orange dashed lines represent the mean across all trips for the per-second and
per-minute inputs respectively. There is one outlier trip at 0.83 kWh/km in STB - KMNDI. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

One question remains and that is to quantify where the underestimate in the per-minute data comes from. To do so, we must
return to the physics of the kinetic model.

There are six physical forces with distinct effects in the kinetic model, four external, dubbed ‘environmental forces’, and two
forces generated by the vehicle, dubbed ‘vehicle forces’. The breakdown is as follows:

• Environmental forces: Propulsive slope drag (downhill), resistive slope drag (uphill), aerodynamic drag, and rolling resistance.
• Vehicle forces: Propulsive (motor to wheels), braking (wheels to motor)

At a fundamental level, the vehicle must generate enough propulsive or braking force to overcome the environmental forces it
is experiencing and achieve the driver’s desired acceleration or deceleration. Thus, the energy expended by the battery to overcome
the environmental forces and achieve the desired acceleration/deceleration can be attributed to environmental forces, and driver
behavior. If the per-minute data underestimates the environmental forces and/or the desired acceleration of the driver, then it will
underestimate energy consumption.

To quantify where the underestimates in the per-minute model come from, we break down the contribution of each environmental
and vehicle force to energy consumption in kWh/km, and perform a FFT to assess how much of this energy is captured by the per-
minute sampling frequency. These results are in Fig. 10. The top bars represent how much energy in kWh/km are captured in the
per-minute data for each force, and the bottom bars represent how much energy the per-minute data misses. The relative size of
the bottom bars is not insignificant, thus belying the source of the underestimates from the per-minute dataset input seen in Fig. 9.

Table 12 further breaks down the in the energy contribution of each force for each dataset, by route. The largest differences
are primarily seen in the two vehicle forces, and the slope drags. This reflects how the per-minute dataset underestimates average
absolute acceleration and total absolute elevation change as indicated in Table 11. Net elevation change is well captured, which is
reflected in how we can see its effect preserved in Fig. 9, in the difference between the uphill and downhill routes. However, missing
out on some total absolute elevation change means it underestimates the total contribution of slope drag to energy consumption.

This section has shown that per-minute data fails to capture vehicle micro-mobility patterns, thus leading to underestimates of
vehicle energy consumption. Per-minute estimates were also found to be high in variance. This supports the initial hypothesis
that motivated gathering per-second GPS data: that the per-second data would provide a more accurate picture of paratransit
micro-mobility patterns.

4. Conclusions

The aim of this paper is to provide high fidelity energy consumption estimates (kWh/km) for paratransit minibus taxi vehicles,
the mainstay of transport in sub-Saharan Africa, in various driving conditions.

We estimate paratransit vehicle energy consumption to range from 0.29–0.51 kWh/km depending on driving condition. The
estimates provided in this paper, based on 1 Hz sampling, are the highest fidelity estimates to date. The lower estimates in this paper
compared to previous literature – which provided average estimates from 0.50–0.93 kWh/km – imply that the estimated battery
14
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Fig. 10. FFT analysis disaggregated by force type. Shows how much energy for each force is captured by sampling frequencies up to once per-minute (<1/60 Hz)
and greater than once per-minute (>1/60 Hz), for all trips. The bottom bar in each graph represents the amount of energy not captured in the per-minute data.

Table 12
Percentage difference between the amount of energy captured in the per-minute and per-second datasets, for each vehicle and
environmental force that the vehicle experiences.
Route Percentage difference between datasets

Vehicle Vehicle Propulsive slope Dissipative slope Aerodynamic Rolling
braking propulsive drag (downhill) drag (uphill) drag resistance

KMNDI - STB −83.5 −61.8 −51.8 −78.5 6.2 12.2
STB - KMNDI −52.4 −28.7 8.0 9.9 −1.6 10.0
STB - Pniel −70.1 −25.9 −34.5 −14.6 15.3 12.3
Pniel - STB −51.7 −46.8 0.1 −43.7 30.0 22.3
STB - SW −64.8 −51.1 −28.8 −48.8 1.8 0.6
SW - STB −75.5 −42.0 −37.0 −46.4 6.4 3.0

Mean −66.3 −42.7 −24.0 −37.0 9.7 10.1

capacity requirements and thus cost and grid impact of electric minibus taxis are less than previously suggested, an encouraging
result.

Our recommendations can help stakeholders determine e-taxi battery capacity requirements, plan operations, and estimate the
electricity demand and emissions impact of deploying e-taxis in varying contexts. Depending on the range requirements and driving
condition of its operating region, an e-taxi in South Africa could feasibly require batteries from 50 up to over 100 kWh in size—
important for range and cost. Given the typical operational range of the taxis, their electrification could impose large burden on
local and national electricity grids in this region. Future research based on the values and recommendations provided in this study
needs to be done to ensure safe, efficient, and effective transitions to electric fleets of paratransit vehicles.

Energy consumption estimates may be needed for dozens or hundreds of different driving conditions around sub-Saharan Africa
for planning transitions to electric paratransit. It is practically impossible to capture every combination of these factors seen across
the continent in one dataset; however, a benefit of capturing variations in environmental and mobility profiles with high resolution
GPS data is that we can quantify the effect of various mobility characteristics on energy consumption. The coefficients in the non-
standardized regression model in Section 3.3.1 can be used to extrapolate our results to routes outside of our dataset that may have
different elevation and speed profiles. Similarly, a range of likely operating conditions for e-taxis are possible, and various values
are seen in the literature for the parameters on vehicle kinetic models. Accordingly, we quantified the sensitivity of our model to
each parameter to allow the effect of adjusting each parameter on our model to be ascertained.

The results show that although per-minute data captures the environmental characteristics of a trip, it misses out on the
micro-mobility patterns of a vehicle, leading to underestimates in vehicle energy consumption, and high variance in estimates.

The research done here is critical to planning safe and effective. However, given that the dataset in this study is geographically
limited, research is needed to extrapolate the results to other regions in sub-Saharan Africa. Our results lay the foundation for future
work to improve micro-traffic simulators to accurately predict paratransit micro-mobility patterns from origin–destination GPS data
of a low sampling frequency. Given the commonality of per-minute GPS data in this field, and the cost and labor requirement of
gathering quality per-second data, such improvements would be useful for constructing robust estimates of taxi energy consumption
all over sub-Saharan Africa with sparse data. Furthermore, once electric minibus taxis come into usage in South Africa, future
research could provide a ground-truth for the kWh/km values constructed here, and guide the construction of fitted models that
estimate electric minibus energy consumption from ICE minibus mobility data. Lastly, future work on the effect of variation in
individual driving style and on representative driving cycles for paratransit vehicles would enhance the literature on paratransit
mobility in the developing world, which is understudied and poorly understood compared to analogous mobility sectors in the
developed world.
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