
MATHEMATICS OF OPERATIONS RESEARCH
Vol. 00, No. 0, Xxxxx 0000, pp. 000–000

issn 0364-765X |eissn 1526-5471 |00 |0000 |0001

INFORMS
doi 10.1287/xxxx.0000.0000

c� 0000 INFORMS

Authors are encouraged to submit new papers to INFORMS journals by means of
a style file template, which includes the journal title. However, use of a template
does not certify that the paper has been accepted for publication in the named jour-
nal. INFORMS journal templates are for the exclusive purpose of submitting to an
INFORMS journal and should not be used to distribute the papers in print or online
or to submit the papers to another publication.

Binary Matrix Factorisation and Completion via
Integer Programming

Oktay Günlük*
Cornell University, ong5@cornell.edu

Raphael A. Hauser, Réka Á. Kovács
University of Oxford, The Alan Turing Institute, hauser@maths.ox.ac.uk, reka.kovacs@maths.ox.ac.uk

Binary matrix factorisation is an essential tool for identifying discrete patterns in binary data. In this paper

we consider the rank-k binary matrix factorisation problem (k-BMF) under Boolean arithmetic: we are given

an n⇥m binary matrix X with possibly missing entries and need to find two binary matrices A and B of

dimension n⇥ k and k⇥m respectively, which minimise the distance between X and the Boolean product

of A and B in the squared Frobenius distance. We present a compact and two exponential size integer

programs (IPs) for k-BMF and show that the compact IP has a weak LP relaxation, while the exponential

size IPs have a stronger equivalent LP relaxation. We introduce a new objective function, which di↵ers from

the traditional squared Frobenius objective in attributing a weight to zero entries of the input matrix that

is proportional to the number of times the zero is erroneously covered in a rank-k factorisation. For one of

the exponential size IPs we describe a computational approach based on column generation. Experimental

results on synthetic and real word datasets suggest that our integer programming approach is competitive

against available methods for k-BMF and provides accurate low-error factorisations.

Key words : binary matrix factorisation, binary matrix completion, column generation, integer

programming

MSC2000 subject classification : 90C10

OR/MS subject classification : Integer Programming

History : Received August 3, 2021; revised September 7, 2022 and December 14, 2022.

1. Introduction. For a given binary matrix X 2 {0,1}n⇥m and a fixed positive integer k ⌧
min{n,m}, the rank-k binary matrix factorisation problem (k-BMF) is concerned with finding two
matrices A2 {0,1}n⇥k, B2 {0,1}k⇥m such that the product of A and B is a binary matrix closest
to X in the squared Frobenius norm. Note that k-BMF requires to compute A and B of fixed inner
dimension k and the error between the low-rank approximation (product of A and B) and X is
minimised.

One can define di↵erent variants of k-BMF depending on the underlying arithmetic used when
computing the product of binary matrices. In this paper we focus on Boolean arithmetic where the
product of the binary matrices A and B is computed by (i) interpreting 0s as false and 1s as true,
and (ii) using logical disjunction (_) in place of addition and logical conjunction (^) in place of
multiplication. Observe that Boolean multiplication (^) coincides with standard multiplication on

*This work was partially funded by the O�ce of Naval Research under grant N00014-21-1-2575.

1

=@=π@°@
⑤@°π.!)

ggggggte



Günlük, Hauser and Kovács: Binary Matrix Factorisation and Completion via Integer Programming
2 Mathematics of Operations Research 00(0), pp. 000–000, c� 0000 INFORMS

binary input, hence we adopt the notation ab in place of a^b in the rest of the paper. We therefore
compute the Boolean matrix product of A and B as:

Z=A �B () zij =
_

`

(ai` b`j).

Note that Boolean matrix multiplication can be equivalently written as zij = min{1,
P

` ai`b`j}
using standard arithmetic summation. The problem then becomes computing matrices A and B
whose Boolean product Z best approximates the input matrix X.

Our motivation for this study comes from data science applications where rows of the matrix X
correspond to data points and columns correspond to categorical features that are either present
or absent. Correspondingly, such features are recorded as 1 or 0 rather than being quantified as
an intensity level. Categorical data is often collected in questionnaires that contain questions that
must be answered with “yes” or “no”, with applications in psychometric testing, in risk rating
systems in the medical, finance and engineering fields, in marketing surveys, and in processes
designed to estimate economic sentiment indicators. A typical problem is to associate data vectors
of categorical features with probabilities such as the risk of developing a specific health condition,
the probability of default or of other relevant outcomes, and to learn this association by optimizing
a parametric model such as logistic regression. In this context low-rank binary matrix factorisation
is able to identify hidden structure in the form of patterns of original features that tend to co-
occur. Framing the problem in terms of the presence or absence of this smaller number of derived
features lowers the dimensionality of the data vectors and reduces the number of parameters
required to calibrate a logistic regression model, thereby increasing the ratio of observations to
model parameters. This o↵ers the potential of reducing overfitting, particularly in applications
where the data points available for learning are limited in number.

As a simple illustration, consider the example of a data matrix X inspired by [39], whereby rows
correspond to patients and columns to symptoms or trauma indicators, with xij = 1 indicating
that patient i presents symptom j:

X=

2

4
1 1 0
1 1 1
0 1 1

3

5 X=A �B=

2

4
1 0
1 1
0 1

3

5 �

1 1 0
0 1 1

�
. (1)

In this example the factorization A �B describes the data X exactly by use of only 2 derived
features, each consisting of a condition described by the combination of original features given
in the rows of B, while the rows of A now identify which of the conditions is present in each
patient. For example, patient 1 presents only the first condition, henceforth called ↵, while patient
2 presents both conditions ↵ and �. If the observations are associated with an outcome, such as
patients’ death, then we can learn the outcome probability either by applying logistic regression to
the original data X, which requires 4 parameters, or to the derived data matrix A, which requires
only 3 parameters. The number of patients is the same in both cases, so the ratio of observations
to model parameters has increased.

Using Boolean arithmetic allows each data point (rows of X) to be expressed as the union of
k possibly overlapping derived features. In contrast, if standard arithmetic is used, overlaps are
not possible and each data point is the union of k disjoint derived features. This shows that k-
BMF under standard arithmetic always has an error higher or equal to the k-BMF under Boolean
arithmetic and in general one needs larger values of k to achieve accurate factorisations using
standard arithmetic. For instance, for X in Equation (1) the following rank-2 factorisation is one
of the four optimal solutions with error 1 to 2-BMF under standard arithmetic,

X⇡

2

4
1 0
1 1
0 1

3

5

1 1 0
0 0 1

�
.

-enter



Günlük, Hauser and Kovács: Binary Matrix Factorisation and Completion via Integer Programming
Mathematics of Operations Research 00(0), pp. 000–000, c� 0000 INFORMS 3

In this factorisation of X, each symptom is caused by exactly one condition, while in real life it is
natural to assume that some observed symptoms, such as fever, can be caused by several under-
lying conditions. The transpose of this factorisation gives another optimal 2-BMF under standard
arithmetic, and there are two more optimal factorisations. In general, we observe that BMF under
standard arithmetic tends to have more degenerate solutions. Therefore, due to interpretability,
smaller error and avoidance of degenerate solutions we chose to work under the Boolean arithmetic.

We note that it is also possible to use classical methods such as singular value decomposition
(SVD) [16] or non-negative matrix factorisation (NMF) [30] to obtain low-rank approximations of
X but the resulting factor matrices or their product would typically not be binary, unlike BMF
[38]. To demonstrate this we next give the lowest Frobenius norm error rank-2 SVD and NMF
approximations of matrix X in (1), respectively1:

X⇡

2

4
0.78 0.71
1.10 0.00
0.78 �0.71

3

5

0.78 1.10 0.78
0.71 0.00 �0.71

�
, X⇡

2

4
1.05 0.00
0.81 0.74
0.10 1.05

3

5

1.05 0.81 0.10
0.00 0.74 1.05

�
. (2)

Note that neither of these rank-2 approximations provide a clear interpretation. The rank-2 NMF of
X suggests that symptom 2 presents with lower intensity in both conditions ↵ and �, an erroneous
conclusion (caused by patient 2) that could not have been learned from data X which is of “on/o↵”
type.

We note that in addition to the above mentioned applications, BMF-derived features of data
have also been shown to be interpretable in biclustering gene expression datasets [52], role based
access control [34, 35] and market basket data clustering [31].

1.1. Complexity and related work. The Boolean rank [40, 21] of a binary matrix X 2
{0,1}n⇥m is defined to be the smallest integer r= rankB(X) for which there exist binary matrices
A2 {0,1}n⇥r and B2 {0,1}r⇥m such that X=A�B. In an equivalent definition, the Boolean rank
of X is the minimum value of r for which it is possible to factor X into a Boolean combination of
r rank-1 binary matrices

X=
r_

`=1

a` b
>
`

for a` 2 {0,1}n,b` 2 {0,1}m. Occasionally, the Boolean rank is also referred to as the rectangle
cover number, and rank-1 binary matrices a`b

>
` are called rectangle matrices [7, Section 4.10.1].

Much theoretical interest in the Boolean rank is driven by the fact that it provides a lower bound
on the nonnegative rank, see for instance [12, 41]. The nonnegative rank of a nonnegative matrix
Y 2 Rn⇥m

+ is the smallest integer s = rank+(Y) for which there exist nonnegative matrices W 2
Rn⇥s

+ and H 2Rs⇥m
+ such that Y=WH, under standard matrix multiplication. It can be readily

checked that if X is the binary matrix which encodes the support of a nonnegative matrix Y, then
rankB(X) rank+(Y). The Boolean rank does not have a clear relationship to the standard real
rank. For a detailed treatment of the relationships between di↵erent ranks, see [39].

Computing an exact minimum factorisation of a binary matrix X and by that finding its Boolean
rank is called the exact-BMF problem. Note that computing an optimal rank-k BMF for a fixed
integer k is fundamentally di↵erent from exact-BMF. In exact-BMF the rank k is being minimised,
while in k-BMF the distance between X and Boolean rank-k binary matrices which is being min-
imised. Furthermore, in exact-BMF, it su�ces to consider rank-1 binary matrices that correspond
to submatrices of X, while in k-BMF any rank-1 binary matrix of the right dimension is a potential

1
These factorisations were computed by functions svd from numpy.linalg and non negative factorization from

sklearn.decomposition, respectively, and then rounded to two digits which increases the error slightly.

ente



Günlük, Hauser and Kovács: Binary Matrix Factorisation and Completion via Integer Programming
4 Mathematics of Operations Research 00(0), pp. 000–000, c� 0000 INFORMS

candidate. For instance, it can be readily checked that the optimal rank-1 BMF for the Boolean
rank-2 matrix X shown in Equation (1) is the 3⇥ 3 matrix of all 1s, which does not correspond
to a submatrix of X. Furthermore, k-BMF is harder than exact-BMF in the sense that by solving
logarithmically many k-BMF problems one can obtain an optimal solution to exact-BMF, but
not the other way round. These di↵erences between exact and k-BMF warrant for the search of
specialised algorithms for k-BMF.

Interpreting X2 {0,1}n⇥m as the biadjacency matrix of a bipartite graph G(X) with n vertices
on the left and m vertices on the right, the problem of computing the Boolean rank of X is in
one-to-one correspondence with finding a minimum edge covering of G(X) by complete bipartite
subgraphs (bicliques)[40]. Since the minimum biclique cover problem is NP-hard [42, Theorem
8.1],[14, Problem GT18], and hard to approximate [50, 4], computing the Boolean rank is hard
as well. Finding an optimal rank-k binary factorisation of X under Boolean arithmetic has a
graphic interpretation of minimizing the number of errors in an approximate covering of G(X) by
k bicliques which are allowed to overlap. In the rank-1 case the Boolean arithmetic coincides with
standard arithmetic and 1-BMF is equivalent to computing a maximum weight biclique on the
complete bipartite graph Kn,m whose edges that are in G(X) have weight 1 and others weight �1.
The maximum edge biclique problem with edge weights in {�1,1} is NP-hard [15], hence even the
computation of a rank-1 BMF is computationally challenging.

Due to the hardness results, the majority of methods developed for BMF rely on heuristics. The
earliest heuristic for BMF, Proximus [28, 27], computes BMF under standard arithmetic using a
recursive partitioning idea and computing 1-BMF at each step. Since Proximus, much research has
focused on computing e�cient and accurate methods for 1-BMF. [48] proposes an integer program
(IP) for 1-BMF and several relaxations of it, one of which leads to a 2-approximation, while [49]
provides a rounding based 2-approximation. In [3] an extension of the Proximus framework is
explored which uses the formulations from [48] to compute 1-BMF at each step. k-BMF under
Boolean arithmetic is explicitly introduced in [38, 39], along with a heuristic called ASSO, which is
based on an association rule-mining approach. ASSO is further improved in [1] into an alternating
iterative heuristics. Another approach based on an alternating style heuristic is explored in [52]
to solve a non-linear unconstrained formulation of k-BMF with penalty terms in the objective for
non-binary entries.

In [34, 35] a series of integer programs for k-BMF and exact-BMF are introduced. These IPs
have exponentially many variables and constraints and require an explicit enumeration of the
2m possible binary row vectors for factor matrix B. To tackle the exponential explosion of rows
considered, a heuristic row generation using association rule mining and subset enumeration is
developed. Another exponential size integer program for exact-BMF is presented in [11]. To solve
this exponential size IP the authors use either a precomputed enumeration of maximal rectangles
(maximal submatrices of all 1s) or a branch and price method.

1.2. Our contributions. In this paper, we present a comprehensive study on integer pro-
gramming methods for k-BMF. We examine three integer programs in detail: a compact formulation
as introduced briefly in our previous short work [25], the exponential formulation of [34, 35] and
another exponential formulation introduced in a preliminary conference version of this paper [26].
We prove several results about the strength of LP-relaxations of the three formulations and their
relative comparison that did not appear in our preliminary publications. We note that all three
integer programs for k-BMF considered in this paper, as well as any other element-wise models
can be naturally applied in the context of rank-k binary matrix completion by simply setting the
objective coe�cients corresponding to missing entries to 0.

Our compact IP uses McCormick envelopes [37] to linearise the quadratic terms coming from the
matrix product leading to polynomially many variables and constraints. We prove that for k > 2

a



Günlük, Hauser and Kovács: Binary Matrix Factorisation and Completion via Integer Programming
Mathematics of Operations Research 00(0), pp. 000–000, c� 0000 INFORMS 5

the LP relaxation of the compact IP has several fractional vertices with objective value 0, hence
provides a weak dual bound. In addition, we argue that our compact IP su↵ers from permutation
symmetry.

Our exponential formulation (introduced in [26]) overcomes several of these limitations and of
other previous approaches. In particular, it does not su↵er from permutation symmetry and it
does not rely on heuristically guided pattern mining. Moreover, it has a stronger LP relaxation
than the compact IP. On the other hand, this formulation has an exponential number of variables
which we tackle using a column generation approach that e↵ectively searches over this exponential
space without explicit enumeration, unlike the complete enumeration used for the exponential size
model of [34, 35]. Our exponential formulation for k-BMF is related to the exponential IP of [11]
for exact-BMF in that they both use an exponential number of variables corresponding to rank-1
binary matrices. However, due to the di↵erences between exact and k-BMF as outlined in the
Section 1.1, the two models are not directly comparable. Furthermore, the enumeration method
used to precompute all maximal rectangles in [11] is not applicable to our case as we have to
consider all rank-1 binary matrices of X’s dimension. To generate rank-1 binary matrices in our
column generation method, we explore several greedy heuristics in detail.

In addition, we introduce a new objective function for k-BMF under which the problem becomes
computationally easier and we explore the relationship between this new objective function and the
original squared Frobenius distance. Finally, we demonstrate that our proposed solution method
is able to prove optimality for smaller datasets, while for larger datasets it provides solutions with
better accuracy than the state-of-the-art heuristic methods. In addition, the entry-wise modelling of
k-BMF in our formulations naturally extends to handle matrices with missing entries and perform
binary matrix completion, we illustrate this way of application experimentally.

The rest of this paper is organised as follows. In Section 2 we detail the three IP formulations
for k-BMF and prove several results about their LP-relaxations. In Section 3, we introduce a new
objective function and explore its relation to the original squared Frobenius objective. In Section
4 we detail a framework based on the large scale optimisation technique of column generation for
the solution of our exponential formulation and discuss heuristics for the arising pricing problems.
Finally, in Section 5 we demonstrate the practical applicability of our approach on several artificial
and real world datasets.

2. Formulations. Given a binary matrix X 2 {0,1}n⇥m and a fixed positive integer k ⌧
min(n,m) we wish to find two binary matrices A2 {0,1}n⇥k and B2 {0,1}k⇥m so that kX�Zk2F
is minimised, where Z is the Boolean matrix product of A and B and k · kF denotes the Frobenius
norm. Let E = {(i, j) : xij = 1} ⇢ [n] ⇥ [m] denote the index set of nonzero entries of X where
[n] := {1, . . . , n}. Both X and Z being binary matrices, the squared Frobenius and the entry-wise
`1 norm coincide and we may expand the objective function to get a linear expression

kX�Zk2F =
nX

i=1

mX

j=1

|xij � zij|=
X

(i,j)2E

(1� zij)+
X

(i,j) 62E

zij. (3)

For an incomplete binary matrix X with missing entries, the above objective is slightly changed toP
(i,j)2E(1� zij)+

P
(i,j)2E zij where E = {(i, j) : xij = 0}, to emphasise that E [E 6= [n]⇥ [m], and

the factorisation error is only measured over known entries. In the following sections we present
three di↵erent integer programs for k-BMF all with the above derived linear objective function.
For each IP, as customary, we consider its linear programming (LP) relaxation under the same
objective function. Note that for non-binary Z, the squared Frobenius norm and entry-wise `1-norm
do not coincide. However, we use LP relaxations as a means to lower bound the optimal objective
value of the IP which corresponds to the optimal k-BMF approximation error and not to obtain
continuous factorisations of X.

-



Günlük, Hauser and Kovács: Binary Matrix Factorisation and Completion via Integer Programming
6 Mathematics of Operations Research 00(0), pp. 000–000, c� 0000 INFORMS

2.1. Compact formulation. We start with a formulation that uses a polynomial number of
variables and constraints where we denote the McCormick envelope [37] of a, b2 [0,1] by

MC(a, b) = {y 2R : 0 y, a+ b� 1 y, y a, y b}. (4)

Note that if a, b 2 {0,1} then MC(a, b) only contains the point ab 2 {0,1} corresponding to the
product of a and b. The following Compact Integer linear Program (CIP) models the entries of
matrices A,B,Z directly via binary variables ai`, b`j and zij respectively (for i2 [n], `2 [k], j 2 [m])
and uses McCormick envelopes to avoid the appearance of quadratic terms that would correspond
to the constraints yi`j = ai`b`j,

(CIP) ⇣CIP = min
a,b,y,z

X

(i,j)2E

(1� zij)+
X

(i,j)2E

zij (5)

s.t. yi`j  zij 
kX

l=1

yilj i2 [n], j 2 [m], `2 [k], (6)

yi`j 2MC(ai`, b`j) i2 [n], j 2 [m], `2 [k], (7)
ai`, b`j, zij 2 {0,1} i2 [n], j 2 [m], `2 [k]. (8)

Constraints (6) encode Boolean matrix multiplication, while a simple modification of the model
in which constraints (6) are replaced by zij =

Pk
`=1

yi`j models k-BMF under standard arithmetic.
The McCormick envelopes in constraints (7) ensure that for ai`, b`j 2 {0,1}, yi`j are binary variables
taking the value ai`b`j. Due to the objective function, constraints (6) and the binary nature of
yi`j, the binary constraints on variables zij may be relaxed to zij 2 [0,1] without altering optimal
solutions of the formulation.

CIP can easily be adapted to give a polynomial size IP for exact-BMF as follows. Let t =
min{n,m}. As the Boolean rank is bounded by t, we can replace k in CIP by t. Delete variables
zij from the model and in constraints (6) replace zij by the input values xij. Introduce indicator
variables d` 2 {0,1} (` 2 [t]) and add the constraints ai`  d` (i 2 [n], ` 2 [t]) and b`j  d` (j 2
[m], `2 [t]). The objective function mina,b,y,d

P
`2[t] d` then corresponds to minimising the Boolean

rank. Note however that for exact-BMF, solving this polynomial size IP is computationally more
challenging then using the methods of [11].

The LP relaxation of CIP (CLP) is obtained by replacing constraints (8) by ai`, b`,j, zij 2 [0,1].
For k = 1, we have zij = yi1j and the feasible region of CIP is the Boolean Quadric Polytope
(BQP) over a bipartite graph [43]. The LP relaxation of BQP has half-integral vertices [43], which
implies that CLP for k = 1 has half-integral vertices as well. One can show that in this case, a
simple rounding in which fractional values of CLP are rounded down to 0 gives a 2-approximation
to 1-BMF [49]. This however, does not apply for k > 1. We next show that CLP for k > 1 has
an objective function value 0. We note that the statement of a weaker version of the following
proposition appeared in our preliminary work [26].

Proposition 1. Given a binary matrix X2 {0,1}n⇥m
, CLP has optimal objective value 0 for

k > 1. Moreover, for k > 2 CLP has at least k|E|+1 vertices with objective value 0.

Proof. For each (i, j)2E let L(i,j) ✓ [k] such that |L(i,j)|� 2 and consider the point

ai` =
1

2
i2 [n], `2 [k], b`j =

1

2
`2 [k], j 2 [m],

yi`j =

(
1

2
(i, j)2E, `2L(i,j)

0 otherwise,
zij =

(
1 (i, j)2E,

0 otherwise.

-



Günlük, Hauser and Kovács: Binary Matrix Factorisation and Completion via Integer Programming
Mathematics of Operations Research 00(0), pp. 000–000, c� 0000 INFORMS 7

For all (i, j) 2 [n]⇥ [m] and ` 2 [k], setting ai` = b`j =
1

2
implies that yi`j 2MC( 1

2
,
1

2
) = [0, 1

2
] andPk

l=1
yilj � 1 holds for all (i, j)2E, hence this point gives a feasible solution to CLP with objective

value 0. For k= 2, we can only set L(i,j) = [2] for all (i, j)2E, hence the above construction leads to
a single unique point. For k > 2 however, as the choice of L(i,j)’s is arbitrary, there are many feasible
points with objective value 0 of this form. As each of these points can di↵er at only k |E| entries
corresponding to entries yi`j for (i, j) 2E, ` 2 [k], there are at most k |E|+1 a�nely independent
points among them. Next we present k |E|+1 a�nely independent points of this form. Since the
objective value is 0 at these points, they must lie on a face of dimension at least k |E| and this face
must have at least k |E|+1 vertices of CLP with objective value 0. For each (i, j)⇤ 2E and `

⇤ 2 [k],
letting L(i,j) = [k] for all (i, j)2E \{(i, j)⇤} and L(i,j)⇤ = [k] \{`⇤} provides k |E| di↵erent points of
the above form. Each such point has exactly one entry yi`j along the indices (i, j)2E, `2 [k] which
is zero. Hence the matrix whose columns correspond to these k |E| points has a square submatrix
of the form 1

2
(Jk|E| � Ik|E|) corresponding to entries yi`j for (i, j) 2 E, ` 2 [k], where Jt is the all

ones matrix of size t⇥ t and It is the identity matrix of size t. Since matrix Jt � It is nonsingular,
the k |E| points are linearly independent. In addition, letting L(i,j) = [k] for all (i, j) 2E gives an
additional point for which yi`j =

1

2
for all (i, j) 2 E, ` 2 [k], hence the corresponding part of this

point is 1

2
1. Now subtracting 1

2
1 from the columns of 1

2
(Jk|E|�Ik|E|), we get the nonsingular matrix

� 1

2
Ik|E|, hence the k |E|+1 above constructed points are a�nely independent. ⇤
The above result suggests that unless the factorisation error is 0 i.e. the input matrix is of

Boolean rank less than or equal to k, before improving the LP bound of CIP many fractional
vertices need to be cut o↵. To strengthen the formulation of CIP, valid inequalities may be explored.
Especially, some of the half-integral points that appear in Proposition 1 may be cut o↵ by odd-cycle
inequalities over the bipartite Boolean Quadric Polytope [43, 51]. For each `2 [k], every 4-cycle in
Km,n gives eight non-dominated odd-cycle inequalities corresponding to an odd subset of edges of
the 4-cycle. As an example, two of these inequalities over a 4-cycle with vertices {i1, j1, i2, j2} are,

�ai1,` � b`,j1 + yi1,`,j1 + yi1,`,j2 + yi2,`,j1 � yi2,`,j2  0, (9)
+ai1,` + b`,j1 � yi1,`,j1 � yi1,`,j2 � yi2,`,j1 + yi2,`,j2  1. (10)

However, for some matrices, adding all non-dominated odd-cycle inequalities to CLP is not su�cient
to cut o↵ all the half-integral points with 0 objective value that appear in Proposition 1.

Example 1. Let X= I4 = J4� I4 (where Jt is the all 1s matrix and It is the identity matrix.)
and k = 3. One can show that I4 has Boolean rank 4, so no zero error rank-3 factorisation exists.
Yet, the below half-integral 0-objective point, that is one of the points constructed in Proposition
1, is not cut o↵ by any of the odd-cycle inequalities. The point has ai,` = b`,j =

1

2
and y’s set as

Y1 =

2

664

1

2

1

2
1

2

1

2
1

2

1

2
1

2

1

2

3

775 ,Y2 =

2

664

1

2

1

2
1

2

1

2
1

2

1

2
1

2

1

2

3

775 ,Y3 =

2

664

1

2

1

2
1

2

1

2
1

2

1

2
1

2

1

2

3

775 ,where Y` =

2

664

y1,`,1 y1,`,2 y1,`,3 y1,`,4

y2,`,1 y2,`,2 y2,`,3 y2,`,4

y3,`,1 y3,`,2 y3,`,3 y3,`,4

y4,`,1 y4,`,2 y4,`,3 y4,`,4

3

775 . (11)

To see that the above half-integral point is not cut o↵ by any of the odd-cycle inequalities, observe
that odd-cycle inequalities can cut o↵ points which have components


yi1,`,j1 yi1,`,j2

yi2,`,j1 yi2,`,j2

�
=


1

2

1

2
1

2
0

�
, or


yi1,`,j1 yi1,`,j2

yi2,`,j1 yi2,`,j2

�
=


0 0
0 1

2

�
, (12)

or any permutation of these. Since these 2⇥ 2 components or their permutation do not appear in
Y` (`= 1,2,3) in Equation (11), the above half-integral point is a 0-objective point of CLP even
after adding all non-dominated odd-cycle inequalities.

-nee



Günlük, Hauser and Kovács: Binary Matrix Factorisation and Completion via Integer Programming
8 Mathematics of Operations Research 00(0), pp. 000–000, c� 0000 INFORMS

In some other cases, adding all the odd-cycle inequalities to CLP does cut o↵ all the half-integral
points that appear in Proposition 1, but some other 0-objective points remain.

Example 2. Let X= I4 and k = 3. I4 clearly has Boolean rank 4, hence no rank-3 BMF can
give 0 error. After adding all odd-cycle inequalities to CLP, the below point is still feasible and has
objective value 0,

ai,` = b`,j =
1

3
, Y1 =Y2 =Y3 =

2

664

1

3
1

3
1

3
1

3

3

775 , where Y` =

2

664

y1,`,1 y1,`,2 y1,`,3 y1,`,4

y2,`,1 y2,`,2 y2,`,3 y2,`,4

y3,`,1 y3,`,2 y3,`,3 y3,`,4

y4,`,1 y4,`,2 y4,`,3 y4,`,4

3

775 . (13)

Furthermore, for k > 1, any feasible rank-k factorisation A �B and a permutation matrix P 2
{0,1}k⇥k provide another feasible solution AP�P>B to CIP with the same objective value. Hence,
CIP is highly symmetric for k > 1. These properties of CIP make it unlikely to be solved to
optimality for k > 1 in a reasonable amount of time for a large matrix X, though some symmetries
may be broken by enforcing lexicographic ordering of rows of B. In future work, the symmetries in
CIP could be tackled by developing a permutation-invariant extended formulation [20]. For small
matrices however, CIP constitutes the first approach to get optimal solutions to k-BMF.

2.2. Exponential size formulation I. Any n⇥m Boolean rank-k matrix can be equivalently
written as the Boolean combination of k rank-1 binary matrices

Wk
`=1

a`b
>
` for some a` 2 {0,1}n,b` 2

{0,1}m. This suggest to directly look for k rank-1 binary matrices instead of introducing variables
for all entries of factor matrices A and B. The second integer program we detail for k-BMF relies
on this approach by considering an implicit enumeration of rank-1 binary matrices. Let R denote
the set of all rank-1 binary matrices of dimension n⇥m and let R(i,j) denote the subset of rank-1
matrices of R which have the (i, j)-th entry equal to 1,

R := {ab> : a2 {0,1}n,b2 {0,1}m,a,b 6= 0}⇢ {0,1}n⇥m
, (14)

R(i,j) := {ab> 2R : ai = bj = 1}⇢R i2 [n], j 2 [m]. (15)

Introducing a binary variable qr for each rank-1 matrix r in R and variables zij corresponding to
the known entries of the X, we obtain the following Master Integer linear Program (MIP),

(MIPF) ⇣MIP =min
z,q

X

(i,j)2E

(1� zij)+
X

(i,j)2E

zij (16)

s.t. zij 
X

r2R(i,j)

qr (i, j)2E (17)

X

r2R(i,j)

qr  k zij (i, j)2E (18)

X

r2R

qr  k (19)

zij, qr 2 {0,1} (i, j)2E [E, r 2R (20)

The objective, as before, measures the factorisation error in squared Frobenius norm, and subscript
F in MIPF stands for Frobenius. Constraints (17) and (18) enforce Boolean matrix multiplication:
zij takes value 1 if there is at least one active rank-1 binary matrix that covers entry (i, j), otherwise
it takes value 0. Notice, that due to the di↵erence in sign of objective coe�cients for variables zij
with (i, j)2E and (i, j)2E it is enough to declare constraints (17) and (18) for indices (i, j)2E

and (i, j)2E respectively. Constraint (19) ensures that at most k rank-1 binary matrices are active
and hence we get a rank-k factorisation of X. Observe that constraints (17) together with qr being

see



Günlük, Hauser and Kovács: Binary Matrix Factorisation and Completion via Integer Programming
Mathematics of Operations Research 00(0), pp. 000–000, c� 0000 INFORMS 9

binary imply that zij automatically takes binary values for (i, j) 2 E, and due to the objective
function it always takes the value at its upper bound, hence zij 2 {0,1} may be replaced by zij  1
for all (i, j) 2E without altering the optimum. In contrast, zij for (i, j) 2E need to be explicitly
declared binary as otherwise, if there are some active rank-1 matrices (qr > 0) which cover a zero
of X (r 2R(i,j), (i, j)2E) then variable zij corresponding to that zero takes the possibly fractional
value 1

k

P
r2R(i,j)

qr. One can also consider a strong formulation of MIPF with exponentially many

constraints, in which constraints (18) are replaced by qr  zij for all r 2R(i,j) and (i, j)2E.
The LP relaxation of MIPF (MLPF) is obtained by replacing the integrality constraints by

zij, qr 2 [0,1]. Unlike CLP, the optimal objective value of MLPF (⇣MLP) is not always zero. By
comparing the rank of the factorisation, k to the isolation number of the input matrix X we can
deduce when MLPF will take non-zero objective value. We next give an extension of the definition
of isolation number for binary matrices presented in [18] and [40, Section 2.3]. The isolation number
is sometimes also referred to as the fooling set bound [12, 6].

Definition 1. Let X be a binary matrix with possibly missing entries. A set S ✓E = {(i, j) :
xij = 1} is said to be an isolated set if whenever (i1, j1), (i2, j2) are two distinct members of S then
(a) i1 6= i2, j1 6= j2 and (b) (i1, j2) 2 E or (i2, j1) 2 E or both, where E = {(i, j) : xij = 0}. The
cardinality of a maximum isolated set of X is the isolation number of X, denoted by i(X).
From the definition it follows that members of an isolated set cannot be covered by a common
rank-1 submatrix, and hence the isolation number provides a lower bound on the Boolean rank.
The following result (whose weaker preliminary version appeared in [26]) shows that MLPF must
have non-zero objective value whenever k, the rank of the factorisation, is chosen so that it is
strictly smaller than the isolation number.

Proposition 2. Let X have isolation number i(X)> k, then ⇣MLP � 1

k
(i(X)� k).

Proof. Let S be an isolated set of X of cardinality i(X). We will establish a feasible solution to
the dual of MLPF (MDPF) with objective value 1

k
(i(X)� k) implying the result.

Let us apply a change of variables ⇠ij = 1� zij for (i, j)2E for the ease of avoiding the constant
term in the objective function of MLPF. Then the bound constraints of MLPF can be written as
⇠ij � 0 for (i, j)2E, zij � 0 for (i, j)2E and qr � 0, r 2R as the objective function is minimising
both ⇠ij and zij and we have the cardinality constrains on qr. Associating dual variables pij � 0
(i, j) 2 E with constraints

P
r2Ri,j

qr + ⇠ij � 1, sij � 0 (i, j) 2 E with constraints (18) and µ � 0
with constraint (19), the Master Dual Program (MDPF) of MLPF is

(MDPF) ⇣MDP =max
p,s,µ

X

(i,j)2E

pij � k µ (21)

s.t.
X

(i,j)2E\supp(R)

pij �
X

(i,j)2E\supp(R)

sij  µ R 2R (22)

0 pij  1 (i, j)2E (23)

0 sij 
1

k
(i, j)2E (24)

0 µ, (25)

where supp(R) = {(i, j) : rij = 1}.
Let sij =

1

k
for (i, j) 2E and let pij =

1

k
for (i, j) 2 S and pij = 0 for all other (i, j) 2E \S. The

bound constraints on pij and sij are satisfied then. It remains to choose µ� 0 such that we satisfy
constraint (22) for all rank-1 binary matrices R 2R. Let R 2R be a submatrix of X, so we have
|E \ supp(R)| = 0. Then by the definition of isolated sets, R can contain at most one element
from S and hence we have | supp(R)\ S| 1. This tells us that for any µ� 1

k
, constraint (22) is

satisfied for all R 2R that is a submatrix of X. Now let R 2R be a rank-1 binary matrix which
covers at least one zero entry of X. Then R may contain more than one element from S. However,

-



Günlük, Hauser and Kovács: Binary Matrix Factorisation and Completion via Integer Programming
10 Mathematics of Operations Research 00(0), pp. 000–000, c� 0000 INFORMS

if it contains more than one element from S then it must also contain at least
�| supp(R)\S|

2

�
-many

zeros as for any two distinct elements (i1, j1), (i2, j2) in S we have (i1, j2)2E or (i2, j1)2E by the
definition of isolated set. Hence, for all R2R such that |E\ supp(R)|> 0, constraint (22) satisfies

1

k
|S \ supp(R)|� 1

k
|E \ supp(R)| 1

k
|S \ supp(R)|� 1

k

✓
|S \ supp(R)|

2

◆
 1

k
. (26)

Thus we can set µ = 1

k
to get the objective value 1

k
(i(X)� k)  ⇣MDP = ⇣MLP, which provides a

non-zero bound on MLPF for all k < i(X). ⇤
The following example shows that we cannot strengthen Proposition 2 by replacing the condition

k < i(X) with the requirement that k has to be strictly smaller than the Boolean rank of X.
Example 3. Let X= J4� I4, where J4 is the 4⇥ 4 matrix of all 1s and I4 is the 4⇥ 4 identity

matrix. One can verify that the Boolean rank of X is 4 and its isolation number is 3. For k = 3,
the optimal objective value of MLPF is 0 which is attained by a fractional solution in which the
following 6 rank-1 binary matrices are active with weight 1

2
.

q1 =
1

2
q2 =

1

2
q3 =

1

2
q4 =

1

2
q5 =

1

2
q6 =

1

22

664

0 0 0 0
1 0 1 0
0 0 0 0
1 0 1 0

3

775

2

664

0 1 1 0
0 0 0 0
0 0 0 0
0 1 1 0

3

775

2

664

0 1 0 1
0 0 0 0
0 1 0 1
0 0 0 0

3

775

2

664

0 0 0 0
1 0 0 1
1 0 0 1
0 0 0 0

3

775

2

664

0 0 1 1
0 0 1 1
0 0 0 0
0 0 0 0

3

775

2

664

0 0 0 0
0 0 0 0
1 1 0 0
1 1 0 0

3

775

2.3. Exponential size formulation II. For t2 [2m�1] let �t 2 {0,1}m be the vector denot-
ing the binary encoding of t and note that these vectors give a complete enumeration of all non-zero
binary vectors of size m. Let �tj denote the j-th entry of �t. In [34], the authors present the follow-
ing Exponential size Integer linear Program (EIP) formulation using a separate indicator variable
dt for each one of these exponentially many binary vectors �t,

(EIP) ⇣EIP =min
↵,z,d

X

(i,j)2E

(1� zij)+
X

(i,j)2E

zij (27)

s.t. zij 
2
m�1X

t=1

↵it�tj (i, j)2E, (28)

2
m�1X

t=1

↵it�tj  kzij (i, j)2E, (29)

2
m�1X

t=1

dt  k (30)

↵it  dt i2 [n], t2 [2m � 1], (31)
zij, dt,↵it 2 {0,1} (i, j)2E [E, t2 [2m � 1]. (32)

The above formulation has an exponential number of variables and constraints but it is an integer
linear program as �tj are input parameters to the model. Let ELP be the LP relaxation of EIP.
Observe that due to the objective function the bound constraints in ELP may be simplified to
zij,↵it, dt � 0 for all i, j, t and zij  1 for (i, j) 2 E without changing the optimum. To solve EIP
or ELP explicitly, one needs to enumerate all binary vectors �t, which is possible only up to
a very limited size. To the best of our knowledge, no method is available that avoids explicit
enumeration and can guarantee the optimal solution of EIP. Previous attempts at computing a
rank-k factorisation via EIP all relied on working with only a small heuristically chosen subset of
vectors �t [34, 35]. However, if there was an e�cient method to solve ELP, the following result
shows it to be as strong as the LP relaxation of MIPF.

-



Günlük, Hauser and Kovács: Binary Matrix Factorisation and Completion via Integer Programming
Mathematics of Operations Research 00(0), pp. 000–000, c� 0000 INFORMS 11

Proposition 3. The optimal objective values of ELP and MLPF are equal.

Proof. Note that due to constraints (17) and (18) in MLPF and constraints (28) and (29) in
ELP, it su�ces to show that for any feasible solution ↵it, dt of ELP one can build a feasible solution
qr of MLPF for which

P
2
m�1

t=1
↵it�tj =

P
r2R(i,j)

qr, and vice-versa.

First consider a feasible solution ↵t 2 Rn
, dt 2 R (for t 2 [2m � 1]) to ELP and note that by

constraint (31) we have 0 ↵it  dt for all i 2 [n] and t 2 [2m � 1]. We can therefore express each
↵t as a convex combination of binary vectors in {0,1}n scaled by dt,

↵t = dt

2
n�1X

s=1

�s,t as as 2 {0,1}n \ {0},
2
n�1X

s=1

�s,t  1, �s,t � 0, s2 [2n � 1] (33)

where as denotes the binary encoding of s. Note that we do not require �s,t’s to add up to 1 as we
exclude the zero vector. We can therefore rewrite the solution of ELP as follows

2
m�1X

t=1

↵t�
>
t =

2
m�1X

t=1

2
n�1X

s=1

dt �s,tas�
>
t =

2
m�1X

t=1

2
n�1X

s=1

qs,tas�
>
t where qs,t := dt �s,t. (34)

Now it is easy to see that as�
>
t 2R and since

P
2
m�1

t=1
dt  k holds in any feasible solution to ELP,

we get
P

2
n�1

s=1

P
2
m�1

t=1
qs,t  k, which shows that qs,t is feasible for MLPF.

The construction works backwards as well, as any feasible solution to MLPF can be written asP
2
n�1

s=1

P
2
m�1

t=1
qs,tas�

>
t for some rank-1 binary matrices as�

>
t 2 R and corresponding variables

qs,t � 0. Now let ↵t :=
P

2
n�1

s=1
qs,tas and dt :=maxi2[n]↵it to satisfy ↵it  dt. Then since we started

from a feasible solution to MLPF, we have
P

2
n�1

s=1

P
2
m�1

t=1
qs,t  k and hence

P
2
m�1

t=1
dt  k is satisfied

too. ⇤

3. Working under a new objective function. In the previous section, we presented for-
mulations for k-BMF which measured the factorisation error in the squared Frobenius norm, which
coincides with the entry-wise `1 norm as showed in Equation (3). In this section, we explore another
objective function which introduces an asymmetry between how false negatives and false positives
are treated. Whenever a 0 entry is erroneously covered in a rank-k factorisation, it may be covered
by up to k rank-1 binary matrices. Our new objective function attributes a weighted error term
to each 0 entry which is proportional to the number of rank-1 matrices covering that entry. As
previously, by denoting Z=A �B a rank-k factorisation of X, the new objective function is

⇣(⇢) =
X

(i,j)2E

(1� zij)+ ⇢

X

(i,j)2E

kX

`=1

ai`b`j. (35)

Note that the constraints ai`b`j  zij 
Pk

`=1
ai`b`j encoding Boolean matrix multiplication imply

that 1

k

Pk
`=1

ai`b`j  zij 
Pk

`=1
ai`b`j. Therefore, denoting the original squared Frobenius norm

objective function in Equation (3) by ⇣F , for any X and rank-k factorisation Z of X the following
relationship holds between ⇣F and ⇣(1), ⇣( 1

k
),

⇣F  ⇣(1)
X

(i,j)2E

(1� zij)+
X

(i,j)2E

k zij  k ⇣F and
1

k
⇣F  ⇣(

1

k
) ⇣F . (36)

We next show that this new objective function ⇣(⇢) with ⇢ = 1 can overestimate the original
objective ⇣F by a factor of k. But first, we need a technical result which shows that whenever the
input matrix X contains repeated rows or columns we may assume that an optimal factorisation
exists which has the same row-column repetition pattern.

-



Günlük, Hauser and Kovács: Binary Matrix Factorisation and Completion via Integer Programming
12 Mathematics of Operations Research 00(0), pp. 000–000, c� 0000 INFORMS

Lemma 1 (Preprocessing). Let X contain some duplicate rows and columns. Then there

exists an optimal rank-k binary matrix factorisation of X under objective ⇣F (or ⇣(⇢)) whose rows

and columns corresponding to identical copies in X are identical.

Proof. Since the transpose of an optimal rank-k factorisation is optimal for X>, it su�ces to
consider the rows of X. Furthermore, it su�ces to consider only one set of repeated rows of X,
so let I ✓ [n] be the index set of a set of identical rows of X. We then need to show that there
exists an optimal rank-k factorisation whose rows indexed by I are identical. Let Z=A �B be an
optimal rank-k factorisation of X under objective ⇣F . For all i1, i2 2 I we must have

X

j:(i1,j)2E

(1� zij)+
X

j:(i1,j)2E

zij =
X

j:(i2,j)2E

(1� zij)+
X

j:(i2,j)2E

zij (37)

as otherwise replacing Ai,: for each i 2 I with row Ai⇤,: where i
⇤ 2 I is a row index for which the

above sum is minimised leads to a smaller error factorisation. Then since (37) holds, replacing Ai,:

for each i2 I with row Ai⇤,: for any i
⇤ 2 I leads to an optimal solution of the desired property. Sim-

ilarly, if Z is an optimal factorisation under objective ⇣(⇢), then for all i1, i2 2 I the corresponding
objective terms must equal and hence an optimal solution of the desired property exists. ⇤

This result implies that whenever the input matrix X contains repeated rows or columns we may
solve the following problem on a smaller matrix instead. Let X0 2 {0,1}n0⇥m0

be the binary matrix
obtained from X by replacing each duplicate row and column by a single representative and let
r 2 Zn0

+
and c 2 Zm0

+
be the counts of each unique row and column of X0 in X respectively. Let E0

and E0 denote the non-zero and zero entry index sets of X0 respectively. By Lemma 1 an optimal
rank-k factorisation Z0 =A0 �B0 of X0 under the updated objective function

⇣
0
F :=

X

(i,j)2E0

ri cj (1� z
0
ij)+

X

(i,j)2E0

ri cj z
0
ij (38)

(or ⇣ 0(⇢) :=
P

(i,j)2E0 ri cj (1� z
0
ij)+ ⇢

P
(i,j)2E0 ri cj

Pk
`=1

a
0
i`b

0
`j) leads to an optimal rank-k factori-

sation of X under the original objective function ⇣F (or ⇣(⇢)).

Proposition 4. For each positive integer k there exists a matrix X(k) for which the optimal

rank-k binary matrix factorisations under objectives ⇣F and ⇣(1) satisfy ⇣(1) = k ⇣F .

Proof. The idea behind the proof is to consider a matrix Z(k) of exact Boolean rank-k in which
all the k rank-1 components (rectangles) overlap at a unique middle entry and then replace this
entry with a 0 to obtain X(k). Now X(k) and Z(k) are exactly at distance 1 in the squared
Frobenius norm and hence Z(k) is a rank-k factorisation of X(k) with objective value ⇣F = 1. On
the other hand, since exactly k rectangles cover the entry at which X(k) and Z(k) di↵er, if Z(k)
is taken as a rank-k factorisation of X(k) under objective ⇣(1) it incurs an error of size k. Figure
1 shows the idea how to build such a X(k) for k = 2,4,6. Each colour corresponds to a rank-1
component and white areas correspond to 0s. We first consider the case when k is even. For k= 2
take the symmetric matrix X(2) as in Equation (39) which corresponds to Figure 1a. Since X(2)
has repeated rows and columns, according to Lemma 1 we may simplify the problem by replacing
X(2) by X0(2) and recording a weight vector for the rows and columns which indicate how many
times each row and column is repeated. This weight vector is then used to update each entry in

-



Günlük, Hauser and Kovács: Binary Matrix Factorisation and Completion via Integer Programming
Mathematics of Operations Research 00(0), pp. 000–000, c� 0000 INFORMS 13

Figure 1. Example matrices for which ⇣(1) = k ⇣F

(a) k= 2 (b) k= 4 (c) k= 6

the objective function with the corresponding weight. For X(2) the row and column weight vectors
coincide as X(2) is symmetric and we denote it by w(2).

X(2) =

2

666666664

1 1 0
1 1 0
1 1 0
1 0 1
0 1 1
0 1 1
0 1 1

3

777777775

�

2

666666664

1 0 0
1 0 0
1 0 0
0 1 0
0 0 1
0 0 1
0 0 1

3

777777775

>

=

2

666666664

1 1 1 1 0 0 0
1 1 1 1 0 0 0
1 1 1 1 0 0 0
1 1 1 0 1 1 1
0 0 0 1 1 1 1
0 0 0 1 1 1 1
0 0 0 1 1 1 1

3

777777775

)X0(2) =

2

4
1 1 0
1 0 1
0 1 1

3

5with w(2) =

2

4
3
1
3

3

5 (39)

The Boolean rank of X(2) is 3, which one can confirm by looking at a size 3 isolated set (shadowed
entries) and an exact rank-3 factorisation shown in Equation (39). Let Z(2) be obtained from X(2)
by replacing the 0 at entry (4,4) by a 1. Z(2) clearly has Boolean rank 2, hence it is a feasible rank-2
factorisation of X(2). Under objective ⇣F Z(2) incurs an error of size 1, which is optimal as ⇣F � 1
by X(2) being of Boolean rank-3. On the other hand, under objective ⇣(1) Z(2) has objective value
2 as the middle entry is covered twice. To see that Z(2) is optimal under ⇣(1) observe that every
entry in X0(2) apart from the middle entry has weight strictly greater than 2. Hence not covering
a 1 of X0(2) or covering a 0 di↵erent from the middle entry incurs an error strictly greater than 2.

For k > 2 even let us give a recipe to construct a symmetric matrix X0(k) and corresponding
weight vector w(k). Let t= k

2
� 1 and let the following (4t+3)⇥ (4t+3) matrix be X0(k), where

It is the identity matrix of size t⇥ t, Ĩt is the reverted identity matrix of size t⇥ t (so Ĩ2 = [ 0 1

1 0
])

and Jt is the all ones matrix of size t⇥ t,

X0(k) =

2

6666666664

It 1t Ĩt
1 1>

t 1
1t Jt 1t Ĩt

1>
t 1 1>

t 0 1>
t 1 1>

t

Ĩt 1t Jt 1t

1 1>
t 1

Ĩt 1t It

3

7777777775

, w(k) =

2

666666664

(k+1)1t

(k+1)
(k+1)1t

1
(k+1)1t

(k+1)
(k+1)1t

3

777777775

, A0(k) =

2

666666664

It
1
1t Ĩt

1>
t 1 1 1>

t

Ĩt 1t

1
It

3

777777775

.

X0(k) has isolation number i(X0(k)) � 2t+ 3 = k + 1 (indicated by the shadowed entries), so no
rank-k factorisation can have zero error. Let Z0(k) be obtained from X0(k) by replacing the middle

eleme



Günlük, Hauser and Kovács: Binary Matrix Factorisation and Completion via Integer Programming
14 Mathematics of Operations Research 00(0), pp. 000–000, c� 0000 INFORMS

0 by a 1 and let its weight vector be the same as of X0(k). The Boolean rank of Z0(k) is then at most
k as Z0(k) =A0(k) �A0>(k) is an exact factorisation and A0(k) is of dimension (4t+3)⇥ k. This
factorisation is illustrated in Figure 1 for k= 4,6. Therefore Z0(k) is a feasible rank-k factorisation
of X0(k). Now Z0(k) under objective function ⇣F has error 1 and hence it is optimal. In contrast,
Z0(k) evaluated under objective ⇣(1) has error k as the middle 0 is covered k times and it has
weight 1. To see that Z0(k) is optimal under ⇣(1) as well, note that all entries of X0(k) apart from
the middle 0 have weight strictly greater than k. Therefore, any other rank-k factorisation which
does not cover a 1 or covers a 0 which is not the middle 0, incurs an error strictly greater than k,
and hence Z0(k) is optimal under objective ⇣(1) with value k · ⇣F .

For k = 1, all 1-BMFs satisfy ⇣F = ⇣(1) by definition. For k > 1 odd, we can obtain X0(k) and
w(k) from X0(k + 1) and w(k + 1) by removing the first row and column of X0(k + 1) and the
corresponding first entry of w(k+1). For X0(k) then, the same reasoning holds as for k even. ⇤

While Proposition 4 shows that ⇣(1) can be k times larger than the Frobenius norm objective
⇣F , the matrices in the proof are quite artificial, and in practice we observe that not many zeros
are covered by more than a few rank-1 matrices. In fact, our main motivation to consider this
new objective function is that we observed that Exponential Formulation I. becomes computa-
tionally easier when using objective ⇣(⇢) without compromising the accuracy of factorisations in
practice. These numerical observations will be demonstrated in Sections 5.2.1 and 5.2.2. Therefore
we consider the previously introduced formulations for k-BMF under the new objective ⇣(⇢).

Let us denote a modification of formulation MIPF with the new objective function ⇣(⇢) as MIP(⇢)
and use the transformation ⇠ij = 1� zij for (i, j)2E to get

(MIP(⇢)) ⇣MIP(⇢) =min
⇠,q

X

(i,j)2E

⇠ij + ⇢

X

(i,j)2E

X

r2R(i,j)

qr (40)

s.t.
X

r2R(i,j)

qr + ⇠ij � 1 (i, j)2E (41)

X

r2R

qr  k (42)

⇠ij � 0, qr 2 {0,1} (i, j)2E,r 2R. (43)

One of the imminent advantages of using objective ⇣(⇢) is that we need only declare variables for
entries (i, j)2E and can consequently delete the weak constraints (18) from the formulation. The
LP relaxation of MIP(⇢) (MLP(⇢)) is obtained by giving up on the integrality constraints on qr

and observing that without loss of generality we can simply write qr � 0 for all r 2R. We next
show that the optimal solutions of the LP relaxation of MIPF and MLP(⇢) with ⇢= 1

k
coincide.

The proof of this result is presented in the appendix of [26], but for the sake of completeness we
repeat it here.

Proposition 5. The optimal solutions of the LP relaxations MLPF and MLP( 1
k
) coincide.

Proof. It su�ces to observe that as MLPF is a minimisation problem, each zij (i, j)2E takes the
value 1

k

P
r2R(i,j)

qr in any optimal solution to MLPF due to constraint (18). This implies that the

second terms in the objective function (16) of MIPF and (40) of MLP( 1
k
) have the same value. ⇤

Therefore one may instead solve MLP( 1
k
) that has fewer variables and constraints than MLPF.

In addition, for all ⇢ > 0, a corollary of Proposition 2 holds by looking at the dual of MLP(⇢)
(MDP(⇢)). Let us associate variables pij for (i, j)2E to constraints (41) and variable µ to constraint
(42). Then the dual of MLP(⇢) is:

(MDP(⇢)) ⇣MDP(⇢) =max
p,µ

X

(i,j)2E

pij � k µ (44)

ene



Günlük, Hauser and Kovács: Binary Matrix Factorisation and Completion via Integer Programming
Mathematics of Operations Research 00(0), pp. 000–000, c� 0000 INFORMS 15

s.t.
X

(i,j)2E\supp(R)

pij �µ ⇢ |E \ supp(R)| R 2R (45)

µ� 0, pij 2 [0,1] (i, j)2E (46)

where supp(R) = {(i, j) : rij = 1}.
Corollary 1. Let X have isolation number i(X)> k. Then for all ⇢> 0, MLP(⇢) has objective

value at least ⇢ (i(X)� k).

Proof. The proof is a simple modification of Proposition 2’s proof. The dual of MLP(⇢) (MDP(⇢))
di↵ers from MDPF by having the constant value ⇢ instead of dual variables sij and constraints (45)
instead of (22). Therefore setting pij = ⇢ for all (i, j)2 S and 0 otherwise (where S is a maximum
isolated set of X), and µ= ⇢ gives the required bound of ⇢ (i(X)� k). ⇤

4. Computational approach. It is clearly not practical to solve the master integer program
MIP(⇢) or its LP relaxation MLP(⇢) explicitly as the formulation has an exponential number of
variables. Column generation (CG) is a well-known technique to solve large LPs iteratively by
only considering the variables which have the potential to improve the objective function [2]. The
column generation procedure is initialised by solving a Restricted Master LP (RMLP) which has a
small subset of the variables of the full problem. The next step is to identify a missing variable with
negative reduced cost to be added to RMLP. To avoid considering all missing variables explicitly,
a pricing problem is formulated and solved. The solution of the pricing problem either returns a
variable with negative reduced cost and the procedure is iterated; or proves that no such variable
exists and hence the solution of RMLP is optimal for the full MLP. In this section, we detail how
CG technique can be used to solve the LP relaxation of MIP(⇢) iteratively.

Each Restricted MLP(⇢) (RMLP(⇢)) has the same number of constraints as the full MLP(⇢)
and all variables ⇠ij for (i, j) 2 E but it only has a small subset of variables qr for r 2 R0 ⇢ R
where |R0|⌧ |R|. Recall that each variable qr corresponds to a rank-1 binary matrix r 2R which
determines the coe�cients of qr in the constraints as well as the objective function. Hence at every
iteration of the CG procedure we either need to find a rank-1 binary matrix for which the associated
variable has a negative reduced cost, or, prove that no such matrix exists.

4.1. The pricing problem. At the first iteration of CG, RMLP(⇢) may be initialised with
R0 = ; or can be warm started by identifying a few rank-1 matrices in R using a heuristic. After
solving the RMLP(⇢) to optimality, one obtains an optimal dual solution [p⇤

, µ
⇤] to the current

RMLP(⇢). To identify a missing variable qr that has negative reduced cost, we solve the following
pricing problem (PP):

(PP) !(µ⇤
,p⇤) = µ

⇤ �max
a,b,y

X

(i,j)2E

p
⇤
ijyij � ⇢

X

(i,j)2E

yij (47)

s.t. yij = aibj, ai, bj 2 {0,1}, i2 [n], j 2 [m]. (48)

PP may be formulated as an integer linear program (IPPP) by using McCormick envelopes [37]
(see Section 2.1) to linearise the quadratic constrains to yij 2 MC(ai, bj). The objective of PP
depends on the current dual solution [p⇤

, µ
⇤] and its optimal solution corresponds to a rank-1 binary

matrix ab> = r 2R whose corresponding variable qr in MLP(⇢) has the smallest reduced cost. If
!(µ⇤

,p⇤)� 0, then the current RMLP(⇢) does not have any missing variables with negative reduced
cost and consequently the current solution of RMLP(⇢) is optimal for MLP(⇢). If !(µ⇤

,p⇤)< 0, then
the variable qr associated with the rank-1 binary matrix r = ab> is added to the next RMLP(⇢)
and the procedure is iterated. Moreover, any feasible solution to PP with a negative reduced cost
can (also) be added to the RMLP(⇢) to continue the procedure. CG terminates with a proof of
optimality if at some iteration we have !(µ⇤

,p⇤)� 0.

nee



Günlük, Hauser and Kovács: Binary Matrix Factorisation and Completion via Integer Programming
16 Mathematics of Operations Research 00(0), pp. 000–000, c� 0000 INFORMS

4.2. Solving the master integer program. After the CG process, if the optimal solution
of MLP(⇢) is integral, then it also is optimal for MIP(⇢). However, if it is fractional, then this
solution only provides a lower bound on the optimal value of MIP(⇢). In this case we obtain an
integer feasible solution by solving a Restricted MIP(⇢) (RMIP(⇢)) over the rank-1 binary matrices
generated by the CG process applied to MLP(⇢). This integer feasible solution is optimal for
MIP(⇢) provided that the objective value of RMIP(⇢) is equal to the ceiling of the objective value
of MLP(⇢). If this is not the case, one needs to embed CG into a branch-and-bound tree [36] to
solve MIP(⇢) to optimality, which is a relatively complicated process and we do not consider it in
this paper.

4.3. Computing lower bounds. Note that even if the CG procedure is terminated prema-
turely, one can still obtain a lower bound on MLP(⇢) and therefore on MIP(⇢) by considering the
dual of MLP(⇢). Let the objective value of of the current RMLP(⇢) be

⇣RMLP(⇢) =
X

(i,j)2E

⇠
⇤
ij + ⇢

X

(i,j)2E

X

r2R(i,j)

q
⇤
r =

X

(i,j)2E

p
⇤
ij � kµ

⇤ (49)

where [⇠⇤ij, q
⇤
r ] is the optimal solution of RMLP(⇢) and [p⇤

, µ
⇤] is the corresponding optimal dual

solution which does not necessarily satisfy all of the constraints (45) for MDP(⇢). Now assume
that we solve PP to optimality and obtain a rank-1 binary matrix with a negative reduced cost,
!(µ⇤

,p⇤)< 0. In this case, we can construct a feasible solution [p, µ] to MDP(⇢) by setting p := p⇤

and µ := µ
⇤ �!(µ⇤

,p⇤) and obtain the following bound on the optimal value ⇣MLP(⇢) of MLP(⇢),

⇣MLP(⇢) �
X

(i,j)2E

pij � k µ=
X

(i,j)2E

p
⇤
ij � k (µ⇤ �!(µ⇤

,p⇤)) = ⇣RMLP(⇢) + k !(µ⇤
,p⇤). (50)

If we do not have the optimal solution to PP but have a lower bound !(µ⇤
,p⇤) on it, !(µ⇤

,p⇤)
can be replaced by !(µ⇤

,p⇤) in Equation (50) and the bound on MLP(⇢) still holds. Furthermore,
this lower bound on MLP(⇢) naturally provides a valid lower bound on MIP(⇢), thus giving us a
bound on the optimality gap.

4.4. Column generation for MLPF. The CG approach is described above as applied to
the LP relaxation of MIP(⇢). To apply CG to MLPF only a small modification needs to be done.
The Restricted MLPF provides dual variables for constraints (18) which are used in the objective
of PP for coe�cients of yij (i, j)2E.

We note that CG cannot be used to solve the LP relaxation of the strong formulation of MIPF

in which constraints (18) are replaced by exponentially many constraints qr  zij for all r 2R(i,j)

and (i, j) 2 E. This is due to the fact that CG could cycle and generate the same column over
and over again. For example, consider applying CG to solve the strong formulation of MLPF and
start with the rank-1 binary matrix of all 1s as the first column associated with variable q1. The
objective value of the corresponding Restricted MLPF would be ⇣

(1)

RMLP
= 0+ |E| for the solution

vector [⇠(1)
,z(1)

,q(1)] = [0,1,1] as all entries of the input matrix are covered. Adding the same
rank-1 binary matrix of all 1s in the next iteration and setting [q1, q2] = [ 1

2
,
1

2
], allows us to keep

⇠(2) = 0 but reduce the value of z(2) to 1

2
1 to obtain an objective value ⇣(2)

RMLP
= 0+ 1

2
|E|. Therefore,

repeatedly adding the same matrix of all 1s for t iterations, the objective function would become
⇣
(t)
RMLP

= 0 + 1

t
|E| for the solution vector [⇠(t)

,z(t)
,q(t)] = [0, 1

t
1, 1

t
1]. Consequently, as t ! 1 we

would have ⇣
(t)
RMLP

! 0 and during the column generation process we repeatedly generate the same
rank-1 binary matrix.

-



Günlük, Hauser and Kovács: Binary Matrix Factorisation and Completion via Integer Programming
Mathematics of Operations Research 00(0), pp. 000–000, c� 0000 INFORMS 17

4.5. An alternative formulation of the pricing problem. Generating rank-1 binary
matrices with negative reduced cost e�ciently is at the heart of the CG process. For both MLP(⇢)
and MLPF, the pricing problem is a Bipartite Binary Quadratic Program (BBQP) which is NP-hard
in general [19, 44]. Hence for large X it may take too long to solve PP to optimality via formulation
IPPP at each iteration. Introducing H an n⇥m matrix with hij = p

⇤
ij 2 [0,1] for (i, j)2E, hij =�⇢

for (i, j)2E and hij = 0 for (i, j) 62E [E, PP can be written in standard form as

(QP
PP

) !(µ⇤
,p⇤) = µ

⇤ � max
a2{0,1}n,b2{0,1}m

a>Hb. (51)

This explicit quadratic form QP
PP

is more intuitive for thinking about heuristics than formulation
IPPP. If a heuristic approach to PP returns a rank-1 binary matrix with negative reduced cost,
then it is valid to add this heuristic solution as a column to the next RMLP. [19] presents several
heuristics for BBQP along with a simple but powerful greedy algorithm. In Appendix A we detail
this greedy algorithm and some variants of it which we use to provide a warm start to PP at every
iteration of CG in Section 5.2.

5. Experiments. The integer programs and column generation approach introduced in the
previous sections provide a framework for computing k-BMF with dual bounds. In this section, we
present some experimental results to demonstrate the practical applicability of integer program-
ming to obtain low-error factorisations. More specifically we detail our pricing strategies during
the column generation process and present a thorough comparison of models MIPF, MIP(⇢) and
CIP on synthetic and real world datasets. Our code and data can be downloaded from [24].

5.1. Data. If X contains rows (or columns) of all zeros, deleting these rows (or columns) leads
to an equivalent problem whose solution A and B can easily be translated to a solution for the
original problem by inserting a row of zeros to A (respectively a column of zeros to B) in the
corresponding place. In addition, if X contains duplicate rows or columns, by Lemma 1 there is
an optimal rank-k factorisation which has the same row-column repetition pattern as X. Hence
we solve the problem on a smaller matrix X0 which is obtained from X by keeping only one copy
of each row and column, and use an updated objective function in which every entry is weighted
proportional to the number of rows and columns it is contained in X.

5.1.1. Synthetic data. We build our dataset of binary matrices with prescribed sparsity and
Boolean rank as follows. To get a matrix X 2 {0,1}n⇥m with Boolean rank at most , first we
randomly generate two binary matrices Ã, B̃ of dimension n⇥  and ⇥m, then compute their
Boolean product to get X. This ensures X has Boolean rank at most . To obtain a certain sparsity
for X, we control the probability of entries of Ã, B̃ being zero. More specifically, if we generate
ãi`, b̃`j to be zero with probability p, then xij =

W
`=1

ãi`b̃`j is zero with probability (1� (1� p)2).
Hence, to obtain X with � percent of zeros, we need to generate entries of Ã, B̃ to be zero with

probability p= 1�
q

1� (�/100)
1
 .

We generate matrices as described above with m= 20 columns and = 10. The number of rows
(n) is set to be 20,35 or 50. For each of the three dimensions (20⇥20,35⇥20,50⇥20), we generate
10 sparse matrices with 75% zeroes and 10 normal matrices with 50% zeroes, corresponding to 10
di↵erent seed settings in the random number generation. We call this initial set of 2 ·3 ·10 matrices
the clean matrices. Next, we create a set of noisy matrices from the clean matrices by randomly
flipping 5% of the entries of each matrix. The noisy matrices are not necessarily of Boolean rank at
most = 10, but they are at most 0.05 ·n ·m squared Frobenius distance away from a Boolean rank
10 matrix. Therefore, our test bed consists of 120 matrices corresponding to 2 noise level settings
(noisy or clean), 2 sparsity levels (sparse or normal), 3 dimensions (20⇥ 20,35⇥ 20,50⇥ 20) and

-



Günlük, Hauser and Kovács: Binary Matrix Factorisation and Completion via Integer Programming
18 Mathematics of Operations Research 00(0), pp. 000–000, c� 0000 INFORMS

10 random seeds. Applying the preprocessing steps to our synthetic dataset achieves the largest
dimension reduction on clean matrices, while the dimension of noisy matrices scarcely changes. A
table summarising the parameters used to generate our data can be found in the Appendix B.

5.1.2. Real world data. We work with eight real world categorical datasets that were down-
loaded from online repositories [10, 29]. In general if a dataset has a categorical feature C with N

discrete options vj, (j 2 [N ]), we convert feature C into N binary features Bj (j 2N) so that if
the i-th sample takes option vj for C that is (C)i = vj, then we have (Bj)i = 1 and (B`)i = 0 for
all ` 6= j 2 [N ]. This technique of binarisation of categorical columns has been applied in [25] and
[1]. If a row i has a missing value in the column of feature C, we leave the corresponding binary
feature columns with missing values in row i. Table 1 shows a short summary of the resulting
full-binary datasets used, in-depth details on converting categorical columns into binary, missing
value treatment and feature descriptions can be found in Appendix C.

Table 1. Summary of binary real world datasets

zoo tumor hepatitis heart lymp audio apb votes

n⇥m 101 ⇥ 17 339 ⇥ 24 155⇥ 38 242⇥ 22 148⇥44 226 ⇥ 92 105⇥ 105 435 ⇥16
# missing 0 670 334 0 0 899 0 392
%1s 44.3 24.3 47.2 34.4 29.0 11.3 8.0 49.2

5.2. Testing the computational approach to exponential formulation I. Since the
e�ciency of CG greatly depends on the speed of generating columns, let us illustrate the speed-
up gained by using heuristics to solve the pricing problem. At each iteration of CG, 30 heuristic
solutions are computed via the heuristics detailed in Appendix A in order to obtain initial feasible
solutions to PP. Under exact pricing, the best heuristic solution is used as a warm start and IPPP

is solved to optimality at each iteration using CPLEX [8]. In simple heuristic (heur) pricing, if
the best heuristic solution to PP has negative reduced cost then it is directly added to the next
RMLP(⇢). If at some iteration, the best heuristic column does not have negative reduced cost,
CPLEX is used to solve IPPP to optimality for that iteration. The multiple heuristic (heur multi)
pricing strategy is a slight modification of the simple heuristic strategy, in which at each iteration
all columns with negative reduced cost are added to the next RMLP(⇢).

Figure 2 indicates the di↵erences between pricing strategies when solving MLP(1) via CG for k=
5,10 on the zoo dataset. The primal objective value of MLP(1) (decreasing curve) and the value of
the dual bound (increasing curve) computed using the formula in Equation (50) are plotted against
time. Sharp increases in the dual bound for heuristic pricing strategies correspond to iterations in
which CPLEX was used to solve IPPP, as for the evaluation of the dual bound on MLP(1) a lower
bound on !(µ⇤

,p⇤) is needed which heuristic solutions do not provide. While we observe a tailing
o↵ e↵ect [36] on all three curves, both heuristic pricing strategies provide a significant speed-up
from exact pricing, adding multiple columns at each iteration being the fastest.

In order for CG to terminate with a certificate of optimality, at least one pricing problem has
to be solved to optimality. Unfortunately for larger datasets we cannot expect this to be achieved
in a short amount of time. Therefore, we change the multiple heuristic pricing strategy to get a
pricing strategy that we use in the rest of the experiments as follows. We impose an overall fixed
time limit on the CG process and use the barrier method in CPLEX as the LP solver for RMLP
at each iteration. At each iteration of CG, we add up to 2 columns with the most negative reduced
cost to the next RMLP. If at an iteration, heuristics for PP do not provide a column with negative
reduced cost and CPLEX has to be used to improve the heuristic solution, we do not solve IPPP

-



Günlük, Hauser and Kovács: Binary Matrix Factorisation and Completion via Integer Programming
Mathematics of Operations Research 00(0), pp. 000–000, c� 0000 INFORMS 19

Figure 2. Comparison of pricing strategies for solving MLP(1) on the zoo dataset

to optimality but abort CPLEX after 25 seconds if a column with negative reduced cost has been
found. While these modifications result in a speed-up, they reduce the chance of obtaining a strong
dual bound. In case we wish to focus more on computing a stronger dual bound on MLP, we may
continue solving IPPP via CPLEX even when a heuristic negative reduced cost solution is available.

5.2.1. MLP(1) vs MLPF. In this section we compare the LP relaxations of MIP(1) and
MIPF. According to Proposition 5 the optimal solution of MLPF is equivalent to MLP( 1

k
) and

hence we solve MLP( 1
k
) which has fewer variables and constraints than MLPF. To solve MLP(1)

and MLP( 1
k
), we start o↵ from 0 rank-1 binary matrices so R0 = ; in the first RMLP and set a

total time limit of 600 seconds, so we either solve MLP to optimality under 600 seconds or run out
of time and compute the gap between the last RMLP and the best dual bound MDP according to
formula 100(⇣RMLP � ⇣MDP)/⇣RMLP. As MLP(1) and MLP( 1

k
) correspond to the LP relaxations of

MIP(1) and MIPF with integral objective coe�cients, any fractional dual bound may be rounded
up to give a valid bound on the master IP. Therefore, we stop CG whenever the ceiling of the dual
bound reaches the objective value of RMLP.

Figure 3. Time taken in seconds to solve MLP(1) and MLP(
1
k ) via CG on synthetic data

Figure 3 shows the time taken in seconds on a logarithmic scale to solve MLP(1) and MLP( 1
k
) via

CG for k = 2,4, . . . ,10 on the synthetic matrices. Each line corresponds to the average taken over
10 instances with the same dimension, sparsity and noise level. Blue lines correspond to matrices
of dimension 20⇥ 20, red to 35⇥ 20 and green to 50⇥ 20. Solid lines are used for MLP(1) and
dashed for MLP( 1

k
). First, we observe that it is significantly faster to solve both MLPs on sparse

and clean matrices as opposed to normal and noisy ones of the same dimension. Preprocessing is
more e↵ective in reducing the dimension for clean matrices in comparison to noisy ones (see Table
6 in Appendix B) which explains why noisy instances take longer. In addition, both MLP(1) and
MLP( 1

k
) have a number of variables and constraints directly proportional to non-zero entries of the

input matrix, hence a sparse input matrix requires a smaller problem to be solved. Second, we see
that k= 10 are solved somewhat faster. This can be explained by all matrices in our test bed being
generated to have Boolean rank at most 10. For a rank-10 factorisation of clean matrices without
noise we get 0 factorisation error under both models MIP(1) and MIPF and hence LP relaxation
objective value 0. For noisy matrices we observe the error to be in line with our expectation of

-ente



Günlük, Hauser and Kovács: Binary Matrix Factorisation and Completion via Integer Programming
20 Mathematics of Operations Research 00(0), pp. 000–000, c� 0000 INFORMS

0.05 ·n ·m. We observe that in some cases it takes significantly longer to solve MLP( 1
k
), and in all

ten instances of 50⇥ 20 normal -noisy matrices MLP( 1
k
) for k = 6 runs out of the time budget of

600 sec. In the experiments, we see the amount of time CG takes is directly proportional to the
number of columns generated, MLP( 1

k
) generating significantly more columns than MLP(1).

5.2.2. Obtaining integral solutions. Once we obtain some rank-1 binary matrices (i.e.
columns) via CG applied to a master LP, we can obtain an integer feasible solution by solving
either of the master IPs over the columns available. Here we explore obtaining integer feasible
solutions by solving MIP(1) and MIPF over the columns generated by formulations MLP(1) and
MLP( 1

k
). We use CPLEX as our integer program solver and set a total time limit of 300 seconds.

Figure 4. Factorisation error in k · k2F of integral solutions by MIP(1) from columns by MLP(1) and MLP(
1
k )

Figure 4 shows the factorisation error in k · k2F of integer feasible solutions obtained by solving
MIP(1) over columns generated by MLP(1) and MLP( 1

k
). As previously, each line corresponds to

the average taken over 10 matrices with same dimension, sparsity and noise level. Solid lines are
used to denote where the columns used were generated by MLP(1) and dashed where by MLP( 1

k
).

Comparing the error values of the dashed and solid lines we draw a crucial observation: columns
generated by MLP(1) seem to be a better basis for obtaining low-error integer feasible solutions
than columns by MLP( 1

k
). We suspect this is the case as in the majority of rank-k factorisations

most entries are only covered by a few rank-1 binary matrices whereas MLP( 1
k
) favours rank-

1 matrices which heavily cover 0 entries of the input matrix. This is because the coe�cient in
MLP( 1

k
)’s objective function corresponding to a zero entry at position (i, j) is only 1

k
⇥(number of

rank-1 matrices covering (i, j)), hence it is cheaper for MLP( 1
k
) to cover a 0 by a few (less than

k) rank-1 matrices than to leave any 1s uncovered. We also conducted a set of experiments using
formulation MIPF and we see that the factorisation error when using formulation MIP(1) to obtain
the integral solutions is extremely close to that of MIPF, see Appendix D Tables 7 and 8 for the
precise di↵erence in the factorisation error between the two master IPs.

Figure 5. Time taken in seconds to solve MIP(1) and MIPF on columns generated by MLP(1)

Figure 5 shows the time taken to solve the master IPs on columns generated by MLP(1). We
observe that MIP(1) takes notably faster to solve than MIPF and on most normal-noisy matrices
MIPF runs out of the time budget of 300 seconds. Solving both master IPs on columns by MLP( 1

k
)

also shows us that while solving MIP(1) over a larger set of columns adds only a few seconds for

-



Günlük, Hauser and Kovács: Binary Matrix Factorisation and Completion via Integer Programming
Mathematics of Operations Research 00(0), pp. 000–000, c� 0000 INFORMS 21

most instances, MIPF runs out of the time budget of 300 secs in about half the cases, see Appendix
Table 8. These observations suggest using MIP(1) to find integer feasible solutions in the future as
the solution quality is extremely close to that of MIPF but at a fraction of computational e↵ort.

5.3. Accuracy and speed of the IP Formulations. In this section we computationally
compare the integer programs introduced in Section 2 and 3. CIP due to its polynomial size can
be directly given to a general purpose IP solver like CPLEX and we set a time limit of 600 seconds
on its running time. We expect solution times for CIP to grow proportional to k and density of
X according to Proposition 1. Similarly, we may try to attack the exponential formulation EIP
directly by CPLEX. Since however EIP requires the complete enumeration of 2m binary vectors for
an input matrix X of size n⇥m we can only solve its root LP under 600 seconds in a very few cases.
For these few cases however, we observe the objective value of ELP to agree with MLP( 1

k
), which

gives an experimental confirmation of Proposition 3. In the following experiments, formulation
MIPF is used on columns generated by MLP( 1

k
), while MIP(1) on columns by MLP(1). The final

solution of MIP(1) is evaluated under the original k · k2F objective and that error is reported. As
previously, the master LPs are solved with a time limit of 600 seconds and the master IPs with an
additional time limit of 300 seconds.

Table 2 shows the factorisations error in k · k2F obtained by MIPF, MIP(1) and CIP and Table
3 shows the corresponding solution times in seconds. Each row of Table 2 and 3 corresponds to
the average of 10 synthetic matrices of the same size, sparsity and noise. The lowest error results
are indicated in boldface. We observe that MIP(1) provides the lowest error factorisation in most
cases, but CIP gives the lowest error when only looking at k = 2. The significantly higher error
values of MIPF are due to the lower quality columns generated by MLP( 1

k
) on which it is solved.

We emphasise that we do not do branch-and-price when solving MIP(1) or MIPF. Table 3 shows
that MIP(1) is the fastest in all cases, while CIP runs out of its time limit on all noisy instances
for k= 5,10. In conclusion, CIP provides very accurate solutions for k= 2 but it is slower to solve
than MIP(1), while for larger k’s MIP(1) dominates in both accuracy and speed.

5.4. Binary matrix completion. In this section we explore how successful our approach is
at recovering missing entries of incomplete binary matrices. We create an incomplete dataset of our
synthetic matrices by deleting 5,10, . . . ,30% of the entries of each matrix. This way, after computing
a rank-k factorisation of the incomplete matrix, we can easily compare to the corresponding original
matrix to see how many of the entries we have recovered successfully. Since our synthetic matrices
are generated to be of Boolean rank at most 10, we cannot expect to recover all the entries by a
rank-k completion with k < 10 and thus we perform the experiments with k= 10.

Figure 6 shows the reconstruction percentage against the percentage of missing entries when
solving MIP(1) on columns generated by MLP(1) on the incomplete matrices. As previously, the
three colours correspond to dimensions of the matrices: green to 50⇥ 20, red to 35⇥ 20 and blue
to 20⇥ 20. We define the percentage of reconstruction as 100 ⇤ (1� kX�A �Bk2F/kXk2F ) where
X is the original complete matrix and A �B is the rank-k factorisation of the incomplete matrix.
As expected the recovery percentage decreases with the percentage of missing entries and clean
matrices are better recovered than noisy ones. All in all, we see a very high percentage of the
entries can be recovered by MIP(1).

5.5. Comparing integer programming approaches against heuristics. In this section,
we compare our integer programming approaches against the most widely used k-BMF heuristics
on real-world datasets. The heuristic algorithms we evaluate include the ASSO algorithm [38, 39],
the alternating iterative local search algorithm (ASSO++) of [1] which uses ASSO as a starting
point, and the penalty objective formulation (pymf) of [52] via the implementation of [46]. We
also compute rank-k NMF, scale rank-1 factors and then binarise them to obtain a k-BMF. The

-



Günlük, Hauser and Kovács: Binary Matrix Factorisation and Completion via Integer Programming
22 Mathematics of Operations Research 00(0), pp. 000–000, c� 0000 INFORMS

Table 2. Factorisation error in k · k2F of solutions obtained via formulations MIPF, MIP(1) and CIPF

data k=2 k=5 k=10
(n-sparsity-noise) MIPF MIP(1) CIP MIPF MIP(1) CIP MIPF MIP(1) CIP

20-sparse-clean 49.6 47.4 47.4 20.8 16.6 16.7 0.0 0.0 0.0
20-sparse-noisy 64.0 59.5 59.3 42.6 30.3 30.7 11.2 10.2 10.3
20-normal-clean 75.0 70.0 68.7 30.6 27.7 26.5 0.3 0.3 0.0
20-normal-noisy 84.6 78.9 77.2 47.3 40.2 40.1 11.2 10.7 11.2

35-sparse-clean 90.9 84.7 84.7 39.1 34.5 34.9 0.1 0.0 0.0
35-sparse-noisy 113.4 107.5 106.9 84.4 60.5 61.7 28.4 23.3 27.1
35-normal-clean 134.2 125.0 121.7 64.5 54.1 53.4 0.0 0.0 0.0
35-normal-noisy 153.6 143.1 139.1 101.7 80.3 81.7 31.1 25.5 31.1

50-sparse-clean 136.0 126.1 125.6 61.4 50.6 51.5 0.1 0.0 0.0
50-sparse-noisy 166.2 156.5 156.7 135.0 89.8 93.9 49.6 36.7 41.4
50-normal-clean 215.1 198.0 194.3 106.1 91.0 95.0 0.0 0.0 0.0
50-normal-noisy 237.2 218.6 214.2 168.6 123.9 123.4 62.2 44.3 61.3

Table 3. Time in seconds to obtain solutions in Table 2 via formulations MIPF, MIP(1) and CIPF

data k=2 k=5 k=10
(n-sparsity-noise) MIPF MIP(1) CIP MIPF MIP(1) CIP MIPF MIP(1) CIP

20-sparse-clean 1.1 0.4 1.6 4.6 0.4 169.7 0.7 0.4 1.9
20-sparse-noisy 2.7 0.6 21.8 233.7 0.8 601.6 10.9 1.8 602.9
20-normal-clean 15.2 3.5 56.2 303.2 5.4 600.3 3.3 1.0 15.8
20-normal-noisy 31.3 5.4 295.5 336.6 17.6 600.8 65.2 8.0 602.0

35-sparse-clean 4.0 0.8 17.3 108.4 0.9 449.8 1.9 0.5 5.3
35-sparse-noisy 12.1 1.9 147.8 514.0 6.4 602.3 275.1 6.8 605.2
35-normal-clean 76.0 14.2 188.6 378.5 21.8 600.8 23.2 1.6 80.6
35-normal-noisy 195.3 31.8 589.7 739.3 132.1 600.7 394.7 45.3 602.4

50-sparse-clean 2.6 0.6 21.9 176.3 1.1 519.9 3.8 0.7 12.9
50-sparse-noisy 28.1 2.2 285.4 827.7 6.6 602.3 523.9 6.9 605.1
50-normal-clean 362.0 46.8 509.9 692.1 153.6 602.1 187.2 2.5 139.4
50-normal-noisy 601.6 194.8 578.2 903.9 341.1 601.0 649.8 146.2 601.6

Figure 6. Rank-10 binary matrix completion of artificial matrices with 5� 30% missing entries

exact details and parameters used in the computations can be found in Appendix E. In addition,
we use a new heuristic which sequentially finds k rank-1 binary matrices using any heuristic for
Bipartite Binary Quadratic Programming as a subroutine. We refer to this heuristic outlined in

-



Günlük, Hauser and Kovács: Binary Matrix Factorisation and Completion via Integer Programming
Mathematics of Operations Research 00(0), pp. 000–000, c� 0000 INFORMS 23

Algorithm 1 as k-Greedy as the subroutine we use to compute the rank-1 binary matrices is the
greedy algorithm of [19].

Algorithm 1: Greedy algorithm for k-BMF (k-Greedy)

Input: X2 {0,1}n⇥m, k 2Z+.
Set H2 {�1,0,1}n⇥m to hij = 2xij � 1 for (i, j)2E [E and hij = 0 otherwise.
for `2 [k] do
a,b=BBQP(H) // compute a rank-1 binary matrix via any algorithm for BBQP
A:,` = a
B`,: = b>

H[ab> == 1] = 0 // set entries of H to zero that are covered
end
Output: A2 {0,1}n⇥k, B2 {0,1}k⇥m

We solve CIP using CPLEX with a time limit of 20 mins and provide the heuristic solution of
k-Greedy as a warm start to it. The column generation approach results are obtained by generating
columns for 20 mins using formulation MLP(1) with a warm start of initial rank-1 binary matrices
obtained from k-Greedy, then solving MIP(1) over the generated columns with a time limit of 10
mins. Table 4 shows the factorisation error in k · k2F after evaluating the above described methods
on all real-world datasets without missing entries for k= 2,5,10. The best result for each instance
is indicated in boldface. We observe that CG provides the strictly smallest error for 8 out of 12
instances.

Table 4. Comparison of factorisation error in k · k2F for two IP based methods and five k-BMF heuristics

MIP(1) CIP ASSO++ k-Greedy pymf ASSO NMF

k=2

zoo 272 271 276 323 274 367 281
heart 1185 1187 1187 1187 1241 1251 1267
lymp 1192 1184 1202 1201 1225 1352 1272
apb 776 776 776 776 794 778 808

k=5

zoo 126 129 133 218 153 354 140
heart 737 738 738 738 813 887 782
lymp 982 1026 1039 1053 1067 1484 1103
apb 684 688 694 688 733 719 721

k=10

zoo 39 72 55 175 80 377 51
heart 425 529 419 565 483 694 450
lymp 728 829 812 859 952 1525 821
apb 573 605 591 606 611 661 617

While integer programming based approaches are able to handle missing entries by simply setting
the objective coe�cients of the missing entries to 0, the k-BMF heuristics ASSO, ASSO++ and
pymf cannot so simply be adjusted. Non-negative matrix factorisation however, has an available
implementation that can handle missing entries [32, 33]. Our next experiment compares our integer
programming approaches against k-Greedy and NMF on the real datasets that have missing entries.
Table 5 shows the results with the lowest error results indicated in boldface. For k = 2, k-Greedy
provides very accurate solutions which MIP(1) and CIP fail to improve on in 3 out of 4 instances.

-



Günlük, Hauser and Kovács: Binary Matrix Factorisation and Completion via Integer Programming
24 Mathematics of Operations Research 00(0), pp. 000–000, c� 0000 INFORMS

For k= 5,10 however, MIP(1) produces notably lower error factorisations than the other methods.

Table 5. Comparison of factorisation error in k · k2F for real-world data with missing entries

MIP(1) CIP k-Greedy NMF

k=2

tumor 1352 1352 1352 1529
hepatitis 1264 1344 1416 1304
audio 1419 1419 1419 1876
votes 1246 1246 1246 1268

k=5

tumor 962 993 1004 1229
hepatitis 1138 1229 1238 1172
audio 1064 1078 1094 1634
votes 779 853 853 900

k=10

tumor 514 632 646 851
hepatitis 907 1048 1056 1013
audio 765 881 881 1580
votes 240 701 706 815

6. Conclusions and further work. In this paper we investigated the rank-k binary matrix
factorisation problem from an integer programming perspective. We analysed a compact and two
exponential size integer programming formulations for the problem and made a comparison on the
strength of the formulations’ LP-relaxations. We introduced a new objective function, which slightly
di↵ers from the traditional squared Frobenius objective in attributing a weight to zero entries of the
input matrix that is proportional to the number of times the zero is erroneously covered in a rank-k
factorisation. In addition, we discussed a computational approach based on column generation to
solve one of the exponential size formulations and reported several computational experiments to
demonstrate the applicability of our formulations on real world and artificial datasets.

Our column generation approach is rather computationally challenging and the bottleneck is to
compute a tight lower bound on the pricing problem which is needed to determine the master dual
bound in Equation (50). Therefore, it seems that larger datasets are currently out of reach for our
methods. If however, one needs an accurate factorisation on moderate size matrices and not a tight
optimality gap, our real word data experiments show that our methods provide the lowest error
factorisations in most instances with the 600 seconds time limit.

To be able to obtain tighter master dual bounds, future research directions could include develop-
ing faster exact algorithms for the pricing problem. In addition, considering semidefinite program-
ming relaxations of the pricing problem to obtain stronger lower bounds could be an interesting
avenue to explore. Once computing good quality lower bounds on the pricing problem is faster, a
full branch-and-price implementation would be interesting to explore. In addition, as rank-1 binary
tensor factorisation has been recently explored from an integer programming perspective in [9], a
natural extension would be to adapt the models presented in this paper to the rank-k binary tensor
factorisation problem.

Appendix A: Heuristics for the pricing problem. The greedy algorithm of [19] to solve
the Bipartite Binary Quadratic Program in Equation (51) aims to set entries of a and b to 1 which
correspond to rows and columns of H with the largest positive weights. In the first phase of the
algorithm, the row indices i of H are put in decreasing order according to their sum of positive

-



Günlük, Hauser and Kovács: Binary Matrix Factorisation and Completion via Integer Programming
Mathematics of Operations Research 00(0), pp. 000–000, c� 0000 INFORMS 25

entries, so �
+

i � �
+

i+1
where �

+

i :=
Pm

j=1
max(0, hij). Then sequentially according to this ordering,

ai is set to 1 if
Pm

j=1
max(0,

Pi�1

`=1
a`h`j)<

Pm
j=1

max(0,
Pi

`=1
a`h`j) and 0 otherwise. In the second

phase, bj is set to 1 if (a>
H)j > 0, 0 otherwise. An e�cient implementation of the greedy algorithm

due to [19] is given in Algorithm 2.

Algorithm 2: Greedy Algorithm for BBQP

Input: H2Rn⇥m

Phase I. Order i2 [n] so that �+

i � �
+

i+1
.

Set a= 0n, s= 0>
m.

for i2 [n] do
f0 =

Pm
j=1

max(0, sj)
f1 =

Pm
j=1

max(0, sj +hij)
if f0 < f1 then
Set ai = 1, s= s+Hi,:

end
end

Phase II.
Set b= 0m.
for j 2 [m] do
if sj > 0 // s is equal to a>H
then
Set bj = 1
end
end
Output: a2 {0,1}n,b2 {0,1}m

There are many variants of Algorithm 2 one can explore. First, the solution greatly depends on
the ordering of i’s in the first phase. If for some i1 6= i2 we have �

+

i1
= �

+

i2
, comparing the sum of

negative entries of rows i1 and i2 can put more “influential” rows of H ahead in the ordering. Let
us call this ordering the revised ordering and the one which only compares the positive sums as the
original ordering. Another option is to use a completely random order of i’s or to apply a small
perturbation to sums �+

i to get a perturbed version of the revised or original ordering. None of the
above ordering strategies clearly dominates the others in all cases but they are fast to compute
hence one can evaluate all five ordering strategies (original, revised, original perturbed, revised
perturbed, random) and pick the best one. Second, the algorithm as presented above first fixes
a and then b. Changing the order of fixing a and b can yield a di↵erent result hence it is best
to try for both H and H>. In general, it is recommended to start the first phase on the smaller
dimension [19]. Third, the solution from Algorithm 2 may be improved by computing the optimal
a with respect to fixed b. This idea then can be used to fix a and b in an alternating fashion and
stop when no changes occur in either. We summarise this alternating heuristic in Algorithm 3

In Section 5.2 we use the above described heuristics for the pricing problem in column generation.
At each iteration of the column generation procedure, 30 variants of Algorithm 2 are computed to
obtain an initial feasible solution to PP. The 30 variants of the greedy algorithm use the original
and revised ordering, their transpose and perturbed version and 22 random orderings. All greedy
solutions are improved by the alternating heuristic until no further improvement is found.

Appendix B: Synthetic data. Table 6 gives a summary of the parameters used to generate
our synthetic dataset. For a synthetic binary matrix X, n⇥m is the dimension of X,  is the
Boolean rank which was used to generate X, and n

0⇥m
0 is the dimension obtained after removing

zero and duplicate row and columns of X. Our synthetic data can be downloaded from [24].

Appendix C: Real world data. Our binarised real world data is available for download at
[24]. The following datasets were used in the experiments:
• The Zoo dataset (zoo) [13] describes 101 animals with 16 characteristic features. All but one
feature is binary. The categorical column which records the number of legs an animal has, is
converted into two new binary columns indicating if the number of legs is less than or equal or
greater than four. The size of the resulting fully binary matrix is 101⇥ 17.

-



Günlük, Hauser and Kovács: Binary Matrix Factorisation and Completion via Integer Programming
26 Mathematics of Operations Research 00(0), pp. 000–000, c� 0000 INFORMS

Algorithm 3: Alternating Heuristic for BBQP

Input: H2Rn⇥m, a(0) 2 {0,1}n,b(0) 2 {0,1}m;
for `= 1,2, . . . do
a(`)[Hb(`�1)

> 0] = 1;
a(`)[Hb(`�1)  0] = 0;
if a(`) == a(`�1) then
Break
end
b(`)[(a(`))>H> 0] = 1;
b(`)[(a(`))>H 0] = 0;
if b(`) == b(`�1) then
Break
end
end
Output: a(`) 2 {0,1}n,b(`) 2 {0,1}m

Table 6. Parameters of the synthetic dataset

(n-sparsity-noise) n⇥m  0s% noise% #instances n
0 ⇥m

0

20-sparse-clean

20 ⇥ 20 10
75

0

10

14⇥ 15
20-sparse-noisy 5 19⇥ 19
20-normal-clean

50
0 18⇥ 18

20-normal-noisy 5 19⇥ 20

35-sparse-clean

35 ⇥ 20 10
75

0

10

22⇥ 15
35-sparse-noisy 5 31⇥ 19
35-normal-clean

50
0 29⇥ 18

35-normal-noisy 5 34⇥ 20

50-sparse-clean

50 ⇥ 20 10
75

0

10

30⇥ 15
50-sparse-noisy 5 45⇥ 20
50-normal-clean

50
0 40⇥ 18

50-normal-noisy 5 48⇥ 20

• The Primary Tumor dataset (tumor) [22] contains observations on 17 tumour features detected
in 339 patients. The features are represented by 13 binary variables and 4 categorical variables
with discrete options. The 4 categorical variables are converted into 11 binary variables rep-
resenting each discrete option. Two missing values in the binary columns are left as missing
values. The final dimension of the binary matrix is 339⇥ 24 with 670 missing values.

• The Hepatitis dataset (hepat) [17] consists of 155 samples of medical data of patients with
hepatitis. The 19 features of the dataset can be used to predict whether a patient with hepatitis
will live or die. 6 of the 19 features take numerical values and are converted into 12 binary
features corresponding to options: less than or equal to the median value, and greater than the

median value. The column that stores the sex of patients is converted into two binary columns
corresponding to labels man and female. The remaining 12 columns take values yes and no and
are converted into 24 binary columns. The missing values in the raw dataset are left as missing
in the binary dataset as well. The final dimension of the binary matrix is 155⇥ 38 with 334
missing values.

-



Günlük, Hauser and Kovács: Binary Matrix Factorisation and Completion via Integer Programming
Mathematics of Operations Research 00(0), pp. 000–000, c� 0000 INFORMS 27

• The SPECT Heart dataset (heart) [5] describes cardiac Single Proton Emission Computed
Tomography images of 267 patients by 22 binary feature patterns. 25 patients’ images contain
none of the features and are dropped from the dataset, hence the final dimension of the binary
matrix is 242⇥ 22.

• The Lymphography dataset (lymp) [23] contains data about lymphography examination of 148
patients. 8 features take categorical values and are expanded into 33 binary features representing
each categorical value. One column is numerical and we convert it into two binary columns
corresponding to options: less than or equal to median value, and larger than median value. The
final dimension of the fully binary matrix is 148⇥ 44.

• The Audiology Standardized dataset (audio) [45] contains clinical audiology records on 226
patients. The 69 features include patient-reported symptoms, patient history information, and
the results of routine tests which are needed for the evaluation and diagnosis of hearing disorders.
9 features that are categorical valued are binarised into 34 new binary variables indicating if
a discrete option is selected. The missing values in the raw dataset are left as missing in the
binary dataset as well. The final dimension of the binary matrix is 226⇥ 92 with 899 missing
values.

• The Amazon Political Books dataset (books) [29] contains binary data about 105 US politics
books sold by Amazon.com. Columns correspond to books and rows represent frequent co-
purchasing of books by the same buyers. The dimension of the binary matrix is 105⇥ 105.

• The 1984 United States Congressional Voting Records dataset (votes)[47] includes votes for
each of the U.S. House of Representatives Congressmen on the 16 key votes identified by the
CQA. The 16 categorical variables taking values of “voted for”, “voted against” or “did not
vote”, are converted into 16 binary features taking value 1 for “voted for”, value 0 for “voted
against” and a missing value indicates “did not vote”. The final dimension of the binary matrix
is 435⇥ 16 with 392 missing values.

Appendix D: Obtaining integer feasible solutions. In this section we give additional
numerical results supporting our conclusions drawn in Section 5.2.2. Table 7 shows the factorisa-
tion error measured in k · k2F of integer feasible solutions obtained by solving MIP(1) and MIPF

over columns generated by MLP(1). MIP(1) takes significantly faster to solve than MIPF but the
absolute di↵erence in error between solutions produced by MIP(1) and MIPF is at most 1, except
for the last row in column k = 5 where MIPF runs out of the time budget of 300 seconds and
produces higher error solutions than MIP(1).

Table 8 shows the result of an analogous experiment where the columns used are generated by
MLP( 1

k
). Since MLP( 1

k
) is slower to solve than MLP(1), more columns are generated during CG

and the master IPs have a harder task on selecting k columns from a larger set of columns in
Table 8. However, while solving MIP(1) over a larger set of columns adds only a few seconds for
most instances, MIPF runs out of the time budget of 300 secs in about half the cases. This is also
demonstrated in the error di↵erence, with solutions by MIP(1) having smaller error than solutions
by MIPF in most cases.

Appendix E: Heuristics for k-BMF. The following methods were evaluated for the com-
parison in Tables 4 and 5. Our code is available at [24].
• For the alternating iterative local search algorithm of [1] (ASSO++) we obtained the code from
the author’s github page, see the reference. The code implements two variants of the algorithm
and we report the smaller error solution from two variants of it.

• For the method of [52], we used a python implementation in the package pymf, see [46] and we
ran it for 10000 iterations.

-



Günlük, Hauser and Kovács: Binary Matrix Factorisation and Completion via Integer Programming
28 Mathematics of Operations Research 00(0), pp. 000–000, c� 0000 INFORMS

Table 7. Error in k · k2F (and runtime in seconds) of integer solutions by MIP(1) and MIPF on columns by MLP(1)

data k=2 k=5 k=10
(n-sparsity-noise) MIP(1) MIPF MIP(1) MIPF MIP(1) MIPF

20-sparse-clean 47 (0.0) 47 (0.0) 16 (0.0) 16 (0.0) 0 (0.0) 0 (0.0)
20-sparse-noisy 59 (0.0) 59 (0.0) 30 (0.0) 30 (0.0) 10 (0.0) 10 (0.0)
20-normal-clean 70 (0.0) 69 (0.3) 27 (0.1) 27 (2.7) 0 (0.0) 0 (0.0)
20-normal-noisy 78 (0.1) 78 (0.9) 40 (0.5) 39 (76.5) 10 (0.5) 10 (3.4)

35-sparse-clean 84 (0.0) 84 (0.1) 34 (0.0) 34 (0.1) 0 (0.0) 0 (0.0)
35-sparse-noisy 107 (0.0) 107 (0.1) 60 (0.0) 60 (0.6) 23 (0.1) 23 (0.2)
35-normal-clean 125 (0.4) 124 (2.2) 54 (0.8) 53 (154.8) 0 (0.0) 0 (0.1)
35-normal-noisy 143 (0.6) 141 (4.9) 80 (4.1) 80 (245.4) 25 (2.0) 24 (114.2)

50-sparse-clean 126 (0.0) 126 (0.0) 50 (0.0) 50 (0.1) 0 (0.0) 0 (0.0)
50-sparse-noisy 156 (0.0) 156 (0.1) 89 (0.0) 89 (0.2) 36 (0.0) 36 (0.2)
50-normal-clean 198 (1.4) 197 (8.2) 91 (30.9) 91 (173.4) 0 (0.1) 0 (0.1)
50-normal-noisy 218 (2.2) 218 (41.4) 123 (39.7) 126 (271.1) 44 (10.1) 44 (165.8)

Table 8. Error in k · k2F (and runtime in seconds) of integer solutions by MIP(1) and MIPF on columns by MLP(
1
k )

data k=2 k=5 k=10
(n-sparsity-noise) MIP(1) MIPF MIP(1) MIPF MIP(1) MIPF

20-sparse-clean 50 (0.0) 50 (0.2) 21 (0.0) 21 (2.6) 0 (0.0) 0 (0.0)
20-sparse-noisy 64 (0.0) 64 (0.6) 42 (0.1) 43 (219.0) 11 (0.2) 11 (6.3)
20-normal-clean 76 (0.2) 75 (3.9) 30 (0.5) 31 (289.6) 0 (0.1) 0 (0.2)
20-normal-noisy 85 (0.3) 85 (6.3) 47 (1.2) 47 (300.4) 11 (0.6) 11 (54.2)

35-sparse-clean 91 (0.0) 91 (1.5) 39 (0.2) 39 (98.9) 0 (0.1) 0 (0.1)
35-sparse-noisy 114 (0.1) 113 (3.1) 81 (0.5) 84 (300.7) 28 (0.3) 28 (229.9)
35-normal-clean 136 (1.0) 134 (19.1) 61 (2.0) 65 (300.8) 0 (0.8) 0 (11.9)
35-normal-noisy 154 (1.6) 154 (58.9) 93 (6.2) 102 (301.3) 28 (2.1) 31 (301.0)

50-sparse-clean 137 (0.0) 136 (0.8) 61 (0.2) 61 (160.0) 0 (0.8) 0 (0.2)
50-sparse-noisy 167 (0.1) 166 (6.5) 128 (0.7) 135 (301.5) 46 (0.6) 50 (301.5)
50-normal-clean 215 (2.2) 215 (131.6) 100 (34.4) 106 (302.1) 0 (0.8) 0 (153.7)
50-normal-noisy 238 (5.7) 237 (226.4) 149 (95.8) 169 (302.9) 51 (39.4) 62 (302.5)

• We evaluated the heuristic method ASSO [38] which depends on a parameter and we report the
best results across nine parameter settings (⌧ 2 {0.1,0.2, . . . ,0.9}). The code was obtained form
the webpage of the author: https://people.mpi-inf.mpg.de/ pmiettin/src/DBP-progs/.
We observe that ASSO does not return monotone solutions and sometimes we get a higher error
solution for a higher value of k.

• In the case of no missing entries in the binary matrix, we used the function
non negative factorization from the sklearn.decomposition module in python for the
computation of rank-k NMF. We tried all 4 possible initialisation methods: ’nndsvda’, ’nndsvd’,
’nndsvdar’ and ’random’. For the recommendation of one of our reviewers, after obtaining the
k-NMF we scale each rank-1 factor to have the same max value on the left and right hand side.
Then, we binarise each rank-1 factor with a threshold of � 2 {0.1,0.2, . . . ,0.9}. In Table 4 we
report the best result over all these parameter settings.

As the above python function does not allow missing entries, for incomplete binary matrices
we used a Matlab implementation of NMF [33, 32]. Only random initialisation method was

-inare



Günlük, Hauser and Kovács: Binary Matrix Factorisation and Completion via Integer Programming
Mathematics of Operations Research 00(0), pp. 000–000, c� 0000 INFORMS 29

available for this implementation and we used 11 di↵erent random seeds. Then we performed the
same scaling and thresholding as described above and report the best result over all parameter
settings in Table 5.

• The heuristic k-greedy algorithm was ran with 70 random seeds and the subroutine for BBQP
used the greedy and alternating algorithms for BBQP given in Algorithms 2, 3. In addition, the
k-greedy algorithm can be run on a preprocessed or original matrix and we tried both ways.
For each instance the lowest error factorisation is reported.

Acknowledgments. During the completion of this work R.A.K was supported by a doctoral
scholarship from The Alan Turing Institute and the O�ce for National Statistics.

References
[1] Barahona F, Goncalves J (2019) Local search algorithms for binary matrix factorization. URL https:

//github.com/IBM/binary-matrix-factorization/blob/master/code, last accessed on 2020-04-21.

[2] Barnhart C, Johnson EL, Nemhauser GL, Savelsbergh MWP, Vance PH (1998) Branch-and-price: Col-
umn generation for solving huge integer programs. Operations Research 46(3):316–329, URL http:
//dx.doi.org/10.1287/opre.46.3.316.

[3] Beckerleg M, Thompson A (2020) A divide-and-conquer algorithm for binary matrix completion. Linear
Algebra and its Applications 601:113–133, ISSN 0024-3795, URL http://dx.doi.org/10.1016/j.laa.
2020.04.017.

[4] Chalermsook P, Heydrich S, Holm E, Karrenbauer A (2014) Nearly tight approximability results for
minimum biclique cover and partition. Schulz AS, Wagner D, eds., Algorithms - ESA 2014, 235–246
(Berlin, Heidelberg: Springer Berlin Heidelberg), ISBN 978-3-662-44777-2.

[5] Cios KJ, Kurgan LA (2001) Uci machine learning repository: Spect heart data. URL https://archive.
ics.uci.edu/ml/datasets/spect+heart, last accessed on 2020-06-11.

[6] Cohen JE, Rothblum UG (1993) Nonnegative ranks, decompositions, and factorizations of nonnegative
matrices. Linear Algebra and its Applications 190:149–168, ISSN 0024-3795, URL http://dx.doi.org/
https://doi.org/10.1016/0024-3795(93)90224-C.

[7] Conforti M, Cornuejols G, Zambelli G (2014) Integer Programming (Springer Publishing Company,
Incorporated), ISBN 3319110071, 9783319110073.

[8] CPLEX Optimization (2018) Using the CPLEX Callable Library, V.12.8. CPLEX Optimization, Inc.,
Incline Village, NV.

[9] Del Pia A, Khajavirad A (2022) Rank-one boolean tensor factorization and the multilinear polytope.
URL http://dx.doi.org/10.48550/ARXIV.2202.07053.

[10] Dua D, Gra↵ C (2017) UCI machine learning repository. URL http://archive.ics.uci.edu/ml, last
accessed on 2020-06-11.

[11] Fiorini S, Guo K, Macchia M, Walter M (2019) Lower bound computations for the nonnegative rank.
Proceedings of the 17th Cologne-Twente Workshop on Graphs and Combinatorial Optimization, 41–44,
https://www.ctw.ewi.utwente.nl/CTW2019ProceedingsFinal.pdf.

[12] Fiorini S, Kaibel V, Pashkovich K, Theis DO (2013) Combinatorial bounds on nonnegative rank and
extended formulations. Discrete Mathematics 313(1):67–83, ISSN 0012-365X, URL http://dx.doi.
org/https://doi.org/10.1016/j.disc.2012.09.015.

[13] Forsyth R (1990) Uci machine learning repository: Zoo data set. URL http://archive.ics.uci.edu/
ml/datasets/Zoo, last accessed on 2020-06-11.

[14] Garey MR, Johnson DS (1979) Computers and Intractability: A Guide to the Theory of NP-Completeness

(New York, NY, USA: W. H. Freeman & Co.), ISBN 0716710455.

[15] Gillis N, Vavasis SA (2018) On the complexity of robust pca and l1-norm low-rank matrix approximation.
Mathematics of Operations Research 43(4):1072–1084, URL http://dx.doi.org/10.1287/moor.2017.
0895.

-



Günlük, Hauser and Kovács: Binary Matrix Factorisation and Completion via Integer Programming
30 Mathematics of Operations Research 00(0), pp. 000–000, c� 0000 INFORMS

[16] Golub GH, Van Loan CF (1996) Matrix Computations (USA: Johns Hopkins University Press), 3rd
edition, ISBN 0801854148.

[17] Gong G (1988) Uci machine learning repository: Hepatitis data set. URL https://archive.ics.uci.
edu/ml/datasets/Hepatitis, last accessed on 2020-06-11.

[18] Gregory DA, Pullman NJ (1983) Semiring rank: Boolean rank and nonnegative rank factorizations.
Journal of Combinatorics, Information & System Sciences 8:223–233.

[19] Karapetyan D, Punnen AP (2013) Heuristic algorithms for the bipartite unconstrained 0-1 quadratic
programming problem. arXiv 1210.3684.

[20] Kim J, Tawarmalani M, Richard JPP (2021) Convexification of permutation-invariant sets and an
application to sparse principal component analysis. Mathematics of Operations Research .

[21] Kim K (1982) Boolean Matrix Theory and Applications. Monographs and textbooks in pure and applied
mathematics (Dekker), ISBN 9780824717889.

[22] Kononenko I, Cestnik B (1988) Uci mach. learn. rep.: Primary tumor domain. URL https://archive.
ics.uci.edu/ml/datasets/Primary+Tumor, last accessed on 2020-06-11.

[23] Kononenko I, Cestnik B (1988) Uci machine learning repository: Lymphography data set. URL https:
//archive.ics.uci.edu/ml/datasets/Lymphography, last accessed on 2020-06-11.

[24] Kovacs RA (2021) Code for binary matrix factorisation and completion via integer programming. URL
https://github.com/kovacsrekaagnes/rank_k_Binary_Matrix_Factorisation.

[25] Kovacs RA, Gunluk O, Hauser RA (2017) Low-rank boolean matrix approximation by integer pro-
gramming. NIPS, 1–5, Optimization for Machine Learning Workshop, https://opt-ml.org/papers/
OPT2017_paper_34.pdf.

[26] Kovacs RA, Gunluk O, Hauser RA (2021) Binary matrix factorisation via column generation. Proceed-
ings of the AAAI Conference on Artificial Intelligence 35(5):3823–3831, URL https://ojs.aaai.org/
index.php/AAAI/article/view/16500.

[27] Koyutürk M, Grama A (2003) Proximus: A framework for analyzing very high dimensional discrete-
attributed datasets. Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, 147–156, KDD ’03 (New York, NY, USA: Association for Computing
Machinery), ISBN 1581137370, URL http://dx.doi.org/10.1145/956750.956770.

[28] Koyutürk M, Grama A, Ramakrishnan N (2002) Algebraic techniques for analysis of large discrete-valued
datasets. Proceedings of the 6th European Conference on Principles of Data Mining and Knowledge

Discovery, 311–324, PKDD ’02 (Berlin, Heidelberg: Springer-Verlag), ISBN 3540440372.

[29] Krebs V (2008) Amazon political books. URL http://moreno.ss.uci.edu/data.html#books, last
accessed on 2020-06-11.

[30] Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature
401(6755):788–791, URL http://dx.doi.org/10.1038/44565.

[31] Li T (2005) A general model for clustering binary data. Proceedings of the Eleventh ACM SIGKDD

International Conference on Knowledge Discovery in Data Mining, 188–197, KDD ’05 (New York, NY,
USA: Association for Computing Machinery), ISBN 159593135X.

[32] Li Y, Ngom A (2012) The non-negative matrix factorization toolbox for biological data mining. Source
Code for Biology and Medicine 8:10 – 10.

[33] Li Y, Ngom A (2013) The non-negative matrix factorization toolbox in matlab (the nmf matlab toolbox).
URL https://sites.google.com/site/nmftool/, last accessed on 2021-07-16.

[34] Lu H, Vaidya J, Atluri V (2008) Optimal boolean matrix decomposition: Application to role engineering.
Proceedings of the 2008 IEEE 24th International Conference on Data Engineering, 297–306, ICDE ’08
(Washington, DC, USA: IEEE Computer Society), URL http://dx.doi.org/10.1109/ICDE.2008.
4497438.

[35] Lu H, Vaidya J, Atluri V (2014) An optimization framework for role mining. Journal of Computer

Security 22(1):1–31, ISSN 0926-227X.

---------



Günlük, Hauser and Kovács: Binary Matrix Factorisation and Completion via Integer Programming
Mathematics of Operations Research 00(0), pp. 000–000, c� 0000 INFORMS 31

[36] Lübbecke ME, Desrosiers J (2005) Selected topics in column generation. Operations Research

53(6):1007–1023, URL http://dx.doi.org/10.1287/opre.1050.0234.

[37] McCormick GP (1976) Computability of global solutions to factorable nonconvex programs: Part i —
convex underestimating problems. Mathematical Programming 10(1):147–175, URL http://dx.doi.
org/10.1007/BF01580665.

[38] Miettinen P, Mielikäinen T, Gionis A, Das G, Mannila H (2006) The discrete basis problem. Fürnkranz
J, Sche↵er T, Spiliopoulou M, eds., Knowledge Discovery in Databases: PKDD 2006, 335–346 (Berlin,
Heidelberg: Springer Berlin Heidelberg), ISBN 978-3-540-46048-0.

[39] Miettinen P, Mielikäinen T, Gionis A, Das G, Mannila H (2008) The discrete basis problem. IEEE
Transactions on Knowledge and Data Engineering 20(10):1348–1362, ISSN 1041-4347, URL http://
dx.doi.org/10.1109/TKDE.2008.53.

[40] Monson SD, Pullman NJ, Rees R (1995) A survey of clique and biclique coverings and factorizations of
(0,1)–matrices. Bulletin – Institute of Combinatorics and its Applications 14:17–86, ISSN 1183-1278.

[41] Oelze M, Vandaele A, Weltge S (2014) Computing the extension complexities of all 4-dimensional 0/1-
polytopes. URL http://dx.doi.org/10.48550/ARXIV.1406.4895.

[42] Orlin J (1977) Contentment in graph theory: Covering graphs with cliques. Indagationes Mathemati-

cae (Proceedings) 80(5):406–424, ISSN 1385-7258, URL http://dx.doi.org/10.1016/1385-7258(77)
90055-5.

[43] Padberg M (1989) The boolean quadric polytope: Some characteristics, facets and relatives. Mathemat-

ical Programming 45(1):139–172, URL http://dx.doi.org/10.1007/BF01589101.

[44] Peeters R (2003) The maximum edge biclique problem is np-complete. Discrete Applied Mathematics

131(3):651–654, ISSN 0166-218X, URL http://dx.doi.org/10.1016/S0166-218X(03)00333-0.

[45] Quinlan R (1992) Uci machine learning repository: Audiology (standardized) data set. URL http:
//archive.ics.uci.edu/ml/datasets/audiology+(standardized), last accessed on 2020-06-11.

[46] Schinnerl C (2017) Pymf - python matrix factorization module. URL https://github.com/
ChrisSchinnerl/pymf3, last accessed on 2021-03-11.

[47] Schlimmer J (1987) Uci machine learning repository: 1984 US Cong. Voting Records Database.
URL https://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records, last accessed
on 2020-06-11.

[48] Shen BH, Ji S, Ye J (2009) Mining discrete patterns via binary matrix factorization. Proceedings of

the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 757–766,
KDD ’09 (New York, NY, USA: Association for Computing Machinery), ISBN 9781605584959, URL
http://dx.doi.org/10.1145/1557019.1557103.

[49] Shi Z, Wang L, Shi L (2014) Approximation method to rank-one binary matrix factorization. 2014
IEEE International Conference on Automation Science and Engineering (CASE), 800–805, URL http:
//dx.doi.org/10.1109/CoASE.2014.6899417.

[50] Simon HU (1990) On approximate solutions for combinatorial optimization problems. SIAM Journal

on Discrete Mathematics 3(2):294–310, URL http://dx.doi.org/10.1137/0403025.

[51] Sripratak P, Punnen AP, Stephen T (2022) The bipartite boolean quadric polytope. Discrete Optimiza-

tion 44:100657, ISSN 1572-5286, URL http://dx.doi.org/https://doi.org/10.1016/j.disopt.
2021.100657.

[52] Zhang Z, Li T, Ding C, Zhang X (2007) Binary matrix factorization with applications. Proceedings of

the 2007 Seventh IEEE International Conference on Data Mining, 391–400, ICDM ’07 (USA: IEEE
Computer Society), URL http://dx.doi.org/10.1109/ICDM.2007.99.

->


