An Exploration of Gastropod-Borne Parasites with a Focus on Intestinal Schistosomiasis in Biomphalaria Snails Inhabiting the Great African Lakes

By

Peter Stephen Andrus

Thesis Submitted to the University of Nottingham for a Doctor of Philosophy Degree (PhD).

May 2023

Declaration:

I declare that this thesis has been composed by myself and that the work has not been submitted for any other degree or professional qualification. I confirm that the work submitted is my own.

Materials and data were supplied as follows: Chapters 3, 4 and 5 use Biomphalaria samples originally collected by Candia Rowel and Besigye Fred as a part of the Schistosomiasis in Mothers and Infants (SIMI) project. The SIMI project was funded by the Wellcome Trust foundation and headed by Professor J. Russell Stothard at the Liverpool School of Tropical Medicine from 2008-2012. Additionally, Chapter 5 uses some of the Biomphalaria samples and abiotic datasets and some of the genetic diversity and sequencing data published by Claire J. Standley in her 2011 PhD thesis. All Biomphalaria samples were provided to me by Professor J. Russell Stothard.

Acknowledgements:
I would like to express my deepest gratitude to my primary supervisor, Dr. Chris Wade, for his constant support, guidance, and never-ending advice during my PhD research, particularly during the unprecedented Covid-19 lockdowns. Additionally, I want to thank my secondary supervisor, Dr. Angus Davison, for his invaluable scientific advice and support. I would also like to thank my external supervisor at the LSTM, Professor J. Russell Stothard, as without his support and resources, I would have never been able to do my research on schistosomiasis. I am grateful to Ebrima Joof for his guidance on molecular techniques and knowledge on schistosomiasis during the early days of my PhD. I would also like to thank my colleagues and the technicians at the University of Nottingham for their support throughout my PhD. Lastly, I would like to give a special thanks to Dr. Robbie Rae at LIMU, as his guidance and encouragement during my undergraduate degree helped to cultivate my interest in parasitology and research.

I dedicate this PhD thesis to my entire family for their support during my studies. I would like to extend my deepest gratitude to my grandmother, Susan, whose support has made this thesis a reality and I am forever grateful to her. Additionally, I would like to express my appreciation to my mother, Jennifer, who has been my constant source of love, support, and care throughout my life. Her sacrifices and unwavering support have been the backbone that has kept me going through the toughest times. Her dedication and love has been an inspiration to me, and I am eternally grateful for the sacrifices she has made for me, despite winding her up every chance I get. Lastly, I would like to express my unwavering love to my fiancée, Yitong, who I met during the first year of my PhD. Her encouragement throughout my PhD has been a source of constant motivation, and her support has been invaluable in these last four years.

Abstract

: Gastropod-borne parasitic diseases are a significant concern for public health all over the world, but particularly in developing countries. Many species of terrestrial and freshwater gastropods serve as the intermediate host for various parasites with medical and/or veterinary significance. One such example is the intravascular trematode species, Schistosoma mansoni (Digenea: Schistosomatidae), which is the leading cause of intestinal schistosomiasis globally. The obligatory intermediate host of S. mansoni is the freshwater snail genus, Biomphalaria (Gastropoda: Planorbidae). The vast majority of intestinal schistosomiasis cases occur in sub-Saharan regions of Africa, with countries in East Africa suffering from a high prevalence of S. mansoni in and around the Great African Lakes. The hyper-endemic nature of intestinal schistosomiasis at Lake Albert and Lake Victoria is a significant public health concern.

In addition to trematodes, other gastropod-borne parasites such as lungworms (Strongylida) are common causes of disease in humans and companion animals. Unlike digenetic trematodes, lungworms do not specialise in their choice of obligatory intermediate host and can use numerous species of both terrestrial and freshwater gastropods to infect their definitive host, typically through consumption. The parasitic nematode genus, Angiostrongylus (Chromadorea: Angiostrongylidae) for example, contains species that cause angiostrongyliasis in humans (An. cantonensis) and dogs (An. vasorum). Despite being endemic to tropical regions, an An. cantonensis infection was recently reported in France as the first ever autochthonous human case of angiostrongyliasis in mainland Europe. Conversely, An. vasorum is found globally. In the UK, it is most prevalent in Southern England and Southern Wales, though there have been reports of the parasite as far north as Scotland.

\section*{Main Findings:}

Chapter 3 "Comparing shell size and shape with canonical variate analysis of sympatric Biomphalaria species within Lake Albert and Lake Victoria" utilises landmark-based geometric morphometric techniques to differentiate the conchological characteristics of four Biomphalaria species inhabiting the Great African Lakes of Uganda. The study found that it was possible to accurately discriminate and identify all Biomphalaria species present at the Great African Lakes in Uganda (B. choanomphala, B. pfeifferi, B. stanleyi and B. sudanica) using a canonical variate analysis (CVA) of the apical and apertural angles of the shell.

Chapter 4 "Schistosoma mansoni infection in Biomphalaria snails at the Ugandan shorelines of Lake Albert and Lake Victoria" uses PCR-based molecular infection detection methods to quantify the prevalence of S. mansoni infection among the Biomphalaria species present at the Ugandan shorelines of Lake Albert (B. pfeifferi, B. stanleyi and B. sudanica) and Lake Victoria (B. choanomphala). It also measures prevalence of infection for each of the wet and dry seasons over a two year period for both lakes. The study found that the mean prevalence of S. mansoni infection was higher at Lake Albert (12.5\%) than Lake Victoria (5\%), with B. stanleyi (15\%) having the highest mean infection prevalence of the four species tested. In addition, the wet seasons at both lakes had a higher mean prevalence of infection than the dry seasons, though this difference was not statistically significant.

Chapter 5 "Schistosoma mansoni infection and population genetic structure of Biomphalaria choanomphala snails in Lake Victoria" uses PCR-based molecular infection detection methods to quantify the prevalence of S. mansoni infection across the Kenyan, Tanzanian and Ugandan shorelines of Lake Victoria. Additionally, several abiotic (temperature, pH , physiochemical etc.) and biotic (snail genetic diversity) factors were measured to investigate which factors are involved in schistosomiasis transmission. The study found the mean prevalence of S. mansoni infection among B. choanomphala snails across Lake Victoria was 9.3%, with the Tanzanian shoreline having the highest prevalence, followed by the Ugandan and Kenyan shorelines. There was a significant positive relationship with infection prevalence and B. choanomphala abundance, calcium, and magnesium concentrations. Conversely, there was a significant negative correlation between infection prevalence and increasing water alkalinity. Lastly, populations of B. choanomphala where S. mansoni infection was present had a higher mean haplotype diversity score and less private haplotypes than populations without infection present.

Chapter 6 "Nematodes and trematodes associated with terrestrial gastropods in Nottingham, England" implements traditional parasitological and molecular identification techniques to survey the terrestrial gastropod populations in and around the city of Nottingham, with the intention of finding medical (or veterinary) important parasites. The study found the mean infection prevalence of terrestrial gastropods was 28.3%, with slugs and snails having similar prevalence of infection. Of the gastropod-borne parasites extracted, seven nematode species and four trematode species were identified. No medical or veterinary important parasites were discovered in or around the city of Nottingham.

Preface:
This thesis is comprised of seven chapters:
Chapter 1 entitled "General Introduction" details an introductory background on the relationship between gastropods and helminthic parasites (nematodes and trematodes), with the main focus being on intestinal schistosomiasis.

Chapter 2 entitled "General Material and Methods" details a description of the overall general techniques used in each of my result chapters.

Chapter 3 entitled "Comparing shell size and shape with canonical variate analysis of sympatric Biomphalaria species within Lake Albert and Lake Victoria" is the first results chapter and details the conchological differences between the Biomphalaria species found at the Ugandan Great African Lakes using landmark-based geometric morphometrics. This chapter was published in the Zoological Journal of the Linnean Society, 2023.

Chapter 4 entitled "Schistosoma mansoni infection in Biomphalaria snails at the Ugandan shorelines of Lake Albert and Lake Victoria" is the second results chapter and details the prevalence of S. mansoni infection among the Biomphalaria species found at the Great African Lakes using molecular based infection detection techniques.

Chapter 5 entitled "Schistosoma mansoni infection and population genetic structure of Biomphalaria choanomphala snails in Lake Victoria" is the third results chapter and details the effects abiotic factors and snail host genetic diversity have on the prevalency of S. mansoni infection among B. choanomphala populations across Lake Victoria using molecular based infection detection techniques.

Chapter 6 entitled "Nematodes and trematodes associated with terrestrial gastropods in Nottingham, England" is the last results chapter and details the common nematode and trematode parasites found inside terrestrial gastropods in the city of Nottingham. This chapter was published in the Journal of Helminthology, 2022.

Chapter 7 entitled "General Discussion" details a general discussion of the main findings of my study.

Table of Contents:

Declaration 2
Acknowledgements: 2
Abstract: 3
Main Findings: 3
Preface: 5
List of Figures: 10
List of Tables: 11
Chapter 1 General Introduction: 13
1.1 Gastropod-Borne Parasitic Disease: 13
1.1.1 Gastropod-Borne Parasitic Diseases Caused by Nematodes: 13
1.1.2 Gastropod-Borne Parasitic Diseases Caused by Trematodes: 14
1.2 An Introduction to Schistosomiasis: 15
1.2.1 The Pathology and Lifecycle of Schistosomiasis: 18
1.2.2 The Treatment of Schistosomiasis: 20
1.2.3 Current Progress on Schistosomiasis Control 21
1.2.4 Diagnosing Schistosomiasis Infection in Human and Snails: 22
1.2.5 The Future of Schistosomiasis Control: 23
1.3 An Introduction to Schistosoma mansoni and Biomphalaria: 24
1.3.1 The Origins of Schistosoma mansoni: 24
1.3.2 An Introduction to Biomphalaria: 25
1.3.3 The Origins and Current Distribution of Biomphalaria: 26
1.4 Research Aims: 28
Chapter 2 General Material and Methods: 29
2.1 Samples Analysed and their Collection Localities: 29
2.1.1 Morphological Identification of Biomphalaria and Counting Snails: 30
2.2 Malacological Survey of the City of Nottingham: 30
2.2.1 Morphological Identification of Terrestrial Gastropods: 31
2.2.2 Helminthic Parasite Extraction from Terrestrial Gastropods: 31
2.3 Molecular Processing of Snails and Parasites: 32
2.3.1 DNA extraction 32
2.3.2 PCR Amplification for Identifying Biomphalaria Snails and Helminthic Parasites: 34
2.3.3 Detecting Schistosoma mansoni Infection in Biomphalaria Snails using Polymerase Chain Reaction (PCR) 35
2.4 Sequence Analysis and Bioinformatics: 36
2.4.1 Sequence Processing: 36
2.4.2 Phylogenetics: 37
2.4.3 Population genetics: 37
2.5 Landmark-based Geometric Morphometric Analysis: 38
2.5.1 Sample Preparation and Photography: 38
2.5.2 Data Preparation and Landmark Placement: 39
2.5.3 Importing Data and Morphometric Analysis: 39
2.6 Statistical Analysis: 39
Chapter 3 Comparing Shell Size and Shape with Canonical Variate Analysis of Sympatric Biomphalaria Species within Lake Albert and Lake Victoria ${ }^{1}$ 41
Abstract: 41
3.1 Introduction: 41
3.2 Materials and Methods: 44
3.2.1 Sample Sites: 44
3.2.2 Sample Selection, Shell Categorisation and Species Identification: 45
3.2.3 Morphometric analysis: 46
3.2.4 GenBank Accessions: 47
3.3 Results: 48
3.3.1 Species Found and Shell Morphologies: 48
3.3.2 Morphometrics: 50
3.4 Discussion: 52
3.5 Supplementary Material: 54
Chapter 4 Schistosoma mansoni Infection in Biomphalaria Snails at the Ugandan Shorelines of Lake Albert and Lake Victoria 61
Abstract: 61
4.1 Introduction: 61
4.2 Materials and Methods: 63
4.2.1 Sample Sites and Sample Selection: 63
4.2.2 Snail Identification and Genetic Diversity: 64
4.2.3 Infection Detection: 65
4.2.4 GenBank Accessions: 65
4.3 Results: 66
4.3.1 Prevalence of Infection at the African Great Lakes: 66
4.3.2 Genetic Diversity of the Biomphalaria species at the African Great Lakes: 67
4.3.3 Seasonal Prevalence of Infection: 68
4.4 Discussion: 70
4.4.1 Infection Prevalence of the Biomphalaria Species found at the African Great Lakes: 70
4.4.2 Infection Prevalence and Host-Snail Genetic Diversity: 71
4.4.3 Infection Prevalence and Seasonality: 72
4.5 Supplementary Material: 74
Chapter 5 Schistosoma mansoni Infection and Population Genetic Structure of Biomphalaria choanomphala Snails in Lake Victoria 82
Abstract: 82
5.1 Introduction: 82
5.2 Materials and Methods: 84
5.2.1 Collection Sites: 84
5.2.2 Biomphalaria choanomphala Collection, Identification and DNA Extraction: 85
5.2.3 PCR Amplification and Population Genetics of Biomphalaria choanomphala: 85
5.2.4 Detecting S. mansoni Infection in Biomphalaria choanomphala: 85
5.2.5 Bioinformatics and Statistical Analysis: 86
5.2.6 GenBank Accessions: 86
5.3 Results: 86
5.3.1 Biomphalaria choanomphala Abundance at Lake Victoria: 86
5.3.2 Prevalence of Schistosoma mansoni Infection at Lake Victoria: 88
5.3.3 Host Snail Genetic Diversity and its effect on Infection Prevalence 89
5.3.4 Abiotic Factors, B. choanomphala Abundance and S. mansoni Infection: 92
5.1 Discussion: 94
5.4.1 Infection Prevalence of Biomphalaria choanomphala in Lake Victoria 95
5.4.2 The Effect Abiotic Factors Have on B. choanomphala Abundance and Shell Morphology 95
5.4.3 The Factors Affecting Infection Prevalence: 96
5.4.4 The Effects of Snail Host Genetic Diversity on Infection: 97
5.5 Supplementary Material: 98
Chapter 6 Nematodes and Trematodes Associated with Terrestrial Gastropods in Nottingham, England ${ }^{1}$ 109
Abstract: 109
6.1 Introduction: 109
6.2 Materials and Methods: 112
6.2.1 Collection sites and gastropod identification: 112
6.2.2 Gastropod Dissection: 113
6.2.3 DNA extraction, PCR amplification and Sequencing: 114
6.2.4 Parasite identification: 114
6.2.5 GenBank Accession Numbers: 114
6.3 Results: 115
6.3.1 Infection Prevalence: 115
6.3.2 Nematode and trematode identifications: 118
6.4 Discussion: 124
6.4.1 Prevalence of infection: 124
6.4.2 Nematodes: 124
6.4.3 Trematodes: 125
6.5 Supplementary Material: 127
Chapter 7 General Discussion: 139
7.1 Ecological Phenotypic Variation of African Biomphalaria Species: 139
7.2 The Prevalence of Schistosoma mansoni at the African Great Lake, and the Abiotic and Biotic Factors Influencing Transmission: 142
7.3 Gastropod-Borne Parasitic Disease in Europe: 145
References: 147
Appendix: 169
List of Figures:
Figure 1.1. The generic life cycle of several different lungworms species. (A) Angiostrongylus spp., (B) Dictyocaulus spp., (C) Protostrongylus spp. and (D) Crenosoma spp 14
Figure 1.2. Life cycles stages of different digenean trematode families. Adapted from Schell, (1970). 15
Figure 1.3. Global distribution of schistosomiasis infection. Adapted from Gryseels et al. (2006) 17
Figure 1.4. Simplified life cycle of Schistosoma 19
Figure 1.5. Phylogenetic summary of the Schistosoma 25
Figure 1.6. Global distribution of Biomphalaria species. Adapted from Habib et al. (2021) 27
Figure 1.7. Phylogenetic analysis of the African Biomphalaria species 27
Figure 2.1. Map of the Great African Lakes, Lake Albert and Lake Victoria. 29
Figure 2.2. Example of counting and categorising the Biomphalaria snails 30
Figure 2.3. Map of the City of Nottingham, United Kingdom 31
Figure 2.4. Example of how washed gastropod were cut into four pieces 32
Figure 2.5. Juvenile nematode (left) and metacercaria (right) 32
Figure 2.6. Where tissue was taken from shell-extracted Biomphalaria 33
Figure 2.7. Examples of apertural (left) and apical (right) pictures of a Biomphalaria 39
Figure 3.1. Morphological examples of ecological phenotypic plasticity in Planorbidae snails 43
Figure 3.2. (A) Map showing the location of Lake Albert (LA) and Lake Victoria (LV) 44
Figure 3.3. Fixed landmarks (black) and semi-landmarks (grey) on the morphotype-A (lentic) and morphotype-B (lotic) forms of Biomphalaria 47
Figure 3.4. Maximum likelihood tree of the combined 16S rRNA (330bp) and cytochrome c oxidase subunit I (500bp) gene fragments 48
Figure 3.5. Canonical variate analysis plots of the apical and apertural shell landmark datasets 51
Figure 4.1. Map showing the collection site locations at Lake Albert and Lake Victoria in Uganda 64
Figure 4.2. Median-Joining haplotype network of the Biomphalaria species found at Lake Albert (B.pfeifferi $n=40$; B. stanleyi $n=20$; B. sudanica $n=60$) and Lake Victoria (B. choanomphala $n=60$) using (A)16S rRNA gene fragment (395bp) and (B) Cytochrome Oxidase Subunit I gene fragment (520bp) 68
Figure 5.1. Map of the collection sites at Lake Victoria, East Africa (Google, 2022) 84
Figure 5.2. Map of collection sites at Lake Victoria showing where B. choanomphala snails were found and the incidence of S. mansoni infection in these snail populations 88
Figure 5.3. Distribution of 16 S and COI haplotypes of B. choanomphala populations ($n=27$) found in Lake Victoria 91
Figure 6.1. Map of collection sites $(n=16)$ across the city of Nottingham and surrounding areas (Google, 2022) 112
Figure 6.2. Map of collection sites $(n=16)$ across the city of Nottingham and the surrounding areas showing infection prevalence at each collection site 117
Figure 6.3. Maximum likelihood phylogenetic trees of different nematode (trees A-D) and trematode (trees E-F) species using the ITS and 18S rRNA gene, respectively 124
Figure 7.1. Example of the snail host detector tool created by ATRAP discriminating between different freshwater snail genera collected from Lake Albert 141
List of Tables:
Table 1.1 Examples of human pathogenic digenic trematode species 15
Table 1.2 The prevalence of human infection for the six major Schistosoma species that account for all human infection and their most common intermediate hosts 16
Table 1.3 Global statics of schistosomiasis infection 17
Table 1.4 Information about vaccines against Schistosoma mansoni (sm) and S. haematobium (sh) infection 23
Table 1.5 Examples of nematode and trematode species that use Biomphalaria as their intermediate
host 25
Table 2.1 Summary information of primer sets used and their intended target organism. 34
Table 3.1. Biomphalaria collection information 45
Table 3.2. Mean shell diameter and height of photographed Biomphalaria shells 50
Table 4.1. Mean prevalence of S. mansoni infection and the number of unique $16 \mathrm{~S} / \mathrm{CO}$ haplotypes (No.), haplotype diversity scores (Hd) and nucleotide diversity values (π) of each Biomphalaria species genotyped at the Lake Albert and Lake Victoria collection sites 66
Table 4.2. Mean prevalence of infection of the wet and dry seasons at Lake Albert and Lake Victoria between 2009-2010 69
Table 5.1. Summary of the abiotic factors collected across the Kenyan ($n=35$), Tanzanian ($n=82$) and Ugandan ($n=53$) sites of Lake Victoria. 87
Table 5.2. Comparing the mean haplotype diversity (Hd) scores of Lake Victorian sites found with and without S. mansoni infection 90
Table 5.3. Comparing the $F_{\text {st }}$ values of B. choanomphala populations across Lake Victoria 91
Table 5.4. Pairwise comparison of the Kruskal-Wallis analysis comparing the prevalence of S. mansoni infection, B. choanomphala abundance and abiotic factors of the Kenyan ($n=35$), Tanzanian ($n=82$) and Ugandan ($n=53$) collection sites 92
Table 5.5. Spearman's rank correlation coefficients relating S. mansoni infection prevalence, B. choanomphala abundance and abiotic factors of the Kenyan ($n=35$), Tanzanian ($n=82$) and Ugandan ($n=53$) collection sites 94
Table 6.1. Collection sites surveyed across the city of Nottingham and surrounding areas 113
Table 6.2. Gastropods collected and details of number of nematode and trematode (metacercaria) infections 116
Table 6.3. Infection prevalence of collected gastropods ($n=50$) at each site 118
Table 6.4. BLAST-MOLE results (ranked by E-value) for grouped nematode (groups A-D) and trematode (groups E-F) sequences with their top five closest references 119

List of Supplementary Material:

Supplementary Table 3.1. GenBank accession numbers and corresponding references for the 16S/COI phylogenetic tree 54
Supplementary Figure 4.1. Prevalence of Schistosoma mansoni infection at Lake Albert (A-C) and Lake Victoria (D-E) over the course of two years (2009-2010) 74
Supplementary Figure 5.1. Morphological examples of non-lacustrine (morphotype-A) and lacustrine (morphotype-B) forms of B. choanomphala found at Lake Victoria 98
Supplementary Figure 5.2. Median-joining network of the gapless 16 S (top) and the gapless COI (bottom) haplotypes observed at Lake Victoria 99
Supplementary Table 6.1. Nematode PCR information 127
Supplementary Table 6.2. Trematode PCR information 131
Supplementary Table 6.3. GenBank accession numbers for the nematode and trematode ML phylogenetic trees. 133
Supplementary Table 6.4. The terrestrial gastropod species commonly found at popular dog walking sites in and around city of Nottingham and their relevance as intermediate hosts for different lungworm nematode species 138

Chapter 1 General Introduction:

1.1 Gastropod-Borne Parasitic Disease:

Zoonotic diseases are responsible for as much as 75% of emerging infectious disease worldwide (Taylor et al. 2001). These diseases can be difficult to control as they often have life cycles involving multiple hosts and can be transmitted from a variety of animal reservoirs. However, it is important to understand the transmission pathways and other factors that contribute to the spread of zoonotic diseases in order to develop effective strategies for disease management and prevention. The phylum Mollusca is the secondlargest phylum in the animal kingdom. It has approximately 85,000 extant species, the majority of which belong to the class, Gastropoda ($\sim 62,000$; Chapman, 2009; Barker, 2001). Gastropods are well-known to serve as hosts for various helminthic parasites (such as nematodes and trematodes) due to their ability to colonise and thrive in a variety of terrestrial, freshwater and marine ecosystems (Adema et al., 2012). Gastropod-borne parasitic diseases continue to be a significant concern for global public health, especially in developing countries. Lu et al. (2018) lists over 140 species from 20 gastropod families that act as vectors and/or intermediate hosts for well-known nematode (Angiostrongy/us) and trematode (Clonorchis, Fasciolopsis, Fasciola, Opisthorchis, Paragonimus and Schistosoma) species which affect hundreds of millions of people in around 90 countries. In addition to causing human disease, gastropod-borne parasitic diseases cause a significant impact on the health of livestock and companion animals (Taubert et al., 2009; Knubben-Schweizer \& Torgerson, 2015). Moreover, its estimated over 18,000 digenean trematode species and around 50 metastrongyloid nematode species use gastropods as their intermediate hosts and are of medical (or veterinary) concern (Giannelli et al., 2016).

1.1.1 Gastropod-Borne Parasitic Diseases Caused by Nematodes:

Nematodes evolved various types of symbiotic relationships with terrestrial and aquatic gastropods, with some species having phoretic (Caenorhabditis elegans), parasitic (Agfa flexilis), paratenic or pathogenic (Phasmarhabditis hermaphrodita) relationships with their gastropod host (Grewal et al., 2003). Based on current phylogenetic relationships of the different nematode families, it appears that relationships with gastropods have evolved independently multiple times (Grewal et al., 2003). However, these instances are primarily limited to two groups of nematodes: those who use gastropods as their intermediate host (e.g. metastrongyloids) and those who use gastropods as their definitive host (e.g. rhabditids). Among the 61 nematode species that use gastropods as their intermediate host, 49 of them belong to the order Strongylida. Similarly, of the 47 nematode species that use gastropods as their definitive host, 33 belong to the Order Rhabditida. A prominent example of a metastrongyloid species is the rat lungworm, Angiostrongylus (An.) cantonensis, a zoonotic parasite that infects rats and humans (Figure 1.1). In addition to An. cantonensis, there are multiple lungworm species that have veterinary importance as they infect important livestock (Dictyocaulus filaria and Protostrongylus rufescens) and companion animals (Angiostrongylus vasorum and Crenosoma vulpis; Figure 1.1).

Figure 1.1. The generic life cycle of several different lungworms species. (A) Angiostrongylus spp., (B) Dictyocaulus spp., (C) Protostrongylus spp. and (D) Crenosoma spp. The first stage (Larva stage 1) is the rhabditiform stage of the lifecycle and is directly after the excreted eggs hatch. The second stage (L2) occurs when the rhabditiform larva moults and matures into a filariform larva. The third stage (L3) is known as the infective stage. At this stage, the larva is mature enough to infect its definitive host when it comes into contact with it. The fourth stage is the final stage, where the larva is fully developed into an adult and is ready to reproduce within its definitive host. Adapted from Mehlhorn, (2008).

1.1.2 Gastropod-Borne Parasitic Diseases Caused by Trematodes:

The Digenea are a subclass of the Trematoda that are obligatory internal parasites. Digenetic trematode species have a more complex lifecycle than nematodes, which can involve one to four hosts and various morphologically distinct forms (Cribb et al., 2003; Figure 1.2). The Digenea are comprised of around 80 families and 6,000 described species, with only a dozen species being known to actively infect humans (Olson et al., 2003; Table 1.1). The Schistosoma genus is the most important among these species, with an estimated 240 million people being afflicted with schistosomiasis worldwide (WHO, 2022a). The other non-schistosome species that infect humans have a prevalence ranging from the tens of millions (clonorchiasis, fascioliasis, fasciolopsiasis, heterophyiasis, opisthorchiasis and paragonimiasis) to hundreds of thousands (metagonimiasis) to just only a few recorded cases (brachylaimiasis and gastrodiscoidiasis; Cribb et al., 2003; Olson et al., 2003; Table 1.1).

Figure 1.2. Life cycles stages of different digenean trematode families. Adapted from Schell, (1970).

Table 1.1 Examples of human pathogenic digenic trematode species. Information taken from Cribb et al. (2003) and Olson et al. (2003).

Family	Species	Gastropod Host	Mode of Human Infection
Brachylaimidae	Brachylaima cribbi	Cernuella spp.	Snails
Fasciolidae	Fasciolopsis buski Fasciola hepatica	Segmentina spp. Galba spp.	Plants Plants
Heterophyidae	Heterophyes heterophyes Metagonimus yokogawaii	Pirinella spp. Semisulcospira spp.	Fish Fish
Opisthorchiidae	Clonorchis sinensis Opisthorchis viverrini	Bulinus spp. Bithynia spp.	Fish Fish
Paragonimidae	Paragonimus westermani	Oncomelania spp.	Crustacea
Paramphistomidae	Gastrodiscoides hominis	Helicorbis spp.	Plants
Schistosomatidae	Schistosoma mansoni Schistosoma haematobium Schistosoma japonicum	Biomphalaria spp. Bulinus spp. Oncomelania spp.	Snails Snails Snails

1.2 An Introduction to Schistosomiasis:

In 1851, Theodor Bilharz discovered schistosomiasis (initially naming it Bilharzia), with Pirajá da Silva subsequently detailing the entire transmission cycle of the disease in 1908 (Mahdy et al., 2017). Human schistosomiasis is a tropical disease caused by six intravascular trematode species in the genus Schistosoma (Trematoda: Schistosomatidae). Of the 23 recognised species of Schistosoma, S. haematobium and S. mansoni cause the vast majority (>99\%) of schistosomiasis infections globally (Jamison et al., 2006; Merrifield et al., 2016). Depending on the species of Schistosoma, the disease can take the form of either intestinal or urogenital schistosomiasis (Table 1.2). Other uncommon Schistosoma species such as S.
guineensis, S. intercalatum, S. japonicum and S. mekongi also cause intestinal schistosomiasis in humans, but are restricted to specific regions of Central Africa, East Asia and Southeast Asia, respectively (Crompton, 1999; Sturrock, 2001). Each species of Schistosoma uses a specific snail genus as an intermediate host to spread the disease through freshwater sources contaminated by infected human (or animal) waste (Gryseels et al., 2006; Table 1.2). The World Health Organisation (WHO) considers schistosomiasis as the third worst tropical disease after tuberculosis and malaria, while the Center for Disease Control and Prevention (CDC) says it is the second most devastating parasitic disease after malaria. Today, an estimated 240 million people are currently infected worldwide, with approximately 90% of cases concentrated in Africa ($\sim 85 \%$ in sub-Saharan Africa; Boko et al., 2016; WHO, 2022a). The sub-Saharan African countries Nigeria (29 million cases of schistosomiasis), the United Republic of Tanzania (19 million), Mozambique (19 million), Ghana (15 million) and the Democratic Republic of Congo (15 million) have the highest prevalence of the disease and make up more than a third of global schistosomiasis cases (Boko et al., 2016; Onasanya et al., 2021). Furthermore, schistosomiasis is found in 78 countries and is endemic in 54 countries worldwide, with a potential 700-800 million people at risk of infection from daily work-related (farming, fishing etc.) and recreational (swimming, bathing etc.) activities (WHO, 2013; Figure 1.3; Table 1.3).

Table 1.2 The prevalence of human infection for the six major Schistosoma species that account for all human infection and their most common intermediate hosts. Information collected from Crompton (1999); Van Der Werf et al. (2003); Colley et al. (2014); Zhu et al. (2017) and Khieu et al. (2019).

	Form	Infected and at Risk	Intermediate Host
Schistosoma haematobium	Urogenital	~ 113.9 million infected $(\sim 436$ million at risk)	Bulinus (O. F. Müller, 1781)
Schistosoma mansoni	Intestinal	~ 83.3 million infected $(\sim 393$ million at risk)	Biomphalaria (Preston, 1910)
Schistosoma intercalatum	Intestinal	~ 1.73 million infected	Bulinus
Schistosoma guineensis	(O. Müller, 1781)		
Schistosoma japonicum	Intestinal	~ 1.55 million infected $(\sim 65$ million at risk)	Oncomelania (Gredler, 1881)
Schistosoma mekongi	Intestinal	~ 0.91 million infected (~ 0.15 at risk)	Neotricula (Temcharoen, 1971)

Note: Illustrations from Pilsbry (1915) and Oberholzer \& Van Eeden (1967).

Table 1.3 Global statics of schistosomiasis infection. Estimations supplied by Utroska et al. (1990); Zhou (2007); Danso-Appiah et al. (2013); WHO (2013); PAHO (2014); CDC (2017) and WHO (2019).

	People Infected (Million)	People at Risk (Million)	No. of Countries
Worldwide	~ 240	$\sim 700-800$	$78 / 195$
Africa	$\sim 216-232$	$\sim 595-680$	$53 / 54$
Asia	$\sim 1-12$	$\sim 65-100$	$16 / 48$
The Americas	~ 16	~ 25	$8 / 35$
Europe	~ 0.05	~ 0.5	$1 / 44$

Figure 1.3. Global distribution of schistosomiasis infection. Adapted from Gryseels et al. (2006).

Of the estimated 240 million people infected with schistosomiasis, an estimated 60% of patients are symptomatic, 30% are asymptomatic and 10% suffer from severe symptoms causing morbidity (Chitsulo et al., 2000). However, the idea of whether schistosomiasis can be asymptomatic is still debated (King, 2015). It is estimated schistosomiasis claims between 24,000-200,000 lives globally every year (WHO, 2019). However, these values need to be reevaluated, as they are outdated and have likely decreased from large-scale preventative chemotherapy campaigns over the past several decades. Mortality is not as large as an issue as the morbidity caused by the disease. Disability-adjusted life years (DALYs) are a time based measurement that summarises the health of a population caused by a medical condition into a single indicator (Murray et al., 2002).
$D A L Y=Y L D+Y L L$
$Y L L=$ Number of deaths $*$ Standard life expectancy at age of death $Y L D=($ Number of incident cases $*$ Disability weight) $*$ Mean disease duration

DALYs were developed by the World Bank in 1990 and adopted by the WHO as a way of measuring the amount of mortality (Years of Life Lost) and morbidity (Years Lived with Disease) caused by a disease (Anand \& Hanson, 1997). A single DALY is equivalent to the loss of one healthy year of life, with Hotez et al. (2014) estimating schistosomiasis accounted for 3.31 million DALYs globally in 2010. However, there is still an ongoing debate about how much of a sequela can be attributed to schistosomiasis, with King (2010) estimating the global DALYs lost to schistosomiasis being as high as 56 million. It is agreed that the majority ($>90 \%$) of the DALYs caused by schistosomiasis are due to the Years of Life Lived with Disease (YLD), instead of Years of Life Lost (YLL; King and Dangerfield, 2008).

The majority of those infected with schistosomiasis have mild symptoms, with both anaemia and malnutrition being common. There are many symptoms caused by schistosomiasis that fluctuate in seriousness, with the initial infection causing dermatitis from the cercariae penetrating the skin (Inobaya et al., 2014). As the disease develops, another primary condition called Katayama fever (acute schistosomiasis) can cause fever, lethargy, a severe itching (urticarial) rash, enlargement of the liver (hepatomegaly) and/or spleen (splenomegaly) and coughing (bronchospasms; Mogawer et al., 2019). However, the more severe morbidity is caused by the reproductive activities of the adult schistosomes. The majority of eggs released by the adult worms become lodged in different tissues (typically the intestinal/bladder walls), but it is possible for them to reach the liver, spleen, lungs, heart and/or brain (de Oliveira, 2013). The eggs cause chronically active schistosomiasis within several organ systems, which can lead to high blood pressure and fluid build-up throughout the gastrointestinal (or genitourinary) system causing debilitating and potentially life-threatening symptoms (Colley \& Secor, 2014).

1.2.1 The Pathology and Lifecycle of Schistosomiasis:

The Schistosoma lifecycle consists of two stages; the sporocyst (asexual stage) that lives inside the intermediate gastropod host and the worm (sexual stage) that lives inside the definitive mammalian host (Figure 1.4). Whilst inside the definitive host, a single pair of schistosomes can produce several hundred (S. mansoni \& S. haematobium) or even thousands (S. japonicum) of eggs daily during their lifetime (3-10 years). Only 20-55\% of these eggs successfully pass through the host and reach the water, while the rest are trapped in the intestinal (S. mansoni and S. japonicum) or urinary (S. haematobium) tissues (Costain et al., 2018). Depending on the species, the currently migrating or trapped eggs inside the host can cause either gastrointestinal disease (S. mansoni and S. japonicum) or genitourinary disease (S. haematobium). The former condition can lead to the narrowing of the colon or rectum, as well as fibrosis of the liver in long-term infected hosts, while the latter condition can lead to fibrosis of the urinary tract, genital lesions (female and male genital schistosomiasis), hydronephrosis, kidney failure and even bladder cancer (Gray et al., 2011). Furthermore, a more serious third condition, central nervous system disease, can
develop if eggs migrate and get stuck in either the brain (S. japonicum) or spinal cord (S. mansoni and S. haematobium; Ross et al., 2002).

Figure 1.4. Simplified life cycle of Schistosoma. (A) the adult schistosome male carries the female and sexually reproduce in their definitive mammalian host; (B) Eggs are released from the definitive mammalian host through either defecation (S. mansoni and S. japonicum) or urination (S. haematobium); (C) the eggs hatch into a larval stage called a miracidium, and seek out and penetrate a suitable intermediate snail host; (D) successful miracidium develop into asexual sporocysts within their intermediate snail host; (E) a second free-swimming larval stage called a cercaria is released from the intermediate snail host, and seeks out a suitable definitive mammalian host to penetrate. Adapted from Colley et al. (2014).

If eggs are passed through the host into freshwater and optimal conditions are met, then the eggs will hatch into miracidia in less than an hour. Miracidia have a lifespan of less than 72 hours and have to successfully find and penetrate into the appropriate snail host (Figure 1.4). One week after successfully penetrating the correct snail host, the miracidium transforms into a mother sporocyst and remains inside the head-foot tissue of the snail for the following 2-3 weeks (Hanington et al., 2010; Humphries, 2011). Four weeks after exposure, the mother sporocyst produces daughter sporocysts, which migrate to the snail's digestive gland-gonad complex. By the 6th week, these daughter sporocysts eventually rupture and cercariae are released into the water. Once released, these infective cercariae have 4-6 days to seek out an appropriate mammalian host (Figure 1.4). Once found, the
cercariae penetrates into the skin, losing their tail, and travel through the blood vessels as schistosomula. Many perish from the immune system before reaching the liver, but successful schistosomula mature into adult worms that coat themselves with host antigens to avoid future detection. Sexual maturation happens 4-6 weeks after initial infection, in which individual worms seek out the opposite sex and mate.

1.2.2 The Treatment of Schistosomiasis:

In the 21st century, schistosomiasis is considered an easy disease to cure, as the average cost for each person treated is on average $£ 1.13$ (Salari et al., 2020). Yet it remains widespread throughout the developing world due to the ease of infection and reinfection among patients. Biltricide, or its more common name praziquantel, is a safe and highly effective anthelmintic drug, which is taken orally and is used to treat a large range of helminthic infections (Chai, 2013). Praziquantel (PZQ) is the main method for controlling infection in high-risk groups (e.g. school children, pregnant women, etc.) and is extremely effective at curing schistosomiasis (cure defined as the percentage of reduction in the number of patients who either cease to excrete eggs or the reduction in the mean number of eggs excreted). However, praziquantel is less effective when dealing with heavily infected individuals (> 400 eggs per gram of faeces) or individuals co-infected with more than one Schistosoma species at one time, and it does not prevent reinfection (Midzi et al., 2008; Olliaro et al., 2011; Lovis, et al., 2012).

The intensity and rate of reinfection after treatment varies depending on what species are present, the transmission dynamics and the endemicity level of an area (Tchuenté, et al., 2013). Furthermore, praziquantel is only effective on adult worms, miracidia and cercariae, but ineffective against eggs, sporocysts and schistosomula (Wu et al., 2011). Despite its faults, praziquantel is the most preferred antischistosomal drugs over others like metrifonate (severer side effects) or oxamniquine (only effective against S. mansoni). However, due to the heavy overreliance on praziquantel, inevitable immunity of the drug will occur within Schistosoma populations. Alongside praziquantel-resistance, many other geographical, environmental, socio-economic, ecological and epidemiological factors all contribute to the rate of reinfection (Ernould et al., 2004; Cundill et al., 2011). Reinfection is so common due to both halves of the lifecycle, helping to sustain the other half. Control programs heavily focus only on the human side of the infection cycle, which aims at and succeeds in treating the afflicted local people. This helps to reduce future cases of infection by introducing sanitation services and curing current human hosts with chemotherapeutic drugs, which stops any new eggs reaching freshwater sources and infecting new snail hosts. However, only focusing on one half (the definitive) of the infection cycle leaves the other half (the intermediate) rampant and uncontrolled. The intermediate stage relies on sporocysts to asexually create new cercariae. This means even if all new eggs are prevented from reaching the water, it will only stop new snails from becoming infected, but will not stop already infected snails from producing new cercariae for the rest of their lives. Furthermore, human Schistosoma species can exist in other mammals (bovine, canines, primates, ruminants, rodents, swine etc.), indicating animal reservoirs will allow infection to continue independently of human involvement. Therefore, breaking the cycle of infection
requires a more sophisticated solution than just controlling and curing the infection found in afflicted people.

1.2.3 Current Progress on Schistosomiasis Control:

Prior to the discovery of anthelmintic drugs, schistosomiasis control used to be heavily reliant on policies involving behaviour and sanitation. However with the introduction of anthelmintic drugs, the focus of subsequent schistosomiasis control strategies changed to chemotherapy and the elimination of the intermediate snail host (Inobaya et al., 2014). The current roadmap for the implementation of neglected tropical diseases control was developed by the WHO's World Assembly in 2020, setting new global targets for the prevention, control or eradication of 20 diseases (including schistosomiasis) by 2030 (WHO, 2020). Schistosomiasis is one of 17 recognised neglected tropical diseases (NTDs) which currently affect developing countries (WHO, 2022a). The WHO considers schistosomiasis to be one of six NTDs which can be controlled and eliminated through the use of safe water, sanitation, and hygiene (WASH) practices, environmental intervention of vectors/hosts (molluscicides and water engineering) and providing access to preventative chemotherapy (praziquantel; WHO, 2022b). Furthermore, if the total eradication of schistosomiasis were ever achieved, the control measures put in place would go on to help control other diseases caused by unsanitary and unhygienic practices such as soil-transmitted helminthiasis. In addition, eliminating schistosomiasis would help towards; (I) the eradication of extreme poverty and hunger; (II) achieving universal primary school education; (III) promoting gender equality and empowering women; (IV) reducing child mortality rates and improving maternal health and (V) combat the transmission of HIV/AIDs (WHO, 2005).

As previously mentioned in section 1.2.2, praziquantel-based mass drug administration (MDA) programs are currently the main method for controlling schistosomiasis and lead the way as the main method of control. Mass drug administration programs have had considerable success in reducing both the prevalence and intensity of schistosomiasis infection in hyper-endemic areas (Webster et al., 2014). The popularity of PZQ-MDA is likely to continue due to the large-scale reach it has within the global community and their primary focus on helping school-age children (and occasionally adolescents) who suffer from the highest prevalence and intensity of schistosomiasis. However, despite the advantages prioritising only one demographic has (preventing infection in the next generation and protects the most vulnerable group), it also has a lot of disadvantages such as missing out the majority of infected individuals (out of school children, older children and adults) who continue to suffer and contribute to the continuous lifecycle of the disease. Furthermore, it also excludes adults whose occupation (sand harvesters, anglers, farmers etc.) regularly exposes them to schistosomes infested waters (Onkanga et al., 2016). For example, the most up to date estimates show that fewer than half of the 240 million people who require preventative treatment, received it (WHO, 2021a).

Current PZQ-MDA programs have many direct and indirect benefits such as the decline of schistosomiasis-associated paediatric malnutrition and mitigating the cognitive deficits in children during development (Ezeamama et al., 2018). However, for all the good it has done, praziquantel is seen as a unidimensional approach that is insufficient at controlling and
ultimately eliminating schistosomiasis in the resource-poor regions of Africa, South America and the Middle East. The problems lie within its current delivery model, which cannot reliably reach areas with high transmission rates and high post-treatment reinfection rates for frequent deliveries of repeated doses. Moreover, there is little evidence showing PZQMDA alone can sufficiently and effectively interrupt the transmission cycle in said areas, even with several years of constant praziquantel coverage (Hotez et al. 2019).

1.2.4 Diagnosing Schistosomiasis Infection in Human and Snails:

The primary diagnostic method for schistosomiasis in humans is to isolate and identify whether schistosome eggs are present in the urine (urogenital) or stool (intestinal) of a patient. Microscopic egg detection is considered the diagnostic "gold standard" of detecting schistosomiasis in people as false-positive results are not possible. However it does have limitations, particularly when it comes to detecting infection in low-intensity infection cases or prepatent patients. The WHO recommends several different techniques for diagnosing both intestinal (e.g. Kato-Katz smear method) and urogenital schistosomiasis (e.g. urine filtration method; Ross et al., 2002; Gryseels et al., 2006). However, the need for more sensitive, accurate and time-efficient diagnostic methods is still sought after, especially in areas where PZQ-MDA campaigns are being currently implemented. As a result of this need, various molecular techniques have been developed in recent years which can detect schistosome infection in a patient's urine (Sandoval et al., 2006), stool (ten Hove et al., 2008) or even blood (Wichmann et al., 2013).

In addition to human infection prevalence, assessing infection prevalence within the intermediate snail host is becoming just as important. The traditional diagnostic method for detecting schistosome infection within an intermediate snail host is to identify whether cercariae are being produced (Webbe, 1965). However, this traditional cercarial shedding method has limitations, as its very time-consuming taking anywhere from 35 to 49 days to perform and any snails which die during this period can skew infection results. To overcome these limitations, various novel techniques have been developed to address the need for a more direct and rapid diagnostic method for detecting schistosome infection within snails. Such molecular methods like loop-mediated isothermal amplification (LAMP) or polymerase chain reaction (PCR) can be used to rapidly detect Schistosoma DNA from an extracted snail sample (Notomi et al., 2000; Nagamine et al., 2002; Sandoval et al., 2006; Abbasi et al., 2010; Lu et al., 2016). Moreover, these techniques can even detect infection in early prepatent snails giving more accurate, rapid, and species-specific results than the traditional cercarial shedding method (Joof et al., 2020). The first PCR-based detection method for S. mansoni infection in Biomphalaria snails were the Sm^{1-7} primers designed by Hamburger et al. (1998). However, the reliability of these primers were recently questioned since they were unable to consistently detect S. mansoni DNA in laboratory infected B. glabrata snails (Joof et al., 2020). Conversely, alternative primer sets such as $\mathrm{Sm}^{\mathrm{F/R}}$ (Sandoval et al., 2006) and ND5 (Lu et al., 2016) have demonstrated greater accuracy and reliability in detecting S. mansoni infection in various species of Biomphalaria snails (Joof et al., 2020).

1.2.5 The Future of Schistosomiasis Control:

There is a growing concern for other alternative methods of controlling schistosomiasis, instead of depending solely on mass chemotherapeutic programs like PZQ-MDA. Any new alternative control methods for schistosomiasis are highly sought after and there are many potential areas from which it can come. For example, immunisation is a common prophylactic method used to control the prevalence of many diseases. The invention of vaccines has successfully led to the near eradication (e.g. poliomyelitis) or complete eradication (e.g. smallpox) of many diseases which once devastated humanity. However, due to schistosomiasis being caused by a metazoan parasite, the development process is much more complicated than that of a conventional vaccine made for a disease caused by a virus or unicellular organism. Currently, more than 100 potential antigens have been identified and could be used to create a vaccine for schistosomiasis. However, only a few of these antigens have advanced to human clinical trials, with the Sm14/GLA-SE, Sm28-GST, Sh28-GST and Sm/TSP-2 vaccines still in development (Table 1.4; Merrifield et al., 2016; Tendler et al., 2018).

Table 1.4 Information about vaccines against Schistosoma mansoni (sm) and S. haematobium (sh) infection. Information supplied by Tsuji (2020).

	Targets	Progress
Sm28-GST	Glutathione S-transferase	Undergoing Phase 3
Sh28-GST	Glutathione S-transferase	Undergoing Phase 3
Sm14/GLA-SE	Fatty Acid Binding Protein	Undergoing Phase 2
Sm/TSP-2	Tetraspanin Integral Membrane Protein	Undergoing Phase 1
Sm-p80	Calpain Neutral Cysteine Peptidase	Preparing for Phase 1

Creating a vaccine for schistosomiasis is both difficult and expensive as it requires a lot of research and resources in order to ensure it is safe and effective. Schistosomiasis (and other NTDs) mostly affect people living in poor countries, which gives multinational pharmaceutical companies no commercial incentive to create a vaccine, as if one were ever made it would not be very profitable (Sabin, 2020). Additionally, the governments of developing countries prioritise other diseases such as HIV/AIDs, malaria and tuberculosis as these diseases have greater immediate impact on population health and economic development than NTDs. Therefore, most pharmaceutical companies and governments do not prioritise the eradication of NTDs. Consequently, this lack of support makes it hard for researchers to find the funding to continue their work, which makes the development of a vaccine often reliant on funding from charitable groups, but this funding is often limited.

Other than Immunisation, other control methods like integrated sanitation, access to safe water and educational programs can be promoted in endemic areas to help reduce prevalence of NTDs like schistosomiasis. Furthermore, acknowledging the fundamental role freshwater snails play in the transmission of the disease and focusing on stopping them can also prevent infection (Ross et al., 2017a). There are three genera responsible for vectoring
the majority of infections, Bulinus (S. haematobium), Biomphalaria (S. mansoni) and Oncomelania (S. japonicum; Table 1). Biomphalaria is especially problematic due to its invasive nature, as it is found in Africa, East Asia, the Middle East and the Americas (Colley et al., 2014; Habib et al., 2021). Currently, Biomphalaria is single-handedly responsible for all S. mansoni infections, with a global estimate of 83 million people currently infected and a further 393 million at risk (DeJong et al., 2001; Van der Werf et al., 2003).

1.3 An Introduction to Schistosoma mansoni and Biomphalaria:

1.3.1 The Origins of Schistosoma mansoni:

There are approximately 23 nominal species of Schistosoma, with each schistosome species being classified into five clades, the S. haematobium clade, the S. hippopotami clade, the S. indicum clade, the S. japonicum clade and the S. mansoni clade (Figure 1.5; Lawton et al., 2011). Lawton et al. (2011) proposes Schistosoma originated in Asia approximately 60-70 million years as parasites of murid rodents. The invasion of primordial Asian Schistosoma species to Africa happened at least two separate times, with the first invasion giving rise to the S. hippopotami clade and latter invasion (or invasions) giving rise to a S. mansoni-like ancestor of the S. haematobium, S. indicum and S. mansoni clades (Figure 1.5; Lawton et al., 2011). Subsequent genomic research suggests that S. mansoni emerged in East Africa as recently as 126,500 years ago and remained isolated in the east for 119,000 years before spreading outwards to the rest of Africa (Rey et al., 2021).

Figure 1.5. Phylogenetic summary of the Schistosoma genus using Bayesian analysis of the complete small ribosomal subunit (SSU) , partial large ribosomal subunit (LSU) and the partial Cytochrome Oxidase 1 Subunit (COI). Adapted from Lawton et al. (2011).

It is estimated that the parasitic relationship between S. mansoni and African Biomphalaria species developed approximately 2-5 million years ago in Africa, with the introduction of proto-B. glabrata snails from South America (Campbell et al., 2000; Morgan et al. 2001). Subsequently, S. mansoni was then introduced into the New World via the colonisation of the Americas and the Trans-Atlantic slave trade, using the convenient South American Biomphalaria species as its intermediate host (Platt et al. 2022).

1.3.2 An Introduction to Biomphalaria:

Biomphalaria (Gastropoda: Planorbidae) are the intermediate host for Schistosoma mansoni, the primary cause of intestinal schistosomiasis. In addition to S. mansoni, Biomphalaria acts as an intermediate host to approximately 50 other helminthic parasitic species with medical or veterinary importance (Habib et al., 2021; Table 1.5).

Table 1.5 Examples of nematode and trematode species that use Biomphalaria as their intermediate host. Information supplied by Habib et al. (2021).

	Parasite species	Definitive host
Nematoda	Angiostrongylus cantonensis Angiostrongylus costaricensis Angiostrongylus siamensis Angiostrongylus vasorum	Mammals
Trematoda	Echinoparyphium spp. Echinostoma barbosai Echinostoma caproni Echinostoma friedi Echinostoma liei Echinostoma lindoense Echinostoma luisreyi Echinostoma noacrorchi Echinostoma paraensei Echinostoma revolutum Echinostoma rodriguesi Echinostoma togoensis Echinostoma trivolvis Schistosoma mansoni Paryphostomum segregatum Zygocotyle lunata	Birds and Mammals
	Austrodiplostomum compactum Ribeiroia spp.	Fish and Amphibians

Biomphalaria are described as sinistrally coiled, with a flat discoidal shell. They inhabit a multitude of natural and human-made freshwater environments (lakes, rivers, ponds,
marshes, irrigation channels etc.), which are rich in algae or organic detritus (faeces). However, despite living in freshwater, Biomphalaria breathe air via a lung-like pulmonary cavity. Like most snail species, they are hermaphroditic meaning they possess both male and female gametes. This allows Biomphalaria to reproduce both sexually (crossfertilisation) and asexually (self-fertilisation). A single snail can lay over 10,000 eggs during its 2-3 year lifespan, with a clutch of eggs hatching within 6-8 days and reaching sexual maturity in less than two months (depending on environmental conditions) (Eveland \& Haseeb, 2011). Certain abiotic factors such as temperature, illuminance and the physiochemical parameters of the water (pH , salinity, conductivity, major anions and cations levels) can affect the growth rate and abundance of a Biomphalaria population (McCreesh, and Booth, 2014).

1.3.3 The Origins and Current Distribution of Biomphalaria:

The current theorised origins of Biomphalaria are within South America after the separation of the supercontinent Gondwana ($\sim 95-106$ million years ago), with the genus first appearing in the fossil record in the late Cretaceous period ($\sim 65-100$ million years ago; Abou-El-Naga, 2013; Cabrera et al., 2018). Early allozyme phylogenetic studies by Bandoni et al. (1995) and more informative phylogenetic studies by DeJong et al. (2001) and Jørgensen et al. (2007) confirm this hypothesis as B. glabrata is the ancestral sister group to all African Biomphalaria species. This led to current theory that Biomphalaria were introduced into Africa via aquatic birds or rafts made of vegetation carrying primordial B. glabrata-like snails from South America approximately 2-5 million years ago (Campbell et al., 2000; Jørgensen et al., 2007). Currently, Biomphalaria species are native to the tropical (and sub-tropical) regions of Africa and South America (Taylor, 1988). However, Biomphalaria are notoriously invasive, as despite only making up 15\% of Planorbid species, they constitute approximately half of the reported invasive Planorbidae species globally (Pointer et al., 2005). Habib et al. (2021) reviewed the current global distribution of Biomphalaria species and found South American species have invaded China, Romania, Mexico and the Caribbean (Figure 1.6).

Figure 1.6. Global distribution of Biomphalaria species. Adapted from Habib et al. (2021).
Mandahl-Barth (1957) was the first to classify the African Biomphalaria species using a combination of different morphological characteristics. He categorised 12 species into four groups comprised of the B. alexandrina group; the B. choanomphala group; the B. pfeifferi group and the B. sudanica group (Mandahl-Barth, 1957). However, through the use of more sophisticated molecular techniques, Dejong et al. (2001) found that B. alexandrina, B. choanomphala and B. sudanica were all closely related. This disproves the previously proposed four group system, showing that morphology-based identification methods have many inconsistencies. Moreover, certain species previously defined exclusively by morphological characteristics such as B. arabica, B. barthi, B. rhodesiensis, B. ruppellii, B. salinarum and B. tchadiensis were invalidated by molecular methods (Brown, 1994; Jørgensen et al., 2007). In total, there are approximately 20 new world species and 8 African species of Biomphalaria (Dejong et al., 2001; Jørgensen et al., 2007). Unlike the new world species, all of the African Biomphalaria species are fully capable of harbouring S. mansoni infection. However, the current phylogenetic structure of the African Biomphalaria species is problematic, as the only clearly defined species are B. camerunensis and B. pfeifferi, while the remaining species (B. alexandrina, B. angulosa, B. choanomphala, B. smithi, B. stanleyi and B. sudanica) form a poorly defined clade named the Nilotic species complex (Figure 1.7). The Nilotic species complex is named so as all of the species inhabit regions connected to the river Nile (Abou-EI-Naga, 2013).

Figure 1.7. Phylogenetic analysis of the African Biomphalaria species, rooted on the common ancestor, B. glabrata. Adapted from Jørgensen et al. (2007).

1.4 Research Aims:

This thesis explores the relationship between gastropod-borne parasites and their gastropod hosts. It focusses primarily on the digenetic trematode species, Schistosoma mansoni and its relationship with Biomphalaria snails inhabiting the Great African Lakes.

Chapter 3 aimed to use landmark-based geometric morphometric techniques to identify what morphological characteristics of Biomphalaria shells are important when differentiating specimens at the species-level, with the hope of improving conchological identification methods used in the field.

Chapter 4 focuses on investigating the prevalence of Schistosoma mansoni infection and the level of genetic diversity in the Biomphalaria species inhabiting the Great African Lakes. Additionally, S. mansoni prevalency were measured for the wet and dry seasons over a two year period with the intension of understanding transmission patterns throughout the year.

Chapter 5 focused on Biomphalaria choanomphala snails in Lake Victoria with the aim of identifying the major factors driving the prevalence of S. mansoni infection in B. choanomphala populations across Lake Victoria. This chapter investigates the influence of biotic and abiotic factors in the lake on S. mansoni prevalence.

Chapter 6 is distinct from the three previous chapters, with the focus being on whether medical and veterinary important gastropod-borne parasites are present in and around the city of Nottingham. A parasitological survey of local terrestrial gastropod populations was undertaken with the gastropods collected and screened for potentially pathogenic nematode and trematode species.

Chapter 2 General Material and Methods:

2.1 Samples Analysed and their Collection Localities:

Malacological collection surveys were undertaken by Candia Rowel and Besigye Fred (Rowel et al. 2015) from January 2009 to May 2011 as a part of the Schistosomiasis in Mothers and Infants (SIMI) project at the Ugandan shorelines of both Lake Albert (Buliisa District) and Lake Victoria (Mayuge District). They collected Biomphalaria snails once a month for 28 consecutive months from three sites at Lake Albert (Bugoigo: $1.908^{\circ} \mathrm{N}, 31.409^{\circ} \mathrm{E}$; Piida: $1.819^{\circ} \mathrm{N}, 31.328^{\circ} \mathrm{E}$ and Walukuba: $1.842^{\circ} \mathrm{N}, 31.378^{\circ} \mathrm{E}$) and three sites at Lake Victoria (Bugoto: $0.319^{\circ} \mathrm{N}, 33.628^{\circ} \mathrm{E}$; Bukoba: $0.312^{\circ} \mathrm{N}, 33.492^{\circ} \mathrm{E}$ and Lwanika: $0.351^{\circ} \mathrm{N}, 33.446^{\circ} \mathrm{E}$; Figure 2.1). These whole snail samples were originally collected and analysed by the Rowel et al. (2015) study, with approximately half of the snails collected (collections from January 2009 to December 2010) being held as a reference archival collection at the Liverpool School of Tropical Medicine, UK. In total, 2,645 snails preserved from the original 6,183 snails collected at Lake Albert, and 6,382 snails preserved from the original 13,172 snails collected at Lake Victoria were provided by Professor J. Russell Stothard from the LSTM.

Figure 2.1. Map of the Great African Lakes, Lake Albert and Lake Victoria.
In addition to the SIMI samples, malacological samples from the Kenyan, Tanzanian and Ugandan shorelines of Lake Victoria were collected by Claire J. Standley from February 2008 to February 2010 (Standley et al., 2011; Standley et al., 2012; Standley et al., 2014). Genomic DNA (gDNA) samples of her Biomphalaria choanomphala collections were provided by Professor J. Russell Stothard from the LSTM, with accompanying quantitative and qualitative data relating to the abiotic factors at each site. This included: the date, time, current weather, GPS coordinates, the number of snails present, the physiochemical parameters of the water, temperature, water conductivity, total dissolved solids, salinity, pH , habitat type, substrate type, water depth and wave action. The samples and datasets provided to us by Professor J. Russell Stothard had been previously analysed and subsequently published in Standley et al. (2011), Standley et al. (2012) and Standley et al. (2014).

2.1.1 Morphological Identification of Biomphalaria and Counting Snails:

The preserved Biomphalaria snails provided by the LSTM were contained in 15 ml falcon tubes containing 70% ethanol, with each tube being labelled with when and where the collection occurred. The first step of analysis was to identify what species were present at each site and quantify the number of each species collected per site every month. This involved individually emptying each of the 15 ml falcon tubes one at a time into a 9 cm Petri dish and separating the snails out based on shell morphology (Figure 2.2). Once counted, each of the specimens were identified at the species-level using conchological identification methods described by the 'Freshwater Snails of Africa and their Medical Importance' monograph by Brown (1994). In addition to quantifying each of the species present, the number of morphotype-A and morphotype-B shell per collection were counted as well (Figure 2.2). After being counted, the specimens were placed back into the 15 ml falcon tube, and the tube was topped up with fresh 70% ethanol and resealed. After counting all of the specimens, 20 individuals of each species from each of the six sites were selected for DNA extraction and molecular analysis. In this case, the August collections of 2010 were chosen as they had the highest number of preserved snails for both Lake Albert and Lake Victoria. The information of each Biomphalaria collection was documented into an Excel spreadsheet, which listed the number of snails collected each month, which species were present for each monthly collection and how many of each morphotype were present.

Figure 2.2. Example of counting and categorising the Biomphalaria snails by morphotype (left). Examples of what morphotype-A and morphotype-B shells look like up-close (right). Samples originally collected as a part of the SIMI project and were provided by the LSTM.

2.2 Malacological Survey of the City of Nottingham:

Malacological collections of terrestrial gastropods were performed in and around the city of Nottingham from June to November 2020 and June to November 2021. All slugs and snails were collected by hand and placed into separate plastic tubs based on species. At each site, the goal was to collect exactly 50 specimens, with a maximum of 10 individuals per species. In total, 16 sites were surveyed in and around the city of Nottingham (Figure 2.3). The sites selected were all popular dog walking locations such as recreational grounds, country parks,
public gardens and nature reserves. In addition, to collecting gastropods at each site, the time, date, and GPS coordinates (provided by Google Maps) of each collection was also recorded.

Figure 2.3. Map of the City of Nottingham, United Kingdom.

2.2.1 Morphological Identification of Terrestrial Gastropods:

All terrestrial gastropods collected from Nottingham were identified using the 'Terrestrial Mollusc Key' (https://idtools.org/id/mollusc/key.php) by White-McLean (2011) and the illustrated guide 'Slugs of Britain and Ireland' by Rowson et al. (2014). Identifications were performed during collections and again before gastropods were processed. The identification process involved looking at the shell characteristics (hairs, dents, striae, lirae, ribs or wrinkles), body characteristics (breathing pore location, keel or no keel), body markings (spots, blotches, stripes or bands) and sole/mucus colour (white, yellow, orange or clear) of the collected gastropods.

2.2.2 Helminthic Parasite Extraction from Terrestrial Gastropods:

After being identified, specimens were cryo-anaesthetised at $-20^{\circ} \mathrm{C}$ for a short period and washed in 70% ethanol (to remove external organisms such as mites and phoretic nematodes) within 12 hours of collection. Gastropods were sliced into four equal pieces (snails were crushed prior to slicing) and artificially digested in a 50 ml falcon tube containing Ash's digesting solution (0.7% pepsin in $0.5 \% \mathrm{HCl}$) for four to eight hours depending on the body size (Figure 2.4).

Figure 2.4. Example of how washed gastropod were cut into four pieces. Scalebar: 0.5 cm .
After artificial digestion, the solution was diluted using water and poured into a 9 cm Petri dish. A dissection microscope was used to check for nematodes or metacercariae for ten minutes (Figure 2.5). Nematodes were classified as either juveniles or adults depending on their body size and morphology. If found, nematodes and metacercariae were counted, picked using a worm pick and placed into a 0.2 ml tube containing 70% ethanol (juvenile worms, adult worms and metacercariae were placed in separate tubes) and preserved at $20^{\circ} \mathrm{C}$. The information of each gastropod digested was documented into an Excel spreadsheet, which included where the gastropod was collected from (time/date/location), the sample number, the species name, the body size, the number of juvenile and adult nematodes counted, the number of metacercariae counted and the number of parasites (juvenile/adult nematodes and/or metacercariae) picked and preserved in ethanol.

Figure 2.5. Juvenile nematode (left) and metacercaria (right) found in Ash's digestive fluid.

2.3 Molecular Processing of Snails and Parasites:

2.3.1 DNA extraction:

DNA was extracted using a modified CTAB (hexadecyltrimethylammonium bromide) method. In the case of Biomphalaria, the first step was removing the snail from the 70\% ethanol. Next, the whole body was carefully removed from the shell using needle-nose tweezers. Shells of extracted individuals were labelled and stored in a separate 1.5 ml

Eppendorf for later use in morphometric analysis (Chapter 2.5). Next, an approximate $2 \times 2 \mathrm{~mm}$ slice of head-tissue (Figure 2.6) was taken and pressed between paper towels to remove any excess ethanol. The flattened tissue was then placed into a 1.5 ml Eppendorf containing $500 \mu \mathrm{l}$ of CTAB solution (100 mM Tris base, 20 mM EDTA, $1.4 \mathrm{M} \mathrm{NaCl}, 2 \%$ CTAB) and a spatula full of $100 \mu \mathrm{~m}$ glass beads. A plastic pestle was used to grind the tissue for 5-10 minutes, until disintegrated. Next, 10μ l of Proteinase-K $(10 \mathrm{mg} / \mathrm{ml})$ and $1 \mu \mathrm{l}$ of β mercaptoethanol was added and the solution was incubated at $56^{\circ} \mathrm{C}$ for 2 hours with frequent vortexing every 30 mins.

Figure 2.6. Where tissue was taken from shell-extracted Biomphalaria. Scalebar: 1 cm .
In the case of the helminthic parasites (from Chapter 2.2.2), a single nematode (or metacercaria) were removed from the 70% ethanol and carefully placed into a 1.5 ml Eppendorf containing $500 \mu \mathrm{l}$ of CTAB solution, $10 \mu \mathrm{l}$ of Proteinase-K and $1 \mu \mathrm{l}$ of β mercaptoethanol. No glass beads or plastic pestle were used, as the available tissue was small and easily digested when incubated at $56^{\circ} \mathrm{C}$ for 2 hours with frequent vortexing every 30 mins.

After the tissue was fully digested, $500 \mu \mathrm{l}$ of Chloroform-Isoamyl alcohol ($24: 1$) was added. Samples were then gently inverted for 5-10 mins to mix the contents. They were then centrifuged at 13,000 rpm for 10 mins. The aqueous layer was then transferred off the top of the chloroform layer into a new 1.5 ml Eppendorf and the previous step was repeated. After the second Chloroform-Isoamyl alcohol wash, the aqueous layer was transferred into a new 1.5 ml Eppendorf. Next, 1 ml of 95% ice-cold ethanol was added, along with $4 \mu \mathrm{l}$ of sodium acetate (3 M). The 1.5 ml Eppendorf was then placed into a $-70^{\circ} \mathrm{C}$ freezer for $12-24$ hours to allow the DNA to precipitate. Next, each sample was centrifuged at 13,000 rpm for 10 mins to form a DNA pellet at the bottom of the 1.5 ml Eppendorf. Next, all ethanol was extracted, leaving a pellet at the bottom. The samples were then placed onto a heat block at $45^{\circ} \mathrm{C}$ for 5-10 mins to evaporate any remaining ethanol. Finally, the pellet was resuspended in $50-200 \mu$ l of either TE buffer (10 mM Tris-HCl, 0.1 mM EDTA, pH 8.0) or Tris-HCl buffer (10 mM TRIS-HCl, pH 8.0 buffer) depending on whether the pellet was Biomphalaria or helminthic DNA, respectively. All DNA samples were stored at $-20^{\circ} \mathrm{C}$ for later use in PCR amplification.
2.3.2 PCR Amplification for Identifying Biomphalaria Snails and Helminthic Parasites:

All PCR reactions used a 25μ l reaction mixture containing 24μ of 1 X PCR buffer and 1μ of DNA template. In the case of Biomphalaria DNA, all samples were amplified using both the ribosomal RNA 16S (rRNA 16S) and Cytochrome Oxidase subunit 1 (COI) primers (Table 2.1). The 1X PCR buffer used was Promega GoTaq ${ }^{\circledR}$ G2 Master Mix and contained: 1 Unit of Taq polymerase, $0.2 \mu \mathrm{M}$ of forward/reverse primers, $200 \mu \mathrm{M}$ of each deoxynucleotide triphosphate (dNTP) and 3 mM of magnesium chloride $\left(\mathrm{MgCl}_{2}\right)$. The reaction protocol for both the 16 S and COI primers was $96^{\circ} \mathrm{C}$ for 1 min , then 34 cycles of $94^{\circ} \mathrm{C}$ for 1 min , then $50^{\circ} \mathrm{C}$ for 1 min , then $72^{\circ} \mathrm{C}$ for 1 min and a final extension stage at $70^{\circ} \mathrm{C}$ for 10 mins .

Table 2.1 Summary information of primer sets used and their intended target organism.

	Primer Sequence	Gene Complex	Target Organism
16Sarm/brm Palumbi et al. (1991)	16Sarm-F: 5'-CTT CTC GAC TGT TTA TCA AAA ACA-3' 16Sbrm-R: 5'-GCC GGT CTG AAC TCA GAT CAT-3'	ribosomal RNA 16S (Mitochondrial) 450bp	Biomphalaria
LCO/HCO Folmer et al. (1994)	LCO1490-F: 5'-GGT CAA CAA ATC ATA AAG ATA TTG G-3' HCO2198-R: 5'-TAA ACT TCA GGG TGA CCA AAA AAT CA-3'	Cytochrome oxidase subunit 1 (Mitochondrial) 650bp	Biomphalaria
N93/N94 Nadler et al. (2000)	$\begin{gathered} \text { N93-F: 5'-TTG AAC CGG GTA AAA } \\ \text { GTC G-3' } \\ \text { N94-R: 5'-TTA GTT TCT TTT CCT } \\ \text { CCG CT-3' } \end{gathered}$	ITS1/ITS2 (Nuclear) 850bp	Nematodes
$\mathrm{Sm}^{\mathrm{F} / \mathrm{R}}$ Sandoval et al. (2006)	$\begin{gathered} \text { Sm-F: 5'- GAG ATC AAG TGT GAC } \\ \text { AGT TTT GC-3' } \\ \text { Sm-R: 5'- ACA GTG CGC GCG TCG } \\ \text { TAA GC-3' } \end{gathered}$	28S (Nuclear) 350bp	S. mansoni
ND5 (Lu et al., 2016)	```ND5-F: 5'-ATT AGA GGC AAT GCG TGC TC-3' ND5-R: 5'-ATT GAA CCA ACC CCA AAT CA-3'```	ND5 (Mitochondrial) 302bp length	S. mansoni
$\begin{aligned} & \text { LSU1iii/3iii } \\ & \text { Fontanilla et } \\ & \text { al. (2017) } \end{aligned}$	LSU-1iii-F: 5'-TGC GAG AAT TAA TGT GAA TTG C-3' LSU-3iii-R: 5'-ACG GTA CTT GTC CGC TAT CG-3'	$\begin{gathered} \text { 5.8S-ITS2-28S } \\ \text { (Nuclear) } \\ \text { 1000bp } \end{gathered}$	Snails
LPF/R Kim et al. (2019)	LP-F: 5'-AGG GAA TGG GTG GAT TTA TT-3' LP-R: 5'-AGA CAC GAC TGA AAG GTT GC-3'	ribosomal RNA 18S (Nuclear) 550bp	Trematodes

In the case of the helminthic parasites, samples were amplified using either the N93/N94 primer set (for nematode DNA) or the LPF/LPR primer set (for trematode DNA; Table 2.1). The 1X PCR buffer used was Promega GoTaq ${ }^{\circledR}$ G2 Master Mix (1U TAQ, $0.2 \mu \mathrm{M}$ primers, $200 \mu \mathrm{M} \mathrm{dNTP}, 1.5 \mathrm{mM} \mathrm{MgCl}_{2}$). The PCR protocol used for both the N93/N94 and LPF/LPR primer sets was an initial denaturation at $95^{\circ} \mathrm{C}$ for 2 mins, followed by 35 cycles of $95^{\circ} \mathrm{C}$ for 30 seconds, $50^{\circ} \mathrm{C}$ for 30 secs, $72^{\circ} \mathrm{C}$ for 2 mins and a final extension of $72^{\circ} \mathrm{C}$ for 10 mins .

After amplification was completed, 5μ of PCR product was visualised on an ethidium bromide infused 2% agarose gel and observed under UV light. Successful PCR products were then purified and sequenced using Macrogen's EZ-Seq or Eco-Seq service (https://order.macrogen-europe.com).
2.3.3 Detecting Schistosoma mansoni Infection in Biomphalaria Snails using Polymerase Chain Reaction (PCR):
All samples were amplified using a $25 \mu \mathrm{l}$ reaction volume consisting of $24 \mu \mathrm{l}$ of 1 X Promega GoTaq ${ }^{\circledR}$ G2 Master Mix (1U TAQ, $0.2 \mu \mathrm{M}$ primers, $200 \mu \mathrm{M}$ dNTP, 3 mM MgCl$)_{2}$) and $1 \mu \mathrm{I}$ of DNA template (diluted to $50 \mathrm{ng} / \mu \mathrm{l}$). All extracted Biomphalaria DNA samples were tested for S. mansoni infection using two different infection detection primer sets. Samples were first tested for infection using the $\mathrm{Sm}^{\text {F/R }}$ primer set (Table 2.1). The PCR cycling conditions used was an initial denaturation at $96^{\circ} \mathrm{C}$ for 1 min , followed by 35 cycles of $94^{\circ} \mathrm{C}$ for 20 secs, $65^{\circ} \mathrm{C}$ for 20 secs and $72^{\circ} \mathrm{C}$ for 30 secs. If found $\mathrm{Sm}^{\mathrm{F} / \mathrm{R}}$ positive, samples were then tested using the ND5 primer set in order to confirm whether the positive samples were indeed infected with S. mansoni. The ND5 primer set was chosen as a preventative measure to reduce the chance of false positive results as it can determine whether an infected Biomphalaria snail is infected with the human schistosome species, S. mansoni ($\sim 302 \mathrm{bp}$) or the rat schistosome species, S. rodhaini ($\sim 800 \mathrm{bp}$) based on the length of the diagnostic band (Lu et al., 2016). The PCR cycling conditions of the ND5 primer set was an initial denaturation at $95^{\circ} \mathrm{C}$ for 5 mins, followed by 30 cycles of $95^{\circ} \mathrm{C}$ for $1 \mathrm{~min}, 58^{\circ} \mathrm{C}$ for $1 \mathrm{~min}, 72^{\circ} \mathrm{C}$ for 30 sec and a final extension step at $72^{\circ} \mathrm{C}$ for 10 mins . Both the PCR reaction mixtures and cycling conditions for the $S m^{F / R}$ and ND5 primer sets were followed precisely as described by Sandoval et al. (2006) and Lu et al. (2016), respectively.

In addition to the two infection detection primers, all of the extracted Biomphalaria samples were tested using the LSU-1iii/3iii primer set (Table 2.1). This was used as a quality control measure to ensure that the nuclear DNA of an extracted sample was of high quality; this was used as a preventative measure to reduce the chance of false negative results. The PCR reaction mixture for the LSU-1iii/3iii primer set, was the same as the PCR mixture used for the $\mathrm{Sm}^{F / R}$ and ND5 primer sets. The LSU-1iii/3iii PCRs were performed on the same day as the infection detection PCRs. The PCR cycling conditions of the LSU-1iii/3iii primer set was an initial denaturation at $96^{\circ} \mathrm{C}$ for 2 mins, followed by 35 cycles of $94^{\circ} \mathrm{C}$ for 30 secs $45^{\circ} \mathrm{C}$ for $1 \mathrm{~min}, 72^{\circ} \mathrm{C}$ for 2 mins and a final extension step at $72^{\circ} \mathrm{C}$ for 5 mins.

Alongside the Biomphalaria samples, two negative controls (water and uninfected B. glabrata DNA) and two positive controls (pure S. mansoni DNA and infected B. glabrata DNA) were also included. These controls were provided by Professor Mike Doenhoff, School of Biology, University of Nottingham. After amplification was completed, 10 μ of PCR
product was electrophoresed on a 2% agarose gel containing ethidium bromide and observed under UV light. The information of each infection detection PCR was documented into an Excel spreadsheet and detailed the species name, the location, whether the DNA was good-quality (LSU-1iii/3iii positive) or not and whether the sample was infected with S. mansoni ($\mathrm{Sm}^{\mathrm{F} / \mathrm{R}}$ and ND5 positive) or not.

2.4 Sequence Analysis and Bioinformatics:

Sequence data was used to perform several different phylogenetic and genealogical analyses. This was a multistep process involving several different programs. The step by step process was: (I) sequence processing; (II) phylogenetics and (III) population genetics. Step one used FinchTV (created by the Geospiza research team) and SeaView (created by Manolo Gouy and colleagues). Step two used PhyML (created by Stephane Guindon and Olivier Gascuel) and FigTree (created by Andrew Rambaut). The third step used DNASP (created by Julio Rozas and colleagues) and Network (created by Fluxus Technology Ltd).

All programs listed were used on a Windows 10 operating system:

- FinchTV v1.4: a program for viewing, editing, and analysing chromatograms. It also can be used to export sequence data in a variety of formats for further analysis. https://digitalworldbiology.com/FinchTV
- SeaView v5.0.4: a program for aligning multiple sequences using a graphical user interface (GUI) that provides a number of useful tools for aligning and analysing sequence data. SeaView has additional built-in software like Muscle for sequence alignment and Gblocks for alignment selection (Gouy et al., 2021). https://doua.prabi.fr/software/seaview
- PhyML v3.1: a program for inferring phylogenetic relationships using the maximum likelihood-based method (Guindon et al., 2010). http://www.atgcmontpellier.fr/phyml
- FigTree v1.4.3: a Java-based program that allows users to view and edit phylogenetic trees produced by PhyML (Rambaut, 2010). http://tree.bio.ed.ac.uk/software/figtree
- DNASP v6.12.3: a program used for population genetic analyses on multiple aligned sequences (Rozas et al., 2017). http://www.ub.edu/dnasp/index v5.html
- Network v10.2: a program used to generate genealogical networks from multiple aligned sequences. https://www.fluxus-engineering.com/sharenet.htm

2.4.1 Sequence Processing:

All sequencing was performed by Macrogen (https://order.macrogen-europe.com), who sent the sequence data as applied biosystem DNA electropherogram files (.ab1). Sequence data was processed using FinchTV, which was used to view and edit DNA chromatograms. The first step was to remove the forward and reverse primers from the start and end of
each sequence. Next, the sequence was checked from begin to end for sequencing errors and if ambiguous base pairs were found, they were replaced with the appropriate IUPAC code. Additionally, FinchTV was used to confirm the identity of a sequence by using the Basic Local Alignment Search Tool (BLASTn) to compare it to similar sequences. This was done by selecting Edit > BLAST sequence > Nucleotide, BLASTn. Once processed, sequences were imported into SeaView and aligned using MUSCLE (Multiple Sequence Comparison by Log-Expectation). This was done by selecting Align > Alignment options > Muscle > Align all. Afterwards, alignments were checked by hand to fix any inconsistencies and to ensure accuracy. In the case of the rRNA sequences, Gblocks was used to remove poorly aligned regions. This was done by selecting Site > Create set > Gblocks. Finished alignments were saved as .fasta file and exported as a .phylip file. All of the alignments generated and used can be viewed in the appendix.

2.4.2 Phylogenetics:

Alignments were imported into PhyML, and the following setting were used to build a tree:
Data type: DNA
Input sequences: Interleaved
Non-parametric bootstrap analysis: Yes (1000 replicates)
Approximate likelihood ratio test: Yes
Model of nucleotide substitution: GTR
Base frequency estimates: ML
Ts/Tv ratio: Estimated
Proportion of invariable sites: Estimated
One category of substitution rate: No
Number of substitution rate categories: 4
Gamma distributed rates across sites: Yes
Gamma distribution parameter: Estimated
Optimise tree topology: Yes
Input tree (BIONJ/user tree): BioNJ
Optimise tree topology: Yes
Tree topology search operations: Best of NNI and SPR
Add random starting trees: Yes
Number of random starting trees: 5
After the phylogenetic tree was generated, trees were imported, viewed and edited in FigTree.

2.4.3 Population genetics:

Alignments were imported into DNASP, and Haplotype (gene) diversity (Hd) was estimated by selecting Generate > Haplotype Diversity File > Site with gaps/missing: Considered > Invariable Sites: Included. This creates a .nexus file and produced a descriptive output of the sequences including the number of haplotypes and the Hd score of population. DNASP was also used to estimate the nucleotide diversity (π) of a population, this was done by selecting Overview > Multi-Domain Analysis. Lastly, DNASP was used to determine the structure of a population (F_{st}). This was done by selecting Data $>$ Define Sequence Sets in order to name
and define each of the populations within the aligned sequences. Next, the $F_{s t}$ values were obtained by selecting Analysis > Gene Flow and Genetic Differentiation > Sites with Alignment Gaps are: Considered (as a fifth state) > Perform the Permutation Test: 10,000 Replicates.

In addition to DNASP, Network was used to generate a median-joining haplotype network using the .nexus file created by DNASP. This was performed by selecting Calculate Network > Network Calculations > Median-Joining Network > File > Open > Calculate Network. This created a Network output (.out) file, which can then be view by selecting Draw Network > File > Open.

2.5 Landmark-based Geometric Morphometric Analysis:

Morphometric analysis was performed to compare the conchological morphologies of each Biomphalaria species identified at Lake Albert and Lake Victoria. This was a multistep process involving several different programs. The step by step process of the analysis was: (I) sample preparation and photography; (II) data preparation and landmark placement; (III) importing data and morphometric analysis. Step two used the TPS (thin-plate spline) suit of software created by F. James Rohlf, while step three used MorphoJ created by Peter Klingenberg and by F. James Rohlf.

All programs listed were used on a Windows 10 operating system:

- tpsUtil v1.74: a program that has multiple utilities for thin-plate spline (tps) analysis, including tools for formatting photographs and creating .tps files (Rohlf, 2015). https://www.sbmorphometrics.org/soft-dataacq.html
- tpsDig2 v2.31: a program that allows the user to digitise landmarks and outlines onto photographs of specimens (Rohlf, 2015). https://www.sbmorphometrics.org/softdataacq.html
- MorphoJ v1.07a: is a Java plug-in program for the image analysis software ImageJ. It provides a wide range of tools for morphometric analysis (Klingenberg, 2011). https://morphometrics.uk/MorphoJ page.html

2.5.1 Sample Preparation and Photography:

The first step was to photograph the apertural and apical angles of ten shells (with no or minimal damage) for each species present at each site. This was accomplished by placing the shells under a dissection microscope with a 64MegaPixel smartphone camera attached to the eyepiece (Figure 2.7). Each digital picture had a 5 mm and 10 mm scalebar present, with the positioning of the shell and magnification setting of the microscope being standardised. Digital pictures were labelled and saved in a .jpeg format and transferred over to a Windows 10 based computer for landmark placement.

Figure 2.7. Examples of apertural (left) and apical (right) pictures of a Biomphalaria shell using smartphone microscopic photography.

2.5.2 Data Preparation and Landmark Placement:

After transferring, pictures were organised into folders. The structural information of the folders and pictures was then converted into a .tps file using tpsUtil. This was done by selecting Operation $>$ Build tps file from images > Input directory > Output file > Setup > Create. Next, the newly created .tps file was imported into tpsDig2 for landmark placement. This was done by selecting File > Input source > File. The number and location of all landmarks placed were the same for every shell. The scale of each shell was quantified using the scalebars present in each photograph. This was done by selecting Option > Image tools > Measure > Set scale. Once all landmarks were placed and scale data was set for all specimens, the .tps file was ready for analysis.

2.5.3 Importing Data and Morphometric Analysis:

After landmark placement, the .tps file was imported into MorphoJ by selecting File > Create New Project > File Type: TPS. Next, the data was classified into groups based on species ID and location, this was performed by selecting Preliminaries > Extract New Classifier from ID String. After being placed into groups, a Procrustes Fit was performed on the data by selecting Preliminaries > New Procrustes Fit > Align by principal axes. Next the landmark placement data was assessed to ensure each specimen had a consistent number and placement of each landmark. This was done by selecting Preliminaries > Find Outliers. Next a covariance matrix was produced using the Procrustes fit data and the groups created earlier. This was performed by selecting Preliminaries > Generate Covariance Matrix. Lastly, a canonical variate analysis was performed by selecting Comparison > Canonical Variate Analysis.

2.6 Statistical Analysis:

All datasets were imported into SPPS from Excel. All non-parametric tests were performed using IBM SPSS Statistics version 26 (IBM, Armonk, USA). A Pearson's chi-squared (X^{2}) test was performed by selecting Analyse > Non-parametric Tests > One Sample. Similarly, a Mann-Whitney U or Kruskal-Wallis H test was performed by selecting Analyse > Non-
parametric Tests > Independent Samples. A Spearman's rank correlation test was performed by selecting Analyse > Correlate > Bivariate.

Chapter 3 Comparing Shell Size and Shape with Canonical Variate Analysis of Sympatric Biomphalaria Species within Lake Albert and Lake Victoria ${ }^{1}$
 ${ }^{1}$ This chapter was published as "Andrus, P. S., Stothard, J. R., Kabatereine, N. B. \& Wade, C. M. (2023).
 Comparing shell size and shape with canonical variate analysis of sympatric Biomphalaria species within Lake Albert and Lake Victoria. Zoological Journal of the Linnean Society, 198(2), 1-10."

Abstract

: The Great African Lakes in Uganda (Lake Albert and Lake Victoria) are known habitats to several sympatric species of Biomphalaria, intermediate snail hosts of the human parasite Schistosoma mansoni. Accurate identification of snails by morphology alone, however, can be problematic highlighting a need for robust, on-site identification methods, since only certain species have important roles in parasite transmission. This study investigates the conchological variation within Biomphalaria species collected from these two Great East African Lakes. We compared the shell morphologies of Biomphalaria species using landmark-based morphometric techniques and were able to distinguish Biomphalaria species through canonical variate analysis (CVA) of the apical and apertural shell angles. After identification with molecular methods, three Biomphalaria species (B. pfeifferi, B. stanleyi and B. sudanica), with heterogenous occurrences along the shoreline, were identified at Lake Albert that could be differentiated from one another using CVA of apical and apertural datasets; by contrast, a single Biomphalaria species was identified at Lake Victoria (B. choanomphala). When snails from both lakes were compared together, CVA was able to differentiate all four species using the apical dataset but not the apertural dataset. Of the Biomphalaria species identified, ecological phenotypic variation was only found in B. choanomphala, which exhibited two distinct ecological morphotypes. Furthermore, these two B. choanomphala morphotypes from Lake Victoria, overlapped upon analysis of the apical dataset yet were clearly separated upon analysis of the apertural dataset. Our study demonstrates that landmark-based morphometrics could play a future role in distinguishing sympatric Biomphalaria species in Uganda.

3.1 Introduction:

Freshwater snails of the genus Biomphalaria (Gastropoda: Planorbidae) are found in South and Central America, Africa, the Middle East and Madagascar (Brown, 1994; Dejong et al., 2001; Rollinson, 2011). They act as the obligatory intermediate hosts of Schistosoma mansoni (Trematoda: Schistosomatidae), a globally important trematode responsible for intestinal schistosomiasis (Brown, 1994; Colley et al., 2014). In Africa, a total of 15 species of Biomphalaria are recognised, Mandahl-Barth (1957) being the first to categorise them into four main taxonomic groups based on a combination of several morphological characters (shell, genital organs and radula).

The four groups of Biomphalaria comprise the B. alexandrina-group (B. alexandrina, B. angulosa, B. salinarum and B. tchadiensis), the B. choanomphala-group (B. barthi, B. choanomphala, B. smithi and B. stanleyi), the B. pfeifferi-group (B. pfeifferi and B. rhodesiensis) and the B. sudanica-group (B. camerunensis and B. sudanica). Of these
morphological identification methods, genital morphology is the most dependable as complementary reproductive organs are essential for intraspecies mating (Gómez, 2001). However, identifying Biomphalaria using genital morphology requires both time and expertise, as the genitals need to be cautiously dissected from relaxed snails, then carefully fixed and mounted for viewing. Subsequently, fine detail measurements are collected under a suitable light microscope. This precludes rapid identification of snails at the sight of collection and makes identification of snails by shell morphology more preferrable. Although conchological identification has its drawbacks, its rapid and inexpensive when compared to other morphological, or molecular identification methods.

The introduction of molecular studies has partially clarified the taxonomy and phylogeography of African Biomphalaria. Both Dejong et al. (2001) and Jørgensen et al. (2007) found that the only clearly defined African species were B. camerunensis and B. pfeifferi, while the six other Biomphalaria species (B. alexandrina, B. angulosa, B. choanomphala, B. smithi, B. stanleyi and B. sudanica) formed a poorly defined clade named the 'Nilotic species complex'. Dejong et al. (2001) confirmed the topology was consistent with the proposed Neotropical origins of the genus, with the oldest Biomphalaria fossils being dated from approximately 60 million years ago (Jarne et al., 2011). However, all of the African Biomphalaria species have a low level of genetic diversification (Morgan et al., 2002; Van Damme \& Van Bocxlaer, 2009), which is likely the result of their relatively recent evolutionary history. Campbell et al. (2000) places the introduction of proto-B. glabrata taxon to the African continent from South America and the evolution of all African Biomphalaria at approximately 1.8 to 3.6 Mya, while Morgan et al. (2001) estimated a longer time frame of 2 to 5 Mya based on the current fossil record. Furthermore, the remaining nominal African Biomphalaria species (B. arabica, B. barthi, B. rhodesiensis, B. ruppellii, B. salinarum and B. tchadiensis) previously defined exclusively by morphological characteristics are becoming increasingly invalidated by modern molecular methods, with further investigation needed to confirm whether these species are valid taxa (Jørgensen et al., 2007). The large number of invalid taxa within the Biomphalaria literature is likely the result of several (if not all) species of Biomphalaria being subject to various sources of intraspecific variation such as ecophenotypic variation and indeterminate shell growth (Jarne et al., 2011). Collectively, this can make two individuals within a single nominal species appear taxonomically distinct entities (Jarne et al., 2011). Standley et al. (2011) and Zhang et al. (2018) both found that B. choanomphala snails present at Lake Victoria exhibited contrastingly different conchological morphologies, likely due to presence or absence of wave action, but were very genetically similar.

Similarly to Biomphalaria, the closely related Planorbidae genus Helisoma also exhibits a striking amount of morphological variation (Hoverman et al., 2005). Dillon (2019) discusses the conchological variation found in two genetically identical populations of H. trivolvis, which had two contrasting shell morphologies dependent on whether the snails lived in lentic (still) or lotic (flowing) water (Figure 3.1). Dillon (2019) hypothesised that these two
contrasting shell morphologies were ecological phenotypes (or ecophenotypes) that helped the snails adapt to their micro-environments. The lentic morphotype (morphotype-A, Figure 3.1) is large, narrow, flat and has an arithmetic spiral. This morphology allows for the trapping of air, which the snail uses to regulate its buoyancy in still water to reach and graze on floating vegetation. Conversely, the lotic morphotype (morphotype-B, Figure 3.1) is small, broad, round and has a logarithmic spiral. This morphology cannot trap air and allows for less drag in flowing water, with their wide aperture/foot being used for better grip while grazing onto rocks in flowing water.

Figure 3.1. Morphological examples of ecological phenotypic plasticity in Planorbidae snails. Morphotype-A is the form found in lentic (still) water, while morphotype-B is the form found in lotic (flowing) water. Morphotype-A shells are larger, slow-whorling and have narrow apertures compared to morphotype-B shells. The Biomphalaria pfeifferi and Helisoma trivolvis shells were adapted from Plam et al. (2008) and Dillon (2019), respectively. The shells are viewed from the apertural (left) and apical (right) shell angles.

In light of the morphological comparison within Helisoma described by Dillon (2019), African Biomphalaria species frequently resemble shell morphologies that are similar to the lentic (e.g. B. alexandrina, B. angulosa, B. camerunensis, B. pfeifferi and B. sudanica) and lotic morphotypes (e.g. B. choanomphala, B. smithi and B. stanleyi) (Brown, 1994; DeJong et al., 2001; Kazibwe et al., 2006; Jørgensen et al., 2007; Plam et al., 2008; Kazibwe et al., 2010; Standley et al., 2011; Zhang et al., 2018). Furthermore, studies that use both conchological and molecular identification methods have shown that B. choanomphala and B. pfeifferi snails can exhibit these contrasting ecomorphotypes depending on their habitat (Figure 3.1; Plam et al., 2008; Standley et al., 2011; Standley et al., 2014; Zhang et al., 2018). It is plausible that a parallel adaptation occurs in Biomphalaria similar to Helisoma.

A potential solution to the issues conchological identification methods have when trying to differentiate Biomphalaria species, is to incorporate geometric morphometric techniques. Landmark-based geometric morphometrics is a powerful tool used to quantify and analyse the size and shape variation between organisms (Webster \& Sheets, 2010) and has been widely used in differentiating medically important invertebrates, insects in particular (Goncalves et al., 2016; de Souza et al., 2020; Jiménez-Martín et al., 2020). Although landmark-based geometric morphometric techniques have been applied previously to medically important snail genera (Vasallo et al., 2013; Parra \& Liria 2017; Hammoud et al., 2022), they are yet to be fully explored and applied for differentiating species within Biomphalaria. To this end, we utilise molecular identification methods and landmark-based morphometric techniques to undertake a conchological investigation of Biomphalaria snails collected from the Ugandan shorelines of Lake Albert and Lake Victoria.
3.2 Materials and Methods:

3.2.1 Sample Sites:

The Biomphalaria used in this study were previously collected by the Rowel et al. (2015) team, further information about these collections can be found in Chapter 2.1. Snails were routinely collected from three disease surveillance sites along the Ugandan shorelines of Lake Albert and three sites along the Ugandan shoreline of Lake Victoria between 2009 and 2010 (Figure 3.2; Table 3.1). The snails were collected from both the lake edge and within the lake (to a depth of $\sim 1 \mathrm{~m}$).

Figure 3.2. (A) Map showing the location of Lake Albert (LA) and Lake Victoria (LV). (B) Lake Albert collection sites (Bugoigo, Piida and Walukuba). (C) Lake Victoria collection sites (Bugoto, Bukoba and Lwanika). Satellite imaging was provided by Google Maps (Google, 2022).

Table 3.1. Biomphalaria collection information.

Note: A \& B indicate what percentage of preserved Biomphalaria snails were morphotype-A or -B.

3.2.2 Sample Selection, Shell Categorisation and Species Identification:

All of the preserved Biomphalaria snails from Lake Albert and Lake Victoria were first categorised into whether they exhibited a morphotype-A or morphotype-B shell morphology (Figure 1). Once shells were categorised as either morphotype A or morphotype B, they were then placed into species groups based on conchological homogeneity (following the identification guide of Brown, 1994). This was conducted based upon how similar the shells looked to one another using specific shell characteristics such as whorl number, shell diameter, shell height and aperture shape. Once all of the shells were categorised, 20 individuals from each species group were randomly selected from each of the six sites.

For each snail, DNA was extracted using a modified CTAB extraction method as described in Chapter 2.3.1 with the extracted samples resuspended in 100-200 $\mu \mathrm{II}$ TE, pH 8.0 (10 mM TrisHCl, 0.1 mM EDTA) buffer. Species identifications were confirmed by molecular methods using both 16 S rRNA (16S) and cytochrome c oxidase subunit I (COI) genotyping. PCR amplifications were performed using a modified version of the $16 S$ primers designed by Palumbi et al. (1991) and the universal COI primers designed by Folmer et al. (1994) (Table 2.1). All PCR reactions were performed using Promega GoTaq ${ }^{\circledR}$ G2 Master Mix buffer, with $1 \mu \mathrm{l}$ of DNA template added to $24 \mu \mathrm{l}$ of 1 X Master Mix buffer (1U TAQ, $0.2 \mu \mathrm{M}$ primers, $200 \mu \mathrm{M}$ dNTP, 3 mM MgCl 2). The PCR cycling conditions used for both the 16 S and COI primer sets were identical, with an initial denaturation at $96^{\circ} \mathrm{C}$ for 1 minute, followed by 34 cycles of $94^{\circ} \mathrm{C}$ for $1 \mathrm{~min}, 50^{\circ} \mathrm{C}$ for $1 \mathrm{~min}, 72^{\circ} \mathrm{C}$ for 1 min and a final extension at $72^{\circ} \mathrm{C}$ for 10 mins . PCR products were electrophoresed on a 2% agarose gel containing ethidium bromide and were observed under UV light. All 16S and COI PCR products were purified and sequenced using Macrogen's EZ-Seq service.

Both the 16 S and CO sequences had their primer sequences removed and were cut down to match the base pair length of chosen GenBank references. Sequences were aligned using the Muscle algorithm in the program Seaview v5 (Gouy et al., 2021), with misaligned sections of the 16 S and COI being fixed manually. Conserved sites were selected using the Gblocks program (Castresana et al., 2000). Samples were identified to the species-level
using a concatenated 16 S and COI phylogenetic tree incorporating GenBank reference sequences from studies that utilised both conchological and molecular identification methods (Jørgensen et al., 2007; Plam et al., 2008; Standley et al., 2014; Zhang et al., 2018, Supplementary Table 1). Phylogenetic trees were constructed using the Maximum Likelihood method, using a General Time Reversible model incorporating gamma rate correction (GTR+Г) in the program PhyML v3.1 (Guindon et al., 2010), with bootstrap analysis undertaken using 1000 replicates.

3.2.3 Morphometric analysis:

In order to reduce any error associated with Biomphalaria shells due to indeterminate shell growth, several preventive steps were implemented into our morphometric analysis: (I) multiple individuals from different populations were used to average the plastic variation within the dataset; (II) only adult specimens were selected (shell diameter greater than $\sim 4 \mathrm{~mm}$), to minimize the morphological variation between adult and juvenile shells; (III) a Procrustes fit analysis was used to remove the unwanted effects of translation, rotation and scaling of the dataset during landmark placement and (IV) outlier detection was used to excluding individuals that exhibit extreme morphological differences from the final analysis.

After identifying the Biomphalaria species found at the great lakes using the molecular identification methods, ten shells from each species with no (or minimal) damage were selected from each site for photography. In addition to the African Biomphalaria samples, five laboratory-bred B. glabrata were also included as a comparative control, they were provided by Professor Mike Doenhoff, School of Biology, University of Nottingham. All shells were photographed using a dissection microscope with a 64MegaPixel mobile phone camera attached. All shells were positioned and photographed from the apical and apertural shell angles with a $1 \mathrm{~mm}, 5 \mathrm{~mm}$ and 10 mm scalebar present. Shell diameter and shell height were measured using a dial caliper before each photo. Photographs were imported into the tpsDig2 v2.31 program (Rohlf, 2015), with each image being digitised using 14 landmarks for the apical view (4 fixed and 10 semi-landmark) and 15 landmarks for the apertural view (2 fixed and 13 semi-landmark) of the shell (Figure 3).

The landmark placement of the apical shell photos was guided by the landmark placement of Parra \& Liria (2017). The coordinate data for the apical and apertural photos were stored in separate TPS files, and each sample was scaled and had a unique ID (e.g., ID=BS-1). The TPS files were then imported into the MorphoJ v1.07 program (Klingenberg, 2011). The apical shell data was treated as non-symmetrical, while the apertural shell data was treated as symmetrical due to the bilateral symmetry of the 15 landmarks. The data was grouped based on species (as defined by the molecular data) and a full Procrustes fit was performed to help standardise the data and minimise any differences in object orientation or size.

Morphotype-A
 Lentic (Still Water)

Figure 3.3. Fixed landmarks (black) and semi-landmarks (grey) on the morphotype-A (lentic) and morphotype-B (lotic) forms of Biomphalaria from the apertural (left) and apical (right) shell angles.

A Canonical Variate Analysis (CVA) (also known as Canonical Correlation Analysis or Linear Discrimination Analysis) was used across all landmarks using 10,000 permutations. A CVA is defined as a statistical technique used to analyse the relationship between two sets of variables. In this case, our landmark coordinate data is the independent variable, while the dependent variables are our species groups as defined by 16 S and COI genotyping. CVA is a multivariate analysis that is used to extract the most important information (called canonical variables) from a large and complex dataset. It is particularly useful when the goal is to identify patterns in the data that are not immediately obvious from the raw data itself. These newly created canonical variables are linear combinations of the original variables and are chosen based on how well they explain the variation between the original two datasets, with the first canonical variable (CV1) explaining the most variation, followed by the second (CV2) explaining the second most, and so on. CVA was chosen over other multivariate statistical techniques (like Principal Component Analysis) due to CVA being optimised for the classification and discrimination of groups within large datasets.

3.2.4 GenBank Accessions:

GenBank accession numbers for the Biomphalaria 16S and COI sequences used from Jørgensen et al. (2007), Plam et al., 2008, Standley et al. (2014) and Zhang et al. (2018) can be found in Supplementary Table 3.1. The DNA sequences generated in this study are available in GenBank accession numbers OQ924749-OQ924929 for the 16S gene and OQ849817-OQ849997 for the COI gene (Supplementary Table 3.1).

3.3 Results:

3.3.1 Species Found and Shell Morphologies:

At Lake Albert, three Biomphalaria species (B. pfeifferi, B. stanleyi and B. sudanica) were identified using conchological and molecular methods (Figure 3.4). Walukuba had all three species present, Bugoigo had two species (B. pfeifferi and B. sudanica) and Piida had one (B. sudanica). At Lake Victoria, only B. choanomphala was present and was found at all three sites (Figure 3.4).

Figure 3.4. Maximum likelihood tree of the combined 16S rRNA (330bp) and cytochrome c oxidase subunit I (500bp) gene fragments. This tree was generated using PhyML v3.1 using a GTR $+\Gamma$ model and is rooted on Biomphalaria glabrata. Numbers on branches indicate the bootstrap percentages for 1000 replicates (bootstrap values under 50% were not shown). The scale bar represents 2% sequence divergence. Samples labelled 'cf.' had shell morphologies' that looked like a specific species but were identified as another species using
molecular methods (from Jørgensen et al., 2007; Plam et al., 2008; Standley et al., 2014; Zhang et al., 2018).

At Lake Albert, there was no ecophenotypic variation within species. All 60 of the B. sudanica identified had morphotype-A shells, all 40 B. pfeifferi had morphotype-B shells and all 20 B. stanleyi had morphotype-B shells (Table 3.2). Of the 2,645 preserved Biomphalaria snails from Lake Albert, approximately 54% of the shells were morphotype-A and were morphologically homogenous to B. sudanica. The remaining shells were morphotype-B, with approximately 43% of them being morphologically homogenous to B. pfeifferi and 3% being morphologically homogenous to B. stanleyi. Conversely, at Lake Victoria there was ecophenotypic variation within B. choanomphala with 45 of the 60 B. choanomphala identified having morphotype-B shells and the remaining 15 having morphotype-A shells. Of the 6,382 preserved Biomphalaria snails from Lake Victoria, approximately 75% of the shells were morphologically homogenous to morphotype-B B. choanomphala. The remaining 25% were morphologically homogenous to morphotype-A B. choanomphala.

The largest species of Biomphalaria found at the great lakes was B. sudanica, with a mean whorl number of 5.62 , a mean shell diameter of 11 mm and a mean shell height of 3.3 mm (Table 3.2). The second largest species was the morphotype-A form of B. choanomphala with a mean whorl number of 5.86 , a mean shell diameter of 9.9 mm and a mean shell height of 3.6 mm (Table 3.2). The third largest species was B. pfeifferi with a mean whorl number of 3.18 , a mean shell diameter of 7.7 mm and a mean shell height of 3.8 mm (Table 3.2). The fourth largest species was the Morphotype-B form of B. choanomphala with a mean whorl number of 4.22 , a mean shell diameter of 6.7 mm and a mean shell height of 3.1 mm . The smallest species found was B. stanleyi with a mean whorl number of 3.35 , a mean shell diameter of 5.3 mm and a mean shell height of 2.4 mm (Table 3.2). In addition to the four Biomphalaria species found, an invasive Asian Gyraulus species was identified at both Lake Albert and Lake Victoria (Supplementary Figure 3.1). It had an appearance similar to juvenile B. sudanica but was significantly thinner with a mean shell height of 0.9 mm , a mean whorl number of 4.55 and a mean shell diameter of 3.7 mm .

Table 3.2. Mean shell diameter and height of photographed Biomphalaria shells.

	Sites	Species	Morphotype	Mean Shell Dimensions (mm)	
				Diameter (+ SD)	$\begin{aligned} & \text { Height } \\ & (\pm \text { SD }) \end{aligned}$
-	Control	B. glabrata ($n=10$)	A	15.5 (± 4.1)	$5.2(\pm 0.9)$
Lake Albert	Bugoigo	B. sudanica ($n=10$)	A	$11.7(\pm 1.6)$	$3.3(\pm 0.4)$
		B. pfeifferi ($n=10$)	B	7.6 ($\pm 1.8)$	$3.7(\pm 0.8)$
	Piida	B. sudanica ($n=10$)	A	$11.6(\pm 2.9)$	$3.4(\pm 0.3)$
	Walukuba	B. sudanica ($n=10$)	A	$9.5(\pm 2.1)$	3.1 ($\pm 0.4)$
		B. pfeifferi ($n=10$)	B	$7.8(\pm 1.6)$	$3.9(\pm 0.8)$
		B. stanleyi ($n=10$)	B	$5.3(\pm 0.5)$	$2.4(\pm 0.1)$
Lake Victoria	Bugoto	B. choanomphala ($n=10$)	B	6.6 ($\pm 0.5)$	$3.1(\pm 0.2)$
	Bukoba	B. choanomphala ($n=10$)	B	$6.2(\pm 0.6)$	$3.3(\pm 0.1)$
	Lwanika	B. choanomphala ($n=10$)	B	$7.2(\pm 0.5)$	$3(\pm 0.4)$
	All Sites	B. choanomphala ($n=10$)	A	$9.9(\pm 1.3)$	3.6 ($\pm 0.3)$

Note: ‘S.D' stands for Standard Deviation.

3.3.2 Morphometrics:

When a canonical variate analysis (CVA) was performed on the Biomphalaria samples found at Lake Albert, we found that the three species of Biomphalaria present at Lake Albert were clearly separated from one other when using both the apical (CV1: 95.6\% and CV2: 4.4\%) and apertural (CV1: 98.1\% and CV2: 1.9\%) datasets (Figure 3.5a). For Lake Victoria, the two morphotypes of B. choanomphala overlapped with one another in CVA analysis using the apical dataset (CV1: 85.6% and CV2: 14.4\%) (Figure 3.5b) but were separated when using the apertural dataset (CV1: 95\% and CV2: 5\%) (Figure 3.5b).

When a CVA was performed on all Biomphalaria samples obtained from both lakes combined, we found that all four species were clearly separated from one another using the apical dataset (CV1: 79.3\% and CV2: 17.3\%) (Figure 3.5c). For the apertural dataset, B. pfeifferi showed overlap (albeit minimal) with B. stanleyi, and B. sudanica showed large amounts of overlap with the morphotype-A form of B. choanomphala (CV1: 76.9\% and CV2: 16.9\%) (Figure 3.5c). The two morphotypes of B. choanomphala (morphotypes A and B) overlapped for the apical dataset but when using the apertural dataset the morphotype A and B forms of B. choanomphala were separate (Figure 3.5 c).

Our CVA plots found the apical dataset more informative at differentiating the Lake Albert species from one another than the apertural dataset (Figure 3.5a). The apical dataset was also capable of differentiating the Lake Albert species from B. choanomphala (Figure 3.5c). While the apertural dataset was able to differentiate the Lake Albert species and both of the B. choanomphala morphotypes when tested separately, it was only able to differentiate the
morphotype-B form of B. choanomphala when testing all samples together. Additional information relating to the morphological differences between species that had overlapping morphological characteristics can be found in Supplementary Figure 3.2.

A

C

Apertural

Figure 3.5. Canonical variate analysis plots of the apical and apertural shell landmark datasets. (A) CVA plot of the Biomphalaria species present at Lake Albert (B. pfeifferi ($n=20$), B. stanleyi ($n=10$) and B. sudanica ($n=30$)). (B) CVA plot of Biomphalaria species present at Lake Victoria (B. choanomphala morphotype-A $(n=10)$ and B. choanomphala morphotype-B ($n=30$)). (C) CVA plot of Biomphalaria species present at both lakes (B. choanomphala morphotype-A ($n=10$), B. choanomphala morphotype-B $(n=30)$, B. pfeifferi $(n=20)$, B. stanleyi $(n=10)$ and B. sudanica $(n=30)$). All CVA plots contain B. glabrata $(n=5)$ as a control. All
samples from Lake Albert are coloured black, samples from Lake Victoria are coloured grey and the B. glabrata samples are coloured white. B. choanomphala $-A=\diamond$, B. choanomphala $-B$
$=\square, B$. glabrata $=0, B$. stanleyi $=\triangle, B$. sudanica $=\triangle$ and B. pfeifferi $=\stackrel{\rightharpoonup}{\star}$.

3.4 Discussion:

The morphological identification of intermediate snail hosts is the first step in the 'active surveillance and monitoring system' proposed by Abe et al. (2018), as morphological identification can be done in the field and can be used to determine where transmission and potential risk of Schistosoma infection can occur. Whilst identification conducted in the field using morphology is useful due to its simplicity and low cost, certain species (such as sympatric Biomphalaria) cannot be easily distinguished by morphology alone. Alternatively, more precise methods are required when trying to identify similar species that co-inhabit the same environment (Webster, \& Sheets, 2010; Palasio et al., 2017; Vaux et al., 2018). Our study is the first contribution that utilises landmark-based geometric morphometric techniques to differentiate sympatric Biomphalaria species. Previous conchological morphology studies of Biomphalaria have categorised species based on whether they exhibited a "lacustrine" morphology (found within a lake) or a "non-lacustrine" morphology (found elsewhere) (DeJong et al., 2001; Kazibwe et al., 2006; Plam et al., 2008; Kazibwe et al., 2010). However, these categories are contradictory to the terminology proposed by Dillon (2019) as the lacustrine morphology is equivalent to the lotic (morphotype-B) morphotype, but lakes are described as lentic ecosystems. Moreover, we found both "lacustrine" (morphotype-B) and "non-lacustrine" (morphotype-A) shells at both Lake Albert and Lake Victoria, making the differentiation arbitrary.

The ratio of morphotype-A and morphotype-B shells present at each site varied (Table 3.1). This could indicate that some of the sites were more preferable for one of the morphotype than another. For example, at Lake Albert, morphotype-A shells were predominantly found at Bugoigo and Piida, while morphotype-B shells were predominantly found at Walukuba. It is worth noting that the shoreline of Walukuba is much more open to wave action than that at Bugoigo and Piida, which are each nested behind large spits that protrude into the lake. Bugoigo and Piida both have lentic ecosystems in the form of sheltered marshlands, conversely to Walukuba which is a more lotic ecosystem (Figure 3.2; Supplementary figure 3.3). Likewise, Bugoto had the lowest number of morphotype-A shells and was an unprotected shoreline, while Bukoba (and Lwanika) had the highest number of morphotypeA shells and had a lentic ecosystem in the form of sheltered vegetation protected by coves (Figure 3.2; Supplementary Figure 3.3). Alternatively, shell morphology could also be influenced by other factors besides the flowrate of the ecosystem such as parasitism, predation and temperature (Haas, 2003; Hoverman et al. 2005; Holomuzki \& Biggs, 2006; Hoverman \& Relyea, 2007; Lagrue et al., 2007; Vasallo et al., 2013; Parra \& Liria, 2017; Tamburi et al., 2018). Of the four Biomphalaria species we identified at the great lakes, only B. choanomphala was found to exhibit more than one ecophenotype. Our findings are consistent with both Standley et al. (2011) and Zhang et al. (2018) who found that B.
sudanica-like snails at Lake Victoria were more genetically similar to B. choanomphala than to B. sudanica from other African countries and should in fact be classified as B.
choanomphala and not B. sudanica. Similarly, Standley et al. (2012) found the morphotypeA and morphotype-B forms of B. choanomphala were present across the entire shoreline of Lake Victoria. Moreover, their Bayesian analysis found each ecophenotype inhabited separate ecological niches from one another, with specific abiotic variables (e.g. chloride, nitrate, sulphate, pH and water depth) being significant predictors of which morphotype would be present in a given ecosystem.

When measuring each of the Biomphalaria species found at the great lakes, B. sudanica had the largest mean shell diameter (11 mm) followed by the morphotype-A form of B. choanomphala (9.9 mm), then B. pfeifferi $(7.7 \mathrm{~mm})$, then the morphotype- B form of B. choanomphala $(6.7 \mathrm{~mm})$ and finally B. stanleyi $(5.3 \mathrm{~mm})$. Conversely, the Biomphalaria species with the largest mean shell height was the morphotype-A form of B. choanomphala $(3.6 \mathrm{~mm})$ followed by B. pfeifferi $(3.8 \mathrm{~mm})$, then B. sudanica $(3.3 \mathrm{~mm})$, then the morphotype-B form of B. choanomphala (3.1 mm) and finally B. stanleyi $(2.4 \mathrm{~mm})$. However, these shell characteristics alone were not dependable enough to distinguish Biomphalaria species. Further examination using a CVA found the apical shell angle was more informative at distinguishing Biomphalaria species from one another than using the apertural shell angle (Figure 3.5). The Biomphalaria species found at Lake Albert were morphologically distinct from each other when using both the apical and (to a lesser extent) the apertural dataset (Figure 3.5a). When a CVA was performed on the two B. choanomphala morphotypes found at Lake Victoria, the apical dataset showed an overlap between the two, while the apertural dataset did not (Figure 3.5b). This showed despite the apparent difference in shell diameter and height, the apical dataset was able to find homogenous characteristics between the two B. choanomphala morphotypes.

Previous studies of the great lakes consistently report B. pfeifferi, B. sudanica and B. stanleyi at Lake Albert and B. choanomphala at Lake Victoria (Brown, 1994; Jørgensen et al., 2007; Plam et al., 2008; Adriko et al., 2013; Zhang et al., 2018; Rowel et al., 2015; Mutuku et al., 2019). However, despite the long-established history of B. choanomphala being endemic to Lake Victoria, Plam et al. (2008) found B. choanomphala at Lake Albert, though this might have been an ephemeral presence. Similarly, Zhang et al. (2018) found B. pfeifferi in streams leading into Lake Victoria. These cases of atypical Biomphalaria species being found at each of the great lakes is likely due to the invasive nature of Biomphalaria (Pointer et al., 2005). Therefore, the possibility of Biomphalaria species from one lake being introduced to another is very likely. Newly introduced Biomphalaria species could affect the transmission rates of intestinal schistosomiasis at the great lakes as some Biomphalaria species are more compatible with S. mansoni than others (Brown, 1994; Morgan et al., 2001; Campbell et al., 2010; Stensgaard et al., 2013; Lu et al., 2016).

When CVA was used to compare the Biomphalaria species at both Lake Albert and Lake Victoria using the apical dataset, the Lake Albert species (B. pfeifferi, B. stanleyi and B.
sudanica) were distinguishable from each other and from B. choanomphala. However, the two B. choanomphala morphotypes overlapped with each other (Figure 3.5c). The apertural dataset was not as effective as the apical dataset at distinguishing the species, with only the morphotype-B form of B. choanomphala being distinct. The morphotype-A form of B. choanomphala overlaps with B. sudanica. Likewise, B. pfeifferi overlaps with B. stanleyi (Figure 3.5c).

Our novel use of CVA has been proven able to differentiate the shell morphologies of four Biomphalaria species. CVA in future has the potential for improving conchological identification methods used in the field. Further research is needed encompassing a larger variety of specimens, populations, species, and locations to confirm the true effectiveness and integrity of this technique.

3.5 Supplementary Material:

Supplementary Table 3.1. GenBank accession numbers and corresponding references for the 16S/COI phylogenetic tree.

GenBank				
Code	Accession no.		Species	Reference
	16S rRNA	COI		
BsmRwe1	AY577474	DQ084836	smithi	Jørgensen et al. (2007)
BalDBL1	DQ084847	DQ084825	alexandrina	Jørgensen et al. (2007)
BanRua1	DQ084848	DQ084826	angulosa	Jørgensen et al. (2007)
BcaBak1	DQ084849	DQ084827	camerunensis	Jørgensen et al. (2007)
BchVic1	DQ084850	DQ084828	choanomphala	Jørgensen et al. (2007)
BpfChi1	DQ084851	DQ084829	pfeifferi	Jørgensen et al. (2007)
BpfKib1	DQ084852	DQ084830	pfeifferi	Jørgensen et al. (2007)
BpfDeG1	DQ084853	DQ084831	pfeifferi	Jørgensen et al. (2007)
BstBut1	DQ084858	DQ084837	stanleyi	Jørgensen et al. (2007)
BsuBut1	DQ084859	DQ084838	sudanica	Jørgensen et al. (2007)
Bsukin1	DQ084860	DQ084839	sudanica	Jørgensen et al. (2007)
BsuMah1	DQ084861	DQ084840	sudanica	Jørgensen et al. (2007)
BsuNto1	DQ084864	DQ084843	sudanica	Jørgensen et al. (2007)
BsuRut1	DQ084865	DQ084844	sudanica	Jørgensen et al. (2007)
FL1	EU141175	EU141215	stanleyi	Plam et al. (2008)
FL2	EU141176	EU141216	stanleyi	Plam et al. (2008)
FL3	EU141177	EU141217	stanleyi	Plam et al. (2008)
FL4	EU141178	EU141218	stanleyi	Plam et al. (2008)
FL5	EU141179	EU141219	pfeifferi	Plam et al. (2008)
FL6	EU141180	EU141220	Stanleyi	Plam et al. (2008)
FN1	EU141181	EU141221	Stanleyi	Plam et al. (2008)
FN5	EU141185	EU141225	stanleyi	Plam et al. (2008)
SN1	EU141187	EU141227	sudanica	Plam et al. (2008)
SN2	EU141188	EU141228	sudanica	Plam et al. (2008)
SN3	EU141189	EU141229	sudanica	Plam et al. (2008)
SN4	EU141190	EU141230	sudanica	Plam et al. (2008)

$\begin{aligned} & \text { SN5 } \\ & \text { SN6 } \end{aligned}$	$\begin{aligned} & \text { EU141191 } \\ & \text { EU141192 } \end{aligned}$	$\begin{aligned} & \text { EU141231 } \\ & \text { EU141232 } \end{aligned}$	sudanica sudanica	Plam et al. (2008) Plam et al. (2008)
-	MG431962	MG431962	pfeifferi	Zhang et al. (2018)
-	MG431963	MG431963	cf. sudanica	Zhang et al. (2018)
-	MG431964	MG431964	choanomphala	Zhang et al. (2018)
-	MG431966	MG431966	glabrata	Zhang et al. (2018)
CJS-2010	HM768950	HM769133	choanomphala	Standley et al. (2014)
Our sequences				
Code	Accession no.		Species	Site/Lake
	16S	COI		
BA1R1	OQ924829	OQ849897	sudanica	Bugoigo/LA
BA102	OQ924830	OQ849898	sudanica	Bugoigo/LA
BA103	OQ924831	OQ849899	sudanica	Bugoigo/LA
BA104	OQ924832	OQ849900	sudanica	Bugoigo/LA
BA105	OQ924833	OQ849901	sudanica	Bugoigo/LA
BA106	OQ924834	OQ849902	sudanica	Bugoigo/LA
BA107	OQ924835	OQ849903	sudanica	Bugoigo/LA
BA108	OQ924836	OQ849904	sudanica	Bugoigo/LA
BA109	OQ924837	OQ849905	sudanica	Bugoigo/LA
BA111	OQ924838	OQ849906	sudanica	Bugoigo/LA
BA112	OQ924839	OQ849907	sudanica	Bugoigo/LA
BA113	OQ924840	OQ849908	sudanica	Bugoigo/LA
BA114	OQ924841	OQ849909	sudanica	Bugoigo/LA
BA115	OQ924842	OQ849910	sudanica	Bugoigo/LA
BA116	OQ924843	OQ849911	sudanica	Bugoigo/LA
BB103	OQ924844	OQ849912	sudanica	Bugoigo/LA
BB110	OQ924845	OQ849913	sudanica	Bugoigo/LA
BB111	OQ924846	OQ849914	sudanica	Bugoigo/LA
BB113	OQ924847	OQ849915	sudanica	Bugoigo/LA
B2G04	OQ924848	OQ849916	sudanica	Bugoigo/LA
B1B15	OQ924789	OQ849857	pfeifferi	Bugoigo/LA
B1B17	OQ924790	OQ849858	pfeifferi	Bugoigo/LA
B1B19	OQ924791	OQ849859	pfeifferi	Bugoigo/LA
B1B20	OQ924792	OQ849860	pfeifferi	Bugoigo/LA
B2B01	OQ924793	OQ849861	pfeifferi	Bugoigo/LA
B2B03	OQ924794	OQ849862	pfeifferi	Bugoigo/LA
B2B04	OQ924795	OQ849863	pfeifferi	Bugoigo/LA
B2B07	OQ924796	OQ849864	pfeifferi	Bugoigo/LA
B2B08	OQ924797	OQ849865	pfeifferi	Bugoigo/LA
B7A10	OQ924798	OQ849866	pfeifferi	Bugoigo/LA
B7B10	OQ924799	OQ849867	pfeifferi	Bugoigo/LA
B7C10	OQ924800	OQ849868	pfeifferi	Bugoigo/LA
B7D08	OQ924801	OQ849869	pfeifferi	Bugoigo/LA
B7D09	OQ924802	OQ849870	pfeifferi	Bugoigo/LA
B7E09	OQ924803	OQ849871	pfeifferi	Bugoigo/LA
B7E10	OQ924804	OQ849872	pfeifferi	Bugoigo/LA
B7F07	OQ924805	OQ849873	pfeifferi	Bugoigo/LA
B7F09	OQ924806	OQ849874	pfeifferi	Bugoigo/LA
B7H07	OQ924807	OQ849875	pfeifferi	Bugoigo/LA

B7H09	OQ924808	0Q849876	pfeifferi	Bugoigo/LA
PA101	OQ924849	OQ849917	sudanica	Piida/LA
PA102	OQ924850	OQ849918	sudanica	Piida/LA
PA103	OQ924851	0Q849919	sudanica	Piida/LA
PA107	OQ924852	OQ849920	sudanica	Piida/LA
PA108	OQ924853	OQ849921	sudanica	Piida/LA
PA109	OQ924854	OQ849922	sudanica	Piida/LA
PA110	OQ924855	OQ849923	sudanica	Piida/LA
PA112	OQ924856	OQ849924	sudanica	Piida/LA
PA117	OQ924857	OQ849925	sudanica	Piida/LA
PA118	OQ924858	0Q849926	sudanica	Piida/LA
PA119	OQ924859	OQ849927	sudanica	Piida/LA
PA201	OQ924860	OQ849928	sudanica	Piida/LA
PA203	OQ924861	OQ849929	sudanica	Piida/LA
PA207	OQ924862	OQ849930	sudanica	Piida/LA
PA211	OQ924863	OQ849931	sudanica	Piida/LA
PA212	OQ924864	OQ849932	sudanica	Piida/LA
PA214	OQ924865	OQ849933	sudanica	Piida/LA
PA215	OQ924866	OQ849934	sudanica	Piida/LA
PA217	OQ924867	OQ849935	sudanica	Piida/LA
PA219	OQ924868	OQ849936	sudanica	Piida/LA
WA109	OQ924809	OQ849877	sudanica	Walukuba/LA
WA111	OQ924810	OQ849878	sudanica	Walukuba/LA
W2B09	OQ924811	OQ849879	sudanica	Walukuba/LA
W2B10	OQ924812	OQ849880	sudanica	Walukuba/LA
W2E9	OQ924813	OQ849881	sudanica	Walukuba/LA
W2E10	OQ924814	OQ849882	sudanica	Walukuba/LA
W2F01	OQ924815	OQ849883	sudanica	Walukuba/LA
W2F02	OQ924816	OQ849884	sudanica	Walukuba/LA
W2F03	OQ924817	OQ849885	sudanica	Walukuba/LA
W2F04	OQ924818	OQ849886	sudanica	Walukuba/LA
W2F05	OQ924819	OQ849887	sudanica	Walukuba/LA
W2F06	OQ924820	OQ849888	sudanica	Walukuba/LA
W2F07	OQ924821	OQ849889	sudanica	Walukuba/LA
W2F08	OQ924822	OQ849890	sudanica	Walukuba/LA
W2F09	OQ924823	OQ849891	sudanica	Walukuba/LA
W2G01	OQ924824	OQ849892	sudanica	Walukuba/LA
W2G03	OQ924825	OQ849893	sudanica	Walukuba/LA
W2G06	OQ924826	OQ849894	sudanica	Walukuba/LA
W2G07	OQ924827	OQ849895	sudanica	Walukuba/LA
W2G08	OQ924828	OQ849896	sudanica	Walukuba/LA
WA103	OQ924769	OQ849837	pfeifferi	Walukuba/LA
WA104	OQ924770	OQ849838	pfeifferi	Walukuba/LA
WA107	OQ924771	OQ849839	pfeifferi	Walukuba/LA
WA108	OQ924772	OQ849840	pfeifferi	Walukuba/LA
WA112	OQ924773	OQ849841	pfeifferi	Walukuba/LA
WB101	OQ924774	OQ849842	pfeifferi	Walukuba/LA
WB102	OQ924775	OQ849843	pfeifferi	Walukuba/LA
WB103	OQ924776	OQ849844	pfeifferi	Walukuba/LA

WB104	OQ924777	OQ849845	pfeifferi	Walukuba/LA
WB105	00924778	0Q849846	pfeifferi	Walukuba/LA
WB106	OQ924779	OQ849847	pfeifferi	Walukuba/LA
WB107	OQ924780	OQ849848	pfeifferi	Walukuba/LA
WB108	OQ924781	OQ849849	pfeifferi	Walukuba/LA
WB109	OQ924782	OQ849850	pfeifferi	Walukuba/LA
WB110	OQ924783	OQ849851	pfeifferi	Walukuba/LA
WB111	OQ924784	OQ849852	pfeifferi	Walukuba/LA
WB112	OQ924785	OQ849853	pfeifferi	Walukuba/LA
WB114	OQ924786	OQ849854	pfeifferi	Walukuba/LA
WB116	OQ924787	OQ849855	pfeifferi	Walukuba/LA
WB118	OQ924788	OQ849856	pfeifferi	Walukuba/LA
WA101	OQ849817	OQ924749	stanleyi	Walukuba/LA
WA102	OQ849818	OQ924750	stanleyi	Walukuba/LA
WA105	OQ849819	OQ924751	stanleyi	Walukuba/LA
W6A03	OQ849820	OQ924752	stanleyi	Walukuba/LA
W6A04	OQ849821	OQ924753	stanleyi	Walukuba/LA
W6A05	OQ849822	OQ924754	stanleyi	Walukuba/LA
W7A07	OQ849823	OQ924755	stanleyi	Walukuba/LA
W7C09	OQ849824	OQ924756	stanleyi	Walukuba/LA
W7D10	OQ849825	OQ924757	stanleyi	Walukuba/LA
W7F10	OQ849826	OQ924758	stanleyi	Walukuba/LA
W9A01	OQ849827	OQ924759	stanleyi	Walukuba/LA
W9B01	OQ849828	OQ924760	stanleyi	Walukuba/LA
W9C01	OQ849829	OQ924761	stanleyi	Walukuba/LA
W9D01	OQ849830	OQ924762	stanleyi	Walukuba/LA
W9D02	OQ849831	OQ924763	stanleyi	Walukuba/LA
W9E01	OQ849832	OQ924764	stanleyi	Walukuba/LA
W9F01	OQ849833	OQ924765	stanleyi	Walukuba/LA
W9F03	OQ849834	OQ924766	stanleyi	Walukuba/LA
W9G01	OQ849835	OQ924767	stanleyi	Walukuba/LA
W9H01	OQ849836	OQ924768	stanleyi	Walukuba/LA
BG2A08	OQ924869	OQ849937	choanomphala	Bugoto/LV
BG2A10	OQ924870	OQ849938	choanomphala	Bugoto/LV
BG2E04	OQ924871	0Q849939	choanomphala	Bugoto/LV
BG2G09	OQ924872	0Q849940	choanomphala	Bugoto/LV
BG6B05	OQ924873	OQ849941	choanomphala	Bugoto/LV
BG6C05	OQ924874	OQ849942	choanomphala	Bugoto/LV
BG6C06	OQ924875	0Q849943	choanomphala	Bugoto/LV
BG6C07	OQ924876	OQ849944	choanomphala	Bugoto/LV
BG6D05	OQ924877	OQ849945	choanomphala	Bugoto/LV
BG6D08	OQ924878	OQ849946	choanomphala	Bugoto/LV
BG6D09	OQ924879	OQ849947	choanomphala	Bugoto/LV
BG6E05	OQ924880	OQ849948	choanomphala	Bugoto/LV
BG6E06	OQ924881	OQ849949	choanomphala	Bugoto/LV
BG6E07	OQ924882	OQ849950	choanomphala	Bugoto/LV
BG6E09	OQ924883	OQ849951	choanomphala	Bugoto/LV
BG6F08	OQ924884	OQ849952	choanomphala	Bugoto/LV
BG6F09	OQ924885	OQ849953	choanomphala	Bugoto/LV

$\begin{aligned} & \text { BG6G06 } \\ & \text { BG6G07 } \\ & \text { BG6G09 } \end{aligned}$	$\begin{aligned} & \text { OQ924886 } \\ & \text { OQ924887 } \\ & \text { OQ924888 } \end{aligned}$	$\begin{aligned} & \text { OQ849954 } \\ & \text { OQ849955 } \\ & \text { OQ849956 } \end{aligned}$	choanomphala choanomphala choanomphala	Bugoto/LV Bugoto/LV Bugoto/LV
BKLV01	OQ924889	OQ849957	choanomphala	Bukoba/LV
BKLV08	OQ924890	OQ849958	choanomphala	Bukoba/LV
BKLV10	OQ924891	OQ849959	choanomphala	Bukoba/LV
BK2A04	OQ924892	OQ849960	choanomphala	Bukoba/LV
BK2A07	OQ924893	OQ849961	choanomphala	Bukoba/LV
BK2C06	OQ924894	OQ849962	choanomphala	Bukoba/LV
BK2E01	OQ924895	OQ849963	choanomphala	Bukoba/LV
BK2E03	0Q924896	0Q849964	choanomphala	Bukoba/LV
BK2E05	OQ924897	OQ849965	choanomphala	Bukoba/LV
BK2E06	OQ924898	OQ849966	choanomphala	Bukoba/LV
BK2E07	OQ924899	OQ849967	choanomphala	Bukoba/LV
BK2E08	OQ924900	OQ849968	choanomphala	Bukoba/LV
BK6G08	OQ924901	OQ849969	choanomphala	Bukoba/LV
BK7D11	OQ924902	OQ849970	choanomphala	Bukoba/LV
BK7E11	OQ924903	OQ849971	choanomphala	Bukoba/LV
BK7E12	OQ924904	OQ849972	choanomphala	Bukoba/LV
BK7H12	OQ924905	OQ849973	choanomphala	Bukoba/LV
BK9B03	OQ924906	OQ849974	choanomphala	Bukoba/LV
BK9C03	OQ924907	OQ849975	choanomphala	Bukoba/LV
BK9F04	OQ924908	OQ849976	choanomphala	Bukoba/LV
LW2D02	OQ924909	OQ849977	choanomphala	Lwanika/LV
LW2D03	OQ924910	OQ849978	choanomphala	Lwanika/LV
LW2D08	OQ924911	OQ849979	choanomphala	Lwanika/LV
LW2H07	OQ924912	OQ849980	choanomphala	Lwanika/LV
LW2H09	OQ924913	OQ849981	choanomphala	Lwanika/LV
LW6B02	OQ924914	OQ849982	choanomphala	Lwanika/LV
LW6C02	OQ924915	OQ849983	choanomphala	Lwanika/LV
LW6D03	OQ924916	OQ849984	choanomphala	Lwanika/LV
LW6D10	OQ924917	OQ849985	choanomphala	Lwanika/LV
LW6E10	OQ924918	OQ849986	choanomphala	Lwanika/LV
LW6F02	OQ924919	OQ849987	choanomphala	Lwanika/LV
LW6F04	OQ924920	OQ849988	choanomphala	Lwanika/LV
LW6F10	OQ924921	OQ849989	choanomphala	Lwanika/LV
LW6G01	OQ924922	OQ849990	choanomphala	Lwanika/LV
LW6G02	OQ924923	OQ849991	choanomphala	Lwanika/LV
LW7B11	OQ924924	OQ849992	choanomphala	Lwanika/LV
LW7C11	OQ924925	OQ849993	choanomphala	Lwanika/LV
LW7D12	OQ924926	OQ849994	choanomphala	Lwanika/LV
LW7F12	OQ924927	OQ849995	choanomphala	Lwanika/LV
LW9E04	OQ924928	OQ849996	choanomphala	Lwanika/LV
Gsp	OQ924929	OQ849997	Gyraulus sp.	-

Note: 'cf.' indicates the shell morphology looked like a specific species but was identified as a different species using molecular methods.

Supplementary Figure 3.1. Shell morphologies of Planorbidae snails found at the Ugandan shorelines of Lake Albert and Lake Victoria. Biomphalaria pfeifferi, B. stanleyi, B. sudanica and the unknown Gyraulus sp. were present at Lake Albert. Biomphalaria choanomphala and the unknown Gyraulus sp. were present at Lake Victoria. The shells are viewed from the apertural (left) and apical (right) shell angles.

Supplementary Figure 3.2. Morphometric comparison between (A) B. choanomphala-A and B. sudanica and (B) B. pfeifferi and B. stanleyi using a lollipop graph (top) and wireframe graph (bottom) of the apical and apertural shell angles.

Supplementary Figure 3.3. Aerial views of the Lake Albert (A: Bugoigo; B: Piida; C: Walukuba) and Lake Victoria (D: Bugoto; E: Bukoba; F: Lwanika) collection sites.

Chapter 4 Schistosoma mansoni Infection in Biomphalaria Snails at the Ugandan Shorelines of Lake Albert and Lake Victoria

Abstract:

Intestinal schistosomiasis is hyperendemic in many sub-Saharan African countries. In Uganda, it is endemic at both Lake Albert and Lake Victoria due to the presence of S. mansoni and its obligatory freshwater snail host, Biomphalaria. We utilised a molecular method to detect S. mansoni infection in Biomphalaria species found at the Ugandan shorelines of Lake Albert and Lake Victoria. Overall, Lake Albert had a higher mean prevalence of S. mansoni infection (12.5\%) than Lake Victoria (5\%), with Walukuba (13.3\%) having the highest prevalence at Lake Albert, while Lwanika (10\%) had the highest prevalence at Lake Victoria. Overall, three species of Biomphalaria, B. pfeifferi, B. stanleyi and B. sudanica, were identified at our Lake Albert collection sites, while only one species, B. choanomphala, was identified at our Lake Victoria collection sites. Biomphalaria stanleyi (15\%) had the highest S. mansoni prevalence, followed by B. sudanica (13.3\%), B. pfeifferi (10\%) and B. choanomphala (5\%). Of the Biomphalaria species identified, B. choanomphala had the highest genetic diversity, followed by B. stanleyi, B. sudanica and B. pfeifferi; sites with a higher mean prevalence of S. mansoni infection had higher intra-species haplotype diversity scores than sites with a lower mean prevalence. The wet seasons had a consistently higher mean prevalence of S. mansoni infection than the dry seasons for all species and all sites tested at both Lake Albert and Lake Victoria, though the difference was not statistically significant.

4.1 Introduction:

Schistosomiasis is a parasitic disease caused by the digenetic trematode genus, Schistosoma. It is estimated that 133 million children and 108 million adults are infected with schistosomiasis worldwide, with over 700 million people being at risk of infection (WHO, 2021b). Schistosomiasis is most prevalent in sub-Saharan African countries, with approximately 93% of infections and up to 90% of individuals at risk of infection living within sub-Saharan African countries (Boko et al., 2016; Onasanya et al., 2021). The disease can be expressed as either intestinal schistosomiasis (caused by Schistosoma mansoni, S. intercalatum, S. japonicum or S. mekongi) or urogenital schistosomiasis (caused by S. haematobium; Colley \& Secor, 2014). Schistosoma mansoni is the leading global cause of intestinal schistosomiasis in humans and accounts for 33% of all schistosomiasis cases (WHO, 2021a).

Intestinal schistosomiasis is particularly prevalent in East Africa, with the national prevalence in Tanzania being an estimated 31 million people infected, followed by Uganda with 11 million and Kenya with 6 million (Mazigo et al., 2012; Musuva et al., 2014; Exum et al., 2019). The distribution of schistosomiasis is dependent on the ecological requirements of the intermediate snail host, with the availability of freshwater habitats limiting the spread of schistosomiasis (Sturrock, 2001; Steinmann et al., 2006). East Africa has a high prevalence of schistosomiasis due to the abundance of diverse freshwater environments (lakes, ponds, streams, dams and irrigation canals) that intermediate snail hosts inhabit (Kazibwe et al.,
2006). Combined with poor water hygiene and sanitation, this provides an optimal environment for the transmission of schistosomiasis (Kazibwe et al., 2006).

The freshwater snail genus Biomphalaria acts as the intermediate host for S. mansoni (Crompton, 1999; Sturrock, 2001; Jamison et al., 2006), with the African Great Lakes, Lake Albert and Lake Victoria providing a favourable habitat for multiple species of Biomphalaria (Steinmann et al., 2006). All African Biomphalaria species are capable of transmitting S. mansoni infection (Brown, 1994), though some species (e.g. B. pfeifferi) are considered more important than others (Morgan et al., 2001). Previous studies of Lake Albert and Lake Victoria have shown that multiple species of Biomphalaria are present (Brown, 1994; Rowel et al., 2015). Using conchological identification methods, three species, B. pfeifferi, B. stanleyi and B. sudanica, were found at Lake Albert (Brown, 1994; Kazibwe et al., 2006; Kazibwe et al., 2010; Adriko et al., 2013; Levitz et al., 2013; Rowel et al., 2015), and three species, B. choanomphala, B. pfeifferi and B. sudanica, were found at Lake Victoria (Brown, 1994; Adriko et al., 2013; Rowel et al., 2015; Mutuku et al., 2019). However, the lack of nonplastic shell characteristics makes the conchological identification of Biomphalaria species difficult, with many morphological features overlapping between species (Plam et al., 2008) and with shell morphology influenced by other factors besides genetics (Haase, 2003; Holomuzki \& Biggs, 2006; Lagrue et al., 2007; Vasallo et al., 2013; Parra \& Liria, 2017; Tamburi et al., 2018). Molecular identification methods have improved the reliability of Biomphalaria species identification but are still not perfect; the only definitive African species are B. camerunensis, and B. pfeifferi (Dejong et al., 2001) with the remaining African Biomphalaria species (B. alexandrina, B. angulosa, B. choanomphala, B. smithi, B. stanleyi and B. sudanica) forming a poorly differentiated clade termed the 'Nilotic species complex' (Jørgensen et al., 2007).

The prevalence of schistosome infection within a Biomphalaria population has traditionally been measured by observing how many snails shed cercariae over a 35-42 day period (Webbe, 1965). Previous studies using this traditional cercarial shedding method have shown that snails at Lake Albert consistently have a higher infection prevalence than snails at Lake Victoria (Adriko et al., 2013; Rowel et al., 2015). Of the Biomphalaria species found at the African Great Lakes, B. stanleyi is reported as consistently having a high prevalence of S. mansoni infection (Kazibwe et al., 2006; Kazibwe et al., 2010; Adriko et al., 2013; Rowel et al., 2015), while B. choanomphala is reported as consistently having a low infection prevalence (Odongo-Aginya et al,. 2008; Adriko et al., 2013; Rowel et al., 2015). Molecular methods for detection of schistosome infection (Jannotti-Passos et al., 1997; Hamburger et al., 1998; Notomi et al., 2000; Sandoval et al., 2006) have several advantages over traditional cercarial shedding methods as they can specifically detect S. mansoni, can detect infection in both prepatent and shedding snails, do not require live snail specimens and are considerably less time consuming (Abbasi et al., 2010; Hamburger et al., 2013; Lu et al., 2016; Caldeira et al., 2017). However, while the use of molecular methods for detecting schistosome infection in humans (via urine and faeces) and in the environment (via sediment and water) is widespread, these methods are underutilised for the detection of schistosome infection in intermediate snail hosts collected from the field (ten Hove et al. 2008; Sengupta et al., 2019; Nwoko et al. 2021).

The prevalence of S. mansoni infection is affected by multiple factors. Past studies have associated snail populations with low levels of genetic variability with a higher prevalence of S. mansoni infection (Jarne \& Théron, 2001; Campbell et al., 2010). Additionally, environmental factors such as altitude, water conductivity, water depth, water pH , temperature, droughts and floods have been shown to affect the prevalence of schistosome infection (Shiff et al., 1975; Sturrock et al., 2001; Kabatereine et al., 2004; Rubaihayo et al., 2008; Perez-Saez et al., 2016; Tabo et al., 2022). East Africa has a bimodal climate with two wet seasons (from March to May and from September to November) and two dry seasons (from December to February and from June to August) that take place each year. Adoka et al. (2014) reported that people living at the shoreline of Lake Victoria believed that intestinal schistosomiasis was more prevalent in the wet seasons. Rowel et al. (2015) found evidence in support of this, with their results showing that the number of Biomphalaria shedding cercariae was higher during the wet seasons than the dry seasons.

Here we use a PCR-based, molecular infection detection method to investigate the prevalence of S. mansoni infection in the Biomphalaria species found at the Ugandan shorelines of Lake Albert and Lake Victoria. We measure the extent of genetic diversity in Biomphalaria species to determine whether there is any correlation between infection prevalence and snail diversity. We also investigate the effect seasonality has on the prevalence of S. mansoni infection within Biomphalaria snails by comparing the infection prevalence infection during the wet and dry seasons.

4.2 Materials and Methods:

4.2.1 Sample Sites and Sample Selection:

Biomphalaria snails were previously collected at the Ugandan shorelines of Lake Albert and Lake Victoria by the Rowel et al. (2015) team, for further details about the collections please see Chapters 2.1 and 3.2.1.

Figure 4.1. Map showing the collection site locations at Lake Albert and Lake Victoria in Uganda. (A) The three collection sites of Lake Albert (Bugoigo, Piida and Walukuba) and (B) the three collection sites of Lake Victoria (Bugoto, Bukoba and Lwanika) (Google, 2022).
4.2.2 Snail Identification and Genetic Diversity:

All of the preserved Biomphalaria species collected over the two year period were initially identified to the species level using conchological identification methods (Brown, 1994). Next, 20 individuals of each species identified at each of the Lake Albert and Lake Victoria sites were selected for further molecular analysis. In order for consistency, these selected individuals all came from the August 2010 collection, as this period had the highest number of viable specimens available. For each snail, DNA was extracted using a modified CTAB extraction method as described in Joof et al. (2020), with extracted samples being resuspended in $100 \mu \mathrm{l}$ of TE, pH 8.0 (10 mM Tris-HCl, 0.1 mM EDTA) buffer. After extraction, DNA yields were measured using a NanoPhotometer N50 (Implen, München, Germany) and each DNA extract were tested using the LSU-1iii/LSU-3iii primers (Fontanilla et al. 2017; Table 2.1) in order to ensure that the DNA was not degraded and was amplifiable. All PCR reactions were performed using Promega GoTaq ${ }^{\circledR}$ G2 Master Mix buffer, with 1μ I of DNA template added to 24μ l of 1 X Master Mix buffer (1U TAQ, $0.2 \mu \mathrm{M}$ primers, $200 \mu \mathrm{M}$ dNTPs, 3 mM MgCl 2). The PCR cycling conditions for the LSU-1iii/LSU-3iii primers was an initial denaturation at $96^{\circ} \mathrm{C}$ for 2 min , followed by 35 cycles of $94^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, 45^{\circ} \mathrm{C}$ for $1 \mathrm{~min}, 72^{\circ} \mathrm{C}$ for 2 min and a final extension step at $72^{\circ} \mathrm{C}$ for 5 min .

The identification of each specimen was confirmed using 16S and COI genotyping. For the 16 S gene, we used a modified version of the 16Sar/16Sbr primers designed by Palumbi et al. (1991; Table 2.1). For COI, we used the universal COI primers designed by Folmer et al. (1994; Table 2.1). The PCR cycling conditions used for both the 16S and COI primer sets were identical, with an initial denaturation at $96^{\circ} \mathrm{C}$ for 1 minute, followed by 34 cycles of $94^{\circ} \mathrm{C}$ for $1 \mathrm{~min}, 50^{\circ} \mathrm{C}$ for $1 \mathrm{~min}, 72^{\circ} \mathrm{C}$ for 1 min and a final extension at $72^{\circ} \mathrm{C}$ for 10 mins . All PCR products were electrophoresed on a 2% agarose gel containing ethidium bromide and were observed under UV light. All 16 S and COI PCR products were purified and sequenced using Macrogen's EZ-Seq service.

Sequenced samples were aligned using the Muscle algorithm in the program Seaview v5 (Gouy et al., 2021), with misaligned sections of the 16S and the COI being fixed by hand and sites for tree building were selected using the Gblocks program (Castresana, 2000). Samples were identified to the species-level using a concatenated 16 S and COI phylogenetic tree incorporating GenBank references from Jørgensen et al. (2007), Plam et al. (2008), Standley et al. (2014) and Zhang et al. (2018). Phylogenetic trees were constructed using the Maximum Likelihood method, using a General Time Reversible model incorporating gamma correction (GTR+Г) in the program PhyML v3.1 (Guindon et al., 2010), with bootstrap analysis undertaken using 1000 replicates. After confirming what species were present at the African Great Lakes, we measured genetic variability using DNASP v6 (Rozas et al., 2017) to calculate Haplotype (Gene) Diversity (Hd) scores and Nucleotide diversity (π) values (Nei, 1987). MEGA-X (Kumar et al. 2018) was used to calculate pairwise distances using the

Maximum Composite Likelihood (MCL) method. Genealogical relationships of the 16 S and COI haplotypes were constructed using Median-Joining (MJ) networks (Bandelt et al., 1999) using the software NETWORK v5 (Fluxus Technology Ltd. www.Fluxus-engineering.com).

4.2.3 Infection Detection:

The prevalence of S. mansoni infection for each site was measured using snails from a single time-point (August 2010). Twenty individuals of each species present at each site were tested for S. mansoni infection. In total, 120 snails (60 B. sudanica, 40 B. pfeifferi and 20 B. stanleyi) were selected from Lake Albert and 60 B. choanomphala snails from Lake Victoria (Supplementary Table 4.3). Next, to examine seasonal prevalence of infection we tested the prevalence of infection of Biomphalaria species found at Lake Albert and Lake Victoria for each of the four wet and four dry seasons that occurred within the two year collection period (January 2009 to December 2010). Due to the limited number of samples available at Piida and Bukoba and the limited number of samples available for B. stanleyi these analyses were restricted to Bugoigo, Walukuba, Bugoto and Lwanika and to B. choanomphala, B. pfeifferi and B. sudanica. For B. sudanica, we tested 20 individuals for each of the wet (March to May and September to November) and dry (December to February and June to August) seasons that occurred over the two year collection period for both Bugoigo and Walukuba. For B. pfeifferi, we tested 20 individuals for each of the wet and dry seasons, but only for Walukuba. For B. choanomphala, we tested 20 individuals for each of the wet and dry seasons for both Bugoto and Lwanika. In total, 480 snails (320 B. sudanica and $160 B$. pfeifferi) from Lake Albert and 320 B. choanomphala snails from Lake Victoria were tested for infection (Supplementary Table 4.3).

All samples were tested for S. mansoni infection using two different primer sets, firstly $\mathrm{Sm}^{\mathrm{F} / R}$ (designed by Sandoval et al. 2006) and then ND5 (designed by Lu et al. 2016; Table 2). Only the samples that tested positive with the $\mathrm{Sm}^{\mathrm{F} / \mathrm{R}}$ primer set were subjected to further testing using the ND5 primer set. This additional testing was carried out because the ND5 primer set possesses the ability to differentiate between human and non-human schistosome species based on the length of the diagnostic band (Lu et al., 2016). All PCR reactions were performed using Promega GoTaq ${ }^{\circledR}$ G2 Master Mix buffer, with 1μ I of DNA template diluted to $50 \mathrm{ng} / \mu \mathrm{l}$. Alongside the Biomphalaria samples, two negative controls (water and uninfected B. glabrata DNA) and two positive controls (pure S. mansoni DNA and infected B. glabrata DNA) were also included. These controls were provided by Professor Mike Doenhoff, School of Biology, University of Nottingham. The PCR reaction mixture and cycling conditions for the $\mathrm{Sm}^{\mathrm{F} / \mathrm{R}}$ and ND5 primer sets were followed precisely as described by Sandoval et al. (2006) and Lu et al. (2016), respectively (as described in Chapter 2.3.3). Schistosoma mansoni infection was confirmed by running the PCR products on a 2% agarose gel containing ethidium bromide and observing whether a diagnostic band was present under UV light. A Pearson's chi-squared (X^{2}) test with Yates' correction was used to compare the prevalence of infection using SPSS v26 (IBM, Armonk, USA).
4.2.4 GenBank Accessions:

GenBank accession numbers for the Biomphalaria 16S and COI sequences used from Jørgensen et al. (2007), Plam et al., 2008, Standley et al. (2014) and Zhang et al. (2018) can
be found in Supplementary Table 3.1. The DNA sequences generated in this study are available in GenBank accession numbers OQ924749-OQ924929 for the 16S gene and OQ849817-OQ849997 for the COI gene (further information can be found in Supplementary Tables 3.1, 4.1 and 4.2).

4.3 Results:

4.3.1 Prevalence of Infection at the African Great Lakes:

Lake Albert had the highest prevalence of S. mansoni infection, with an overall infection prevalence of 12.5% (15 PCR positive snails out of 120). Lake Victoria had a lower prevalence of $5 \%(3 / 60)$. When partitioned by site, the Lake Albert sites had a higher mean prevalence of infection than the Lake Victoria sites (Table 4.1). Walukuba had the highest infection prevalence of the Lake Albert sites with 13.3% ($8 / 60$), followed by Bugoigo with 12.5\% (5/40) and Piida with 10\% (2/20) (Table 4.1). Of the Lake Victoria sites, Lwanika had the highest prevalence of infection with $10 \%(2 / 20)$, followed by Bugoto and Bukoba with $5 \%(1 / 20)$ for both sites (Table 4.1). All of our $\mathrm{Sm}^{\mathrm{F} / \mathrm{R}}$ positive Biomphalaria samples were confirmed to be infected with S. mansoni as every sample gave a diagnostic band length of ~302bp when tested with the ND5 primer set.

Table 4.1. Mean prevalence of S. mansoni infection and the number of unique 16S/COI haplotypes (No.), haplotype diversity scores (Hd) and nucleotide diversity values (π) of each Biomphalaria species genotyped at the Lake Albert and Lake Victoria collection sites.

Lake Albert									
	Species	No. Infected $(n=20)$	Site Infection	16S			COI		
				No.	Hd	π	No.	Hd	π
Bugoigo	B. sudanica	3	12.5\%	7	0.784	0.000	3	0.532	0.002
	B. pfeifferi	2		2	0.337	0.000	4	0.489	0.001
Piida	B. sudanica	2	10\%	6	0.716	0.000	2	0.521	0.002
Walukuba	B. stanleyi	3	13.3\%	10	0.884	0.002	10	0.815	0.003
	B. sudanica	3		10	0.884	0.001	4	0.553	0.002
	B. pfeifferi	2		3	0.468	0.001	6	0.832	0.002
Lake Victoria									
	Species	No.	Site Infection	16S			COI		
		Infected $(n=20)$		No.	Hd	π	No.	Hd	π
Bugoto	B. choanomphala	1	5\%	11	0.884	0.008	5	0.774	0.004
Bukoba	B. choanomphala	1	5\%	15	0.958	0.007	10	0.89	0.005
Lwanika	B. choanomphala	2	10\%	16	0.963	0.008	9	0.826	0.005

Note: Schistosoma mansoni infection was determined based on whether snails had a diagnostic band for both Sm ${ }^{F / R}$ ($\sim 350 \mathrm{bp}$) and ND5 ($\sim 302 \mathrm{bp}$).

We found three species, B. pfeifferi, B. stanleyi and B. sudanica, at Lake Albert and one species, B. choanomphala, at Lake Victoria (Supplementary Figure 3.1; Figure 3.4). Of the
four species identified, B. stanleyi had the highest prevalence of S. mansoni infection with $15 \%(3 / 20)$, followed by B. sudanica with $13.3 \%(8 / 60)$, B. pfeifferi with $10 \%(4 / 40)$, and B. choanomphala with 5\% (3/60) (Table 4.1). In addition to the four Biomphalaria species, we identified an Asian Gyraulus species at both Lake Albert and Lake Victoria (Supplementary Figure 3.1). There have been no published reports of Schistosoma infection in Gyraulus, and we detected no cases of S. mansoni infection in the Asian Gyraulus species found at Lake Albert (0/10) or Lake Victoria (0/10).

4.3.2 Genetic Diversity of the Biomphalaria species at the African Great Lakes:

Of the Biomphalaria species found at the African Great Lakes, B. choanomphala ($n=60$) had the most haplotypes for the $16 S$ gene fragment with 31 , followed by B. sudanica ($n=60$) with 14, B. stanleyi $(n=20)$ with 10 and B. pfeifferi $(n=40)$ with four (Table 4.1; Figure 4.2a). For the COI gene fragment, B. choanomphala had the most haplotypes with 14 , followed by B. stanleyi with 10, B. pfeifferi with six and B. sudanica with four (Table 4.1; Figure 4.2b). The haplotype diversity (Hd) scores for the 16 S were highest for B. choanomphala with 0.945 , followed by B. sudanica with 0.833 , B. stanleyi with 0.884 and B. pfeifferi with 0.422 . For the COI, haplotype diversity (Hd) scores were highest for B. choanomphala with 0.842 , followed by B. stanleyi with 0.815 , B. pfeifferi with 0.618 and B. sudanica with 0.553 . Overall, the haplotypes were not highly divergent for both the 16 S and COI. The nucleotide diversity values were highest for the B. choanomphala populations at Lake Victoria for both the 16S (0.007-0.008) and COI (0.004-0.005), while all of the Biomphalaria species at Lake Albert had very low nucleotide diversity values for both the $16 \mathrm{~S}(0.000-0.002)$ and COI (0.001-0.003; Table 4.1). The intra-species pairwise distances of the $16 S$ was the highest for B. choanomphala (0.0-1.8\%), followed by B. stanleyi (0.0-0.8\%), B. sudanica (0.0-0.8\%) and B. pfeifferi (0.0-0.1\%). Conversely, the intra-species pairwise distances of the COI was the highest for B. pfeifferi (0.0-1.4\%), followed by B. stanleyi (0.0-1.3\%), B. choanomphala (0.0$1.2 \%$) and B. sudanica (0.0-0.4\%).

Figure 4.2. Median-Joining haplotype network of the Biomphalaria species found at Lake Albert (B. pfeifferi $n=40$; B. stanleyi $n=20$; B. sudanica $n=60$) and Lake Victoria (B. choanomphala $n=60$) using (A) 165 rRNA gene fragment (395bp) and (B) Cytochrome Oxidase Subunit I gene fragment (520bp). This network was generated using the software NETWORK v5. Circles represent each haplotype and circle size represents the numbers of individuals sharing a haplotype. Diamonds represent intermediate haplotypes, while hatch marks between points represent the number of nucleotide substitutions (substitutions more than five are indicated by numbers). Gaps were included in the 16 S and COI alignments. Reference sequence information for the 16 S and COI networks can be found in Supplementary Tables 4.1 and 4.2, respectively.

4.3.3 Seasonal Prevalence of Infection:

At Lake Albert we examined the seasonal changes in prevalence of infection at two sites (Bugoigo and Walukuba). One species (B. sudanica) was tested at Bugoigo, while two species (B. pfeifferi and B. sudanica) were tested at Walukuba. Piida and B. stanleyi were not tested due to a lack of samples. At Bugoigo, the wet seasons had a mean infection prevalence of $12.5 \%(10 / 80)$, while the dry seasons had a mean infection prevalence of 10% $(8 / 80)$ (Table 4.2). At Walukuba, the wet seasons had a mean infection prevalence of 13.8% $(22 / 160)$, while the dry seasons had a mean infection prevalence of $9.4 \%(15 / 160)$ (Table 4.2).

At Lake Victoria, we examined the seasonal changes in prevalence of infection among Biomphalaria populations (B. choanomphala) at two sites (Bugoto and Lwanika). Bukoba was not tested due to a lack of samples. At Lwanika, the wet seasons had a mean infection prevalence of $8.8 \%(7 / 80)$, while the dry seasons had a mean infection prevalence of 6.3%
(5/80) (Table 4.2). Bugoto had a mean infection prevalence of $8.8 \%(7 / 80)$ for the wet seasons and $3.8 \%(3 / 80)$ for the dry seasons (Table 4.2).

Table 4.2. Mean prevalence of infection of the wet and dry seasons at Lake Albert and Lake Victoria between 2009-2010.

Lake Albert						
Site	Species	First Dry $(n=40)$	First Wet $(n=40)$	Second Dry $(n=40)$	Second Wet $(n=40)$	Overall Infection ($n=160$)
Walukuba	B. pfeifferi B. sudanica	$\begin{aligned} & 4 \text { (10\%) } \\ & 3 \text { (7.5\%) } \end{aligned}$	$\begin{array}{lr} 6 & (15 \%) \\ 5 & (12.5 \%) \end{array}$	$\begin{aligned} & 4 \text { (10\%) } \\ & 4 \text { (10\%) } \end{aligned}$	$\begin{array}{lr} \hline 6 & (15 \%) \\ 5 & (12.5 \%) \end{array}$	$\begin{aligned} & 20 \text { (12.5\%) } \\ & 17 \text { (10.6\%) } \end{aligned}$
Bugoigo	B. sudanica	4 (10\%)	5 (12.5\%)	4 (10\%)	5 (12.5\%)	18 (11.3\%)
Lake Victoria						
Site	Species	First Dry $(n=40)$	First Wet $(n=40)$	Second Dry ($n=40$)	$\begin{gathered} \hline \text { Second } \\ \text { Wet } \\ (n=40) \end{gathered}$	Overall Infection (n=160)
Lwanika	B. choanomphala	2 (5\%)	3 (7.5\%)	3 (7.5\%)	4 (10\%)	12 (7.5\%)
Bugoto	B. choanomphala	1 (2.5\%)	3 (7.5\%)	2 (5\%)	4 (10\%)	10 (6.3\%)

Note: First Dry: Dec-Feb; First Wet: Mar-May; Second Dry: Jun-Aug; Second Wet: Sep-Nov.
Overall, the prevalence of S. mansoni infection was consistently higher in the wet seasons than the dry seasons for both Lake Albert and Lake Victoria (Table 4.2; Supplementary Figure 4.1). The overall mean prevalence of infection at Lake Albert for the four wet seasons was 13.3% ($32 / 240$), while the four dry seasons was 9.5% (23/240) (Table 4.2). Similarly, the overall mean prevalence of infection at Lake Victoria was 8.7% (14/160) for the wet seasons and $5 \%(8 / 160)$ for the dry seasons (Table 4.2). Nevertheless, a chi-square (X^{2}) analysis found there was no significant difference in the prevalence of infection between the wet and dry seasons ($p=0.252$ for Lake Albert and $p=0.269$ for Lake Victoria). When comparing the prevalence of infection for the first and second wet season we found no difference for the Lake Albert sites. Likewise, there was no difference in infection prevalence for the first and second dry season. For Lake Victoria, we found that the first wet season had a lower mean prevalence of infection than the second wet season. Similarly, the first dry season also had a lower prevalence of infection than the second dry season (Table 4.2).

In order to test consistency in our infection prevalence estimates, we compared the prevalence of infection measured in our seasonality dataset against our single time point (August 2010) dataset. The single time point dataset found a mean infection prevalence of $12.5 \%(15 / 120)$ for Lake Albert, while the seasonality dataset found a mean infection prevalence of 11.5% (55/480). Lake Victoria had an infection prevalence of $5 \%(3 / 60)$ for the single time point dataset, while the seasonality dataset had an infection prevalence of 7.2\% $(23 / 320)$. Of the species tested, B. sudanica had an infection prevalence of 13.3% for the single time point dataset and an infection prevalence of 10.9% for the seasonality dataset. The mean infection prevalence of the B. pfeifferi snails was 10% for the single time point dataset and 12.5% for the seasonality dataset. Lastly, the B. choanomphala snails had a mean infection prevalence of 5% for the single time point dataset and 6.9% for the
seasonality dataset. A chi-square (X^{2}) analysis found there was no significant ($P>0.05$) difference in the prevalence of S. mansoni infection in Biomphalaria snails between the two datasets. The overall averages for both datasets can be found in Supplementary Table 4.3.

4.4 Discussion:

At Lake Albert, we identified three Biomphalaria species, B. pfeifferi, B. stanleyi and B. sudanica. This is consistent with the findings of the original Rowel et al. (2015) study, which is to be expected as both studies used the same dataset. Other studies of Lake Albert have similarly also reported these same three Biomphalaria species (Brown, 1994; Kazibwe et al., 2006; Jørgensen et al., 2007; Kazibwe et al., 2010; Adriko et al., 2013; Levitz et al., 2013). At Lake Victoria, we identified only one Biomphalaria species, B. choanomphala. This differs from the findings of the original Rowel et al. (2015) study which reported three species, B. choanomphala, B. pfeifferi and B. sudanica. This discrepancy is almost certainly due to the use of only conchological identification methods when differentiating the Biomphalaria snails in the original Rowel et al. (2015) study; our study used both conchological and molecular identification methods to determine species identifications. The lack of nonplastic shell characteristics in Biomphalaria, with many morphological features overlapping between species, makes the conchological identification of Biomphalaria species unreliable (Plam et al., 2008). Standley et al. (2011) showed that B. sudanica-like snails found at Lake Victoria were genetically more similar to B. choanomphala snails than to other B. sudanica snails found elsewhere in Africa. They hypothesised that these B. sudanica-like snails were ecological phenotypic variants (ecophenotypes) of B. choanomphala. This finding was further supported by Zhang et al. (2018) who showed that the complete mitochondrial genomes of the B. choanomphala and B. sudanica-like snails from Lake Victoria were genetically very similar. The B. sudanica-like snails reported at Lake Victoria by Rowel et al. (2015) are thus most likely ecophenotypes of B. choanomphala. As for the reported B. pfeifferi snails at Lake Victoria, Plam et al. (2008) found that B. pfeifferi had similar shell morphologies to B. choanomphala, demonstrating that conchological methods of identification can be misled by plastic shell characteristics. We are confident that our approach of using conchological identification methods in conjunction with molecular methods is superior and more accurate than the solely conchological approach used in the Rowel et al. (2015) study.
4.4.1 Infection Prevalence of the Biomphalaria Species found at the African Great Lakes: We found Lake Albert (12.5%) had a higher mean prevalence of S. mansoni infection than Lake Victoria (5\%). Similarly, Rowel et al. (2015) also reported a higher rate of cercarial shedding in Biomphalaria snails at Lake Albert (8.9\%) than Lake Victoria (2.1\%). Of the sites tested, we found Walukuba (13.8\%) had the highest prevalence of infection at Lake Albert, while Lwanika (10\%) had the highest prevalence of infection at Lake Victoria. Similarly, Rowel et al. (2015) found Walukuba (12.3\%) had the highest rates of cercarial shedding at Lake Albert and Lwanika (3.8\%) had the highest rates of shedding at Lake Victoria.

Our study observed a higher mean prevalence of S. mansoni infection compared to the Rowel et al (2015) study. Molecular detection methods (as used here) typically show higher levels of infection when compared to the cercarial shedding method (Born-Torrijos et al.,

2014; Lu et al., 2016; Joof et al., 2020). Infected Biomphalaria snails do not always produce cercariae during the usual 35-49 day incubation period. Cold temperatures can lead to delays in sporocyst development and shedding (Shiff et al., 1975). Similarly, delays to sporocyst development and shedding can arise due to an immune response to S. mansoni infection; the snail's immunological response to infection does not guarantee the complete eradication of all sporocysts and some sporocysts can release cercariae up to ten months post infection (Borges et al., 1998; Lemos \& Andrade, 2001). Ultimately these prepatent snails will be undetectable by the cercarial shedding method but are still detectable by molecular methods (Lu et al., 2016; Joof et al., 2020). However, molecular methods can also overestimate the number of snails that present a risk. Lu et al. (2016) found that not all PCR positive Biomphalaria snails went on to shed cercariae; some snails were able to successfully encapsulate and degrade the sporocysts during the prepatent period, which resulted in the infection failing. The chance of this happening was shown to be dependent on the species, with the majority of PCR positive B. pfeifferi snails (60\%) going on to shed cercariae, while only a minority of PCR positive B. sudanica snails (10\%) went on to shed cercariae.

It seems whether an infection is successful or not is dependent on schistosome-snail compatibility, with compatible schistosomes being able to successfully evade the host's immune defences (Théron et al., 1997; Mitta et al., 2012; Théron et al., 2014). This means that a snail that is PCR positive for infection may not necessarily be capable of spreading that infection on to humans. Rowel et al. (2015) reported that of the snails shedding cercariae, only 15.8% at Lake Albert and 13.9% at Lake Victoria were shedding S. mansoni cercariae (identified using general anatomical appearance; Frandsen \& Christensen, 1984) as opposed to shedding cercariae of trematode species with no medical importance. When snails are co-infected with both S. mansoni and non-S. mansoni sporocysts simultaneously (Born-Torrijos et al., 2014; Outa et al., 2020) it is more difficult to reliably identify the presence of S. mansoni cercariae, since these S. mansoni cercariae can be obscured by other non-medically important cercariae and therefore missed. Moreover, S. mansoni (human) infections in snails cannot be distinguished from S. rodhaini (rat) infections in snails using general anatomical identification methods. Molecular detection methods are able to detect whether or not S. mansoni is present, while ignoring non-S. mansoni sporocysts, though some detection methods are more specific than others. For example, $\mathrm{Sm}^{\mathrm{F} / \mathrm{R}}$ is able to distinguish S. mansoni from other schistosome species with the exception of S. rodhaini, while ND5 is capable of distinguishing between S. mansoni and S. rodhaini.

4.4.2 Infection Prevalence and Host-Snail Genetic Diversity:

We found that the Biomphalaria species found at Lake Victoria (B. choanomphala) had a higher intra-species genetic diversity than the Biomphalaria species (B. pfeifferi, B. stanleyi and B. sudanica) found at Lake Albert. Furthermore, Lake Victoria had a lower prevalence of infection than Lake Albert. This is consistent with previous studies that have reported higher levels of intra-species genetic variation in host snails being linked to a lower prevalence of infection (Jarne \& Théron, 2001; Campbell et al., 2010). However, when we examined each of the sites individually, we found that the sites with the highest prevalence of infection also had Biomphalaria species with the highest intra-specific genetic diversity (Table 4.1). For
example, when comparing the haplotype diversity scores of the 16 S and CO genes for the B. pfeifferi snails found at Walukuba with the B. pfeifferi snails found at Bugoigo, we find Walukuba had both a higher amount of genetic diversity ($16 \mathrm{~S} \mathrm{Hd}: 0.468$; COI Hd: 0.832) and a higher prevalence of infection (13.3\%) than Bugoigo (16S Hd: 0.337; COI Hd: 0.489; prevalence: 12.5%) (Table 4.1). We also find this trend for B. sudanica and B. choanomphala (Table 4.1). For B. sudanica, Walukuba had both a higher amount of genetic diversity (16S Hd: 0.884; COI Hd: 0.553) and a higher prevalence of infection (13.3\%) than Bugoigo (16S Hd: 0.784; COI Hd: 0.532; prevalence: 12.5\%) and Piida (16S Hd: 0.716; COI Hd: 0.521; prevalence: 10%) (Table 4.1). Similarly, the B. choanomphala snails at Lwanika had a higher genetic diversity (16 SHd : 0.963 ; COI Hd: 0.826) and infection prevalence (10\%) than the B. choanomphala snails at Bugoto ($16 \mathrm{SHd}: 0.884$; COI Hd: 0.774; prevalence: 5%) (Table 4.1).

The prevalence of S. mansoni infection within a snail population is associated with multiple factors, not just snail host genetic diversity. Sandland et al. (2009) found that there was no significant difference in susceptibility to S. mansoni infection of Biomphalaria glabrata snails that came from either inbred or outcrossed lineages. This is contradictory to previous studies which associate low amounts of genetic variability within an intermediate host population with a higher prevalence of S. mansoni infection (Jarne \& Théron, 2001; Campbell et al., 2010). Our results suggested that populations with lower amounts of S. mansoni infection also had lower amounts of genetic diversity. A possible explanation for this could be attributed to the 'coevolution selective sweep' phenomenon, which is when a beneficial gene (e.g. resistance to S. mansoni) quickly becomes widespread throughout a population. This in turn reduces the genetic diversity within a population as individuals that do not possess this gene are less successful and die off. As for the sites with higher amounts of S. mansoni infection and higher amounts of genetic diversity, this beneficial gene could not be present, and the selective sweep has not occurred.

4.4.3 Infection Prevalence and Seasonality:

At Lake Albert, we found that the wet seasons (March to May and September to November) had a higher mean prevalence of S. mansoni infection (13.3\%) than the dry seasons (December to February and June to August) (9.6\%). Similarly, the wet seasons at Lake Victoria had a higher mean prevalence of infection (8.7\%) than the dry seasons (5\%). Rowel et al. (2015) also observed a higher number of shedding Biomphalaria snails during the wet seasons at both Lake Albert and Lake Victoria. Kazibwe et al. (2006) also found the highest rates of cercarial shedding in B. stanleyi and B. sudanica snails at Lake Albert was during the wet seasons. Similarly, in South Africa, Wolmarans et al. (2002) found B. pfeifferi collected during the wet season (January to April) had a higher cercarial shedding rate than B. pfeifferi collected during either the cold (May to August) or the warm (September to December) dry season.

Ouma et al. (2016) found that the physicochemical composition of the lake water was significantly different between the wet and dry seasons. This change is due to the increase in rainfall, which effects the water pH , water conductivity, oxygen saturation and phosphate, nitrate, chloride and ammonia levels in the water. In the original Rowel et al. (2015) study, S. mansoni infection was found to be positively correlated with Biomphalaria
abundance and temperature, while it was negatively correlated with higher water pH and conductivity. Similarly, Biomphalaria abundance itself positively correlates with higher temperature and oxygen saturation, but negatively correlates with higher water pH and water conductivity (Kazibwe et al., 2006; Rowel et al., 2015; Bakhoum et al. 2021). During the wet seasons, the levels of dissolved oxygen in the lake water is significantly higher than the dry seasons, while water conductivity levels are significantly lower (Ouma et al., 2016). This significant difference in water conductivity and oxygen saturation could explain why the wet seasons consistently have a higher prevalence of S. mansoni infection than the dry seasons. Conversely, the dry seasons have a significantly higher temperatures than the wet seasons, while pH levels are significantly lower (Ouma et al., 2016). Alternatively, the increased rainfall from the wet seasons also allows for a higher risk of flooding which can transport Biomphalaria snails to new areas; create and sustain new snail habitats; increase the amount of human/animal waste found in freshwater by the flooding of latrines and sewerage systems. However, our chi-square (X^{2}) analysis found that the prevalence of infection during the wet seasons was not significantly higher than the prevalence of infection during the dry seasons for both Lake Albert and Lake Victoria. Moreover, depending on where the parasitological survey is undertaken can lead to contradictory results as studies undertaken in Ethiopia (Hailegebriel et al., 2022), Nigeria (Okeke \& Ubachukwu, 2017), Tanzania (Nzalawahe, 2021) and Sudan (Ismail et al., 2022) have found the opposite trend, with the dry seasons having a higher prevalence of S. mansoni infection in snails than the wet seasons.

Supplementary Figure 4.1. Prevalence of Schistosoma mansoni infection at Lake Albert (A-C) and Lake Victoria (D-E) over the course of two years (2009-2010). Biomphalaria sudanica ($n=320$) was tested at two sites in Lake Albert (A: Bugoigo \& B: Walukuba), while B. pfeifferi ($n=160$) was tested at one site (C: Walukuba). Biomphalaria choanomphala ($n=320$) was tested at two sites at Lake Victoria (D: Bugoto \& E: Lwanika). Black bars indicate the percentage of infected individuals ($n=20$). (Dry 1: January-February 2009; Wet 1: March-May 2009; Dry 2: June-August 2009; Wet 2: SeptemberNovember 2009; Dry 3: December 2009-February 2010; Wet 3: March-May 2010; Dry 4: June-August 2010; Wet 4: September-November 2010).

Supplementary Table 4.1. GenBank accession numbers for the 16S haplotype network.

	Accession no.	Species
FN2	EU141182	cf. choanomphala
-	AY030202	choanomphala
H44	HM768993	choanomphala

H60	HM769009	choanomphala
H68	HM769017	choanomphala
H80	HM769029	choanomphala
H84	HM769033	choanomphala
H85	HM769034	choanomphala
H86	HM769035	choanomphala
H101	HM769050	choanomphala
H137	HM769086	choanomphala
H145	HM769094	choanomphala
H147	HM769096	choanomphala
H150	HM769099	choanomphala
H160	HM769109	choanomphala
-	MG431964	choanomphala
AJ-2005	DQ084854	cf. pfeifferi
FL5	EU141179	cf. pfeifferi
LS-131	AY030193	pfeifferi
LS-135	AY030194	pfeifferi
LS-82	AY030195	pfeifferi
LS-336	AY030196	pfeifferi
-	AY126599	pfeifferi
-	AY126600	pfeifferi
-	AY126601	pfeifferi
-	AY126602	pfeifferi
-	AY126603	pfeifferi
-	AY126604	pfeifferi
-	AY126605	pfeifferi
-	AY126606	pfeifferi
1126	AY198048	pfeifferi
1132	AY198049	pfeifferi
1133	AY198050	pfeifferi

1136	AY198051	pfeifferi
115	AY198052	pfeifferi
116	AY198053	pfeifferi
117	AY198054	pfeifferi
131	AY198055	pfeifferi
133	AY198056	pfeifferi
135	AY198057	pfeifferi
137	AY198058	pfeifferi
2004	AY198059	pfeifferi
2005a	AY198060	pfeifferi
2098	AY198061	pfeifferi
2100	AY198062	pfeifferi
2005b	AY198063	pfeifferi
228a	AY198064	pfeifferi
262	AY198065	pfeifferi
271	AY198066	pfeifferi
274	AY198067	pfeifferi
296	AY198068	pfeifferi
311	AY198069	pfeifferi
336	AY198070	pfeifferi
337	AY198071	pfeifferi
343	AY198072	pfeifferi
350	AY198073	pfeifferi
351	AY198074	pfeifferi
82	AY198075	pfeifferi
83	AY198076	pfeifferi
92	AY198077	pfeifferi
-	AY577475	pfeifferi
BpfChi1	DQ084851	pfeifferi
BpfKib1	DQ084852	pfeifferi

BpfDeG1	DQ084853	pfeifferi
BpfAbu1	DQ084857	pfeifferi
-	MG431962	pfeifferi
-	AY030197	cf. stanleyi
BstBut1	DQ084858	stanleyi
FL1	EU141175	stanleyi
FL2	EU141176	stanleyi
FL3	EU141177	stanleyi
FL4	EU141178	stanleyi
FL6	EU141180	stanleyi
FN1	EU141181	stanleyi
FN5	EU141185	stanleyi
-	AY126608	cf. sudanica
-	MG431963	cf. sudanica
BsuBut1	DQ084859	sudanica
BsuKin1	DQ084860	sudanica
BsuMah1	DQ084861	sudanica
BsuNto1	DQ084864	sudanica
BsuRut1	DQ084865	sudanica
SN1	EU141187	sudanica
SN2	EU141188	sudanica
SN3	EU141189	sudanica
SN4	EU141190	sudanica
SN5	EU141191	sudanica
SN6	EU141192	sudanica

Note: 'cf.' indicates the shell morphology looked like a specific species but was identified as a different species by the original authors using molecular methods.

Supplementary Table 4.2. GenBank accession numbers for the COI haplotype network.

	Accession no.	Species
-	MG431964	choanomphala
BchVic1	DQ084828	choanomphala
-	OL423116	pfeifferi
-	MG431962	pfeifferi
1792	AF199097	pfeifferi
1869	AF199102	pfeifferi
1903	AF199100	pfeifferi
1907	AF199101	pfeifferi
1914	AF199104	pfeifferi
1915	AF199099	pfeifferi
BpfChi1	DQ084829	pfeifferi
BpfDeG1	DQ084831	pfeifferi
BpfKib1	DQ084830	pfeifferi
MP05Bi1	OM535896	pfeifferi
MP05Bi2	OM535897	pfeifferi
SUDAN 0	MG780151	pfeifferi
SUDAN 22	MG780154	pfeifferi
SUDAN 23	MG780155	pfeifferi
SUDAN 24	MG780156	pfeifferi
SUDAN 26	MG780157	pfeifferi
SUDAN 27	MG780158	pfeifferi
SUDAN 28	MG780160	pfeifferi
SUDAN 29	MG780161	pfeifferi
SUDAN 3	MG780150	pfeifferi
SUDAN 31	MG780159	pfeifferi
SUDAN 32	MG780162	pfeifferi
SUDAN 33	MG780163	pfeifferi
SUDAN 34	MG780164	pfeifferi

SUDAN 35	MG780165	pfeifferi
SUDAN 36	MG780166	pfeifferi
SUDAN 37	MG780167	pfeifferi
SUDAN 38	MG780168	pfeifferi
SUDAN 40	MG780174	pfeifferi
SUDAN 41	MG780175	pfeifferi
SUDAN 42	MG780176	pfeifferi
SUDAN 43	MG780177	pfeifferi
SUDAN 44	MG780178	pfeifferi
SUDAN 45	MG780179	pfeifferi
SUDAN 7	MG780152	pfeifferi
SUDAN 8	MG780153	pfeifferi
SUDAN S13	MG780170	pfeifferi
SUDAN S15	MG780169	pfeifferi
SUDAN S20	MG780171	pfeifferi
SUDAN S21	MG780172	pfeifferi
SUDAN S25	MG780173	pfeifferi
ZWE 2	MG780180	pfeifferi
ZWE 232	MG780207	pfeifferi
ZWE 236	MG780208	pfeifferi
ZWE 254	MG780197	pfeifferi
ZWE 258	MG780196	pfeifferi
ZWE 260	MG780195	pfeifferi
ZWE 261	MG780194	pfeifferi
ZWE 262	MG780193	pfeifferi
ZWE 263	MG780192	pfeifferi
ZWE 264	MG780191	pfeifferi
ZWE 266	MG780190	pfeifferi
ZWE 267	MG780189	pfeifferi
ZWE 268	MG780188	pfeifferi

ZWE 269	MG780187	pfeifferi
ZWE 27	MG780198	pfeifferi
ZWE 270	MG780186	pfeifferi
ZWE 271	MG780185	pfeifferi
ZWE 276	MG780184	pfeifferi
ZWE 277	MG780183	pfeifferi
ZWE 278	MG780182	pfeifferi
ZWE 280	MG780181	pfeifferi
ZWE 30	MG780202	pfeifferi
ZWE 32	MG780203	pfeifferi
ZWE 33	MG780199	pfeifferi
ZWE 33	MG780204	pfeifferi
ZWE 37	MG780200	pfeifferi
ZWE 37	MG780201	pfeifferi
ZWE 38	MG780205	pfeifferi
ZWE 41	MG780206	pfeifferi
BstBut1	DQ084837	stanleyi
-	OL423117	cf. sudanica
-	MG431963	cf. sudanica
1986	AF199106	cf. sudanica
1987	AF199107	cf. sudanica
1091	AF199088	sudanica
1908	AF199087	sudanica
1925	AF199108	sudanica
BsuBut1	DQ084838	sudanica
BsuKin1	DQ084839	sudanica
BsuMah1	DQ084840	sudanica
BsuNto1	DQ084843	sudanica
BsuRut1	DQ084844	sudanica

Note: 'cf.' indicates the shell morphology looked like a specific species but was identified as a different species by the original authors using molecular methods.

Supplementary Table 4.3. Mean infection prevalence of both the single time point dataset and the seasonality dataset for the Lake Albert and Lake Victoria collection sites.

Lake Albert						
Site	Samples Preserved	Species	Samples Tested		Number Infected	Total
			D1	D2		
Bugoigo	977	B. pfeifferi	$n=20$	-	10\% (2/20)	$\begin{gathered} 11.7 \% \\ (70 / 600) \end{gathered}$
		B. sudanica	$n=20$	$n=160$	11.7\% (21/180)	
Piida	521	B. sudanica	$n=20$	-	10\% (2/20)	
Walukuba	1147	B. pfeifferi	$n=20$	$n=160$	12.2\% (22/180)	
		B. stanleyi	$n=20$	-	15\% (3/20)	
		B. sudanica	$n=20$	$n=160$	11.1\% (20/180)	
Lake Victoria						
Site	Samples Preserved	Species	Samples Tested		Number Infected	Total
			D1	D2		
Bugoto	4005	B. choanomphala	$n=20$	$n=160$	6.1\% (11/180)	$\begin{gathered} 6.8 \% \\ (26 / 380) \end{gathered}$
Bukoba	1264	B. choanomphala	$n=20$	-	5\% (1/20)	
Lwanika	1113	B. choanomphala	$n=20$	$n=160$	7.8\% (14/180)	

Note: D = Dataset. D1 was the single time point dataset and D2 was the seasonality dataset.

Chapter 5 Schistosoma mansoni Infection and Population Genetic Structure of Biomphalaria choanomphala Snails in Lake Victoria

Abstract

: Lake Victoria is a well-known hot spot for intestinal schistosomiasis, with the Biomphalaria snail species B. choanomphala acting as the predominant intermediate host for Schistosoma mansoni transmission. Prevalence of S. mansoni infection within snail populations is influenced by abiotic/physicochemical factors of the water, incidence of infection in human populations (and reservoir hosts) and the level of genetic compatibility between the parasite and the host. We measured the prevalence of S. mansoni infection within B. choanomphala populations along the Kenyan, Tanzanian and Ugandan shorelines of Lake Victoria and related this to abiotic/physicochemical characteristics of the lake, B. choanomphala abundance and genetic diversity of host snail populations. The overall mean prevalence of S. mansoni infection at Lake Victoria was 9.3%, with the highest prevalence of infection occurring on the Tanzanian shoreline (13.1\%), followed by the Ugandan (8.2\%) and Kenyan (4.7\%) shorelines. There was a significant difference in median water temperature, conductivity, salinity, total dissolved solids and major anions/cations concentrations between the Kenyan, Tanzanian and Ugandan shorelines of Lake Victoria. Spearman's rank analysis found there was a significant negative correlation between prevalence of S. mansoni infection and increasing water alkalinity. Conversely, S. mansoni infection had a significant positive relationship with B. choanomphala abundance, calcium and magnesium concentration. We observed that sites with S. mansoni infection correlated with B. choanomphala populations with a higher mean haplotype diversity score compared to sites found without infection. However, there was no significant relationship between the prevalence of infection and the haplotype diversity scores of the B. choanomphala populations.

\subsection*{5.1 Introduction:}

Schistosomiasis is a parasitic disease caused by the intravascular parasite genus, Schistosoma. Schistosomiasis is a neglected tropical disease (NTD) that affects over 240 million people globally, with over 700 million people being at risk of infection (WHO, 2022b). The disease is endemic in 78 countries worldwide and seriously impacts developing countries, especially sub-Saharan Africa (WHO, 2022a). It is estimated that 3.3 million Disability-Adjusted Life Years (DALYs) were lost in 2010 alone, from urogenital or intestinal schistosomiasis (Hotez et al., 2014). The majority of intestinal schistosomiasis cases are caused by Schistosoma mansoni and its intermediate freshwater snail host, Biomphalaria (Gryseels et al., 2006; Colley \& Secor, 2014). East Africa is a well-known regional hotspot for schistosomiasis with the disease being as prevalent as 18\% in Kenya, 86% in Tanzania and 88% in Uganda (Ngowi, 2020). The high prevalence of S. mansoni infection in East Africa is due to the large number of freshwater environments that Biomphalaria snails can inhabit, with the largest source of freshwater being Lake Victoria (Kazibwe et al., 2006; Steinmann et al., 2006). These favourable habitats combined with poor water hygiene and sanitation standards make the shoreline of Lake Victoria a hot spot for intestinal schistosomiasis

(Kazibwe et al., 2006). Biomphalaria are notoriously invasive and are capable of rapidly expanding their territory due to their high fecundity and ability to self-fertilise (KengneFokam et al., 2016). This rapid expansion can lead to outbreaks of schistosomiasis as selffertilisation and inbreeding leads to genetically homogenous populations at the expense of schistosome resistance (Jarne \& Théron, 2001; Campbell et al., 2010). However, the distribution of S. mansoni is dependent on the ecological requirements of its intermediate host, with the availability of suitable freshwater habitats limiting the potential geographical reach of the parasite (Sturrock, 2001; Steinmann et al., 2006). Biomphalaria populations are known to be sensitive to a variety of abiotic factors in their habitat, which limits what pristine environments they can inhabit (Woolhouse, 1992; Brown, 1994).

At Lake Victoria, two Biomphalaria species, B. choanomphala and B. sudanica have been reported to inhabit the lake shore (Standley et al. 2012; Adriko et al., 2013; Rowel et al., 2015; Mutuku et al. 2021). However, Standley et al. (2011) and Zhang et al. (2018) found that the B. sudanica-like snails in Lake Victoria were genetically more similar to B. choanomphala than to B. sudanica populations found in the rest of Africa. They suggested that the B. sudanica-like snails from Lake Victoria were ecological phenotypes of B. choanomphala. Other studies have described these morphotypes of B. choanomphala as being either "lacustrine" (B. choanomphala) or "non-lacustrine" (B. sudanica-like) due to the former morphotype being commonly found in the lake and the latter morphotype being commonly found in swamps adjacent to the shoreline (Supplementary Figure 5.1; Brown, 1994; DeJong et al., 2001; Kazibwe et al., 2006; Plam et al., 2008; Kazibwe et al., 2010).

Before the advent of molecular identification and diagnostic methods, Webb (1962) and Prentice et al. (1970) were the first to document that B. choanomphala snails at Lake Victoria were capable of transmitting Schistosoma mansoni using traditional morphological identification methods and artificial mouse infection experiments. Subsequent parasitological surveys have consistently found that B. choanomphala has the lowest prevalence of S. mansoni infection when compared to B. pfeifferi, B. stanleyi and B. sudanica (Odongo-Aginya et al., 2008; Adriko et al., 2013; Rowel et al., 2015; Gouvras et al., 2017; Mutuku et al., 2021; Trienekens et al. 2022). Schistosoma mansoni infection can be determined using both traditional cercarial shedding methods (Webbe, 1965) and molecular infection detection methods (Sandoval et al., 2006). Molecular detection methods provide significant advantages over the traditional cercarial shedding method, as they are more time-efficient, can be used with preserved snail tissue, are species specific and are capable of detecting prepatent infection (Kane et al., 2014; Joof et al., 2020). However despite these benefits, molecular detection methods are underutilised in detecting schistosome infection in intermediate snail hosts collected from the field.

In this study we investigate the prevalence of S. mansoni infection in B. choanomphala snails collected from the Kenyan, Tanzanian and Ugandan shorelines of Lake Victoria. We examine genetic diversity in host snail populations around the lake shore and investigate the physicochemical characteristics of our collection sites in order to determine the effect of snail host genetic diversity and abiotic factors on infection prevalence.

5.2 Materials and Methods:

5.2.1 Collection Sites:

Collections were undertaken from 2008 to 2011 and included 170 sites from the Kenyan ($n=35$), Tanzanian ($n=82$) and Ugandan ($n=53$) shorelines of Lake Victoria (Figure 5.1). At each site, five qualitative measurements (B. choanomphala abundance, which morphotype was present, habitat type, water depth and water turbulence) were recorded in situ. Biomphalaria choanomphala abundance was measured as either being absent (0 snails), low (< 10 snails), medium (10-30 snails) or high (>30 snails). When present, B. choanomphala snails were collected using scoops and placed into jars filled with lake water for later processing. Collected snail populations were analysed via shell morphometrics to see whether they exhibited non-lacustrine (morphotype-A) or lacustrine shell (morphotype-B) morphologies as described by Standley et al. (2011) and Chapter 3 (Supplementary Figure 5.1). Habitat type was categorised as being marshlands (a), lake edge (b) or other (c). Water depth was assessed as being shallow ($<10 \mathrm{~cm}$), moderately-shallow ($10 \mathrm{~cm}-30 \mathrm{~cm}$), moderate $(30 \mathrm{~cm}-50 \mathrm{~cm})$, moderately-deep ($50 \mathrm{~cm}-70 \mathrm{~cm}$) and deep (> 70 cm). Water turbulence was classified as being low, medium or high. Alongside the qualitative measurements, the temperature $\left({ }^{\circ} \mathrm{C}\right)$, conductivity $(\mu \mathrm{S})$, total dissolved solids $(\mathrm{g} / \mathrm{L})$, salinity $(\mathrm{g} / \mathrm{L})$ and pH of the water at each site was measured using a portable water meter (Hanna Instruments, Inc., Woonsocket, USA or 430 Enterprise, Jenway Ltd, Stone, UK). At each site, a 15 ml sample of lake water was collected and frozen prior to compositional analysis. Anions (fluoride, chloride, nitrate, phosphate and sulphate) concentrations were determined using ReagentFree Ion Chromatography (RFIC-EG), while cation (calcium, potassium, magnesium and sodium) concentrations were determined by Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Collections were undertaken by Standley et al. (2012) and Rowel et al. (2015). Further information on the collection protocols can be found in Standley et al. (2012), Rowel et al. (2015) and is summarised in Chapter 2.1.

Figure 5.1. Map of the collection sites at Lake Victoria, East Africa (Google, 2022).

5.2.2 Biomphalaria choanomphala Collection, Identification and DNA Extraction:

When found, B. choanomphala snails were identified using conchological identification methods as described by Mandahl-Barth (1962) and Brown (1994). Snails were collected from all sites where B. choanomphala was found and their DNA was extracted using a modified CTAB extraction method (as described in Chapter 2.3.1). Where numbers permitted, 12 snails were extracted per site, while for sites with fewer than 12 individuals all snails were extracted. After extraction, samples were resuspended in $100-200 \mu \mathrm{l}$ of TE, pH 8.0 (10 mM Tris-HCl, 0.1 mM EDTA) buffer and DNA yields were measured using a NanoPhotometer N50 (Implen, München, Germany).

5.2.3 PCR Amplification and Population Genetics of Biomphalaria choanomphala:

Genomic DNA samples from 27 sites were selected to measure the genetic diversity and population structure of the B. choanomphala snails found across Lake Victoria. Chosen sites had a minimum of ten individuals and were evenly distributed along the lakeshore. Population genetic analysis was done using 16S and COI genotyping, which used a modified version of the 16Sar/16Sbr primers designed by Palumbi et al. (1991) and the universal COI primers designed by Folmer et al. (1994; Table 2.1). All PCR reactions were performed using a $25 \mu \mathrm{l}$ reaction volume containing $24 \mu \mathrm{I}$ of PCR master mix (1 U TAQ, $0.2 \mu \mathrm{M}$ primers, $200 \mu \mathrm{M}$ $\mathrm{dNTP}, 1.5 \mathrm{mM} \mathrm{MgCl}_{2}$) and 1μ I of DNA template. The PCR cycling conditions used for both the 16 S and COI primer sets were identical, with an initial denaturation at $96^{\circ} \mathrm{C}$ for 1 minute, followed by 34 cycles of $94^{\circ} \mathrm{C}$ for $1 \mathrm{~min}, 50^{\circ} \mathrm{C}$ for $1 \mathrm{~min}, 72^{\circ} \mathrm{C}$ for 1 min and a final extension at $72^{\circ} \mathrm{C}$ for 10 mins . PCR products were electrophoresed on a 2% agarose gel containing ethidium bromide and observed under UV light, with PCR products purified and sequenced by either the Natural History Museum or using Macrogen's EZ Seq service.

5.2.4 Detecting S. mansoni Infection in Biomphalaria choanomphala:

All of the extracted B. choanomphala samples were tested for S. mansoni infection, first using the $\mathrm{Sm}^{\mathrm{F} / \mathrm{R}}$ primer set designed by Sandoval et al. (2006) and then if found positive, with the ND5 primer set designed by Lu et al. (2016; Table 2.1). The second round of ND5 PCR was used to determine whether the infection present in the snail was caused by S. mansoni or its closely-related sister species, S. rodhaini. The PCR reaction mixture and cycling conditions for the $\mathrm{Sm}^{\mathrm{F} / \mathrm{R}}$ and the ND5 primers were followed precisely as described by Sandoval et al. (2006) and Lu et al. 2016, respectively (further information can be found in Chapter 2.3.3). Alongside the B. choanomphala samples, two negative controls (water and uninfected B. glabrata DNA) and two positive controls (pure S. mansoni DNA and infected B. glabrata DNA) were also included. These controls were provided by Professor Mike Doenhoff, School of Biology, University of Nottingham. Additionally, all samples were tested using the LSU-1iii/LSU-3iii primers (Fontanilla et al. 2017; Table 2.1) to ensure that the DNA was not degraded and was amplifiable. The PCR cycling conditions for these primers was an initial denaturation at $96^{\circ} \mathrm{C}$ for 2 min , followed by 35 cycles of $94^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, 45^{\circ} \mathrm{C}$ for 1 min , $72^{\circ} \mathrm{C}$ for 2 min and a final extension step at $72^{\circ} \mathrm{C}$ for 5 min . All PCR products were electrophoresed on a 2% agarose gel containing ethidium bromide and amplicons were observed under UV light. Schistosoma mansoni infection was confirmed based on whether a diagnostic band was present for both the $\mathrm{Sm}^{\mathrm{F} / \mathrm{R}}$ ($\sim 350 \mathrm{bp}$) and ND5 ($\sim 302 \mathrm{bp}$) primer sets.

5.2.5 Bioinformatics and Statistical Analysis:

Biomphalaria choanomphala sequences were aligned using the Muscle algorithm in the program Seaview v5 (Gouy et al., 2021), with misaligned sections of the 16S and the COI fixed by hand and sites for tree building sites selected using the Gblocks program (Castresana, 2000). Phylogenetic trees were constructed using the Maximum Likelihood method, using a General Time Reversible model incorporating gamma correction (GTR+Г) in the program PhyML v3.1 (Guindon et al., 2010), with bootstrap analysis undertaken using 1000 replicates. DNASP v6 (Rozas et al., 2017) was used to determine haplotype (gene) diversity scores (Hd), nucleotide diversity (π) and to examine population structure among populations between countries using Wright's F-statistics (F_{st}). Pairwise distances were calculated using MEGA-X using the Maximum Composite Likelihood method (Kumar et al. 2018).

Using SPSS v26 (IBM, Armonk, USA), correlations were performed to determine the relationships between the prevalence of S. mansoni infection, snail host haplotype diversity, B. choanomphala abundance and the physicochemical/abiotic factors of Lake Victoria. This was done using a two-tailed bivariate Spearman's rank correlation analysis. Similarly, SPSS v26 was used to perform a Kruskal-Wallis H test with pairwise comparisons, Mann-Whitney U test and Pearson's chi-squared (X^{2}) test with Yates' correction in order to compare the abundance of B. choanomphala, haplotype diversity, prevalence of infection and physicochemical factors between the Kenyan, Tanzanian and Ugandan shorelines of Lake Victoria.

5.2.6 GenBank Accessions:

Both previously published datasets and our datasets used in this study can be accessed on GenBank. The accession numbers for the Standley et al. (2014) B. choanomphala 16S gene sequences are HM768950-HM769131, and HM769132-HM769258 for the COI gene. Likewise, our B. choanomphala 16S gene sequences are OQ924869-OQ924928 and OQ849937-OQ849996 for the COI gene.

5.3 Results:

5.3.1 Biomphalaria choanomphala Abundance at Lake Victoria:

Biomphalaria choanomphala was present at 107 of the 170 sites surveyed at Lake Victoria (Supplementary Table 5.1). Of these 107 sites, 44 had a low abundance (<10) of B. choanomphala, 25 had a medium abundance (10-30), and 38 had a high abundance (> 30); Table 5.1). The Ugandan sites had the highest abundance of B. choanomphala, followed by the Tanzanian sites and the Kenyan sites (Table 5.1). When categorised by morphotype, we found 64 sites had morphotype-A and 57 sites had morphotype-B (Table 5.1). Only 14 sites had both morphotypes present, with the majority of these sites being lake-marsh hybrid ecosystems on the Ugandan and the Tanzanian shorelines (Table 5.1). When partitioned by country, we found morphotype-A was more prevalent than morphotype-B at the Kenyan and Tanzanian sites, while morphotype-B more prevalent at the Ugandan sites (Table 5.1). The distribution of B. choanomphala along the shoreline of Lake Victoria is shown in Figure 5.2.

Table 5.1. Summary of the abiotic factors collected across the Kenyan ($n=35$), Tanzanian ($n=82$) and Ugandan ($n=53$) sites of Lake Victoria.

	Category	Number of sites		
		Kenya	Tanzania	Uganda
Biomphalaria Abundance	No Snails	14	37	12
	Low (<10)	9	24	11
	Medium (11-30)	9	4	12
	High (> 30)	3	17	18
Ecophenotypes	No Snails	14	37	12
	Only Morphotype-A	19	32	13
	Only Morphotype-B	2	16	39
	Both Morphotypes	0	3	11
Habitat	Marsh (a)	12	30	9
	Lake (b)	14	35	36
	Other (c)*	9	17	8
Water Depth	Shallow (<10cm)	15	48	22
	Mod-Shallow (10-30cm)	3	4	8
	Moderate ($30-50 \mathrm{~cm}$)	7	12	9
	Mod-Deep ($50-70 \mathrm{~cm}$)	2	2	7
	Deep (> 70cm)	7	8	5
	Missing (N/A)	1	8	2
Water Turbulence	Low	28	47	12
	Medium	2	7	9
	High	4	9	9
	Missing (N/A)	1	19	23

Note: * Breakdown of the other (c) habitats as follows: Rice paddy: 3; Pond: 8; Ditch/Canal: 1; Lake/Marsh: 16 and other combination: 6 .

Figure 5.2. Map of collection sites at Lake Victoria showing where B. choanomphala snails were found and the incidence of S. mansoni infection in these snail populations. Collection sites with no B. choanomphala are shown with a cross. White circles denote sites where B. choanomphala snails were found but were uninfected with S. mansoni. Black circles denote sites where S. mansoni infected B. choanomphala snails were found.

5.3.2 Prevalence of S. mansoni Infection at Lake Victoria:

Of the 107 sites with B. choanomphala present, we found S. mansoni infection at 35.5% of sites (38 of 107 sites; Figure 5.2). All of our $\mathrm{Sm}^{\mathrm{F} / \mathrm{R}}$ positive Biomphalaria samples were confirmed to be infected with S. mansoni as every sample gave a diagnostic band length of ~302bp when tested with the ND5 primer set. When partitioned by country, the Tanzanian shoreline had the highest number of infected sites, with 40% of the sites with B.
choanomphala snails present (18/45) infected with S. mansoni. This was followed closely by the Ugandan shoreline with 39% (16/41) of sites with B. choanomphala infected and the Kenyan shoreline with only $19 \%(4 / 21)$ of sites with B. choanomphala infected (Figure 5.2, Supplementary Table 5.1). The sites with the highest number of infected B. choanomphala snails were in the Sengerema district of Tanzania, with T027b (7 of 10 snails) and T033a (4 of 10 snails) having the highest prevalence of infection at Lake Victoria. The remaining Lake Victorian sites had a maximum of two (or less) infected snails (Supplementary Table 5.1). Of the 107 sites with B. choanomphala present, 40 were marshlands (a), 50 were from the lake edge (b) and the remaining 17 were from a mixture of ecosystems (c) such as canals, paddies and ponds bordering the lake and hybrid environments. Of the 40 marshland sites (a), 14 had infection present (35%), while 16 of the 50 lake edge sites (b) had infection present (32%) and the mixed sites (c) had infection present at 8 of the 17 sites (47%). A chisquare (X^{2}) analysis found there was no significant difference in the amount of infection found at each of the three ecosystems ($p=0.53$).

The overall prevalence of S. mansoni infection for Lake Victoria was 9.3%, with 59 of the 635 B. choanomphala snails testing positive for S. mansoni infection. When partitioned by country, we found the Tanzanian shoreline of Lake Victoria had the highest mean prevalence of infection with 13.1% (31/237) of snails infected, followed by the Ugandan shoreline with 8.2% (22/269) and the Kenyan shoreline with 4.7% ($6 / 129$). A chi-square (X^{2}) analysis found there was a significantly higher number of infected B. choanomphala snails at the Tanzanian and Ugandan shorelines when compared to the Kenyan shoreline, $\mathrm{X}^{2}(2, n=$ $635)=7.73, p=0.02$. However, there was no significant difference between the number of infected B. choanomphala snails between the Tanzanian and Ugandan shorelines ($p=0.09$). When categorised by morphotype, the morphotype-A variants of B. choanomphala had an infection prevalence of 7.8% (27/347), while the morphotype-B form had an infection prevalence of 10.8% ($31 / 288$). However, there was no significant difference in the prevalence of S. mansoni infection between the two morphotypes of B. choanomphala, $X^{2}(1, n=635)=1.35, p=0.246$.

5.3.3 Host Snail Genetic Diversity and its Effect on Infection Prevalence

Of the 27 sites selected for host snail population genetic analysis, 168 unique 16 S haplotypes ($n=315$) and 113 unique COI haplotypes ($n=306$) were found (Supplementary Table 5.2; Supplementary Figure 5.2). The mean haplotype diversity (Hd) scores of the 27 sites were $0.845(\pm 0.16)$ for 16 S , and $0.787(\pm 0.17)$ for COI. The mean nucleotide diversity (π) value for all of the Lake Victorian sites were $0.015(\pm 0.009)$ for 16 S , and $0.008(\pm 0.005)$ for COI. The overall range of pairwise distances of the 27 sites genotyped at Lake Victoria was 0.0-3.5\% for the 16 S and $0.0-4 \%$ for the COI.

When proportioned by shoreline, we found the Ugandan shoreline had the highest number of haplotypes with 9416 S haplotypes ($n=150$) and 60 COI haplotypes ($n=156$). Of the 12 Ugandan sites sampled, the mean Hd score was $0.883(\pm 0.19)$ for $16 S$ and $0.747(\pm 0.19)$ for COI. The mean nucleotide diversity value for Ugandan sites was $0.018(\pm 0.01)$ for 16 S , and $0.007(\pm 0.005)$ for COI. Pairwise distances for the Ugandan sites were $0.0-3.1 \%$ for 16 S and $0.0-3.9 \%$ for COI. The Tanzanian shoreline had the second highest number of haplotypes with $5016 S$ haplotypes ($n=93$) and 39 COI haplotypes ($n=93$). Of the 9 Tanzanian sites sampled, the 16 S and COI had a mean Hd score of $0.863(\pm 0.09)$ and $0.802(\pm 0.16)$, respectively. The mean nucleotide diversity value for Tanzanian sites was $0.016(\pm 0.008)$ for $16 S$, and $0.008(\pm 0.005)$ for COI. Pairwise distances for the Tanzanian sites were 0.0-3.4\% for 16 S and $0.0-3.8 \%$ for COI. Lastly, the Kenyan shoreline had the lowest number of haplotypes with 2416 S haplotypes ($n=62$) and 23 COI haplotypes ($n=64$). Of the six Kenyan sites sampled, the mean Hd score was $0.748(\pm 0.16)$ for 16 S and $0.844(\pm 0.07)$ for COI. The mean nucleotide diversity value for Kenyan sites was $0.007(\pm 0.003)$ for 16 S , and $0.009(\pm$ 0.006) for COI. Pairwise distances for the Kenyan sites were 0.0-1.9\% for 16S and 0.0-1.2\% for COI.

Next, when comparing the amount of haplotype diversity (Hd) at the 13 sites found with infection against the 14 sites found without infection, we found sites with infection had a higher mean Hd score than sites without infection (Table 5.2). The mean Hd score of the 13 B. choanomphala collection sites with infection was $0.881(\pm 0.1)$ for 16 S and $0.841(\pm 0.11)$ for COI, while the mean Hd score of the 14 collection sites with no infection was 0.814 (\pm 0.2) for 16 S and $0.737(\pm 0.19)$ for COI (Table 5.2). However, a Mann-Whitney U test found this difference in mean Hd score was not significant for either the $16 \mathrm{~S}(\mathrm{U}=93.5, p=0.903)$ or the COI ($U=118.5, p=0.182$). When partitioned by country, we find not all of the countries share this trend of sites with infection having a higher mean Hd score than sites without infection. For example, the mean Hd score of the 16 S was higher for sites found without infection (0.933) than sites found with infection (0.828) on the Tanzanian shoreline (Table 5.2). Likewise, the mean Hd score of the COI was higher for sites found without infection (0.879) than sites found with infection (0.774) on the Kenyan shorelines (Table 5.2). A Spearman's rank correlation test found that there was positive correlation between haplotype diversity scores and the prevalence of S. mansoni infection for both the 16 S ($R_{s}=0.003$) and $\mathrm{COI}\left(R_{s}=0.229\right)$. However, the correlations between haplotype diversity scores and the prevalence of S. mansoni infection were not statistically significant for both the 16S ($p=0.989$) and COI ($p=0.251$).

Table 5.2. Comparing the mean haplotype diversity (Hd) scores of Lake Victorian sites found with and without S. mansoni infection.

	Mean Haplotype Diversity Scores (\pm SD)			
	16 S		COI	
	Uninfected	Infected	Uninfected	Infected
Overall mean ($n=27)$	$0.814(+0.2)$	$0.881(\pm 0.1)$	$0.737(+0.2)$	$0.841(\pm 0.1)$
Kenya ($n=6)$	$0.691(\pm 0.1)$	$0.862(\pm 0.1)$	$0.879(\pm 0.0)$	$0.774(\pm 0.1)$
Tanzania ($n=9)$	$0.933(\pm 0.0)$	$0.828(\pm 0.1)$	$0.715(\pm 0.2)$	$0.846(\pm 0.1)$
Uganda ($n=9)$	$0.833(\pm 0.0)$	$0.953(\pm 0.0)$	$0.666(\pm 0.2)$	$0.862(\pm 0.1)$

Next, when measuring the population structure (F_{st}) between B. choanomphala populations using the 16 S , we found the population structure was highest among the Kenyan and Ugandan populations (0.305), followed by the Tanzanian and Ugandan populations (0.242), while the Kenyan and Tanzanian populations had the lowest amount of structure (0.098; Table 5.3). Likewise for the COI, we found the population structure was highest among the Kenyan and Ugandan populations (0.195). However, the second highest $\mathrm{F}_{\text {st }}$ value was between the Kenyan and Tanzanian populations (0.118), followed by the Tanzanian and Ugandan populations (0.067; Table 5.3). Lastly, we mapped the distribution of private and shared 16S and COI haplotypes of B. choanomphala throughout Lake Victoria (Figure 5.3). The mean percentage of private haplotypes found within each B. choanomphala population was 46.7% for 16 S haplotypes and 29.5% for COI haplotypes, while the mean percentage of shared haplotypes was higher for both the 16S (53.3\%) and COI (70.5\%). When partitioned
by country, we found the Kenyan sites had the highest mean percentage of shared haplotypes with 71% for the 16 S and 71.9% for the COI. Next, was the Tanzanian sites had the second highest mean percentage of shared haplotypes with 58% for the 16 S and 70.5% for the COI. The Ugandan sites had the lowest mean percentage of shared haplotypes with 43% for the 16 S and 69.9% for the COI. When comparing the number of shared haplotypes between B. choanomphala populations found with and without S. mansoni infection, we found sites with infection had more shared haplotypes for both the 16S (58.6\%) and COI (78.9\%) than sites found without infection (16S: 47.2\%; COI: 61.1\%; Figure 5.3). However, when partitioned by country, we found on average the uninfected Kenyan sites had more shared haplotypes for both the $16 \mathrm{~S}(75.6 \%)$ and $\mathrm{COI}(70 \%)$ than infected sites (16S: 61.9\%; COI: 72.7\%). Conversely, on average the infected Tanzanian sites had more shared haplotypes for both the 16 S (61.9%) and COI (78.2%) than uninfected sites ($16 \mathrm{~S}: 50 \%$; COI: 54.8%). Likewise, on average the infected Ugandan sites had more shared haplotypes for both the $16 \mathrm{~S}(55 \%)$ and $\mathrm{COI}(81.7 \%)$ than uninfected sites ($16 \mathrm{~S}: 29.6 \%$; COI: 56.8%).

Table 5.3. Comparing the $F_{s t}$ values of B. choanomphala populations across Lake Victoria.

Population 1	Population 2	F $_{\text {st }}$ Value	
		16 S	COI
Kenya	Tanzania	0.098	0.118
Kenya	Uganda	0.305	0.195
Tanzania	Uganda	0.242	0.067

Figure 5.3. Distribution of 16 S and CO haplotypes of B. choanomphala populations ($n=27$) found in Lake Victoria. Private haplotypes are coloured white in the pie chart, while shared haplotypes are shaded. Sites found without S. mansoni infection are shown with a white dot ($n=14$), while sites found with infection are shown with a black dot ($n=13$).
5.3.4 Abiotic Factors, B. choanomphala Abundance and S. mansoni Infection:

When comparing the physicochemical factors between the Kenyan and Tanzanian sites, a Kruskal-Wallis test with post hoc pairwise comparisons (Bonferroni adjusted) found the median temperature, fluoride, nitrate and sulphate levels were significantly higher at the Kenyan sites than at the Tanzanian sites (Table 5.4; Supplementary Table 5.3). For the Kenyan and Ugandan sites, the median conductivity, TDS, salinity, fluoride, nitrate, phosphate, sulphate and sodium levels were significantly higher at the Kenyan sites than at the Ugandan sites (Table 5.4). Finally, for the Tanzanian and Ugandan sites, the median conductivity, TDS, salinity, fluoride, sulphate and sodium levels were significantly higher at the Tanzanian sites than at the Ugandan sites (Table 5.4). Conversely, the median temperature and potassium levels were significantly higher at the Ugandan sites than at the Tanzanian sites (Table 5.4).

Table 5.4. Pairwise comparison of the Kruskal-Wallis analysis comparing the prevalence of S. mansoni infection, B. choanomphala abundance and abiotic factors of the Kenyan ($n=35$), Tanzanian ($n=82$) and Ugandan ($n=53$) collection sites.

	Kenya - Tanzania		Kenya - Uganda		Tanzania - Uganda	
	H(2)	p value	H(2)	p value	H(2)	p value
Infection	-	Not sig.	-	Not sig.	-	Not sig.
B. choan Abundance	-	Not sig.	24.96	0.045	-26.89	0.004
Morphotype-A Abund.	-	Not sig.	23.54	0.033	-	Not sig.
Morphotype-B Abund.	-	Not sig.	58.51	0.000	-48.59	0.000
Temperature (${ }^{\circ} \mathrm{C}$)	27.38	0.004	-	Not sig.	36.48	0.001
Conductivity ($\mu \mathrm{S}$)	-	Not sig.	62.71	0.000	44.82	0.000
pH	-	Not sig.	-	Not sig.	-	Not sig.
Total Dissolved Solids (g/L)	-	Not sig.	47.22	0.000	59.66	0.000
Salinity (g/L)	-	Not sig.	32.79	0.000	280.02	0.000
Fluoride (F-)	22.58	0.027	69.77	0.000	47.19	0.000
Chloride (Cl^{-})	-	Not sig.	-	Not sig.	-	Not sig.
Nitrate ($\mathrm{NO}_{3}{ }^{-}$)	19.64	0.031	25.30	0.013	-	Not sig.
Phosphate ($\mathrm{PO}_{4}{ }^{3-}$)	-	Not sig.	25.16	0.021	-	Not sig.
Sulphate ($\mathrm{SO}_{4}{ }^{3-}$)	290.01	0.002	59.86	0.000	30.83	0.000
Sodium (Na^{+})	-	Not sig.	45.43	0.000	270.02	0.003
Magnesium ($\mathrm{Mg}_{2}{ }^{+}$)	-	Not sig.		Not sig.	-	Not sig.
Calcium ($\mathrm{Ca}_{2}{ }^{+}$)	-	Not sig.	-	Not sig.	-	Not sig.
Potassium (K^{+})	-	Not sig.	-	Not sig.	-20.71	0.030

Note: Non-significant differences were greyed out; H (df) value is the result from the KruskalWallis H test. The p values displayed are adjusted using Bonferroni corrections.

When comparing prevalence of infection between countries, a Kruskal-Wallis test showed there was no significant difference in the number of sites found with S. mansoni infection between the Kenyan ($n=35$), Tanzanian ($n=82$) and Ugandan ($n=53$) shorelines, $H(2)=4.05, p$ $=0.132$. However, a Spearman's rank correlation analysis found there were several significant relationships between infection prevalence and B. choanomphala abundance (0.445), morphotype-B abundance (0.306), morphotype-A abundance (0.271), $\mathrm{pH}(-0.199)$, calcium (0.184) and magnesium (0.175 ; Table 5.5).

When comparing the abundance of B. choanomphala between countries, a Kruskal-Wallis test found Ugandan sites had a significantly higher abundance of B. choanomphala compared to the Kenyan and Tanzanian sites (Table 5.4). When categorised by morphotype, we found the abundance of morphotype-A snails was significantly higher only at Kenyan sites compared to the Ugandan, while Tanzanian and Ugandan sites had similar amounts (Table 5.4). However, the abundance of morphotype-B snails was significantly higher at Ugandan sites compared to both Kenyan and Tanzanian sites (Table 5.4). A Spearman's rank correlation analysis found B. choanomphala abundance had several significant relationships with chloride (0.354), magnesium (0.322), phosphate (0.319), potassium (0.316), pH (0.311), calcium (0.238), nitrate (0.215) and water turbulence (- 0.214; Table 5.5). Likewise, morphotype-A abundance had a significant negative relationship with morphotype-B abundance (-0.177) and vice versa. (Table 5.5). This relationship indicates that each morphotype prefers inverse environmental factors to one another. For example, morphotype-A abundance had a significant positive relationship with sulphate (0.508), water conductivity (0.421), nitrate (0.404), sodium (0.402), calcium (0.398), phosphate (0.394), chloride (0.379), TDS (0.336), magnesium (0.307), salinity (0.252) and potassium (0.241). Whereas morphotype-B abundance has a significant negative relationship with sulphate (-0.359), water conductivity (-0.363), nitrate (-0.181), sodium (-0.316), TDS (0.379), salinity (-0.256) and fluoride (- 0.391; Table 5.5). Moreover, morphotype-A abundance had a significant negative relationship with water turbulence (- 0.447), pH (0.386) and water depth (-0.170), while morphotype-B abundance had a significant positive relationship with water turbulence (0.269) and water depth (0.161 ; Table 5.5).

Table 5.5. Spearman's rank correlation coefficients relating prevalence of S. mansoni infection, B. choanomphala abundance and abiotic factors of the Kenyan ($n=35$), Tanzanian ($n=82$) and Ugandan ($n=53$) collection sites.

	$\begin{gathered} \text { Sites } \\ (n=) \end{gathered}$	Correlation Coefficient			
		Infection	Abundance	Morphotype- A	MorphotypeB
Infection	170	-	-	-	-
B. choan Abund.	170	$0.445^{* *}$	-	-	-
Morphotype-A Abund.	170	$0.271{ }^{* *}$	$0.619{ }^{* *}$	-	-
Morphotype-B Abund.	170	0.306 **	0.563 **	-0.177*	-
Conductivity	166	0.064	0.125	$0.421^{* *}$	-0.363 **
pH	165	-0.199 *	- $0.311^{* *}$	- $0.386{ }^{* *}$	- 0.032
Temperature	165	0.075	0.067	0.063	0.041
TDS	164	- 0.023	0.050	0.336 **	- 0.379 **
Water Depth	159	0.009	- 0.058	-0.170 *	0.161 *
Salinity	154	0.060	0.064	$0.252{ }^{* *}$	-0.256**
Fluoride (F-)	141	- 0.092	-0.144	0.154	-0.391**
Chloride (Cl^{-})	141	0.154	$0.354^{* *}$	0.379 **	0.013
Phosphate ($\mathrm{PO}_{4}{ }^{3-}$)	141	0.113	$0.319^{* *}$	$0.394{ }^{* *}$	- 0.064
Sulphate ($\mathrm{SO}_{4}{ }^{-}$)	141	- 0.004	0.157	0.508 **	-0.359**
Sodium (Na^{+})	140	0.131	0.139	0.402 **	-0.316**
Magnesium ($\mathrm{Mg}_{2}{ }^{+}$)	140	0.175 *	$0.322{ }^{* *}$	0.307 **	0.009
Calcium ($\mathrm{Ca}_{2}{ }^{+}$)	140	0.184 *	$0.238{ }^{* *}$	$0.398{ }^{* *}$	-0.155
Nitrate ($\mathrm{NO}_{3}{ }^{-}$)	134	- 0.041	0.215 *	$0.404{ }^{* *}$	-0.181*
Potassium (K^{+})	139	0.159	0.316 **	0.241 **	0.140
Water Turbulence	127	- 0.105	-0.214*	- $0.447^{* *}$	$0.268{ }^{* *}$

Note: Non-significant correlations were greyed out; * indicates a significance of $p<0.05$ and ** indicates a significance of $p<0.001$.

5.1 Discussion:

Our study investigated the prevalence of S. mansoni infection in B. choanomphala snails in Lake Victoria and whether certain biotic (snail host abundance and genetic diversity) and abiotic (temperature, pH , physiochemical parameters etc.) had an effect on infection prevalence. Standley et al. (2014) reported that B. choanomphala snails found at Lake Victoria had high amounts of genetic diversity, high levels of both inter- and intrapopulation diversity, low levels of gene flow between populations and low levels of inbreeding. They theorised that this high level of genetic diversity could be caused by several factors relating to the environment (homogenous habitats), human activity (mass treatment and snail control programs) and S. mansoni infection. However, Standley et al. (2014) were unable to examine whether S. mansoni infection prevalence was influenced by B. choanomphala population structure due to the lack of data on whether a snail was
infected or not. Our study provides this missing infection data and incorporates it with host genetic diversity, host abundance and abiotic/physiochemical datasets.

5.4.1 Prevalence of S. mansoni infection in B. choanomphala snails in Lake Victoria

 Our study found a mean prevalence of S. mansoni infection of 9.3% in B. choanomphala snails at Lake Victoria, with the highest prevalence of infection observed on the Tanzanian shoreline with 13.1%, followed by the Ugandan shoreline with 8.2% and the Kenyan shoreline with 4.7%. Our study found a higher mean prevalence of S. mansoni infection when compared to previous parasitological studies. Previously, Gouvras et al. (2017) reported 1.2% of snails on the Tanzanian shoreline were shedding cercariae, while 1.8-2.1\% were shedding on the Ugandan shoreline (Odongo-Aginya et al., 2008; Rowel et al., 2015) and 0.7-1.5\% were shedding on the Kenyan shoreline (Mutuku et al., 2019; Odero et al., 2019). The reason for this increase in infection prevalence is most likely attributed to the use of molecular methods to detect infection in the present study rather than the traditional cercarial shedding method. Molecular detection methods tend to show a higher number of infected snails as they are able to detect infection in both prepatent and actively shedding snails and are thus less likely to give false negative results (Hamburger et al., 2013; Lu et al., 2016; Joof et al., 2020).When categorised by morphotype, we found the morphotype-B form of B. choanomphala had a higher mean infection prevalence (10.8\%) than the morphotype-A form (7.8\%). Similarly, a Spearman's rank test found morphotype-B variants of B. choanomphala (0.306) had a stronger relationship with infection than the morphotype-A variant (0.271). However, a chi squared analysis found this difference in infection prevalence was not statistically significant. Consistent with our findings, Mutuku et al. (2021) reported that S. mansoni infection and cercarial production was significantly higher in the morphotype-B forms of B. choanomphala than the morphotype-A form, regardless of miracidium dosage or whether the eggs came from allopatric or sympatric sources. However, Rowel et al. (2015) and Gouvras et al. (2017) found the opposite trend, with the morphotype-A form of B. choanomphala having a higher S. mansoni infection prevalence than the morphotype-B form.
5.4.2 The Effect Abiotic Factors Have on B. choanomphala Abundance and Shell Morphology: A Spearman's rank correlation test found B. choanomphala abundance had a significant positive relationship with calcium, chloride, magnesium, nitrate, phosphate and potassium levels in the water. Conversely, B. choanomphala abundance had a significant negative relationship with high water turbulence and pH levels (B. choanomphala abundance decreased with increasing alkalinity). When comparing B. choanomphala abundance between the Kenyan, Tanzanian and Ugandan sites, we found the Ugandan sites had a significantly higher amount of B. choanomphala snails compared to the Kenyan and Tanzanian sites. When categorised by morphotype, the majority of the B. choanomphala snails collected from the Ugandan shoreline were morphotype-B, while the majority of the B. choanomphala snails collected from the Kenyan and Tanzanian shorelines were morphotype-A. This difference in morphology could be explained by the difference in abiotic factors between the Kenyan, Tanzanian and Ugandan sites, as a Kruskal-Wallis test found
the Kenyan and Tanzanian sites had significantly higher levels of nitrate, potassium, salinity, sodium, sulphate, TDS and water conductivity than the Ugandan sites. Likewise, a Spearman's rank analysis found morphotype-A abundance had a positive relationship with higher levels of nitrate, potassium, salinity, sodium, sulphate, TDS and water conductivity, while morphotype-B abundance had a negative relationship with higher levels of nitrate, salinity, sodium, sulphate, TDS and water conductivity.

A Spearman's rank analysis found morphotype-A abundance had a negative relationship with water depth and water turbulence, while morphotype-B abundance had a positive relationship with water depth and water turbulence. The morphotype-A form of B. choanomphala was predominately found in shallow and lentic (still) environments, while the morphotype-A form was predominately found in deep lotic (flowing) environments. Dillon (2019) found the American Planorbidae species, Helisoma trivolvis also exhibit different ecological phenotypes depending on whether they inhabited shallow, lentic waters, or deep, lotic waters. Dillon (2019) hypothesised that these two contrasting shell morphologies helped the snails adapt to their environment, as the morphotype found in the shallow, lentic waters use their shell to trap air, in order to regulate their buoyancy and reach floating vegetation. Conversely, the morphotype found in deep, lotic waters use their wide aperture/foot to grip onto rocks while grazing in flowing water. This functionality could be analogous to the B. choanomphala ecophenotypes found in Lake Victoria.

5.4.3 The Factors Affecting Infection Prevalence:

A Spearman's rank correlation test found S. mansoni infection in B. choanomphala snails had a significant positive relationship with B. choanomphala abundance, calcium levels and magnesium levels. Conversely, infection prevalence had a significant negative correlation with pH levels of the lake water (S. mansoni infection decreased with increasing alkalinity). Rowel et al. (2015) also observed this trend, with S. mansoni infection having a significant positive relationship with Biomphalaria abundance and a significant negative relationship with alkaline pH levels. However, B. choanomphala abundance itself also has a significant positive relationship with calcium and magnesium levels, as well as a significant negative relationship with alkaline pH levels. Therefore, it is likely that B. choanomphala abundance is the only direct factor influencing infection prevalence as the other factors indirectly affect infection via Biomphalaria abundance. However, we found the Ugandan shoreline had a significantly higher abundance of B. choanomphala snails than the Tanzanian shoreline, yet the Tanzanian shoreline had a higher number of infected B. choanomphala snails than the Ugandan shoreline. This is odd as we found no significant difference in other factors affecting infection (calcium, magnesium and pH levels) between the Tanzanian and Ugandan shorelines which could explain this increase. Likewise, Ngowi, (2020) found reports from 1941 to 2019 that showed that Tanzania (86%) and Uganda (88%) have a similar prevalence of schistosomiasis within their respective populations. Therefore, other socioeconomic, behavioural or ecological factors not measured in this study could be increasing the frequency and spread of S. mansoni infected B. choanomphala within Tanzania. It is important to acknowledge that our analysis lacks any human-based data for each of the sites investigated.

5.4.4 The Effects of Snail Host Genetic Diversity on Infection:

We found the B. choanomphala populations found on the Ugandan shoreline had the highest genetic diversity, followed by the Tanzanian and Kenyan populations. When we compared the level of genetic diversity at sites with and without S. mansoni infection, we found sites with infection had a higher mean haplotype diversity score (16 S : 0.881 ; COI: 0.841) than sites without infection (16S: $0.814 ; \mathrm{COI}: 0.737$). A Spearman's rank correlation test found both the 16S and COI Hd scores correlated positively with infection prevalence, but this relationship between haplotype diversity and infection was not statistically significant. When we mapped the distribution of the 16 S and COI haplotypes across Lake Victoria, we found infected B. choanomphala populations on average had fewer private and more shared 16 S and COI haplotypes than B. choanomphala populations without infection (Figure 5.3), indicating there is greater amounts of gene flow occurring among infected sites than among uninfected sites. Our findings are contradictory to previous studies that found a link between lower genetic diversity within a host population and increased susceptibility to parasite infection (Coltman et al., 1999; Jarne \& Théron, 2001; Campbell et al., 2010). One possible explanation for this contradiction could be due to the higher amounts of gene flow previously mentioned. This is because the migration of B. choanomphala snails between sites helps to maintain a high amount of genetic diversity (via gene flow) and could explain why sites with infection have higher amounts of genetic diversity than sites without infection.

An alternatively explanation for this contradiction could be explained by the 'coevolution selective sweep' phenomenon, where a host-parasite relationship results in selective sweeps of host resistance adaptations and parasite counter-adaptations (Kawecki et al., 2012; Auld \& Tinsley, 2015). This causes a reduction in genetic diversity as individuals without this adaption (e.g. S. mansoni resistance) are less successful than those who have it. Populations with high genetic diversity and high S. mansoni infection prevalence may not have undergone this selective sweep, while populations with low genetic diversity and low infection prevalence could have. Another explanation could be due to whether non-random mating behaviour is being exhibited or not. This is because non-random mating behaviour is involved in maintaining resistance to S. mansoni, and ultimately reduces the genetic diversity of a population (Webster \& Gower, 2006). Populations with high genetic diversity and high infection levels may not exhibit non-random mating behaviour, favouring random mating as it promotes genetic diversity over S. mansoni resistance, resulting in longer life span, higher fecundity, and more successful offspring (Sandland et al., 2007). Conversely, populations with low genetic diversity and low infection levels may exhibit this non-random mating behaviour, favouring resistance over genetic diversity. Overall, the relationship between S. mansoni and Biomphalaria snails is complex and can depend on many factors such as the genetic constitution of the snails, the environment in which they live, and the prevalence and virulence of S. mansoni within an area.

Supplementary Figure 5.1. Morphological examples of non-lacustrine (morphotype-A) and lacustrine (morphotype-B) forms of B. choanomphala found at Lake Victoria. The shells are viewed from the apertural (left) and apical (right) angle.

Supplementary Figure 5.2. Median-joining network of the gapless 16S (top) and the gapless COI (bottom) haplotypes observed at Lake Victoria. Adapted from Standley et al. 2014 and includes the 23 new 16S haplotypes (H183-205) and the six new COI haplotypes (H128-133) from the Rowel et al. 2015 dataset. Haplotypes are coloured based on location.

Supplementary Table 5.1. Site information of Lake Victoria collections performed by Standley et al. (2012) and Rowel et al. (2015).

	Extracted Individuals	Infected	Latitude	Longitude
K001a	11	2	-0.073	34.058
K001b	0	0	-0.073	34.058
K002a	11	1	-0.110	34.065
K003a	4	0	-0.187	34.387
K003b	0	0	-0.187	34.387
K004b	4	2	-0.141	34.594
K005c	5	0	-0.420	34.207
K006a	10	0	- 0.434	34.171
K007a	4	0	- 0.431	34.129
K007b	0	0	- 0.431	34.129
K008a	8	0	- 0.398	34.160
K010b	0	0	-0.381	34.213
K011c	4	0	-0.453	34.323
K012b	2	0	-0.474	34.288
K013a	0	0	- 1.010	34.130
K013b	12	0	-1.010	34.130
K014b	0	0	-1.001	34.099
K015a	5	0	-0.856	34.187
K016b	0	0	- 0.817	34.119
K017a	4	0	- 0.726	34.058
K018c	0	0	-0.538	34.164
K019a	6	0	- 0.437	34.015
K020b	11	0	-0.523	34.455
K021a	4	0	- 0.354	34.663
K021b	0	0	-0.354	34.663
K022c	2	0	- 0.312	34.848
K023c	0	0	- 0.226	34.967
K024c	0	0	-0.175	34.936
K025c	0	0	-0.171	34.907
K026c	0	0	- 0.156	34.850
K028b	2	1	-0.105	34.718
K029b	12	0	- 0.096	34.749
K030b	3	0	- 0.328	34.267
K032c	0	0	- 0.181	34.263
K033a	5	0	0.099	33.968
T001c	11	1	-2.713	32.894
T002a	6	0	-2.726	32.870
T003c	5	0	-2.643	32.960
T004c	4	1	-2.531	32.901
T005c	4	0	-2.414	32.941
T006a	8	1	- 2.405	32.950
T006b	0	0	- 2.405	32.950
T007b	0	0	-2.502	32.880
T008c	0	0	-2.585	33.390
T009a	3	0	-2.525	33.395
T009b	0	0	-2.526	33.395

T010c	0	0	- 2.588	33.415
T011b	11	0	- 2.452	33.517
T012a	0	0	- 2.262	33.809
T013b	0	0	- 2.168	33.351
T014a	0	0	- 2.112	33.210
T014b	5	2	-2.112	33.210
T015a	4	1	- 2.128	33.048
T016a	11	0	- 2.117	33.071
T017b	4	0	-2.124	33.065
T018a	4	1	- 2.018	33.103
T019c	3	0	- 1.996	33.111
T020a	4	0	- 1.984	33.018
T021a	4	0	-1.943	32.861
T022a	3	0	- 2.048	33.312
T023a	4	1	- 2.131	33.328
T024a	0	0	- 2.157	33.477
T025c	3	1	- 2.080	33.742
T026a	11	2	-2.535	32.755
T027b	10	7	- 2.546	32.542
T028c	0	0	- 2.538	32.233
T029a	1	1	-2.507	32.015
T030b	5	0	- 2.494	31.986
T031b	5	0	- 2.461	31.984
T032b	1	0	- 2.440	32.010
T033a	10	4	- 2.405	32.059
T034a	4	1	- 2.348	32.040
T035b	0	0	- 2.383	31.967
T036a	11	2	-2.407	31.945
T037b	4	2	- 2.415	31.923
T038b	0	0	- 2.436	32.411
T038b	3	0	- 2.436	32.411
T039c	0	0	- 2.539	32.840
T040c	10	0	- 2.528	32.895
T041a	0	0	- 1.962	33.530
T042a	4	0	- 1.956	33.467
T042b	0	0	- 1.956	33.467
T043a	2	1	-2.047	33.381
T043b	0	0	-2.047	33.381
T043c	0	0	- 2.047	33.381
T044b	2	0	-2.015	33.386
T044c	0	0	- 2.015	33.386
T045b	2	0	- 1.984	33.433
T047a	4	0	- 1.809	33.412
T047b	0	0	- 1.809	33.412
T048a	3	0	- 1.908	33.397
T048b	0	0	- 1.908	33.397
T049b	0	0	-1.847	33.466
T050a	0	0	- 1.782	33.622
T050b	0	0	- 1.782	33.622
T051b	0	0	-1.680	33.541

T052b	0	0	-1.677	33.618
T053a	0	0	-1.683	33.687
T053b	0	0	-1.683	33.687
T054b	0	0	-1.605	33.695
T056b	0	0	- 1.496	33.739
T057b	4	0	- 1.330	33.813
T059b	0	0	- 1.454	33.856
T060a	0	0	- 1.498	33.895
T060b	0	0	-1.498	33.895
T061c	4	1	-1.599	33.913
T062c	0	0	-1.516	33.821
T063c	4	0	-1.526	33.832
T064a	10	0	-1.347	33.970
T064b	0	0	-1.347	33.970
T065c	0	0	- 1.401	34.134
T066b	5	0	-1.306	33.955
T067a	4	0	-1.125	33.999
T068b	9	1	- 1.038	34.085
T069b	0	0	-1.193	33.943
T070a	4	0	-1.255	33.868
T070b	0	0	-1.255	33.868
U001b	3	0	0.078	32.448
U002b	0	0	-0.234	32.575
U003b	0	0	- 0.352	32.572
U004c	0	0	-0.320	32.576
U005b	11	0	- 0.364	32.295
U006a	2	0	- 0.334	32.332
U007c	0	0	-0.325	32.309
U008b	4	0	- 0.511	32.158
U009b	1	0	- 0.310	32.292
U010b	1	1	-0.324	32.194
U011b	2	1	- 0.248	32.068
U012a	10	0	-0.273	32.027
U013b	1	1	- 0.301	32.035
U014b	2	0	0.004	32.432
U015b	2	0	0.015	32.388
U016b	4	0	0.016	32.381
U017b	0	0	-0.009	32.432
U019b	0	0	-0.915	31.767
U020a	11	0	-0.939	31.763
U021a	10	0	-0.655	31.797
U022b	0	0	-0.348	31.880
U023a	11	0	0.015	32.767
U024b	10	1	- 0.042	32.764
U025b	7	1	0.002	32.901
U026b	1	0	- 0.110	32.764
U027a	3	2	- 0.100	32.653
U028b	11	0	- 0.086	32.652
U029b	8	0	0.141	33.602
U030b	11	2	0.112	33.602

U034b	2	0	0.003	33.659
U035b	9	1	0.156	33.566
U036b	1	0	0.173	33.562
U037c	11	1	0.318	33.627
U038a	0	0	0.263	33.985
U038b	3	1	0.263	33.985
U039a	4	2	0.253	33.989
U040b	4	2	0.241	33.992
U041a	0	0	0.535	33.891
U043c	0	0	0.476	33.281
U044b	4	0	0.438	33.241
U045b	0	0	0.290	32.655
U046b	11	0	0.173	33.184
U047b	4	0	0.186	33.215
U048b	4	0	0.198	33.265
U049b	4	0	0.234	33.243
U050c	4	0	0.247	33.219
U051b	0	0	0.270	33.206
U052b	3	0	0.271	33.153
U053b	7	2	0.240	33.137
U055b	20	0	-0.092	32.684
Bugoto c	20	1	0.319	33.628
Bukoba c	20	1	0.312	33.492
Lwanika c	2	0.351	33.446	

Note: The (a), (b) and (c) indicates whether the collection site was either (a) marshlands, (b) the lake edge or from (c) another ecosystem such as a canal, paddy, pond or a hybrid environment (e.g. lake shore/marshland). Sites that had samples genotyped using the 16 S and CO gene fragments are highlighted.

Supplementary Table 5.2. The 16 S and COI haplotype frequencies of the sequenced B. choanomphala populations.

Site	16S		COI	
	Haplotype	Frequency	Haplotype	Frequency
K001a	69	5	4	4
	70	3	5	4
	71	2	6	1
	147	1	104	1
	68	2	5	5
	70	1	7	1
	72	1	8	1
	73	1	10	1
	75	1	13	1
	85	1	105	1
	148	1		
K006a	149	1		
	150	1		3
	79	6	9	2
	80	3	20	4

			114	1
K013b	51	2	1	2
	78	4	5	1
	79	1	12	2
	157	2	15	2
	175	1	17	1
	176	1	110	2
	177	1	111	1
K020b	69	5	5	4
	70	1	8	3
	79	1	18	1
	158	1	19	1
	159	2	61	1
	160	1	112	1
K029b	69	6	5	3
	79	1	7	2
	85	1	8	6
	146	1	103	1
T001c	8	1	1	7
	9	4	7	1
	67	1	24	1
	89	1	82	1
	90	1	83	1
	91	1		
	92	1		
T011b	9	1	21	2
	29	1	22	1
	30	1	23	2
	51	1	84	4
	93	3	85	1
	94	1	86	1
	95	1		
	96	1		
T016a	9	3	1	4
	10	4	23	3
	11	4	24	4
T026a	9	2	1	1
	11	3	24	8
	12	1	25	1
	19	2	87	1
	65	1		
	97	2		
T027b	24	1	30	2
	26	1	31	1
	27	1	88	3
	61	1	89	2
	99	1	90	1
	100	2	91	1
	101	1		
	102	2		

T033a	$\begin{aligned} & 25 \\ & 28 \\ & 62 \\ & 84 \end{aligned}$	1 1 5 3	$\begin{aligned} & 32 \\ & 33 \\ & 92 \end{aligned}$	5 3 1
T036a	$\begin{gathered} \hline 31 \\ 134 \\ 135 \\ 136 \\ 137 \\ 138 \\ 139 \end{gathered}$	5 1 1 1 1 1 1	$\begin{gathered} 5 \\ 29 \\ 94 \\ 95 \\ 96 \end{gathered}$	2 5 1 1 1
T040c	$\begin{gathered} \hline 9 \\ 23 \\ 57 \\ 140 \\ 141 \\ 142 \\ 143 \\ 144 \\ 174 \\ \hline \end{gathered}$	2 1 1 1 1 1 1 1 1	$\begin{gathered} 1 \\ 38 \\ 97 \\ 98 \\ 99 \\ 100 \\ 101 \\ 123 \end{gathered}$	3 1 1 1 1 1 1 1
T064a	$\begin{gathered} \hline 51 \\ 65 \\ 66 \\ 67 \\ 68 \\ 145 \end{gathered}$	1 2 3 2 1 1	$\begin{gathered} \hline 1 \\ 3 \\ 9 \\ 98 \\ 102 \\ 124 \end{gathered}$	1 2 4 1 1 1
U005b	4 5 33 103 104 105 106 107 108 109	2 1 1 1 1 1 1 1 1 1	$\begin{gathered} 1 \\ 32 \\ 39 \\ 40 \\ 41 \\ 68 \\ 69 \end{gathered}$	1 1 1 5 1 1 1
U012a	$\begin{gathered} \hline 6 \\ 7 \\ 9 \\ 34 \\ 35 \\ 110 \\ 111 \end{gathered}$	1 1 1 1 1 2 3	$\begin{gathered} \hline 1 \\ 42 \\ 43 \\ 70 \end{gathered}$	1 6 1 2
U020a	$\begin{gathered} \hline 21 \\ 36 \\ 112 \\ 113 \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 6 \\ & 1 \end{aligned}$	$\begin{aligned} & 44 \\ & 45 \\ & 71 \end{aligned}$	1 9 1
U021a	$\begin{aligned} & 19 \\ & 20 \\ & 83 \end{aligned}$	8 1 1	46 72	9 1

U023a	17	2	47	1
	18	2	48	2
	37	1	49	1
	38	1	50	1
	161	1	52	1
	162	1	115	1
	163	1	116	1
	164	1	125	1
	179	1	126	1
U028b	40	1	54	1
	41	1	55	1
	53	1	56	3
	114	1	73	1
	115	1	74	1
	116	1	75	1
	117	1	76	2
	118	1	77	1
	119	1		
	120	1		
U030b	42	1	32	1
	43	1	57	2
	44	1	58	1
	46	2	59	2
	169	1	119	1
	170	1	120	1
	171	1	121	1
	172	1	122	1
	173	1	127	1
	180	1		
U037c	2	1	8	1
	47	1	27	1
	48	1	60	1
	54	1	61	1
	55	1	62	2
	56	1	63	1
	58	1	64	2
	60	2	65	1
	121	1	78	1
U046b	3	1	32	2
	64	1	66	1
	86	1	67	5
	87	1	80	2
	88	1	81	1
	124	1		
	128	1		
	129	1		
	130	1		
Bugoto c	48	6	27	6
	60	4	61	1
	126	1	62	7

	$\begin{aligned} & 127 \\ & 160 \\ & 185 \\ & 187 \\ & 202 \\ & 203 \\ & 204 \\ & 205 \end{aligned}$	2 1 1 1 1 1 1 1	$\begin{gathered} 64 \\ 128 \end{gathered}$	$\begin{aligned} & 4 \\ & 2 \end{aligned}$
Bukoba c	$\begin{gathered} \hline 42 \\ 48 \\ 60 \\ 160 \\ 183 \\ 184 \\ 185 \\ 186 \\ 188 \\ 189 \\ 190 \\ 191 \\ 192 \\ 193 \\ 194 \end{gathered}$	1 4 2 1 1 2 1 1 1 1 1 1 1 1	$\begin{gathered} \hline 27 \\ 61 \\ 62 \\ 63 \\ 64 \\ 128 \\ 129 \\ 130 \\ 131 \\ 132 \end{gathered}$	4 2 5 1 3 1 1 1 1 1
Lwanika c	$\begin{gathered} \hline 48 \\ 60 \\ 65 \\ 69 \\ 127 \\ 183 \\ 184 \\ 185 \\ 186 \\ 195 \\ 196 \\ 197 \\ 198 \\ 199 \\ 200 \\ 201 \\ \hline \end{gathered}$	1 1 1 2 1 4 1 1 1 1 1 1 1 1	$\begin{gathered} \hline 8 \\ 27 \\ 46 \\ 62 \\ 63 \\ 64 \\ 79 \\ 132 \\ 133 \end{gathered}$	3 8 1 1 2 2 1 1 1

Note: sites with S. mansoni infection present are highlighted.

Supplementary Table 5.3. The median (IQR) values of the abiotic factors recorded across the Kenyan ($n=35$), Tanzanian ($n=82$) and Ugandan ($n=53$) sites of Lake Victoria.

	Kenya		Tanzania		Uganda	
Temperature $\left({ }^{\circ} \mathrm{C}\right)$	28.2	$(27.2-29.3)$	26.6	$(25-28)$	27.7	$(26.1-29)$
Conductivity $(\mu \mathrm{S})$	191	$(129-480)$	144	$(110-348)$	107	$(93-120)$
pH	8.2	$(7.9-8.7)$	7.9	$(7.4-8.7)$	8.3	$(7.4-9.2)$
Total Dissolved Solids	105	$(79-190)$	90	$(67-217)$	63	$(58-71)$
Salinity	0.4	$(0.4-0.4)$	0.4	$(0.4-0.4)$	0.4	$(0.3-0.4)$
Fluoride $\left(\mathrm{F}^{-}\right)$	0.5	$(0.3-0.7)$	0.4	$(0.3-0.5)$	0.2	$(0.2-0.3)$
Chloride $\left(\mathrm{Cl}^{-}\right)$	9.4	$(6.7-25)$	8.5	$(6-16)$	9.3	$(5.6-13.9)$
Nitrate $\left(\mathrm{NO}_{3}-\right)$	0.1	$(0-0.4)$	0	$(0-0.2)$	0	$(0-0.1)$
Phosphate $\left(\mathrm{PO}_{4}{ }^{3-}\right)$	0.3	$(0.1-0.6)$	0.2	$(0-0.7)$	0	$(0-0.2)$
Sulphate $\left(\mathrm{SO}_{4}{ }^{3-}\right)$	3.1	$(1.7-6.6)$	1.3	$(0.6-4.2)$	0.5	$(0.4-0.9)$
Sodium $\left(\mathrm{Na}^{+}\right)$	16.3	$(12.9-30)$	13.3	$(10.4-21.3)$	11	$(10.5-11.5)$
Magnesium $\left(\mathrm{Mg}_{2}{ }^{+}\right)$	2.9	$(2.4-6.5)$	2.7	$(2.5-5.6)$	2.9	$(2.8-3.2)$
Calcium $\left(\mathrm{Ca}_{2}{ }^{+}\right)$	8.3	$(6.2-22.4)$	10	$(5.6-28.7)$	7.2	$(6.8-7.8)$
Potassium $\left(\mathrm{K}^{+}\right)$	7.7	$(5.6-15.1)$	6.7	$(4.9-12.5)$	11.1	$(6.4-19.6)$

Chapter 6 Nematodes and Trematodes Associated with Terrestrial Gastropods in Nottingham, England ${ }^{1}$
 ${ }^{1}$ This chapter was published as "Andrus, P. S., Rae, R., \& Wade, C. M. (2022). Nematodes and trematodes associated with terrestrial gastropods in Nottingham, England. Journal of Helminthology, 96, e81."

Abstract:
A parasitological survey of terrestrial slugs and snails was conducted at popular dog walking locations across the city of Nottingham, with the intensions of finding gastropods infected with parasites of medical (or veterinary) importance such as lungworms (metastrongyloids) and trematodes. A total of 800 gastropods were collected from 16 sites over a $225 \mathrm{~km}^{2}$ area. The extracted nematodes and trematodes were identified by molecular barcoding. Of the 800 gastropods collected, 227 were infected (172 had nematode infections, 37 had trematode infections and 18 had both nematode and trematode infections). Of the nematode infected gastropods genotyped, seven species were identified, Agfa flexilis, Angiostoma gandavense, Angiostoma margaretae, Cosmocerca longicauda, Phasmarhabditis hermaphrodita, Phasmarhabditis neopapillosa and an unknown Cosmocercidae species. Of the trematode infected gastropods genotyped, four species were identified, Brachylaima arcuate, Brachylaima fuscata, Brachylaima mesostoma and an unknown Plagiorchioidea species. No lungworm species were found within the city of Nottingham. To our knowledge, this study represents the first survey of gastropodassociated nematodes and trematodes in the East midlands of the United Kingdom.

6.1 Introduction:

Slugs and snails (Class: Gastropoda) comprise approximately 35,000 extant species and can host a diverse range of metazoan parasites (and parasitoids) such as cestodes, trematodes, nematodes, insects and acarids (Barker \& Efford, 2004; Chapman, 2009). There are approximately 25,000 extant species of nematodes, of which 3500 are parasites of invertebrates (Grewal et al., 2003). Of these, 50 metastrongyloid (lungworms) species are of medical or veterinary importance, with notable genera being Aelurostrongylus, Angiostrongylus, Crenosoma, Elaphostrongylus, Muellerius, Neostrongylus, Oslerus, Prostrongylus and Troglostrongylus (Alicata, 1965; Skorping \& Halvorsen, 1980; Campbell and Little, 1988; Diez-Baños et al., 1989; Schjetlein \& Skorping, 1995; Majoros et al., 2010; Panayotova-Pencheva, 2011; Kim et al., 2014; Patel et al., 2014; Conboy, 2015; Helm et al., 2015; Aziz et al., 2016; Hadi, 2018; Hicklenton \& Betson, 2019; Penagos-Tabares et al., 2020). Nematodes have evolved diverse relationships with gastropods, with some species using them as an intermediate host (e.g. juveniles of lungworm species) while others (Rhabditidae, Mermithidae and Ascarididae) parasitise gastropods and use them as their definitive host; or for other means such as necromeny or transportation (paratenic; Grewal et al., 2003; Ivanova et al., 2019).

Digenetic trematodes comprise approximately 40,000 extant species, with more than 18,000 described species (Cribb et al., 2001; Kostadinova \& Pérez-del-Olmo, 2014). Unlike nematodes, digenetic trematodes use invertebrates exclusively as an intermediate host, with a vertebrate (typically a fish, mammal, or bird) being used as their definitive host (Barker \& Efford, 2004). Notable genera of medical or veterinary importance are Clonorchis,

Fasciola, Fasciolopsis, Gastrodiscoides, Heterophyes, Metagonimus, Opisthorchis, Paragonimus and Schistosoma (Doughty, 1996; Kostadinova \& Pérez-del-Olmo, 2014). Trematode species which infect terrestrial gastropods use them in order to infect bird, mammal, or reptile definitive hosts which prey on gastropods (Morley \& Lewis, 2008). Most species specialise in infecting one type of definitive host, but some species can infect multiple hosts (Butcher \& Grove, 2005). The lifecycle of these trematodes first involves a gastropod host being infected through the ingestion of eggs (excreted by an infected definitive host). After ingestion, it takes one to three months for asexual sporocysts to produce cercariae within the first intermediate gastropod host (Butcher \& Grove, 2003). Gastropods can act as both the first and second intermediate host, as infected snails (first intermediate) shed cercariae in their mucus which can infect other gastropods through bodily contact (or themselves making them a first and second intermediate host simultaneously; Butcher \& Grove, 2005). The successful cercariae develop into mature metacercariae after four months and can survive up to another four months within the gastropod host. The transmission cycle is completed when a bird, mammal, or reptile (definitive host) ingests the secondary intermediate gastropod host (Morley \& Lewis, 2008).

The current understanding of nematodes and trematodes associated with terrestrial gastropods in Europe is based on parasitological surveys conducted in Austria (PenagosTabares et al., 2020), Belgium (Singh et al., 2020), Bulgaria (and Crimea; Ivanova et al., 2013), the Czech Republic (Heneberg et al., 2016), Denmark (Taubert et al., 2009), England (Morley \& Lewis, 2008; Patel et al., 2014; Hicklenton \& Betson, 2019), France (Nguyen et al., 2017), Germany (Ross et al., 2016; Lange et al., 2018; Gérard et al., 2020), Hungary (Majoros et al., 2010), the Netherlands and Norway (Antzée-Hyllseth et al., 2020), Poland (Filipiak et al., 2020), Italy (Ivanova et al., 2019), Slovenia (Laznik et al., 2010), Scotland (Helm et al., 2015), Spain (Foronda et al., 2010; Jefferies et al., 2010; Paredes-Esquivel et al., 2019; Martín-Carrillo et al., 2021) and Wales (Ross et al., 2010a/b; Aziz et al., 2016). The majority of these studies found no medically important nematode or trematode species, with primarily free-living, gastropod-specific and veterinary important species being reported. Four common lungworm genera (Metastrongyloidea) of medical/veterinary importance were present in Europe (Angiostrongylus, Crenosoma, Aelurostrongylus and Troglostrongylus) with Angiostrongylus (An.) cantonensis the only medically important species reported.

Angiostrongylus cantonensis is a parasite endemic to Asia, the Caribbean and Pacific Islands. In Europe it has been found infecting black rats (Rattus rattus) in the Canary and Balearic Islands and the Algerian hedgehog (Atelerix algirus) in mainland Spain (Foronda et al., 2010; Paredes-Esquivel et al., 2019; Martín-Carrillo et al., 2021). Furthermore, Nguyen et al. (2017) reported the first autochthonous human case of An. cantonensis infection in France. In addition to the metastrongyloids, seven additional gastropod-related nematode families were reported in Europe, the Agfidae, Alloionematidae, Angiostomatidae, Cosmocercidae, Diplogasteridae, Mermithidae and Rhabditidae. The most common genera of trematodes found were Brachylaima, Eurytrema, Michajlovia, Urogonimus and Urotocus. Certain species of Brachylaima (Brachylaimiasis) and Eurytrema (Eurytrematosis) have been found to cause infection within humans in Australia and Brazil, respectively (Schwertz et al., 2015; Gracenea
\& Gállego, 2017) though there have as yet been no reports of human infection in Europe. Trematodes associated with terrestrial gastropods in Europe have not been as well studied as nematodes, most probably due to the majority of these species of medical or veterinary importance being associated with aquatic snail species.

Lungworm nematode infections have been extensively studied in Europe (Taubert et al., 2009; Patel et al., 2014; Helm et al., 2015; Taylor, 2015; Aziz et al., 2016; Helm \& Morgan, 2017; Lange et al., 2018; Elsheikha et al., 2019; Hicklenton \& Betson, 2019; Fuehrer et al., 2020; Penagos-Tabares et al., 2020). Lungworm infections are fatal to companion animals due to the severe respiratory disease and bleeding disorders caused by the parasite (Taubert et al., 2009). Angiostrongylus (An.) vasorum and Crenosoma vulpis are widespread across the United Kingdom, with domesticated dogs and red foxes (Vulpes vulpes) acting as their definitive hosts (Helm \& Morgan, 2017). Geography is one of the main risk factors for An. vasorum infections in dogs, with the most endemic areas of the United Kingdom being Southern England and Southern Wales (Patel et al., 2014; Helm \& Morgan, 2017; Hicklenton \& Betson, 2019) though An. vasorum in the United Kingdom is spreading northwards, with the parasite already established in Northern England and Scotland (Helm et al., 2015; Aziz et al., 2016). Reasons for the spread of An. vasorum include a warmer climate which favours the parasites' development and the urbanisation of wild red fox populations acting as a reservoir of infection, with an estimated one in five infected (Taylor, 2015; Helm \& Morgan, 2017). Crenosoma vulpis transmission is similar to An. vasorum but is more commonly reported in wild canid species than domesticated dogs (Lange et al., 2018). Similarly, Aelurostrongylus (Ae.) abstrusus is a globally distributed lungworm species that infects wild and domesticated cat species, with a prevalence of 1.7% in United Kingdom house cats (Helm \& Morgan, 2017; Elsheikha et al., 2019). Lungworm infections in domesticated cats and dogs are thought to be underreported as some infections can be asymptomatic and milder cases are commonly misdiagnosed as other disorders such as hypersensitivity (Wright, 2009; Penagos-Tabares et al., 2018; Pohly et al., 2022).

The primary aim of this study was to investigate which species of terrestrial gastropods are commonly found at dog walking sites in the city of Nottingham and the county of Nottinghamshire, to determine which nematode and trematode species are associated with these gastropods and to determine prevalence of infection. The secondary aim was to investigate whether lungworm nematode species that cause veterinary disease are found at popular dog walking sites across the city of Nottingham and the county of Nottinghamshire.
6.2 Materials and Methods:
6.2.1 Collection sites and gastropod identification:

Slugs and snails were collected from 16 sites across Nottingham from June to November 2020 and June to November 2021. All sites were popular dog walking locations and included recreational grounds, country parks, public gardens, and nature reserves (Table 6.1; Figure 6.1). A total of 800 gastropods were collected by hand with 50 specimens collected from each site and with a maximum of ten individuals per species being taken. Specimens were identified morphologically using a Terrestrial Mollusc Key (https://idtools.org/id/mollusc/key.php; White-McLean, 2011) and the 'Slugs of Britain and Ireland' as an illustrated guide (Rowson et al., 2014).

Figure 6.1. Map of collection sites ($n=16$) across the city of Nottingham and surrounding areas (Google, 2022).

Table 6.1. Collection sites surveyed across the city of Nottingham and surrounding areas.

	Collection site	Code	Search area $\left(\mathrm{Km}^{2}\right)$	Coordinates
1	Basford (Nottingham)	BAS	15,288	$\begin{gathered} 52.977957, \\ -1.180909 \end{gathered}$
2	Bestwood Country Park (Nottinghamshire)	MILL	116,987	$\begin{gathered} 53.025337 \\ -1.184712 \\ \hline \end{gathered}$
3	Forest Fields (Nottingham)	FOR	5,132	$\begin{aligned} & 52.96401, \\ & -1.159410 \\ & \hline \end{aligned}$
4	University Park Campus (Nottingham)	UNI	20,506	$\begin{gathered} \text { 52.938199, } \\ -1.12508 \\ \hline \end{gathered}$
5	Beeston (Nottinghamshire)	BEE	1,583	$\begin{gathered} 52.922972, \\ -1.214944 \end{gathered}$
6	Toton (Nottinghamshire)	TOT	6,469	$\begin{gathered} 52.915726, \\ -1.264259 \\ \hline \end{gathered}$
7	Attenborough Nature Reserve (Nottinghamshire)	ATEN	33,371	$\begin{gathered} 52.909117, \\ -1.221000 \end{gathered}$
8	Kimberley (Nottinghamshire)	KIM	5,095	$\begin{gathered} 52.997686, \\ -1.268583 \end{gathered}$
9	Clifton South (Nottingham)	C-SOU	11,135	$\begin{gathered} 52.899179, \\ -1.185660 \end{gathered}$
10	Iremongers Pond (Nottingham)	POND	17,958	$\begin{gathered} 52.936184, \\ -1.152757 \\ \hline \end{gathered}$
11	Woodthorpe Grange Park (Nottingham)	GRAN	143, 670	$\begin{gathered} 52.982888, \\ -1.135721 \\ \hline \end{gathered}$
12	Arnot Hill Park (Nottingham)	ARNOT	45,220	$\begin{gathered} 52.997488 \\ -1.133526 \end{gathered}$
13	Edwalton (Nottinghamshire)	EDW	8,181	$\begin{gathered} 52.917332, \\ -1.124678 \end{gathered}$
14	Gamston (Nottinghamshire)	GAM	24,538	$\begin{gathered} 52.928595 \\ -1.108470 \end{gathered}$
15	Carlton (Nottinghamshire)	CARL	37,525	$\begin{gathered} 52.965511, \\ -1.103516 \end{gathered}$
16	Colwick (Nottinghamshire)	COLW	15,920	$\begin{gathered} 52.952945, \\ -1.091540 \end{gathered}$

6.2.2 Gastropod Dissection:

Specimens were dissected into four equal pieces within 24 hours of collection and placed into a 50 ml falcon tube containing Ash's digestion solution (0.7% pepsin in $0.5 \% \mathrm{HCl}$) for four to eight hours (Ash, 1970). The solution was then placed into a 9 cm Petri dish and examined under a dissection microscope for the presence of nematodes, or the metacercariae stage of trematodes. Nematodes were categorised as either juvenile or adult worms. When found, nematodes and metacercariae were individually picked and placed into 0.2 ml tubes containing 70% ethanol (adult worms were separated from juveniles) and stored at $-20^{\circ} \mathrm{C}$.

6.2.3 DNA extraction, PCR amplification and Sequencing:

DNA extractions were done on single nematodes or trematodes using a modified CTAB extraction method (Goodacre \& Wade, 2001). Extracted samples were resuspended in $100 \mu \mathrm{l}$ of 10 mM TRIS-HCl, pH 8.0) buffer. A list of extracted and genotyped samples for each site can be found in Supplementary Tables 6.1 and 6.2. Promega GoTaq ${ }^{\circledR}$ G2 Master Mix buffer was used for all PCR reactions: 1μ I of DNA template was added to 24μ of 1 X Master Mix buffer (1 U TAQ, $0.2 \mu \mathrm{M}$ primers, $200 \mu \mathrm{M}$ each dNTP, 1.5 mM MgCl$)_{2}$). The nematode DNA samples were identified using the region of the ribosomal RNA spanning the 18S-ITS1-5.8SITS2, which was amplified using the universal nematode primer set developed by Nadler et al. (2000; Table 2.1). The trematode DNA samples were identified using the 18 S rRNA gene, which was amplified using the universal trematode primer set developed by Kim et al. (2019; Table 2.1). The PCR conditions used were an initial 2 minutes at $95^{\circ} \mathrm{C}$, followed by 35 cycles of 30 seconds at $95^{\circ} \mathrm{C}, 30$ secs at $50^{\circ} \mathrm{C}$ and 2 mins at $72^{\circ} \mathrm{C}$, and finally 10 mins at $72^{\circ} \mathrm{C}$. PCR products were run and visualised on an ethidium bromide infused 1.5% agarose gel. PCR products were purified and sequenced using Macrogen's Eco-Seq service. Problematic sequences were re-amplified and sequenced using a higher annealing temperature of $60^{\circ} \mathrm{C}$ to try and eliminate fungal contaminates amplifying instead of the parasite DNA.

6.2.4 Parasite identification:

Parasite sequences were first grouped together based on similarity, with sequences that were 99% identical being placed together. Next, the NCBI 'MOLE-BLAST Neighbor Search Tool' was used to find the closest matching reference sequences on the GenBank database (Altschul et al., 1990; Benson et al., 2013). This tool creates an alignment and a neighborjoining tree to show the relationship the query sequence has to the reference sequences in the GenBank non-redundant proteins database. Next, a secondary analysis was performed by placing our sequences within an alignment with all of the relevant closest matching GenBank reference sequences. This allowed us to create a maximum likelihood tree to see relationships between our sequences and the references taken from GenBank. The sequences were aligned in Seaview v5 (Gouy et al., 2021) using the Muscle algorithm, with conserved sites being selected using the Gblocks program (Castresana et al., 2000). The phylogenetic trees were constructed using the Maximum Likelihood method, using a General Time Reversible model incorporating gamma correction (GTR+Г) in PhyML v3.1 (Guindon et al., 2010), with bootstrap analysis undertaken using 1000 replicates.

6.2.5 GenBank Accession Numbers:

The DNA sequences generated in this study are available in GenBank accession numbers OP626191 - OP626254. Both the GenBank references used, and the DNA sequences generated in this study are available in Supplementary Table 6.3.

6.3 Results:

6.3.1 Infection Prevalence:

Of the 800 gastropods collected, 581 were slugs (Agriolimacidae, Arionidae, Boettgerillidae, Limacidae and Milacidae) and 219 were snails (Discidae, Helicidae, Hygromiidae and Oxychilidae). The most common slug species found were Deroceras invadens (15\%), Tandonia budapestensis (13\%), Deroceras reticulatum (13\%), Arion hortensis (10\%), Ambigolimax valentianus (8\%), Limacus maculatus (7\%), Arion vulgaris (7\%), Tandonia sowerbyi (6\%), Arion ater (6\%), Arion subfuscus (4\%), Arion rufus (3\%), Arion silvaticus (2\%), Limacus flavus (2\%), Ambigolimax nyctelius (1\%), Limax maximus (1\%), Milax gagates (<1\%) and Boettgerilla pallens (<1\%). The most common snail species found were Cepaea nemoralis (28\%), Cornu aspersum (25\%), Cepaea hortensis (20\%), Trochulus striolatus (10\%), Oxychilus alliarius (7\%), Monacha cantiana (5\%), Discus rontundas (3\%), Trochulus hispidus (1\%) and Arianta arbustorum (1\%).

Overall, 227 specimens were infected (28%) with nematodes or trematodes (or both). Of those, 163 were slugs (28%) and 64 were snails (29%; Table 6.2; Figure 6.2). The only gastropod species without any recorded infections were A. arbustorum, B. pallens, D. rotundatus and T. hispidus. Nematodes were found in all other gastropods, with T. budapestensis, D. invadens, C. aspersum, D. reticulatum, A. ater and C. nemoralis accounting for over half of all infections. A total of 533 nematodes were recorded from 190 infected specimens (145 slugs and 45 snails). Of those, only 12 juvenile nematodes were found in 12 hosts (8 slugs and 4 snails; Table 6.2). Trematodes were rarer than nematodes, with A. ater, A. hortensis, A. nyctelius, A. rufus, A. silvaticus, A. subfuscus, A. vulgaris, L. flavus, L. maximus and O. alliarius having no recorded trematode infections. A total of 242 trematodes were recorded from 55 specimens (30 slugs and 25 snails; Table 6.2). Lastly, coinfections of both nematodes and trematodes were even rarer, with only 18 specimens being recorded as co-infected (13 slugs and 5 snails; Table 6.2).

Table 6.2. Gastropods collected and details of number of nematode and trematode (metacercaria) infections.

Family	Species	No.	Infected	Nematode	Trematode	Both
Agriolimacidae	Deroceras invadens	90	25	15	8	2
	Deroceras reticulatum	75	19	13	3	3
Arionidae	Arion ater	33	13	13	0	0
	Arion hortensis	59	11	11	0	0
	Arion rufus	20	5	5	0	0
	Arion silvaticus	14	2	2	0	0
	Arion subfuscus	25	6	6	0	0
	Arion vulgaris	42	8	8	0	0
Boettgerillidae	Boettgerilla pallens	2	0	0	0	0
Discidae	Discus rotundatus	6	0	0	0	0
Helicidae	Arianta arbustorum	2	0	0	0	0
	Cepaea hortensis	44	7	6	1	0
	Cepaea nemoralis	62	14	9	4	1
	Cornu aspersum	54	24	14	7	3
Hygromiidae	Trochulus hispidus	3	0	0	0	0
	Trochulus striolatus	22	7	4	3	0
	Monacha cantiana	10	7	1	5	1
Limacidae	Ambigolimax nyctelius	5	1	1	0	0
	Ambigolimax valentianus	47	18	8	5	5
	Limacus flavus	10	3	3	0	0
	Limacus maculatus	42	9	8	0	1
	Limax maximus	3	2	2	0	0
Milacidae	Milax gagates	2	1	0	0	1
	Tandonia budapestensis	78	31	30	1	0
	Tandonia sowerbyi	34	8	7	0	1
Oxychilidae	Oxychilus alliarius	16	6	6	0	0
Total		800	227	172	37	18

Note: Gastropod species with zero infections are greyed out. 'Both' means a co-infection of nematodes and trematodes within a single specimen.

Figure 6.2. Map of collection sites ($n=16$) across the city of Nottingham and the surrounding areas showing infection prevalence at each collection site. White = uninfected, grey = nematode infection, dark grey = trematode infection and black = nematode/trematode coinfection (Google, 2022).

Of the 16 sites surveyed, infection was found at all of them (Table 6.3). The highest recorded prevalence of infection was 46% at site 7 (The Attenborough Nature Reserve) and site 13 (Edwalton). The lowest recorded prevalence of infection was 12% at site 5 (Beeston). Nematode infections were found at all 16 sites, with trematode infections found at 13 of the 16 sites (Figure 6.2). Specimens infected with both nematodes and trematodes were found at 9 of the 16 sites.

Table 6.3. Infection prevalence of collected gastropods $(n=50)$ at each site.

	Collection site	Code	Infection	Nematode	Trematode
1	Basford	BAS	40\%	40\%	8\%
2	Bestwood Country Park	MILL	16\%	8\%	8\%
3	Forest Fields	FOR	28\%	22\%	8\%
4	University Park Campus	UNI	16\%	10\%	8\%
5	Beeston	BEE	12\%	12\%	0\%
6	Toton	TOT	20\%	20\%	0\%
7	Attenborough Nature Reserve	ATEN	46\%	46\%	0\%
8	Kimberley	KIM	36\%	32\%	8\%
9	Clifton South	C-SOU	28\%	26\%	2\%
10	Iremongers Pond	POND	14\%	12\%	4\%
11	Woodthorpe Grange Park	GRAN	22\%	20\%	2\%
12	Arnot Hill Park	ARNOT	26\%	24\%	2\%
13	Edwalton	EDW	46\%	42\%	6\%
14	Gamston	GAM	40\%	20\%	28\%
15	Carlton	CARL	30\%	24\%	12\%
16	Colwick	COLW	34\%	30\%	8\%

6.3.2 Nematode and trematode identifications:

A total of 35 (23 adults, 12 juveniles) nematodes (Supplementary Table 6.1) and 29 trematodes (Supplementary Table 6.2) were genotyped. All sequences were grouped together based on similarity (>99\%) and those groups were then matched with their closest GenBank references using the BLAST and MOLE-BLAST tool (ranked by lowest E-value). The nematode sequences fitted into seven groups, with all groups except group C2 having a GenBank reference match greater than 99% (Table 6.4). The trematode sequences fitted into four groups, with all groups except group F1 having a GenBank reference match greater than 99\% (Table 6.4).

Table 6.4. BLAST-MOLE results (ranked by E-value) for grouped nematode (groups A-D) and trematode (groups E-F) sequences with their top five closest references.

| Group | | Samples | Closest
 references | Reference name |
| :---: | :---: | :---: | :---: | :---: | \% Match

D1	$\begin{aligned} & \text { ATEN } 12(\mathrm{~J}) \\ & \text { TOT } 24 \\ & \text { TOT } 25(\mathrm{~J}) \end{aligned}$	FJ516761	Phasmarhabditis hermaphrodita	99.3
		FJ516760	Phasmarhabditis neopapillosa	90
		MK214815	Angiostoma gandavensis	84
		MF192968	Angiostoma margaretae	79
		MK214813	Agfa flexilis	85
D2	$\begin{aligned} & \text { C-SOU } 10 \text { (J) } \\ & \text { GAM } 16(\mathrm{~J}) \end{aligned}$	FJ516760	Phasmarhabditis neopapillosa	99.2
		FJ516761	Phasmarhabditis hermaphrodita	90
		MK214815	Angiostoma gandavensis	82
		MF192968	Angiostoma margaretae	78
		MK214813	Agfa flexilis	86
Trematodes				
Group	Samples	Closest references	Reference name	\% Match
E1	BAS 11 FOR 23 GRAN 8 KIM 3 KIM 10 KIM 37 MILL 4a MILL 4b MILL 31 MILL 32 MILL 35 POND 5 POND 8 UNI 5	KT074950	Brachylaima arcuata	99.6\%
		KT074955	Brachylaima mesostoma	98\%
		KT074952	Brachylaima fuscata	97\%
		AY222085	Brachylaima thompsoni	97\%
		KP903630	Urotocus rossitensis	94\%
E2	ARNOT 18 BAS 26 COLW 2 EDW 8 EDW 25 FOR 4 GAM 3 GAM 15 GAM 16 GAM 26 KIM 40	KT074952	Brachylaima fuscata	99.8
		AY222085	Brachylaima thompsoni	99.4
		KT074955	Brachylaima mesostoma	99.2
		KT074950	Brachylaima arcuata	98
		KP903638	Michajlovia migrata	96
E3	CARL 12 CARL 13 C-SOU 19	KT074955	Brachylaima mesostoma	100
		AY222085	Brachylaima thompsoni	99.6
		KT074952	Brachylaima fuscata	99.2
		KT074950	Brachylaima arcuata	99
		KP903638	Michajlovia migrata	96

F1		AY222156	Telorchis assula	97
		AY222160	Brachycoelium salamandrae	96
		AY222159	Auridistomum chelydrae	96
		JQ886404	Mesocoelium lanfrediae	96
		MZ787582	Opisthioglyphe ranae	96

Note: (J) indicates it was a juvenile nematode. Each of the different designated grouping of ITS (nematode) and 18S (trematode) sequences are less than 1% different. Nematode and trematode groups with less than 99% GenBank reference match are coloured grey.

Next, maximum likelihood trees were created for the nematode and trematode sequences by placing each group together with a range of related GenBank references. The majority of the groups were identified at the species level (Figure 6.3). Only groups C2 and F1 were not identifiable at the species level. Group C2 was outside of the Cosmocerca/Cosmocercoides genera (Figure 6.3C) and group F1 was outside of the Opisthioglyphe/ Macroderoides/ Brachycoelium/ Mesocoelium/ Auridistomum/ Telorchis genera, respectively (Figure 6.3F).

(i) - Eulipotyphla
E)

F)

Figure 6.3. Maximum likelihood phylogenetic trees of different nematode (trees A-D) and trematode (trees E-F) species using the ITS and 18S rRNA gene, respectively. The definitive host of each helminth is displayed on each tree. Tree A was created using 325 base pairs (bp) of the ITS and is rooted on Amphibiophilus mooiensis. Tree B was created using 306 bp of the ITS and is rooted on A. mooiensis. Tree C was created using 402 bp of the ITS and is rooted on Paraspidodera uncinate. Tree D was created using 409 bp of the ITS and is rooted on A. mooiensis. Tree E was created using 450 bp of the 18 S rRNA and is rooted on Michajlovia turdi. Tree F was created using 456 bp of the 18S rRNA and is rooted on Brachycladium goliath. All trees were generated using PhyML v3.1; the numbers on the branches indicate the bootstrap percentages for 1000 replicates (bootstrap values under 50% are not shown). The scale bar represents percentage sequence divergence. Differing alignment lengths are due to the limited length of GenBank references. Accession numbers for all sequences can be found in Supplementary Table 6.3.

6.4 Discussion:

6.4.1 Prevalence of infection:

The vast majority of gastropods collected and examined were slugs (73\%), of which five families were represented (Agriolimacidae, Arionidae, Boettgerillidae, Limacidae and Milacidae). The remaining gastropods were snails, of which four families were represented (Discidae, Helicidae, Hygromiidae and Oxychilidae). The largest families represented were the Arionidae (24\%), Agriolimacidae (20\%), Helicidae (20\%), Milacidae (16\%), Limacidae (13\%), Hygromiidae (4\%), Oxychilidae (2\%), Discidae ($<1 \%$) and Boettgerillidae ($<1 \%$). The overall prevalence of infections for the gastropods collected was 28%. Both slugs (28%) and snails (29\%) had a similar prevalence of infection. No medically or veterinary important lungworm species were found within the city of Nottingham. However, of the 26 gastropod species found, 16 are potential hosts for Angiostrongy/us vasorum, eight are potential hosts for Crenosoma vulpis and five are potential hosts for Aelurostrongylus abstrusus (Supplementary Table 6.4).

6.4.2 Nematodes:

A total of 533 nematodes were isolated, with only 12 being juveniles. Juvenile nematodes are a useful indication for the possible presence of lungworm (metastrongyloid) species of veterinary importance like An. vasorum. Of those 12 juvenile nematodes, no lungworm species were found. Instead, four of them were identified as Angiostoma margaretae (Angiostomatidae), a parasite whose definitive host has been reported to be a milacid slug species (Ross et al., 2017b). We also found it inside D. invadens (Agriolimacidae) and A. valentianus (Limacidae). Four were identified as an unknown Cosmocercidae species, a family of parasitic nematodes whose definitive host are reptiles and amphibians (Baker, 1984). Two were identified as Phasmarhabditis hermaphrodita and two were identified as Phasmarhabditis neopapillosa (Rhabditidae). Phasmarhabditis is a genus of facultative parasitic nematodes that can parasitise a broad range of gastropod species (Andrus \& Rae, 2019). Of the adult nematodes identified, all were non-medically (or veterinary) relevant, belonging to four of the seven gastropod-related nematode families (Agfidae, Angiostomatidae, Cosmocercidae and Rhabditidae).

The interactions these nematode families have with terrestrial gastropods are poorly understood (Wilson \& Grewal, 2005). The most understood species is Phasmarhabditis hermaphrodita, which has been developed into an effective biological alternative molluscicide (Nemaslug ${ }^{\circledR}$) that reduces agricultural damage done by gastropod pests (Rae et al., 2007). Unlike chemical molluscicides, Nemaslug has no adverse effects on non-target organisms like beneficial organisms (acarids, annelids, carabids, collembolans, dipterans, isopods and nematodes), or gastropod predators (amphibians, birds, mammals and reptiles; Iglesias et al., 2003). However, unlike chemical molluscicides, Nemaslug cannot kill every gastropod pest species. This is due to P. hermaphrodita only being able to kill smaller gastropod species (e.g., Deroceras spp., Arion hortensis) and the juveniles of some larger species (Arion ater, Cornu aspersum; Rae, 2017), while larger gastropod species (Ambigolimax spp., Cepaea hortensis, Limacus spp., Limax spp., Lissachatina fulica) are resistant to the fatal effects of P. hermaphrodita (Williams \& Rae, 2015; Rae, 2017).

6.4.3 Trematodes:

A total of 242 trematodes were isolated. Of these, 29 were genotyped, 14 were identified as Brachylaima arcuata, 11 were identified as B. fuscata and three were identified as B. mesostoma. All these Brachylaima species are common gastrointestinal parasites of the bird families Corvidae, Sylviidae and Turdidae (Heneberg et al., 2016). One other trematode sample (belonging to group F1) could not be identified at the species-level. It clustered closely with the genera Opisthioglyphe, Macroderoides, Brachycoelium, Mesocoelium, Auridistomum and Telorchis, placing it within the Plagiorchioidea superfamily. Genera of this Plagiorchioidea superfamily are common parasites of amphibians, fishes and reptiles (Tkach et al., 2001).

Brachylaima is a common gastrointestinal parasite of birds, mammals, and reptiles. There are over 60 described species, with Brachylaima being found in Africa, the Americas, Asia, Europe, and Oceania (Nasir \& Rodriguez, 1966; Wheeler et al., 1989; Richards et al., 1995; Awharitoma et al., 2003; Butcher \& Grove, 2005; Richardson \& Campo, 2005; Gállego et al., 2014; Gracenea \& Gállego, 2017; Nakao et al., 2017; Gérard et al., 2020; Termizi \& Him, 2021). Brachylaima cribbi is the only documented species capable of infecting humans (Butcher \& Grove, 2001) with brachylaimiasis first documented in 1996, with 13 more cases in the subsequent decades after its discovery, all occurring in Australia (Butcher et al., 1996; Gállego et al., 2015). Brachylaimiasis causes diarrhoea, abdominal pain, anorexia, eosinophilia, and weight loss (or decreased weight gain) in infected humans, with a predicted mortality rate of 5-10\% in untreated patients (Gállego \& Gracenea, 2015). Transmission is typically from either the consumption of undercooked land snails (such as Cornu aspersum) infected with metacercariae, or the unintentional consumption of infected gastropod slime/faeces/corpse contaminated fruits and vegetables (Butcher \& Grove, 2001).

While the consumption of snails is unpopular in the United Kingdom, on average the world consumes 450,000 tonnes of edible snails every year, of which only 15% come from snail farms (López et al., 2015). Spain, France, Portugal and Belgium are the biggest importers of snails, with approximately 17 million kilograms of snails being imported as a whole from 2020-2021 (United Nations, 2022). Concerns about the prevalence of Brachylaima infection
in Cornu aspersum at farms and markets has already been raised in France and Spain (Gállego \& Gracenea, 2015; Gracenea \& Gállego, 2017; Gérard et al., 2020). It is unknown what effect non-Brachylaima cribbi species have on public health as there are no studies exploring the possibility of brachylaimiasis caused by European Brachylaima species. Furthermore, brachylaimiasis could be frequently misdiagnosed or overlooked in Europe due to either a lack of experience identifying it or due to how small Brachylaima eggs are in human faeces (<30 m in length; Gracenea \& Gállego, 2017).

6.5 Supplementary Material:

Supplementary Table 6.1. Nematode PCR information

Site (Sample no.)	Sequencing result (N93/N94)	Host	Nematodes found
Arnot Hill (ARNOT)			
1	Angiostoma margaretae	Tandonia budapestensis	1
11	Angiostoma margaretae	Tandonia budapestensis	1
16	Fungal contamination	Tandonia sowerbyi	1
18	Fungal contamination	Trochulus striolatus	1
21	Fungal contamination	Arion hortensis	1
26	Fungal contamination	Deroceras reticulatum	1
30	Fungal contamination	D. reticulatum	1
35 (J)	Angiostoma margaretae	Tandonia sowerbyi	1
39	Not extracted	T. sowerbyi	1
44	Fungal contamination	T. striolatus	1
47	Not extracted	T. striolatus	1
50	Fungal contamination	Cepaea nemoralis	1
Attenborough (ATEN)			
1	Fungal contamination	Arion Ater	3
2	Not Extracted	A. Ater	3
3	Not Extracted	A. Ater	1
5	Fungal contamination	Arion vulgaris	1
8	Not Extracted	A. Ater	2
11	Not Extracted	A. Ater	1
12 (J)	Phasmarhabditis hermaphrodita	Arion rufus	2
13	Not Extracted	A. rufus	1
15	Fungal contamination	A. Ater	6
16	Not Extracted	A. Ater	5
20	Fungal contamination	C. nemoralis	1
21	Fungal contamination	Oxychilus alliarius	2
24	Fungal contamination	Cornu aspersum	4
25	Not Extracted	A. Ater	1
29	Not Extracted	A. Ater	3
31	Fungal contamination	A. vulgaris	1
33	Not Extracted	A. rufus	1
34	Not Extracted	A. rufus	1
37	Fungal contamination	C. aspersum	1
40	Not Extracted	C. aspersum	1
43	Not Extracted	C. aspersum	1
46	Fungal contamination	C. nemoralis	1
50	Not Extracted	C. nemoralis	1
Basford (BAS)			
1 (J)	Cosmocercidae sp.	Cornu aspersum	27
6	Fungal contamination	D. reticulatum	2
11	Fungal contamination	T. sowerbyi	3
12	Fungal contamination	Ambigolimax valentianus	3
14	Not Extracted	T. budapestensis	21
24	Fungal contamination	A. valentianus	1
26	Not Extracted	T. budapestensis	6
27	Not Extracted	T. budapestensis	4

30	Not Extracted	D. reticulatum	1
31	Not Extracted	D. reticulatum	1
38	Not Extracted	Milax gagates	2
39	Not Extracted	Limacus maculatus	17
40	Not Extracted	L. maculatus	13
41	Not Extracted	D. reticulatum	2
42	Not Extracted	Arion subfuscus	4
43	Not Extracted	A. hortensis	2
45	Angiostoma margaretae	Tandonia budapestensis	2
47	Not Extracted	A. hortensis	4
49	Not Extracted	D. reticulatum	1
50	Not Extracted	D. reticulatum	2
Beeston (BEE)			
1 (J)	Cosmocercidae sp.	Cornu aspersum	27
12	Angiostoma margaretae	Tandonia budapestensis	1
14	Angiostoma margaretae	Tandonia budapestensis	2
16	Angiostoma gandavense	Deroceras invadens	1
25	Fungal contamination	D. invadens	1
28	Fungal contamination	A. ater	2
Carlton (CARL)			
2	Fungal contamination	C. aspersum	2
3	Not Extracted	C. aspersum	1
8	Fungal contamination	C. aspersum	2
13	Fungal contamination	C. nemoralis	2
18	Angiostoma margaretae	Deroceras reticulatum	3
26	Fungal contamination	T. budapestensis	1
27	Not Extracted	T. budapestensis	1
28	Not Extracted	T. budapestensis	2
29	Not Extracted	T. budapestensis	3
35	Not Extracted	T. budapestensis	3
37	Fungal contamination	D. invadens	1
41	Not Extracted	D. invadens	5
Colwick (COLW)			
2	Fungal contamination	C. aspersum	1
7	Fungal contamination	Limacus flavus	1
13 (J)	Angiostoma margaretae	Deroceras invadens	4
18	Fungal contamination	Arion silvaticus	1
21	Fungal contamination	A. valentianus	1
24	Not Extracted	A. valentianus	1
29	Fungal contamination	C. hortensis	1
30	Not Extracted	C. hortensis	1
31	Not Extracted	C. hortensis	1
36	Not Extracted	C. hortensis	1
41	Fungal contamination	A. hortensis	1
44	Not Extracted	A. hortensis	1
46	Not Extracted	T. budapestensis	1
47	Not Extracted	T. budapestensis	1
49	Not Extracted	T. budapestensis	2
Clifton south (C-SOU)			
1	Angiostoma margaretae	Deroceras invadens	3
3	Angiostoma gandavense	Deroceras reticulum	3

7	Angiostoma margaretae	Tandonia budapestensis	1
9	Angiostoma margaretae	Tandonia sowerbyi	6
10 (J)	Phasmarhabditis neopapillosa	Ambigolimax nyctelius	4
23	Fungal contamination	A. vulgaris	1
26	Not Extracted	D. invadens	1
29	Fungal contamination	D. reticulatum	1
30	Not Extracted	D. reticulatum	1
32	Not Extracted	T. sowerbyi	1
36	Not Extracted	T. budapestensis	1
42	Fungal contamination	C. nemoralis	1
45	Fungal contamination	A. vulgaris	1
Edwalton (EDW)			
1 (J)	Angiostoma margaretae	Tandonia budapestensis	31
2	Angiostoma margaretae	Tandonia budapestensis	5
3	Not Extracted	T. budapestensis	11
4	Not Extracted	T. budapestensis	2
5	Agfa flexilis	Limacus maculatus	4
6	Fungal contamination	A. silvaticus	2
7	Fungal contamination	A. hortensis	1
9	Fungal contamination	D. invadens	1
23	Not Extracted	C. aspersum	8
27	Not Extracted	C. aspersum	22
30	Not Extracted	T. budapestensis	1
32	Not Extracted	T. budapestensis	1
34	Not Extracted	C. aspersum	1
38	Not Extracted	D. invadens	1
40	Not Extracted	D. invadens	1
41	Not Extracted	D. invadens	1
44	Not Extracted	D. invadens	1
46	Not Extracted	T. striolatus	1
47	Not Extracted	C. hortensis	1
50	Not Extracted	C. hortensis	1
Forest field (FOR)			
18	Not Extracted	L. maculatus	1
20	Agfa flexilis	Limacus maculatus	1
26	Agfa flexilis	Limax maximus	3
27	Not Extracted	L. maximus	4
30	Fungal contamination	C. aspersum	5
33	Not Extracted	L. maculatus	4
35	Not Extracted	L. maculatus	4
36 (J)	Angiostoma margaretae	Ambigolimax valentianus	1
38	Fungal contamination	A. hortensis	1
45	Fungal contamination	T. budapestensis	1
46	Not Extracted	T. budapestensis	1
Gamston (GAM)			
1	Angiostoma margaretae	Deroceras invadens	2
6	Fungal contamination	L. maculatus	1
9	Not Extracted	L. maculatus	1
13	Fungal contamination	A. valentianus	1
14	Fungal contamination	A. valentianus	1
15	Not Extracted	A. valentianus	2

16 (J)	Phasmarhabditis neopapillosa	Ambigolimax valentianus	1
17	Not Extracted	A. valentianus	2
27	Fungal contamination	M. cantiana	1
Grange Park (GRAN)			
1	Agfa flexilis	Tandonia Budapestensis	1
13	Agfa flexilis	Arion vulgaris	1
15	Fungal contamination	A. Vulgaris	1
23	Fungal contamination	A. subfuscus	7
27	Not Extracted	A. subfuscus	1
29	Fungal contamination	A. subfuscus	2
34	Fungal contamination	T. budapestensis	6
37	Fungal contamination	D. invadens	2
42	Fungal contamination	D. reticulatum	1
48	Fungal contamination	A. Vulgaris	1
Kimberley (KIM)			
1	Angiostoma gandavense	Deroceras invadens	3
9	Not Extracted	D. invadens	1
12	Fungal contamination	O. alliarius	1
14	Not Extracted	O. alliarius	1
18	Not Extracted	O. alliarius	1
19	Fungal contamination	O. alliarius	1
20	Not Extracted	O. alliarius	4
21	Fungal contamination	A. hortensis	1
24	Not Extracted	A. hortensis	2
32	Not Extracted	A. hortensis	2
33	Angiostoma gandavense	Arion hortensis	3
37	Not Extracted	D. reticulatum	1
40 (J)	Cosmocercidae sp.	Cornu aspersum	32
42	Not Extracted	C. nemoralis	1
45	Not Extracted	C. nemoralis	1
46	Not Extracted	C. nemoralis	1
Bestwood Country Park (MILL)			
3	Fungal contamination	C. aspersum	1
19 (J)	Cosmocercidae sp.	Cornu aspersum	19
21	Fungal contamination	A. vulgaris	2
33	Fungal contamination	M. cantiana	1
Iremongers pond (POND)			
5	Fungal contamination	D. reticulatum	1
14	Cosmocerca longicauda	Limax flavus	7
21	Fungal contamination	D. reticulatum	1
25	Fungal contamination	D. invadens	1
37	Fungal contamination	L. flavus	1
45	Fungal contamination	A. rufus	1
Toton (TOT)			
11	Fungal contamination	A. ater	2
13	Fungal contamination	T. sowerbyi	4
21	Fungal contamination	C. nemoralis	1
24	Phasmarhabditis hermaphrodita	Cepaea nemoralis	1
25 (J)	Phasmarhabditis hermaphrodita	Arion subfuscus	6
26	Fungal contamination	A. ater	2
33	Fungal contamination	A. subfuscus	1

39	Fungal contamination	A. ater	1
47	Fungal contamination	T. sowerbyi	1
University Park (UNI)			
2	Fungal contamination	A. valentianus	1
3	Fungal contamination	A. valentianus	1
15	Agfa flexilis	Tandonia budapestensis	1
17	Fungal contamination	T. budapestensis	1
39	Fungal contamination	A. valentianus	1

Note: (J) indicates it was a juvenile nematode.

Supplementary Table 6.2. Trematode PCR information

Site (Sample no.)	Sequencing result (LPF/LPR)	Host	Trematodes found
Arnot Hill (ARNOT)			
18	Brachylaima fuscata	Trochulus striolatus	1
Basford (BAS)			
11	Brachylaima arcuata	Tandonia sowerbyi	1
26	Brachylaima fuscata	Cornu aspersum	2
38	Fungal contamination	Milax gagates	4
41	Fungal contamination	Deroceras reticulatum	1
Carlton (CARL)			
12	Brachylaima mesostoma	Cepaea nemoralis	4
13	Brachylaima mesostoma	Cepaea nemoralis	3
19	Fungal contamination	D. reticulatum	5
37	Not Extracted	Deroceras invadens	4
41	Fungal contamination	D. invadens	2
45	Not Extracted	D. invadens	3
Colwick (COLW)			
2	Brachylaima fuscata	Cornu aspersum	3
11	Fungal contamination	D. invadens	2
21	Fungal contamination	Ambigolimax valentianus	2
25	Not Extracted	A. valentianus	2
Clifton south (C-SOU)			
19	Brachylaima mesostoma	Cepaea nemoralis	10
Edwalton (EDW)			
8	Brachylaima fuscata	Deroceras invadens	2
20	Fungal contamination	Trochulus striolatus	1
23	Fungal contamination	C. aspersum	11
25	Brachylaima fuscata	Cornu aspersum	3
Forest field (FOR)			
4	Brachylaima fuscata	Deroceras invadens	1
18	Fungal contamination	Limacus maculatus	1
23	Brachylaima arcuata	Tandonia budapestensis	2
47	Fungal contamination	D. invadens	1
Gamston (GAM)			
3	Brachylaima fuscata	Ambigolimax valentianus	2
13	Not Extracted	A. valentianus	9
15	Brachylaima fuscata	Ambigolimax valentianus	15

16	Brachylaima fuscata	Ambigolimax valentianus	23
23	Not Extracted	T. striolatus	11
26	Brachylaima fuscata	Cepaea hortensis	2
27	Not Extracted	Monacha cantiana	4
28	Not Extracted	Cornu aspersum	36
29	Not Extracted	C. aspersum	2
30	Not Extracted	C. aspersum	3
33	Not Extracted	C. aspersum	2
34	Not Extracted	C. aspersum	5
37	Fungal contamination	D. invadens	1
46	Not Extracted	C. nemoralis	2
48	Not Extracted	C. nemoralis	2
Grange Park (GRAN)			
8	Brachylaima arcuata	Deroceras reticulatum	4
Kimberley (KIM)			
3	Brachylaima arcuata	Deroceras invadens	3
10	Brachylaima arcuata	Deroceras invadens	2
37	Brachylaima arcuata	Deroceras reticulatum	1
40	Brachylaima fuscata	Cornu aspersum	8
Bestwood Country Park (MILL)			
4a	Brachylaima arcuata	Monacha cantiana	14
4b	Brachylaima arcuata	Monacha cantiana	14
31	Brachylaima arcuata	Monacha cantiana	3
32	Brachylaima arcuata	Monacha cantiana	1
35	Brachylaima arcuata	Monacha cantiana	1
Iremongers pond (POND)			
5	Brachylaima arcuata	Deroceras reticulatum	3
8	Brachylaima arcuata	Deroceras reticulatum	4
University Park (UNI)			
5	Brachylaima arcuata	Ambigolimax valentianus	2
37	Fungal contamination	A. valentianus	1
39	Plagiorchioidea sp.	Ambigolimax valentianus	8
41	Fungal contamination	A. valentianus	1

Supplementary Table 6.3. GenBank accession numbers for the nematode and trematode ML phylogenetic trees.

Nematodes		
Isolate	Accession no.	Species
-	MK214813	Agfa flexilis
-	MF460455	Amphibiophilus mooiensis
-	MK214814	Angiostoma dentiferum
-	MK214815	Angiostoma gandavense
-	MF192968	Angiostoma margaretae
-	MK214816	Angiostoma norvegicum
-	LC052773	Cosmocerca japonica
-	OL472308	Cosmocerca longicauda
-	OL472309	Cosmocerca longicauda
-	OL472310	Cosmocerca longicauda
-	OL472311	Cosmocerca longicauda
-	MT108302	Cosmocerca ornata
-	MN839761	Cosmocerca simile
-	LC018444	Cosmocercoides pulcher
-	MH178314	Cosmocercoides pulcher
-	MH178315	Cosmocercoides pulcher
-	MH178316	Cosmocercoides pulcher
-	MH178317	Cosmocercoides pulcher
-	MH178318	Cosmocercoides pulcher
-	MH032772	Cosmocercoides qingtianensis
-	MH032773	Cosmocercoides qingtianensis
-	MH032774	Cosmocercoides qingtianensis
-	MH178311	Cosmocercoides qingtianensis
-	MH178312	Cosmocercoides qingtianensis
-	MH178313	Cosmocercoides qingtianensis
-	LC186007	Meteterakis amamiensis
-	LC186015	Meteterakis formosensis

-	LC185990	Meteterakis occidentalis
-	JQ995315	Paraspidodera uncinata
-	FJ516761	Phasmarhabditis hermaphrodita
-	KM510201	Phasmarhabditis hermaphrodita
-	KM510202	Phasmarhabditis hermaphrodita
-	MG551718	Phasmarhabditis hermaphrodita
-	MK214817	Phasmarhabditis hermaphrodita
-	FJ516760	Phasmarhabditis neopapillosa
Edwalton 5	OP626220	Agfa flexilis
Forest 20	OP626221	Agfa flexilis
Forest 26	OP626222	Agfa flexilis
Grange 1	OP626223	Agfa flexilis
Grange 13	OP626224	Agfa flexilis
University 15	OP626225	Agfa flexilis
Arnot 1	OP626226	Angiostoma margaretae
Arnot 11	OP626227	Angiostoma margaretae
Arnot 35	OP626228	Angiostoma margaretae
Basford 45	OP626229	Angiostoma margaretae
Beeston 12	OP626230	Angiostoma margaretae
Beeston 14	OP626231	Angiostoma margaretae
Beeston 16	OP626232	Angiostoma gandavensis
Carlton 18	OP626233	Angiostoma margaretae
Colwick 13	OP626234	Angiostoma margaretae
Clifton south 1	OP626235	Angiostoma margaretae
Clifton south 3	OP626236	Angiostoma gandavensis
Clifton south 7	OP626237	Angiostoma margaretae
Clifton south 9	OP626238	Angiostoma margaretae
Edward 1	OP626239	Angiostoma margaretae
Edward 2	OP626240	Angiostoma margaretae
Forest 36	OP626241	Angiostoma margaretae

Gamston 1	OP626242	Angiostoma margaretae
Kimberley 1	OP626243	Angiostoma gandavensis
Kimberley 33	OP626244	Angiostoma gandavensis
Aten 12	OP626245	Phasmarhabditis hermaphrodita
Clifton South 10	OP626246	Phasmarhabditis neopapillosa
Gamston 16	OP626247	Phasmarhabditis neopapillosa
Toton 24	OP626248	Phasmarhabditis hermaphrodita
Toton 25	OP626249	Phasmarhabditis hermaphrodita
Basford 1	OP626250	Cosmocercidae sp.
Beeston 1	OP626251	Cosmocercidae sp.
Kimberley 40	OP626252	Cosmocercidae sp.
Mill 19	OP626253	Cosmocercidae sp.
Pond 14	OP626254	Cosmocerca longicauda
Trematode		
Isolate	Accession no.	Species
-	AY222159	Auridistomum chelydrae
-	KR703279	Brachycladium goliath
-	AY222160	Brachycoelium salamandrae
-	KT074950	Brachylaima arcuata
-	KT074952	Brachylaima fuscata
-	KP903640	Brachylaima mesostoma
-	KT074951	Brachylaima mesostoma
-	KT074954	Brachylaima mesostoma
-	KT074955	Brachylaima mesostoma
-	AY222084	Brachylaima sp.
-	AY222085	Brachylaima thompsoni
-	MW361240	Cryptocotyle lingua
-	KX815125	Haplorchis pumilio
-	MT568786	Haplorchis sp.
-	AY222158	Macroderoides typicus

-	JQ886404	Mesocoelium lanfrediae
-	MK482055	Metorchis orientalis
-	LC647154	Michajlovia turdi
-	MK602324	Michajlovia turdi
-	AY222157	Opisthioglyphe ranae
-	MZ768805	Opisthioglyphe ranae
-	MZ787582	Opisthioglyphe ranae
-	MZ751051	Telorchis assula
-	MZ753784	Telorchis assula
-	MZ753903	Telorchis assula
-	MZ798276	Telorchis assula
-	KP903630	Urotocus rossitensis
-	KP903635	Urotocus rossitensis
Arnot 18	OP626191	Brachylaima fuscata
Basford 11	OP626192	Brachylaima arcuata
Basford 26	OP626193	Brachylaima fuscata
Carlton 12	OP626194	Brachylaima mesostoma
Carlton 13	OP626195	Brachylaima mesostoma
Colwick 2	OP626196	Brachylaima fuscata
Clifton South 19	OP626197	Brachylaima mesostoma
Edwalton 8	OP626198	Brachylaima fuscata
Edwalton 25	OP626199	Brachylaima fuscata
Forest 4	OP626200	Brachylaima fuscata
Forest 23	OP626201	Brachylaima arcuata
Gamston 3	OP626202	Brachylaima fuscata
Gamston 15	OP626203	Brachylaima fuscata
Gamston 16	OP626204	Brachylaima fuscata
Gamston 26	OP626205	Brachylaima fuscata
Grange 8	OP626206	Brachylaima arcuata
Kimberley 3	OP626207	Brachylaima arcuata

Kimberley 10	OP626208	Brachylaima arcuata
Kimberley 37	OP626209	Brachylaima arcuata
Kimberley 40	OP626210	Brachylaima fuscata
Mill 4a	OP626211	Brachylaima arcuata
Mill 4b	OP626212	Brachylaima arcuata
Mill 31	OP626213	Brachylaima arcuata
Mill 32	OP626214	Brachylaima arcuata
Mill 35	OP626215	Brachylaima arcuata
Pond 5	OP626216	Brachylaima arcuata
Pond 8	OP626217	Brachylaima arcuata
University 5	OP626218	Brachylaima arcuata
University 39	OP626219	Plagiorchioidea sp.

Supplementary Table 6.4. The terrestrial gastropod species commonly found at popular dog walking sites in and around city of Nottingham and their relevance as intermediate hosts for different lungworm nematode species. Intermediate host status confirmed by Alicata (1965); Skorping \& Halvorsen (1980); Campbell and Little (1988); Diez-Baños et al. (1989); Schjetlein \& Skorping (1995); Grewal et al. (2003); Majoros et al. (2010); Panayotova-Pencheva (2011); Patel et al. (2014); Helm et al. (2015); Conboy (2015); Aziz et al. (2016); Hadi (2018); Lange et al. (2018); Hicklenton \& Betson (2019); Fuehrer et al. (2020) and Penagos-Tabares et al. (2020).

Family	Species		Intermediate Host?
Agriolimacidae	Deroceras invadens Deroceras reticulatum	(Reise, Hutchinson, Schunack \& Schlitt, 2011) (Müller, 1774)	$\begin{aligned} & \text { Yes }^{3} \\ & \text { Yes }^{1,2,3,4,6,11} \end{aligned}$
Arionidae	Arion ater Arion hortensis Arion rufus Arion silvaticus Arion subfuscus Arion vulgaris	(Linnaeus, 1758) (Férussac, 1819) (Linnaeus, 1758) (Lohmander, 1937) (O.F. Müller, 1774) (Moquin-Tandon, 1855)	Yes ${ }^{3}$ Yes ${ }^{3,4,5,6,7}$ Yes ${ }^{3}$ Yes ${ }^{5}$ Yes ${ }^{3,5,6,7}$ Yes ${ }^{1,3,4,10}$
Boettgerillidae	Boettgerilla pallens	(Simroth, 1912)	No
Discidae	Discus rotundatus	(Müller, 1774)	Yes ${ }^{3}$
Helicidae	Arianta arbustorum Cepaea hortensis Cepaea nemoralis Cornu aspersum	(Linnaeus, 1758) (O.F. Müller, 1774) (O.F. Müller, 1774) (O.F. Müller, 1774)	$\begin{aligned} & \text { Yes }^{3,4,5,6,7} \\ & \text { Yes }^{4,6,7} \\ & \text { Yes }^{3,4,6,7} \\ & \text { Yes }^{1,3,4,7,8,9} \end{aligned}$
Hygromiidae	Trochulus hispidus	(Linnaeus, 1758)	Yes ${ }^{5}$
	Trochulus striolatus	(Pfeiffer, 1828)	No
	Monacha cantiana	(Montagu, 1803)	Yes ${ }^{5,6,9}$
Limacidae	Ambigolimax nyctelius Ambigolimax valentianus	(Bourguignat, 1861) (Férussac, 1821)	No No
	Limacus flavus Limacus maculatus Limax maximus	(Linnaeus, 1758) (Kaleni-czenko, 1851) (Linnaeus, 1758)	$\begin{aligned} & \text { Yes }^{1,2,3,6} \\ & \text { Yes }^{3} \\ & \text { Yes }^{1,3,4,8,11} \end{aligned}$
Milacidae	Milax gagates	(Draparnaud, 1801)	Yes ${ }^{3}$
	Tandonia budapestensis	(Hazay, 1880)	No
	Tandonia sowerbyi	(Férussac, 1823)	Yes ${ }^{3,6}$
Oxychilidae	Oxychilus alliarius	(Miller, 1822)	Yes ${ }^{2}$

Note: Gastropods species that are not associated as intermediated hosts of lungworms are greyed out. ${ }^{1}$ Aelurostrongylus abstrusus; ${ }^{2}$ Angiostrongylus cantonensis; ${ }^{3}$ Angiostrongylus vasorum;
${ }^{4}$ Crenosoma vulpis; ${ }^{5}$ Elaphostrongylus rangiferi; ${ }^{6}$ Muellerius capillaris; ${ }^{7}$ Neostrongylus linearis; ${ }^{8}$ Oslerus rostratus; ${ }^{9}$ Prostrongylus rufescens; ${ }^{10}$ Troglostrongylus wilsoni; ${ }^{11}$ Umingmakstrongylus pallikuukensis.

Chapter 7 General Discussion:

The research presented for this thesis aimed to explore the relationship helminthic parasites have with their intermediate gastropod hosts in an effort to better understand the dynamics of transmission for gastropod-borne parasitic disease. This was done by investigating the morphology, distribution, prevalence of infection and genetic diversity of the intermediate snail host. The overall major themes found in each of the chapters are highlighted and discussed below.

7.1 Ecological Phenotypic Variation of African Biomphalaria Species:

In Chapter 3, we investigated the conchological variation of African Biomphalaria species found on the Ugandan shoreline of the Great African Lakes and used novel landmark-based geometric morphometric techniques to differentiate species using only shell morphology. This novel approach was able to distinguish all four species groups using landmark placement data. Our findings are contrary to Plam et al. (2008), who found that sympatric Biomphalaria species at Lake Albert could not be distinguished using shell morphology. However, Plam et al. (2008) did not use landmark-based morphometric techniques, but instead a mixture of six distance-based measurements and seven non-distance based shell characteristics.

The use of conchological identification methods has been consistently problematic, as the literature on Biomphalaria (and other planorbid snails) have been overloaded with a large number of species, the majority of which are not valid (Jarne et al., 2011). This is likely the consequence of many Biomphalaria species (and other planorbid snails) being first identified during the 1800 s and their classification being often based on the appearance of their shell morphology alone (Jarne et al., 2011). This problem has been recently addressed with the introduction of 'lacustrine' and 'non-lacustrine' terminology, which addresses that some species of Biomphalaria exhibit ecological phenotypic variation in their shell morphology depending on what type of environment they inhabit when developing (Brown, 1996; DeJong et al., 2001; Kazibwe et al., 2006; Plam et al., 2008; Kazibwe et al., 2010). However, the 'lacustrine' and 'non-lacustrine' categories lack detail in explaining what factor (or factors) cause the morphological difference within a species, as lacustrine simply refers to 'relating to lakes' and non-lacustrine refers to 'everything else'.

Another issue is the lack of information in the literature on what specific environmental factors contribute to the contrasting shell morphologies between the two morphotypes. For example, Jarne et al. (2011) describes the lacustrine forms of some African and American species as tending to have smaller shells and larger apertures, as the opening of the shell widens quickly during growth, resulting in a smaller height-to-diameter ratio compared to the non-lacustrine form. However, Jarne et al. (2011) only describes the process of how lacustrine shells develop differently to non-lacustrine shells, not what factor (or factors) is causing the shell to widen during development. Standley et al. (2011) was the first to find that the morphotypes of B. choanomphala at Lake Victoria were strongly associated with certain habitat types, with the majority of morphotype-A snails being found in marsh-like habitats, while morphotype B snails were located within the lake. Standley et al. (2012) expanded upon this association further by finding habitat-type, water depth and pH were
significant predictors for morphotype-A abundance. This is a similar finding to the results of Chapter 5, which found morphotype-A variants of B. choanomphala had a significant negative relationship with water turbulence, pH and water depth, indicating morphotype-A are commonly found in shallow environments with a neutral pH and low flow rate. Conversely, morphotype-B shells had a significant positive relationship with water turbulence and water depth, being commonly found in deep environments with high flow rates. However, an alternative viewpoint of this relationship between morphotype abundance and habitat preference, is these abiotic factors (water turbulence and depth) are causing this change in morphology.

Dillon (2019) had a similar hypothesis when investigating the ecophenotypic variation in another closely related Planorbidae species, Helisoma trivolvis. He found two genetically identical populations of H. trivolvis, had two contrasting shell morphologies depending on whether the snails lived in a still, pond (morphotype-A) or the base of a flowing dam (morphotype-B) in Lake Wakendaw, South Carolina. He proposed that the snails in the pond had a different shell morphology than the snails inhabiting the base of the dam in response to the difference in flowrate of the water. This was a rational idea as the large discoidal shape and small apertural opening of the morphotype-A shells allows them to enfold air into their shell cavity and use it to reach floating vegetation. Conversely, the low and broad shape of the morphotype-B shells are better suited at reducing drag from the flowing water and allows the snail to hold onto rocks more effectively with their larger aperture. Furthermore, if these morphotypes were placed into the opposite environment, they would struggle to survive. The morphotype-A snails would be constantly swept away by the water current due to their large surface area, while the morphotype-B snails would not be able to access floating food sources as their large aperture cannot trap air. Additionally, the morphotype-B snails would be vulnerable to predation as their large apertural opening will not stop predators attacking their body. When theorising what abiotic factors influence Biomphalaria morphology, it is rational to assume that Biomphalaria snails use a similar adaptation to Helisoma snails in response to an environment with a high flowrate.
Moreover, this could be the missing factor in the Jarne et al. (2011) explanation, as the water pressure entering the shell cavity through the aperture could result in the shell widening during development. It is however possible that other factors, such as water chemistry (pH , salinity, total dissolved solids, conductivity etc.) or the presence of predators could also contribute to the morphological changes seen in Biomphalaria (Haas, 2003; Hoverman et al. 2005; Hoverman \& Relyea, 2007).

One potential future application of the landmark-based geometric morphometric technique displayed in Chapter 3, is to implement the data generated by the technique into identification software that uses machine learning to identify medically important hosts. For example, the website application programming interface (webAPI) tool, 'snail host detector' uses artificial intelligence to detect the presence of medically important intermediate snail species in real-time, using images uploaded by smart phones (Figure 7.1). It was developed by the Action Towards Reducing Aquatic Snail Borne Parasitic Diseases (ATRAP) research group and is a collaborative project between the Mbarara University of Science and Technology (MUST) and The Royal Museum for Central Africa (RMCA)
(https://snaildetector.africamuseum.be/). The tool is specifically designed to detect the presence of snail shells in a photo and identify whether they are capable of spreading gastropod-borne diseases such as schistosomiasis (Biomphalaria) or fascioliasis (Lymnaea). It currently utilises the 'You Only Look Once' (YOLOv4) algorithm created by Bochkovskiy et al. (2020), which is a convolutional neural network object detection program that was trained using 2,500 images of snails collected by locals living in the Southern region of Lake Albert, Uganda. The model can currently detect four main groups of snails: Biomphalaria spp., Lymnaea spp., Gyraulus spp. (commonly misidentified as Biomphalaria, but is not medically relevant), and other non-intermediate host species (Figure 7.1). The researchers behind this tool aim to collect more images to improve its performance and also build an image database to develop region-specific models.

Figure 7.1. Example of the snail host detector tool created by ATRAP discriminating between different freshwater snail genera collected from Lake Albert. Photos adapted from https://snaildetector.africamuseum.be/.

The identification of Biomphalaria species is crucial for monitoring and controlling schistosomiasis (Abe et al., 2018). The more we understand about what abiotic factors influence shell morphology, the better we will understand what constitutes a valid species, which will undoubtedly help the future efforts of conchological identification methods and schistosomiasis control.

7.2 The Prevalence of Schistosoma mansoni at the African Great Lake, and the Abiotic and Biotic Factors Influencing Transmission:

The East African countries of Kenya, Tanzania, and Uganda are frequently surveyed and researched due to their high levels of endemic gastropod-borne parasitic and soiltransmitted helminthic diseases (Brooker et al., 2009). In Chapters 4 and 5, we investigated the prevalence of S. mansoni infection within the Biomphalaria species found at Lake Albert and Lake Victoria. When looking at just the Ugandan shorelines of each lake, we found the Masindi district of Lake Albert (12.5\%) had a higher mean prevalence of S. mansoni infection among its Biomphalaria populations compared to the Mayuge district of Lake Victoria (5\%). This finding was consistent with the original Rowel et al. (2015) study, which also investigated the prevalence of S. mansoni infection using traditional parasitological methods. However, when we compare the prevalence of S. mansoni infection of Lake Victoria in Chapter 5, we find the mean prevalence of infection for the Ugandan shoreline increases to 8.2%. This is likely due to the inclusion of more B. choanomphala populations, with infection being found in the Busia, Kalangala, Masaka and Mukono districts of Lake Victoria, in addition to the previously mentioned Mayuge district. When we look at the whole of Lake Victoria, the mean prevalence of infection increases again to 9.3\% following the inclusion of the Kenyan and Tanzanian B. choanomphala populations, with infection being found in the Kisumu and Siaya counties of Kenya, as well as the llemela, Rorya, Nyamagana, Sengerema and Ukerewe districts of Tanzania.

In addition to measuring infection prevalence, we also investigated what abiotic factors influenced the prevalence of S. mansoni infection of the Biomphalaria species found at Lake Albert and Lake Victoria. In Chapter 4, we found the mean infection prevalence among Biomphalaria populations at the Lake Albert sites (Bugoigo and Walukuba) were consistently higher during the wet seasons than the dry seasons. Similarly, this trend was also found at the Lake Victoria sites (Bugoto and Lwanika), with B. choanomphala populations having consistently higher infection prevalence during the wet seasons compared to the dry seasons. We proposed the reason for this increase in infection prevalence during the wet seasons was due to the change in water chemistry of the lake water (higher dissolved oxygen levels and lower water conductivity levels) from the increased rainfall, creating more favourable conditions for snail population growth and infection. Additionally, the increased rainfall and flooding could transport snails to new habitats and increase the amount of human/animal waste washed into freshwater sources. In Chapter 5, we investigated the effects of specific factors on the prevalence of S. mansoni infection among B. choanomphala populations across Lake Victoria. We found S. mansoni infection prevalence had a significant positive relationship with only one biotic factor (B. choanomphala abundance) and two abiotic factors (calcium and magnesium). Conversely, S. mansoni infection prevalence had a significant negative relationship with the abiotic factor of water pH (increasing water alkalinity). However, we deemed all three of the abiotic factors to not be directly influencing infection prevalence, as we found B. choanomphala abundance also had a significant positive relationship with high levels of calcium and magnesium, and a significant negative relationship with increasing water alkalinity. Therefore, Biomphalaria abundance was likely to be the only primary factor influencing infection prevalence, while all of the abiotic factors
like calcium/magnesium levels or the alkalinity of the water were indirectly affecting infection prevalence by reducing the number of available hosts. Similarly in Chapter 4, we deemed seasonality as a non-significant factor, as the differences in infection prevalence between the wet and dry seasons were not statistically significant. Furthermore, similar studies in other parts of Africa found contradictory results to us (higher prevalence of infection in the dry season), leading us to conclude that seasonality was not a significant factor of S. mansoni infection prevalence.

In addition to Biomphalaria abundance, the other biotic factor investigated was snail host genetic diversity. In Chapter 4, we found the Biomphalaria species from Lake Victoria (B. choanomphala) had a greater level of intra-species genetic diversity than the species from Lake Albert (B. pfeifferi, B. stanleyi, and B. sudanica). This low level of intra-species genetic diversity of the B. pfeifferi, B. stanleyi, and B. sudanica snails at Lake Albert could indicate these populations prefer to self-fertilize or inbreed compared to the B. choanomphala populations of Lake Victoria (Campbell et al., 2010). We also found the infection prevalence of the B. choanomphala at Lake Victoria were the lowest when compared to the B. pfeifferi, B. stanleyi, and B. sudanica populations of Lake Albert. This higher genetic diversity in the B. choanomphala populations could explain why there is a lower infection prevalence than the Biomphalaria populations at Lake Albert, as previous parasitological studies (Coltman et al., 1999; Jarne \& Théron, 2001; Campbell et al., 2010) found host populations with higher levels of genetic diversity have less prevalence of parasites and disease compared to populations with low levels of genetic diversity. Therefore, we believed our result was intuitive and logical as one of the key reasons why sexual reproduction evolved was to help increase the genetic diversity and adaptability of a population in response to an everchanging environment such as the introduction of a new parasite (Hamilton et al., 1990). This is due to the likelihood of a parasitic infection being successful or not, can depend on the level of genomic compatibility between an invading parasite and its host. In the case of S. mansoni, the level of genomic compatibility between the snail and schistosome, can determine whether the invading miracidium will successfully evade the host's immune defences or not (Mitta et al., 2012; Theron et al., 2014). Moreover, schistosome resistance in snails can be expressed in several different ways, such as preventing the miracidium from entering (via cytotoxic agents in the mucus) (Coyne et al., 2015) or by containing the infection by encapsulating the mother sporocyst (Théron et al., 1997; Lu et al., 2016). However, when we examined the Lake Albert and Lake Victoria sites individually, we discovered the Biomphalaria populations at sites with a higher prevalence of infection, also had higher levels of intra-species genetic diversity (Table 4.1; Table 5.2).

In response to this contradictory trend, we proposed in Chapters 4 and 5 that the reason for this high prevalence of infection among Biomphalaria populations with high genetic diversity could be from the 'coevolution selective sweep' phenomenon, which occurs when an antagonistic relationship between a coevolving host and parasite results in selective sweeps of host resistance adaptations and consecutive counter-adaptations of the parasite (Kawecki et al., 2012; Auld \& Tinsley, 2015). For example, a beneficial host adaptation such as resistance to S. mansoni, could become widespread throughout a population of Biomphalaria, resulting in less genetic diversity as individuals without the gene will be at a
selective disadvantage and eventually die off. It is therefore possible, that Biomphalaria populations with low genetic diversity and low levels of infection have experienced this 'selective sweep', while populations with higher levels of genetic diversity and higher levels of S. mansoni infection have not.

Alternatively, in Chapter 5 we discuss this trend could be the result of the migratory habits of B. choanomphala snails. This is because the introduction of snails from one site to another could cause higher levels of genetic diversity as it would allow for the exchange of new alleles. Consequently, this migration could also result in the introduction of S. mansoni from one population to another and potentially create a positive feedback loop in infection prevalence between the intermediate snail hosts and the definitive mammal hosts. Alternatively, we discussed how Webster \& Gower (2006) found that B. glabrata snails preferred to mate with individuals that were less infected with S. mansoni, and that this selection preference was stronger when the proportion of infected individuals within a population was higher. This suggests that non-random mating behaviour plays a role in the maintenance of resistance to S. mansoni and reduces genetic diversity within a population. It is therefore possible, populations within Lake Victoria which have a high genetic diversity and high levels of infection may not exhibit this non-random mating behaviour. Instead, they favour random mating, which promotes higher amounts of genetic diversity instead of S. mansoni resistance, as Biomphalaria with greater genetic diversity have a longer mean life span, a higher fecundity rate and more successful offspring (faster incubation period and more successful hatch rate) (Sandland et al., 2007). Conversely, populations which have low genetic diversity and low levels of infection could exhibit non-random mating behaviour, favouring S. mansoni resistance over higher levels of genetic diversity.

In summary, the relationship between S. mansoni infections among Biomphalaria snails is complex and multifaceted, with a wide range of factors influencing the likelihood of Schistosoma infection becoming hyper endemic within a snail population. Environmental factors such as water temperature, pH levels and the physiochemical composition of the water play a significant role in shaping the transmission dynamics of S. mansoni prevalence within Biomphalaria snails. Likewise, biological factors such as the presence of alternative hosts or the amount of genetic diversity within a population can influence the transmission dynamics of the parasite as certain snail host species or definitive hosts may exhibit higher levels of compatibility with S. mansoni, or support higher parasite loads, respectively. Furthermore, human activities and socio-economic factors can influence the likelihood of hyperendemic schistosome infections within a population, with poor sanitation, inadequate access to clean water and lack of health education contribute to the persistence and spread of infection. Given the complex interplay of abiotic and biotic factors, researching and understanding which abiotic and biotic factors contribute to high levels of schistosome infection is essential when developing sustainable control strategies to reduce the burden of schistosomiasis, such as modifying water sources and combining drug treatments with snail control measures will effectively disrupt the life cycle of the parasite.

7.3 Gastropod-Borne Parasitic Disease in Europe:

In Chapter 6, we investigated the prevalence of helminthic parasites found within nine families of terrestrial gastropods found in and around the city of Nottingham. In total 533 nematodes were counted, but not one medically or veterinary important nematode species was identified. However, of the 26 gastropod species identified in and around the city of Nottingham, 16 are potential hosts for Angiostrongylus vasorum, eight are potential hosts for Crenosoma vulpis and five are potential hosts for Aelurostrongylus abstrusus (Supplementary Table 6.4). The presence of these intermediate gastropod species would facilitate the transmission of these veterinary lungworms if they were ever introduced into the city of Nottingham. The introduction of An. vasorum in the Midlands is a likely eventuality, as there are documented migration of the An. vasorum northwards from Southeast England (Helm et al., 2015; Aziz et al., 2016).

In addition to the veterinary important lungworm species, three of the terrestrial gastropod species commonly found in and around the city of Nottingham are potential intermediate hosts of the medically important lungworm species, Angiostrongylus cantonensis (Supplementary Table 6.4). Angiostrongylus cantonensis can cause severe gastrointestinal and/or central nervous system disease in humans and is typically transmitted through the consumption of infected gastropods (intermediate host), freshwater crustacea/amphibians (paratenic hosts) or fruits and vegetables contaminated with gastropod slime/faeces/corpses. Despite being endemic to tropical and subtropical regions (such as Southeast Asia and the Pacific islands), 22 cases of human angiostrongyliasis have been reported in Europe from 1988 to 2019 (Federspiel et al., 2020), with the first autochthonous case being reported in mainland France (Nguyen et al., 2017). Alongside human cases, An. cantonensis has a low host specificity and can infect a large number of mammals, with reports of An. cantonensis infecting common Eulipotyphla (Atelerix algirus) and Rodentia (Mus musculus and Rattus norvegicus) species in the Canary and Balearic Islands (ParedesEsquivel et al., 2019; Gonzálvez \& Ruiz de Ybanez, 2022). The current distribution and presence of An. cantonensis is heavily dependent on the availability of intermediate (gastropods) and definitive hosts (typically rats). The current amounts of intercontinental travel, immigration and trade with countries endemic with An. cantonensis, creates an increased risk of An. cantonensis being introduced and established in Europe. The low host specificity of An. cantonensis allows it to infect a wide variety of European gastropod and mammal species, which further increases its chances of successfully invading new territory.

The idea of diseases being introduced from developing countries to developed countries is a concerning issue. This is typically seen as a result of globalisation and ever increasing amounts of intercontinental travel and trading from countries where disease is more prevalent. This is especially concerning, as newly introduced diseases can spread quickly due to the high population density and high levels of mobility found within developed countries. This can lead to potentially serious outbreaks, which can have a significant impact on public health. However, the majority of reports and concern about the introduction of tropical diseases into Europe are commonly vector-borne diseases perpetrated by arthropod species like mosquitoes (Schaffner et al., 2014, Rezza et al., 2007, Gould et al., 2010), with the potential introduction of gastropod-borne parasitic diseases being often overlooked. This is
likely due to the perception that developed countries are 'protected from' diseases caused by helminthic parasites as they have access to safe drinking water and adequate hygiene and sanitation practises. However, this assumption is often proven false when gastropodborne parasitic diseases unexpectedly appear and establish themselves in areas where it was believed they could not occur. One recent and on-going example of this, was the 2013 outbreak of urogenital schistosomiasis in the French, Mediterranean island of Corsica.

The 2013 outbreak in Corsica had reports of over 100 cases of urogenital schistosomiasis, which was a result of the introduction of Schistosoma haematobium and a S. haematobiumS. bovis hybrid species from Senegal (Boissier et al., 2016). The suspected intermediate snail host was Bulinus truncatus, an endemic freshwater snail species present in the Cavu river, a popular location for recreational bathing and swimming by tourists and locals (Oleaga et al., 2019). Boissier et al. (2016) explains that Corsica's popularity as a tourist destination adds an additional risk factor as the intermediate snail, B. truncatus, is found in several southern European countries (France, Greece, Italy and Spain) and approximately 3 million visitors travel to Corsica annually. This poses the risk of a 'worst-case scenario', where large numbers of visitors and the abundance of suitable intermediate snail hosts across southern Europe could result in the rapid spread of urogenital schistosomiasis, regardless of the protective measures of good hygiene and sanitation practice found in European countries. Moreover, the nature of this newly emerged S. haematobium-S. bovis hybrid is still not fully understood, making it even more difficult to evaluate the situation.

Gastropod-borne diseases continue to pose a significant health challenge in the world, particularly in developing nations (Lu et al., 2018). The risk of introducing and spreading gastropod-borne parasitic diseases is ever-increasing due to the always increasing levels of intercontinental travel and trade between endemic and non-endemic countries. Malacological surveys are essential for gaining an in-depth understanding of the epidemiology of gastropod-borne parasitic diseases and formulating effective control strategies to reduce and prevent the spread of gastropod-borne parasitic disease. Through such surveys, relevant data can be collected to identify the distribution and abundance of key intermediate hosts and help identify areas of high disease risk and can assist in the development of effective management strategies.

References:

Abbasi, I., King, C. H., Muchiri, E. M., \& Hamburger, J. (2010). Detection of Schistosoma mansoni and Schistosoma haematobium DNA by loop-mediated isothermal amplification: identification of infected snails from early prepatency. The American journal of tropical medicine and hygiene, 83(2), 427.

Abe, E. M., Guan, W., Guo, Y. H., Kassegne, K., Qin, Z. Q., Xu, J., Chen J. H., Ekpo, U. F., Li, S. Z., \& Zhou, X. N. (2018). Differentiating snail intermediate hosts of Schistosoma spp. using molecular approaches: fundamental to successful integrated control mechanism in Africa. Infectious Diseases of Poverty, 7(02), 6-18.

Abou-El-Naga, I. F. (2013). Biomphalaria alexandrina in Egypt: Past, present and future. Journal of biosciences, 38(3), 665-672.

Adekiya, T. A., Aruleba, R. T., Oyinloye, B. E., Okosun, K. O., \& Kappo, A. P. (2020). The effect of climate change and the snail-schistosome cycle in transmission and bio-control of schistosomiasis in SubSaharan Africa. International Journal of Environmental Research and Public Health, 17(1), 181.

Adema, C. M., Bayne, C. J., Bridger, J. M., Knight, M., Loker, E. S., Yoshino, T. P., \& Zhang, S. M. (2012). Will all scientists working on snails and the diseases they transmit please stand up?. PLoS neglected tropical diseases, 6(12), e1835.

Adoka, S. O., Anyona, D. N., Abuom, P. O., Dida, G. O., Karanja, D., Vulule, J. M., Okurut, T., Matano, A.S., Gichere, S. K., \& Ofulla, A. V. O. (2014). Community perceptions of schistosomiasis transmission, prevalence and control in relation to aquatic habitats in the Lake Victoria basin of Kenya. East African medical journal, 91(7), 232-244.

Adriko, M., Standley, C. J., Tinkitina, B., Mwesigwa, G., Kristensen, T. K., Stothard, J. R., \& Kabatereine, N. B. (2013). Compatibility of Ugandan Schistosoma mansoni isolates with Biomphalaria snail species from Lake Albert and Lake Victoria. Acta Tropica, 128(2), 303-308.

Alicata, J. E. (1965). Biology and distribution of the rat lungworm, Angiostrongylus cantonensis, and its relationship to eosinophilic meningoencephalitis and other neurological disorders of man and animals. Advances in parasitology, 3, 223-248.

Altschul, S. F., Gish, W., Miller, W., Myers, E. X. \& Lipman, D. J. (1990). Basic Local Alignment Search Tool. Journal of Molecular Biology, 215, 403-410.

Anand, S., \& Hanson, K. (1997). Disability-adjusted life years: a critical review. Journal of health economics, 16(6), 685-702.

Andrus, P., \& Rae, R. (2019) Development of Phasmarhabditis hermaphrodita (and members of the Phasmarhabditis genus) as new genetic model nematodes to study the genetic basis of parasitism. Journal of Helminthology, 93, 319-331.

Antzée-Hyllseth, H., Trandem, N., Torp, T., \& Haukeland, S. (2020). Prevalence and parasite load of nematodes and trematodes in an invasive slug and its susceptibility to a slug parasitic nematode compared to native gastropods. Journal of invertebrate pathology, 173.

Ash, L. R. (1970). Diagnostic morphology of the third-stage larvae of Angiostrongy/us cantonensis, Angiostrongylus vasorum, Aelurostrongylus abstrusus, and Anafilaroides rostratus (Nematoda: Metastrongyloidea). The Journal of parasitology, 249-253.

Auld, S. K., \& Tinsley, M. C. (2015). The evolutionary ecology of complex lifecycle parasites: linking phenomena with mechanisms. Heredity, 114(2), 125-132.

Awharitoma, A. O., Okaka, C. E., \& Obaze, S. E. (2003). Larval stages of Brachylaima fuscatum in the terrestrial snail Limicolaria aurora from southern Nigeria. Journal of helminthology, 77, 1-5.

Aziz, N. A. A., Daly, E., Allen, S., Rowson, B., Greig, C., Forman, D., \& Morgan, E. R. (2016). Distribution of Angiostrongylus vasorum and its gastropod intermediate hosts along the rural-urban gradient in two cities in the United Kingdom, using real time PCR. Parasites \& vectors, 9, 1-9.

Baker, M. R. (1984). Nematode parasitism in amphibians and reptiles. Canadian journal of zoology, 62, 747-757.

Bakhoum, S., Haggerty, C. J., Ba, C. T., Jouanard, N., Riveau, G., \& Rohr, J. R. (2021). Seasonal Variations of Densities of Biomphalaria pfeifferi, the Intermediate Host of Schistosoma mansoni Parasite at the North of Senegal. In Update on Malacology. IntechOpen.

Bandelt, H. J., Forster, P., \& Röhl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular biology and evolution, 16(1), 37-48.

Bandoni, S. M., Mulvey, M., \& Loker, E. S. (1995). Phylogenetic analysis of eleven species of Biomphalaria Preston, 1910 (Gastropoda: Planorbidae) based on comparisons of allozymes. Biological Journal of the Linnean Society, 54(1), 1-27.

Barker, G. M., \& Efford, M. G. (2004). Predatory gastropods as natural enemies of terrestrial gastropods and other invertebrates. Natural enemies of terrestrial molluscs. CABI Publishing, Wallingford. 279-404.

Benson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., \& Sayers E. W. (2013). GenBank. Nucleic Acids Research, 41, 36-42.

Bochkovskiy, A., Wang, C. Y., \& Liao, H. Y. M. (2020). Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934.

Boissier, J., Grech-Angelini, S., Webster, B. L., Allienne, J. F., Huyse, T., Mas-Coma, S., Toulza, E., BarréCardi, H., Rollinson, D., Kincaid-Smith, J., Oleaga, A., Galinier, R., Foata, J., Rognon, A., Berry, A., Mouahid, G., Henneron, R., Moné, H., Harold Noel, H., \& Mitta, G. (2016). Outbreak of urogenital schistosomiasis in Corsica (France): an epidemiological case study. The Lancet Infectious Diseases, 16(8), 971-979.

Boko, P. M., Ibikounle, M., Onzo-Aboki, A., Tougoue, J. J., Sissinto, Y., Batcho, W., Kinde-Gazard, D., \& Kabore, A. (2016). Schistosomiasis and soil transmitted helminths distribution in Benin: a baseline prevalence survey in 30 districts. PLoS One, 11(9).

Borges, C. M. C., Souza, C. P. D., \& Andrade, Z. A. (1998). Histopathologic features associated with susceptibility and resistance of Biomphalaria snails to infection with Schistosoma mansoni. Memórias do Instituto Oswaldo Cruz, 93, 117-121.

Born-Torrijos, A., Poulin, R., Raga, J. A., \& Holzer, A. S. (2014). Estimating trematode prevalence in snail hosts using a single-step duplex PCR: how badly does cercarial shedding underestimate infection rates?. Parasites \& Vectors, 7(1), 1-11.

Brooker, S., Kabatereine, N. B., Smith, J. L., Mupfasoni, D., Mwanje, M. T., Ndayishimiye, O., Lwambo, N. J. S., Mbotha, D., Karanja, P., Mwandawiro, C., Muchiri, E., Clements A. C. A., Bundy, D. A. P., \&

Snow, R. W. (2009). An updated atlas of human helminth infections: the example of East Africa. International journal of health geographics, 8(1), 1-11.

Brown, D. S. (1994). Freshwater snails of Africa and their medical importance. Taylor \& Francis, London. 482-514.

Butcher, A. R., Talbot, G. A., Norton, R. E., Kirk, M. D., Cribb, T. H., Forsyth, J. R., Knight, B., \& Cameron, A. S. (1996). Locally acquired Brachylaima sp. (Digenea: Brachylaimidae). intestinal fluke infection in two South Australian infants. Medical Journal of Australia, 164, 475-478.

Butcher, A.R., \& Grove, D.I. (2001) Description of the life-cycle stages of Brachylaima cribbi n. sp. (Digenea: Brachylaimidae) derived from eggs recovered from human faeces in Australia. Systematic Parasitology, 49, 211-221.

Butcher, A.R., \& Grove, D.I. (2003) Field prevalence and laboratory susceptibility of southern Australian land snails to Brachylaima cribbi sporocyst infection. Parasite, 10, 119-125.

Butcher, A.R., \& Grove, D.I. (2005) Second intermediate host land snails and definitive host animals of Brachylaima cribbi in southern Australia. Parasite, 12, 31-37.

Cabrera, F., \& Martínez Chiappara, S. A. (2018). A new species of Biomphalaria Preston, 1910 (Gastropoda, Planorbidae) from the upper cretaceous of Uruguay. Revista Brasileira de Paleontologia, 21 (3): 272-275.

Caldeira, R. L., Jannotti-Passos, L. K., \& Dos Santos Carvalho, O. (2017). Use of molecular methods for the rapid mass detection of Schistosoma mansoni (Platyhelminthes: Trematoda) in Biomphalaria spp.(Gastropoda: Planorbidae). Journal of Tropical Medicine, 2017, 1-5.

Campbell, B. G., \& Little, M. D. (1988). The finding of Angiostrongylus cantonensis in rats in New Orleans. The American journal of tropical medicine and hygiene, 38(3), 568-573.

Campbell, G., Jones, C. S., Lockyer, A. E., Hughes, S., Brown, D., Noble, L. R., \& Rollinson, D. (2000). Molecular evidence supports an African affinity of the Neotropical freshwater gastropod, Biomphalaria glabrata, Say 1818, an intermediate host for Schistosoma mansoni. Proceedings of the Royal Society of London. Series B: Biological Sciences, 267(1460), 2351-2358.

Campbell, G., Noble, L. R., Rollinson, D., Southgate, V. R., Webster, J. P., \& Jones, C. S. (2010). Low genetic diversity in a snail intermediate host (Biomphalaria pfeifferi Krass, 1848) and schistosomiasis transmission in the Senegal River Basin. Molecular Ecology, 19(2), 241-256.

Castresana, J. (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular biology and evolution, 17, 540-552.

CDC. (2017). Infectious Diseases Related to Travel. Available from: https://wwwnc.cdc.gov/travel/yellowbook/2018/infectious-diseases-related-totravel/schistosomiasis\#5262. Last accessed: 05 June 2019.

Chai, J. Y. (2013). Praziquantel treatment in trematode and cestode infections: an update. Infection \& chemotherapy, 45(1), 32-43.

Chapman, A. D. (2009). Numbers of living species in Australia and the world. 1-78.
Chitsulo, L., Engels, D., Montresor, A., \& Savioli, L. (2000). The global status of schistosomiasis and its control. Acta tropica, 77(1), 41-51.

Colley, D. G., \& Secor, W. E. (2014). Immunology of human Schistosomiasis. Parasite immunology, 36(8), 347-357.

Colley, D. G., Bustinduy, A. L., Secor, W. E., \& King, C. H. (2014). Human schistosomiasis. The Lancet, 383(9936), 2253-2264.

Coltman, D. W., Pilkington, J. G., Smith, J. A., \& Pemberton, J. M. (1999). Parasite-mediated selection against inbred Soay sheep in a free-living island populaton. Evolution, 53(4), 1259-1267.

Conboy, G., Guselle, N., \& Schaper, R. (2017). Spontaneous shedding of metastrongyloid third-stage larvae by experimentally infected Limax maximus. Parasitology Research, 116(1), 41-54.

Costain, A. H., MacDonald, A. S., \& Smits, H. H. (2018). Schistosome egg migration: mechanisms, pathogenesis and host immune responses. Frontiers in immunology, 9.

Coyne, K., Laursen, J. R., \& Yoshino, T. P. (2015). In vitro effects of mucus from the mantle of compatible (Lymnaea elodes) and incompatible (Helisoma trivolvis) snail hosts on Fascioloides magna miracidia. The Journal of parasitology, 101(3), 351-357.

Cribb, T. H., Bray, R. A., Littlewood, D. T. J., Pichelin, S. P., \& Herniou, E. A. (2001). The digenea. Interrelationships of the Platyhelminthes, 168-185.

Cribb, T. H., Bray, R. A., Olson, P. D., \& Littlewood, D. T. J. (2003). Life cycle evolution in the Digenea: a new perspective from phylogeny. Advances in Parasitology, 54, 197-254.

Crompton, D. W. T. (1999). How much human helminthiasis is there in the world?. The Journal of parasitology, 397-403.

Cundill, B., Alexander, N., Bethony, J. M., Diemert, D., Pullan, R. L., \& Brooker, S. (2011). Rates and intensity of re-infection with human helminths after treatment and the influence of individual, household, and environmental factors in a Brazilian community. Parasitology, 138(11), 1406-1416.

Danso-Appiah, A., Olliaro, P. L., Donegan, S., Sinclair, D., \& Utzinger, J. (2013). Drugs for treating Schistosoma mansoni infection. Cochrane Database of Systematic Reviews, (2).

De Kock, K. N., \& Wolmarans, C. T. (2008). Invasive alien freshwater snail species in the Kruger National Park, South Africa. Koedoe: African Protected Area Conservation and Science, 50(1), 49-53.
de Oliveira, R. B., Senger, M. R., Vasques, L. M., Gasparotto, J., dos Santos, J. P. A., de Bittencourt Pasquali, M. A., Moreira, J. C. F., Silva Jr, F. P., \& Gelain, D. P. (2013). Schistosoma mansoni infection causes oxidative stress and alters receptor for advanced glycation endproduct (RAGE) and tau levels in multiple organs in mice. International journal for parasitology, 43(5), 371-379.
de Souza, A. L. D. S., Multini, L. C., Marrelli, M. T., \& Wilke, A. B. B. (2020). Wing geometric morphometrics for identification of mosquito species (Diptera: Culicidae) of neglected epidemiological importance. Acta tropica, 211.

DeJong, R. J., Morgan, J. A., Paraense, W. L., Pointier, J. P., Amarista, M., Ayeh-Kumi, P. F., Babiker, A., Barbosa, C. S., Brémond, P., Pedro Canese, A., de Souza, C. P., Dominguez, C., File, S., Gutierrez, A., Incani, R. N., Kawano, T., Kazibwe, F., Kpikpi, J., Lwambo, N. J., Mimpfoundi, R., Njiokou, F., Noël Poda, J., Sene, M., Velásquez, L. E., Yong, M., Adema, C. M., Hofkin, B. V., Mkoji, G. M., \& Loker, E. S. (2001). Evolutionary relationships and biogeography of Biomphalaria (Gastropoda: Planorbidae) with implications regarding its role as host of the human blood fluke, Schistosoma mansoni. Molecular biology and evolution, 18(12), 2225-2239.

Diez-Baños, P., Morrondo-Pelayo, M. P., Diez-Baños, N., Cordero-Del-Campillo, M., \& NúñezGutiérrez, M. C. (1989). The experimental receptivity of Helicella (Helicella) itala and Cepaea nemoralis (Mollusca, Helicidae) to larvae of Muellerius sp. and Neostrongylus linearis (Nematoda, Protostrongylidae) from chamois (Rupicapra rupicapra). Parasitology Research, 75, 488-494.

Dillon, R.T. (2019). The Freshwater Gastropods of North America, Volume 2: Essays on the Pulmonates. FWGNA Press, Charleston. 121-126.

Doenhoff, M., Bickle, Q., Long, E., Bain, J., \& McGregor, A. (1978). Factors affecting the acquisition of resistance against Schistosoma mansoni in the mouse. Demonstration of resistance to reinfection using a model system that involves perfusion of mice within three weeks of challenge. Journal of Helminthology, 52(3), 173-186.

Doughty, B. L. (1996). Schistosomes and other trematodes. Medical microbiology. 4th edition. Galveston: University of Texas Medical Branch at Galveston.

Elsheikha, H. M., Wright, I., Wang, B., \& Schaper, R. (2019). Prevalence of feline lungworm Aelurostrongylus abstrusus in England. Veterinary Parasitology: Regional Studies and Reports, 16.

Ernould, J. C., Garba, A., Labbo, R., Kaman, A. K., Sidiki, A., Djibrilla, A., \& Chippaux, J. P. (2004). Heterogeneity of Schistosoma haematobium transmission in irrigated fields. Bulletin de la Societe de pathologie exotique, 97(1), 19-23.

Eveland, L. K., \& Haseeb, M. A. (2011). Laboratory rearing of Biomphalaria glabrata snails and maintenance of larval schistosomes in vivo and in vitro. Biomphalaria snails and larval trematodes, 3355.

Exum, N. G., Kibira, S. P., Ssenyonga, R., Nobili, J., Shannon, A. K., Ssempebwa, J. C., Tukahebwa, E. M., Radloff, S., Schwab, K. J., \& Makumbi, F. E. (2019). The prevalence of schistosomiasis in Uganda: A nationally representative population estimate to inform control programs and water and sanitation interventions. PLoS neglected tropical diseases, 13(8).

Ezeamama, A. E., Bustinduy, A. L., Nkwata, A. K., Martinez, L., Pabalan, N., Boivin, M. J., \& King, C. H. (2018). Cognitive deficits and educational loss in children with schistosome infection - a systematic review and meta-analysis. PLoS neglected tropical diseases, 12(1).

Federspiel, F., Skovmand, S., \& Skarphedinsson, S. (2020). Eosinophilic meningitis due to Angiostrongylus cantonensis in Europe. International Journal of Infectious Diseases, 93, 28-39.

Filipiak, A., Haukeland, S., Zając, K., Lachowska-Cierlik, D., \& Hatteland, B.A. (2020) Helminths associated with terrestrial slugs in some parts of Europe. Bonn Zoological Bulletin, 69, 11-26.

Folmer, O., Hoeh, W. R., Black, M. B., \& Vrijenhoek, R. C. (1994). Conserved primers for PCR amplification of mitochondrial DNA from different invertebrate phyla. Molecular Marine Biology and Biotechnology, 3(5), 294-299.

Fontanilla, I. K., Naggs, F., \& Wade, C. M. (2017). Molecular phylogeny of the Achatinoidea (Mollusca: Gastropoda). Molecular Phylogenetics and Evolution, 114, 382-385.

Foronda, P., López-González, M., Miquel, J., Torres, J., Segovia, M., Abreu-Acosta, N., Casanova, J. C., Valladares, B., Mas-Coma, S., Bargues, M. D., \& Feliu, C. (2010). Finding of Parastrongy/us cantonensis (chen, 1935) in Rattus rattus in Tenerife, Canary Islands (Spain). Acta Tropica, 114, 123-127.

Frandsen, F., \& Christensen, N. O. (1984). An introductory guide to the identification of cercariae from African freshwater snails with special reference to cercariae of trematode species of medical and veterinary importance. Acta tropica, 41(2), 181-202.

Fuehrer, H. P., Morelli, S., Bleicher, J., Brauchart, T., Edler, M., Eisschiel, N., Hering, T., Lercher, S., Mohab, K., Reinelt, S., Stessl, T., Fasching, D., Nimphy, R., Pelzl, A., Shahi-Barogh, B., Wortha, L. N., Bakran-Lebl, K., Duda, M., Sattmann, H., Schaper, R., Traversa, D., \& Joachim, A. (2020). Detection of Crenosoma spp., Angiostrongylus vasorum and Aelurostrongylus abstrusus in Gastropods in Eastern Austria. Pathogens, 9, 1046.

Gállego, L., \& Gracenea, M. (2015) Praziquantel efficacy against Brachylaima sp. metacercariae (Trematoda: Brachylaimidae) parasitizing the edible land snail Cornu aspersum and its HPLC-MS/MS residue determination. Experimental parasitology, 157, 92-102.

Gállego, L., González-Moreno, O., \& Gracenea, M. (2014) Terrestrial edible land snails as vectors for geographic dissemination of Brachylaima species. The Journal of Parasitology, 100, 674-678.

Gérard, C., Ansart, A., Decanter, N., Martin, M. C., \& Dahirel, M. (2020). Brachylaima spp. (Trematoda) parasitizing Cornu aspersum (Gastropoda). in France with potential risk of human consumption. Parasite, 27.

Giannelli, A., Cantacessi, C., Colella, V., Dantas-Torres, F., \& Otranto, D. (2016). Gastropod-borne helminths: a look at the snail-parasite interplay. Trends in parasitology, 32(3), 255-264.

Gómez, B. J. (2001). Structure and functioning of the reproductive system. The biology of terrestrial molluscs. CABI Publishing, Oxon, 307-330.

Goncalves L, Liria J, Soto Vivas A. (2016). Ontogenetic morphometrics in Psammolestes arthuri (Pinto 1926) (Reduviidae, Triatominae) from Venezuela. Journal of Entomology and Zoology Studies, 4(1), 369-373.

Gonzálvez, M., \& Ruiz de Ybanez, R. (2022). What do we know about Angiostrongylus cantonensis in Spain? Current knowledge and future perspectives in a globalized world. Transboundary and Emerging Diseases, 69(5), 3115-3120.

Goodacre, S. L., \& Wade, C. M. (2001). Molecular evolutionary relationships between partulid land snails of the Pacific. Proceedings of the Royal Society of London B: Biological Sciences, 268(1462), 1-7.

Google (2022). Available at: http://maps.google.co.uk (accessed 19 August 2022).
Gould, E. A., Gallian, P., De Lamballerie, X., \& Charrel, R. N. (2010). First cases of autochthonous dengue fever and chikungunya fever in France: from bad dream to reality!. Clinical microbiology and infection, 16(12), 1702-1704.

Gouvras, A. N., Allan, F., Kinung'hi, S., Rabone, M., Emery, A., Angelo, T., Pennance, T., Webster, B., Nagai, H., \& Rollinson, D. (2017). Longitudinal survey on the distribution of Biomphalaria sudanica and B. choanomphala in Mwanza region, on the shores of Lake Victoria, Tanzania: implications for schistosomiasis transmission and control. Parasites \& Vectors, 10(1), 1-14.

Gouy, M., Tannier, E., Comte, N., \& Parsons, D. P. (2021). Seaview version 5: a multiplatform software for multiple sequence alignment, molecular phylogenetic analyses, and tree reconciliation. In Multiple Sequence Alignment. Humana, New York, NY. 241-260.

Gracenea, M., \& Gállego, L. (2017) Brachylaimiasis: Brachylaima spp. (Digenea: Brachylaimidae) metacercariae parasitizing the edible snail Cornu aspersum (Helicidae) in Spanish public marketplaces and health-associated risk factors. Journal of Parasitology, 103, 440-450.

Gray, D. J., Ross, A. G., Li, Y. S., \& McManus, D. P. (2011). Diagnosis and management of Schistosomiasis. Bmj, 342.

Grewal, P.S., Grewal, S.K., Tan, L., \& Adams, B. (2003) Parasitism of molluscs by nematodes: types of associations and evolutionary trends. Journal of Nematology, 35, 146.

Grove, D. I. (1996). Human strongyloidiasis. Advances in parasitology, 38, 251-309.
Gryseels, B., Polman, K., Clerinx, J., \& Kestens, L. (2006). Human schistosomiasis. The Lancet, 368 (9541), 1106-1118.

Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., \& Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic biology, 59(3), 307-321.

Haase, M. (2003). Clinal variation in shell morphology of the freshwater gastropod Potamopyrgus antipodarum along two hill-country streams in New Zealand. Journal of the Royal Society of New Zealand, 33(2), 549-560.

Habib, M. R., Lv, S., Rollinson, D., \& Zhou, X. N. (2021). Invasion and dispersal of Biomphalaria species: increased vigilance needed to prevent the introduction and spread of schistosomiasis. Frontiers in medicine, 8, 614797.

Hadi, S. H. (2018). Alnasir town, Iraq for detection some zoonotic parasites contaminated to feces of Monacha cartusiana gastropods as intermediate hosts. Plant Archives, 18(2), 2224-2228.

Hailegebriel, T., Nibret, E., \& Munshea, A. (2022). Distribution and seasonal abundance of Biomphalaria snails and their infection status with Schistosoma mansoni in and around Lake Tana, northwest Ethiopia. Scientific Reports, 12(1), 1-12.

Hamburger, J., Abbasi, I., Kariuki, C., Wanjala, A., Mzungu, E., Mungai, P., Muchiri, E., \& King, C. H. (2013). Evaluation of loop-mediated isothermal amplification suitable for molecular monitoring of schistosome-infected snails in field laboratories. The American journal of tropical medicine and hygiene, 88(2), 344.

Hamburger, J., Xin, X. Y., Ramzy, R. M., Jourdane, J., \& Ruppel, A. (1998). A polymerase chain reaction assay for detecting snails infected with bilharzia parasites (Schistosoma mansoni) from very early prepatency. The American journal of tropical medicine and hygiene, 59(6), 872-876.

Hamilton, W. D., Axelrod, R., \& Tanese, R. (1990). Sexual reproduction as an adaptation to resist parasites (a review). Proceedings of the National Academy of Sciences, 87(9), 3566-3573.

Hammoud, C., Kayenbergh, A., Tumusiime, J., Verschuren, D., Albrecht, C., Huyse, T., \& Van Bocxlaer, B. (2022). Trematode infection affects shell shape and size in Bulinus tropicus. International Journal for Parasitology: Parasites and Wildlife, 18, 300-311.

Hanington, P. C., Lun, C. M., Adema, C. M., \& Loker, E. S. (2010). Time series analysis of the transcriptional responses of Biomphalaria glabrata throughout the course of intramolluscan development of Schistosoma mansoni and Echinostoma paraensei. International journal for parasitology, 40(7), 819-831.

Helm, J., \& Morgan, E. (2017) Canine and feline lungworm infections in the UK. In Practice, 39, 298315.

Helm, J., Roberts, L., Jefferies, R., Shaw, S. E., \& Morgan, E. R. (2015). Epidemiological survey of Angiostrongylus vasorum in dogs and slugs around a new endemic focus in Scotland. Veterinary Record, 177, 46.

Helm, J., Roberts, L., Jefferies, R., Shaw, S. E., \& Morgan, E. R. (2015). Epidemiological survey of Angiostrongylus vasorum in dogs and slugs around a new endemic focus in Scotland. Veterinary Record, 177(2), 46-46.

Heneberg, P., Sitko, J., \& Bizos, J. (2016) Molecular and comparative morphological analysis of central European parasitic flatworms of the superfamily Brachylaimoidea Allison, 1943 (Trematoda: Plagiorchiida). Parasitology, 143, 455-474.

Heneberg, P., Sitko, J., \& Bizos, J. (2016). Molecular and comparative morphological analysis of central European parasitic flatworms of the superfamily Brachylaimoidea Allison, 1943 (Trematoda: Plagiorchiida). Parasitology, 143, 455-474.

Hicklenton, L., \& Betson, M. (2019) Molecular detection of Angiostrongylus vasorum in gastropods in Surrey, UK. Parasitology research, 118, 1051-1054.

Hoffman, J. I., Webster, J. P., Ndamba, J., \& Woolhouse, M. E. J. (1998). Extensive genetic variation revealed in adjacent populations of the schistosome intermediate host Biomphalaria pfeifferi from a single river system. Annals of Tropical Medicine \& Parasitology, 92(6), 693-698.

Holomuzki, J. R., \& Biggs, B. J. (2006). Habitat-specific variation and performance trade-offs in shell armature of New Zealand mud snails. Ecology, 87(4), 1038-1047.

Hotez, P. J., Alvarado, M., Basáñez, M. G., Bolliger, I., Bourne, R., Boussinesq, M., Brooker, S. J., Brown, A. S., Buckle, G., Budke, C. M., Carabin, H., Coffeng, L. E., Fèvre, E. M., Fürst, T., Halasa, Y. A., Jasrasaria, R., Johns, N. E., Keiser, J., King, C. H., Lozano, R., Murdoch, M. E., O'Hanlon, S., Pion, S. D. S., Pullan, R. L., Ramaiah, K. D., Roberts, T., Shepard, D. S., Smith, J. L., Stolk, W. A., Undurraga, E. A., Utzinger, J., Wang, M., Murray, C. J. L., \& Naghavi, M. (2014). The global burden of disease study 2010: interpretation and implications for the neglected tropical diseases. PLoS neglected tropical diseases, 8(7), e2865.

Hotez, P. J., Bottazzi, M. E., Bethony, J., \& Diemert, D. D. (2019). Advancing the Development of a Human Schistosomiasis Vaccine. Trends in parasitology, 35(2), 104-108.

Hoverman, J. T., \& Relyea, R. A. (2007). How flexible is phenotypic plasticity? Developmental windows for trait induction and reversal. Ecology, 88(3), 693-705.

Hoverman, J. T., Auld, J. R., \& Relyea, R. A. (2005). Putting prey back together again: integrating predator-induced behavior, morphology, and life history. Oecologia, 144(3), 481-491.

Humphries, J. (2011). Effects of larval schistosomes on Biomphalaria snails. Biomphalaria snails and larval trematodes, 103-125.

Iglesias, J., Castillejo, J., \& Castro, R. (2003) The effects of repeated applications of the molluscicide metaldehyde and the biocontrol nematode Phasmarhabditis hermaphrodita on molluscs, earthworms, nematodes, acarids and collembolans: a two-year study in Northwest Spain. Pest Management Science: formerly Pesticide Science, 59, 1217-1224.

Inobaya, M. T., Olveda, R. M., Chau, T. N., Olveda, D. U., \& Ross, A. G. (2014). Prevention and control of schistosomiasis: a current perspective. Research and reports in tropical medicine, 2014(5), 65.

Ismail, H. A. H. A., Ahmed, A. E. A. A. E. R. M., Cha, S., \& Jin, Y. (2022). The Life Histories of Intermediate Hosts and Parasites of Schistosoma haematobium and Schistosoma mansoni in the White Nile River, Sudan. International Journal of Environmental Research and Public Health, 19(3), 1508.

Ivanova, E., Clausi, M., Sparacio, I., \& Spiridonov, S. (2019) Preliminary data on the parasite survey of terrestrial gastropods of Sicily. Russian Journal of Nematology, 27, 37-45.

Ivanova, E.S., Spiridonov, S.E., \& Panayotova-Pencheva, M.S. (2013) Observations on the nematode fauna of terrestrial molluscs of the Sofia area (Bulgaria) and the Crimea peninsula (Ukraine) Russian Journal of Nematology, 21, 41-49.

Jamison, D. T., Breman, J. G., Measham, A. R., Alleyne, G., Claeson, M., Evans, D. B., Jha, P., Mills, A., \& Musgrove, P. (2006). Disease control priorities in developing countries. 2nd ed. New York: Oxford University Press, 467-482.

Jannotti-Passos, K., Vidigal, T. H. D. A., Dias-Neto, E., Pena, S. D. J., Simpson, A. J. G., Dutra, W. O., Souza, C. P., \& Carvalho-Parra, J. F. (1997). PCR amplification of the mitochondrial DNA minisatellite region to detect Schistosoma mansoni infection in Biomphalaria glabrata snails. Journal of Parasitology, 83(3), 395-399.

Jarne, P., \& Théron, A. (2001). Genetic structure in natural populations of flukes and snails: a practical approach and review. Parasitology, 123(7), 27-40.

Jarne, P., Pointier, J. P., \& David, P. (2011). Biosystematics of Biomphalaria spp. with an emphasis on Biomphalaria glabrata. Biomphalaria snails and larval trematodes. Springer, New York, NY. 1-32.

Jefferies, R., Vrhovec, M. G., Wallner, N., \& Catalan, D. R. (2010). Aelurostrongylus abstrusus and Troglostrongylus sp. (Nematoda: Metastrongyloidea). infections in cats inhabiting Ibiza, Spain. Veterinary Parasitology, 173, 344-348.

Jiménez-Martín, F. J., Cabrero, F. J., \& Martínez-Sánchez, A. (2020). Wing morphometrics for identification of forensically important blowflies (Diptera: Calliphoridae) in Iberian Peninsula. Journal of Forensic and Legal Medicine, 75.

John, R., Ezekiel, M., Philbert, C., \& Andrew, A. (2008). Schistosomiasis transmission at high altitude crater lakes in Western Uganda. BMC infectious Diseases, 8(1), 1-6.

Joof, E., Andrus, P. S., Sowunmi, K., Onyango, V. M., \& Wade, C. M. (2020). Comparing PCR techniques against conventional cercarial shedding methods for detecting Schistosoma mansoni infection in Biomphalaria snails. Acta Tropica, 212, 105716.

Jørgensen, A., Kristensen, T. K., \& Stothard, J. R. (2007). Phylogeny and biogeography of African Biomphalaria (Gastropoda: Planorbidae), with emphasis on endemic species of the great East African lakes. Zoological Journal of the Linnean Society, 151(2), 337-349.

Kabatereine, N. B., Brooker, S., Tukahebwa, E. M., Kazibwe, F., \& Onapa, A. W. (2004). Epidemiology and geography of Schistosoma mansoni in Uganda: implications for planning control. Tropical Medicine \& International Health, 9(3), 372-380.

Kane, R. A., \& Rollinson, D. (1994). Repetitive sequences in the ribosomal DNA internal transcribed spacer of Schistosoma haematobium, Schistosoma intercalatum and Schistosoma mattheei. Molecular and Biochemical Parasitology, 63(1), 153-156.

Kane, R. A., Stothard, J. R., Rollinson, D., Leclipteux, T., Evraerts, J., Standley, C. J., Allan, F., Betson, M., Kaba, R., Mertens, P., \& Laurent, T. (2013). Detection and quantification of schistosome DNA in freshwater snails using either fluorescent probes in real-time PCR or oligochromatographic dipstick assays targeting the ribosomal intergenic spacer. Acta Tropica, 128(2), 241-249.

Kawecki, T. J., Lenski, R. E., Ebert, D., Hollis, B., Olivieri, I., \& Whitlock, M. C. (2012). Experimental evolution. Trends in ecology \& evolution, 27(10), 547-560.

Kazibwe, F., Makanga, B., Rubaire-Akiiki, C., Ouma, J., Kariuki, C., Kabatereine, N. B., Booth, M., Vennervald, B. J., Sturrock, R. F., \& Stothard, J. R. (2006). Ecology of Biomphalaria (Gastropoda: Planorbidae) in Lake Albert, Western Uganda: snail distributions, infection with schistosomes and temporal associations with environmental dynamics. Hydrobiologia, 568(1), 433-444.

Kazibwe, F., Makanga, B., Rubaire-Akiiki, C., Ouma, J., Kariuki, C., Kabatereine, N. B., Vennervald, B. J., Rollinson, D., \& Stothard, J. R. (2010). Transmission studies of intestinal schistosomiasis in Lake Albert, Uganda and experimental compatibility of local Biomphalaria spp. Parasitology international, 59(1), 49-53.

Kengne-Fokam, A. C., Nana-Djeunga, H. C., Djuikwo-Teukeng, F. F., \& Njiokou, F. (2016). Analysis of mating system, fecundity, hatching and survival rates in two Schistosoma mansoni intermediate hosts (Biomphalaria pfeifferi and Biomphalaria camerunensis) in Cameroon. Parasites \& vectors, 9(1), 1-9.

Khieu, V., Sayasone, S., Muth, S., Kirinoki, M., Laymanivong, S., Ohmae, H., Huy, R., Chanthapaseuth, T., Yajima, A., Phetsouvanh, R., Bergquist, R., \& Bergquist, R. (2019). Elimination of Schistosomiasis mekongi from endemic areas in Cambodia and the Lao people's Democratic Republic: Current status and plans. Tropical medicine and infectious disease, 4(1), 30.

Kim, H. C., Hong, E. J., Ryu, S. Y., Park, J., Yu, D. H., Chae, J. S., Choi, K. S., Sim, C., \& Park, B. K. (2019). Urogonimus turdi (Digenea: Leucochloridiidae). from the White's Thrush, Zoothera aurea, in the Republic of Korea. The Korean Journal of Parasitology, 57, 461.

Kim, J. R., Hayes, K. A., Yeung, N. W., \& Cowie, R. H. (2014). Diverse gastropod hosts of Angiostrongylus cantonensis, the rat lungworm, globally and with a focus on the Hawaiian Islands. PloS one, 9.

King, C. H. (2010). Parasites and poverty: the case of schistosomiasis. Acta tropica, 113(2), 95-104.
King, C. H. (2015). It's time to dispel the myth of "asymptomatic" schistosomiasis. PLoS neglected tropical diseases, 9(2), e0003504.

King, C. H., \& Dangerfield-Cha, M. (2008). The unacknowledged impact of chronic schistosomiasis. Chronic illness, 4(1), 65-79.

Klingenberg, C. P. (2011). MorphoJ: an integrated software package for geometric morphometrics. Molecular ecology resources, 11(2), 353-357.

Knubben-Schweizer, G., \& Torgerson, P. R. (2015). Bovine fasciolosis: control strategies based on the location of Galba truncatula habitats on farms. Veterinary Parasitology, 208(1-2), 77-83.

Kostadinova, A., \& Pérez-del-Olmo, A. (2014) The systematics of the Trematoda. Digenetic trematodes, 21-44.

Kumar S, Stecher G, Li M, Knyaz C, and Tamura K (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution, 35, 1547-1549.

Lagrue, C., McEwan, J., Poulin, R., \& Keeney, D. B. (2007). Co-occurrences of parasite clones and altered host phenotype in a snail-trematode system. International Journal for Parasitology, 37(13), 1459-1467.

Lange, M.K., Penagos-Tabares, F., Hirzmann, J., Failing, K., Schaper, R., Van Bourgonie, Y.R., Backeljau, T., Hermosilla, C., \& Taubert, A. (2018) Prevalence of Angiostrongylus vasorum, Aelurostrongylus abstrusus and Crenosoma vulpis larvae in native slug populations in Germany. Veterinary parasitology, 254, 120-130.

Lawton, S. P., Hirai, H., Ironside, J. E., Johnston, D. A., \& Rollinson, D. (2011). Genomes and geography: genomic insights into the evolution and phylogeography of the genus Schistosoma. Parasites \& vectors, 4(1), 1-11.

Laznik, Z., Ross, J.L., \& Trdan, S. (2010) Massive occurrence and identification of the nematode Alloionema appendiculatum Schneider (Rhabditida: Alloionematidae) found in Arionidae slugs in Slovenia. Acta Agriculturae Slovenica, 95, 43-49.

Lemos, Q. T., \& Andrade, Z. A. (2001). Sequential histological changes in Biomphalaria glabrata during the course of Schistosoma mansoni infection. Memórias do Instituto Oswaldo Cruz, 96, 719-721.

Levitz, S., Standley, C. J., Adriko, M., Kabatereine, N. B., \& Stothard, J. R. (2013). Environmental epidemiology of intestinal schistosomiasis and genetic diversity of Schistosoma mansoni infections in snails at Bugoigo village, Lake Albert. Acta tropica, 128(2), 284-291.

López, N. L., Recabal, G. M., \& Carrasco, C. A. (2015). Preparation and evaluation of appertized from snail Helix aspersa. Acta Agronómica, 64, 1-10.

Lovis, L., Mak, T.K., Phongluxa, K., Soukhathammavong, P.A., Vonghachack, Y., Keiser, J., Vounatsou, P., Tanner, M., Hatz, C., Utzinger, J., Odermatt, P., Akkhavong, K. (2012). Efficacy of praziquantel against Schistosoma mekongi and Opisthorchis viverrini: a randomized, single-blinded dosecomparison trial. PLoS neglected tropical diseases, 6(7), e1726.

Lu, L., Zhang, S. M., Mutuku, M. W., Mkoji, G. M., \& Loker, E. S. (2016). Relative compatibility of Schistosoma mansoni with Biomphalaria sudanica and B. pfeifferi from Kenya as assessed by PCR amplification of the S. mansoni ND5 gene in conjunction with traditional methods. Parasites \& Vectors, 9(1), 1-13.

Lu, X. T., Gu, Q. Y., Limpanont, Y., Song, L. G., Wu, Z. D., Okanurak, K., \& Lv, Z. Y. (2018). Snail-borne parasitic diseases: an update on global epidemiological distribution, transmission interruption and control methods. Infectious diseases of poverty, 7(1), 1-16.

Mahdy, O., Haider, N., \& Fatima, S. (2017). Schistosomiasis of appendix with review of literature. Ann. Appl. Bio-Sci, 4, 10-12.

Majoros, G., Fukár, O., \& Farkas, R. (2010). Autochtonous infection of dogs and slugs with Angiostrongylus vasorum in Hungary. Veterinary parasitology, 174(3-4)., 351-354.

Majoros, G., Fukár, O., \& Farkas, R. (2010). Autochtonous infection of dogs and slugs with Angiostrongylus vasorum in Hungary. Veterinary parasitology, 174(3-4), 351-354.

Mandahl-Barth, G. (1957). Intermediate hosts of Schistosoma: African Biomphalaria and Bulinus: 2. Bulletin of the World Health Organization, 17(1), 1103-1163.

Mandahl-Barth, G. (1962). Key to the identification of East and Central African freshwater snails of medical and veterinary importance. Bulletin of the World Health Organization, 27(1), 135.

Martín-Carrillo, N., Feliu, C., Abreu-Acosta, N., Izquierdo-Rodriguez, E., Dorta-Guerra, R., Miquel, J., Abreu-Yanes, E., Martin-Alonso, A., García-Livia, K., Quispe-Ricalde, M. A., Serra-Cobo, J., Valladares, B., \& Foronda, P. (2021). A peculiar distribution of the emerging nematode Angiostrongylus cantonensis in the Canary Islands (Spain): recent introduction or isolation effect?. Animals, 11, 1267.

Mazigo, H. D., Nuwaha, F., Kinung'hi, S. M., Morona, D., de Moira, A. P., Wilson, S., Heukelbach, J., \& Dunne, D. W. (2012). Epidemiology and control of human schistosomiasis in Tanzania. Parasites \& vectors, 5(1), 1-20.

McCreesh, N. and Booth, M. (2014) The effect of increasing water temperatures on Schistosoma mansoni transmission and Biomphalaria pfeifferi population dynamics: an agent-based modelling study. PLoS One, 9(7).

Melhorn, H. (2008). Encyclopaedia of parasitology. Springer Verlag, Berlin.
Merrifield, M., Hotez, P. J., Beaumier, C. M., Gillespie, P., Strych, U., Hayward, T., \& Bottazzi, M. E. (2016). Advancing a vaccine to prevent human Schistosomiasis. Vaccine, 34(26), 2988-2991.

Meunier, C., Tirard, C., Hurtrez-Boussès, S., Durand, P., Bargues, M. D., Mas-Coma, S., Pointier, J. P., Jourdane, J., \& Renaud, F. (2001). Lack of molluscan host diversity and the transmission of an emerging parasitic disease in Bolivia. Molecular ecology, 10(5), 1333-1340.

Midzi, N., Sangweme, D., Zinyowera, S., Mapingure, M.P., Brouwer, K.C., Kumar, N., Mutapi, F., Woelk, G., Mduluza, T. (2008). Efficacy and side effects of praziquantel treatment against Schistosoma haematobium infection among primary school children in Zimbabwe. Transactions of the Royal Society of Tropical Medicine and Hygiene, 102(8), 759-766.

Mitta, G., Adema, C. M., Gourbal, B., Loker, E. S., \& Théron, A. (2012). Compatibility polymorphism in snail/schistosome interactions: From field to theory to molecular mechanisms. Developmental \& Comparative Immunology, 37(1), 1-8.

Mogawer, M. S., Behiry, M. E. E., \& Ghany, A. M. A. (2019). Katayama fever with rare presentation. MOJ Clin Med Case Rep, 9(2), 29-31.

Morgan, J. A. T., Dejong, R. J., Snyder, S. D., Mkoji, G. M., \& Loker, E. S. (2001). Schistosoma mansoni and Biomphalaria: past history and future trends. Parasitology, 123(7), 211-228.

Morgan, J. A., DeJong, R. J., Jung, Y., Khallaayoune, K., Kock, S., Mkoji, G. M., \& Loker, E. S. (2002). A phylogeny of planorbid snails, with implications for the evolution of Schistosoma parasites. Molecular phylogenetics and evolution, 25(3), 477-488.

Morley, N. J., \& Lewis, J. W. (2008). The influence of climatic conditions on long-term changes in the helminth fauna of terrestrial molluscs and the implications for parasite transmission in southern England. Journal of helminthology, 82, 325-335.

Murray, C. J., Salomon, J. A., Mathers, C. D., Lopez, A. D., \& World Health Organization.
(2002). Summary measures of population health: concepts, ethics, measurement and applications. World Health Organization.

Musuva, R. M., Awiti, A., Omedo, M., Ogutu, M., Secor, W. E., Montgomery, S. P., Alaii, J., \& Mwinzi, P. N. (2014). Community knowledge, attitudes and practices on schistosomiasis in western Kenya-the SCORE Project. The American journal of tropical medicine and hygiene, 90(4), 646.

Mutuku, M. W., Dweni, C. K., Mwangi, M., Kinuthia, J. M., Mwangi, I. N., Maina, G. M., Agola, L. E., Zhang, S.M., Maranga, R., Loker, E. S., \& Mkoji, G. M. (2014). Field-derived Schistosoma mansoni and Biomphalaria pfeifferi in Kenya: a compatible association characterized by lack of strong local adaptation, and presence of some snails able to persistently produce cercariae for over a year. Parasites \& vectors, 7(1), 1-13.

Mutuku, M. W., Laidemitt, M. R., Beechler, B. R., Mwangi, I. N., Otiato, F. O., Agola, E. L., Ochanda, H., Kamel, B., Mkoji, G. M., Steinauer, M. L., \& Loker, E. S. (2019). A search for snail-related answers to explain differences in response of Schistosoma mansoni to praziquantel treatment among responding and persistent hotspot villages along the Kenyan shore of Lake Victoria. The American Journal of Tropical Medicine and Hygiene, 101(1), 65.

Mutuku, M. W., Laidemitt, M. R., Spaan, J. M., Mwangi, I. N., Ochanda, H., Steinauer, M. L., Loker, E. S., \& Mkoji, G. M. (2021). Comparative vectorial competence of Biomphalaria sudanica and Biomphalaria choanomphala, snail hosts of Schistosoma mansoni, from transmission hotspots in Lake Victoria, Western Kenya. The Journal of Parasitology, 107(2), 349-357.

Nadler, S. A., Hoberg, E. P., Hudspeth, D. S., \& Rickard, L. G. (2000). Relationships of Nematodirus species and Nematodirus battus isolates (Nematoda: Trichostrongyloidea). based on nuclear ribosomal DNA sequences. Journal of parasitology, 86, 588-601.

Nagamine, K., Hase, T., \& Notomi, T. J. M. C. P. (2002). Accelerated reaction by loop-mediated isothermal amplification using loop primers. Molecular and cellular probes, 16(3), 223-229.

Nakao, M., Waki, T., Sasaki, M., Anders, J. L., Koga, D., \& Asakawa, M. (2017). Brachylaima ezohelicis sp. nov. (Trematoda: Brachylaimidae). found from the land snail Ezohelix gainesi, with a note of an unidentified Brachylaima species in Hokkaido, Japan. Parasitology International, 66, 240-249.

Nasir, P., \& Rodriguez, M. L. (1966). Brachylaima degiustii n. sp. from Columba livia in Venezuela. Proceedings of the Helminthological Society of Washington, 33.

Nei, M. (1987). Molecular evolutionary genetics. Columbia university press.
Ngowi, H. A. (2020). Prevalence and pattern of waterborne parasitic infections in eastern Africa: A systematic scoping review. Food and waterborne parasitology, 20, 1-5.

Nguyen, Y., Rossi, B., Argy, N., Baker, C., Nickel, B., Marti, H., Zarrouk, V., Houzé, S., Fantin, B., \& Lefort, A. (2017). Autochthonous case of eosinophilic meningitis caused by Angiostrongylus cantonensis, France, 2016. Emerging Infectious Diseases, 23, 1045.

Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., \& Hase, T. (2000). Loop-mediated isothermal amplification of DNA. Nucleic acids research, 28(12), 63-63.

Nwoko, O. E., Mogaka, J. J., \& Chimbari, M. J. (2021). Challenges and opportunities presented by current techniques for detecting schistosome infections in intermediate host snails: A scoping review. International Journal of Environmental Research and Public Health, 18(10), 5403.

Nzalawahe, J. (2021). Trematode Infections in Freshwater Snails and Seasonal Variations in Iringa and Arumeru Districts, Tanzania. Tanzania Veterinary Journal, 36(1), 23-33.

Oberholzer G. \& Van Eeden J. A. (1967). The freshwater molluscs of the Kruger National Park. Koedoe African Protected Area Conservation and Science, 10(1): 1-42.

Odero, S. O., Ogonda, L., Sang, D., Munde, E. O., Shiluli, C., \& Chweya, P. (2019). Distribution of Biomphalaria Snails in Associated Vegetations and Schistosome Infection Prevalence Along the Shores of Lake Victoria in Mbita, Kenya: A Cross-Sectional Study. The East African Health Research Journal, 3(2), 172.

Odongo-Aginya, E. I., Kironde, F. K., Kabatereine, N. B., Kategere, P., \& Kazibwe, F. (2008). Effect of seasonal rainfall and other environmental changes, on snail density and infection rates with Schistosoma mansoni fifteen years after the last snails' study in kigungu, entebbe, Uganda. East African medical journal, 85(11), 556-563.

Okeke, O. C., \& Ubachukwu, P. O. (2017). Trematode infections of the freshwater snail Biomphalaria pfeifferi from a south-east Nigerian community with emphasis on cercariae of Schistosoma. Journal of helminthology, 91(3), 295-301.

Oleaga, A., Rey, O., Polack, B., Grech-Angelini, S., Quilichini, Y., Pérez-Sánchez, R., Boireau, P., Mulero, S., Brunet, A., Rognon, A., Vallée, I., Kincaid-Smith, J., Allienne, J. F., \& Boissier, J. (2019). Epidemiological surveillance of schistosomiasis outbreak in Corsica (France): Are animal reservoir hosts implicated in local transmission?. PLoS Neglected Tropical Diseases, 13(6), e0007543.

Olliaro, P.L., Vaillant, M.T., Belizario, V.J., Lwambo, N.J.S., Ouldabdallahi, M., Pieri, O.S., Amarillo, M.L., Kaatano, G.M., Diaw, M., Domingues, A.C., Favre, T.C., Lapujade, O., Alves, F., Chitsulo, L. (2011). A multicentre randomized controlled trial of the efficacy and safety of single dose-dose praziquantel at $40 \mathrm{mg} / \mathrm{kg}$ vs. $60 \mathrm{mg} / \mathrm{kg}$ for treating intestinal schistosomiasis in the Philippines, Mauritania, Tanzania and Brazil. PLoS neglected tropical diseases, 5.

Olson, P. D., Cribb, T. H., Tkach, V. V., Bray, R. A., \& Littlewood, D. T. J. (2003). Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). International journal for parasitology, 33(7), 733-755.

Onasanya, A., Bengtson, M., Oladepo, O., Van Engelen, J., \& Diehl, J. C. (2021). Rethinking the topdown approach to schistosomiasis control and elimination in sub-Saharan Africa. Frontiers in Public Health, 9, 622809.

Onkanga, I. O., Mwinzi, P. N., Muchiri, G., Andiego, K., Omedo, M., Karanja, D. M., Wiegand, R. E., Secor, W. E., \& Montgomery, S. P. (2016). Impact of two rounds of praziquantel mass drug administration on Schistosoma mansoni infection prevalence and intensity: a comparison between community wide treatment and school-based treatment in western Kenya. International journal for parasitology, 46(7), 439-445.

Opisa, S., Odiere, M. R., Jura, W. G., Karanja, D., \& Mwinzi, P. N. (2011). Malacological survey and geographical distribution of vector snails for schistosomiasis within informal settlements of Kisumu City, western Kenya. Parasites \& vectors, 4(1), 1-9.

Ouma, S.O., Ngeranwa, J.N., Juma, K.K., \& Mburu, D.N. (2016). Seasonal variation of the physicochemical and bacteriological quality of water from five rural catchment areas of Lake Victoria basin in Kenya. Journal of Environmental Analytical Chemistry, 3, 170-175.

Outa, J. O., Sattmann, H., Köhsler, M., Walochnik, J., \& Jirsa, F. (2020). Diversity of digenean trematode larvae in snails from Lake Victoria, Kenya: first reports and bioindicative aspects. Acta tropica, 206, 105437.

PAHO, P. (2014). WHO Schistosomiasis Regional Meeting: Defining a Road Map toward Verification of Elimination of Schistosomiasis Transmission in Latin America and the Caribbean by 2020. Pan American Health Organization: Washington, DC, USA.

Palasio, R. G. S., de Almeida Guimarães, M. C., Ohlweiler, F. P., \& Tuan, R. (2017). Molecular and morphological identification of Biomphalaria species from the state of São Paulo, Brazil. ZooKeys, (668), 11.

Palumbi, S., Martin, A., Romano, S., Owen McMillan, W., Stice, L., and Grabowski, G. (1991). The simple fool's guide to PCR, version 2.0. Department of Zoology and Kewalo Marine Laboratory, University of Hawaii, Honolulu, HI. 26-28.

Panayotova-Pencheva, M. (2011). Role of some snails species distributed in Bulgaria as intermediate hosts of small lungworms (Nematoda: Protostrongylidae). Comptes rendus de l'Académie bulgare des Sciences, 64(3).

Paredes-Esquivel, C., Sola, J., Delgado-Serra, S., Puig Riera, M., Negre, N., Miranda, M. Á., \& JuradoRivera, J. A. (2019). Angiostrongylus cantonensis in North African hedgehogs as vertebrate hosts, Mallorca, Spain, October 2018. Eurosurveillance, 24(33), 1900489.

Parra, C., \& Liria, J. (2017). Shell geometric morphometrics in Biomphalaria glabrata (Mollusca: Planorbidae) uninfected and infected with Schistosoma mansoni. Zoological Systematics, 42(1), 59-64.

Patel, Z., Gill, A. C., Fox, M. T., Hermosilla, C., Backeljau, T., Breugelmans, K., Keevash, E., McEwan, C., Aghazadeh, M., \& Elson-Riggins, J. G. (2014). Molecular identification of novel intermediate host species of Angiostrongylus vasorum in Greater London. Parasitology research, 113, 4363-4369.

Penagos-Tabares, F., Groß, K. M., Hirzmann, J., Hoos, C., Lange, M. K., Taubert, A., \& Hermosilla, C. (2020). Occurrence of canine and feline lungworms in Arion vulgaris in a park of Vienna: First report of autochthonous Angiostrongylus vasorum, Aelurostrongylus abstrusus and Troglostrongylus brevior in Austria. Parasitology research, 119, 327-331.

Penagos-Tabares, F., Lange, M. K., Chaparro-Gutiérrez, J. J., Taubert, A., \& Hermosilla, C. (2018). Angiostrongylus vasorum and Aelurostrongylus abstrusus: Neglected and underestimated parasites in South America. Parasites \& Vectors, 11, 1-13.

Perez-Saez, J., Mande, T., Ceperley, N., Bertuzzo, E., Mari, L., Gatto, M., \& Rinaldo, A. (2016). Hydrology and density feedbacks control the ecology of intermediate hosts of schistosomiasis across habitats in seasonal climates. Proceedings of the National Academy of Sciences, 113(23), 6427-6432.

Pilsbry H. A. (1915). The Japanese species of Blanfordia. The Nautilus 29(1), 2-3.
Plam, M., Jørgensen, A., Kristensen, T. K., \& Madsen, H. (2008). Sympatric Biomphalaria species (Gastropoda: Planorbidae) in Lake Albert, Uganda, show homoplasies in shell morphology. African Zoology, 43(1), 34-44.

Platt, R. N., Le Clec'h, W., Chevalier, F. D., McDew-White, M., LoVerde, P. T., Ramiro de Assis, R., Oliveira, G., Kinung'hi, S., Djirmay, A. G., Steinauer, M. L., Gouvras, A., Rabone, M., Allan, F., Webster, B. L., Webster, J. P., Emery, A. M., Rollinson, D., \& Anderson, T. J. (2022). Genomic analysis of a
parasite invasion: Colonization of the Americas by the blood fluke Schistosoma mansoni. Molecular Ecology, 31(8), 2242-2263.

Pohly, A. G., Nijveldt, E. A., Stone, M. S., Walden, H. D., Ossiboff, R. J., \& Conrado, F. O. (2022). Infection with the fox lungworm (Crenosoma vulpis). in two dogs from New England-Two clinical reports and updated geographic distribution in North America. Veterinary Parasitology: Regional Studies and Reports, 30.

Pointier, J. P., David, P., \& Jarne, P. (2005). Biological invasions: the case of planorbid snails. Journal of Helminthology, 79(3), 249-256.

Prentice, M. A., Panesar, T. S., \& Coles, G. C. (1970). Transmission of Schistosoma mansoni in a large body of water. Annals of Tropical Medicine \& Parasitology, 64(3), 339-348.

Rae, R. (2017). Phasmarhabditis hermaphrodita-a new model to study the genetic evolution of parasitism. Nematology, 19, 375-387.

Rae, R., Verdun, C., Grewal, P. S., Robertson, J. F., \& Wilson, M. J. (2007). Biological control of terrestrial molluscs using Phasmarhabditis hermaphrodita - progress and prospects. Pest Management Science: formerly Pesticide Science, 63, 1153-1164.

Rambaut, A. (2010). FigTree v1.4.3. Institute of Evolutionary Biology. University of Edinburgh, Edinburgh, United Kingdom. Distributed by the author at: http://tree.bio.ed.ac.uk/software/figtree

Rey, O., Webster, B. L., Huyse, T., Rollinson, D., Van den Broeck, F., Kincaid-Smith, J., Onyekwere, A., \& Boissier, J. (2021). Population genetics of African Schistosoma species. Infection, Genetics and Evolution, 89, 104727.

Rezza, G., Nicoletti, L., Angelini, R., Romi, R., Finarelli, A. C., Panning, M., Cordioli, P., Fortuna, C., Boros, S., Magurano, F., Silvi, G., Angelini, P., Dottori, M., Ciufolini, M. G., Majori, G. C., Cassone, A. the, \& the CHIKV Study Group. (2007). Infection with chikungunya virus in Italy: an outbreak in a temperate region. The Lancet, 370(9602), 1840-1846.

Richards, D. T., Harris, S., \& Lewis, J. W. (1995). Epidemiological studies on intestinal helminth parasites of rural and urban red foxes (Vulpes vulpes). in United Kingdom. Veterinary parasitology, 59, 39-51.

Richardson, D.J., \& Campo, J.D. (2005) Gastrointestinal helminths of the Virginia opossum (Didelphis virginiana) in south-central Connecticut, USA. Comparative Parasitology, 72, 183-185.

Rohlf, F. J. (2005). tpsDig, tpsRegr, tpsRelw. Distributed by the author at:
http://www.life.bio.sunysb.edu/morph/
Rohlf, F. J. (2015). The tps series of software. Hystrix, 26(1).
Rollinson, D. (2011). Biomphalaria: Natural history, ecology and schistosome transmission. Biomphalaria Snails and Larval Trematodes, Springer, New York, NY. 57-79.

Ross, A. G., Chau, T. N., Inobaya, M. T., Olveda, R. M., Li, Y., \& Harn, D. A. (2017a). A new global strategy for the elimination of schistosomiasis. International Journal of Infectious Diseases, 54, 130137.

Ross, A. G., P. Bartley, Paul B. Sleigh, Adrian C. Olds, G. Richard. Li, Yuesheng. Williams, Gail M. McManus, Donald P. (2002). Schistosomiasis. New England Journal of Medicine. 346(16): 1212-1220.

Ross, J. L., Ivanova, E. S., Hatteland, B. A., Brurberg, M. B., \& Haukeland, S. (2016). Survey of nematodes associated with terrestrial slugs in Norway. Journal of Helminthology, 90, 583-587.

Ross, J.L., Haukeland, S., Hatteland, B.A., \& Ivanova, E.S. (2017b) Angiostoma norvegicum n. sp. (Nematoda: Angiostomatidae) a parasite of arionid slugs in Norway. Systematic Parasitology, 94, 5163.

Ross, J.L., Ivanova, E.S., Severns, P.M., \& Wilson, M.J. (2010a) The role of parasite release in invasion of the USA by European slugs. Biological Invasions, 12, 603-610.

Ross, J.L., Ivanova, E.S., Spiridonov, S.E., Waeyenberge, L., Moens, M., Nicol, G.W., \& Wilson, M.J. (2010b) Molecular phylogeny of slug-parasitic nematodes inferred from 18S rRNA gene sequences. Molecular Phylogenetics and Evolution, 55, 738-743.

Rowel, C., Fred, B., Betson, M., Sousa-Figueiredo, J. C., Kabatereine, N. B., \& Stothard, J. R. (2015). Environmental epidemiology of intestinal Schistosomiasis in Uganda: population dynamics of Biomphalaria (Gastropoda: Planorbidae) in Lake Albert and Lake Victoria with observations on natural infections with digenetic trematodes. BioMed research international.

Rowson, B., Turner, J., Anderson, R., \& Symondson, B. (2014) Slugs of Britain and Ireland. Telford: FSC Publications, 1-60.

Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., \& Sánchez-Gracia, A. (2017). DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular biology and evolution, 34(12), 3299-3302.

Rozendaal, J. A. (1997). Vector control: methods for use by individuals and communities. World Health Organization.

Rubaihayo J., Moghusu E., Clouds P., \& Abaasa A. (2008). Schistosomiasis transmission at high altitude crater lakes in Western Uganda. BMC infectious Diseases, 8(1), 1-6.

Sabin, A. B. (2020). Future Trends in Control of Neglected Tropical Diseases and the Antipoverty Vaccines. Forgotten People, Forgotten Diseases: The Neglected Tropical Diseases and their Impact on Global Health and Development, 213.

Salari, P., Fürst, T., Knopp, S., Utzinger, J., \& Tediosi, F. (2020). Cost of interventions to control schistosomiasis: A systematic review of the literature. PLoS neglected tropical diseases, 14(3), e0008098.

Sandland, G. J., Foster, A. V., Zavodna, M., \& Minchella, D. J. (2007). Interplay between host genetic variation and parasite transmission in the Biomphalaria glabrata-Schistosoma mansoni system. Parasitology research, 101(4), 1083-1089.

Sandland, G. J., Wethington, A. R., Foster, A. V., \& Minchella, D. J. (2009). Effects of host outcrossing on the interaction between an aquatic snail and its locally adapted parasite. Parasitology research, 105(2), 555-561.

Sandoval, N., Siles-Lucas, M., Perez-Arellano, J. L., Carranza, C., Puente, S., Lopez-Aban, J., \& Muro, A. (2006). A new PCR-based approach for the specific amplification of DNA from different Schistosoma species applicable to human urine samples. Parasitology, 133(5), 581-587.

Schaffner, F., Fontenille, D., \& Mathis, A. (2014). Autochthonous dengue emphasises the threat of arbovirosis in Europe. The Lancet Infectious Diseases, 14(11), 1044.

Schell, S. C. (1970). How to Know the Trematodes. W. C. Brown Co.
Schjetlein, J., \& Skorping, A. (1995). The temperature threshold for development of Elaphostrongylus rangiferi in the intermediate host: an adaptation to winter survival?. Parasitology, 111(1), 103-110.

Schwertz, C. I., Lucca, N. J., da Silva, A. S., Baska, P., Bonetto, G., Gabriel, M. E., Centofanti, F., \& Mendes, R. E. (2015). Eurytrematosis: An emerging and neglected disease in South Brazil. World Journal of Experimental Medicine, 5, 160.

Sengupta, M. E., Hellström, M., Kariuki, H. C., Olsen, A., Thomsen, P. F., Mejer, H., Willerslev, E., Mwanje, M. T., Madsen, H., Kristensen, T. K., Stensgaard, A. S., \& Vennervald, B. J. (2019). Environmental DNA for improved detection and environmental surveillance of schistosomiasis. Proceedings of the National Academy of Sciences, 116(18), 8931-8940.

Shiff, C. J., Evans, A., Yiannakis, C., \& Eardley, M. (1975). Seasonal influence on the production of Schistosoma haematobium and S. mansoni cercariae in Rhodesia. International Journal for Parasitology, 5(1), 119-123.

Simon, C., Franke, A., Martin, A. (1991). The Polymerase Chain Reaction: DNA Extraction and Amplification. In: Hewitt, G.M., Johnston, A.W.B., Young, J.P.W. (eds) Molecular Techniques in Taxonomy. NATO ASI Series, 57. Springer, Berlin, Heidelberg.

Singh, P. R., Couvreur, M., Decraemer, W., \& Bert, W. (2020). Survey of slug-parasitic nematodes in East and West Flanders, Belgium and description of Angiostoma gandavense n. sp. (Nematoda: Angiostomidae). from arionid slugs. Journal of helminthology, 94.

Skorping, A., \& Halvorsen, O. (1980). The susceptibility of terrestrial gastropods to experimental infection with Elaphostrongylus rangiferi Mitskevich (Nematoda: Metastrongyloidea). Zeitschrift für Parasitenkunde, 62(1), 7-14.

Snail host detector. (2020). Biomphalaria or Lymnaea? ATRAP project. Available at: https://snaildetector.africamuseum.be/ (Accessed: December 20, 2022).

SPSS, I. (2019). IBM SPSS statistics for windows, Version 26.0. Armonk: IBM Corp.
Standley, C. J., Goodacre, S. L., Wade, C. M., \& Stothard, J. R. (2014). The population genetic structure of Biomphalaria choanomphala in Lake Victoria, East Africa: implications for schistosomiasis transmission. Parasites \& vectors, 7(1), 1-10.

Standley, C. J., Vounatsou, P., Gosoniu, L., Jørgensen, A., Adriko, M., Lwambo, N. J., Lange, C. N., Kabatereine, N. B., \& Stothard, J. R. (2012). The distribution of Biomphalaria (Gastropoda: Planorbidae) in Lake Victoria with ecological and spatial predictions using Bayesian modelling. Hydrobiologia, 683(1), 249-264.

Standley, C. J., Wade, C. M., \& Stothard, J. R. (2011). A fresh insight into transmission of schistosomiasis: a misleading tale of Biomphalaria in Lake Victoria. PloS one, 6(10).

Steinmann, P., Keiser, J., Bos, R., Tanner, M., \& Utzinger, J. (2006). Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. The Lancet infectious diseases, 6(7), 411-425.

Stensgaard, A. S., Utzinger, J., Vounatsou, P., Hürlimann, E., Schur, N., Saarnak, C. F., Simoonga, C., Mubita, P., Kabatereine, N. B., Tchuem Tchuenté L. B., Rahbek, C., \& Kristensen, T. K. (2013). Large-
scale determinants of intestinal schistosomiasis and intermediate host snail distribution across Africa: does climate matter?. Acta tropica, 128(2), 378-390.

Sturrock, R. F. (2001). The schistosomes and their intermediate hosts. Schistosomiasis, Imperial College Press, London, 3, 7-83.

Sturrock, R. F., Diaw, O. T., Talla, I., Niang, M., Piau, J. P., \& Capron, A. (2001). Seasonality in the transmission of schistosomiasis and in populations of its snail intermediate hosts in and around a sugar irrigation scheme at Richard Toll, Senegal. Parasitology, 123(7), 77-89.

Tabo, Z., Neubauer, T. A., Tumwebaze, I., Stelbrink, B., Breuer, L., Hammoud, C., \& Albrecht, C. (2022). Factors Controlling the Distribution of Intermediate Host Snails of Schistosoma in Crater Lakes in Uganda: A Machine Learning Approach. Frontiers in Environmental Science, 341.

Tamburi, N. E., Seuffert, M. E., \& Martín, P. R. (2018). Temperature-induced plasticity in morphology and relative shell weight in the invasive apple snail Pomacea canaliculata. Journal of thermal biology, 74, 331-336.

Taubert, A., Pantchev, N., Vrhovec, M. G., Bauer, C., \& Hermosilla, C. (2009). Lungworm infections (Angiostrongylus vasorum, Crenosoma vulpis, Aelurostrongylus abstrusus) in dogs and cats in Germany and Denmark in 2003-2007. Veterinary parasitology, 159, 175-180.

Taylor, C. S. (2015). Increased prevalence and geographic spread of the cardiopulmonary nematode Angiostrongylus vasorum in fox populations in Great Britain. Parasitology, 142, 1190-1195.

Taylor, D. W. (1988). Aspects of freshwater mollusc ecological biogeography. Palaeogeography, palaeoclimatology, palaeoecology, 62(1-4), 511-576.

Taylor, L. H., Latham, S. M., \& Woolhouse, M. E. (2001). Risk factors for human disease emergence. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 356(1411), 983-989.

Tchuenté L. A. T., Momo, S. C., Stothard, J. R., \& Rollinson, D. (2013). Efficacy of praziquantel and reinfection patterns in single and mixed infection foci for intestinal and urogenital schistosomiasis in Cameroon. Acta tropica, 128(2), 275-283.

Tchuenté, L. A. T., Southgate, V. R., Jourdane, J., Webster, B. L., \& Vercruysse, J. (2003). Schistosoma intercalatum: an endangered species in Cameroon?. Trends in parasitology, 19(9), 389-393.
ten Hove, R. J., Verweij, J. J., Vereecken, K., Polman, K., Dieye, L., \& van Lieshout, L. (2008). Multiplex real-time PCR for the detection and quantification of Schistosoma mansoni and S. haematobium infection in stool samples collected in northern Senegal. Transactions of the Royal Society of Tropical Medicine and Hygiene, 102(2), 179-185.

Tendler, M., Almeida, M., Vilar, M., Pinto, P., \& Limaverde-Sousa, G. (2018). Current status of the Sm14/GLA-SE Schistosomiasis vaccine: overcoming barriers and paradigms towards the first antiparasitic Human(itarian) vaccine. Tropical medicine and infectious disease, 3(4), 121.

Termizi, F. H. M., \& Him, N. A. I. I. N. (2021). First record of adult Brachylaima sp. (Digenea: Brachylaimidae). recovered from an indigenous chicken in Penang Island, Malaysia. Malaysian Journal of Microscopy, 17.

Théron, A., Pages, J. R., \& Rognon, A. (1997). Schistosoma mansoni: Distribution patterns of miracidia among Biomphalaria glabrata snail as related to host susceptibility and sporocyst regulatory processes. Experimental parasitology, 85(1), 1-9.

Théron, A., Rognon, A., Gourbal, B., \& Mitta, G. (2014). Multi-parasite host susceptibility and multihost parasite infectivity: a new approach of the Biomphalaria glabrata/Schistosoma mansoni compatibility polymorphism. Infection, Genetics and Evolution, 26, 80-88.

Tkach, V. V., Snyder, S. D., \& Swiderski, Z. (2001). On the phylogenetic relationships of some members of Macroderoididae and Ochetosomatidae (Digenea, Plagiorchioidea). Acta Parasitologica 46, 267275.

Trienekens, S., Faust, C. L., Besigye, F., Pickering, L., Tukahebwa, E. M., Seeley, J., \& Lamberton, P. H. (2022). Variation in water contact behaviour and risk of Schistosoma mansoni (re) infection among Ugandan school-aged children in an area with persistent high endemicity. Parasites \& vectors, 15(1), 1-14.

Tsuji, N. (2020). Schistosomiasis and hookworm infection in humans: disease burden, pathobiology and anthelmintic vaccines. Parasitology international, 75, 102051.

United Nations. (2022). COMTRADE database DESA/UNSD. Available at: http://comtrade. un. org (accessed 06 May 2022).

Utroska, J. A., Chen, M. G., Dixon, H., Yoon, S. Y., Helling-Borda, M., Hogerzeil, H. V., Mott, K. E., \& World Health Organization. (1990). An estimate of global needs for praziquantel within schistosomiasis control programmes (WHO/SCHISTO/89.102). World Health Organization.

Van Damme, D., \& Van Bocxlaer, B. (2009). Freshwater molluscs of the Nile Basin, past and present. The Nile: origin, environments, limnology and human use, 585-629.

Van Der Werf, M. J., De Vlas, S. J., Brooker, S., Looman, C. W., Nagelkerke, N. J., Habbema, J. D. F., \& Engels, D. (2003). Quantification of clinical morbidity associated with Schistosome infection in SubSaharan Africa. Acta tropica, 86(2-3), 125-139.

Vasallo, E. G., Torres, M. A. J., \& Demayo, C. G. (2013). Relative warp analysis of parasite-induced plasticity in the shell shape of the O. quadrasi. Journal of Medical and Bioengineering, 2(2), 120-124.

Vaux, F., Trewick, S. A., Crampton, J. S., Marshall, B. A., Beu, A. G., Hills, S. F., \& Morgan-Richards, M. (2018). Evolutionary lineages of marine snails identified using molecular phylogenetics and geometric morphometric analysis of shells. Molecular Phylogenetics and Evolution, 127, 626-637.

Webbe, G. (1965). Transmission of bilharziasis: 2. Production of cercariae. Bulletin of the World Health Organization, 33(2), 155.

Webster, J. P., \& Gower, C. M. (2006). Mate choice, frequency dependence, and the maintenance of resistance to parasitism in a simultaneous hermaphrodite. Integrative and Comparative Biology, 46(4), 407-418.

Webster, J. P., Davies, C. M., Hoffman, J. I., Ndamba, J., Noble, L. R., \& Woolhouse, M. E. J. (2001). Population genetics of the schistosome intermediate host Biomphalaria pfeifferi in the Zimbabwean highveld: implications for co-evolutionary theory. Annals of Tropical Medicine \& Parasitology, 95(2), 203-214.

Webster, J. P., Molyneux, D. H., Hotez, P. J., \& Fenwick, A. (2014). The contribution of mass drug administration to global health: Past, present and future. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1645).

Webster, M., \& Sheets, H. D. (2010). A practical introduction to landmark-based geometric morphometrics. The paleontological society papers, 16, 163-188.

Wheeler, T.A., Roberts, M., Beverley-Burton, M., \& Sutton, D.G. (1989) Brachylaima apoplania n. sp. (Digenea: Brachylaimidae) from the Polynesian rat, Rattus exulans (Rodentia: Muridae), in New Zealand: origins and zoogeography. The Journal of parasitology, 680-684.

White-McLean, J.A. (2011) Terrestrial Mollusc Tool. USDA/APHIS/PPQ Center for Plant Health Science and Technology and the University of Florida. Available at: https://idtools.org/id/mollusc/key.php (accessed 29 March 2022).

WHO (2021). Factsheet/Schistosomiasis; World Health Organization: Geneva, Switzerland. Available at: https://www.who.int/news-room/fact-sheets/detail/schistosomiasis (accessed on 30 November 2022).

WHO. (2005). Strategy Development and Monitoring for Parasitic Diseases and Vector Control Team. Deworming : The Millennium Development Goals. World Health Organization. Available at: https://apps.who.int/iris/bitstream/handle/10665/68876/WHO CDS CPE PVC 2005.12.pdf?sequenc e=1\&isAllowed=y (accessed 05 June 2021).

WHO. (2013). Schistosomiasis: progress report 2001-2011, strategic plan 2012-2020. World Health Organization. Available at:
https://apps.who.int/iris/bitstream/handle/10665/78074/9789241503174 eng.pdf?sequence=1\&isAl lowed=y (accessed 05 June 2021).

WHO. (2019). Schistosomiasis. Geneva, Switz: World Health Organization. Available at: https://www.who.int/en/news-room/fact-sheets/detail/Schistosomiasis (accessed 05 June 2021).

WHO. (2020). Ending the neglect to attain the Sustainable Development Goals: a road map for neglected tropical diseases 2021-2030.

WHO. (2021a). Current estimated total number of individuals with morbidity and mortality due to Schistosomiasis haematobium and S. mansoni infection in Sub-Saharan Africa. Available at: https://www.who.int/teams/control-of-neglected-tropical-diseases/schistosomiasis/epidemiology (accessed 19 August 2022).

WHO. (2021b). Schistosomiasis and soil-transmitted helminthiases: progress report, 2020. Weekly Epidemiological Record, 96(48), 585-595.

WHO. (2022a). World Health Organization factsheets. Available at: https://www.who.int/news-room/fact-sheets/detail/schistosomiasis (accessed 19 August 2022).

WHO. (2022b). WHO guideline on control and elimination of human schistosomiasis. World Health Organization.

Wichmann, D., Poppert, S., Von Thien, H., Clerinx, J., Dieckmann, S., Jensenius, M., Parola, P., Richter, J., Schunk, M., Stich, A., Zanger, P., Burchard, G. D., \& Tannich, E. (2013). Prospective European-wide multicentre study on a blood based real-time PCR for the diagnosis of acute schistosomiasis. BMC infectious diseases, 13(1), 1-7.

Williams, A.J., \& Rae, R. (2015) Susceptibility of the Giant African snail (Achatina fulica) exposed to the gastropod parasitic nematode Phasmarhabditis hermaphrodita. Journal of Invertebrate Pathology 127, 122-126.

Wilson, M. J., \& Grewal, P. S. (2005). Biology, production and formulation of slug-parasitic nematodes. Nematodes as Biocontrol Agents; Grewal, PS, Ehlers, R. -U., Shapiro-Ilan, DI, Eds, 421-430.

Wolmarans, C. T., De Kock, K. N., Strauss, H. D., \& Bornman, M. (2002). Daily emergence of Schistosoma mansoni and S. haematobium cercariae from naturally infected snails under field conditions. Journal of helminthology, 76(3), 273-277.

Woodruff, D. S., \& Mulvey, M. (1997). Neotropical schistosomiasis: African affinities of the host snail Biomphalaria glabrata (Gastropoda: Planorbidae). Biological Journal of the Linnean Society, 60(4), 505-516.

Woolhouse, M. E. J. (1992). Population biology of the freshwater snail Biomphalaria pfeifferi in the Zimbabwe highveld. Journal of Applied Ecology, 687-694.

Wright, I. (2009). Angiostrongylus vasorum: a parasite on the move?. UK Vet Companion Animal, 14(5), 41-44.

Wu, W., Wang, W., \& Huang, Y. X. (2011). New insight into praziquantel against various developmental stages of schistosomes. Parasitology research, 109(6), 1501-1507.

Zhang, S. M., Bu, L., Laidemitt, M. R., Lu, L., Mutuku, M. W., Mkoji, G. M., \& Loker, E. S. (2018). Complete mitochondrial and rDNA complex sequences of important vector species of Biomphalaria, obligatory hosts of the human-infecting blood fluke, Schistosoma mansoni. Scientific reports, 8(1), 110.

Zhou, X. N., Guo, J. G., Wu, X. H., Jiang, Q. W., Zheng, J., Dang, H., Wang, X. H., Xu, J., Zhu, H. Q., Wu, G. L., Li, Y. S., Xu, X. J., Chen, H. G., Wang, T. P., Zhu, Y. C., Qiu, D. C., Dong, X. D., Zhao, G. M., Zhang, S. J., Zhao, N. Q., Xia, G., Wang, L. P., Zhang, S. Q., Lin, D. D., Chen, M. G., \& Li, Y. S. (2007). Epidemiology of Schistosomiasis in the People's Republic of China, 2004. Emerging infectious diseases, 13(10), 1470.

Zhu, G., Fan, J., \& Peterson, A. T. (2017). Schistosoma japonicum transmission risk maps at present and under climate change in mainland China. PLoS neglected tropical diseases, 11(10).

Appendix:

Pages 170-185: Alignment 1 - rRNA 16S Biomphalaria - Chapter 3
Pages 186-204: Alignment 2 - COI Biomphalaria - Chapter 3
Pages 205-208: Alignment 3 - ITS Nematode Tree A - Chapter 6
Pages 209-213: Alignment 4 - ITS Nematode Tree B - Chapter 6
Pages 214-217: Alignment 5 - ITS Nematode Tree C - Chapter 6
Pages 218-220: Alignment 6 - ITS Nematode Tree D - Chapter 6
Pages 221-225: Alignment 7-18S Trematode Tree E-Chapter 6
Pages 226-228: Alignment 8-18S Trematode Tree F - Chapter 6

GTTTATCAAAAACATAGTTTAAGGAAATAATCTTAAATGTATTCTGCCCAA ATCAAAAACATAGTTTAAGGAAATAATCTTAAATGTATTCTGCCCAA ACATAGTTTAAGGAAATAATCTTAAATGTATTCTGCCCAA
 ATTCGCCCAG CCTGTTTATCAAAAACATAGTTTAAGGAAATAATCTTAAATGTATTCTGCCCAA

CAAAATTATTTCAACTGTTTATCAAAAACATAGTTTAAGGAAATAATCTTAAATGTATTCTGCCCAA
CTGCCC-AT
CTGCCC - A
CTGCCCAAT
CTGCCCAAT
CTGCCCAA
CTGCCCAA
CTGCCCAA
CTGCCCAAT
CTGCCCAA
CTGCCC-AT
CTGCCCAAT
CTGCCCAAT
CTGCCCAA
CTGCCCAA
CTGCCCAA
CTGCCC - A
CTGCCC-AT
CTGCCCAAT
CTGCCC-A

Bugoigo_P7F09
Bugoigo_P7H07
Bugoigo_P7H09
Bugoto_P2A08
Bugoto_P2A10
Bugoto_P2E04
Bugoto_P2G09
Bugoto_P6B05
Bugoto_P6C05
Bugoto_P6C06
Bugoto_P6C07
Bugoto_P6D05
Bugoto_P6D08
Bugoto_P6D09
Bugoto_P6E05
Bugoto_P6E06
Bugoto_P6E07
Bugoto_P6E09
Bugoto_P6F08
Bugoto_P6F09
Bugoto_P6G06
Bugoto_P6G07
Bugoto_P6G09
Bukoba_LV01
Bukoba_LV08
Bukoba_LV10
Bukoba_P2A04
Bukoba_P2A07
Bukoba_P2C06
Bukoba_P2E01
Bukoba_P2E03
Bukoba_P2E05
Bukoba_P2E06
Bukoba_P2E07
Bukoba_P2E08
Bukoba_P6G08
Bukoba_P7D11
Bukoba_P7E11
Bukoba_P7E12
Bukoba_P7H12
Bukoba_P9B03
Bukoba_P9C03
Bukoba_P9F04
Piida A101
Piida A102
Piida A103
Piida A107
Piida A108
Piida A109
Piida A110
Piida A112
Piida A117
Piida A118
Piida A119
Piida A201
Piida A203
Piida A207
Piida A211
Piida A212
Piida A214
Piida A215
Piida A217
Piida A219
Lwanika_P2D02
Lwanika_P2D03
Lwanika_P2D08
Lwanika_P2H07
Lwanika_P2HO9
Lwanika_P6B02
Lwanika_P6C02
Lwanika_P6D03
Lwanika_P6D10
CTGCCCAAT
CTGCCCAAT
C TGCCCAA
CTGMCC
CTGCCCAA
CTGCCCAA
CTGCCCAA
CTGCCCAA
CTGCCCAA
CTGCCCAA
CTGCCCAA
CTGCCCAA
CTGCCCAA
CTGCCC-A
CTGCCCAA
CTGCCCAA
CTGCCCAA
CTGCCCAA
CTGCCC-A
CTGCCCAA
CTGCCC-A
CTGCCC-A
CTGCCC-A
CTGCCC-A
CTGCCC-A
CTGCCCAA
CTGCCCAA
CTGCCC-A
CTGCCC-A
CTGCCCAA
CTGCCCA
CTGCCCAA
CTGCCCAA
CTGCCCAA
CTGCCCA
CTGCCCAA
CTGCCCAA
CTGCCCA
CTGCCCAA
CTGCCCAA
CTGCCCA
CTGCCCAA
CTGCCCA
CTGCCCAA
CTGCCCAA
C T GCCCAA
CTGCCCAA
CTGCCCAA
CTGCCCAA
CTGCCCAA
CTGCCCAA
CTGCCC-A
CTGCCCAA
CTGCCCAA
CTGCCCAA
CTGCCCAA

Lwanika_P6E10
CTGCCCAA
CTGCCCAA
CTGCCCAA CTGCCCAA CTGCCCAA CTGCCCAA CTGCCCAA CTGCCCAA CTGCCCAA CTGCCCAA CTGCCCAA CTGCCC-A
CTGCCC-A

CTGCCCAA

CTGCCC CTGCCC

Walukuba_A111
Walukuba_A112
Walukuba_B101
Walukuba_B102
Walukuba_B103
Walukuba_B104
Walukuba_B105
Walukuba_B106
Walukuba_B107
Walukuba_B108
Walukuba_B109
Walukuba_B110
Walukuba_B111
Walukuba_B112
Walukuba_B114
Walukuba_B116
Walukuba_B118
Walukuba_P2B09
Walukuba_P2B10
Walukuba_P2E09
Walukuba_P2E10
Walukuba_P2FO1
Walukuba_P2FO2
Walukuba_P2FO3
Walukuba_P2FO4
Walukuba_P2FO5
Walukuba_P2F06
Walukuba_P2F07
Walukuba_P2F08
Walukuba_P2F09
Walukuba_P2G01
Walukuba_P2G03
Walukuba_P2G06
Walukuba_P2G07
Walukuba_P2G08
Walukuba_P6A03
Walukuba_P6A04
Walukuba_P6A05
Walukuba_P7A07
Walukuba_P7C09
Walukuba_P7D10
Walukuba_P7F10
Walukuba_P9A01
Walukuba_P9B01
Walukuba_P9C01
Walukuba_P9D01
Walukuba_P9D02
Walukuba_P9E01
Walukuba_P9F01
Walukuba_P9F03
Walukuba_P9G01 Walukuba_P9H01

CTGCCC-AT
ATGCCCAA
CTGCCC-A
CTGCCC-A
CTGCCCAA
CTGCCC-A
CTGCCC-A
CTGCCCAA
CTGCCCAA
CTGCCCAA
CTGCCCAA
CTGCCCAA
CTGCCCAA
CTGCCC-A
CTGCCC-A
CTGCCCAA
CTGCCC-AT
CTGCCC-A
CTGCCCAA
CTGCCCAA
CTGCCCAA
CTGCCCAA
CTGCCCAA
CTGCCCAA
CTGCCCAA
TGCCCAA
CTGCCCAA
CTGCCCAA
CTGCCCAA
CTGCCCAA
CTGCCCAA
CTGCCCAA
CTGCCCAA
CTGCCC-A
CTGCCC-A
MASK

MASK
AY5774
DQ084847 DQ084848

DQ084849

 DQ084850 DQ084851 DQ084852
DQ084853

DQ084858
DQ084859
DQ084860
DQ084861
DQ084864
DQ084865
EU141175
EU141176
EU141177
EU141178
EU141179
EU141180
EU141181
EU141185
EU141187
EU141188
EU141189
EU141190
EU141191
EU141192
HM768950
MG431962
MG431963
MG431964
Bugoigo_A102
Bugoigo_A103
Bugoigo_A104
Bugoigo_A105
Bugoigo_A106
Bugoigo_A107
Bugoigo_A108
Bugoigo_A109
Bugoigo_A111
Bugoigo_A112
Bugoigo_A113
Bugoigo_A114
Bugoigo_A115
Bugoigo_A116
Bugoigo_A1R1
Bugoigo_B103
Bugoigo_B110
Bugoigo_B111
Bugoigo_B113
Bugoigo_P1B15
Bugoigo_P1B17
Bugoigo_P1B19
Bugoigo_P1B20
Bugoigo_P2B01
Bugoigo_P2B03
Bugoigo_P2B04
Bugoigo_P2B07
Bugoigo_P2B08
Bugoigo_P2G04
Bugoigo_P7A10
Bugoigo_P7B10
Bugoigo_P7C10
Bugoigo_P7D08
Bugoigo_P7D09
Bugoigo_P7E09
Bugoigo_P7E10
mmm GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTAGAATGAAAGGAAAAATC GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC

CTGTGCTAAGGTAGCATAATCAATTGGCTTTTAATTAAAGTCTAGAATGAAAGGAAAAATC
CTGTGCTAAGGTAGCATAATCAATTGGCTTTTAATTAAAGTCTAGAATGAAAGGAAAAATC
CTGTGCTAAGGTAGCATAATCAATTGGCTTTTAATTAAAGTCTAGAATGAAAGGAAAAATC TT... GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC TT - GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC TT. GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC TT... GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC TT... GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC TT - GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC TT... GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC TT... GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC TT... GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC TT - GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC

CTGTGCTAAGGTAGCATAATCAATTGGCTTTTAATTAAAGTCTAGAATGAAAGGAAAAATC TT... GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC TT - GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC TT - GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC TT... GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC TT... GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC TT.. GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC TT. GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC TT... GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC TT... GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC TT. GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC

CTGTGCTAAGGTAGCATAATCAATTGGCTTTTAATTAAAGTCTAGAATGAAAGGAAAAATC - GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC TT... GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC TT -GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC TT - GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC TT - GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC TT... GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC TT -GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC TT - GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC TT - GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC TT... GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC TT. GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC TT. GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC TT... GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC TT. GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC TT - GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC TTT - GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC TT... GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC TT... GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC TT. GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC TT - GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC TT.. GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC CTGTGCTAAGGTAGCATAATCAATTGGCTTTTAATTAAAGTCTAGAATGAAAGGAAAAATC CTGTGCTAAGGTAGCATAATCAATTGGCTTTTAATTAAAGTCTAGAATGAAAGGAAAAATC CTGTGCTAAGGTAGCATAATCAATTGGCTTTTAATTAAAGTCTAGAATGAAAGGAAAAATC CTGTGCTAAGGTAGCATAATCAATTGGCTTTTAATTAAAGTCTAGAATGAAAGGAAAAATC CTGTGCTAAGGTAGCATAATCAATTGGCTTTTAATTAAAGTCTAGAATGAAAGGAAAAATC CTGTGCTAAGGTAGCATAATCAATTGGCTTTTAATTAAAGTCTAGAATGAAAGGAAAAATC CTGTGCTAAGGTAGCATAATCAATTGGCTTTTAATTAAAGTCTAGAATGAAAGGAAAAATC CTGTGCTAAGGTAGCATAATCAATTGGCTTTTAATTAAAGTCTAGAATGAAAGGAAAAATC CTGTGCTAAGGTAGCATAATCAATTGGCTTTTAATTAAAGTCTAGAATGAAAGGAAAAATC
TT - GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC CTGTGCTAAGGTAGCATAATCAATTGGCTTTTAATTAAAGTCTAGAATGAAAGGAAAAATC CTGTGCTAAGGTAGCATAATCAATTGGCTTTTAATTAAAGTCTAGAATGAAAGGAAAAATC CTGTGCTAAGGTAGCATAATCAATTGGCTTTTAATTAAAGTCTAGAATGAAAGGAAAAATC CTGTGCTAAGGTAGCATAATCAATTGGCTTTTAATTAAAGTCTAGAATGAAAGGAAAAATC CTGTGCTAAGGTAGCATAATCAATTGGCTTTTAATTAAAGTCTAGAATGAAAGGAAAAATC CTGTGCTAAGGTAGCATAATCAATTGGCTTTTAATTAAAGTCTAGAATGAAAGGAAAAATC CTGTGCTAAGGTAGCATAATCAATTGGCTTTTAATTAAAGTCTAGAATGAAAGGAAAAATC

Bugoigo_P7F07	
Bugoigo_P7F09	CTGTGCTAAGGTAGCATAATCAATTGGCTTTTAATTAAAGTCTAGAATGAAAGG
Bugoigo_P7H07	CTGTGCTAAGGTAGCATAATCAATTGGCTTTTAATTAAAGTCTAGAATGAA
Bugoigo_P7H09	CTGTGCTAAGGTAGCATAATCAATTGGCTTTTAATTAAAGTCTAGAATGA
Bugoto_P2A08	TT ${ }^{\text {a }}$ GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATG
Bugoto_P2A10	TT ${ }^{\text {- }}$ GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGA
Bugoto_P2E04	TT .- GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGA
Bugoto_P2G09	TT ${ }^{\text {a }}$ - GACTGTGCTGAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATG
Bugoto_P6B05	GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTA
Bugoto_P6C05	T.- GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGG
Bugoto_P6C06	GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATG
Bugoto_P6C07	TT -GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATG
Bugoto_P6D05	TT . - GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGA
Bugoto_P6D08	TT -GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATG
Bugoto_P6D09	TT . - GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAG
Bugoto_P6E05	TT
Bugoto_P6E06	TT .-gACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAA
Bugoto_P6E07	GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGG
Bugoto_P6E09	TT..GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGG
Bugoto_P6F08	T.-GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGG
Bugoto_P6F09	TT - GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAA
Bugoto_P6G06	GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGA
Bugoto_P6G07	TT . - GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGG
Bugoto_P6G09	TT \ldots - GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGA
Bukoba_LV01	
Bukoba_LV08	TT ${ }^{\text {a }}$ GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATG
Bukoba_LV10	TT . GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAG
Bukoba_P2A04	TT .-gACKGTGCTAAGGTAGCAWAATCAATTGGCTTCTAATTAAAGTCTGGAA
Bukoba_P2A07	TT . GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAA
Bukoba_P2C06	TT . GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGG
Bukoba_P2E01	TT - GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAA
Bukoba_P2E03	TT .- GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGA
Bukoba_P2E05	TT ${ }^{\text {a }}$ GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAA
Bukoba_P2E06	TT \ldots - GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAA
Bukoba_P2E07	TT...GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGA
Bukoba_P2E08	TT ...gACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAA
Bukoba_P6G08	TT. GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAA
Bukoba_P7D11	TT -GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAA
Bukoba_P7E11	TT \ldots - GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGA
Bukoba_P7E12	T. GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAA
Bukoba_P7H12	TT ${ }^{\text {- }}$ GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAA
Bukoba_P9B03	TT -GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAA
Bukoba_P9C03	- TT- GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAA
Bukoba_P9F04	TT -GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAA
Piida A101	TT ${ }^{\text {a }}$ GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAA
Piida A102	TT...GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAAT
Piida A103	TTT-GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAA
Piida A107	TT \ldots - GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGA
Piida A108	TT - - GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGG
Piida A109	TT . - GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAA
Piida A110	- TTT-GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGG
Piida A112	TT -GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAA
Piida A117	TTT-GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGG
Piida A118	TT - GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAG
Piida A119	TT \ldots - GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGA
Piida A201	TTT-GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAA
Piida A203	TTG-GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAA
Piida A207	TT . GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAA
Piida A211	TTT-GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAA
Piida A212	
Piida A21	TT . GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAA
Piida A215	- TTT-GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAA
Piida A21	-TT...GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAA
Piida A219	-TT.-GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAA
Lwanika_P2D02	$\ldots \mathrm{T}$ - -GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAA
Lwanika_P2D03	-TT - GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGA
Lwanika_P2D08	-TT. GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAG
Lwanika_P2H07	- TT- GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAA
Lwanika_P2H09	
Lwanika_P6B02	TT - GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGG
Lwanika_P6CO2	TT . GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATG
Lwanika_P6D03	

Ctgtgctanggtagcatantcanttggcttttanttanagtctagantganaggananatc TT- GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAAT CTGTGCTAAGGTAGCATAATCAATtGGCTTTTAATtAAAGTCTAGAATGAAAGGAAAAATC
CTGTGCTAAGGTAGCATAATCAATtGGCTTTTAATtAAAGTCTAGAATGAAAGGAAAAATC
 Tt- GACTGTGCTAAGGTAGCATAATCAATtGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC CTGTGCTAAGGTAGCATAATCAATTGGCTTTTAATTAAAGTCTAGAATGAAAGGAAAAATC CTGTGCTAAGGTAGCATAATCAATTGGCTTTTAATtAAAGTCTAGAATGAAAGGAAAAATC CTGTGCTAAGGTAGCATAATCAATtGGCTTTTAATtAAAGTCTAGAATGAAAGGAAAAATC CTGTGCTAAGgTAGCATAATCAATtGGCTTTTAATtAAAGTCTAGAATGAAAGGAAAAATC CTGTGCTAAGgTAGCATAATCAATtGGCTTTTAATtAAAGTCTAGAATGAAAGGAAAAATC CTGTGCTAAGGTAGCATAATCAATTGGCTTTTAATtAAAGTCTAGAATGAAAGGAAAAATC Ctgtgctanggtagcatantcanttggcttttanttanagtctagantganaggananatc CTGTGCTAAGGTAGCATAATCAATTGGCTTTTAATTAAAGTCTAGAATGAAAGGAAAAATC CTGTGCTAAGgTAGCATAATCAATtGGCTTTTAATtAAAGTCTAGAATGAAAGGAAAAATC CTGTGCTAAGGTAGCATAATCAATtGGCTTTTAATtAAAGTCTAGAATGAAAGGAAAAATC CTGTGCTAAGGTAGCATAATCAATtGGCTTTTAATtAAAGTCTAGAATGAAAGGAAAAATC CTGTGCTAAGGTAGCATAATCAATtGGCTTTTAATTAAAGTCTAGAATGAAAGGAAAAATC CTGTGCTAAGGTAGCATAATCAATtGGCTTTTAATtAAAGTCTAGAATGAAAGGAAAAATG CTGTGCTAAGGTAGCATAATCAATTGGCTTTTAATtAAAGTCTAGAATGAAAGGAAAAATC CTGTGCTAAGGTAGCATAATCAATtGGCTTTTAATtAAAGTCTAGAATGAAAGGAAAAATC CTGTGCTAAGGTAGCATAATCAATTGGCTTTTAATTAAAGTCTAGAATGAAAGGAAAAATC TT- GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC gactgtgctang gtagcatantcanttg cittctanttanagtctg gantganaggananatc TT- GACTGTGCTAAGGTAGCATAATCAATtGGCTTCTAATtAAAGTCTGGAATGAAAGGAAAAATC TT- GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC TT- GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC

 Tt- GACTGTGCTAAGGTAGCATAATCAATtGGCTTCTAATtAAAGTCTGGAATGAAAGGAAAAATC TT - GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC gactgtgctang gtagcatantcanttggcttctanttanagtctggantganaggananatc TT- GACTGTGCTAAGGTAGCATAATCAATtGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC TT- GACTGTGCTAAGGTAGCATAATCAATtGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC TT- GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC gactgtgctang gtagcatantcanttggcttctanttanagtctggantganaggananatc TT- GACTGTGCTAAGGTAGCATAATCAATtGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC TT- GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC TT- GACTGTGCTAAGGTAGCATAATCAATTGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC gactgtgctang tiagcatantcanttggcttctanttanagtctggantganaggananatc gactgtgctang gtagcatantcanttg citt ttanttanagtctg gantganaggananatc TtTCGACTGTGCTAAGGTAGCATAATCAATtGGCTTCTAATTAAAGTCTGGAATGAAAGGAAAAATC

MASK

 AY577474DQ084847 DQ084848 DQ084849 DQ084850 DQ084851 DQ084852 DQ084853 DQ084859 DQ084860 DQ084861 DQ084865

EU141175

EU141176
EU141177
EU141178
EU141179
EU141180
EU141181
EU141185
EU141187
EU141188
EU141189
EU141190
EU141191
EU141192
HM768950
MG431962
MG431963
MG431964
Bugoigo_A102
Bugoigo_A103
Bugoigo_A104
Bugoigo_A105
Bugoigo_A106
Bugoigo_A107
Bugoigo_A108
Bugoigo_A109
Bugoigo_A111
Bugoigo_A112
Bugoigo_A113
Bugoigo_A114
Bugoigo_A115
Bugoigo_A116
Bugoigo_A1R1
Bugoigo_B103
Bugoigo_B110
Bugoigo_B111
Bugoigo_B113
Bugoigo_P1B15
Bugoigo_P1B17
Bugoigo_P1B19
Bugoigo_P1B20
Bugoigo_P2BO1
Bugoigo_P2B03
Bugoigo_P2B04
Bugoigo_P2B07
Bugoigo_P2B08
Bugoigo_P2G04
Bugoigo_P7A10
Bugoigo_P7B10
Bugoigo_P7C10
Bugoigo_P7D08
Bugoigo_P7D09
Bugoigo_P7E09
mmmmmmmmmmmmmmmmmmmmmmm TTTATTTAAATGATGAAAATATCA TTTATTTAAATGATGAAAATATCA
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTAT TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATAT TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTAT TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATAT TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATAT TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATAT TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATAT TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATAT TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTAT TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACRAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATAT TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATAT TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATAT TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATAT TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATAT TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATAT TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATAT TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATAT TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATAT TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATAT TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATAT TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATAT TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATAT TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATAT TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATAT

Bugoigo_P7E10

Bugoigo_P7F07 Bugoigo_P7F09 Bugoigo_P7H07 Bugoigo_P7H09 Bugoto_P2A08 Bugoto_P2A10 Bugoto_P2E04 Bugoto_P2G09 Bugoto_P6B05 Bugoto_P6CO5
Bugoto_P6C06 Bugoto_P6C07 Bugoto_P6D05 Bugoto_P6D08 Bugoto_P6D09 Bugoto_P6E05 Bugoto_P6E06 Bugoto_P6E07 Bugoto_P6E09
Bugoto_P6FO8 Bugoto_P6F09 Bugoto_P6G06 Bugoto_P6G07 Bugoto_P6G09 Bukoba_LV01
Bukoba_LV08
Bukoba_LV10
Bukoba_P2A04 Bukoba_P2A07 Bukoba_P2C06 Bukoba_-P2E01 Bukoba_P2E03 Bukoba_P2EO5
Bukoba_P2E06 Bukoba_P2E07 Bukoba_P2E08 Bukoba_P6G08 Bukoba_P7D11 Bukoba_P7E11
Bukoba_P7E12 Bukoba_P7H12 Bukoba_P9B03 Bukoba_P9C03
Bukoba_P9FO4 Piida A101 Piida A102 Piida A103 Piida A107 Piida A108 Piida A109 Piida A110 Piida A112

Piida A118

Piida A119

Piida A201

 Piida A203Piida A207 Piida A211 Piida A212 Piida A214 Piida A215 Piida A219

TTTATTTAAATGATGAAAATATCA TTTATTTAAATGATGAAAATATCA
 TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATAT TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATAT TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATAT TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTAATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATAT TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTAT TTTTTTARAAAAAARACAAGAARACCCTTARAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTAATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTAT TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTAT TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTAT TTTTTTARAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTAT TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACMCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTARAAAAAAGACRAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTAT TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA

P6D10	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA
ka_P6E10	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA
_P6F02	TTTATTTAAATGATGAAAATATCATTTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA
a_P6F04	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA
_P6F10	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA
_P6G01	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA
02	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA
_P7B11	TTTATTTAAATGATGAAAATATCA-TT
11	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA
_P7D12	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA
12	TTTATTTAAATGATGAAAATATCATTTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA
Lwanika_P9E04	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA
a_A101	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA
Walukuba_A102	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA
kuba_A103	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATAT
Walukuba_A104	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATAT
uba_A105	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA
Walukuba_A107	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATAT
Walukuba_A108	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATAT
Walukuba_A109	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA
Walukuba_A111	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA
Walukuba_A112	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATAT
Walukuba_B101	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATAT
Walukuba_B102	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATAT
Walukuba_B103	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATAT
Walukuba_B104	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATAT
Walukuba_B105	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATAT
Walukuba_B106	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATAT
Walukuba_B107	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATAT
Walukuba_B108	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATAT
Walukuba_B109	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATAT
Walukuba_B110	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATAT
Walukuba_B111	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATAT
Walukuba_B112	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATAT
Walukuba_B114	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATAT
Walukuba_B116	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATAT
Walukuba_B118	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATAT
Walukuba_P2B09	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA
Walukuba_P2B10	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTT
Walukuba_P2E09	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA
Walukuba_P2E10	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA
Walukuba_P2F01	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA
Walukuba_P2F02	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTA
Walukuba_P2F03	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA
Walukuba_P2F04	CA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA
Walukuba_P2F05	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA
Walukuba_P2F06	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA
Walukuba_P2F07	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA
Walukuba_P2F08	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA
Walukuba_P2F09	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA
Walukuba_P2G01	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA
Walukuba_P2G03	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA
Walukuba_P2G06	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA
Walukuba_P2G07	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA
Walukuba_P2G08	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA
Walukuba_P6A03	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA
Walukuba_P6A04	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA
Walukuba_P6A05	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA
Walukuba_P7A07	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA
Walukuba_P7C09	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA
Walukuba_P7D10	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA
Walukuba_P7F10	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA
Walukuba_P9A01	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA
Walukuba_P9B01	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA
Walukuba_P9C01	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA
Walukuba_P9D01	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA
Walukuba_P9D02	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA
Walukuba_P9E01	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA
Walukuba_P9F01	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA
Walukuba_P9F03	TTTATTTAAATGATGAAAATATCA-TTTTTTAGAAAAAAGACGAGAAGACCCTTAGAGTTTTTATTA

MASK

 AY577474 DQ084847 DQ084848 DQ084849DQ084850 DQ084851 DQ084852
DQ084853
DQ084859
DQ084860
DQ084861
DQ084864
DQ084865
EU141175
EU141176
EU141177
EU141178
EU141179
EU141180
EU141181
EU141185
EU141187
EU141188
EU141189
EU141190
EU141191
EU141192
HM768950
MG431963
MG431964
Bugoigo_A102
Bugoigo_A103
Bugoigo_A104
Bugoigo_A105
Bugoigo_A106
Bugoigo_A107
Bugoigo_A108
Bugoigo_A109
Bugoigo_A111
Bugoigo_A112
Bugoigo_A113
Bugoigo_A114
Bugoigo_A115
Bugoigo_A116
Bugoigo_A1R1
Bugoigo_B103
Bugoigo_B110
Bugoigo_B111
Bugoigo_B113
Bugoigo_P1B15
Bugoigo_P1B17
Bugoigo_P1B19
Bugoigo_P1B20
Bugoigo_P2B01
Bugoigo_P2B03
Bugoigo_P2B04
Bugoigo_P2B07
Bugoigo_P2B08
Bugoigo_P2G04
Bugoigo_P7A10
Bugoigo_P7B10
Bugoigo_P7C10
Bugoigo_P7D08
Bugoigo_P7D09
mmmmmmmmmm
TAAACTTTACTAA
TAAACTTTACTAA
TAAACTTTACTAA
TAAACTTTACTAT
TAAACTTTACTAA
TAAACTTTACTAT
TAAACTTTACTAT
TAAACTTTACTAT
TAAACTTTACTAA
TAAACTTTACTAT
TAAACTTTACTAA
TAAACTTTACTAA
TAAACTTTACTAA
TAAACTTTACTAA
TAAACTTTACTAA
TAAACTTTACTAA
TAAACTTTACTAA
TAAACTTTACTAA
TAAACTTTACTAA
TAAACTTTACTACAATTTTTTTAATCGA
TAAACTTTACTAT
TTAACTTTACTAA ATTATTTAATCGA
TTTTTTTTAATCGA
TGAACTTTACTAATTTTTTTTAAATCGA
TAAACTTTACTAA
TAAACTTTACTAT
TAAACTTTACTAT
TAAACTTTACTAT
TAAACTTTACTAT
TAAACTTTACTAT
TAAACTTTACTAT
TAAACTTTACTAT
TAAACTTTACTAT
TAAACTTTACTAT
TAAACTTTACTAA
TAAACTTTACTAT
TAAACTTTACTAT
TAAACTTTACTAT TAAACTTTACTAT TAAACTTTACTAT
mmmmmmmmmmm TTTTTTAATCGA ATTTTTTAATCGA TTTTTTAATCGA TTTATTAAATCGA TTTTTTTAATCGA ATTATTTAATCGA ATTATTTAATCGA ATTATTTAATCGA TTTTTTAATCGA TTTTTTAAATCGA TTTTTTAAATCGA
TTTTTTTTAATCGA
TTTTTTAAATCGA
TTTTTTAATCGA TTTTTTAAATCGA TTTTTTAATCGA TTTTTTAATCGA TTTTTTTAATCGA ATTATTTAATCGA TTTTTTTAATCGA TTTTTTAAATCGA TTTTTTAATCGA TTTTTTAAATCGA TTTTTTAAATCGA

TTTTTTAATCGA ATTATTTAATCGA ATTATTTAATCGA ATTATTTAATCGA ATTATTTAATCGA ATTATTTAATCGA ATTATTTAATCGA ATTATTTAATCGA ATTATTTAATCGA ATTATTTAATCGA TTTTTTAAATCGA ATTATTTAATCGA ATTATTTAATCGA ATTATTTAATCGA ATTATTTAATCGA ATTATTTAATCGA

TTITTTAAATCGATTTJA TTTTTTAAATCGATTTTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTTTTTAAATCGATTTTAATAATAAGATTAATTAAACTACCTTAGGGATAACA
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm TTAATAATAAGAATAATTAAACTACCTTAGGGATAACA TTTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTTATAATAAGATTAATTAAACTACCTTAGGGATAACA TTTATTAATAAAAGTAATTAAACTACCTTAGGGATAACA TTTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTTGATAATAAAAATAATTAAACTACCTTAGGGATAACA TTTGATAATAAAAATAATTAAACTACCTTAGGGATAACA TTTGATAATAAAAATAATTAAACTACCTTAGGGATAACA TTTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTTTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTTAATAATAAGATTAATTAAACTACCTTAGGGATAACA -TTTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTTGGTAATAAAAATAATTAAACTACCTTAGGGATAACA TTTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTTATAATAAGATTAATTAAACTACCTTAGGGATAAC TTTGATAATAAAAATAATTAAACTACCTTAGGGATAACA TTTAATAATAAGATAAATTAAACTACCTTAGGGATAACA -TTTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTTTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTTAATAATAAGATTAATTAAACTACCTTAGGGATAAC TTTGGTAATAAAAATAATTAAACTACCTTAGGGATAACA TTTGGTAATAAAAATAATTAAACTACCTTAGGGATAACA TTTGGTAATAAAAATAATTAAACTACCTTAGGGATAACA TTTGGTAATAAAAATAATTAAACTACCTTAGGGATAACA TTTGGTAATAAAAATAATTAAACTACCTTAGGGATAACA TTTGGTAATAAAAATAATTAAACTACCTTAGGGATAACA TTTGGTAATAAAAATAATTAAACTACCTTAGGGATAACA TTTGGTAATAAAAATAATTAAACTACCTTAGGGATAACA TTTGGTAATAAAAATAATTAAACTACCTTAGGGATAACA TTTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTTGGTAATAAAAATAATTAAACTACCTTAGGGATAACA TTTGGTAATAAAAATAATTAAACTACCTTAGGGATAACA TTTGGTAATAAAAATAATTAAACTACCTTAGGGATAACA TTTGGTAATAAAAATAATTAAACTACCTTAGGGATAACA TTTGGTAATAAAAATAATTAAACTACCTTAGGGATAACA
$330340 \quad 350$ 1 360

Bugoigo_P7E09

Bugoigo P7E10 Bugoigo_P7F07 Bugoigo_P7F09 Bugoigo_P7H07 Bugoigo_P7H09 Bugoto_P2A08 Bugoto_P2A10 Bugoto_P2E04 Bugoto_P2G09 Bugoto_P6B05 Bugoto_P6C05
Bugoto_P6C06 Bugoto_P6C07 Bugoto_P6D05 Bugoto_P6D08
Bugoto_P6D09 Bugoto_P6E05 Bugoto_P6E06 Bugoto_P6E07
Bugoto_P6E09 Bugoto_P6F08 Bugoto_P6F09 Bugoto_P6G06 Bugoto_P6G07 Bugoto_P6G09 Bukoba_LV01 Bukoba_LV08
Bukoba_LV10 Bukoba_P2A04 Bukoba_P2A07 Bukoba_P2C06 Bukoba_P2E01 Bukoba_P2E03 Bukoba_P2E05 Bukoba_P2E06 Bukoba_-P2E07 Bukoba_P2E08
Bukoba_P6G08 Bukoba_P7D11
Buk Bukoba_P7E11 Bukoba_P7E12 Bukoba_P7H12 Bukoba_P9B03 Bukoba_P9C03 Bukoba_P9F04
Piida A101 Piida A102 Piida A103 Piida A107
Piida A108 Piida A109 Piida A110 Piida A112 Piida A117
Piida A118 Piida A119 Piida A201 Piida A203 Piida A207
Piida A211 Piida A212 Piida A214
Piida A215 Piida A217 Piida A219
Lwanika_P2D02 Lwanika_P2D03 Lwanika_P2D08 Lwanika_-P2H07 Lwanika_P2H09 Lwanika_P6B02

TAAACTTTACTAT TAAACTTTACTAT TAAACTTTACTAT TAAACTTTACTAT TAAACTTTACTAT TAAACTTTACAA TGAACTTTACTAA TAAACTTTAC-AA TGAACTTTACTAA TGAACTTTACTAA TGAACTTTACTAA TGAACTTTACTAA TGAACTTTACTAA TGAACTTTACTAA TAAACTTTACTAA TGAACTTTACTAA TAAACTTTACAA TAAACTTTACAA TAAACTTTACAA TGAACTTTACTAA TGAACTTTACTAA TGAACTTTACTAA TGAACTTTACTAA TGAACTTTACTAA TGAACTTTACTAA TAAACTTTACTAA TAAACTTTACTAA TAAACTTTACAAT TGAACTTTACTAA TGAACTTTACTAA TGAACTTTACTAA TAAACTTTACTAA TGAACTTTACTAA TGAACTTTACTAA TGAACTTTACTAA TGAACTTTACTAA TGAACTTTACTAA TGAACTTTACTAA TAAACTTTACAA TGAACTTTACTAA TGAACTTTACTAA TAAACTTTACAA TGAACTTTACTAA TGAACTTTACTAA TGAACTTTACTAA TAAACTTTACTAA TAAACTTTACAA TAAACTTTACAA TAAACTTTACTAA TAAACTTTACAA TAAACTTTACTAA

ATTATTTAATCGA ATTATTTAATCGA ATTATTTAATCGA ATTATTTAATCGA ATTATTTAATCGA TTTTTTTAATCGA TTTTTTTAATCGA TTTTTTTAATCGA TTTTTTTAATCGA TTTTTTTAATCGA TTTTTTAAATCGA TTTTTTTAATCGA TTTTTTTAATCGA TTTTTTTAATCGA TTTTTTTAATCGA TTTTTTAAATCGA TTTTTTTAATCGA TTTTTTTAATCGA TTTTTTTAATCGA TTTTTTTTAATCGA TTTTTTAAATCGA TTTTTTTAATCGA TTTTTTTAATCGA TTTTTTTAATCGA TTTTTTAAATCGA TTTTTTTTAATCGA TTTTTTTAATCGA TTTTTTAAATCGA TTTTTTTAATCGA TTTTTTAAATCGA TTTTTTAAATCGA TTTTTTTAATCGA TTTTTTTAATCGA TTTTTTTAATCGA TTTTTTAAATCGA TTTTTTTTAATCGA TTTTTTTAATCGA TTTTTTAAATCGA TTTTTTAAATCGA TTTTTTTAATCGA TTTTTTTAATCGA TTTTTTAAATCGA TTTTTTTAATCGA TTTTTTTAATCGA TTTTTTAAATCGA TTTTTTAAATCGA TTTTTTTAATCGA TTTTTTTAATCGA TTTTTTAAATCGA TTTTTTTTAATCGA TTTTTTAAATCGA TTTTTTTAAATCGA

TAATAATAAGATTAATTAAACTACCTTAGGGATAA TTTTTTAAATCGATTTTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTTTTTAAATCGATTTTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTTTTTAAATCGATTTTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTTTTTAAATCGATTTTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTTTTTAAATCGATTTTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTTTTTAAATCGATTTTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTTTTTAAATCGATTTTAATAATAAKATTAATTAAACTACCTWAGGGATAACA TTTTTTAAATCGATTTTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTTTTTAAATCGATTTTAATAATAAGATTAATTAAACTACCTTAGGGATAACA

TTTGGTAATAAAAATAATTAAACTACCTTAGGGATAACA TTTGGTAATAAAAATAATTAAACTACCTTAGGGATAACA TTTGGTAATAAAAATAATTAAACTACCTTAGGGATAACA TTTGGTAATAAAAATAATTAAACTACCTTAGGGATAACA TTTGGTAATAAAAATAATTAAACTACCTTAGGGATAACA TTTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTTATAATAAGATTAATTAAACTACCTTAGGGATAACA TTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTTATAATAAGATTAATTAAACTACCTTAGGGATAACA TTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTTATAATAAGATTAATTAAACTACCTTAGGGATAACA TTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTTATAATAAGATTAATTAAACTACCTTAGGGATAACA TTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTTAATAATAAGATAAATTAAACTACCTTAGGGATAAC TTTAATAATAAAATTAATTAAACTACCTTAGGGATAACA TTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTAATAATAARATTAATTAAACTACCTTAGGGATAACA TTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTTATAATAAGATTAATTAAACTACCTTAGGGATAACA TTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTTATAATAAGATTAATTAAACTACCTTAGGGATAACA TTTATAATAAGATTAATTAAACTACCTTAGGGATAACA TTTAATAATAAGATTAATTAAACTACCTTAGGGATAAC TTTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTTAATAATAAGATTAATTAAACTACCTTAGGGATAAC TTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTAATAATAAGATTAATTAAACTACCTTAGGGATAACA AATAATAAGATTAATTAAACTACCTTAGGGATA - TTAATAATAAGATAAATTAAACTACCTTAGGGATAAC TTTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTTAATAATAAGATTAATTAAACTACCTTAGGGATAACA TTTAATAATAAGATAAATTAAACTACCTTAGGGATAACA

Walukuba_P9G0

TAAACTTTACTAA mmmmmmmmm C G A
TTTTTTAATCGATTTTAATAATAAGATTAATTAAACTACCTTAGGGATAACA $\mathrm{mmmmmmmmmmm}-\mathrm{mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmn}$
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTCGAACAATTTATCCTACC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAA
TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTCGAACAATTTT
TGTTGGACTAGGAACTTTATAACTAGCCGTTAGAAAAGATTTGTTCTGTTCGAACAATTT
TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTCGAACAATTTTATCCTAC
TGTTGGACTAGGAACTTTATGGTTAGCCATCATAAAAGATTTGTTCTGTTC
TGTTGGACTAGGAACTTTATGGTTAGCCATCATAAAACATTTGTTCTGTTC
TGTTGGACTAGGAACTTTATGGTTAGCCATCATAAAAGATTTGTTCTGTTC
TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC
TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC
TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC
TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC
TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC
TGTTGGACTAGGAACTTTATGGTTAGCCGTCATAAAAGATTTGTTCTGTTC
TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC
TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC
TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC
TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC
TGTTGGACTAGGAACTTTATGGTTAGCCATCATAAAAGATTTGTTCTGTTC
TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC
TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC
TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC
TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC
TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC
TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC
TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC
TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC
TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC
TGTTGGACTAGGAACTTTATGGCTAGCCGTCTTAAAAGATTTGTTCTGTTCGAACAATTTTATCCTAC
TGTTGGACTAGGAACTTTATGGTTAGCCACCATAAAAGATTTGTTCTGTTC
TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC
TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTCGAACAATTTTATCCTAC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGTTAGCCATCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGTTAGCCATCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGTTAGCCATCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGTTAGCCATCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGTTAGCCATCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGTTAGCCATCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGTTAGCCATCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGTTAGCCATCAKAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGTTAGCCATCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGTTAGCCRKCGYAAAAGATTTGTTCTGTTY TGTTGGACTAGGAACTTTATGGTTAGCCATCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGTTAGCCATCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGTTAGCCATCATAAAAGATTTGTTCTGTTC

Bugoigo_P7D09
Bugoigo_P7E09
Bugoigo_P7E10 Bugoigo_P7F07 Bugoigo_P7F09 Bugoigo_P7H07 Bugoigo_P7H09 Bugoto_P2A08 Bugoto_P2A10 Bugoto_P2EO4 Bugoto_P2G09 Bugoto_P6B05 Bugoto_P6C05 Bugoto_P6C06 Bugoto_P6C07 Bugoto_P6D05 Bugoto_P6D08 Bugoto_P6D09 Bugoto_P6E05 Bugoto_P6E06 Bugoto_P6E07 Bugoto_P6E09 Bugoto_P6F08 Bugoto_P6F09 Bugoto_P6G06 Bugoto_P6G07 Bugoto_P6G09 Bukoba_LV01 Bukoba_LV08 Bukoba_LV10 Bukoba_P2A04 Bukoba_P2A07 Bukoba_P2C06 Bukoba_P2E01 Bukoba_P2E03 Bukoba_P2E05 Bukoba_P2E06 Bukoba_P2E07 Bukoba_P2E08 Bukoba_P6G08 Bukoba_P7D11 Bukoba_P7E11 Bukoba_P7E12 Bukoba_P7H12 Bukoba_P9B03 Bukoba_P9C03 Bukoba_P9F04 Piida A101 Piida A102 Piida A107 Piida A108 Piida A109 Piida A110 Piida A112 Piida A117 Piida A118 Piida A119 Piida A201 Piida A203 Piida A207 Piida A211 Piida A212 Piida A214 Piida A215 Piida A217 Piida A219

TGTTGGACTAGGAACTTTATGGTTAGCCATCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGTTAGCCATCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGTTAGCCATCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGTTAGCCATCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGTTAGCCATCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGTTAGCCATCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAARATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAARATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAARATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAARATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGARCYTTWTGGCTARCCGTCATARRARATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCRTAAAARATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC

TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC
TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGYCAWAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGTTAGCCATCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGTTAGCCATCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGTTAGCCATCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGTTAGCCATCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGTTAGCCATCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC

Walukuba_P9F03
Walukuba_P9G01 Walukuba P9H01 MASK

TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC TGTTGGACTAGGAACTTTATGGCTAGCCGTCATAAAAGATTTGTTCTGTTC mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

Chapter 3 - Biomphalaria 16S Alignment

MASK AY577474
DQ084847 DQ084848 DQ084849 DQ084850 DQ084851 DQ084852 DQ084853 DQ084858 DQ084859 DQ084860 DQ084861 DQ084864 DQ084865 EU141175 EU141176 EU141177 EU141178 EU141179 EU141180 EU141181 EU141185 EU141187 EU141188 EU141189 EU141190 EU141191 EU141192 HM768950

```
MG431962
```

MG431963
MG431964
Bugoigo_A102
Bugoigo_A103
Bugoigo_A104
Bugoigo_A105
Bugoigo_A106
Bugoigo_A107
Bugoigo_A108
Bugoigo_A109
Bugoigo_A111
Bugoigo_A112
Bugoigo_A113
Bugoigo_A114
Bugoigo_A115
Bugoigo_A116
Bugoigo_A1R1
Bugoigo_B103
Bugoigo_B110
Bugoigo_B111
Bugoigo_B113
Bugoigo_P1B15
Bugoigo_P1B17
Bugoigo_P1B19
Bugoigo_P1B20
Bugoigo_P2BO1
Bugoigo_P2B03
Bugoigo_P2B04
Bugoigo_P2B07
Bugoigo_P2B08
Bugoigo_P2G04
Bugoigo_P7A10
Bugoigo_P7B10
Bugoigo_P7C10

CAGTTTC

Chapt

${ }^{10}$
Bugoigo A111
Bugoigo A112
Bugoigo A113
Bugoigo A114
Bugoigo A115
Bugoigo A116
Bugoigo A1R1
Bugoigo B103
Bugoigo B110
Bugoigo B111
Bugoigo B113
Bugoigo P1B15
Bugoigo P1B17
Bugoigo P1B19
Bugoigo P1B20
Bugoigo P6E09
Bugoigo P6F08
Bugoigo P6F09
Bugoigo P6G06
Bugoigo P6G07
Bugoigo P6G09
Bugoigo P7A10
Bugoigo P7B10
Bugoigo P7C10
Bugoigo P7D08
Bugoigo P7D09
Bugoigo P7E09
Bugoigo P7E10
tactggattatcattattantccgt
tactggactatcattattantccgt
TACTGGACTATCATTATTAATTCGTT
TACTGGATTATCATTATTAATTCGTT
tactg gattatcattattantccgTt
tactggattatcattattantccgt
TACTGGATTATCATTATTAATTCGTT
TACTGGATTATCATTATTAATTCGTT
tactg gattatcattattantccgTt
tactggattatcattattanttcgtt
TACTGGACTATCATTATTAATTCGTT
TACTGGATTATCATTATTAATTCGTT
tactggattatcattattantccgt tactttatatatantttttgggatttgatgtggtctggttggtactggattatcattattanttcgte TACTTTATACATAATTTTTGGGATTTGATGTGGTCTAGTTGGTACTGGGTTATCATTATTGATTCGTT

AATTCGTG
 TATAATTTTTGGGATtTGATGTGGTCTGGTAGGTACTGGATTATCATTATTAATTCGTT TTATATATAATTTTTGGGATTTGATGTGGTCTAGTTGGTACTGGATTATCATTATTAATTCGTT

TACTGGATTATCATTATTAATTCGTT
TACTGGATTATCATTATTAATTCGTT
TACTGGATTATCATTATTAATTCGTT
tactggattatcattattantccgt
tactggattatcattattanttcgtt
TACTGGATTATCATTATTAATTCGTT
TACTGGATTATCATTATTAATTCGTT
tactggattatcattattantccgt
TACTGGATtATCATTATtAATTCGTT
TACTGGATTATCATTATTAATTCGTT
TACTGGATTATCATTATTAATTCGTT
tactggattatcattattantccgt
tactggattatcattattanttcgtt
TACTGGATTATCATTATTAATTCGTT
TACTGGATTATCATTATTAATTCGTT
tactggattatcattattantccgt
tactggattatcattattanttcgtt
TACTGGATTATCATTATTAATTCGTT
TACTGGATTATCATTATTAATTCGTT
tactggactatcattattantccgt
tactggactatcattattanttcgt
TACTGGATTATCATTATTAATTCGTT
TACTGGACTATCATTATTAATTCGTT
tactggattatcattattantccgt
tactggattatcattattanttcgt
TACTGGATTATCATTATTAATTCGTT
TACTGGATTATCATTATTAATTCGTT
tactggattatcattattantccgt
TACTGGATtATCATTATtAATTCGTT
TASWGGACTATCATTATKAATTYKTT
TACTGGACTATCATTATTAATTCGTT
tactggactatcattatkanttcgtt
TACTGGACTATCATTATTAATTCGTT
TACWGGASTATCATYATKAWTTYKTK
TRSWGGWCWATYWTYATGATTTYKTK
TRSWGGAYWATYWTYRTGAWTTYKTK

Bugoigo P7F07
TACTGGACTATCATTATKAATTCGTK
TRSWGGATTATYWTYATKAWTTYKTK
TACTGGATTATCATTATTAATTCGTK
TRSWGKAYTATYWTYATKAWTTYKTK
TACTGGATTATCATTATTAATTCGTT
TACTGGATTATCATTATTAATTCGTT
TACTGGACTATCATTATTAATTCGTT
TACTGGACTATCATTATTAATTCGTT
TACTGGACTATCATTATTAATTCGTT
TACTGGACTATCATTATTAATTCGTT
TACTGGACTATCATTATTAATTCGTT
TACTGGATTATCATTATTAATTCGTT
TACTGGATTATCATTATTAATTCGTT
TACTGGATTATCATTATTAATTCGTT
TACTGGATTATCATTATTAATTCGTT
TACTGGATTATCATTATTAATTCGTT
TACTGGATTATCATTATTAATTCGTT
TACTGGATTATCATTATKAATTCGTT
TACTGGATTATCATTATTAATTCGTT
TACTGGATTATCATTATTAATTCGTT
TACTGGATTATCATTATKAATTCGTT
TACTGGATTATCATTATTAATTCGTT
TACTGGATTATCATTGTTAATTCGTT
TACTGGATTATCATTATTAATTCGTT
AACTGGATTATCATTATTAATTCGTT
TACTGGATTATCATTATTAATTCGTT
TACTGGATTATCATTATTAATTCKTT
TACTGGATTATCATTATTAATTCGTT
TACTGGATTATCATTATTAATTCGWT
TACTGGATTATCATTATTAATTCGTT

Piida A117
TACTGGATTATCATTATTAATTCGTT
TACTGGATTATCATTATTAATTCGTT
TACTGGATtATCATTATTAATTCGTT
tactggattatcattattanttcgtt
tactggattatcattattantccgt
TACTGGATTATCATTATTAATTCKTT
tactggattatcattattantccgt
tactggattatcattatkawt Tck
tactggattatcattattwattcgwt
tactggattatcattattanttcgtt
TACTGGATtATCATTATTAATTCGTT
TACTGGATTATCATTATTAATTCGTT
tactggattatcattattantccgt
TACTGGATTATCATTATTAATTCGTT
TACWGGACTATCATTATKAATTCKTT
TACWGGACTATCATTATKAATTCKTK
tactggattatcattattantccgt
tactggactatcattatkawt TckTt
tacwg gactatyattatkawt TykTk
tACTGGATTATCATTATKAATTCKTK
tactggattatcattattantccgt
TACTGGACTATCATTATTAATTCGTT
tactggactatcattattanttcgt
tactggactatcattattanttcgtt
tactggattatcattattantccgt
tactegactatcattattanttcgt
tactggactatcattattawt TckTT
TACTGGACTATCATTATTAATTCGTT
tactggactatcattattantccgt
tactggactatcattattanttcgtt
tactggactatcattattantccgt
tactggactatcattattanttcgtt
tactggactatcattattantccgt
TACTGGATTATCATTATTAATTCGTT
TACTGGACTATCATTATTAATTCGTT
tactggactatcattattantccgt
tactggattatcattattantccgt
TACTGGATTATCATTATTAATTCGTT
TACTGGATTATCATTATTAATTCGTT
tactggattatcattattanttcgtt
tactggattatcattattantccgt
tactggattatcattattanttcgtt
tactggattatcattattantccgt
tactggattatcattattanttcgtt
tactggattatcattattanttcgtt
TACTGGATTATCATTATTAATTCGTT
tactggattatcattattantccgt
tactggattatcattattanttcgtt
tactggattatcattattanttcgtt
TACTGGATTATCATTATTAATTCGTT
tactggattatcattattantccgt
tactggattatcattattanttcgtt
tactggattatcattattantccgt
TACTGGATTATCATTATTAATTCGTT
tactggattatcattattantccgt
tactggattatcattattanttcgtt
tactggattatcattattanttcgt
TACTGGATTATCATTATTAATTCGTT
TACASSAWWATCWTCGTGATTTYTTG
tacwg gawtatcattatkanttcttg
KASAGGAWTATCATYRTGAWTTCKTG
kACAGGAWTATCATYRTGAWTTCKTG
kASAGGWTTATCATCRTGAWTTCTTG
tacwg antatcatcktgatttcttg
tactggattatcattattantccgt
TACTGGATTATCATTATTAATTCGTT
tactggattatcattattantccgt
tacagkwttatyatcktgatttcttg
tacagsawtatcatcgtgatt TCTTG
tactggattatcattattanttcgtt
kRSAGSMWAATYWTCGTGATTTYTTG
tactggattatcattatkanttcgtt

DQ084828 DQ084829 DQ084830 DQ084831 DQ084837 DQ084838 DQ084839 DQ084840 DQ084843 DQ084844 MG431962 MG431963
MG431964 HM769133 MG431966
EU141215 EU141216 EU141217
EU141219
EU141220
EU141221
EU141225
EU141227
EU141228
EU141229
EU141230
EU141231
EU141232
DQ084836
DQ084825
DQ084826
DQ084827
Bugoigo A102
Bugoigo A103
Bugoigo A104
Bugoigo A105
Bugoigo A106
Bugoigo A107
Bugoigo A108
Bugoigo A109
Bugoigo A111
Bugoigo A112
Bugoigo A113
Bugoigo A114
Bugoigo A115
Bugoigo A116
Bugoigo A1R1
Bugoigo B103
Bugoigo B110
Bugoigo B111
Bugoigo B113
Bugoigo P1B15
Bugoigo P1B17
Bugoigo P1B19
Bugoigo P1B20
Bugoigo P6E09
Bugoigo P6F08
Bugoigo P6F09
Bugoigo P6G06
Bugoigo P6G07
Bugoigo P6G09
Bugoigo P7A10
Bugoigo P7B10
Bugoigo P7C10
Bugoigo P7D08
Bugoigo P7D09
mmm GAACATTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTA GAACACTTTTATAATGTTATTGTTACAGCTCATGCTTTCATTATAATTTTTTTTATAGTTATACCTAT GAACATTTTTATAATGTTATTGTTACAGCTCATGCTTTCATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACAGCTCATGCTTTCATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTATTACGGCTCATGCTTTTATTATGATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAACGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACAGCTCATGCTTTCATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTCATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACATTTTTATAATGTTGTTGTTACAGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTATTACGGCTCATGCTTTTATTATGATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTATTACGGCTCATGCTTTTATTATGATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTATTACGGCTCATGCTTTTATTATGATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTATTACGGCTCATGCTTTTATTATGATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACAGCTCATGCTTTCATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTATTACGGCTCATGCTTTTATTATGATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTATTACGGCTCATGCTTTTATTATGATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTATTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACATTTTTATAATGTTATTGTTACAGCTCATGCTTTCATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACAGCTCATGCTTTCATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACAGCTCATGCTTTCATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACAGCTCATGCTTTCATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACAGCTCATGCTTTCATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTTTAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTTTAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACAGCTCATGCTTTCATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACAGCTCATGCTTTCATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACAGCTCATGCTTTCATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACAGCTCATGCTTTCATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACAGCTCATGCTTTCATTATAATTTTTTTTATAGTTATACCTAT

Bugoigo P7E09
GAACACTTTTATAATGTTATTGTTACAGCTCATGCTTTCATTATAATTTTTTTTATAGTTATACCTAT
GAACACTTTTATAATGTTATTGTTACAGCTCATGCTTTCATTATAATTTTTTTTATAGTTATACCTAT
GAACACTTTTATAATGTTATTGTTACAGCTCATGCTTTCATTATAATTTTTTTTATAGTTATACCTAT
GAACACTTTTATAATGTTATTGTTACAGCTCATGCTTTCATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACAGCTCATGCTTTCATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACAGCTCATGCTTTCATTATAATTTTTTTTATAGTTATACCTAT
 GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACAGCTCATGCTTTCATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACAGCTCATGCTTTCATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACAGCTCATGCTTTCATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACAGCTCATGCTTTCATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACAGCTCATGCTTTCATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT
 GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTTTAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT
 GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTTTAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT
 GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTA GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTTTAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTTTAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT
 GAACACTTTTTTAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTA
GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTA GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT
 GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTA GAACACTTTTTTAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT
GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT

GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT
GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTATTACGGCTCATGCTTTTATTATGATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTATTACGGCTCATGCTTTTATTATGATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACAGCTCATGCTTTCATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACAGCTCATGCTTTCATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTATTACGGCTCATGCTTTTATTATGATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACAGCTCATGCTTTCATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACAGCTCATGCTTTCATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACAGCTCATGCTTTCATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACAGCTCATGCTTTCATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACAGCTCATGCTTTCATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACAGCTCATGCTTTCATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACAGCTCATGCTTTCATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACAGCTCATGCTTTCATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACAGCTCATGCTTTCATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACAGCTCATGCTTTCATTATAATTTTTTTTATAGTTATACCTAT
GAACACTTTTATAATGTTATTGTTACAGCTCATGCTTTCATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACAGCTCATGCTTTCATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACAGCTCATGCTTTCATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACAGCTCATGCTTTCATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACAGCTCATGCTTTCATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACAGCTCATGCTTTCATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACAGCTCATGCTTTCATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACAGCTCATGCTTTCATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTGTTACGGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTATTACGGCTCATGCTTTTATTATGATTTTTTKKATASYYATACCTA GAACACTTTTATAATGTTATTATTACGGCTCATGCTTTTATTATGATTTTTTKKWCASYYWKAMMTWT GAACACTTTTATAATGTTATTATTACGGCTCATGCTTTTATTATGATTTTTTKKACASYYAKAMMTWT GAACACTTTKATAATGWTATTATTACGGCTCATGCTTTTATTATGATTTTTTTTATARTTATACCTA GAACATTTTTATAATGTTATTATTACGGCTCATGCTTTTATTATGATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTATTACGGCTCATGCTTTTATTATGATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTATTACGGCTCATGCTTTTATTATGATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTATTACGGCTCATGCTTTTATTATGATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTATTACGGCTCATGCTTTTATTATGATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTATTACGGCTCATGCTTTTATTATGATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTATTACGGCTCATGCTTTTATTATGATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTATTACGGCTCATGCTTTTATTATGATTTTTTTTACAGTTAGACCTAT GAACACTTTTATAATGTTATTATTACGGCTCATGCTTTTATTATGATTTTTTTTATAGTTATACCTAT GAACACTTTTATAATGTTATTATTACGGCTCATGCTTTTATTATGATTTTTTTTATAGTTATACCTAT GAACATTTTTATAATGTTATTATTACGGCTCATGCTTTTATTATGATTTTTTTTATAGTTATACCTAT

Walukuba P9G01
mm CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCCCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGGATAAATAATATATCATTTTGATTGCTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGGATAAATAATATATCATTTTGATTGCTTCCA CTtTATtAATtGgTGCTCCTGATATAAGTtTtcCtCGAATAAATAATATATCATTTTGATTGCTTCCA ctttattanttggtgctcctgatatangttttccccgantanatantatatcatt tigattacttcca CTTTATtAATtGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATtAATtGgTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGACTACTTCCA CTtTATtAATtGgTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATtAATtGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTtTATtAATtGgTGCTCCTGATATAAGTTTTCCTCGGATAAATAATATATCATTTTGATTGCTTCCA CTtTATtAATtGgTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTtTATtAATtGgTgCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATTAATTGGTGCTCCAGATATAAGTTTTCCTCGAATGAATAATATATCTTTTTGATTACTTCCG CTTTATtAATtGgTGCTCCTGATATAAGTTTTCCCCGAATAAATAATATATCATTTTGATTACTTCCA ctttattanttggtgctcctgatatangttttccccgantanatantatatcatt tigattacttcca CTTTATtAATtGGTGCTCCTGATATAAGTTTTCCCCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATtAATtGgTGCTCCTGATATAAGTTTTCCCCGAATAAATAATATATCATTTTGATTACTTCCA CTtTATtAATtGgTGCTCCTGATATAAGTTTTCCTCGGATAAATAATATATCATTTTGATTGCTTCCA ctttattanttggtgctcctgatatangttttccccgantanatantatatcatt ttgattacttcca CTTTATtAATTGGTGCTCCTGATATAAGTTTTCCCCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCCCGAATAAATAATATATCATTTTGATTACTTCCA CTtTATtAATtGgTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTtTATtAATtGgTgCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTtTATtAATtGgTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATtAATtGgTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTtTATtAATtGgTgCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTtTATtAATtGgTgCtcctgatatangttttcctcgantanatantatatcatt tigattacttcca CTTTGTTAATTGGTGCTCCTGATATAAGTTTTCCCCGAATAAATAATATATCATTTTGATTACTTCCA CTtTATtAATtGgTGCTCCTGATATAAGTTTtcCCCGAATAAATAATATATCATTTTGATTACTTCCA ctttattanttggtgctcctgatatangttttccccgantanatantatatcatt tigattacttcca CCTTATtAATtGgTgCCCCTGACATAAGATtTCCTCGAATAAATAATATATCATTCTGATTACTCCCA CTTTATtAATtGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTtTATtAATtGgTGCTCCTGATATAAGTTTTCCTCGGATAAATAATATATCATTTTGATTGCTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGGATAAATAATATATCATTTTGATTGCTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGGATAAATAATATATCATTTTGATTGCTTCCA CTtTATtAATtGgTGCTCCTGATATAAGTTTTCCTCGGATAAATAATATATCATTTTGATTGCTTCCA CTtTATtAATtGgTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTtTATtAATtGgTGCTCCTGATATAAGTTTtCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATtAATtGgTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGGATAAATAATATATCATTTTGATTGCTTCCA

$C T T T A T T A A T T G G T G C T C C T G A T A T A A G T T T T C C T C G G A T A A A T A A T A T A T C A T T T T G A T T G C T T C C A ~$ CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGGATAAATAATATATCATTTTGATTGCTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGGATAAATAATATATCATTTTGATTGCTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGGATAAATAATATATCATTTTGATTGCTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGGATAAATAATATATCATTTTGATTGCTTCCA $C T T T A T T A A T T G G T G C T C C T G A T A T A A G T T T T C C T C G G A T A A A T A A T A T A T C A T T T T G A T T G C T T C C A ~$
$C T T T A T T A A T T G T G C T C C T G A T A T A A G T T T C C T C G G A T A A A T A A T A T A T C A T T T T G A T T G T T C C A$ CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA $C T T T A T T A A T T G G T G C T C C T G A T A T A A G T T T T C C T C G G A T A A A T A A T A T A T C A T T T T G A T T G C T T C C A ~$
$C T T T A T T A A T G G T G C T C C T G A T A T A A G T T T C C T C G G A T A A A T A A T A T A T C A T T T T G A T T G C T T C C A ~$ CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGGATAAATAATATATCATTTTGATTGCTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGGATAAATAATATATCATTTTGATTGCTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGGATAAATAATATATCATTTTGATTGCTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA $C T T A T T A A T T G G T G C T C C T G A T A T A A G T T T T C C T C G A A T A A A T A A T A T A T C A T T T T G A T T A C T T C C A ~$ CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA $C T T T A T T A A T T G G T G C T C C T G A T A T A A G T T T T C C T C G A A T A A A T A A T A T A T C A T T T T G A T T A C T T C C A ~$
$C T T T A T T A A T G G T G C T C C T G A T A T A A G T T T C C T C G A A T A A A T A A T A T A T C A T T T T G A T T A C T T C C A ~$ CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGGATAAATAATATATCATTTTGATTACTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA $C T T T A T T A A T T G G T G C T C C T G A T A T A A G T T T T C C T C G A A T A A A T A A T A T A T C A T T T T G A T T A C T T C C A ~$
$C T T T A T T A A T G G T G C T C C T G A T A T A A G T T T T C C T C G A A T A A A T A A T A T A T C A T T T T G A T T A C T T C C A ~$ CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA $C T T T A T T A A T T G G T G C T C C T G A T A T A A G T T T T C C T C G A A T A A A T A A T A T A T C A T T T T G A T T A C T T C C A ~$
$C T T T A T T A A T T G G T G C T C C T G A T A T A A G T T T T C C T C G A A T A A A T A A T A T A T C A T T T T G A T T A C T T C C A ~$ CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA $C T T T A T T A A T T G G T G C T C C T G A T A T A A G T T T T C C T C G A A T A A A T A A T A T A T C A T T T T G A T T A C T T C C A ~$
$C T T T A T T A A T T G T G C T C C T G A T A T A A G T T T T C T C G A A T A A A T A A T A T A T C A T T T T G A T T A C T T C C A ~$ CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA $C T T T A T A A T T G G T G C T C C T G A T A T A A G T T T T C C T C G A A T A A A T A A T A T A T C A T T T T G A T T A C T T C C A ~$
$C T T T A T T A A T T G G T G C T C C T G A T A T A A G T T T T C C T C G A A T A A A T A A T A T A T C A T T T T G A T T A C T T C C A ~$ CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA $C T T T A T A A T T G G T G C T C C T G A T A T A A G T T T T C C T C G A A T A A A T A A T A T A T C A T T T T G A T T A C T T C C A ~$
$C T T T A T T A A T T G G T G C T C C T G A T A T A A G T T T T C C T C G A A T A A A T A A T A T A T C A T T T T G A T T A C T T C C A ~$ CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTCCA $C T T T A T T A A T T G G T G C T C C T G A T A T A A G T T T T C C T C G A A T A A A T A A T A T A T C A T T T T G A T T A C T T C C A ~$
$C T T T A T T A A T T G G T G C T C C T G A T A T A A G T T T T C C T C G A A T A A A T A A T A T A T C A T T T T G A T T A C T T C C A ~$

Piida A109	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATT
Piida A110	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTT
Piida A112	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCA
iida A117	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCG
18	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTG
Piida A119	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGA
01	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTT
Piida A203	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATC
07	CTTTATTAATTGGTGCTCCTGATATAAGTTTTC
Piida A211	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTT
12	C T
Piida A214	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGA
Piida A215	CTTTATTAATTGGTGCTCCTGATATAAGTTT
Piida A217	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTAC
219	CTTTATTAATTGGTGCTCCTGATATAAGTTTT
Walukuba A	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCCCGAATAAATAATATATCATTTTGATTAC
Walukuba A102	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCC
Walukuba A103	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGGATAAATAATATATCATTTTGATTG
Walukuba A104	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCC
Walukuba A105	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCCCGAATAAATAATATATCATTTTGATT
Walukuba A107	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCC
Walukuba A108	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGGATAAATAATATATCATTTTGATT
09	CTTTATTAATTGGTGCTCCTGATATAAGTTTTC
Walukuba A111	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTAC
12	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGGATAAATAATATATCATTT
Walukuba B101	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGGATAAATAATATATCATTTTGATTGC
Walukuba B102	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGGATAAATAATATATCATTTTGA
Walukuba B103	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGGATAAATAATATATCATTTTGATTGC
Walukuba B104	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGGATAAATAATATATCATTTTG
Walukuba B105	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGGATAAATAATATATCATTTTGATT
Walukuba B106	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGGATAAATAATATATCATTTTG
Walukuba B107	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGGATAAATAATATATCATTTTGATTGC
Walukuba B108	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGGATAAATAATATATCATTTTGATT
Walukuba B109	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGGATAAATAATATATCATTTTGATT
Walukuba B110	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGGATAAATAATATATCATTTTGATT
Walukuba B111	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGGATAAATAATATATCATTT
Walukuba B112	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGGATAAATAATATATCATTTTGATT
Walukuba B114	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGGATAAATAATATATCATT
Walukuba B116	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGGATAAATAATATATCATTT
Walukuba B118	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGGATAAATAATATATCATT
ba P2B09	CTTTATtAATtGgTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATT
Walukuba P2B10	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATT
Walukuba P2E09	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATT
Walukuba P2E10	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATT
Walukuba P2F01	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATT
Walukuba P2F02	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATT
Walukuba P2F03	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATT
Walukuba P2F04	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTT
Walukuba P2F05	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGAT
Walukuba P2F06	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTT
Walukuba P2F07	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATT
Walukuba P2F08	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTT
Walukuba P2F09	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATT
Wal	CTtTATtAATtGgTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTT
Walukuba P2G03	CTtTATtAATtGgTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTAC
Walukuba P2G06	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTT
Walukuba P2G07	CTTTATtAATtGgTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTAC
Walukuba P2G08	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCTCGAATAAATAATATATCATTTTGATTACTTC
Walukuba P6A03	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCCCGAATAAATAATATATCATTTTGATTACTTC
Wal	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCCCGAATAAATAATATATCATTTTGATTACTT
Walukuba P6A05	CTTTATTAATTGGTGCTCCCGATATAAATTTTCCCCGAATAAATAATATATCATTTTGATTACTT
Walukuba P7A07	
Walukuba P7C09	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCCCGAATAAATAATATATCATTTTGATTACTT
Walukuba P7D10	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCCCGAATAAATAATATATCATTTTGATTACT
Walukuba P7F10	CTTTATtAATtGGTGCTCCTGATATAAGTTTTCCCCGAATAAATAATATATCATTTTGATTACTT
Walukuba P9A01	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCCCGAATAAATAATATATCATTTTGATTACTT
Walukuba P9B01	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCCCGAATAAATAATATATCATTTTGATTACTTC
Walukuba P9C01	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCCCGAATAAATAATATATCATTTTGATTACTT
Walukuba P9D01	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCCCGAATAAATAATATATCATTTTGATTAC
Walukuba P9D02	CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCCCGAATAAATAATATATCATTTTGATT

CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCCCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCCCGAATAAATAATATATCATTTTGATTACTTCCA CTTTATTAATTGGTGCTCCTGATATAAGTTTTCCCCGAATAAATAATATATCATTTTGATTACTTCCA mmm

320

330 340

350
360

MASK

 DQ084828 DQ084829 DQ084830 DQ084831DQ084837 DQ084838 DQ084839 DQ084840
DQ084843 DQ084844 MG431962 MG431963 HM769133 MG431966 EU141215 EU141216 EU141217
EU141218
EU141219
EU141220
EU141221
EU141225
EU141227
EU141228
EU141229
EU141230
EU141231
EU141232
DO08483
DQ084825
DQ084826
DQ084827
Bugoigo A102
Bugoigo A103
Bugoigo A104
Bugoigo A105
Bugoigo A106
Bugoigo A107
Bugoigo A108
Bugoigo A109
Bugoigo A111
Bugoigo A112
Bugoigo A113
Bugoigo A114
Bugoigo A115
Bugoigo A116
Bugoigo A1R1
Bugoigo B103
Bugoigo B110
Bugoigo B111
Bugoigo B113
Bugoigo P1B15
Bugoigo P1B17
Bugoigo P1B19
Bugoigo P1B20
Bugoigo P6E09
Bugoigo P6F08
Bugoigo P6F09
Bugoigo P6G06
Bugoigo P6G07
Bugoigo P6G09
Bugoigo P7A10
mm A GTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATATCCTCCTTTAAGTGGTCCTATTGCTCATGGGG A GTTGAAGGTGGAGTAGGGACAGGTTGAACTGTATATCCCCCTTTAAGTGGCCCTATTGCTCATGGTG $A G T T G A A G G T G G G G T A G G G A C A G G T T G A A C T G T A T A T C C T C C T T T A A G T G G T C C T A T T G C T C A T G G T G$ A G T T GAA $\operatorname{H} G T G G G G T A G G A A C A G G T T G A A C T G T A T A T C C T C C T T T A A G T G G T C C T A T T G C T C A T G G A G$ $A G T T G A A G G T G G A G T A G G T A C A G G T T G A A C T G T A T A C C C T C C T T T A A G T G G T T C T A T T G C T C A T G G T G$ A GTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGTCCTATTGCTCATGGTG $A G T T G A A G G T G G A G T A G G T A C A G G T T G A A C T G T A T A C C C T C C T T T A A G T G G T C C T A T T G C T C A T G G T G$ A GTTGAAGGTGGAGTAGGTACGGGTTGAACTGTATACCCTCCTTTAAGTGGTCCTATTGCTCATGGTG A GTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGTCCTATTGCTCATGGTG A G T T GAA A GTGGGGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGTCCTATTGCTCATGGTG $A G T T G A A G G T G G G G T A G G G A C A G G T T G A A C T G T A T A T C C T C C T T T A A G T G G C C C T A T T G C T C A T G G T G$ A G T T GAA t GTGGGGTAGGTACGGGTTGAACTGTATACCCTCCTTTAAGTGGTCCTATTGCTCATGGTG A GTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCTCCTTTAAGTGGTCCTATTGCTCATGGTG A GTTGAAGGTGGGGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGTCCTATTGCTCATGGTG A GTTGAAGGTGGGGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGTCCTATTGCTCATGGTG A GTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGTTCTATTGCTCATGGTG A GTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGTTCTATTGCTCATGGTG A GTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGTTCTATTGCTCATGGTG A GTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGTTCTATTGCTCATGGTG A G T T GAA A GTGGAGTAGGGACAGGTTGAACTGTATATCCTCCTTTAAGTGGTCCTATTGCTCATGGTG A GTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGTTCTATTGCTCATGGTG A GTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGTTCTATTGCTCATGGTG $A G T T G A A G G T G G A G T A G G T A C A G G T T G A A C T G T A T A C C C T C C T T T A A G T G G T T C T A T T G C T C A T G G T G$ A G T T GAA t GTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGTCCTATTGCTCATGGTG A GTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGTCCTATTGCTCATGGTG A GTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGTCCTATTGCTCATGGTG A GTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGTCCTATTGCTCATGGTG A G T T GAA t GTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGTCCTATTGCTCATGGTG A GTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGTCCTATTGCTCATGGTG A GTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGTCCTATTGCTCATGGTG A GTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATACCCTCCTCTAAGTGGTCCTATTGCTCATGGTG A G T T GAA t GTGGGGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGTCCCATTGCTCATGGTG
 A GTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGTCCTATTGCTCATGGTG A GTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGTCCTATTGCTCATGGTG A GTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGTCCTATTGCTCATGGTG A GTTGAAGGTGGGGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGTCCTATTGCTCATGGTG A G T T GAA $\operatorname{AGTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGTCCTATTGCTCATGGTG}$ A GTTGAAGGTGGGGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGTCCTATTGCTCATGGTG A GTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGTCCTATTGCTCATGGTG A GTTGAAGGTGGGGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGTCCTATTGCTCATGGTG A G T T GAA $\operatorname{AGTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGTCCTATTGCTCATGGTG}$ A GTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGTCCTATTGCTCATGGTG A GTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGTCCTATTGCTCATGGTG A GTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGTCCTATTGCTCATGGTG A GTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGTCCTATTGCTCATGGTG A GTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGTCCTATTGCTCATGGTG A G T T GAA $\operatorname{AGTGGGGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGTCCTATTGCTCATGGTG}$ A GTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGTCCTATTGCTCATGGTG A G T T GAA $\operatorname{AGTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGTCCTATTGCTCATGGTG}$ A GTTGAAGGTGGGGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGTCCTATTGCTCATGGTG A G T T GAA $\operatorname{AGTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGTCCTATTGCTCATGGTG~}$
 A G T T GAAGGTGGGGTAGGGACAGGTTGAACTGTATATCCTCCTTTAAGTGGTCCTATTGCTCATGGTG A GTTGAAGGTGGGGTAGGGACAGGTTGAACTGTATATCCTCCTTTAAGTGGTCCTATTGCTCATGGTG A G T T GAA $\operatorname{H} \operatorname{GTGGGGTAGGGACAGGTTGAACTGTATATCCTCCTTTAAGTGGTCCTATTGCTCATGGTG}$ A $\operatorname{GTT} \operatorname{T} A A G G C G G G G T A G G T A C G G G T T G A A C T G T A T A C C C T C C T T T A A G T G G T C C T A T T G C T C A T G G T G$ A G T T GAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCTCCTTTAAGTGGTCCTATTGCTCATGGTG A GTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCTCCTTTAAGTGGTCCTATTGCTCATGGTG A G T T GAA t G TGGGGTAGGTACGGGTTGAACTGTATACCCTCCTTTAAGTGGTCCTATTGCTCATGGTG A GTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCTCCTTTAAGTGGTCCTATTGCTCATGGTG A G T T GAA A GTGGGGTAGGTACGGGTTGAACTGTATACCCTCCTTTAAGTGGTCCTATTGCTCATGGTG A GTTGAAGGTGGGGTAGGGACAGGTTGAACTGTATATCCTCCTTTAAGTGGTCCTATTGCTCATGGTG
ugoigo P7B10

A
A G T T GAA G GTGGGGTAGGGACAGGTTGAACTGTATATCCTCCTTTAAGTGGT A GTT TAAGGTGGGGTAGGGACAGGTTGAACTGTATATCCTCCTTTAAGTGGTC AGTTGAAGGTGGGGTAGGGACAGGTTGAACTGTATATCCTCCTTTAAGTGGTCCTATTGCTCATGGTG AGTTGAAGGTGGGGTAGGGACAGGTTGAACTGTATATCCTCCTTTAAGTGGTCCTATTGCTCATGGTG A GTtGAAGGTGGAGTAGGGACAGGTTGAACTGTATATCCTCCTTTAAGTGGTCCTATTGCTCATGGTG AGTTGAAGGTGGGGTAGGGACAGGTTGAACTGTATATCCTCCTTTAAGTGGTCCTATTGCTCATGGTG AGTTGAAGGTGGGGTAGGGACAGGTTGAACTGTATATCCTCCTTTAAGTGGTCCTATTGCTCATGGTG AGTTGAAGGTGGGGTAGGGACAGGTTGAACTGTATATCCTCCTTTAAGTGGTCCTATTGCTCATGGTG A G TTGAAGGTGGGGTAGGGACAGGTTGAACTGTATATCCTCCTTTAAGTGGTCCTATTGCTCATGGTG AGTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCCCCTTTAAGTGGTCCTATTGCTCATGGTG AGTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCTCCTTTAAGTGGTCCTATTGCTCATGGTG AGTTGAAGGTGGGGTAGGGACAGGTTGAACTGTATATCCTCCTTTAAGTGGTCCTATTGCTCATGGTG A GTT TAA A GTGGGGTAGGGACAGGTTGAACTGTATATCCTCCTTTAAGTGGTCCTATTGCTCATGGTG AGTTGAAGGTGGGGTAGGGACAGGTTGAACTGTATATCCTCCTTTAAGTGGTCCTATTGCTCATGGTG AGTTGAAGGTGGGGTAGGGACAGGTTGAACTGTATATCCTCCTTTAAGTGGTCCTATTGCTCATGGTG AGTTGAAGGTGGGGTAGGGACAGGTTGAACTGTATATCCTCCTTTAAGTGGTCCTATTGCTCATGGTG A G TTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCCCCTTTAAGTGGTCCTATTGCTCATGGTG AGTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGT A $\operatorname{t} T \mathrm{~T}$ GAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCTCCTTTAAGTGGT AGTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCTCCTTTAAGTGGT AGTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCTCCTTTAAGTGGT AGTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCTCCTTTAAGTGGT AGTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCTCCTTTAAGTGGT A GTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCTCCTTTAAGTGGT A GTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCCCCTTTAAGTGGT AGTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCTCCTTTAAGTGGT AGTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCCCCTTTAAGTGGT A GTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCCCCTTTAAGTGGT A GTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCCCCTTTAAGTGGT A GTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCTCCTTTAAGTGGT A GTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCTCCTTTAAGTGGT AGTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCCCCTTTAAGTGGT A GTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCTCCTTTAAGTGGT AGTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCTCCTTTAAGTGGT AGTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCCCCTTTAAGTGGT AGTTGAAGGCGGGGTAGGTACGGGTTGAACTGTATACCCTCCTTTAAGTGGT A GTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCTCCTTTAAGTGGT AGTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCTCCTTTAAGTGGT A GTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCTCCTTTAAGTGGT AGTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCTCCTTTAAGTGGT A GTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCCCCTTTAAGTGGT A GTTGAGGGTGGGGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGT A GTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCCCCTTTAAGTGGT AGTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCTCCTTTAAGTGGT A GTTGAAGGCGGGGTAGGTACGGGTTGAACTGTATACCCTCCTTTAAGTGGT A GTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCCCCTTTAAGTGGT AGTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCTCCTTTAAGTGGT AGTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCTCCTTTAAGTGGT AGTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCTCCTTTAAGTGGT A GTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCTCCTTTAAGTGGT A GTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCCCCTTTAAGTGGT A GTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCCCCTTTAAGTGGT A GTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATATCCTCCTTTAAGTGGT AGTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCCCCTTTAAGTGGT AGTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCCCCTTTAAGTGGT AGTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCCCCTTTAAGTGGT AGTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCCCCTTTAAGTGGTC A GTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCTCCTTTAAGTGGT A GTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCTCCTTTAAGTGGT A G T T GAAGGTGGGGTAGGTACGGGTTGAACTGTATATCCTCCTTTAAGTGGT AGTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCTCCTTTAAGTGGTC A GTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCTCCTTTAAGTGGT A GTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCCCCTTTAAGTGGT A G T T GAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCCCCTTTAAGTGGT A GTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCCCCTTTAAGTGGT AGTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCCCCTTTAAGTGGT AGTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCTCCTTTAAGTGGT AGTAGGGGTAGGACGGGTTGAACTGTATACCCTCCTTTAAGTGGT AGTTGAAGGTGGGGTAGGTACGGGTTGAACTGTATACCCTCCTTTAAGTGGTCCTATTGCTCATGGT A GTTGAAGGTGGGGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGTCCTATTGCTCATGGTG A GTTGAAGGTGGGGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGTCCTATTGCTCATGGTG
\qquad

A GTTGAAGGTGGGGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGTC
AGTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGT A GTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGTC AGTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGTCCTATTGCTCATGGTG A GTtGAAGGTGGGGTAGGTACAGGTTGAACTGTATACCCTCCTTTAARTGGTCCTATTGCTCATGGTG AGTTGAAGGTGGGGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGTCCTATTGCTCATGGTG AGTTGAAGGTGGGGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGTCCTATTGCTCATGGTG AGTTGAAGGTGGGGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGTCCTATTGCTCATGGTG AGTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGTCCTATTGCTCATGGTG A GTtGAAGGTGGGGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGTCCTATTGCTCATGGTG AGTTGAAGGTGGGGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGTCCTATTGCTCATGGTG AGTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGTCCTATTGCTCATGGTG AGTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGT AGTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGT AGTTGAAGGTGGGGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGT AGTTGAAGGTGGGGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGT AGTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGT AGTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGT A GTtGAAGGTGGAGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGT AGTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGT AGTTGAAGGTGGGGTAGGGACAGGTTGAACTGTATATCCTCCTTTAAGTGGT A GTTGAAGGTGGGGTAGGGACAGGTTGAACTGTATATCCTCCTTTAAGTGGT AGTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGT AGTTGAAGGTGGGGTAGGGACAGGTTGAACTGTATATCCTCCTTTAAGTGGT A GTTGAAGGTGGGGTAGGGACAGGTTGAACTGTATATCCTCCTTTAAGTGGT AGTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGT AGTTGAAGGTGGGGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGT AGTTGAAGGTGGGGTAGGGACAGGTTGAACTGTATATCCTCCTTTAAGTGGT A GTTGAAGGTGGAGTAGGGACAGGTTGAACTGTATATCCTCCTTTAAGTGGT A GTTGAAGGTGGGGTAGGGACAGGTTGAACTGTATATCCTCCTTTAAGTGGT A GTTGAAGGTGGGGTAGGGACAGGTTGAACTGTATATCCTCCTTTAAGTGGT AGTTGAAGGTGGGGTAGGGACAGGTTGAACTGTATATCCTCCTTTAAGTGGT A GTTGAAGGTGGGGTAGGGACAGGTTGAACTGTATATCCTCCTTTAAGTGGT A GTTGAAGGTGGGGTAGGGACAGGTTGAACTGTATATCCTCCTTTAAGTGGT AGTTGAAGGTGGGGTAGGGACAGGTTGAACTGTATATCCTCCTTTAAGTGGT AGTTGAAGGTGGGGTAGGGACAGGTTGAACTGTATATCCTCCTTTAAGTGGT A GTTGAAGGTGGGGTAGGGACAGGTTGAACTGTATATCCTCCTTTAAGTGGT AGTTGAAGGTGGGGTAGGGACAGGTTGAACTGTATATCCTCCTTTAAGTGGT A GTTGAAGGTGGGGTAGGGACAGGTTGAACTGTATATCCTCCTTTAAGTGGT AGTTGAAGGTGGGGTAGGGACAGGTTGAACTGTATATCCTCCTTTAAGTGGT AGTTGAAGGTGGAGTAGGGACAGGTTGAACTGTATATCCTCCTTTAAGTGGT AGTTGAAGGTGGGGTAGGGACAGGTTGAACTGTATATCCTCCTTTAAGTGGT AGTTGAAGGTGGGGTAGGGACAGGTTGAACTGTATATCCTCCTTTAAGTGGT AGTTGAAGGTGGGGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGT AGTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGT AGTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGT AGTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGT AGTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGT AGTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGT AGTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGT AGTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGT AGTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGT AGTTGAAGGTGGGGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGT AGTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGT AGTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGT AGTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGT AGTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGT
 A GTtGAAGGTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGTCCTATTGCTCATGGTG A GTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGTCCTATTGCTCATGGTG AGTTGAAGGTGGGGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGTCCTATTGCTCATGGTG A G T T GAAGGTGGAGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGTTCTATTGCTCATGGTG A GTtGAAGGTGGAGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGTTCTATTGCTCATGGTG A GTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGTTCTATTGCTCATGGTG A G Tt $\operatorname{GAA} \mathrm{A}$ GTGGAGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGTTCTATTGCTCATGGTG A GTtGAAGGTGGAGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGTTCTATTGCTCATGGTG AGTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGTTCTATTGCTCATGGTG A GTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGTTCTATTGCTCATGGTG A G T TGAAGGTGGAGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGTTCTATTGCTCATGGTG AGTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGTTCTATTGCTCATGGTG AGTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGTTCTATTGCTCATGGTG A GTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGTTCTATTGCTCATGGTG

Walukuba P9D02
Walukuba P9E01
Walukuba P9F01
Walukuba P9F03
Walukuba P9G01
Walukuba P9H01
MASK
 A GTtGAAGGTGGAGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGTTCTATTGCTCATGGTG A GTtGAAGGTGGAGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGTTCTATTGCTCATGGTG A GTtGAAGGTGGAGTAGGTACAGGTTGAACTGTATATCCTCCTTTAAGTGGTTCTATTGCTCATGGTG AGTTGAAGGTGGAGTAGGTACAGGTTGAACTGTATACCCTCCTTTAAGTGGTTCTATTGCTCATGGTG mm

Chapter 3 - Biomphalaria COI Alignment
MASK DQ084828 DQ084830 DQ084831 DQ084837 DQ084838 DQ084839 DQ084840 DQ084843 DQ084844 MG431962
Bugoigo A104
Bugoigo A105
Bugoigo A106
Bugoigo A107
Bugoigo A108
Bugoigo A109
Bugoigo A111
Bugoigo A112
Bugoigo A113
Bugoigo A114
Bugoigo A115
Bugoigo A116
Bugoigo A1R1
Bugoigo B103
Bugoigo B110
Bugoigo B111
Bugoigo B113
Bugoigo P1B15
Bugoigo P1B17
Bugoigo P1B19
Bugoigo P1B20
Bugoigo P6E09
Bugoigo P6F08
Bugoigo P6F09
Bugoigo P6G06
Bugoigo P6G07 CATTTAGCAGGTATAAGTTCAATTTTAGGTGCTATTAATTTTATTACCACAATTTTTAATATACGTGC CATTTAGCAGGTATAAGTTCAATTTTAGGTGCTATTAATTTTATTACCACAATTTTTAATATACGTGC CATTTAGCAGGTATAAGTTCAATTTTAGGTGCTATTAATTTTATTACCACAATTTTTAATATACGTGC CATTTAGCAGGTATAAGTTCAATTTTAGGTGCTATTAATTTTATTACCACAATTTTTAATATACGTGC CATTTAGCAGGTATAAGTTCAATTTTAGGTGCTATTAATTTTATTACCACAATTTTTAATATACGTGC CATTTAGCAGGTATAAGTTCAATTTTAGGTGCTATTAATTTTATTACCACAATTTTTAATATACG CATTTAGCAGGTATAAGTTCAATTTTAGGTGCTATTAATTTTATTACCACAATTTTTAATATACG CATTTAGCAGGTATAAGTTCAATTTTAGGTGCTATTAATTTTATTACCACAATTTTTAATATACG CATTTAGCAGGTATAAGTTCAATTTTAGGTGCTATTAATTTTATTACCACAATTTTTAATATACG CATTTAGCAGGAATAAGTTCAATTTTAGGTGCTATTAATTTTATTACTACAATTTTTAATATACG CATTTAGCAGGAATAAGTTCAATTTTAGGTGCTATTAATTTTATTACTACAATTTTTAATATACG CATTTAGCAGGTATAAGTTCAATTTTAGGTGCTATTAATTTTATTACCACAATTTTTAATATACG CATTTAGCAGGTATAAGTTCAATTTTAGGTGCTATTAATTTTATTACCACAATTTTTAATATACGTGC CATTTAGCAGGTATAAGTTCAATTTTAGGTGCTATTAATTTTATTACCACAATTTTTAATATACGTGC CATTTAGCAGGTATAAGTTCAATTTTAGGTGCTATTAATTTTATTACCACAATTTTTAATATACG CATTTAGCAGGTATAAGTTCAATTTTAGGTGCTATTAATTTTATTACCACAATTTTTAATATACG CATTTAGCAGGAATAAGTTCAATTTTAGGTGCTATTAATTTTATTACTACAATTTTTAATATACGTGC CATTTAGCAGGAATAAGTTCAATTTTAGGTGCTATTAATTTTATTACTACAATTTTTAATATACG $C A T T T A G C A G G A A T A A G T T C A A T T T T A G G T G C T A T T A A T T T T A T T A C T A C A A T T T T T A A T A T A C G ~$
$C A T T T A G C A G G A A T A A G T T C A A T T T T A G G T G C T A T T A A T T T T A T T A C T A C A A T T T T T A A T A T A C G T G T H ~$ CATTTAGCAGGAATAAGTTCAATTTTAGGTGCTATTAATTTTATTACTACAATTTTTAATATACG CATTTAGCAGGAATAAGTTCAATTTTAKGTGCTATTAATTTTATTACTACAATTTTTAATATACGTGC CATTTAGCAGGAATAAGTTCAATTTTAGGTGCTATTAATTTTATTACTACAATTTTTAATATACGTGC CATTTAGCAGGAATAAGTTCAATTTTAGGTGCTATTAATTTTATTACTACAATTTTTAATATACGT

Walukuba P9D01 Walukuba P9D02 Walukuba P9E01 Walukuba P9F01
Walukuba P9F03 Walukuba P9G01 Walukuba P9H01 MASK
 Chapter 3 - Biomphalaria COI Alignment
mm TTGTATGATCTGTGTTGGTTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTTTGGTCTGTTCTAGTTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTTTGATCTGTTCTAGTTACAGCATTTTTACTTTTATTATCTCTGCCAGTTTTAGCTGGG TTGTTTGATCTGTTCTAGTTACAGCATTTTTACTTTTATTATCTTTGCCTGTTTTAGCTGGG TTGTATGATCTGTGTTGGTTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTATGATCTGTGTTGATTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTATGATCTGTGTTGATTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTATGATCTGTGTTGATTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTATGATCTGTGTTGATTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTATGATCTGTGTTGATTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTTTGATCTGTTCTAGTTACAGCATTTTTACTTTTATTATCTCTGCCTGTTTTAGCTGGG TTGTATGATCTGTGTTGGTTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTATGATCTGTGTTGGTTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTATGATCTGTGTTGGTTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGGGCTATT TTGTATGATCTGTATTAGTTACAGCATTTTTGCTTTTATTATCTTTACCTGTTTTAGCAGGGGCTATT TTGTATGATCTGTGTTGGTTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGGGCTATT TTGTATGATCTGTGTTGGTTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGGGCTATT TTGTATGATCTGTGTTGGTTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGGGCTATT TTGTATGATCTGTGTTGGTTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGGGCTATT TTGTTTGATCTGTTCTAGTTACAGCATTTTTACTTTTATTATCTCTGCCTGTTTTAGCTGGGGCTATT TTGTATGATCTGTGTTGGTTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGGGCTATT TTGTATGATCTGTGTTGGTTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGGGCTATT TTGTATGATCTGTGTTGGTTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGGGCTATT TTGTATGATCTGTGTTGATTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGGGCTATT TTGTATGATCTGTGTTGATTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGGGCTATT TTGTATGATCTGTGTTGATTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGGGCTATT TTGTATGATCTGTGTTGATTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGGGCTATT TTGTATGATCTGTGTTGATTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGGGCTATT TTGTATGATCTGTGTTGATTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGGGCTATT TTGTATGATCTGTGTTGGTTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGGGCTATT TTGTATGATCTGTGTTGGTTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGGGCTATT TTGTATGATCTGTGTTGGTTACAGCATTTTTACTTTTACTATCTCTACCTGTTTTAGCTGGAGCTATT TTGTTTGATCTGTATTAGTGACAGCATTTTTACTTTTATTATCTTTACCTGTATTAGCTGGAGCTATT TTGTATGATCTGTGTTGATTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTATGATCTGTGTTAATTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTTTGATCTGTTCTAGTTACAGCATTTTTACTTTTATTTTCTCTGCCTGTTTTAGCTGGG TTGTTTGATCTGTTCTAGTTACAGCATTTTTACTTTTATTATCTCTGCCTGTTTTAGCTGGG TTGTTTGATCTGTTCTAGTTACAGCATTTTTACTTTTATTATCTCTGCCTGTTTTAGCTGGG TTGTTTGATCTGTTCTAGTTACAGCATTTTTACTTTTATTATCTCTGCCTGTTTTAGCTGGG TTGTATGATCTGTGTTGGTTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTATGATCTGTGTTGGTTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG $T T G T A T G A T C T G T G T T G G T T A C A G C A T T T T T A C T T T T A T T A T C T T T A C C T G T T T T A G C T G G G$

Bugoigo P6G06

TTGTATGATCTGTGTTGGTTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG
TTGTATGATCTGTGTTGGTTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTATGATCTGTGTTGGTTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTTTGATCTGTTCTAGTTACAGCATTTTTACTTTTATTATCTCTGCCTGTTTTAGCTGGG TTGTTTGATCTGTTCTAGTTMCASCATTTTTACTTTTATTATCTCTGCCTGTTTTASCTGGG TTGTTTGATCTGTTCTAGTTACAGCATTTTTACTTTTATTATCTCTGCCTGTTTTAGCTGGG TTGTTTGATCTGTTCTAGTTACAGCATTTTTACTTTTATTATCTCTGCCTGTTTTAGCTGGG TTGTTTGATCTGTTCTAGTTACAGCATTTTTACTTTTATTATCTCTGCCTGTTTTAGCTGGG TTGTTTGATCTGTTCTAGTTACAGCATTTTTACTTTTATTATCTCTGCCTGTTTTAGCTGGG TTGTTTGATCTGTTCTAGTTACAGCATTTTTACTTTTATTATCTCTGCCTGTTTTAGCTGGG TTGTTTGATCTGTTCTAGTTACAGCATTTTTACTTTTATTATCTCTGCCTGTTTTAGCTGGG TTGTTTGATCTGTTCTAGTTACAGCATTTTTACTTTTATTATCTCTGCCTGTTTTAGCTGGG TTGTTTGATCTGTTCTAGTTACAGCATTTTTACTTTTATTATCTCTGCCTGTTTTAGCTGGG TTGTTTGATCTGTTCTAGTTACAGCATTTTTACTTTTATTATCTCTGCCTGTTTTAGCTGGG TTGTATGATCTGTGTTGGTTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTATGATCTGTGTTGGTTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTTTGATCTGTTCTAGTTACAGCATTTTTACTTTTATTATCTCTGCCTGTTTTAGCTGGG TTGTTTGATCTGTTCTAGTTACAGCATTTTTACTTTTATTATCTCTGCCTGTTTTAGCTGGG TTGTTTGATCTGTTCTAGTTACAGCATTTTTACTTTTATTATCTCTGCCTGTTTTAGCTGGG TTGTTTGATCTGTTCTAGTTACAGCATTTTTACTTTTATTATCTCTGCCTGTTTTAGCTGGG TTGTTTGATCTGTTCTAGTTACAGCATTTTTACTTTTATTATCTCTGCCTGTTTTAGCTGGG TTGTATGATCTGTGTTGGTTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTATGATCTGTGTTAATTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTATGATCTGTGTTGGTTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTATGATCTGTGTTGGTTRCRGCRTTTTTACTTTTATTATSTTTWCCTGTTTTRGCTGGG TTGTATGATCTGTGTTGGTTACRGCATWTTTACTTTTATTATCTTTACCTGTYYTAGCTGGR TTGTATGATCTGTGTTGGTTACRGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGKG TTGTATGATCTGTGTTGGTTACAGMATTTTTACTTTTWTTAWCTTTACCTGTTTTAGCTGGG TTGTATGATCTGTGTTGGTTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTATGATCTGTGTTGGTTRCRGCATWTTTACTTTTATTATCTTTACCTGTYTTAGCTGRG TTGTATGATCTGTGTKGGTTACAGCATWTTTACTTTTATTAWMTTTACCTGTYTTAGMTGRG

TTGTATGATCTGTGTTGGTTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG
TTGTATGATCTGTGTTGGTTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTATGATCTGTGTTGATTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTATGATCTGTGTTGGTTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTATGATCTGTGTTGGTTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTTTGATCTGTTCTAGTTACAGCATTTTTACTTTTATTATCTCTGCCTGTTTTAGCTGGG TTGTTTGATCTGTTCTAGTTACAGCATTTTTACTTTTATTATCTCTGCCTGTTTTAGCTGGG TTGTATGATCTGTGTTGGTTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTTTGATCTGTTCTAGTTACAGCATTTTTACTTTTATTATCTCTGCCTGTTTTAGCTGGG TTGTTTGATCTGTTCTAGTTACAGCATTTTTACTTTTATTATCTCTGCCTGTTTTAGCTGGG TTGTATGATCTGTGTTGATTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTATGATCTGTGTTGATTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTTTGATCTGTTCTAGTTACAGCATTTTTACTTTTATTATCTCTGCCTGTTTTAGCTGGG TTGTTTGATCTGTTCTAGTTACAGCATTTTTACTTTTATTATCTCTGCCTGTTTTAGCTGGG TTGTTTGATCTGTTCTAGTTACAGCATTTTTACTTTTATTATCTCTGCCTGTTTTAGCTGGG TTGTTTGATCTGTTCTAGTTACAGCATTTTTACTTTTATTATCTCTGCCTGTTTTAGCTGGG TTGTTTGATCTGTTCTAGTTACAGCATTTTTACTTTTATTTTCTCTGCCTGTTTTAGCTGGG TTGTTTGATCTGTTCTAGTTACAGCATTTTTACTTTTATTATCTCTGCCTGTTTTAGCTGGG TTGTTTGATCTGTTCTAGTTACAGCATTTTTACTTTTATTATCTCTACCTGTTTTAGCTGGG TTGTTTGATCTGTTCTAGTTACAGCATTTTTACTTTTATTATCTCTGCCTGTTTTAGCTGGG TTGTTTGATCTGTTCTAGTTACAGCATTTTTACTTTTATTTTCTCTGCCTGTTTTAGCTGGG TTGTTTGATCTGTTCTAGTTACAGCATTTTTACTTTTATTATCTCTGCCTGTTTTAGCTGGG TTGTTTGATCTGTTCTAGTTACAGCATTTTTACTTTTATTATCTCTGCCTGTTTTAGCTGGG TTGTTTGATCTGTTCTAGTTACAGCATTTTTACTTTTATTTTCTCTGCCTGTTTTAGCTGGG TTGTTTGATCTGTTCTAGTTACAGCATTTTTACTTTTATTATCTCTGCCTGTTTTAGCTGGG TTGTTTGATCTGTTCTAGTTACAGCATTTTTACTTTTATTATCTCTGCCTGTTTTAGCTGGG TTGTTTGATCTGTTCTAGTTACAGCATTTTTACTTTTATTATCTCTGCCTGTTTTAGCTGGG TTGTTTGATCTGTTCTAGTTACAGCATTTTTACTTTTATTATCTCTGCCTGTTTTAGCTGGG TTGTATGATCTGTGTTGATTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTATGATCTGTGTTGATTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTATGATCTGTGTTGATTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTATGATCTGTGTTGATTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTATGATCTGTGTTGATTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTATGATCTGTGTTAATTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTATGATCTGTGTTAATTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTATGATCTGTGTTGATTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTATGATCTGTGTTGGTTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTATGATCTGTGTTGGTTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTATGATCTGTGTTGGTTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTATGATCTGTGTTGGTTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTATGATCTGTGTTGGTTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTATGATCTGTGTTGGTTRCAGCATTTTTACTTTTATTATCTTTWCCTSTTTTAGCTGGG TTGTATGATCTGTGTTGGTTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGRR

Walukuba P9A01 Walukuba P9B01 Walukuba P9C01 Walukuba P9DO1 Walukuba P9DO2 Walukuba P9E01 Walukuba P9F01 Walukuba P9FO3 Walukuba P9G01 Walukuba P9H01 MASK

TTGTATGATCTGTGTTGGTTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTATGATCTGTGTTGGTTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTATGATCTGTGTTGGTTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTATGATCTGTGTTGGTTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTATGATCTGTGTTGGTTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTATGATCTGTGTTGGTTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTATGATCTGTGTTGGTTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG TTGTATGATCTGTGTTGGTTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTARCTGGG TTGTATGATCTGTGTTGGTTACAGCATTTTTACTTTTATTATCTTTACCTGTTTTAGCTGGG mm

Chapter 3 - Biomphalaria COI Alignment
. . . . | | | | | | | | | |

MASK
DQ084828 DQ084829 DQ084830 DQ084831 DQ084837 DQ084838 DQ084839 DQ084840 DQ084843 DQ084844 MG431962 MG431963 MG431964 HM769133 MG431966 EU141215 EU141216 EU141217 EU141218 EU141219 EU141220 EU141221 EU141225 EU141227
EU141228
EU141229
EU141230

Bugoigo A103
Bugoigo A104 Bugoigo A105 Bugoigo A106 Bugoigo A107 Bugoigo A108 Bugoigo A109 Bugoigo A111 Bugoigo A112 Bugoigo A113 Bugoigo A114 Bugoigo A115 Bugoigo A116 Bugoigo A1R1 Bugoigo B103 Bugoigo B110 Bugoigo B111 Bugoigo B113 Bugoigo P1B15 Bugoigo P1B17 Bugoigo P1B19 Bugoigo P1B20 Bugoigo P6E09

TAGTTTTTTTGATCCTGCTGGGGGGGGAGATCCTATTTTATATCAACATTT
TAGTTTTTTTGATCCTGCAGGAGGGGGTGATCCTATTTTATATCAACATTT

TAGTTTTTTTGATCCTGCTGGGGGTGGAGATCCTATTTTATATCAACATTT TAGTTTTTTTGATCCTGCTGGGGGTGGAGATCCTATTTTATATCAACATTT TA A TTTTTTTGATCCTGCTGGGGGAGGTGATCCTATCTTATATCAACATTT TAGTTTTTTTGATCCTGCGGGTGGAGGTGATCCTATTTTATATCAACATTT

Chapter 6 Tree A - Nematode Alignment 1

For_20
Uni_15
Edw_5
MK214813
Gran_13
For_26
Gran_1
FJ516760
MG551718
KM510202
FJ516761
MK214817
KM510201
MK214815
MF192968
MK214816
KX267675
MT819980
MK214814
MASK
For_26
Gran_1
FJ516760
MG551718
KM510202
FJ516761
MK214817
KM510201
MK214815
MF192968
MK214816
KX267675
MT819980
MK214814
MASK
Edw_5
MK214813
Gran_13
For_26
Gran_1
FJ516760
MG551718
KM510202
FJ516761
MK214817
KM510201
MK214815

CCGAGGCTT
TCGAGGATT
TCGAGGATT
TCGAGGATT
TCGAGGATT
TCGAGGATT
TCGAGGATT
TCGAGGATT AGGAGGACT CGGAGGACT GGAGGACTCCCGCTATA CGGAGGACT-CCGCTATA CGGAGGACT-CCGCTATA

AAGGGGATT-CCGCTATT AGGAGGATT-CCGCTATT TGGAGGATT-CCGCTATT CGGAGGATT-CCGCTATA CGGAGGATT-CCGCTATA CGGAGGTTT-CCGCTATA CTGCGTTAAC CTGCGTTAAC CCGCTATA CCGCTATA

CCGCTATT
tCAACATGCTAGACTTCTCGA-CTTTGTCGCGAACGTtGGAAGCCT CTGCGTTAAC-TGTTTATCTGGGGCTATAGCC-ACGTTGAGTGCACT CTGCGTTAACTTGTTTATCTGGGGCTATAGCC-ACGTTGAGTGCACT CTGCGTTAACTTGTTTATCTGGGGCTATAGCC-ACGTTGAGTGCACT CTGCGTTAAC-TGTTTATCTGGGGCTATAGCC

CTGCGTTAAC-TGTTTATCTGGGGCTATAGCC

TGTTTATCTGGGGCTATAGCC ACGTGGAGGCACT TGTTTATCTGGGGCTATAGCC-ACGTTGAGTGCACT TTCTTAGCAA-GGCGATAGTTGTTACTAAATGCCGG TTCTTAGCAA-GGCGATAGCTGACACTAGATGCCTG TTCTTAGCAA- GGCGATAGCTGACACTAGATGCCTG TTCTTAGCAA- GGCGATAGCTGACACTAGATGCCTG TTCTTAGCAA- GGCGATAGCTGACACTAGATGCCTG TTCTTAGCAAGGGCGATAGCTGACACTAGATGCCTG CACTTAGCAA- GGCGATAGTTGGTCTTGGTTGCTTG CACTTAGCAA- GGCGATAGTTGGTTTTGGTTGCCTGA CACATAGCAG-GGCGATAGTTGGTYTTGGTTGCCTGA CTTTTAGCAA- GGCGATAGCCGGTCTTGGTTGCCTG CTTTTAGCAA- GGCGATAGCCGGTCTTGGTTGCCTG GTTTTAGCAA-GGCGATAGCTGGTCTTGGTTGCCTG7
mmmmmmmmmmmm
 CTCTACGTGAGGCGTCTATAAACGTGATCA ACTTACTATTTCCCTTCAAATTGAAGC ACTTACTATTTCCCTTCAAATTGAAGC ACTTACTATTTCCCTTCAAATTGAAGC ACTTACTATTTCCCTTCAAATTGAAGC ACTTACTATTTCCCTTCAAATTGAAGC ACTTACTATTTCCCTTCAAATTGAAGC ACTTACTATTTCCCTTCAAATTGAAGC CATCCTCAACCTTAAGC CACCCCCAACTTCAAGC CACCCCCAACTTTAAGC CACCCCCAACTTTAAGC CACCCCCAACTTTAAGC CACCCCCAACTTTAAGC

CATCCCCAATTAGACGC CACCCTCAATTAGACGC CACCCCCAAAAAGAAGC CACCCCCAAAAAGAAGC CACCCCCAACTTTAAGC

CCTGCAGAGGTGCTCG CCTGCAGAGGTGCTCG CCTGCAGAGGTGCTCG CCTGCAGAGGTGCTCG CCTGCAGAGGTGCTCG CCTGCAGAGGTGCTCG CCTGCAGAGGTGCTCG TCTGCAGAGGTGCTCA TCTGCAGAGGTGCTCA TCTGCAGAGGTGCTCA TCTGCAGAGGTGCTCA TCTGCAGAGGTGCTCA TCTGCAGAGGTGCTCA

TGAG TATCCGACTAGAC TATCCGACTAGAC TATCCGACTAGAC TATCCGACTAGA TATCCGACTAGAC TATCCGACTAGAC TATCCGACTAGAC TATTTGACTGAA TATTTGACTGAA TATTTGACTGAA TATTTGACTGAA TATTTGACTGAA TATTTGACTGAA

TCCGCAGAGGTGCTCAGTACTTGACTAGA TCCACAGAGGTGCTTA-TGCCTGGCTAGAC TCTGCAGAGGTGTTCTGTGCTTGACTAGA TCTGCAGAGGTGTTCTGTGCTTGACTAGA TCTGCAGAGGTACTCAATACTTAATTAGA

TTGCTAGAAATGCCGCCTCGC GTCAGCAGCCAGCAGCAGCCGTTTGAGCGTAAGACAACGGCCTG GTCAGCAGCCAGCAGCAGCCGTTTGAGCGTAAGACAACGGCCTG GTCAGCAGCCAGCAGCAGCCGTTTGAGCGTAAGACAACGGCCTG GTCAGCAGCCAGCAGCAGCCGTTTGAGCGTAAGACAACGGCCTG GTCAGCAGCCAGCAGCAGCCGTTTGAGCGTAAGACAACGGCCTG GTCAGCAGCCAGCAGCAGCCGTTTGAGCGTAAGACAACGGCCTG TCTATC
TCTATC
TCTATC
TCTATC
TCTATC
TCTATC
GACACCCCAAA

ACTGCGTGAGCTCAAAGATATTGCAAG ACTGCTTGAGCTCAAAGACATAGCAAG ACTGCTTGAGCTCAAAGACATAGCAAG ACTGCTTGAGCTCAAAGACATAGCAAG ACTGCTTGAGCTCAAAGACATAGCAAG ACTGCTTGAGCTCAAAGACATAGCAAG

GTTATCGCCTCGA GTTATCGCCTCGA GTTATCGCCTCGA GTTATCGCCTCGA GTTATCGCCTCG GTTATCGCCTCG GTTATCGCCTCG TATATCGCCTCAC TATGTCGCCTCA TATGTCGCCTCA TATGTCGCCTCAC TATGTCGCCTCAC TATGTCGCCTCAC TCTGTGATGTTAA

```
A T T G C T
T T TGTC
TTAGTC
T TAGTC
T TGGTC
mmmmmm
```

GTTAGTTGAGCTTAATCACATTGCTAG
GTTAGTTGAGCTTAATCACATTGCTTG
AATGTGGCCTCAA
AGTGTCGCCTCAC
GTTGGTTGAACTCAAAGACACTGCCTG
GTTGGTTGAACTCAAAGACACTGCCTG
AGTGTCGCCTCA
GTCGGCTGAGAATAAAGGTACTGCTGG
TGTATCGCCTCAA
mmmmmmm
mmmmmmmmmn
Chapter 6 Tree A - Nematode Alignment 1

FJ516760

TTATTTGCCATGAATTGCAGACACAATGAATGGTAAAATTTTGAACGCACAGCACCG7
TTATTTGCCATGAATTGCAGACACAATGAATGGTAAAATTTTGAACGCACAGCACCGT
TTATTTGCCATGAATTGCAGACACAATGAATGGTAAAATTTTGAACGCACAGCACCGT
TTATTTGCCATGAATTGCAGACACAATGAATGGTAAAATTTTGAACGCACAGCACCGT
TTATTTGCCATGAATTGCAGACACAATGAATGGTAAAATTTTGAACGCACAGCACCGT
TTATTTGCCATGAATTGCAGACACAATGAATGGTAAAATTTTGAACGCACAGCACCG
TTATTTGCCATGAATTGCAGACACAATGAATGGTTAAGTTTTGAACGCATAGCACCG
TTATTTGCCATGAATTGCAGACACAATGAATGGTAAAATTTTGAACGCACAGCACCG
TTATTTGCCATGAATTGCAGACACAATGAATGGTAAAATTTTGAACGCACAGCACCGT TTATTTGCCATGAATTGCAGACACAATGAATGGTAAAATTTTGAACGCACAGCACCGT TTATTTGCCATGAATTGCAGACACAATGAATGGTAAAATTTTGAACGCACAGCACCGT TTATTTGCCATGAATTGCAGACACAATGAATGGTAAAATTTTGAACGCACAGCACCG mmn

TGTACTG-CAGTTTAGCCTGTTAACTG․ GCTGTCGCATGGCACTCGTAGCTGGTTCC ATTACTATCAAGCATACCT-CTAGCATGATTTGTCG ATTACTATCAAGCATACCT-CTAGCATGATTTGTCG ATTACTATCAAGCATACCT-CTAGCATGATTTGTCG ATTACTATCAAGCATACCT-CTAGCATGATTTGTCG ATTACTATCAAGCATACCT-CTAGCATGATTTGTCG ATTACTATCAAGCATACCT-CTAGCATGATTTGTCG ATTACTATCAAGCATACCT-CTAGCATGATTTGTCG ATTACTATCAAGCATGCCTGTTGGCTTGATTTGTCG ATTACTATCGAGCATGCCTGTTGGCTTGATTTGTCG ATtactatcgagcatgcctgttggcttgatttgtcg ATTACTATCGAGCATGCCTGTTGGCTTGATTTGTCG ATTACTATCGAGCATGCCTGTTGGCTTGATTTGTCG ATtACTATCGAGCATGCCTGTTGGCTTGATTTGTCG TATACTATCAAGCATGCCTGTC-GCTTGATTTGTCG TGTACTATCAAGCATGCCTGCC-GCTTGATTTGTCG TGTACTATCAAGCATGCTTGCC-GCTTGATTTGTCG TATACTATCAAGCATGCCTGTC-GCTTGATTTGTCG TATACTATCAAGCATGCCTGTC-GCTTGATTTGTCG TGTACTATCAAGTGTGCCTGTTGGCTTGATTTGTCG $\mathrm{mmmmmmm}-\mathrm{mmmmmmmmmm}$
mmmmmm

GGGAGCTATTTGT GGGAGCTATTTGT GGGAGCTATTTG GGGAGCTATTTG GGGAGCTATTTG GGGAGCTATTTGT GGGAGCTATTTG GGAAGCTATTAG GGAAGCTATTGA GGAAGCTATTGAT GGAAGCTATTGA GGAAGCTATTGA GGAAGCTATTGAT GGAAGCTATTGTC GGGAGCTATTGTC GGGAGCTATTGTC GGGAGCTATCAG GGGAGCTATCAG GGAAGCTATTGT mmmmmmmmmmn
 TAGCAACATTCATCGAGGCGCTGTTGCCAAGTTGCGTCTCGATGTTCTATAGGTAGAC TAGCAACATTCATCGAGGCGCTGTTGCCAAGTTGCGTCTCGATGTTCTATAGGTAGAC TAGCAACATTCATCGAGGCGCTGTTGCCAAGTTGCGTCTCGATGTTCTATAGGTAGAC TAGCAACATTCA
TAGCAACATTCATCGAGGCGCTGTTGCCAAGTTGCGTCTCGATGTTCTATAGGTAGAC TAGCAACATTCATCGAGGCGCTGTTGCCAAGTTGCGTCTCGATGTTCTATAGGTAGAC TAGCAACATTCATCGAGGCGCTGTTGCCAAGTTGCGTCTCGATGTTCTATAGGTAGAC TAGCAACATTCATTG GCGCTAGCGT TAGCAACATTCATTG GTCTAACCGC TAGCAACATTCATTG GTCTAACCGC TAGCAACATTCATTG TAGCAACATTCATTG TAGCAACATTCATTG - GTCTAACCGC TAGCAGCAGTCATTGACGCTTAATTGTGA TAGCAACAGTCATTGACGCTTAACTGCAG TAGCAACAGTCATTGACGCTTAATTGCGA GAGCAACATTCATTA…GCTTCGGC GAGCAACATTCATTA…GCTTCGGC

CAGTGTTCTATAGGTAGA CAGTGTTCTCTAGGTAGA CAGTGTTCTCTAGGTAGA CAGTGTTCTCTAGGTAGA CAGTGTTCTCTAGGTAGA CAGTGTTCTCTAGGTAGA CAATGTACTATAGGTATA CAATGTTCTATAGGTATA CAATGTTCTATAGGTATA TAGTGTTTTTAAGGTAGAC TAGTGTTTTTAAGGTAGAC

TAGCAACATTCGTTG mmmmmmm

MF460455_-_Outgroup MK214813 FJ516760 MG551718 KM510202 FJ516761 MK214817 KM510201 MK214814 MF192968 MK214815 MK214816 Kim_33 C-south_3
Kim_1
Bee_16
Bas_32
Forest_36
Bee_12
Bee_14
C-south_7
Edward_1
Gam_1
C-south_9
Arnot_1
Cowl_13
Arnot_11
Edward_2
C-south_1
Arnot_5
Carl_18
MASK

MF460455_-_Outgroup

MK214813
FJ516760
MG551718
KM510202
FJ516761
MK214817
KM510201
MK214814
MF192968
MK214815
MK214816
Kim_33
C-south_3
Kim_1
Bee_16
Bas_32
Forest_36
Bee_12
Bee_14
C-south_7
Edward_1
Gam_1
C-south_9
Arnot_1
Cowl_13
Arnot_11
Edward_2

CGAGGCTTTCAACATGCTAGACTTCTCGAC…TTTGTCGCGAACGTTGGAAGC TTGAGTGCACTTTAGACACTGTCGTCCCATAAGACTTTGGTGTACAGCGATGGAACTT CTAAATGC-CGGTATGCATAGCTATCCTAT CTAGATGC CTAGATGC CTAGATGC CTAGATGC TTGGTTGC TTGGTTGC TTGGTTGC T TGGTTGC TTGGTTGC

T T G G T T G C T T G G T T G C TTGGTTGC TTGGTTGC TTGGTTGC TTGGTTGC TTGGTTGC TTGGTTGC TTGGTTGC G G T T G C TTGGTTGC TTGGTTGC TTGGTTGC TTGGTTGC TTGGTTGC TTGGTTGC T T G G T T G C

CTAGATGC-CTGTATGCATGACTATCCTAT CTGTATGCATGACTATCCTAT CTGTATGCATGACTATCCTAT CTGTATGCATGACTATCCTAT CTGTATGCATGACTATCCTAT CTGTATGCAATTCGGTCCTCA CTGAA-GCAC-ACAATCCGTT TTGTA-GCGC-ACAATCCGTT CTGAA-GCAC-ACGATCCGTT TTGTA-GCGC-ACAATCCGTT GTA-GCGC-ACAATCCGTT TTGTA-GCGC-ACAATCCGTT TTGTA-GCGC-ACAATCCGTT CTGAA-GCAC-ACAATCCGTT mmmmmmmmmm

GATGGCTATGTGTTAGTAACGA GATGGTCGTGTGCTAGTGTTGG GATGGTCGTGTGCTAGTGTTGG GATGGTCGTGTGCTAGTGTTGG GATGGTCGTGTGCTAGTGTTGG GATGGTCGTGTGCTAGTGTTGG GACTG-AGTGTATCAGGACTGG GATTG G A TTG GATTG GATTG GATTG GATTG mmm

GATTG-AGTGCACCTTGACTGA GATTG-AGTGCACCTTGATTGA GATTG-AGTGCACCTTGACTGA GATTG-AGTGCACCTTGATTGA GATTG-AGTGCACCTTGATTGA GATTG-AGTGCACCTTGATTGA GATTG-AGTGCACCTTGATTGA AGTGCACCTTGACTGA mmmmmmmmmmmmmmm

110120130

TGAGCCGTTAGT-GAGTGGCGGTCGTGATTGATCCCGTGTGCTC

GATCA
GCTCG
GCTCA
GCTCA
GCTCA
GCTCA
GCTCA
GCTCA ACTCAATACTTAATTAGATCGTTCGTAGAGTTGCGGT GCTCAGTACTTGACTAGATTGTTTGTAGAGTGGCAAT

TTACTAGTTGAATGGCGG TTATCAGTTGAATGCGGT CTATCAGTTGAATGCGGT CTATCAGTTGAATGCGGT CTATCAGTTGAATGCGGT CTATCAGTTGAATGCGGT CTATCAGTTGAATGCGGT TTACTAATTAAGTCTGAC TAACTAGTCAC

GCTTA-TGCCTGGCTAGACCGTTTGTAGAGTGGCGGT

GCTCAGTACTTGACTAGATTGTTTGTAGAGTGGCAAT GCTCAGTACTTGACTAGATTGTTTGTAGAGTGGCAAT

TTACTGGTCAC TTACTGGTCAC TAACTAGTCAC TAACTAGTCAC TAACTAGTCAC TAACTAGTCAC TAACTAGTCAC TAACTAGTCAC TAACTAGTCAC TAACTAGTCAC TAACTAGTCAC
TAACTAGTCAC

TAACTAGTCAC
TAACTAGTCAC
TAACTAGTCAC

GTo
GTc GT
$210220230 \quad 240$

AGCATTTGCTAGAAATGCCGCCTCGCTCGTTGGTAGGTATTGGTG-ATTATGCA-$-G A$ $C A A-C G G C C T G-G T T A T C G C C T C G A A-G T T G C-A A C T G C T G G T G T A-T T T G C C T G G 1$ ATA - TTGCAAG-TATATCGCCTCACCCGTTTT-AACTGCTGATGTAATAAGCTACA ACA - TAGCAAG GTA - CTGCTGG ACA - TTGCTAG ACA - TTACTGG
ACA - TTGCTTG
ACA - TTACTGG
ACA - TTACTGG
ACA - TTACTGG
ACA - TTACTGG
ACA - TTGCTAG

TATGTCGCCTCACCCGTTTT
TATGTCGCCTCACCCGTTTT
TATGTCGCCTCACCCGTTTT
TATGTCGCCTCACCCGTTTT
TATGTCGCCTCACCCGTTTT
TGTATCGCCTCAAACGTTTC
AATGTGGCCTCAAACGTTTCTCGCTGCTGGTGTAACTTGCATTC
TCTGTGATGTTAAAGGTCTCTCGTTGCTGGTGTAAATTGCTTGA
AATGTGGCCTCAAACGTTTCTCGCTGCTGGTGTAACTTGCTACT
TCTGTGATGTTAAAGGTCTCTCGTTGCTGGTGTAAATTGCTTGA TCTGTGATGTTAAAGGTCTCTCGTTGCTGGTGTAAACCGCTTGA TCTGTGATGTTAAAGGTCTCTCGTTGCTGGTGTAAATTGCTTGA TCTGTGATGTTAAAGGTCTCTCGTTGCTGGTGTAAATTGCTTGA AATGTGGCCTCAAACGTTTCTCGCTGCTGGTGTAACTTGCAATC AATGTGGCCTCAAACGTTTCTCGCTGCTGGTGTAACTTGCAATC AATGTGGCCTCAAACGTTTCTCGCTGCTGGTGTAACTTGCAATC AATGTGGCCTCAAACGTTTCTCGCTGCTGGTGTAACTTGCAATC AATGTGGCCTCAAACGTTTCTCGCTGCTGGTGTAACTTGCATTC AATGTGGCCTCAAACGTTTCTCGCTGCTGGTGTAACTTGCATTC AATGTGGCCTCAAACGTTTCTCGCTGCTGGTGTAACTTGCATTC AATGTGGCCTCAAACGTTTCTCGCTGCTGGTGTAACTTGCATTC AATGTGGCCTCAAACGTTTCTCGCTGCTGGTGTAACTTGCATTC AATGTGGCCTCAAACGTTTCTCGCTGCTGGTGTAACTTGCATTCT AATGTGGCCTCAAACGTTTCTCGCTGCTGGTGTAACTTGCAATC AATGTGGCCTCAAACGTTTCTCGCTGCTGGTGTAACTTGCAATC AATGTGGCCTCAAACGTTTCTCGCTGCTGGTGTAACTTGCAATC AATGTGGCCTCAAACGTTTCTCGCTGCTGGTGTAACTTGCAATC AATGTGGCCTCAAACGTTTCTCGCTGCTGGTGTAACTTGCAATC $\mathrm{mmmmmmmmmmmmmm} \ldots \mathrm{mmmmmmmmmmm}$
$310320330 \quad 340 \quad 350$

GATTGACGGGAAATCTTAAAGATTCGACAGACATGAGGTCGGACGCCAATGCATTACC

GTTGGTCGGCAGCTTTGTAA
GTTGGTCGGCAGCTCTAAAA
GTTGGTCGGCAGCTCTGAAA
GTTGGTCGGCAGCTCTGAAA
GTTGGTCGGCAGCTCTGAAA
GTTGGTCGGCAGCTCTGAAA
GTTGGTCGGCAGCTCTGAAA
GTTGGTCGGCAGCTCTGTAG
GTTGATCGGCAGC-CTGAGA
GTTGATCGGCAGC-ATGAGA
GTTGATCGGCAGC-CTGAGA
GTTGATCGGCAGC-ATGAGA
GTTGATCGGCAGC-ATGAGA
GTTGATCGGCAGC-ATGAGA
GTTGATCGGCAGC-ATGAGA
GTTGATCGGCAGC-TTGAGA
GTTGATCGGCAGC-TTGAGA
GTTGATCGGCAGC-CTGAGA
GTTGATCGGCAGC-CTGAGA
GTTGATCGGCAGC-CTGAGA
GTTGATCGGCAGC-CTGAGA
GTTGATCGGCAGC-CTGAGA

CCACATATT
CAACCCTTTC
CAACCTTTTC
CAACCTTTTC
CAACCTTTTC
CAACCTTTTC
CAACCTTTTC
CAACCTTTTC
CAACCAATCCGA
CAA… TCCGA
CAATCAATTCGA
C A A
CAA \ldots TCCGA
CAA… TCCG
CAA… TCCG
CAACCAATCCG
CAACCAATCCGA
CAACCAATCCGA
CAACCAATCCGA
CAACCAATCCG
CAACCAATCCGA
CAACCAATCCG

GTTGATCGGCAGC
GTTGATCGGCAGC
CTGAGA
GTTGATCGGCAGC-CTGAGA
GTTGATCGGCAGC-CTGAGA
GTTGATCGGCAGC-CTGAGA
GTTGATCGGCAGC-CTGAGA
GTTGATCGGCAGC-CTGAGA
GTTGATCGGCAGC-CTGAGA
$\mathrm{mmmmmmmmmmmm}-\mathrm{mmmmmm}$

GACTAGCTTCAGCGATGGATCGGTCGATTCGCGTATCC ACCAAAGCTAACAAGCTATAGCGATAGATCGGTCGATTCCCTTAACC TCACAGAATAAGTTAATACATACAAGCTTTAGCGATGGATCGGTCGATTCCCTTAACC TCACAGAACTAGTTAATACTGACAAGCTTTAGCGATGGATCGGTCGATTCCCTTAACC TCACAGAACTAGTTAATACTGACAAGCTTTAGCGATGGATCGGTCGATTCCCTTAACC TCACAGAACTAGTTAATACTGACAAGCTTTAGCGATGGATCGGTCGATTCCCTTAACC TCACAGAACTAGTTAATACTGACAAGCTTTAGCGATGGATCGGTCGATTCCCTTAACC TCACAGAACTAGTTAATACTGACAAGCTTTAGCGATGGATCGGTCGATTCCCTTAACC TTAT-GAGCTAATTAACTTTGACAAGCTTTAGCGATGGATCGGTCGATTCCCTTAACC TTATTGAGCTAGTTAATACTGATAAGCTTTAGCGATGGATCGGTCGATTCCCTTAACC CTGATGGACTAGTTAATGCTGACAAGCTTTAGCGATGGATCGGTCGATTCCCTTAACC CTATTGAGCTGGTTAATACTGACAAGCTTTAGCGATGGATCGGTCGATTCCCTTAACC CTGATGGACTAGTTAATGCTGACAAGCTTTAGCGATGGATCGGTCGATTCCCTTAACC CTGATGGACTAGTTAATGCTGACAAGCTTTAGCGATGGATCGGTCGATTCCCTTAACC CTGATGGACTAGTTAATGCTGACAAGCTTTAGCGATGGATCGGTCGATTCCCTTAACC CTGATGGACTAGTTAATGCTGACAAGCTTTAGCGATGGATCGGTCGATTCCCTTAACC TTATTGAGCTAGTTAATACTGATAAGCTTTAGCGATGGATCGGTCGATTCCCTTAACC mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmn

MF460455 MK214813 FJ516760 MG551718 KM510202 FJ516761 MK214817 KM510201 MK214814 MF192968 MK214815 MK214816 Kim_33 C-south_3 Kim_1
Bee_16
Bas_32
Forest 36

ACGCTTAGAGTGGTGAAATTTTGAACGCATAGCGCCGTTGGGTTTTCCCTTCGGCACC ACTCAATGAATGGTGAACATTTGAACGCACAGCGCCGTTGGGTTTTCCCTTCGGCACC ACACAATGAATGGTAAAATTTTGAACGCACAGCACCGTTGGGTTTTCCCTTCGGTACC ACACAATGAATGGTAAAATTTTGAACGCACAGCACCGTTGGGTTTTCCCTTCGGTACC ACACAATGAATGGTAAAATTTTGAACGCACAGCACCGTTGGGTTTTCCCTTCGGTACC ACACAATGAATGGTAAAATTTTGAACGCACAGCACCGTTGGGTTTTCCCTTCGGTACC ACACAATGAATGGTAAAATTTTGAACGCACAGCACCGTTGGGTTTTCCCTTCGGTACC ACACAATGAATGGTAAAATTTTGAACGCACAGCACCGTTGGGTTTTCCCTTCGGTACC ACACAATGAATGGTAAAATTTTGAACGCACAGCACCGTTGGGTTTTCCCTTCGGTACC ACACAATGAATGGTAAAATTTTGAACGCACAGCACCGTTGGGTTTTCCCTTCGGTACC ACACAATGAATGGTTAAGTTTTGAACGCATAGCACCGTTGGGTTTTCCCTTCGGTACC ACACAATGAATGGTAAAATTTTGAACGCACAGCACCGTTGGGTTTTCCCTTCGGTACC ACACAATGAATGGTTAAGTTTTGAACGCATAGCACCGTTGGGTTTTCCCTTCGGTACC ACACAATGAATGGTTAAGTTTTGAACGCATAGCACCGTTGGGTTTTCCCTTCGGTACC ACACAATGAATGGTTAAGTTTTGAACGCATAGCACCGTTGGGTTTTCCCTTCGGTACC ACACAATGAATGGTTAAGTTTTGAACGCATAGCACCGTTGGGTTTTCCCTTCGGTACC ACACAATGAATGGTAAAATTTTGAACGCACAGCACCGTTGGGTTTTCCCTTCGGTACC ACACAATGAATGGTAAAATTTTGAACGCACAGCACCGTTGGGTTTTCCCTTCGGTACC

ACACAATGAATGGTAAAATTTTGAACGCACAGCACCGTTGGGTTTTCCCTTCGGTACC
ACACAATGAATGGTAAAATTTTGAACGCACAGCACCGTTGGGTTTTCCCTTCGGTACC ACACAATGAATGGTAAAATTTTGAACGCACAGCACCGTTGGGTTTTCCCTTCGGTACC ACACAATGAATGGTAAAATTTTGAACGCACAGCACCGTTGGGTTTTCCCTTCGGTACC ACACAATGAATGGTAAAATTTTGAACGCACAGCACCGTTGGGTTTTCCCTTCGGTACC ACACAATGAATGGTAAAATTTTGAACGCACAGCACCGTTGGGTTTTCCCTTCGGTACC ACACAATGAATGGTAAAATTTTGAACGCACAGCACCGTTGGGTTTTCCCTTCGGTACC ACACAATGAATGGTAAAATTTTGAACGCACAGCACCGTTGGGTTTTCCCTTCGGTACC ACACAATGAATGGTAAAATTTTGAACGCACAGCACCGTTGGGTTTTCCCTTCGGTACC ACACAATGAATGGTAAAATTTTGAACGCACAGCACCGTTGGGTTTTCCCTTCGGTACO ACACAATGAATGGTAAAATTTTGAACGCACAGCACCGTTGGGTTTTCCCTTCGGTACC ACACAATGAATGGTAAAATTTTGAACGCACAGCACCGTTGGGTTTTCCCTTCGGTACC ACACAATGAATGGTAAAATTTTGAACGCACAGCACCGTTGGGTTTTCCCTTCGGTACC mmmn

Chapter 6 Tree B - Nematode Alignment 2
610620
Kim_33
C-south_3
Kim_1
Bee_16
Forest_36
Bee_12
Bee_14
C-south_7
Edward_1
Gam_1
C-south_9
Arnot_1
Cowl_13
Arnot_11
Edward_2
C-south_1
Arnot_5
Carl_18
MASK

CTGTTAACT. GCTTGTCGCATGGCACTCGTAGCTGGTTCGCTAGCA CTCTA-GCATGATTTGTCG-G CTGTTGGCTTGATTTGTCG-G CTGTTGGCTTGATTTGTCG-G CTGTTGGCTTGATTTGTCG-G CTGTTGGCTTGATTTGTCG-G CTGTTGGCTTGATTTGTCG-G CTGTTGGCTTGATTTGTCG-G CTGTTGGCTTGATTTGTCG-G CTGCC-GCTTGATTTGTCG-G CTGTC-GCTTGATTTGTCG-G TTGCC-GCTTGATTTGTCG-G CTGTC-GCTTGATTTGTCG-G CTGTC-GCTTGATTTGTCG-G CTGTC-GCTTGATTTGTCG-G CTGTC-GCTTGATTTGTCG-G CTGCC-GCTTGATTTGTCG-G CTGCC-GCTTGATTTGTCG-G CTGCC-GCTTGATTTGTCGGG CTGCC-GCTTGATTTGTCG-G mmmmm
GGAGCTATTTGTCCTCAGAAATG

GAAGCTATTAGTCTTTAG GAAGCTATTGATCTATAG GAAGCTATTGATCTATAG GAAGCTATTGATCTATAG GAAGCTATTGATCTATAG GAAGCTATTGATCTATAG GAAGCTATTGTTGCCTGA GGAGCTATTGTGTCATTA GAAGCTATTGTGTCTTG GGAGCTATTGTGTCATTG GAAGCTATTGTGTCTTG GAAGCTATTGTGTCTTG GAAGCTATTGTGTCTTG GAAGCTATTGTGTCTTG GGAGCTATTGTGTCATTA mmmmmmmmmmmmmmmmmm
$710 \quad 720$ GTGCAAACGTCTCTGCATGATGTGGCCATATTGTTGTCACCGTCTTGACAGCTCAACC

650
1.... |

GCAACG G GACGGC G G GCTGC G G A T T G G GATTGC G G A T TGC G G A T T G GGATTGC

ACG GATGCGC GATGCAC GATGCGC GATGCAC GATGCAC GATGCAC GATGCAC GATGCGC GATGCGC GATGCGC GATGCGC GATGCGC GATGCGC GATGCGC G A T G C G G A T G C G G A T G C G GATGCGC GATGCGC GATGCGC GATGCGC GATGCGC mmn

AGCGTCAGTGTTCTATAGGTAGATAGAAAGTCCCAGCTTG GTCTAACCGC... CAGTGTTCTCTAGGTAGATAAAAAGTCCCGGCTTG GTCTAACCGC.. CAGTGTTCTCTAGGTAGATAAAAAGTCCCGGCTTG GTCTAACCGC GTCTAACCGC GTCTAACCGC T
GCTTAACTGCAGCAATGTTCTATAGGTATATATCGAGTCCTGGCTTG GCTTAATTGTGACAATGTACTATAGGTATATAACGAGTCCTGGCTTG GCTTAATTGCGACAATGTTCTATAGGTATATAAGGAGTCCTGGCTTG GCTTAATTGTGACAATGTACTATAGGTATATAACGAGTCCTGGCTTG

GAACTTACT GAACTTACTC GAACTTACT GAACTTACT GAACTTACT GAACTTACT

AAGCTAACT GCGCTAACT $A A G C$
GCGCTAACTC

GCTTAATTGTGACAATGTACTATAGGTATATAACGAGTCCTGGCTTG
GCTTAATTGTGACAATGTACTATAGGTATATAACGAGTCCTGGCTTG GCTTAATTGTGACAATGTACTATAGGTATATAACGAGTCCTGGCTTG GCTTAACTGCAGCAATGTTCTATAGGTATATATCGAGTCCTGGCTTGAA GCTTAACTGCAGCAATGTTCTATAGGTATATATCGAGTCCTGGCTTGAAAGCTA GCTTAACTGCAGCAATGTTCTATAGGTATATATCGAGTCCTGGCTTG GCTTAACTGCAGCAATGTTCTATAGGTATATATCGAGTCCTGGCTTG

GCGCTAACT
GCGCTAACT GCGCTAACT $A A G C T A A C T$ AAGCTAACT AAGCTAACT A A G C TAACT AAGCTAACTC AAGCTAACT AAGCTAACT AAGCTAACT AAGCTAACT AAGCTAACT AAGCTAACT AAGCTAACT AAGCTAACT AAGCTAACT

Chapter 6 Tree B - Nematode Alignment 2

AACGATGGCTACTGATTTGCATTGCAACCTGAGCTCAGGCGTGACTACCCGCTGAAC MK214813 FJ516760 MG551718 KM510202 FJ516761 MK214817 KM510201 MK214814 MF192968 MK214815 MK214816 Kim_33 C-south_3 Kim_1 Bee_16 Bas_32 Forest_36 Bee_12 Bee_14 C-south_7 Edward_1 Gam_1 C-south_9 Arnot 1 Cowl_13 Arnot_11 Edward_2 C-south_1 Arnot_5 Carl_18 MASK

ATCTGTCAATATACCTTTGTTCTACAACCTGAACTCAGTCGTGATTACCCGCTCAAC TCTTGTCACAATACCTTTGTTCTACAACCTGAACTCAGTCGTGATTACCCGCTGAAC TCTTGTCACAATACCTTTGTTCTACA
TCTTGTCACAATACCTTTGTTCTACAACCTGAACTCAGTCGTGATTACCCGCTCAAC TCTTGTCACAATACCTTTGTTCTACAACCTGAACTCAGTCGTGATTACCCGCTCAAC TCTTGTCACAATACCTTTGTTCT

CGTTATAATCATACCTTTGTTATACAACCTGAACTCAGTCGTG ATTTATAATCACACCTTTGCTTTATAACCTGAACTCAGTCGTGAT

ATTTATAATCACACCTTTGCTTTATAACCTGAACTCAGTCGTGATTACCCGCTCAAC7 ATTTATAATCACACCTTTGCTTTATAACCTGAACTCAGTCGTGATTACCCGCTCAACT ATTTATAATCACACCTTTGCTTTATAACCTGAACTCAGTCGTGATTACCCGCTCAACT ATTTATAATCACACCTTTGCTTTATAACCTGAACTCAGTCGTGATTACCCGCTCAACT CTTTATAATCATACCTTTGTTTTACAACCTGAACTCAGTCGTGATTACCCGCTCAACT CTTTATAATCATACCTTTGTTTTACAACCTGAACTCAGTCGTGATTACCCGCTCAACT CGTTATAATCATACCTTTGTTATACAACCTGAACTCAGTCGTGATTACCCGCTCAAC TTATCGAGCTTCCAAAAAGCCTCATACCGTGCATAC-ATCCATTTGTGCGTGAATGAG TTATCGAGCTTCCAAAAAGCCTCATACCGTGCATAC ATCCATTTGTGCGTGAATGAG ATCCATTTGTGCGTTAATGAG ATCCATTTGTGCGTGAATGAG ATCCATTTGTGCGTGAATGAG ATCCATTTGTGCGTGAATGAG ATCCATTTGTGCGTTAATGAG ATCCATTTGTGCGTTAATGAG ATCCATTTGTGCGTTAATGAG ATCCATTTGTGCGTTAATGAG ATCCATTTGTGCGTTAATGAG TTATCGAGCTTCC-AAAAGCCTCATACCGTGCATACTTTCCATTTGTGCGATAATGAG TTATCGAGCTTCC-AAAAGCCTCATACCGTGCATACTTTCCATTTGTGCGATAATGAG TTATCGAGCTTCC-AAAAGCCTCATACCGTGCATACTTTCCATTTGTGCGATAATGAG TTATCGAGCTTCC-AAAAGCCTCATACCGTGCATACTTTCCATTTGTGCGATAATGAG TTATCGAGCTTCTAAAAAGCCTCATACCGTACATACCATCCATTTGTACGATTGTGAG TTATCGAGCTTCTAAAAAGCCTCATACCGTACATAGCATTCATTTGTACGATACTGAG TTATCGAGCTTCTAAAAAGCCTCATACCGTACAT.......CCATTTGTACGATACTGAG TTATCGAGCTTCC-AAAAGCCTCATACCGTGCATACTTTCCATTTGTGCGATAATGAG TTATCGAGCTTCC-AAAAGCCTCATACCGTGCATACTTTCCATTTGTGCGATGATGAG TTATCGAGCTTCC-AAAAGCCTCATACCGTGCATACTTTCCATTTGTGCGATGATGAG TTATCGAGCTTCC…AAAGCTCA-ACCGTGCATACTTTCCATTTGTGCGATGATGAG mmmmmmmmmmmmmmmmmm

110

TTGGCTTCCAGTGACTTGCAGCAACGCAC GTGTTT GA…ATTCGTTGGCTTGCAATGGCT GA…ATTCCTTGGCTTGCAATGGCT GA…ATTCCTTGGCTTGCAATGGCT GT.................... GGCTGACAATGGCT TTGGCTGACAATGGCT TTGGCTGACAATGACT TTGGCTGACAATGGCC TTGGCTGACAATGGCC TTGGCTGACAATGGCT CTGGCTGACAATGGCT CTGGCTGACAATGGCT CTGGCTGACAATGGCT mmmmmmmmmmmmmmm

140

GTTTTCGCGATGGTGTAT GTTTTCGCGATTGTGTGTTTTCGCGATTGTGT GTTTTCGCGATTGTGT GTATGCGCGTTTAGGTTT ATATGCGCGATAAGGTTT ATATGCGCGATAAGGTTT ATATGCGCGATAAGGTTT ATATGCGCGATAAGGTTT GTTAGCGCGATAGGATAT GTTTGCGTGATAGGATGC GTTTGCGTGATAGGATGA GGCAAATCGC-ATATGCGCGATAAGGTTT
GGCAAATCGCGAAATGTGCGA-AAGGTTT GGCAAATCGCGAAATGTGCGA-AAGGTTT
GGCAAATCGCGAAATGTGCGA-AAGGTTT GGCAAATCGCGAAATGTGCGA-AAGGTTT Gmmmmmmmmm-mmmmmmmmmm

C C A A G A A C G C G
CCAAGAACGCG CCAAGAACGCG TCTTGAATCCG CCAGAGATCCG CCAGAAATCCG CCAGAAATCCG TCTTGAATCCG TCTAGAATCCG TCTAGAATCCG TCTAGAATCCG mmmmmmmmmmm

GAAT-CTGTATCAACGGTGTC
GAAT-CTGTATCAACGGTGTC GAAT-CTGTATCAACGGTGTC TTAT-TTGTAGCCACGGTGTCT TTAT-TTGTAGCCACGGTGTCT
TTAT-TTGTAGCCACGGTGTCT
TTAT-TTGTAGCCACGGTGTCT
TTAT-TTGTAGCCACGGTGTCT
TTAT-TTGTAGCCACGGTGTCT
TTAT-TTGTAGCCACGGTGTCT
TTAT-TTGTAGCCACGGTGTCT
TTAT-TTGTAGCCACGGTGTCT
TTAT-TTGTAGCCACGGTGTCT
TTAT-TTGTAGCCACGGTGTCT
TTAT-TTGTAGCCACGGTGTCT
TAAT-TTGTAGCCACGGTGTCT
TAAT-TTGTAGCCACGGTGTCT
TAAT-TTGTAGCCACGGTGTCT
TAAT-TTGTAGCCACGGTGTCT

A C A G T T G G C G T C T A A T C C C C G
ACAGTTGGCGTCTAATCCCCG ACAGTTGGCGTCTAATCCCCG CTAGCTGGCGTCTATGCCTCA CAATGTTGTAACCACGGTGTCTCACTCGCTGGTGTCTAT-CTTTGC $C T A A-C T G T A A C A A C G G T G T C T C A C C C G C T G G T G T C T A G G C T T C G C$ CTAA-TTGTAACAACGGTGTCTCACCCGCTGGTGTTTAGGC-TCGC TAAT-TTGTAGCCACGGTGTCT TAAT-TTGTAGCCACGGTGTCT TAAT-TTGTAGCCACGGTGTCT TAAT-TTGTAGCCACGGTGTCT $\mathrm{mmmm}-\mathrm{mmmmmmmmmmmmmmm}$

CTAGCTGGCGTCTATGCCTCA CTAGCTGGCGTCTATGCCTCA CTAGCTGGCGTCTATGCCTCA CTAGCTGGCGTCTATGCCTCA mmmmmmmmmmmmmm

TGGAAAGTTCCTTGTGAA AGGACAGTTCCTTGTGAA AGGACAGTTCCTTGTGAA AGGACAGTTCCTTGTGAA AGAGCAGTTCCTCGATTT AGAGCAGTTCCTCGAAAT AGAGCAGTTCCTCGAAAT AGAGCAGTTCCTCGAAAT AGAGCAGTTCCTCGAAAT

$$
320 \quad 330
$$

GCTTT
GCTTT
GCTTT
GCGGT
GCGGT
GCGGT
GCGGT
GCGGT
GCGGT
GCGGT
GCGG
GCGG
GCGG
GCGGT
GCGGT
GCTGT
GCTGT
GCTGT
GCTGT

350

GTTCGAGCGATCGGTCGAGCTT CAAGCTTCA CAAGCTTCA CAAGCTTCA AGCCGCATCT AGCCGCATCT
TAGC
TGCCTTTTCCGGGAGGTCATATGCGTTT TGCCTTTTCCGGGAGGTCATATGCGTTT TGCCTTTTCCGGGAGGTCATATGCGTTT TGCCTTTTCCGGGAGGTCATATGCGTTT ACTG-AGTTCCTTGGGGATGTTGAGAATGTTCTTCTTCCTGGAGAATGTTTGTATAC GGCGC…TCCTGAGGGACGGCTTA… TGCCCTATGCTAACGCTTGGGCGTCTTCT GGCGC...TCCTTGGGGACGGCTTA… TGCCCTATGCTAACGCTTGGGCGTCTTCT AGAGCAGTTCCTCGAAAT-GCTGT GGAGCAGTTCCTCGGGAT GGAGCAGTTCCTCGGGAT GGAGCAGTTCCTCGGGAT $\mathrm{mmmm} \ldots \mathrm{mmmmmmmmmmm}$

TGCCCTATGCTAACGCTTGGGCGTCTTC
TGCCTTTTCCGGGAGGTCATATGCGTT T TTGCCTTTCCGGAAGGTGGTATGCATTT TTGCCTTTCCGGAAGGTGGTATGCATTT TTGCCTTTCCGGAAGGTGGTATGCATTT mmmmmmmm

```
Bas_1
```

Mill_19
Kim_40
MASK
Bas_1

Mill_19

CTGTGCGCTGCCAGCACCCAAAACACACAT
CTGTGCGCTGCCAGCACCCAAAACACACAT CTGTGCGCTGCCAGCACCCAAAACACACAT CTGTGCGCTGCCAGCACCCAAAACACACAT CTGTGCGCTGCCAGCACCCAAAACACACAT CTGTGCGCTGCCAGCACCCAAAACACACAT CTGTGCGCTGCCAGCACCCAAAACACACAT CTGTGCGCTGCCAGCACCCAAAACACACAT CTGTGCGCTGCCAGCACCCAAAACACACAT CTGTGCGCTGCCAGCACCCAAAACACACAT CTGTGCGCTGCCAGCACCCAAAACACACAT CTGTGCGCTGCCAGCACCCAAAACACACAT CTGTGCGCTGCCAGCACCCAAAACACACCT CTGTGCGCTGCCAGCACCCAAAACACACCT CTGTGCGCTGCCAGCACCCAAAACACACCT CTGTGCGCTGCCAGCACCCAAAACACACCT

G TACCATGT
GTACCATGT
GTACCATGT
GTACCATGT GTACCATGT GTACCATGT GTACCATGT GTACCATGT GTACCATGT GTACCATGT GTACCATGT GTACCATGT GTACTATGT GTACTATGT GTACTATGT GTACTATGT TAGTACGCTGCCAGCAATCAAACCACTTCCAAATACTGTGTGAATAACGTATA TTGTACGCTGCCAGCAATC-AAACACTTCCTAGTACTGTGTGTGAATATGTCCTTATT TTGTACGCCGCCAGCAATC-AAACACTTCCTAGTACTGTGTGTGAATATATTCTTATT CTGTGCGCTGCCAGCACCCAAAACACACCT TTGTGCGCTGCCAGCACCCAAAACACGCCT TTGTGCGCTGCCAGCACCCAAAACACGCCT TTGTGCGCTGCCAGCACCCAAAACACGCCT $\mathrm{mmmmmmmmmmmmmm} \ldots \mathrm{mmmmmmmmmm}$

GTACTATGT
GTACTATGT
GTACTATGT
GTACTATGT
mmmmmmmm

TC-AACGA-ATATTACTCTTAGCGGTGGATCACTCGGCTCGAGGGTCGATGAAGAACG CTGAAAAATATATCACTCTTAGCGGTGGATCACTCGGCTCGTGGGTCGATGAAGAACG CTGAAAAATATATCACTCTTAGCGGTGGATCACTCGGCTCGTGGGTCGATGAAGAACG CTGAAAAATATATCACTCTTAGCGGTGGATCACTCGGCTCGTGGGTCGATGAAGAACG TC-AAAAATTTATTACTCTTAGCGGTGGATCACTCGGTTCGTGGATCGATGAAGAACG TC-AACAATTTATTACTCTTAGCGGTGGATCACTCGGTTCGTGGATCGATGAAGAACG TC-AACAATTTATTACTCTTAGCGGTGGATCACTCGGTTCGTGGATCGATGAAGAACG TC-AACAATTTATTACTCTTAGCGGTGGATCACTCGGTTCGTGGATCGATGAAGAACG TC-AACAATTTATTACTCTTAGCGGTGGATCACTCGGTTCGTGGATCGATGAAGAACG G- AAAAATTACTACTCTTAGCGGTGGATCACTCGGTTCGTGGATCGATGAAGAACG AATAAAATACTACTCTTAGCGGTGGATCACTCGGCTCGTGGATCGATGAAGAACG AATAAAATACTACTCTTAGCGGTGGATCACTCGGCTCGTGGATCGATGAAGAACG TC-AACAATTTATTACTCTTAGCGGTGGATCACTCGGTTCGTGGATCGATGAAGAACG TCAAAAAATTTATTACTCTTAGCGGTGGATCACTCGGTTCGTGGATCGATGAAGAACG TCAAAAAATTTATTACTCTTAGCGGTGGATCACTCGGTTCGTGGATCGATGAAGAACG TCAAAAAATTTATTACTCTTAGCGGTGGATCACTCGGTTCGTGGATCGATGAAGAACG mmmmm -mm

610	620	630	640	650

CACTAAGACTTCGAACGCACATTGCGCCATCGGGTTCATTCCCGATGGCACGTCTGGC CACTAAGATTTCGAACGCACATTGCGCCATCGGGTTCATTCCCGATGGCACGTCTGGC CACTAAGATTTCGAACGCACATTGCGCCATCGGGTTCATTCCCGATGGCACGTCTGGC CACTAAGATTTCGAACGCACATTGCGCCATCGGGTTCATTCCCGATGGCACGTCTGGC CACAAAAATTTCGAACGCACATTGCGCTGTTGGGTTCACTCCCAGCAGTACGTCTGGC CACAAAAATTTCGAACGCACATTGCGCTGTTGGGTTCACTCCCAGCAGTACGTCTGGC CACAAAAATTTCGAACGCACATTGCGCTGTTGGGTTCACTCCCAGCAGTACGTCTGGC

CACAAAAATTTCGAACGCACATTGCGCTGTTGGGTTCACTCCCAGCAGTACGTCTGGC CACAAAAATTTCGAACGCACATTGCGCTGTTGGGTTCACTCCCAGCAGTACGTCTGGC CACAAAAATTTCGAACGCACATTGCGCTGTTGGGTTCACTCCCAGCAGTACGTCTGGC CACAAAAATTTCGAACGCACATTGCGCTGTTGGGTTCACTCCCAGCAGTACGTCTGGC CACAAAAATTTCGAACGCACATTGCGCTGTTGGGTTCACTCCCAGCAGTACGTCTGGC CACAAAAATTTCGAACGCACATTGCGCTGTTGGGTTCACTCCCAGCAGTACGTCTGGC CACAAAAATTTCGAACGCACATTGCGCTGTTGGGTTCACTCCCAGCAGTACGTCTGGC CACAAAAATTTCGAACGCACATTGCGCTGTTGGGTTCACTCCCAGCAGTACGTCTGGC CACAAAAATTTCGAACGCACATTGCGCTGTTGGGTTCACTCCCAGCAGTACGTCTGGC CACAAAAATTTCGAACGCACATTGCGCCATTGGGTTCACTCCCAATGGTACGTCTGGC CACAAAAATTTCGAACGCACATTGCGCCATTGGGTTCACTCCCAATGGTACGTCTGGC CACAAAAATTTCGAACGCACATTGCGCCATTGGGTTCACTCCCAATGGTACGTCTGGC CACAAAAATTTCGAACGCACATTGCGCCATTGGGTTCACTCCCAATGGTACGTCTGGC CACAAAAATTTCGAACGCACATTGCGCCATTGGGTTCATTCCCATTGGCACGTCTGGC CACTAAAATTTCGAACGCACATTGCGCCATTGGGTTCATTCCCATTGGCACGTCTGGC CACTAAAATTTCGAACGCACATTGCGCCATTGGGTTCATTCCCATTGGCACGTCTGGC CACAAAAATTTCGAACGCACATTGCGCCATTGGGTTCACTCCCAATGGTACGTCTGGC CACAAAAATTTCGAACGCACATTGCGCCATTGGGTTCACTCCCAATGGTACGTCTGGC CACAAAAATTTCGAACGCACATTGCGCCATTGGGTTCACTCCCAATGGTACGTCTGGC CACAAAAATTTCGAACGCACATTGCGCCATTGGGTTCACTCCCAATGGTACGTCTGGC mm

Chapter 6 Tree D - Nematode Alignment 4

Aten_12_Nem

Toton_24_Nem

Toton_25_Nem
C-South_10_Nem
Gam_16_Nem
MF4 $\overline{60455}$ _-_Outgroup
MK214813
MG551718
FJ516761
KM510202
MK214817
KM510201
FJ516760
MK214814
MK214815
MF192968

MK214816

mask

Aten_12_Nem
Toton_24_Nem
Toton_25_Nem
C-South_10_Nem
Gam_16_Nem
MF460455_-_Outgroup
MK214813
MG551718
FJ516761
KM510202
MK214817
KM510201
FJ516760
MK214814
MK214815
MF192968
MK214816
MASK

Aten_12_Nem
Toton_24_Nem

Toton_25_Nem

C-South_10_Nem
Gam_16_Nem

MF460455_-_Outgroup

MK214813

MG551718
FJ516761
KM510202
MK214817
KM510201 FJ516760 MK214814 MK214815
MF192968 MK214816 MASK

TTAG… CAA GGCGATAGCTGACACTAGATGC
TTAG…CAA GGCGATAGCTGACACTAGATGC
TTAG…CAA GGCGATAGCTGACACTAGATGC
TTAG… CAA GGCGATAGTTGTTACTAAATGC
TTAG… CAA - GGCGATAGTTGTTACTAAATGC

TTAT....CTGGGGCTATAGCC-ACGTTGAGTGC
TTAG ... CAA GGCGATAGCTGACACTAGATGC
TTAG… CAA GGCGATAGCTGACACTAGATGC
TTAG ... CAA GGCGATAGCTGACACTAGATGC
TTAG…CAA GGCGATAGCTGACACTAGATGC
TTAG… CAAGGGCGATAGCTGACACTAGATGC
TTAG ... CAA GGCGATAGTTGTTACTAAATGC
TTAG…CAA GGCGATAGCTGGTCTTGGTTGC
TTAG....CAA. GGCGATAGTTGGTCTTGGTTGC
TTAG…CAA GGCGATAGTTGGTTTTGGTTGC
ATAG… CAG-GGCGATAGTTGGTYTTGGTTGC

CTGTATGCATGACTATCCTATGA
CTGTATGCATGACTATCCTATGA
CTGTATGCATGACTATCCTATGA
CGGTATGCATAGCTATCCTATGA
CGGTATGCATAGCTATCCTATGA
TAGACTTCTCGACTTTGTCGCGAA
CTTTAGACACTGTCGTCCCATAAC
CTGTATGCATGACTATCCTATGA CTGTATGCATGACTATCCTATGA CTGTATGCATGACTATCCTATGA CTGTATGCATGACTATCCTATGA CTGTATGCATGACTATCCTATGA $C G G T A T G C A T A G C T A T C C T A T G A$ CTGTATGCAATTCGGTCCTCAGAC TTGTA
$C T G A A-G C A C-A C A A T C C G T T G A$ CTGAA-GCAC-ACGATCCGTTGA
mmmmmmmmmm

TTAAGC-TCTGCAGAGGTGCTCA-TATTTGACTGAATCGTTCGTAGAGTTGCGGTC
TTAAGC-TCTGCAGAGGTGCTCA
TTAAGC-TCTGCAGAGGTGCTCA
TTAAGC-TCTGCAGAGGTGCTCA
TTAAGC-TCTGCAGAGGTGCTCA
TGAGGCGTCTATAAACGTGATCA
TGAAGC-CCTGCAGAGGTGCTCG
TCAAGC-TCTGCAGAGGTGCTCA
TTAAGC-TCTGCAGAGGTGCTCA
TTAAGC-TCTGCAGAGGTGCTCA
TTAAGC-TCTGCAGAGGTGCTCA
TTAAGC-TCTGCAGAGGTGCTCA
TTAAGC-TCTGCAGAGGTGCTCA
TTAAGC-TCTGCAGAGGTACTCAATACTTAATTAGATCGTTCGTAGAGTTGCGGTT - GCGCA

TATTTGACTGAATCGTTCGTAGAGTTGCGGTC
TATTTGACTGAATCGTTCGTAGAGTTGCGGTC
TATTTGACTGAATCGTTCGTAGAGTTGCGGTT
TATTTGACTGAATCGTTCGTAGAGTTGCGGTT
TGAGCCGTTAGT-GAGTGGCGGTCGT
TATCCGACTAGACCGTTTGTAGGGTTGCGGTT
TATTTGACTGAATCGTTCGTAGAGTTGCGGTC
TATTTGACTGAATCGTTCGTAGAGTTGCGGTC
TATTTGACTGAATCGTTCGTAGAGTTGCGGTC
TATTTGACTGAATCGTTCGTAGAGTTGCGGTC
TATTTGACTGAATCGTTCGTAGAGTTGCGGTC
TATTTGACTGAATCGTTCGTAGAGTTGCGGTT

CAATC
AGACGC-TCCGCAGAGGTGCTCAGTACTTGACTAGATTGTTTGTAGAGTGGCAATT AGACGC-TCCACAGAGGTGCTTA-TGCCTGGCTAGACCGTTTGTAGAGTGGCGGTT

Aten_12_Nem
Toton_24_Nem
Toton_25_Nem
C-South_10_Nem
Gam_16_Nem
MF460455_-_Outgroup
MK214813
MG551718
FJ516761
KM510202
MK214817
KM510201
FJ516760
MK214814
MK214815
MF192968
MK214816
MASK
Chapter 6 Tree D - Nematode Alignment 4

Chapter 6 Tree D - Nematode Alignment 4
Aten_12_Nem
Toton_24_Nem
Toton_25_Nem
C-South_10_Nem
Gam_16_Nem
MF460455_-_Outgroup
MK214813
MG551718
FJ516761
KM510202
MK214817
KM510201
FJ516760
MK214814
MK214815
MF192968
MK214816
MASK

Aten_12_Nem
Toton_24_Nem
Toton_25_Nem
C-South_10_Nem
MF460455_-_Outgroup
MK214813
MG551718
FJ516761
KM510202
MK214817
KM510201
FJ516760
MK214814
MK214815
MF192968
MK214816
MASK

A T T GACGGGTCTGT -

ATTGACGGGTCTGT ATTGACGGGTCTGT ATTGATGGATCCTA ATTGATGGATCCTA

AAGGACT AAGGACT ACGGATT ACGGATT GGACCCGATTGACGGGAAATCTTAAAGATT ATCGATGGTCCGTT...TTCGGCT ATTGACGGGTCTGT…AAGGACT ATTGACGGGTCTGT…AAGGCT ATTGACGGGTCTGT…AAGGAC ATTGACGGGTCTGT..AAGGACT ATTGACGGGTCTGT..AAGGACT ATTGATGGATCCTA…ACGGATT ATTGACGGTCTCCTGCCTGTATTGTGACTGTTGGTCGGCAGCTCTGT-AGC

C G T T G G T C G G C A G C T C T G A CGTTGGTCGGCAGCTCTGA CGTTGGTCGGCAGCTCTGA CGTTGGTCGGCAGCTCTAA CGTTGGTCGGCAGCTCTAA CGACAGACATGAGGTCGGA GTTGGTCGGCAGCTTTGT CGTTGGTCGGCAGCTCTGA CGTTGGTCGGCAGCTCTGA CGTTGGTCGGCAGCTCTGA CGTTGGTCGGCAGCTCTGA CGTTGGTCGGCAGCTCTGA CGTTGGTCGGCAGCTCTAA mmmmmmmmmmmm

TGTTGATCGGCAGC-ATGA

- GTTGATCGGCAGC-CTGA
TGTTGATCGGCAGC-ATGA
$-\mathrm{GTTGATCGGCAGC}-\mathrm{CTGA}$ GTTGATCGGCAGC-CTGA CTGA-GAC

A A GTCGATGGTCCCCT.-AGGGGGC ATTGACGGTCCTAC…CGGACT ATTGATGGTCCCACTGTTGGACT mmmmmmmmmmmm

CACAGAAC CACAGAAC CACAGAAC CACAGAAT CACAGAAT G A T A CACAGAAC CACAGAAC CACAGAAC CACAGAAC CACAGAAC CACAGAAT TAT-GAGC GATGGACT TATTGAGC TATTGAGC
$C A G A A T$
$C A G A C C G T G A C C T T G T G T C G C G A A A G T T G A C T A G C T T C A G C G A T G G A T C G G T C G A T$

TAGTTAATACTGACAAGCTTTAGCGATGGATCGGTCGA TAGTTAATACTGACAAGCTTTAGCGATGGATCGGTCGAT TAGTTAATACTGACAAGCTTTAGCGATGGATCGGTCGAT AAGTTAATACATACAAGCTTTAGCGATGGATCGGTCGAT TCGCGAAAGTTGACTAGCTTCAGCGATGGATCGGTCGA TAGTTAATACTGACAAGCTTTAGCGATGGATCGGTCGA TAGTTAATACTGACAAGCTTTAGCGATGGATCGGTCGA TAGTTAATACTGACAAGCTTTAGCGATGGATCGGTCGA TAGTTAATACTGACAAGCTTTAGCGATGGATCGGTCGA TAGTTAATACTGACAAGCTTTAGCGATGGATCGGTCGA AAGTTAATACATACAAGCTTTAGCGATGGATCGGTCGA TAATTAACTTTGACAAGCTTTAGCGATGGATCGGTCGA AGTTAATGCTGACAAGCTTTAGCGATGGATCGGTCGA TAGTTAATACTGATAAGCTTTAGCGATGGATCGGTCGA TGGTTAATACTGACAAGCTTTAGCGATGGATCGGTCGA mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmn

510	520	530	540	550
1.... 1.	. 1	1	. 1	

TGAATTGCAGACACAATGAATGGTAAAATTTTGAACGCACAGCACCGTTGGGTTTTCC TGAATTGCAGACACAATGAATGGTAAAATTTTGAACGCACAGCACCGTTGGGTTTTCC TGAATTGCAGACACAATGAATGGTAAAATTTTGAACGCACAGCACCGTTGGGTTTTCC TGAATTGCAGACACAATGAATGGTAAAATTTTGAACGCACAGCACCGTTGGGTTTTCC TGAATTGCAGACACAATGAATGGTAAAATTTTGAACGCACAGCACCGTTGGGTTTTCC CGAATTGCAGACGCTTAGAGTGGTGAAATTTTGAACGCATAGCGCCGTTGGGTTTTCC TAAATTGCAGACTCAATGAATGGTGAACATTTGAACGCACAGCGCCGTTGGGTTTTCC TGAATTGCAGACACAATGAATGGTAAAATTTTGAACGCACAGCACCGTTGGGTTTTCC TGAATTGCAGACACAATGAATGGTAAAATTTTGAACGCACAGCACCGTTGGGTTTTCC TGAATTGCAGACACAATGAATGGTAAAATTTTGAACGCACAGCACCGTTGGGTTTTCC TGAATTGCAGACACAATGAATGGTAAAATTTTGAACGCACAGCACCGTTGGGTTTTCC TGAATTGCAGACACAATGAATGGTAAAATTTTGAACGCACAGCACCGTTGGGTTTTCC TGAATTGCAGACACAATGAATGGTAAAATTTTGAACGCACAGCACCGTTGGGTTTTCC TGAATTGCAGACACAATGAATGGTAAAATTTTGAACGCACAGCACCGTTGGGTTTTCC TGAATTGCAGACACAATGAATGGTTAAGTTTTGAACGCATAGCACCGTTGGGTTTTCC TGAATTGCAGACACAATGAATGGTAAAATTTTGAACGCACAGCACCGTTGGGTTTTCC TGAATTGCAGACACAATGAATGGTAAAATTTTGAACGCACAGCACCGTTGGGTTTTCC mmmn

Aten_12_Nem
Toton_24_Nem

$$
610 \quad 620
$$

${ }^{640}$. 1 1

GGAAGCTATTGATCTATAC GGAAGCTATTGATCTATAC

Toton_25_Nem

Aten_12_Nem Toton_24_Nem
Toton_25_Nem
C-South_10_Nem
Gam_16_Nem
MF460455_-_Outgroup
MK214813
MG551718
FJ516761
KM510202
MK214817
KM510201
FJ516760
MK214814
MK214815
MF192968
MK214816
MASK

CGAGCATGCCTGTTGGCTTGATTTTGTCG CAAGCATGCCTGTTGGCTTGA-TTTGTCG CAAGCATGCCTGTTGGCTTGA-TTTGTCG GCAGTTTAGCCTGTTAACTG CAAGCATACCT-CTAGCATGA CGAGCATGCCTGTTGGCTTGA CGAGCATGCCTGTTGGCTTGA CGAGCATGCCTGTTGGCTTGA CGAGCATGCCTGTTGGCTTGA CGAGCATGCCTGTTGGCTTGA CAAGCATGCCTGTTGGCTTGA CAAGTGTGCCTGTTGGCTTGA CAAGCATGCCTGTC-GCTTGA CAAGCATGCCTGCC-GCTTGA CAAGCATGCTTGCC-GCTTGA

GGAAGCTATTAGTCTTTAT TTTGTCG

GGAAGCTATTGATCTATAC
gGaAGCTATTAGTCTTTA
CTTGTCGCATGGCACTCGTAGCTGGTTCGCTAGCA
TTTGTCG….....................

TTTGTCG............................actatatatctatac
TTTGTCG.........................actatatatctatac

TTTGTCG...........................
TTTGTCG..........................actactatitacct
TTTGTCG
TTTGTCG

GGAAGCTATTG-TGTCTT
gGgagctattgTgTCATTA GGGAGCTATTGTGTCATTC mmmmmmmmmm

CAGCTATGCCTG
CTTCGGTTATGCCTG GGCTTTCGGTT-TGCCTGT GCTTTCGGTT-TGCCTG-CTTTCGGTT-TGCCTG TGGCTTCGGTTATGCCTG GTTGGCTTTCGGTTATGCCTG TGGCTTCGGTTATGCCTG

TTCGGTTATGCCTG
CTTCGGTTATGCCTG GTGGCTTCGGTTATGCCTG GTGGCTTCGGTTATGCCTG TGTGGCTTCGGTTATGCCTG TGTGGCTTCGGTTATGCCTG TGTGGCTTCGGTTATGCCTG TGTGGCTTCGGTTATGCCTG

CTTTCGGTT-TGCCTG GGCTTCCGGTTATGCCTG

CGGTTATGCCTG GGCTTCGGTTATGCCTG TATGCCTG
CTTCGGTTATGCCTG GGCTTCGGTTATGCCTG GGCTTCGGTTATGCCTG GGCTTCGGTTATGCCTG TATGGCTTCGGTTATGCCTG TATGGCTTCGGCTATGCCTG CTATGCCTG TTCGGCTATCCCTG TTCGGCTATCCCTG TTCGGCTGTCCCTG CCTG CTTCGGCTATCCCTG CTTCGGCTGTCCCTG CTTCGGTTATGCCTG TTCGGTTATGCCTG CTTCGGTTATGCCTG CTTCGGCTATGCCTG CTTCGGCTATGCCTG CTTCGGCTATGCCTG CTTCGGCTATGCCTG CTTCGGCTATGCCTG

TTGT-AC-T-CTG TTGT-AC-T-CTG TTGTTACTTCCTG TTGTTACTTCCTG T T G T TTGT TTGT-TTGT-TTGT-TTGTTTGT TTGT T TGT TTGT TTGT TTGT AC-TCCTG TTGTTACTTCCTG TTGT-AC-TCCTG TTGT-AC-T-CTG TTGT-AC-TCCTG TTGT-AC-TCCTG TTGT-AC-TCCTG TTGT-AC-T-CTG TTGT-AC-T-CTG TTGT-AC-TCCTG TTGT-AC-TCCTG TTGT-AC-TCCTG TTGT-AC-T-CTG $T T G T-A C-T-C T G$ $T T G T-A A-T-C T G$ TTGT-AC-T-CTG TTGT-AC-T-CTG

TGATGACT-CTGGATAACTT TGATGACT-CTGGATAACTT TGATGACTCCTGGATAACTT TGATGACTCCTGGATAACTTA TGATGACTCCTGGATAACTT TGATGACT-CTGGATAACTT TGATGACTCCTGGATAACTTT TGATGACT-CTGGATAACTT TGATGACT-CTGGATAACTT TGATGACT-CTGGATAACTT TGATGACT-CTGGATAACTTA TGATGACT-CTGGATAACTT TGATGACT-CTGGATAACTT TGATGACT-CTGGATAACTT TGATGACT-CTGGATAACTT TGATGACTCCTGGATAACTT TGATGACTCCTGGATAACTTT TGATGACTCCTGGATAACTTTT TGATGACT-CTGGATAACTT
TGATGACT-CTGGATAACTTA
TGATGACT-CTGGATAACTTA
TGATGACT-CTGGATAACTTA
TGATGACT-CTGGATAACTT
TGATGACT-CTGGATAACTT
TGATGACT-CTGGATAACTT TGATGACT-CTGGATAACTT
TGATGACTCCTGGATAACTTTAC TGATGACT-CTGGATAACTT TGATGACT-CTGGATAACTT TGATGACT-CTGGATAACTT TGATGACT-CTGGATAACTT TGATGACT-CTGGATAACTT TGATGACT-CTGGATAACTT TGATGACT-CTGGATAACTT TGATGACT-CTGGATAACTT TGATGACT-CTGGATAACTT TGATGACT-CTGGATAACTT
TGATGACT
TGATGACT
TGATGACT
TGATGACT
TGATGACT

$$
\begin{aligned}
& \text { CTGGATAACTT } \\
& C T G G A T A A C T T \\
& C T G G A T A A C T T \\
& C T G G A T A A C T T \\
& C T G G A T A A C T T \\
& C T G G A T A A C T T \\
& C T G G A T A A C T T ~
\end{aligned}
$$

|.... ${ }^{110}$. . . I 12.
|.... ${ }^{110}$. . . I 12.

150

CAAA-TGTCTGCCCTATCAACTGTCGATGGTAGGTGACCTGCCTACCATGGTGATAACC CAAA-TGTCTGCCCTATCAACTGTCGATGGTAGGTGACCTGCCTACCATGGTGATAACC CAAATTGTCTGCTCTATCAACTGTCGATGGTAGGTGACCTGCCTACCATGGTGATAACC CAAA-TGTCTGCCCTATCAACTGTCGATGGTAGGTGACCTGCCTACCATGGTGATAACC CAAA-TGTCTGCCCTATCAACTGTCGATGGTAGGTGACCTGCCTACCATGGTGATAACC CAAA-TGTCTGCCCTATCAACTGTCGATGGTAGGTGACCTGCCTACCATGGTGATAACC
CAAA-TGTCTGCCCTATCAACTGTCGATGGTAGGTGACCTGCCTACCATGGTGATAACC
CAAA-TGTCTGCCCTATCAACTGTCGATGGTAGGTGACCTGCCTACCATGGTGATAACC
CAAA-TGTCTGCCCTATCAACTGTCGATGGTAGGTGACCTGCCTACCATGGTGATAACC
CAAA-TGTCTGCCCTATCAACTGTCGATGGTAGGTGACCTGCCTACCATGGTGATAACC
CAAA-TGTCTGCCCTATCAACTGTCGATGGTAGGTGACCTGCCTACCATGGTGATAACC
CAAA-TGTCTGCCCTATCAACTGTCGATGGTAGGTGACCTGCCTACCATGGTGATAACC
CAAA-TGTCTGCCCTATCAACTGTCGATGGTAGGTGACCTGCCTACCATGGTGATAACC
CAAA-TGTCTGCCCTATCAACTGTCGATGGTAGGTGACCTGCCTACCATGGTGATAACC
CAAA-TGTCTGCCCTATCAACTGTCGATGGTAGGTGACCTGCCTACCATGGTGATAACC
CAAA-TGTCTGCCCTATCAACTGTCGATGGTAGGTGACCTGCCTACCATGGTGATAACC
CAAA-TGTCTGCCCTATCAACTGTCGATGGTAGGTGACCTGCCTACCATGGTGATAACC

AAAAACGGCTACCACTT AAAAACGGCTACCACTT AGAAACGGCTACCACTTA AGAAACGGCTACCACTT AGAAACGGCTACCACTT

CAAA
CAAA CAAA CAAA CAAA CAAA CAAA CAAA CAAA CAAA CAAA TGTCTGCCCTATCAACTGTCGATGGTAGGTGACCTGCCTACCATGGTGATAACC CAAA - TATCTGCCCTATCAACTGTCGATGGTAGGTGACCTGCCTACCATGGTGATAACC CAAA - TATCTGCCCTATCAACTGTCGATGGTAGGTGACCTGCCTACCATGGTGATAACC $C A A A-T A T C T G C C C T A T C A A C T G T C G A T G G T A G G T G A C C T G C C T A C C A T G G T G A T A A C C$
$C A A A-T A T C T G C C C T A T C A A C T G T C G A T G G T A G G T G A C C T G C C T A C C A T G G T G A T A A C C$ CAAA TATCTGCCCTATCAAC…TCGATGGTAGGTGACCTGCCTACCATGGTGATAACC CAAA-TATCTGCCCTATCAACTGTCGATGGTAGGTGACCTGCCTACCATGGTGATAACC CAAA-TATCTGCCCTATCAACTGTCGATGGTAGGTGACCTGCCTACCATGGTGATAACC CAAA-TGTCTGCCCTATCAACTGTCGATGGTAGGTGACCTGCCTACCATGGTGATAACC CAAA-TGTCTGCCCTATCAACTGTCGATGGTAGGTGACCTGCCTACCATGGTGATAACC CAAA-TGTCTGCCCTATCAACTGTCGATGGTAGGTGACCTGCCTACCATGGTGATAACC CAAA-TGTCTGCCCTATCAACTGTCGATGGTAGGTGACCTGCCTACCATGGTGATAACC CAAA-TGTCTGCCCTATCAACTGTCGATGGTAGGTGACCTGCCTACCATGGTGATAACC CAAA-TGTCTGCCCTATCAACTGTCGATGGTAGGTGACCTGCCTACCATGGTGATAACC CAAA-TGTCTGCCCTATCAACTGTCGATGGTAGGTGACCTGCCTACCATGGTGATAACC CAAA-TGTCTGCCCTATCAACTGTCGATGGTAGGTGACCTGCCTACCATGGTGATAACC $\mathrm{mmmmmmmmmmmmmmmm}-\mathrm{mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmn}$
T G TCTGCCCTATCAACTGTCGATGGTAGGTGACCTGCCTACCATGGTGATAACC
TGTCTGCCCTATCAACTGTCGATGGTAGGTGACCTGCCTACCATGGTGATAACC TGTCTGCCCTATCAACTGTCGATGGTAGGTGACCTGCCTACCATGGTGATAACC TGTCTGCCCTATCAACTGTCGATGGTAGGTGACCTGCCTACCATGGTGATAACC TGTCTGCCCTATCAACTGTCGATGGTAGGTGACCTGCCTACCATGGTGATAACC TGTCTGCCCTATCAACTGTCGATGGTAGGTGACCTGCCTACCATGGTGATAACC TGTCTGCCCTATCAACTGTCGATGGTAGGTGACCTGCCTACCATGGTGATAACC TGTCTGCCCTATCAACTGTCGATGGTAGGTGACCTGCCTACCATGGTGATAACC TGTCTGCCCTATCAACTGTCGATGGTAGGTGACCTGCCTACCATGGTGATAACC TGTCTGCCCTATCAACTGTCGATGGTAGGTGACCTGCCTACCATGGTGATAACC - Outgroup P903630 KP903635 KT074950 AY222084 KT074952 KT074955 KT074954 KT074951 KP903640 AY222085 MASK

AGAAACGGCTACCACTT
AGAAACGGCTACCACTT AGAAACGGCTACCACTT AGAAACGGCTACCACTT AGAAACGGCTACCACTT AGAAACGGCTACCACTT mmmmmmmmmmmmmmmm

CTAAGGAAGGCAGCAGGCGCGAAAATTACCCACTCCCGGC
CTAAGGAAGGCAGCAGGCGCGAAAATTACCCACTCCCGGCA CTAAGGAAGGCAGCAGGCGCGAAAATTACCCACTCCCGGCA CTAAGGAAGGCAGCAGGCGCGAAAATTACCCACTCCCGGCA CTAAGGAAGGCAGCAGGCGCGAAAATTACCCACTCCCGGCA CTAAGGAAGGCAGCAGGCGCGAAAATTACCCACTCCCGGCA mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmn

GAGGCTCCGTAATTCGAATGAGTACACTTTAAATCCTTTAACGAGGACCAATTGGAGGC GAGGCTCCCTAATTCGAATGAGTACACTTTAAATCCTTTAACGAGGACCAATTGGAGGC GAGGCTCCGTAATTCGAATGAGTACACTTTAAATCCTTTAACGAGGACCAATTGGAGGC gAg GCtCCGTAATTCGAATGAGTACACTTTAAATCCTTTAACGAGGACCAATTGGAGGC gAg GCTCCGTAATTCGAATGAGTACACTTTAAATCCTTTAACGAGGACCAATTGGAGGC gAg GCTCCGTAATTCGAATGAGTACACTTTAAATCCTTTAACGAGGACCAATTGGAGGC GAGGCTCCGTAATTCGAATGAGTACACTTTAAATCCTTTAACGAGGACCAATTGGAGGC gAg GCtCCGTAATtCGAATGAGTACACTTTAAATCCTTTAACGAGGACCAATTGGAGGC gAg GCtCCGTAATTCGAATGAGTACACTTTAAATCCTTTAACGAGGACCAATTGGAGGC GAGGCTCCGTAATTCGAATGAGTACACTTTAAATCCTTTAACGAGGACCAATTGGAGGC GAGGCTCCGTAATtCGAATGAGTACACTTTAAATCCTTTAACGAGGACCAATTGGAGGC GAGGCTCCGTAATTCGAATGAGTACACTTTAAATCCTTTAACGAGGACCAATTGGAGGC GAGGCTCCGTAATTCGAATGAGTACACTTTAAATCCTTTAACGAGGACCAATTGGAGGC GAGGCTCCGTAATTCGAATGAGTACACTTTAAATCCTTTAACGAGGACCAATTGGAGGC mmmn

GCGTATATTAAAGTTGCTGCAGTTAAAAAGCTCGTAATTGGATCT GCGTATATTAAAGTTGCTGCAGTTAAAAAGCTCGTAATTGGATCT GCGTATATTAAAGTTGCTGCAGTTAAAAAGCTCGTAGTTGGATCT GCGTATATTAAAGTTGCTGCAGTTAAAAAGCTCGTAGTTGGATCT GCGTATATTAAAGTTGCTGCAGTTAAAAAGCTCGTAGTTGGATCT GCGTATATTAAAGTTGCTGCAGTTAAAAAGCTCGTAGTTGGATCT GCGTATATTAAAGTTGCTGCAGTTAAAAAGCTCGTAGTTGGATCT GCGTATATTAAAGTTGCTGCAGTTAAAAAGCTCGTAGTTGGATCT GCGTATATtAAAGTTGCTGCAGTTAAAAAGCTCGTAGTTGGATCT

450
GGGTGGTGTGGC GGGTGGTGTGGCC GGGTGGTGTGGCC GGGTGGTGTGGCO GGGTGGTGTGGCO GGGTGGTGTGGC GGGTGGTGTGGCC GGGTGGTGTGGCO GGGTGGTGTGGCO

KP903638
MK602324
LC647154 - Outgroup KP903630
KP903635
KT074950
AY222084
KT074952
KT074955
KT074954
KT074951
KP903640
AY222085
MASK

```
ACGGGAGTTCGGGTCGGTGTAGTGACCGTGCA ACGGGAGTGCGGGTCGGTGTAGTGACCGTGCA ACGGGAGTACGGGTCGGTGTAGTGACCGTGCA ACGGGAGTACGGGTCGGTGTAGTGACCGTGCA ACGGGAGTACGGGTCGGTGTAGTGACCGTGCA ACGGGAGTACGGGTCGGTGTAGTGACCGTGCA GTGGGAGTGCGGGTCGGTGTAGTTGCCGTGCA GCGGTAGTACGGGTCGGTGTAGTGGCCGTGCA GCGGGAGTGCGGGTCGGTGTAGTGGCCGTGCA GTGGGAGTGCGGGTCGGTGTAGTGGCCGTGCA GTGGGAGTGCGGGTCGGTGTAGTGGCCGTGCA GTGGGAGTGCGGGTCGGTGTAGTGGCCGTGCA GTGGGAGTGCGGGTCGGTGTAGTGGCCGTGCA GCGGGAGTGCGGGTCGGTGTAGTGGCCGTGCA mmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
```


Chapter 6 Tree E - Trematode Alignment 1

Chapter 6 Tree F - Trematode Alignment 2

KX815125
MT568786
MK482055
MW361240
AY222157
MZ768805
MZ787582
MZ410795
MZ798276
MZ753784
MZ751051
MZ753903
AY222158
AY222160
JQ886404
AY222159

MASK

Uni_39
KR703279_-_Outgroup
KX815125
MT568786
MK482055
MW361240
AY222157
MZ768805
MZ787582
MZ410795
MZ798276
MZ753784
MZ751051
MZ753903
AY222158
AY222160
JQ886404
AY222159

CGAGGGGACGGGTGGATTTATTAGAACAGAACCAACCGGTTGTAGCCT

mm ATCGGCCTTGAGTCGGCAATGGATCTTTCAAATGTCTGCCCTATCAATTTTCGATGGT GTCGGCCTTGTGTCGGCGACGTATCTTTCAAATGTCTGCCCTATCAATTTTCGATGGT GTCGGCCTtgAgTCGGCGACGGATCTTTCAAATGTCTGCCCTATCAATTTTCGATGGT GTCGGCCTTGAGTCGGCGACGGATCTTTCAAATGTCTGCCCTATCAATTTTCGATGGT GTCGGCCTTGTGTCGGCGACGGATCTTTCAAATGTCTGCCCTATCAATTTTCGATGGT GTCGGCCTTGTGTCGGCGACGGATCCTTCAAATGTCTGCCCTATCAATTTTCGATGGT GTCGGCCTTGTGTCGGCGACGGATCTTTCAAATGTCTGCCCTATCAATTTTCGATGGT GTCGGCCTTGTGTCGGCGACGGATCTTTCAAATGTCTGCCCTATCAATTTTCGATGGT GTCGGCCTTGTGTCGGCGACGGATCTTTCAAATGTCTGCCCTATCAATTTTCGATGGT GTCGGCCTTGTGTCGGCGACGGATCTTTCAAATGTCTGCCCTATCAATTTTCGATGGT GTCGGCCTTGTGTCGGCGACGGATCTTTCAAATGTCTGCCCTATCAATTTTCGATGGT GTCGGCCTTGTGTCGGCGACGGATCTTTCAAATGTCTGCCCTATCAATTTTCGATGGT GTCGGCCTTGTGTCGGCGACGGATCTTTCAAATGTCTGCCCTATCAATTTTCGATGGT GTCGGCCTTGTGTCGGCGACGGATCTTTCAAATGTCTGCCCTATCAATTTTCGATGGT
 GTCGGCCTTGCGTCGGCGACGGATCTTTCAAATGTCTGCCCTATCAATTTTCGATGGT GTCGGCCTTGTGTCGGCGACGGATCTTTCAAATGTCTGCCCTATCAATTTTCGATGGT GTCGGCCTTGTGTCGGCGACGGATCTTTCAAATGTCTGCCCTATCAATTTTCGATGGT

Chapter 6 Tree F - Trematode Alignment 2

210220230240

MASK
Uni_39 KR703279_-_Outgroup KX815125 MT568786
MK482055
MW361240
AY222157
MZ768805
MZ787582
MZ410795
MZ798276
MZ753784
MZ751051
MZ753903
AY222158
AY222160
JQ886404
AY222159
mm AGGGTTCGATTCCGGAGAGGGAGCCTGAGAAACGGCTACCACTTCCAAGGAAGGCAGC AgGgTtcGATtCCGGAGAGgGAGCCTGAGAAACGGCTACCACTTCCAAGGAAGGCAGC

MASK
KR703279_-_Outgroup
KX815125
MT568786

MK482055
MW361240
AY222157
MZ768805
MZ787582
MZ410795
MZ798276
MZ753784
MZ751051
MZ753903
AY222158
AY222160
JQ886404
AY222159
mm GAAAAATACGGATACGGGACTCGTATGAGGCTCCGTAATTCGAATGAGTACAATTTAA GAAAAATACGGATACGGGACTCATCAGAGGCTCCGTAATTCGAATGAGTACAATTCAA GAAAAATACGGATACGGGACTCGTTAGAGGCTCCGTAATTCGAATGAGTACACTTTAA GAAAAATACGGATACGGGACTCGTTAGAGGCTCCGTAATTCGAATGAGTACACTTTAA GAAAAATACGGATACGGGACTCATTAGAGGCTCCGTAATTCGAATGAGTACAATTTAA GAAAAATACGGATACGGGACTCATTAGAGGCTCCGTAATTCGAATGAGTACAATTTAA GAAAAATACGGATACGGGACTCGTATGAGGCTCCGTAATTCGAATGAGTACAATTTAA GAAAAATACGGATACGGGACTCGTATGAGGCTCCGTAATTCGAATGAGTACAATTTAA GAAAAATACGGATACGGGACTCGTATGAGGCTCCGTAATTCGAATGAGTACAATTTAA GAAAAATACGGATACGGGACTCGAATGAGGCTCCGTAATTCGAATGAGTACAATTTAA GAAAAATACGGATACGGGACTCGTATGAGGCTCCGTAATTCGAATGAGTACAATTTAA GAAAAATACGGATACGGGACTCGTATGAGGCTCCGTAATTCGAATGAGTACAATTTAA GAAAAATACGGATACGGGACTCGTATGAGGCTCCGTAATTCGAATGAGTACAATTTAA GAAAAATACGGATACGGGACTCGTATGAGGCTCCGTAATTCGAATGAGTACAATTTAA GAAAAATACGGATACGGGACTCGTATGAGGCTCCGTAATTCGAATGAGTACAATTTAA GAAAAATACGGATACGGGACTCGTATGAGGCTCCGTAATTCGAATGAGTACAATTTAA GAAAAATACGGATACGGGACTCGTATGAGGCTCCGTAATTCGAATGAGTACACTTTAA GAAAAATACGGATACGGGACTCGTATGAGGCTCCGTAATTCGAATGAGTACAATTTAA

MASK
Uni_39
KR703279_-_Outgroup
KX815125
MT568786
MK482055
MW361240
AY222157
MZ768805
MZ787582
MZ410795
MZ798276
MZ753784
MZ751051
MZ753903
AY222158
AY222160
JQ886404
AY222159
 mm CAGCCGCGGTAACTCCAGCTCCAGAAGCGTATATAAAAGTTGTTGCAGTTAAAAAGCT CAGCCGCGGTAACTCCAGCTCCAGAAGCGTATATTAAAGTTGTTGCAGTTAAAAAGCT CAGCCGCGGTAACTCCAGCTCCAGAAGCGTATATTAAAGTTGTTGCAGTTAAAAAGCT

Chapter 6 Tree F - Trematode Alignment 2

510

mmmmmmmmmmmmmmmm
ATTCTTGGCTTGGTTA
ATTCCTGGCTTGGTTACGACTGGGTCGGGTTTGCGAGTCGGTGTCGTGGTTGTGCAGC ATTCCTGGCCTGGTTT ATTCCTGGCCTGGTTT ATTCCTGGCCTGGTTC ATTCCTGGCCTGGTTT ATTCTCGGCTTGGTTT ATTCTCGGCTTGGTTT ATTCTCGGCTTGGTTT ATTCTGGGCTTGGTTT ATTCTCGACTTGGTCA ATTCTCGACTTGGTTA ATTCTCGACTTGGTTA ATTCTCGACTTGGTTA ACTCGTGGCTTGGTTT ATTCATGGCTTGGTTA ATTCTTGGTTTGGTTA

ATTCTTGGCTGGTTA ,
\qquad
\qquad
\qquad AT T C T T G G C T T G G T T A
ATTCTTGGCTGGTTA
\qquad
ATTCTTGGCTGGTTA
\qquad
ATTCTTGGCTGGTTA
\qquad
ATTCTTGGCTGGTTA
ATTCTTGGCTGGTTA
\qquad

AY222159 T T T T G G C T T G G T T A
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
A T T C T T G G C T T G G T T A
A T T C T T G G C T T G G T T A
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
A T T C T T G G C T T G G T T A

