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Abstract

The global growth of solar power generation is rapid, yet the complex na-

ture of cloud movement introduces significant uncertainty to short-term

solar irradiance, posing challenges for intelligent power systems. Accurate

short-term solar irradiance and photovoltaic power generation predictions

under cloudy skies are critical for sub-hourly electricity markets. Ground-

based image (GSI) analysis using convolutional neural network (CNN) algo-

rithms has emerged as a promising method due to advancements in machine

vision models based on deep learning networks.

In this work, a novel deep network, ”ViT-E,” based on an attention mech-

anism Transformer architecture for short-term solar irradiance forecasting

has been proposed. This innovative model enables cross-modality data

parsing by establishing mapping relationships within GSI and between GSI,

meteorological data, historical irradiation, clear sky irradiation, and so-

lar angles. The feasibility of the ViT-E network was assessed the Folsom

dataset from California, USA .

Quantitative analysis showed that the ViT-E network achieved RMSE val-

ues of 81.45 W/m2, 98.68 W/m2, and 104.91 W/m2 for 2, 6, and 10-minute

forecasts, respectively, outperforming the persistence model by 4.87%, 16.06%,

and 19.09% and displaying performance comparable to CNN-based models.

Qualitative analysis revealed that the ViT-E network successfully predicted
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20.21%, 33.26%, and 36.87% of solar slope events at 2, 6, and 10 minutes

in advance, respectively, significantly surpassing the persistence model and

currently prevalent CNN-based model by 9.43%, 3.91%, and -0.55% for 2,

6, and 10-minute forecasts, respectively.

Transfer learning experiments were conducted to test the ViT-E model’s

generalisation under different climatic conditions and its performance on

smaller datasets. We discovered that the weights learned from the three-

year Folsom dataset in the United States could be transferred to a half-year

local dataset in Nottingham, UK. Training with a dataset one-fifth the size

of the original dataset achieved baseline accuracy standards and reduced

training time by 80.2%. Additionally, using a dataset equivalent to only

4.5% of the original size yielded a model with less than 2% accuracy below

the baseline. These findings validated the generalisation and robustness of

the model’s trained weights.

Finally, the ViT-E model architecture and hyperparameters were optimised

and searched. Our investigation revealed that directly applying migrated

deep vision models leads to redundancy in solar forecasting. We identified

the best hyperparameters for ViT-E through manual hyperparameter space

exploration. As a result, the model’s computational efficiency improved by

60%, and prediction performance increased by 2.7%.
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Chapter 1

Introduction

1.1 Background

Solar photovoltaic (PV) power generation has experienced rapid growth in

recent years, playing an increasingly important role in the global transition

to renewable energy sources. According to data from the International En-

ergy Agency (IEA), solar PV power generation increased significantly from

679 terawatt-hours in 2019 to 823.8 terawatt-hours in 2020 globally. This

upward trend continued as solar PV generation reached 1002.9 terawatt-

hours in 2021, demonstrating the substantial progress in adopting and de-

ploying solar technologies worldwide [1].

In parallel with the growth in power generation, solar PV installed capacity

has also seen remarkable expansion. In 2022, installed capacity increased

by an impressive 188.6 GW, with projections suggesting that it will reach

a record high of nearly 200 GW in by the end of 2023. This rapid growth

can also be observed in the UK, where the total installed capacity of solar

power generation reached 14.4 GW by the end of 2022. Despite challenges
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posed by the Covid-19 pandemic, such as reduced efficiency and project

delays, solar PV installations in the UK increased by 87% year-on-year in

2022, amounting to 0.61 GW [2].

To achieve the ambitious targets outlined in the Net Zero Scenario, the

world’s total solar PV installed capacity must maintain a growth rate of

25%. By maintaining this pace, it is possible to complete the mission of

significantly increasing the share of renewable energy in the global energy

mix by 2030 [3]. This rapid expansion of solar PV capacity highlights the

importance of addressing the technical and operational challenges associ-

ated with integrating this intermittent power source into the electricity

grid. As solar PV play a significant role in energy systems worldwide, in-

novative forecasting methods and grid management strategies will become

increasingly crucial to ensuring grid stability and maximising the benefits

of this clean, renewable energy source [4], this is because solar energy is

intermittent and greatly affected by factors such as clouds, humidity, and

other environmental conditions.

Despite its rapid development, the intermittent nature of photovoltaic

power generation due to the sudden change of the environment poses a chal-

lenge to grid stability. Ground-based solar irradiance is highly variable and

uncertain due to complex interactions between radiation and atmospheric

components such as water vapour, aerosols and clouds [5]. In addition, the

high temporal and spatial variability in the presence and concentration of

atmospheric constituents further contributes to the variability of terrestrial

solar irradiance [6]. The rapid alternation between clouds and sunlight can

lead to voltage fluctuations and imbalances that introduce flicker into the

network during grid connection, with significant adverse effects on distri-

bution systems sensitive to short-term fluctuations [7]. Accurate prediction

of rapid solar transients within one hour, also known as solar Ramp Event

2
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(RE), is, therefore, essential for Inter-Hour Solar Forecasting (IHSF), also

known as very short-term solar forecasting or nowcasting.

To address this challenge, using fisheye cameras to capture Ground-based

Sky Image (GSI) for IHSF has become increasingly popular [8]. Sky images

contain high-resolution local spatial information on cloud cover. Continu-

ous sky image collection can obtain high-resolution temporal information

at the minute or even sub-minute level, helping to predict rapid changes

between clouds and sunlight [9]. The initial sky image model was based

on image analysis methods, predicting future cloud positions by analysing

cloud positions in consecutive frames [10]. In recent years, with the rapid

rise of Deep Learning (DL) method, specifically deep computer vision net-

works, their excellent performance and fast computational efficiency have

significantly improved the performance benchmark of image models, at-

tracting widespread attention from researchers. However, using DL meth-

ods for IHSF based on GSI is still an emerging research area. Although

the forecasting efficiency and performance of these models far surpass other

GSI-IHSF methods [11], many challenges still need to be addressed, such as

interactivity of sky images and observations, interpretability of black box

models, etc. In this paper, we discuss the main challenges and shortcom-

ings of the current multimodal forecasting models and improve the existing

mainstream DL-GSI-IHSF models through modifications and optimisations

at the base model algorithm and model structure levels.
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1.2 Introduction

1.2.1 Solar Forecasting

Solar energy forecasting has been identified as a typical research area in

energy meteorology [4]. Firstly, as a meteorological parameter, solar irra-

diance has typical meteorological characteristics, such as the bi-seasonal

feature, that is, the solar energy time series has a typical annual cycle and

diurnal cycle; the spatiotemporal feature, that is, spatiotemporal proper-

ties influence the solar irradiance; and the probabilistic feature, that is,

the inherently probabilistic nature of meteorological forecasting itself. At

the same time, as a forecast serving the energy and electrical engineering

field, its forecasting content and form are subject to various requirements

and regulations for power system control and operation. For example, the

day-ahead forecast requires a net load forecast for the next operating day

in order to enable power operators to make day-ahead commitments for

thermal power units, optimise the dispatch of generators to balance the

demand of the second day at the lowest cost, and meet the use of electric-

ity [12]; the intra-day forecast requires a forecast of hours to minutes ahead,

to further coordinate the scheduling schedule between traditional power

generation and renewable energy [13]; the intra-hour forecast, through the

highest resolution of up to sub-minute level forecasting, assists automatic

power generation control to pre-schedule thermal power generators to pro-

vide a gap in solar power generation caused by frequent, rapid and steep

slope Ramp Event (RE) [14]. Therefore, an excellent solar energy forecast-

ing model should not only make full use of the prior knowledge of atmo-

spheric physics to model solar irradiance but also consider the expression

form of the forecast based on the constraints and requirements of electrical

engineering [4]. Table 1.1 shows different types of solar energy forecasting

4



1.2. INTRODUCTION

based on the forecast horizon [4].

Table 1.1: Classification of solar forecast by forecast horizon.

Forecast Classification Forecast Horizon Method

Long Term Forecast 1 Week Above
Statistical models
based on historical data

Day-ahead Forecast 1 Day to 1 Week
Numerical Weather
Prediction (NWP)

Intra-day Forecast 1 Hour to 1 Day Satellite data, NWP

Inter-hour Forecast 15 Sec to 1 Hour
Microscale sensor, NWP,
Sky image, Satellite data

The spatiotemporal characteristics of solar irradiance have made its predic-

tion particularly challenging. Unlike other atmospheric parameters, such as

temperature and humidity, which only change continuously in time, solar

irradiance is also influenced by spatial information. Specifically, incom-

ing clouds can significantly impact solar irradiance, and a fast-approaching

cloud can cause the solar irradiance to drop by more than half instantly.

Therefore, solar energy forecasting techniques need to model the temporal

information of solar irradiance and resolve the spatial information. Four

main methods have been developed to capture the spatial information of

incoming clouds: ground-based all-sky imaging, satellite remote sensing,

numerical weather prediction, and microscale sensors. Table 1.2 presents

the adequate time and space coverage of each method [4].

Table 1.2: Effective time and space coverage of spatial input in solar fore-
casting.

Spatial information data source Effective time Space coverage

Microscale sensors 10 sec to 2 min 1 m to 1 km
Ground-based all-sky imaging 30 sec to 15 min 1 m to 2 km
Satellite remote sensing 5 min to 6 hour 1 km to 10 km
Numerical weather prediction 2 min to 35 hour 200 m to 20 km

5



1.2. INTRODUCTION

1.2.2 Ground-based All-sky Image in Solar Forecast-

ing

Ground-based all-sky images captured by fish-eye cameras can provide

much higher temporal and spatial resolutions than satellite data. Regard-

ing temporal resolution, image data can capture slope events of less than

one minute. Theoretically, this temporal resolution is only limited by cloud

speed, image resolution, and image acquisition frequency. Meanwhile, in

terms of spatial resolution, all-sky images can predict ground ranges from

1 meter to 1 kilometre from the camera [15]. Compared to other high

economic cost observation instruments, relatively inexpensive monitoring

cameras can be directly used as high-precision sky image acquisition de-

vices. Therefore, in tasks with high temporal and spatial resolutions, sky

images have been favoured by researchers.

Two main methods have been used to utilise sky images as external data to

assist solar irradiance prediction. The first method is based on classical im-

age analysis, which applies specific algorithms to analyse each sky image at

the pixel level, extract spatiotemporal features, and perform prediction. To

determine spatial features, methods such as red-blue ratio (RBR) have been

used or red-blue difference (RBD) [16, 17, 18], 3D cross correlation [19], or

image feature correlation [20] are used to identify cloud pixels in the sky im-

age. To determine temporal features, the most common approach is to use

the cross-correlation method [17], which calculates the cloud motion vector

by comparing two consecutive cloud maps. In addition to cross-correlation,

other methods include optical flow [21, 22] and ray tracing [23]. The opti-

cal flow method has been used to determine the velocity of feature pixels

based on the intensity of two consecutive images. It uses this to calculate

the position of the cloud in relation to the ground projection of the cloud
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at the approaching time point. The ray-tracing approach uses multiple

images of the sky taken simultaneously from different positions, combined

with ground shadow maps, to model clouds in 3D. The advantage of this

approach is that the 3D model solves the problem of individual site images

not being able to determine the height of the cloud base [19]. At the same

time, both the cross-correlation and optical flow methods require additional

instrumentation to measure the height of the cloud base to determine the

correct ground projection of the cloud [24]. Image-based forecasts deter-

mine the impact on solar irradiance estimates by combining the estimates

of cloud position with estimates of cloud transmittance, and general meth-

ods used to determine the latter include fixed transmittance [21, 17], cloud

density-based transmittance [25, 26] and cloud height-based transmittance

approaches [27]. However, these modelling approaches to image analysis

are still limited by the complex physical properties of clouds. For example,

cloud motion is assumed to involve shifting only and does not account for

cloud generation and dissipation. Additionally, cloud transmittance de-

pends on the transparency of the cloud, but it is not currently feasible to

measure the transmittance of all cloud types directly. Therefore, this ap-

proach remains of limited use in improving the accuracy of future irradiance

forecasts [28].

Another approach is to use the deep computer vision algorithms. Through

training deep models on sky image datasets to extract the relationship

between image features and future irradiance, this approach utilizes the

learned relationship to make predictions on new data. Theoretically, this

method, based on feature learning from big data, has no inherent physical

assumptions and relies solely on the relationship between features in the

dataset for prediction, thus being considered to have the potential to cap-

ture the underlying physical characteristics of cloud layers. In this chapter,

7
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we provide a detailed review of the DL-GSI-IHSF model. We break down

the development methodology of the DL-GSI-IHSF model into three stages:

data, model, and analysis, and summarise the current state and existing

problems of the model discovered at different stages.

1.2.3 Deep Learning

Another essential background knowledge used in this paper is deep learning

algorithms. The inspiration for deep learning algorithms comes from bio-

logical neural networks. By simulating the information processing and dis-

tributed nodes in biological systems, artificial neural networks can achieve

representation learning for targets. The basic architecture of an artificial

neural network is the neuron, which is a linear regression processing with

an additional activation function. Taking the Rectified Linear Unit (ReLU)

activation function as an example, an artificial neuron can be represented

as:

y = ReLU(wx + b) (1.1)

where ReLU(x) = max(x, 0) (1.2)

The basic artificial neural network is the multi-layer neural element struc-

ture formed by the horizontal and vertical accumulation of neurons. In

this paper, to avoid misunderstanding, the term ”Multilayer perceptron

(MLP)” has been used to describe artificial neural networks with fully con-

nected structures. In some work, this architecture may be directly referred

to as an artificial neural network. The network architecture of an MLP is

that all neuron nodes in the previous layer are connected to the neurons in

8
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the next layer. A layer in this structure can be represented as:

Y = XW + b (1.3)

term ”Multilayer perceptron (MLP)” is used to describe artificial neural

networks with fully connected structures. In some work, this architecture

may be directly referred to as an artificial neural network. The network

architecture of an MLP is that all neuron nodes in the previous layer are

connected to the neurons in the next layer. A layer in this structure can

be represented as:

where the input matrix X ∈ Rn×d has n x-samples, each with d features.

The weights W ∈ Rd×h and bias b ∈ R1×h are computed to form a full

connection from the elements in each input X to the output Y ∈ Rn×h.

A fully connected MLP is formed by accumulating multiple layers, where

the layers in between, except for the final output layer, are called hidden

layers.

According to the learning paradigm of deep networks, training a network

can be divided into supervised, unsupervised, and reinforcement learning.

Supervised learning refers to training a model to explicitly pair inputs and

outputs (or labels), aiming to establish a mapping relationship between

the input and output through the deep model. To the best of our knowl-

edge, almost all works implementing the DL-GSI-IHSF model and similar

methods have employed supervised learning to train the model, which is

achieved by directly or indirectly setting the model’s prediction target as

the goal of solar forecasting. In this paper, this relationship is represented

by the following equation:

9
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yt+∆t = F (X,W) (1.4)

where yt+∆t and yt+∆t is the predicted value and representation feature

vector after ∆t time, respectively, F is the model calculation function, X is

the model input, W is the trained model weight. Please note that here, W

refers to the generalised parameters, including weights and biases, which

can be adjusted through model training, and is different from the W in

Equation 1.3.

Figure 1.1: Forward propagation (prediction) and backward propagation
(gradient descent) in deep learning.

The training process of a neural network, i.e., the model fitting process,

is shown in Figure 1.1. The model first generates a ŷ through forward

propagation and then quantifies the difference between the predicted out-

put, ŷ, and the expected output, y, through a loss function. The most

common loss function for regression problems is the Mean Square Error

10
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(MSE), while for classification problems, the most common loss function is

the cross-entropy function. The training process of a supervised deep neu-

ral network is essentially the process of iteratively searching for the model

parameters W that minimise the model loss function. This process can be

represented as follows:

L(W) =
1

n

n∑
i=1

li(W) =
1

n

n∑
i=1

(ŷi − yi)
2 (1.5)

W∗ = arg min
W

L(W) (1.6)

where L is the set of loss functions for the i-th sample loss function l, W∗

refers to the final parameters in the trained model. During the model it-

eration process, the model loss is continuously adjusted by updating the

model weights to search for the minimum weight values, as shown in Fig-

ure 1.1. This process is called gradient descent because the gradient of the

loss calculates it concerning the model’s weights. The algorithm used to

calculate the update of the model weights in the gradient descent process

is called the optimiser of the model. For example, the most common opti-

miser is Stochastic Gradient Descent (SGD), which can be represented as

follows:

W←W− η∂WL(W) (1.7)

where η is the learning rate of the model, which describes the ratio of gradi-

ent descent. The computational process will be very inefficient if the entire

dataset is traversed each time the model weights are updated. Therefore,

in practical training, a smaller sample set B is usually extracted each time

the update needs to be calculated and updated using minibatch stochastic

11
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gradient descent. This process can be represented as follows:

W←W− η

|B|
∑
i∈B

∂Wli(W) (1.8)

where |B| represents the number of samples in B, also called batch size.

In the derivation process above, batch size |B| and learning rate eta are

set directly by the researcher during model training rather than optimised.

These parameters are called hyperparameters, and they significantly affect

model training results. They are generally tuned on a validation set that

does not participate in the iteration of model weights.

1.3 Aims and Objectives

The primary aim of this project is the enhancement of the predictive per-

formance, interpretability, generalizability, and computational efficiency of

the multimodal DL-GSI-IHSF model through a series of experiments and

investigations. To achieve this aim, the following objectives have been set:

1. A comprehensive review of the existing model was undertaken, with a

step-by-step analysis of the current work’s strengths and weaknesses

by categorising the existing work’s structure (Chapter 2).

2. Specify the methodology used in the three sub-categories, including

enhancing modality fusion, generalizability, and calculation accuracy

and efficiency. Collect and develop data sets with specific collect data

methods (Chapter 3).

3. Enhance modality fusion mechanism and model interpretability by

12
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incorporating attention and gating mechanisms in deep models to

reinforce inter-modality interactions (Chapter 4).

4. Improve the model’s generalisability to different climatic conditions

using inductive transfer learning methods for model training with

limited datasets under various climates (Chapter 5).

5. Optimise and simplify the model architecture and boost computa-

tional efficiency through model optimisation. Increase efficiency and

prevent architectural redundancy (Chapter 6).
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Chapter 2

Literature Review: A Review

of Deep Learning-based

Inter-Hour Solar Energy

Forecasting using

Ground-based Sky Images

Chapter Abstract

A comprehensive overview of the model construction process was provided

in this chapter for deep learning-based solar energy prediction using ground-

based sky images, including data pre-processing, model architecture, and

evaluation methods. The current state-of-the-art techniques were sum-

marised and discuss their advantages and limitations. The challenges and

future research directions were also highlighted in this field, such as data

heterogeneity, model generalisation, and interpretability.
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2.1. GENERAL APPROACH OF DL-GSI-IHSF

2.1 General Approach of DL-GSI-IHSF

Although there have been many reviews on GSI-IHSF in previous work [29,

30, 8, 31], these articles mainly introduce a subclass of solar forecasting that

uses Machine Learning (ML) combined with GSI for prediction. To the

best of our knowledge, no comprehensive review summarizes these contents

from the perspective of DL, for example, the specification of data sets, DL

frameworks, and training strategies were used. This paper reviews articles

in the past five years that used DL and ground-based sky images for solar

forecasting. We also compare these articles with other methods for solar

forecasting using ground-based sky images.

The earliest work that used DL and computer vision for GSI-IHSF can be

traced back to the work of Sun et al. [32], who used Convolutional Neu-

ral Network (CNN) to establish the mapping relationship between current

sky images and PV outputs. Since then, many works have improved ex-

isting DL architectures or added new modules to existing ones [33]. After

analysing all published literature, we classify the solar forecasting frame-

work that combines DL and ground-based sky images into three main

stages, as shown in Figure 2.1:

Figure 2.1: DL-GSI-IHSF framework.
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2.1. GENERAL APPROACH OF DL-GSI-IHSF

Data Phase This phase includes the entire process data processing, from

obtaining the raw data to starting the model training. Specifically, it in-

cludes acquiring the raw data, pre-processing the data and matching the

forecast target. Moreover, to improve the efficiency or accuracy of DL

model in data analysis, methods are often used to change the state of the

original data set, such as re-sampling [34], image augmentation [34], or

image distortion [35, 11].

Model Phase This phase aims to train one or more DL models to estab-

lish the mapping relationship from input to output. In this phase, the first

step is to determine the backbone network, and its purpose is to extract

features from the data for forecast. The backbone network is often a vali-

dated DL model in Computer Vision (CV) field, such as VGGNet, ResNet,

3D-CNN, and ConvLSTM. Since the input type of GSI-IHSF can be more

than one modality [33], i.e., images and other numerical information are in-

put to the model simultaneously, the backbone network may contain more

than one backbone model to parsing different modality data. In general,

DL models that use other modalities besides GSI as input can be defined

as ”Hybrid Models,” even if they are under the same DL model framework.

The trained backbone Network can victories the input data and provide it

to the prediction head. The prediction head refers to the part that maps

the data features extracted by the backbone network to the predicted re-

sults. At the same time, in the training process, most works often use some

model optimisation methods and training strategies to improve the model’s

stability, efficiency, and accuracy.

Analysis Phase This phase analyses the performance based on the result

generated from the operation of the trained DL model on a test data set.
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The test set is a separate data set divided before training and contains data

that never appeared during the model’s training. This step aims to validate

the model’s performance under realistic working conditions. A series of

metrics are defined in this phase to describe the model’s performance and

are compared with other benchmark models.

The structure of this paper has been organised as follows. Sections 2.2,

2.3, and 2.4 review the three main phases of the DL-GSI-IHSF framework,

including the data phase, model phase, and analysis phase, respectively.

Section 2.5 provides the current research prospects of GSI-IHSF and sum-

marises this paper.

2.2 Data Phase

The process of acquiring GSI for IHSF using DL methods is similar to

that of non-DL GSI works, which involves regularly capturing sky images

with ground-based sky imaging systems. However, compared to traditional

image analysis techniques or machine learning-based methods, DL methods

often require enormous data and datasets. As a result, data acquisition and

dataset management pose challenges in developing GSI-IHSF models using

DL techniques.

The performance and development of DL models depend highly on data

quantity, quality, and diversity. In supervised learning, the training set size

must meet minimum requirements to estimate the input-output mapping

and prevent overfitting or underfitting adequately. At least a year of data

is necessary for solar energy prediction models to account for time period-

icity [36]. Data quality control for solar energy monitoring platforms de-

mands costly equipment, trained personnel, and maintenance. Data diver-
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sity is crucial in generalising DL models and preventing overfitting while im-

proving their robustness. Creating a well-formulated DL-GSI-IHSF dataset

often demands considerable staffing, time, and finances.

Data augmentation is a widely used technique in deep learning that in-

volves generating synthetic data by applying transformations to the ex-

isting dataset. It is an effective method for increasing the amount and

diversity of training data, thus improving the model’s generalizability and

reducing overfitting. For example, in DL-GSI-IHSF, Paletta et al. [11]

demonstrated that compelling image pre-processing techniques could sig-

nificantly improve the model’s solar irradiance prediction performance.

This section describes the methods for using datasets in existing DL-GSI-

IHSF work, including dataset-related items, dataset pre-processing meth-

ods and dataset enhancement methods. Table 2.1 details all the data rel-

evant information we collected on DL-GSI-IHSF work. Specifically, Sec-

tion 2.2.1 introduces existing datasets and data collection instruments,

while Section 2.2.2 describes the data pre-processing process, including

dataset standardisation and data enhancement. Table 2.1 below includes

detailed information about the data used in the DL-GSI-IHSF work, in-

cluding model inputs, dataset size and partitioning.

2.2.1 Dataset

The GSI dataset is generally obtained by continuously capturing fish-eye

lens-based sky images through a sky image acquisition system. In studies

involving DL models, the sky image acquisition systems used include both

image databases generated from existing sky image acquisition systems in

meteorological stations, such as SRRL [37], SIRTA [38], UCSD-Folsom [39],
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as well as using ready-made cameras for capturing sky images directly to

generate DL datasets, such as SKIPP’D [40]. Maturely designed sky image

acquisition systems are often additionally designed for solar monitoring,

such as using High Dynamic Range (HDR) technology to reduce overex-

posed areas in the Sun’s halo [18, 41], using neutral density filters to reduce

incident radiation [41], and capturing the Sun and cloud information sep-

arately through multiple exposures [42]. As a result, it is believed that

such systems can provide better image quality than ready-made cameras.

However, to our knowledge, no research has been quantitatively investigat-

ing the direct and practical impact of different image qualities on model

quality. Since this article does not focus on the data collection method,

readers interested in the sky image acquisition system may refer to [8].

Inputs Due to the modular nature of DL, models can freely combine

architectures or share parameters. Therefore, the input to the model in the

dataset can be not only the sky image itself. These models with additional

inputs are called hybrid or fused models. This work can be traced back to

Sun et al. [33], where PV Log was incorporated into the prediction model

to train SUNSET for forecasting. The study found that the fused model

combining the current sky image with measured values performed better

than independent models using only sky images or measured values and

thus became popular in subsequent work. Inspired by this work, using

atmospheric observations such as temperature, humidity [43, 44, 45], or

solar-related parameters such as solar altitude, solar azimuth [46], clear-

sky global horizontal irradiance [47], or NWP-related parameters such as

500AOD [48] as fusion inputs have become a new research hot-spot. The

multi-input model will be discussed in Section 2.3.1.
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Outputs Currently, all the GSI-IHSF work based on DL adopts the su-

pervised learning mode, which requires a well-defined expected output for

model training. Thus, the sky image dataset should have a deterministic

output to fit the mapping relationship. It can be the current or future

prediction target, such as GHI or PV output, or indirect parameters of the

prediction target, such as the Clear Sky Index (CSI) representing the rela-

tive irradiance to clear-sky irradiance. In other solar forecasting methods,

using relative coefficients, such as CSI, as the prediction target for Global

Horizontal Irradiance (GHI) has been widely validated to be superior to

directly predicting GHI [49]. However, in DL, whether using CSI as the

prediction target for PV output has better performance [33] is still con-

troversial. Furthermore, since the DL network training based on the loss

function allows multiple possible targets, such as using a series of loss func-

tions, including relative change rate, Zhang et al. [50] achieved excellent

performance in one-minute ahead prediction. The details of this direction

will be discussed in Section 2.3.4.2.

Dataset size The size of the dataset is also an essential factor affecting

the model’s performance. For example, A study showed that using 70K

samples from 2 years can achieve a 10% improvement compared to using

35K samples from 1 year [42]. Additionally, Feng et al. [36] pointed out

that collecting data for a complete solar cycle, i.e., one year of data, is

necessary to ensure temporal diversity in the dataset. They argued that

using datasets collected for less than a year may have limited validity re-

garding model performance. Such datasets may only be convincing in ex-

ploring model feasibility. In addition to expanding data diversity in the

temporal dimension, data diversity can be expanded in the spatial dimen-

sion using multiple sites. Existing knowledge in the field of CV suggests
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that it is practical to train models by migrating pre-training weights us-

ing large-scale pre-training methods. This approach can reduce the data

and time required to train the model through a priory pre-training knowl-

edge [51, 52]. In the work of DL-GSI-IHSF, Nie et al. [53] found that based

on the transfer learning mechanism, it is possible to train with just 20%

of a 10-month dataset to get performance beyond that of training 100% of

the dataset from scratch.

2.2.2 Data Pre-processing

Data pre-processing is converting raw data into input data for the model.

Typically, the data pre-processing process involves two steps: the first step

is data standardisation, including downsampling, segmentation and nor-

malisation. The primary purpose of this step is to reduce the size of the

dataset as much as possible without losing the data characteristics to re-

duce the computational cost of the model fitting. The second step is data

augmentation, including dataset resampling, image distortion correction,

and image data enhancement. This step alters the original features of

the data and aims to improve the model’s ability to extract data features

through data editing to obtain better performance.

2.2.2.1 Data Standardisation

The data standardisation process mainly includes downsampling and nor-

malisation, whereas downsampling includes both dataset and image down-

sampling.
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Data Downsampling In an ideal situation, the more considerable the

amount of data input to a DL model, the better the model’s generalisation

and the less likely it is to overfit. However, training a model on a mas-

sive dataset requires significant time and cost. Therefore, some researchers

choose to extract a subset of the data from a large dataset through down-

sampling for model training and validation [33, 46, 35, 34]. As mentioned,

when downsampling, it is crucial to consider the issue of sample balance,

i.e., the samples should cover all possible data distributions as much as

possible.

Dataset Segmentation Splitting the dataset divides the dataset used

for DL into training, validation, and testing sets. The training and valida-

tion sets are used to fit the model, and the testing set is used to evaluate

the model’s performance in real-world scenarios. Based on our review,

there are three main methods for dataset splitting: (1) random splitting,

which involves randomly sampling the total sample to obtain the training,

validation, and testing sets in specified proportions [54, 43, 46, 55]; (2) con-

tinuous splitting, which involves dividing continuous data into three sets

based on timestamps [47, 56, 57]; and (3) intra-day continuous splitting,

which involves selecting typical days manually as continuous testing/vali-

dation sets [33, 58, 59]. It should be noted that some studies only use the

training and validation sets for model training and directly use the vali-

dation set results as the standard for model evaluation. We believe this

approach lacks rigour [60], and cannot verify whether the improvement in

model performance is due to overfitting. In addition, each subset should

ensure complete data diversity. Specifically, using a validation or dataset

spanning three months or half a year may also lead to erroneous estimates

of model performance. In their work, Paletta et al. [35] used odd and even

23



2.2. DATA PHASE

days of the year to avoid this situation when the dataset size was limited.

Data Normalisation The purpose of general data normalisation is to

scale the input data to the same range in order to eliminate the influence

of the input data scale on the weight distribution in the model. There are

two standard normalisation methods in DL. The first method is to scale by

proportion, where each pixel in each channel (red, green, blue or gray-scale

value) of the image data or each data in a numerical dataset is scaled by

its relative intensity value, which can be represented as equation (2.1).

xnorm
i =

xi −min(X)

max(X)−min(X)
(2.1)

Where X represents the image channel or the numerical dataset and xi

represents the pixel in the image channel or the data point in the numerical

dataset, respectively. It is worth noting that, since the pixel values range

from 0 to 255, a simplified way to apply this method in images is to use

the extremal values of the pixel range as the extremal values of the image,

which simplifies the formula to equation 2.2

xnorm
i =

xi

255
(2.2)

Another common approach is standardising the image information to follow

a normal distribution with mean 0 and variance 1. The specific method

can be represented as equation (2.3)

xstan
i =

xi −mean(X)

σadj

(2.3)

. Where σadj represents the adjusted standard deviation, which is calculated
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as

σadj = max(σ, 1/
√
N) (2.4)

Where N is total element in X set.

In addition to standard DL methods, there are other proprietary methods

from solar forecasting for data standardisation. For image data, unlike stan-

dard CV datasets, sky image datasets often contain only limited colours,

specifically the blue of the sky and the white of clouds. Therefore, using

the relationship between the red channel to blue channel [61, 21, 62] as a

parameter and using a fixed or adaptive threshold to distinguish between

sky and clouds can also be used as an image normalisation method. In [35],

the authors used this method to classify pixels in sky images and used a

matrix representing the pixel classification instead of the original sky im-

ages for prediction. For numerical data, some meteorological applications

use angle information, such as solar or wind direction angles [56], which

can be normalised to 0 to 1 using trigonometric transformations.

2.2.2.2 Data Enhancement

Data augmentation refers to a set of data pre-processing techniques in CV

that enhance the size and quality of a dataset, such as data resampling,

image augmentation, and image pre-classification [63]. It is mainly applied

in CV datasets with limited data to improve the model’s performance and

generalisability by increasing the data diversity. Meanwhile, image pre-

processing methods from the solar energy prediction field, such as fish-eye

image correction, are also applicable in DL-GSI-IHSF.

Enhancement for Imbalanced Dataset Data imbalance in DL datasets

refers to a situation where the number of samples in different classes varies
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significantly. The imbalanced dataset can cause the model to predict more

towards the classes with larger sample sizes and exhibit bias towards the

classes with smaller sample sizes [64]. This imbalance is particularly evident

in short-term solar energy forecasting, where solar energy data collection

stations are often located in sunny areas, resulting in a much larger num-

ber of sunny samples than cloudy samples, which are the minority samples

of interest in short-term solar energy forecasting using ground-based sky

images. For example, in the SKIPP‘D [40] dataset, the sample imbalance

ratio used for prediction is as high as 7.82 [34], which means that the rel-

evant samples only account for one-eighth of all the samples. In machine

learning, there are three types of methods for dealing with such imbal-

anced datasets: data-level techniques that involve resampling the dataset,

algorithm-level techniques that involve redefining the loss function, and

hybrid-level techniques that use both methods [65].

In [34], three resampling methods were tested to address imbalanced

datasets. Approach 1 oversamples the positive and undersamples the an-

tagonistic classes while maintaining the original dataset size. Approach

2 only oversamples the positive class, resulting in an expanded dataset.

Approach 3 only undersamples the negative class, resulting in a reduced

dataset. Regarding oversampling, replicate, Gaussian noise, colour cast-

ing [66], and synthetic minority over-sampling technique (SMOTE) [67]

were tested to augment samples. It was found that the first two meth-

ods significantly improved the performance of the nowcasting method. In

contrast, the third method was effective only at specific undersampling

rates—however, none of the three methods significantly improved model

performance in the prediction task.

In addition to using sampling methods to balance the dataset, another

approach is to directly classify the dataset into subsets using validated sta-
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tistical metrics or physical methods and then train the model on the classi-

fied subsets. In the work of Nie, et al. [59], the dataset was pre-segmented

into the clear sky, cloudy, and overcast subsets using the Clear Sky In-

dex (CSI) and a physical method based on solar regions, and DL models

were trained on each subset. This approach directly avoids dataset imbal-

ances under different weather conditions, resulting in an 8% improvement

in model performance compared to training on the original dataset.

Enhancement for Images Image augmentation refers to transforming

and perturbing images in various ways to generate new images for training

and optimising DL models. Research on image augmentation for classical

DL methods applied in the solar forecasting area is minimal. For image

transformations, techniques such as flipping, rotation, cropping, and scaling

are unsuitable for all-sky images captured with fish-eye lenses. [34] has used

techniques such as adding Gaussian noise, colour transformation, bright-

ness adjustment, SMOTE, and image blending for image augmentation.

However, the results show that such methods do not significantly improve

the forecast model’s performance.

In addition to the general image augmentation methods in DL, some meth-

ods based on ground-based sky images have also attracted attention in

recent years. For example, high dynamic range (HDR) technology uses

multiple fast consecutive images with different exposure times to blend

into one image, to address the over-exposure or under-exposure caused by

the high brightness contrast between the sun region and cloud layer in sky

images [68]. The multiple images this technology generates can be concate-

nated into one sample and fed into a CNN model [50, 42]. The work of

Zhang et al. [50] found that using multiple exposures of high dynamic range

to generate composite images improves the model’s performance by about
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10% compared to using a single image. However, this technology needs

to be implemented during the image collection phase. Another commonly

used sky image pre-processing method is distortion correction. Fish-eye

lenses cause significant distortion in the samples, resulting in non-uniform

spatial geometric relationships within the image. Therefore, distortion cor-

rection is often used in short-term non-DL-based ground-based sky im-

age forecasting. Previous work systematically tested the application of

distortion correction in DL methods and found that it did not improve

the performance of the deep model [35]. However, another pre-processing

transformation method, SPIN, proposed by Paletta et al. [11], uses a polar-

coordinate transformation to convert fish-eye images to Cartesian coordi-

nates. This method converts the relative position relationship between the

sun and cloud layers in the image into a structure that is more conducive to

CNN learning and has achieved significant results. In 2-minute forecasting,

this method significantly increased the model prediction score from 8.4%

to 23.1%.
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Table 2.1: Datasets used in the DL-GSI-IHSF work.

Ref Input (excluding GSI) Collection time Total Samples Test/Val. set ratio
Val/Test set

splitting method

[32] GHI, PV Output 7 M 36804 17.8%/10.8% Intra-day consecutive

[50] PV Log 1.5 Y N/A 20% Random

[69] PV Log 1 Y
76908 @Baseline,

830069 @High Freq.
10.30% Intra-day consecutive

[70] N/A 11 M N/A 45%/14% Intra-day consecutive

[33] PV Log 1 Y
76908 @Baseline,

830069 @High Freq.
10% Intra-day consecutive

[71] PV Log 1 Y 76908 10% Intra-day consecutive

[54] GHI 11 H 1580 20% Random

[58] GHI 16 D N/A 56.00% Intra-day consecutive

[47] DNI, Clear DNI 2 Y N/A 5%/45% Consecutive

continued in next page. . .
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Table 2.1 Datasets used in the DL-GSI-IHSF work (Continued).

Ref. Input (excluding GSI) Collection time Total Samples Val/Test set ratio
Val/Test set

splitting method

[43] N/A 1 Y 25000 20% Random

[56]

Clear GHI, RH, Wind Speed

Solar angle,Temperature,

Surface pressure

12 Y @Golden,

7 M @Tuscan

1297410 @Nowcast,

31005 @Forecast

47.2% @Nowcast, Golden

17.3% @Nowcast, Tuscan
Consecutive

[57] N/A 6 Y 155644 16%/33% Consecutive

[59] N/A 1 Y 102885 9%/9.6% Intra-day consecutive

[72] N/A 10 Y 259949 30%/20% Consecutive

[73] N/A 1 Y 25000 10%/10% Random

[74] N/A N/A 6000000 N/A -

[75] N/A 20 D N/A 25% Intra-day consecutive

[76] N/A 5 D N/A 70 sample Intra-day consecutive

continued in next page. . .
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Table 2.1 Datasets used in the DL-GSI-IHSF work (Continued).

Ref. Input (excluding GSI) Collection time Total Samples Val/Test set ratio
Val/Test set

splitting method

[46] GHI, Solar angle 7 M 20000 20% Random

[77] N/A
16 M @Golden,

16 M @Folsom

35552 @Golden,

341572 @Folsom

10.8%/9.5% @Golden,

15.8%/6.8% @Folsom
Consecutive, Random

[55] PV Log 3 M 31273 25.5%/14.8% Random

[42] GHI 3 Y 55000 18.18%/18.18% Random

[34] PV Output 2.5 Y 135527
10%/4% @Nowcast,

9%/7% @Forecast
Intra-day consecutive

[44]
GHI, RH, Wind Speed,

Temperature
4.5 M N/A 20%+3 typical days Intra-day consecutive

[78]
DNI, RH, Air mass,

Solar zenith angle
2 Y N/A 18%/50% Consecutive

continued in next page. . .
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Table 2.1 Datasets used in the DL-GSI-IHSF work (Continued).

Ref. Input (excluding GSI) Collection time Total Samples Val/Test set ratio
Val/Test set

splitting method

[79] GHI 2 Y 52429 25%/25% Consecutive

[45]

PV Log, Rainfall, Wind Speed,

Rainfall intensity, Temperature,

Wind Direction,

Mean sea level pressure,

6 M N/A 20% Random

[80] N/A 3 Y 56640 17.8%/20.3% Consecutive

[81] GHI 3.75 Y N/A 26.7%/26.7% Consecutive

[82] Clear Sky Index 3 Y 141805 34.10% -

[83] N/A N/A 24000 5%/5% Random

[36] N/A 6 Y N/A 16%/33% Consecutive

continued in next page. . .
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Table 2.1 Datasets used in the DL-GSI-IHSF work (Continued).

Ref. Input (excluding GSI) Collection time Total Samples Val/Test set ratio
Val/Test set

splitting method

[53] GHI,PV Output

32 M @Stanford,

3 Y @SIRTA,

1 Y @DEWA

135527 @Stanford,

448268 @SIRTA,

91979 @DEWA

9%/7% @Stanford,

10%/2% @SIRTA,

9%/7% @DEWA

Consecutive,

Intra-day consecutive

[84] GHI 4 M 1186 15%/15% Random

[40] PV Log 3 Y N/A N/A Intra-day consecutive

[35] N/A 3 Y N/A 12.5%/12.5% Intra-day consecutive

[11] N/A 3 Y N/A 9.1%/9.1% Intra-day consecutive

[48]

500AOD, GHI, Clear GHI,

Surface pressure,

Temperature, Wind Speed,

Total precipitation

3 M 5110 15% Random

continued in next page. . .
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Table 2.1 Datasets used in the DL-GSI-IHSF work (Continued).

Ref. Input (excluding GSI) Collection time Total Samples Val/Test set ratio
Val/Test set

splitting method

[85] GHI 1 Y 25000 20% Random

[86]

GHI, Surface pressure,

Temperature,

Wind Speed

6 Y N/A 16.7%/16.7% Consecutive

[87] N/A 1 Y N/A N/A -
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2.3 Model Phase

Model development, debugging, iteration and optimisation are the core of

DL-GSI-IHSF. The dominant approach to building a DL-GSI-IHSF model

is to migrate proven frameworks from the CV domain. Researchers need

first replicate the proven backbone model architecture of the CV field. Sec-

ondly, for the multi-source, high-dimensional, and complex spatiotemporal

relationships, researchers need to redesign the model based on previous

solar energy prediction experience, including network architecture, model

fusion algorithms, loss functions, prediction heads, and other aspects, in or-

der to optimise the model performance and to enhance the generalisability

of the model.

This section introduced the relevant content of the DL-GSI-IHSF model.

Specifically, section 2.3.1 introduced the model prediction mechanism, sec-

tion 2.3.2 introduced the main backbone models currently used, section 2.3.3

adjustable variables in the model framework, including validation of valid-

ity, optimisation of hyperparameters, reduction of randomness and other

details, and section 2.3.4 introduced the prediction head for generating

model predictions.

Table 2.2 below includes detailed information about the model used in the

DL-GSI-IHSF work. The table includes the DL-GSI-IHSF backbone model,

target attributes, forecast time relevant items, and optimisation algorithms

methods.
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2.3.1 Forecasting Mechanisms

The overall prediction mechanism of the DL-based solar forecasting method

using sky images can be summarised as follows: a representative future-

state feature vector is extracted from the input at the current time using

a backbone network, which is then converted to a prediction output using

a prediction head. The following equation can represent this mechanism:

yt+∆t = Fbackbone(X,Wbackbone) (2.5)

yt+∆t = Fhead(yt+∆t,Whead) (2.6)

where yt+∆t and yt+∆t is the predicted value and feature vector after ∆t

time, respectively, F is the model calculation function, X is the model in-

put, W is the trained model weight.

According to our investigation, based on the model’s inference logic frame-

work, the models can be classified into two different categories based on

the following criteria: input content and backbone model architecture. The

former determines the input-to-output mapping logic of the model’s extrap-

olation, while the latter determines the calculation logic within the model.

Classification by Inputs Content Categorised by input content, deep

solar energy prediction models aim to clarify the mapping relationship be-

tween the input X to the feature vector y and the predicted output y

when X is added or modified. As mentioned above, the model’s input can

include only one modality, such as an image or an image sequence, or mul-

tiple modalities, such as an image and numerical data. When the input

modality of the model only includes sky images, we classify the model as

a single modality model. The prediction mechanism of this type of model

is the same as the overall prediction mechanism, directly establishing the
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mapping relationship between the image and the prediction target through

the backbone model, as shown in equation (2.7).

yt+∆t = Fbackbone(Ximg,Wbackbone) (2.7)

In earlier work, Sun et al. [33] found that adding PV log as numerical input

can effectively improve the model’s forecast performance, making its Fore-

cast Skill (FS) higher than that of models with only image or numerical

inputs. Since then, much work has used such multimodal input models.

The design of Sun et al. was followed in some work to fuse numerical

measurements of the current moment into the network architecture for im-

proved prediction of future values [58, 55, 42, 81, 85]. In addition. Work has

been done to further extend the model architecture based on this concept,

using clear sky irradiance [47], solar angles [46], meteorological data [56, 45]

including temperature, humidity, pressure, wind conditions, and Numerical

Weather Prediction (NWP) parameters [48] such as AOD500 added to the

model to aid prediction. The comparison experiment by Kong et al. [55]

found that incorporating numerical inputs as mixed inputs with image net-

works resulted in significantly better quantitative prediction performance

than all models based solely on image inputs. In their work, this hybrid

input method made it the only model to outperform the baseline model

in quantitative prediction. It is worth noting that the correlation of ad-

ditional parameters directly determines the effectiveness of the aid to the

model prediction. Therefore, using cross-validation or ablation experiments

to verify the correlation of input parameters with the model prediction tar-

get is necessary. For example, Zuo et al. [48] applied a linear correlation

analysis approach to screen a range of NWP parameters and excluded mul-

tiple mean wind speed and station pressure parameters with low correlation
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to the GHI.

When the model has more than one modality input, according to the mul-

timodal learning classification method, the model can be divided into data-

level fusion, feature-level fusion, and decision-level fusion according to the

interaction and modality resolution order of different modalities. Taking

image data and numerical data as an example, data-level fusion means ex-

tracting and fusing data between different modalities and inputting them

into the model as a unified input. This can be expressed as decomposing

Equation (2.7) as follows:

Xbiomodal = f(Ximg,Xnum) (2.8)

yt+∆t = Fbackbone(Xbiomodal,Wbackbone) (2.9)

Where f represents the algorithm for data fusion, which can be matrix con-

catenation, matrix addition, or other algorithms, in the early exploration

of data fusion in [71], feasible data-level fusion was achieved by upsam-

pling the numerical input to the same size as the image matrix, and then

with different algorithms, such as adding, multiplying, and concatenating

to obtain the fused data. However, the result shows that such methods

did not surpass the feature- and decision-level fusion methods. Recently,

in a study by Paletta et al. [35], it was suggested that adding the numeri-

cal data by upsampling and concatenating it into the image as the fourth

channel (making RGB become RGBI, where I stands for irradiance) can

improve the model’s performance, especially when using the ConvLSTM

model as the backbone architecture. Feature-level fusion, which fuses the

features obtained by encoding the data through a particular encoder, is

currently the most popular architecture for deep solar energy prediction

using multiple modalities. Feature-level fusion fuses the features obtained

38



2.3. MODEL PHASE

by encoding the data, which reduces the total computational cost compared

to data-level fusion. Feature-level fusion can be further divided into early

fusion and late fusion. The critical difference is whether the main module

responsible for model inference is before or after feature fusion. The follow-

ing equation shows the detailed process of equation 2.5 in the feature-level

fusion.

yimgt+∆t
= Fimg(Ximg,Wimg) (2.10)

ynumt+∆t = Fnum(Xnum,Wnum) (2.11)

ybiomodalt+∆t = f(yimgt+∆t
,ynumt+∆t) (2.12)

yt+∆t = Ffusion(ybiomodalt+∆t,Wfusion) (2.13)

Currently, almost all hybrid DL models for multimodal solar energy fore-

casting, which belong to feature-level fusion, use the method of concate-

nating feature vectors for modality fusion [33, 58, 42, 44, 78, 45, 82, 48].

The concatenated longer vector of image and numerical feature vectors is

used as the model’s fused feature vector. This method of directly connect-

ing two eigenvectors allows for straightforward modal fusion. However,

based on experience in multimodal learning, it is shown that this method

has some potential drawbacks [88]. First, it oversimplifies the potential

semantic space representation between the two classes of feature vectors

to level the process of projecting each of them to a shared semantic space.

Since different backbone networks usually extract feature vectors, they of-

ten have different semantic space representations. Directly concatenating

vectors ignore the existence of such potential representations. Secondly,

there is no information exchange during the vector concatenation process,

and the information interaction process is realised by subsequent cross-

modal network extraction. In other words, the direct concatenating method

has a lower utilisation rate of information. Although the above two views
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have been repeatedly verified in text-image multi-modal [89], they are still

not widespread in deep multimodal networks for solar energy prediction,

and the vector concatenation method is still the most popular method at

present. Other viable frameworks based on multimodal learning, such as

probabilistic graphical models [90], deep canonical correlation analysis [91],

generative adversarial network [92] and attention mechanism [93], have not

yet been practised in the DL-GSI-IHSF.

Decision-level fusion refers to assigning the deep learning task to two or

more different sub-networks for prediction and then fusing the results based

on the outputs from all models. It can be represented as:

ynumt+∆t = Fnum(Xnum,Wnum) (2.14)

ynumt+∆t = Fnumhead(ynumt+∆t,Wnumhead) (2.15)

yimgt+∆t
= Fimg(Ximg,Wimg) (2.16)

yimgt+∆t = Fimghead(yimgt+∆t
,Wimghead) (2.17)

yt+∆t = f(ynumt+∆t, yimgt+∆t) (2.18)

Decision-level fusion can be more flexible since the sub-models used for fu-

sion do not necessarily need to be deep-learning models. For instance, clas-

sic non-deep learning methods for solar forecasting based on image analysis

can be considered a generalised form of decision-level fusion. Specifically,

these methods use a high-accuracy clear sky model as the first part of the

decision and a sky image-based solar irradiance attenuation rate prediction

as the second part. Finally, the two parts of the decision are multiplied

to obtain the final result. Using DL-based decision-level fusion is a hy-

brid model that combines one of the parts with deep learning techniques.

Venugopal et al.‘s [71] work first explored this strategy in a deep learning
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model. In their two-step model, they use PV log as input to predict the

PV output using four different prediction models: a persistence model, an

intelligent persistence model, an auto-regression model and anMultilayer

perceptron (MLP) model, using only numerical inputs to forecast in the

first step. Then, in the second step, they used a CNN network with only

image inputs to predict the error value of the numerical network prediction

results to correct the prediction. This method achieved the best results in

hundreds of experiments with various fusion methods. However, the au-

thors believe that since the two sub-models cannot share information, the

information cross-utilisation rate of this method is almost non-existent, and

its potential for improvement is relatively small compared to other fusion

methods. Another feasible decision-level fusion method is the weight al-

location method. In [73] work, the authors used three different models to

generate prediction results and ultimately used an adaptive weight alloca-

tion system consisting of MLP to allocate weights respectively. The three

models jointly obtain the final decision output. As expressed by the au-

thors, this method enables the model’s superiority under different weather

conditions to be fully reflected with a reasonable allocation of weights.

Classification by Forecast Mechanisms In any form of the predictive

model, the model needs to infer future information based on the information

collected in the present. In the DL-GSI-IHSF work, the model’s inference

about the future can be implicitly included in the image feature extraction

process, or the inference about sequence features can be implemented using

a specialised Recurrent Neural Network (RNN) model. There are currently

three mainstream architectures for implementing predictive mechanisms.

The first method is the implicit method, which assumes that the spatial

feature encoder implicitly includes the time feature, and the spatial features
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establish the mapping relationship between the current input X and the

future feature vector yt+∆t. For instance, in CNNs, Equation 2.5 can be

rewritten as follows.

yt+∆t = FCNN(Xt,WCNN) (2.19)

Due to its nature, this method has strong usability and is used as a bench-

mark model in many machine vision prediction tasks. Moreover, since

the patterns are non-recursive and the convolutional computation supports

massive parallelism, making it is less computationally expensive than other

methods. However, we believe this direct inference method lacks internal

reasoning for time features within the model, thus resulting in limited inter-

pretability. The second method uses a recurrent neural network to extract

spatially encoded image features, such as LSTM. This approach usually

involves simultaneously establishing a mapping relationship between im-

ages and feature vectors through a spatial feature encoder. Then, a time

sequence of spatial feature vectors is constructed by parallelising multiple

feature vectors. The next moment’s spatial feature vector is recursively

obtained by searching for patterns in this sequence. The following formula

can represent this process:

y[t,t−∆t,t−2∆t,... ] = FCNN([Xt,Xt−∆t,Xt−2∆t, . . . ],WCNN) (2.20)

yt+∆t = FRNN(y[t,t−∆t,t−2∆t,... ],WRNN) (2.21)

The recursive nature of RNNs allows for continuous prediction within the

same model, referred to as multi-step forecasting. It should be noted

that models performing extrapolation use the output feature vector from

the previous step as the input, causing error accumulation and perfor-

mance degradation in long sequence prediction. In addition, the non-
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parallelisability of recursive computations results in lower computational

efficiency for models with similar complexity than the first method.

The third method involves hybrid network architectures, such as 3D-CNN [94]

and ConvLSTM [95], which simultaneously encode spatial and temporal

information. This approach typically takes a sequence of images as in-

put and extracts both spatial and temporal features. 3D-CNN is a typical

spatiotemporal encoding network architecture, which requires stacking the

images in the channel dimension to form a time series and sliding the

convolutional kernels into three dimensions to capture spatiotemporal cor-

relations. Compared to standard CNNs, this method can better capture

temporal information. Another typical spatiotemporal network architec-

ture is ConvLSTM, which evolved from the standard LSTM network. Un-

like LSTM, ConvLSTM takes a four-dimensional sequence of images rather

than a sequence of feature vectors as input. Replacing matrix multiplica-

tion with convolutional operations within the LSTM architecture extracts

features directly from continuous three-dimensional matrices and performs

recurrent calculations. The generalisation process for this type of approach

can be expressed as follows:

yt+∆t = FSTN([Xt,Xt−∆t,Xt−2∆t, . . . ],WSTN) (2.22)

The STN abbreviation stands for the spatiotemporal network.

Current research has shown that ConvLSTM is one of the state-of-the-art

models among multimodal models. Its 10-minute FS reaches 20.4%, which

means 20.4% reduces its Root Mean Square Error (RMSE) loss compared

to the baseline (intelligent persistence) model. However, the model still has

limitations, such as lower sensitivity to sudden solar slope events and higher

training costs than LSTM. Having reviewed all the available articles [50, 55,
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42], we believe that the one conclusion that can be drawn is that methods

using temporal inference modules outperform implicit methods in terms of

both qualitative and quantitative predictors.

2.3.2 Backbone Network

In this section, we focus on the backbone models used in the models men-

tioned in the review, namely the feature encoders. Depending on the dif-

ferent roles of the encoders, we classify them into spatial, temporal, spa-

tiotemporal hybrid and multimodal fusion encoders. In addition, we list

several reference-worthy cutting-edge deep learning models that have not

yet been applied in solar forecasting.

2.3.2.1 Spatial Feature Encoders

The image feature encoder is a crucial component of computer vision-based

deep networks. Two mainstream image feature encoders in deep learning

are Convolutional Neural Network (CNN) [96, 97, 98, 99] and Vision Trans-

former (ViT) network [100]. Due to the long development history and

more extensive related research, the CNN network has been more thor-

oughly studied in the field of image analysis. Thus there is a richer body of

work related to solar energy forecasting. In contrast, the ViT network was

first proposed in 2020 and has been widely acclaimed for its outstanding

performance in deep learning. However, due to its more complex model

structure, shorter research time, and higher training costs, it has not yet

received widespread attention in solar energy forecasting.
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Convolutional Neuron Networks Convolutional Neural Network (CNN)

are a type of deep neural network used for image recognition and process-

ing, inspired by the workings of neurons in the visual cortex. At the heart of

a CNN is the convolutional layer, which uses convolution kernels to extract

local features from an image. Each convolutional layer contains multiple

convolutional kernels that simultaneously convolve the model. The com-

putation process can be represented as:

[H]i,j,n =
∆∑

a=−∆

∆∑
b=−∆

[V ]a,b,c,n [X ]i+a,j+b,c (2.23)

Where X is the input tensor (image) with length i+ a and width j + b and

channel c, V is the number of n convolutional kernels with length a and

width b and channel c, H is the feature tensor of input image under con-

volutional kernels, ∆ is convolution kernel sliding boundaries. By stacking

multiple layers of convolutional and pooling operations, a CNN can learn

hierarchical and abstract representations of an image, which can then be

mapped to corresponding labels or categories. As shown in Figure 2.2

Figure 2.2: Data flow in LeNet [96], Figure token form [101]

Compared to traditional fully connected neural networks, CNNs have the

properties of weight sharing and local connectivity, significantly reducing

network parameters and computation costs and enhancing training effi-

ciency and generalisation ability. In a CNN, each convolution kernel only
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connects with a small local area of an image. These convolution kernels

share the same set of parameters, enabling them to extract and represent

features of an image in a parameter-efficient manner. CNNs include pooling

layers, which downsample feature maps, reducing their size while retaining

essential features.

In recent years, CNNs have achieved significant progress in areas such as

image classification, object detection, and semantic segmentation, making

them a key research focus in deep learning. For instance, AlexNet [97],

VGGNet [98], ResNet [99] and DenseNet [102] are CNN models that have

achieved good results in image classification competitions. It is, therefore,

widely used in image coding work for solar irradiation forecasts.

Vision Transformer The practical application of Vision Transformer

(ViT) has yielded an impressive repertoire of state-of-the-art performances

in several computer vision tasks [100]. Specifically, ViT has surpassed

CNN models in the highly esteemed ImageNet image classification compe-

tition [103]. Furthermore, ViT has demonstrated highly competitive per-

formances in other computer vision tasks, such as object detection and

semantic segmentation. These remarkable achievements have opened up a

new vista for ViT, positioning it as a highly viable alternative to conven-

tional CNN models.

Aside from its outstanding performance, ViT possesses several salient char-

acteristics that have engendered its widespread application in computer

vision. One such attribute is its strong interpretability, making it an at-

tractive option for tasks that demand interpretability, such as medical di-

agnosis [104]. This remarkable feature of ViT is based on the fact that

it leverages self-attention mechanisms to encode an input image into a se-
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quence of tokens, facilitating straightforward interpretation, as shown in

Figure 2.3 below. In contrast to CNNs, the logical inference of ViT relies

on the correlation between image patches defined by the positional embed-

ding. The model is sensitive to absolute and relative spatial relationships

between image patches. Therefore, we consider ViT a promising model

architecture for solar forecasting work. However, despite its outstanding

Figure 2.3: Architectural of ViT [100], Figure token form [101].

performance and exceptional interpretability, ViT still presents some chal-

lenges that must be addressed. These challenges include significant compu-

tational and memory consumption, prolonged training and inference time,

and the need for further research to enhance its computational efficiency

and performance. Addressing these challenges is critical to ensuring that

ViT remains a widely applicable technology in computer vision [105].
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Furthermore, in the field of solar energy prediction, the utilisation of ViT

is limited and presents several challenges. To our knowledge, only a mea-

gre number of works have exploited ViT in the context of solar irradiance

prediction [106]. Regrettably, these works exhibit considerable variations

in their model data sets and evaluation metrics compared to conventional

deep learning frameworks based on CNNs. Therefore, the overall effective-

ness of ViT in solar energy prediction is difficult to ascertain and remains

uncertain.

Nevertheless, there is a growing need for better and more accurate predic-

tion models in solar energy. The utilisation of ViT in this domain presents

an opportunity to overcome some of the limitations of conventional deep

learning frameworks. However, addressing the challenges above and lim-

itations is necessary to leverage the full potential of ViT in solar energy

prediction.

2.3.2.2 Temporal Feature Encoder

In the deep learning-based GSI-IHSF framework, inter-temporal feature

extraction and future feature prediction are promising directions. As men-

tioned earlier, the extraction of serialised information relies on Recurrent

Neural Network (RNN), which requires serialised input items. Among

them, Long Short-Term Memory (LSTM) is the most popular serialised

feature extraction model. It can effectively capture continuous sequential

patterns and long-term data dependencies and has received the most ex-

tensive attention and research in solar energy prediction. Meanwhile, due

to the rapid development of deep learning, some emerging models, such

as convolutional gated recurrent networks, have also started to attract the

attention of researchers.
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Long and short-term memory networks Long Short-Term Memory

(LSTM) is a highly specialised RNN type widely applied in several fields, in-

cluding time series prediction and natural language processing. The salient

characteristic of LSTM is its unique loop unit structure, composed of input,

forget, and output gates, as shown in the equation below. These gates are

highly effective in mitigating the issues of gradient vanishing and exploding

that are often encountered in traditional RNN models when dealing with

long sequences.

Figure 2.4: Recurrent Unit of LSTM [107], Figure token form [101].

It = σ(XtWxi + Ht−1Whi + bi), (2.24)

Ft = σ(XtWxf + Ht−1Whf + bf), (2.25)

Ot = σ(XtWxo + Ht−1Who + bo), (2.26)

C̃t = tanh(XtWxc + Ht−1Whc + bc), (2.27)

Ct = Ft ⊙Ct−1 + It ⊙ C̃t, (2.28)

Ht = Ot ⊙ tanh(Ct) (2.29)

where I, F, O are the input, forgetting and output gates, respectively, which

are determined by the hidden state Ht−1, i.e. short-term memory from last

moment, with input X, and bias term b through the Sigmoid activation
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function. Thereafter, I, F, O gating for the input node C̃, the previous

moment’s long term memory Ct−1 and the current long term memory C,

respectively, to determine the direction of data flow.

LSTM is famous for forecasting future sequence values in time series pre-

diction. The fundamental idea behind LSTM is to predict future state val-

ues by incorporating historical and current input information. Compared

to traditional RNN models, LSTM is better suited for handling long se-

quences and long-term dependencies and exhibits enhanced generalisation

and robustness.

Despite its many advantages, LSTM still has certain limitations. One of

the common problems with RNN networks is the long training time, as re-

current networks require recursive computation and, therefore, cannot be

massively parallelised, resulting in slower training relative to parallelisable

networks. In addition, when dealing with highly long sequences, the LSTM

still suffers from gradient disappearance, failing the model prediction func-

tion.

In solar energy prediction, LSTM is commonly used to predict future se-

quence values in serialised image feature vectors to achieve future state

prediction. In the early work of Zhang, LSTM based on image feature

sequences achieved the best performance in quantitative prediction, out-

performing CNN works without a time encoder under all weather condi-

tions. Recent work in DL-GSI-IHSF, LSTM models have been widely used

in some state-of-the-art composite model architectures [48, 86, 78, 79, 56,

43, 45, 53].

Convolutional Gated Recurrent Network Convolutional Gated Re-

current Network (CGRN) [108] is an advanced deep learning model that
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combines the strengths of Convolutional Neural Networks (CNN) and Re-

current Neural Networks (RNN), specifically designed for processing time

series data. The unique architecture of CGRN consists of a complex com-

bination of convolutional layers, recurrent layers, and gated mechanisms.

The convolutional layer is responsible for extracting local features from the

input data, while the recurrent layer simulates time dependencies in the

data. The gated mechanism, inspired by the use of gates in Long Short-

Term Memory (LSTM), controls the flow of information between different

layers and helps to avoid the problem of vanishing gradients.

Recent studies [35] have applied this framework to predict the future states

in solar energy prediction, achieving significant progress. Results show that

as a single-modal model with an only image input, its prediction score

surpassed ConvLSTM [42], based on the two modalities of sky images and

meteorological data. The framework and its subsequent study [11] have

achieved state-of-the-art performance in deep learning.

Compared to solar energy prediction models based on LSTM, CGRN has

several advantages. Firstly, it can capture local and global features of time

series data by utilising 3D convolutional layers. Secondly, it can simulate

sequence relationships in the data by adopting recurrent layers and gated

mechanisms. Thirdly, because the convolutional layer dramatically reduces

the required recurrent connections, it is more computationally efficient than

traditional RNNs.

The application of CGRN in solar energy prediction has achieved significant

achievements, providing unprecedented accuracy and stability in predict-

ing future states. The emergence of CGRN represents a significant break-

through in deep learning, bringing enormous potential for future research

and practical applications in different fields.
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2.3.2.3 Spatio-temporal Feature Hybrid Encoder

A spatiotemporal feature fusion encoder is an architecture that integrates

spatial and temporal feature search mechanisms within a single encoder

module. This encoder type achieves joint feature extraction by complex

integration, making it difficult to analyse its interpretability independently.

Currently, validated spatiotemporal feature encoders that can be used for

solar energy prediction include 3D-CNN [94], ConvLSTM [95], PRED-

Net [109] and PhyDNet [110].

3D-CNN Three-dimensional convolutional neural networks (3D-CNNs)

are an iterative version of the CNN network. In the original work, the

authors aimed to improve the model’s ability to analyse multi-layer brain

MRI images by adding a dimension to the 2D convolution kernel to enable

3D convolution [94]. This method is widely used as a spatiotemporal joint

feature encoder for image stack sequences, as it can extract cross-image

features while extracting 2D image information.

The structure of 3D-CNN is quite similar to that of 2D-CNN, but with

the addition of a time dimension. The network takes in a sequence of

three-dimensional volumes, each corresponding to a frame in an image se-

quence. The network comprises convolutional layers, pooling layers, and

fully connected layers, with the primary objective of learning spatial and

temporal features from the input data. The formula of 3D convolutional

can be described as:

[H]i,j,k,n =
∆∑

a=−∆

∆∑
b=−∆

∆∑
c=−∆

[V ]a,b,c,d,n [X ]i+a,j+b,c,k+d (2.30)

In solar energy prediction, 3D-CNNs have been applied in multiple works
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and have been proven effective in capturing spatial and temporal patterns,

thus improving prediction accuracy [47, 82, 35]. However, recent works [42]

have shown that 3D-CNNs still lag behind state-of-the-art models in solar

energy prediction. Therefore, further research is needed to address this

limitation and improve the performance of 3D-CNNs in solar energy pre-

diction. In addition, due to the increased computational complexity of the

encoder, 3D-CNNs also have a significantly higher computational cost.

ConvLSTM In solar forecasting, ConvLSTM (Convolutional Long Short-

Term Memory) is a cutting-edge deep learning model that combines the

strengths of both convolutional neural networks (CNNs) and long short-

term memory (LSTM) networks. ConvLSTM is designed to handle com-

plex spatiotemporal data, such as sky and satellite images, by embedding

spatial feature extraction in a time sequence model.

Like LSTM, ConvLSTM includes a memory cell that retains information

over time and three gates that control the flow of information in and out

of the cell. However, in ConvLSTM, the matrix multiplication operation

in LSTM is replaced with convolutional operations, enabling the model to

capture spatial features. In ConvLSTM, the input is a 4D tensor repre-

senting a sequence of 3D matrices. The network processes data in space

and time, enabling it to model spatial and temporal dependencies in the

data. The formula can express the process

Compared to the concatenation of CNN+LSTM structure, ConvLSTM of-

fers several advantages. First, it can jointly model spatial and temporal

features in the data, allowing it to deal with more complex spatiotemporal

patterns. Second, using embedded convolutional calculations, ConvLSTM

is more computationally efficient than CNN+LSTM networks.
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Kong et al. [55] first introduced the ConvLSTM model in DL-GSI-IHSF

and found that it could capture the most Ramp Events (RE) among all

the models, achieving a balanced accuracy of 74.75%. However, the au-

thors also discovered that, despite capturing the most RE, the ConvLSTM

model still lagged behind the LSTM model in quantitative RE measure-

ments. In Paletta et al. [42] benchmark study, the authors systematically

compared four state-of-the-art models, including CNN, LSTM, 3D-CNN,

and ConvLSTM, and found that the ConvLSTM model still exhibited su-

perior performance among the models. The authors attributed this to its

good spatiotemporal feature extraction relationship. However, the authors

also found that in two ultra-short-term prediction scales, 2-minute and

6-minute lead prediction, the performance of the ConvLSTM model was

lower than that of the LSTM and 3D-CNN models. At the same time, a

common problem with all fusion models is that they still behave like a very

smart SPM, lacking pre-judgment of RE.

However, ConvLSTM also has some limitations. As a highly complex

model, interpreting it remains a significant challenge. Furthermore, as an

LSTM model based on RNNs, linear training processes require significant

computational resources, rendering training cost, debugging, and deploy-

ment as limiting factors.

Deep Predictive Coding Networks Deep Predictive Coding Network

(PredNet) is a self-supervised deep learning architecture for predicting fu-

ture frames in videos [109]. Inspired by the workings of the human brain,

which is more interested in unexpected elements than expected ones, the

network simulates a neural system consisting of four modules: input, rep-

resentation, prediction, and error. At each time step, the model uses a

representation module composed of ConvLSTM and a prediction module
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to jointly make image predictions and compare them with the input brought

by the input module. The error module then calculates the ”unexpected”

error portion. Finally, the error is fed back to the representation module

for training and as input for predicting the next time step. At the same

time, the representation module of the next time step returns data to guide

the current representation module.

Unlike all other methods mentioned, PredNet is a self-supervised or unsu-

pervised model. The model’s predictive behaviour is recursive, with the

input of the next frame being the current frame’s expected output and

the current frame’s input being the expected output of the previous frame.

This unsupervised approach is a double-edged sword, as the data set can

be trained without a clear goal, but at the same time, the model cannot be

constrained by specifying a goal. In addition, unsupervised models require

higher-quality data sets than supervised learning.

A feasibility test was performed on solar energy direction prediction using

PredNet [55]. The authors extracted the feature vectors from the PredNet

representation module at each time step and used a fully connected layer

to generate predictions. The results show that PredNet has competitive

quantitative and qualitative predictive performance. However, the authors

also found that during periods of stable irradiance, the prediction error of

PredNet was still more considerable than that of other models. In addition,

due to the cumulative effect of error in recursive models, the prediction for

cloud boundaries in the image is unclear.

Although this method has not achieved optimal performance, self-supervised

learning, as a more objective approach, still has great potential in solar en-

ergy prediction.
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Physical Dynamics Network Physical Dynamics Network (PhyDNet)

[110] is another popular video frame prediction network, which is also

trained through self-supervision by recursive behaviour, i.e., each input

frame is also the expected output of the previous frame. The highlight of

this model is that it has a potential physical constraint on the predicted

content. In the prediction module of the model, there are two branches:

the first one is the recursive model prediction through ConvLSTM, and

the second one is the explicit physical constraint, i.e., partial differential

equations dynamics, for prediction. Both are combined by addition and

complement each other.

In the experimental case of solar forecast [74], the authors found that phys-

ical constraints only require added few parameters and can outperform the

single-mode ConvLSTM that only inputs images in quantitative perfor-

mance. We believe that the importance of PhyDNet lies in its exploration

of feasible methods for integrating physical constraints into deep learn-

ing models, which is crucial for the interpretability and robustness of the

model.

2.3.2.4 Feature Fusion Encoder

The term ”feature fusion encoder” refers to the part of the fusion process

that encodes the fused information to enable effective interaction between

different modalities. While many studies have explored fusing two or more

modalities for solar energy prediction, relatively little attention has been

paid to the effectiveness and efficiency of feature-level fusion. This section

introduces a commonly used fusion architecture for solar energy forecasting

and two potential fusion mechanisms applied in other fields.
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Multi-layer Perceptron Multi-layer perceptron (MLP) is a basic, fully

connected neural network model with activation functions. It is the most

common network architecture to process fused features in multimodal solar

energy prediction networks. This approach makes no assumptions about

the semantic space heterogeneity of different modalities and adapts the

process of modality interaction through weight allocation between neurons.

During modality interaction, feature vectors from different modalities are

fused additively or multiplicatively and then input to the MLP for the

following calculation. The most commonly used fusion method is concate-

nation, which can be considered a particular case of additive calculation

without data interaction or exchange after the additive operation.

In the work of [71], different concatenation methods for modality fusion

were explored. They found that designing an enhanced modality interac-

tion by separately sending PV log and image data to their own fully con-

nected layers and simultaneously sending the joint data to a shared fully

connected layer could significantly improve the model’s prediction ability.

However, this method has not been used in subsequent research.

Attention Mechanisms In deep learning, attention can be viewed as a

differentiable dictionary retrieval process [111]. The principle of the atten-

tion mechanism is to use a regularised dictionary that stores many specific

key-value pairs (k, v). When a specific query q is given, the dictionary

searches for a matching k and retrieves the corresponding v as the model’s

return. This type of machine is widely used in natural language process-

ing to retrieve the relative relationships between word elements within a

sentence, or in visual image tasks, as in the previously introduced ViT.

The advent of self-attentive mechanism networks has revolutionised the

realm of multimodal learning by enabling the identification of correlations
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between features via vector embeddings. This unique approach facilitates

integrating data from diverse modalities within the attention module. Un-

like the commonly used tandem or fixed-weight fusion techniques, the

attention-based methodology can dynamically balance the contributions

of distinct modalities, thereby enabling optimal utilisation of the available

data sources [89].

Groundbreaking research by Long et al. [112] has demonstrated the remark-

able potential of attention-based mechanisms for video classification. This

technique has exhibited remarkable robustness across multiple data sets in

all cases of data-level fusion, feature-level fusion, or decision-level fusion.

These remarkable findings have far-reaching implications and underscore

the importance of adopting cutting-edge techniques for optimal data anal-

ysis and processing. In the current DL-GSI-IHSF literature, the use of

attention mechanisms as input encoders is minimal. In Zhen et al. [79]

recent work, attention mechanisms were embedded in an LSTM structure

to assist in exploring the effective sequence length for future predictions.

The attention mechanism confirmed the general prior knowledge that time

points further away from the present have a minor potential impact on

future predictions. The authors used this method to quantify the attention

distribution and obtained a reasonable value for the length of the input

LSTM network time step.

Gating Mechanisms The gate mechanism is another structure in deep

learning networks crucial for regulating the computation, and it is a mech-

anism used in LSTM and recurrent gated unit (GRU) networks. The gate

mechanism controls the information flow by multiplying a neuron’s output

vector with the weight coefficients element by element. Unlike attention

mechanisms, which normalise attention weights, gate mechanisms do not
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distort the specifics of the information flow [111]. For instance, the input,

forget, and output gates in the LSTM network are structures. The gates

are opened or closed through the Sigmoid function, limiting the output to

0 and 1.

Applying gating mechanisms in solar forecasting has been limited to LSTM

working in spatial coding. In the process of modal fusion, to our knowledge,

this approach has not been used.

2.3.3 Model Adjustment

As mentioned, in DL-GSI-IHSF applications, the mainstream approach is

to transfer mature architectures from computer vision networks and train

them. However, replicating a complete deep-learning training process is

extremely difficult. First, the hardware and software platforms the model

runs usually have different models and version differences. Therefore, it is

difficult to ensure that the differences will not affect the model calculation

in learning based on different software and hardware versions. Secondly,

hyperparameters have a significant impact on model performance. There-

fore, much work is needed to optimise hyperparameters, and the settings

of hyperparameters need to be meticulously recorded and logged during

the tuning process. Finally, even in the same training process, there are

inevitably random factors, such as the order of image data in the input

batch or the stochasticity of the Stochastic Gradient Descent (SGD) opti-

miser itself.

Therefore, model debugging is a complex, time-consuming, and essential

part of deep learning architecture. This section introduces model debug-

ging from four aspects: model architecture adjustment and verification,
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hyperparameter tuning, reducing randomness, and transfer learning.

2.3.3.1 Model Architecture Adjustment and Validation

Optimising deep learning network architectures is an essential component

in building effective models. When replicating model architectures for the

GSI-IHSF task, optimising the models can ensure their efficacy and improve

their performance and efficiency.

Reducing Model Complexity In deep learning-based DL-GSI-IHSF

tasks, comprehensive computer vision networks are often designed to tackle

more complex and diverse tasks. However, DL-GSI-IHSF tasks themselves

are relatively less complex. For example, in the work of Wen et al. [77],

it was found that using deeper networks, such as ResNet-34 or ResNet-50,

or more complex models, such as DenseNet, did not significantly improve

the performance of a CNN model used for processing sky images, but re-

quired high additional computational cost. Similarly, in the work of [80],

it was also pointed out that using deeper networks, such as ResNet-152,

only improves the model’s performance by less than 1% than ResNet-34.

Therefore, pruning the model by removing unnecessary depth can signifi-

cantly reduce the model size and computation time and save computational

resources.

Ablation Experiments Rigorous experiments that remove specific model

components and evaluate the resulting performance or feature representa-

tion are called ablation experiments. Ablation experiments are a crucial

step in assessing the effectiveness and necessity of model design choices.

The specific method of removing model components can involve directly
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removing modules or rendering them ineffective through meaningless noise

or zero inputs. As mentioned, many DL-GSI-IHSF models are adapted

from mainstream computer vision models. As such, many studies overlook

the fundamental need for ablation experiments in validating model design

choices. Thus, we believe it is necessary to perform ablation studies when

adding new modules to the model.

2.3.3.2 Hyperparameter Tuning

Hyperparameters refer to model parameters that cannot be iteratively up-

dated during training, such as learning rate, batch size, optimiser param-

eters, number of neurons, and network layers. Grid and random search

are two mainstream methods for hyperparameter tuning. These methods

exhaustively enumerate all possible combinations of hyperparameters to

obtain the optimal solution. However, the disadvantage of this approach is

that the computational complexity grows exponentially with the number of

hyperparameters, making it extremely expensive to tune a model’s hyper-

parameters ideally [113]. Additionally, not all hyperparameters affect the

model’s accuracy equally, and the model is often sensitive to some hyper-

parameters but not others. Therefore, it is necessary to restrict the hyper-

parameter tuning matrix. Another feasible way is to use machine learning,

such as Bayesian optimisation, which treats hyperparameter tuning as a

regression problem and gradually improves the model’s performance in op-

timisation.

Not all GSI-IHSF works based on deep learning will elaborate on the hyper-

parameters used. Some argue that the impact of hyperparameter tuning

on model performance is far lower than that of model architecture, and

hyperparameter tuning requires a significant amount of resources and com-
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putational cost. Therefore, in some works, the original hyperparameters

of the referenced model were directly used without further optimisation.

However, we believe that demonstrating the hyperparameter adjustment

process or publicising the hyperparameters is an essential part of the repli-

cation in the DL-GSI-IHSF work. Some important hyperparameters in-

clude learning rate, optimiser type, and batch size. It can have a direct and

significant impact on model performance or model calculation efficiency, so

it is necessary to publicise the underlying hyperparameters.

2.3.3.3 Reduced Randomness

The randomness of the model during training manifests itself in various

aspects. For example, Python libraries such as numpy and pandas used

in model training have randomness in computation, and different order of

batch sampling directly affects the model fitting process. The SGD opti-

miser itself is based on stochastic sampling for gradient computation. Many

initialisers for network weight initialisation are based on random genera-

tion, which directly impacts the model’s performance. Fixing the seed of

the random generator is a standard method to avoid some random factors

causing random fluctuations in model performance. For some random-

ness that cannot be eliminated, k-fold cross-validation is also an effective

method [114]. Many work [47, 33, 34] applied this method by dividing the

data into ten parts, each time taking one part as the training set and one

part as the validation set without repetition, and the average of the ten re-

sults is taken as the model accuracy. In addition, some studies use specific

methods to combat random numbers.
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2.3.3.4 Transfer Learning

Transfer learning refers to storing the knowledge obtained during a model’s

training and applying it to another, different but related problem. Training

weights from scratch in a large or complex model is called pre-training in

deep learning, and loading pre-trained weights into a downstream task as

initial weights and further training is called fine-tuning. Fine-tuning with

pre-trained weights in CNNs has proven effective in knowledge transfer,

even in tasks with significant differences, such as natural image classifica-

tion to medical grayscale images. Research has shown that fine-tuned pre-

trained CNNs can perform as well as CNNs trained from scratch, even in

the worst-case scenarios of such significant transfers [115]. Fine-tuning can

reduce training time and still work on small-scale data sets. This method

can also be applied in the DL-GSI-IHSF domain. Recent studies have found

that pre-training on a solar irradiance model trained on two large data sets

can be successfully transferred to new sub-tasks in different climates [31].

This transfer can reduce training time by four-fifths and slightly improve

model accuracy. The authors speculate that this may be due to the inad-

equate scale of global training. We believe that classical solar statistical

prediction models exhibit significantly different performances in the same

model in different climates. In other words, the weights of the local model

implicitly contain features of the local climate conditions. Global learning

may not effectively capture these features without additional annotations

during training, thereby failing to establish a practical model. Therefore,

the ideal use of transfer learning may require constraints on climate models

for different locations to improve model performance. Additionally, this re-

search suggests the feasibility of establishing a universal model framework

for prediction under different climates, which can promote the exchange

and development of prediction models in different climates.
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2.3.4 Prediction Head

The prediction head refers to the part of the model that maps features ex-

tracted by the backbone to specific output results. Implementing transfer

learning often involves adapting the prediction head after transferring the

pre-trained model locally. In this section, we will explain the model’s pre-

diction head from two aspects: output format and prediction target, and

summarise some experiences from related works.

2.3.4.1 Deterministic Prediction and Probabilistic Prediction

Deterministic and probabilistic predictions refer to two different output

forms of the prediction head. They differ in reliability, accuracy, and usage

scenarios. As the name suggests, deterministic prediction outputs a single

numerical value, such as 1000W/m2. This output is the unique and def-

inite result directly from the neural network, without including errors or

uncertainties. Although this output form is currently the mainstream out-

put mode in DL-GSI-IHSF, its limitations are evident. IHSF applications

often require high reliability for short-term grid control. In this context,

the practicality of deterministic prediction is limited.

Probabilistic prediction incorporates model uncertainty into the design of

the prediction head. For example, for classification prediction, such as

sky condition or slope event prediction, the probability value of each pre-

dicted result can be output as the prediction results through the Sigmoid

or Softmax activation function. This prediction head based on probabilis-

tic prediction can be further designed with a judgement threshold through

statistical methods to improve the reliability and robustness of prediction.

For numerical prediction, a specific loss function or model architecture
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can be designed to give the confidence interval of the model prediction to

cope with different random times. There are two specific implementation

methods: the first is to use the quantile loss function, which assigns differ-

ent weights to the model’s overestimation and underestimation to achieve

fixed confidence interval prediction [43]. The second method is to change

the regression problem into a classification problem, that is, to transform

the output from a numerical value into a numerical interval [35]. The

model’s confidence interval is determined by the probability distribution of

the model’s prediction in the numerical interval. The second method may

lack mathematical rigour, even if it produces seemingly correct results. Cri-

teria for analysis and evaluation explicitly based on model performance are

discussed in the next section.

2.3.4.2 Targets

According to the different subsequent demands of solar forecasting, im-

plementing prediction targets can be diverse. For example, for irradiance

prediction, it is feasible to directly use irradiance as the prediction target,

the irradiance change rate as the prediction target, or the CSI as an indi-

rect prediction target. However, overall, there are two prediction targets

for solar energy forecasting. The first is to quantitatively predict future

solar energy output, such as irradiance prediction (indirect PV output pre-

diction) or direct PV output prediction, to estimate future PV production.

The second is to predict sudden solar energy events caused by cloud cover,

also known as ramp events, to reduce the negative impact of sudden events

on PV systems and power generation quality.
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Multi-Task Learning In deep learning, multi-task learning uses the

same model feature vector to predict multiple targets through multiple pre-

diction heads. Specifically, multi-task learning can be achieved through two

different modes. The first is hard parameter sharing, which maps the same

feature vector to multiple targets. The second is soft parameter sharing,

where their models still implement multiple tasks. However, an additional

regulariser is set to encourage the similarity of parameters between the

models. Ideally, when a deep model learns multiple tasks simultaneously,

the noise topology of each task can be ignored to obtain a more general

representation [116]. In DL-GSI-IHSF, some work has already used multi-

task learning, such as Zhang et al. [50], who used two prediction heads to

strengthen the constraints on different temporal or spatial prediction sub-

tasks, achieving good results. Through multi-task learning, their model

obtained a 20.8% improvement in RMSE prediction performance compared

to the persistence model in one-minute prediction. Zhang et al. found that

their model obtained better-balanced performance under different weather

conditions, explicitly improving performance on cloudy and sunny days

while slightly decreasing performance on partly cloudy days. Paletta et

al. [35, 11] also used multi-task learning, finding that segmentation tasks

as prediction sub-tasks with a cross-entropy loss could comprehensively im-

prove the model’s F1 score at all scales, achieving nearly 4% improvement

at the 2-minute scale and nearly 2% improvement at the 10-minute scale.
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Table 2.2: Summary of model architectures, prediction times, prediction head design and optimisation methods used in current work
in the DL-GSI-IHSF work.

Ref. Year
Backbone Model Forecast Time1 Target attributes2 Optimisation

algorithms3Spatial

Encoders

Temporal

Encoders

Numerical

Encoder

Fusion

Encoder
FH FR FLT Types TS Target

[32] 2018 CNN - - - 0∗ - - Det. O PV Output AO

[50] 2018 CNN LSTM MLP MLP 10 1 1 Det. O PV Output BC, HA

[69] 2018 CNN - MLP MLP 15 15 15 Det. O PV Output BC, AS

[33] 2019 CNN - MLP MLP 15 15 15 Det. O
PV Output,

CSI
AO, AS, HA

[71] 2019 CNN MLP MLP 15 15 15 Det. O PV Output AF, HA

[54] 2019 MLP - - - 5 1 1 Det. O GHI AO

[58] 2019 CNN - MLP MLP 20 5 5 Det. O GHI BC

[47] 2019 3D-CNN 3D-CNN MLP MLP 30 10 10 Det. O DNI HA

continued in next page. . .
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Table 2.2 Summary of model architectures, prediction times, prediction head design and optimisation methods used in current work
in the DL-GSI-IHSF work (Continued).

Ref. Year
Backbone Model Forecast Time Target attributes Optimisation

algorithmsSpatial

Encoders

Temporal

Encoders

Numerical

Encoder

Fusion

Encoder
FH FR FLT Types TS Target

[43] 2019 CNN LSTM - - 10 10 10
Det.,

Prob.
O GHI AO, BC, HA

[56] 2019 CNN LSTM LSTM LSTM 240 60 60 Det. M GHI BC, HA

[57] 2020 CNN(VGGNet) - - - 60 10 10 Det. O GHI HA

[59] 2020 CNN - - - 0 - - Det. O PV Output HA, AO

[72] 2020 CNN(VGGNet) - - - 10 10 10 Det. O GHI HA

[73] 2020 CNN, MLP LSTM MLP MLP 15 15 15 Det. O GHI AO, AF, BC

continued in next page. . .
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Table 2.2 Summary of model architectures, prediction times, prediction head design and optimisation methods used in current work
in the DL-GSI-IHSF work (Continued).

Ref. Year
Backbone Model Forecast Time Target attributes Optimisation

algorithmsSpatial

Encoders

Temporal

Encoders

Numerical

Encoder

Fusion

Encoder
FH FR FLT Types TS Target

[74] 2020

ConvLSTM,

PredRNN,

PhyDNet

ConvLSTM,

PredRNN,

PhyDNet

- - 5 1 1 Det. M GHI BC

[75] 2020 MLP - - - 10 1 1 Det. M GHI -

[76] 2020 CNN - - - 0 - - Det. O GHI -

[46] 2020 CNN - MLP MLP 20 2 2 Det. O GHI -

continued in next page. . .
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Table 2.2 Summary of model architectures, prediction times, prediction head design and optimisation methods used in current work
in the DL-GSI-IHSF work (Continued).

Ref. Year
Backbone Model Forecast Time Target attributes Optimisation

algorithmsSpatial

Encoders

Temporal

Encoders

Numerical

Encoder

Fusion

Encoder
FH FR FLT Types TS Target

[77] 2020

CNN

(VGGNet,

ResNet,

DenseNet)

- - - 10 1 5 Det. O GHI -

[55] 2020

CNN,

ConvLSTM,

PredNet

LSTM,

ConvLSTM,

PredNet

MLP,

LSTM
MLP 20 4 4 Det. M PV Output AF, BC

continued in next page. . .
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Table 2.2 Summary of model architectures, prediction times, prediction head design and optimisation methods used in current work
in the DL-GSI-IHSF work (Continued).

Ref. Year
Backbone Model Forecast Time Target attributes Optimisation

algorithmsSpatial

Encoders

Temporal

Encoders

Numerical

Encoder

Fusion

Encoder
FH FR FLT Types TS Target

[42] 2021

CNN,

3D-CNN,

ConvLSTM

LSTM,

ConvLSTM
MLP MLP 30 2 2 Det. O GHI BC, HA

[34] 2021 CNN - - - 0 - - Det. O PV Output DE, HA

[34] 2021 CNN - MLP MLP 15 15 15 Det. O PV Output DE ,HA

[44] 2021 CNN(VGGNet) - MLP MLP 15 15 15 Det. O GHI -

[78] 2021 CNN(AlexNet) LSTM MLP MLP 10 10 10 Det. O DNI AS,BC

continued in next page. . .
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Table 2.2 Summary of model architectures, prediction times, prediction head design and optimisation methods used in current work
in the DL-GSI-IHSF work (Continued).

Ref. Year
Backbone Model Forecast Time Target attributes Optimisation

algorithmsSpatial

Encoders

Temporal

Encoders

Numerical

Encoder

Fusion

Encoder
FH FR FLT Types TS Target

[79] 2021 CNN LSTM

LSTM,

MLP,

Attention

MLP 60 10 10 Det. O GHI BC, AF, AO

[45] 2021 CNN LSTM CNN MLP 15 5 5 Det. O PV Output HA

[80] 2021 CNN(ResNet) - - - 0 - - Det. O GHI AO, HA

[81] 2021 CNN(ResNet) LSTM MLP MLP 10 10 10
Det.,

Prob.
. O GHI -

[82] 2021 3D-CNN 3D-CNN MLP Attention 30 5 5 Det. O CSI TL, AS, HA

[83] 2021 CNN(ResNet) - - - 0 - - Det. O GHI AO, HA

continued in next page. . .
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Table 2.2 Summary of model architectures, prediction times, prediction head design and optimisation methods used in current work
in the DL-GSI-IHSF work (Continued).

Ref. Year
Backbone Model Forecast Time Target attributes Optimisation

algorithmsSpatial

Encoders

Temporal

Encoders

Numerical

Encoder

Fusion

Encoder
FH FR FLT Types TS Target

[36] 2022
CNN(VGGNet),

3D-CNN
3D-CNN - - 60 10 10 Det. O GHI DE

[53] 2022 CNN - MLP MLP 15 15 15 Det. O
GHI,

PV Output
TL, HA, BC

[53] 2022 ConvLSTM ConvLSTM LSTM MLP 15 15 15 Det. O
GHI,

PV Output
TL, HA, BC

[84] 2022 CNN - - - 0 - - Det. O GHI AF

[35] 2022 CNN
3D-CNN,

CGRN
- - 10 2 2

Det.,

Prob.
M GHI

DE, AS, BC,

AF, AH

continued in next page. . .
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Table 2.2 Summary of model architectures, prediction times, prediction head design and optimisation methods used in current work
in the DL-GSI-IHSF work (Continued).

Ref. Year
Backbone Model Forecast Time Target attributes Optimisation

algorithmsSpatial

Encoders

Temporal

Encoders

Numerical

Encoder

Fusion

Encoder
FH FR FLT Types TS Target

[11] 2022 CNN
3D-CNN,

CGRN
- - 10 2 2

Det.,

Prob.
M GHI DE, AS, HA

[48] 2022 Manual LSTM LSTM MLP 10 10 10 Det. M CSI HA, AS

[85] 2022 CNN(DenseNet) - MLP MLP 15 15 15
Det.,

Prob.
M GHI -

[86] 2022 CNN - LSTM MLP 60 60 60 Det. O GHI AO, HA

[87] 2023 CNN(AlexNet) - - - 15 1 1 Det. O GHI TL, HA

continued in next page. . .
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Table 2.2 Summary of model architectures, prediction times, prediction head design and optimisation methods used in current work
in the DL-GSI-IHSF work (Continued).

Ref. Year
Backbone Model Forecast Time Target attributes Optimisation

algorithmsSpatial

Encoders

Temporal

Encoders

Numerical

Encoder

Fusion

Encoder
FH FR FLT Types TS Target

1 FH: Forecast horizon, forecast total length in minutes; FR:Forecast resolution, minimum time interval between two forecasts;

FLT:Forecast lead time, time from the start of the forecast to the first forecast generation

2 Det.: Deterministic; Prob.: Probabilistic; TS: Forecast Time Step; O: One-step forecast, or End2End forecast, each model forecast

a result; M: Multi-step forecast, or recursive prediction, a model can forecast a sequence of result.

3 HA: Hyperparameters Announcement; BC: Backbone model Comparison; AF: model Architectural Fusion comparison;

AS: Ablation Study; AO: model Architectural Optimisation; DE: Data Enhancement; TL: Transfer Learning.

∗ 0-minute forecast horizon means nowcasting, i.e. extrapolating a forecast target from a picture of the sky at the same moment.
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2.4 Analysis Phase

In the analysis phase, researchers need to analyse and compare the results

generated by the model after the training process. First, due to the black-

box nature of deep learning models, it is necessary to conduct rationality

and interpretability analysis on both the model output results and the

training weights. Second, to compare the superiority of models in terms

of performance, researchers also need to set some metrics to compare the

models thoroughly.

2.4.1 Baseline Model

The baseline model is a simple model used to evaluate and compare the per-

formance of other complex models. Typically, the baseline model has some

predicted performance but with fewer parameters and a more straightfor-

ward structure. Its easy-to-implement nature sets the benchmark accuracy

standard for more complex models. In solar energy forecasting, since data

sets used in different works are usually collected under different climatic

conditions and equipment accuracy, directly comparing models using sta-

tistical metrics is not advisable. Therefore, the Persistence Model (PM)

or Smart Persistence Model (SPM) is often used as the baseline model for

solar energy forecasting.

ˆyt+∆tPM = yt (2.31)

ˆyt+∆tSPM = yt+∆tclr ×
yt
ytclr

(2.32)

yclr represents clear-sky irradiance, which can be obtained from a clear-

sky model [49]. The persistence model assumes that irradiance remains

constant at the forecast horizon. The intelligent persistence model assumes
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that the ratio of irradiance to clear-sky irradiance, i.e., the clear-sky index

(CSI), remains constant at the forecast horizon.

In DL-GSI-IHSF, researchers often add other models as baseline models

in addition to persistence models, such as MLP and LSTM models used

as baseline models in previous works [55]. Using additional general deep

learning frameworks as baseline learning is essential for improving model

interpretability. This method not only provides more references for the

model but also helps to understand the strengths and weaknesses of the

model in different algorithms through multiple baseline models. At the

same time, comparing the prediction details with the baseline models can

improve the model’s robustness and generalisation.

2.4.2 Evaluation Metrics

Evaluation metrics intuitively represent the gap in model comparison and

judgement. In IHSF work, a universal standard is that the model’s fore-

cast results should be as close as possible to future measurement results,

that is, to obtain a minor quantitative error. Meanwhile, GSI improves

the model’s response to rapidly changing solar radiation by adding spatial

features to the prediction end. This prediction should first be a qualitative

behaviour, whether the model can capture the Ramp Event (RE). Secondly,

the quantitative method can be used to determine the model’s response to

the captured RE, that is, the magnitude of the change in RE.

2.4.2.1 Standard Metrics

Statistical methods are the most common way to quantify the difference

between models. By measuring the statistical errors, such as Root Mean
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Square Error (RMSE), Mean Absolute Error (MAE), Mean Bias Error

(MBE), between the model predictions ŷt+∆t and the ground truth yt+∆t,

the gap between the model predictions and actual values can be quantified,

which can be expressed as equations below:

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2 (2.33)

MAE =
1

N

N∑
i=1

|ŷi − yi| (2.34)

MBE =
1

N

N∑
i=1

(ŷi − yi) (2.35)

The performance of a model is often homogeneous across different statis-

tical indicators, meaning that a model that performs well in one statis-

tical indicator often performs well in other indicators. Moreover, assess-

ing a model’s performance using statistical indicators heavily depends on

the sampling frequency, meteorological features, and model assumptions.

Therefore, commonly used statistical indicators are unsuitable for measur-

ing model quality. Chu et al. [117] recommended the use of Forecast Skill

(FS) [26] as a quantitative indicator for evaluating and comparing the per-

formance of different forecasting models in a review article. FS is defined

as:

FSmodel = 1− RMSEmodel

RMSEbaseline

× 100% (2.36)

Using the same parameters as complex models, baseline models can ob-

tain quantified scores independent of the data set, sampling frequency, and

model assumptions. It is worth noting that FS still strongly correlates

with weather conditions [117]. In completely sunny or cloudy weather con-

ditions, FS based on SPM is still a difficult-to-exceed quantitative indica-

tor [18]. However, FS has certain limitations. As there is no RE impact in

78



2.4. ANALYSIS PHASE

its indicator design, there is a limitation in evaluating the performance of

models caused by REs due to cloud cover. Vallance al.’s work [118] showed

that a mean prediction model without RE prediction capability could have

better FS than a complex model with RE prediction capability.

2.4.2.2 Qualitative Metrics for Ramp Event

Qualitative comparison aims to evaluate the ability of a model to cap-

ture rapid changes in irradiance under cloud influence. For qualitative

assessment of REs, there are currently two mainstream methods. The first

method is the swing-door algorithm [119], which identifies slopes by defin-

ing a swing-door threshold ε as a tolerance value, as shown in the figure

below: The value of ε determines the width of the swing door. Therefore,

Figure 2.5: Demonstration of swinging door algorithm, Figure token
form [119]

when ε is small, the model is sensitive to noise or small fluctuations, while

when ε is large, the model skips small slopes. To cope with variations in

solar irradiance over the seasons, Vallance et al. [118] proposed the sensi-

tivity, τ , as an auxiliary parameter to help determine the value of e based

on quantitative analysis, and the sensitivity τ is defined as the ratio of
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threshold ε under the maximum value of the clear-sky irradiance on the

day, i.e.,

ε(d) = τ max
day d

Iclr (2.37)

By defining t, the width of the swing door is not affected by seasonal

changes in irradiance. The authors recommend τ=18% as a choice that

fits the measurement behaviour, but they also suggest that the choice of t

should be defined according to the model design requirements. For exam-

ple, in the DL-GSI-IHSF work, the authors used a more sensitive value of

5% as the choice of τ .

In Chu et al.’s work [10], another method for identifying RE was defined.

RE was defined as solar irradiance changes with slopes exceeding a thresh-

old ε within a specific time. If the model’s predicted slope for a RE exceeded

the threshold ε and was in the same direction as the RE, it was consid-

ered that the model successfully captured the RE. This definition method

can use general anomaly detection as an evaluation criterion. Specifically,

based on the actual positive and negative results and whether the model

prediction is correct for a binary data set, the prediction results can be di-

vided into one of the four categories in the confusion matrix. Specifically,

true positive (TP) is the number of samples correctly predicted as posi-

tive, true negative (TN) is the number of samples correctly predicted as

negative, false positive(FP) is the number of samples incorrectly predicted

as positive, and false negative (FN) is the number of samples incorrectly

predicted as negative. Based on the components of the confusion matrix,

the evaluation metrics of the model can be defined: precision is the ratio

of true positive results to actual positive results, and recall is the ratio of

true positive results to all actual positive results. The F1 score can be

calculated using the precision and recall harmonic mean. As the equation
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below shows:

Precision =
TP

TP + FP
(2.38)

Recall =
TP

TP + FN
(2.39)

F1 score = 2× Precision×Recall

Precision + Racall
(2.40)

In solar energy forecasting, due to the uncertainty of RE direction, the

actual prediction classification can be divided into three categories, namely

upward RE, nearly constant, and downward RE. Therefore, in this multi-

classification task, the average value of accuracy for each class can be used

to represent the overall accuracy of the model prediction, i.e.:

Balanced Precision =
1

N

N∑
Class i

Precisioni (2.41)

Balanced Recall =
1

N

N∑
Class i

Recalli (2.42)

Balanced F1 score =
1

N

N∑
Class i

F1 scorei (2.43)

2.4.2.3 Quantitative Metrics for Ramp Event

Accurate RE prediction requires qualitative predictions of ramp events and

equally accurate quantitative predictions. A straightforward way is to di-

rectly compare the statistical errors of RE value predictions, such as RMSE.

In the work of [55], the authors found that the model that captured the

most REs did not perform the best in quantitative analysis by comparing

the qualitative and quantitative indicators of RE prediction among differ-

ent model architectures. Therefore, there is still room for improvement in

directly using general indicators for quantitative analysis of REs.
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Another feasible and straightforward approach is to sort all predicted errors

by the magnitude and report a higher percentile, such as the 95th percentile

of absolute errors in [42]. A smaller number means a better match between

the model and extreme error times. As RE must imply significant errors in

solar prediction, this approach is representative of the ability to estimate

the RE prediction of the model.

Therefore, [118] pointed out that using RMSE or other metrics to evaluate

RE prediction performance has a potential drawback. These metrics do not

incorporate the time component into the error measurement. For example,

a model makes a correct prediction for a RE, but it is ahead or lagging in

prediction time. In the RMSE metric, this would result in two large error

values and lead to a poor model evaluation. However, this time-distorted

prediction behaviour may not be considered negative. To overcome this

problem, [reference] proposed two new metrics to define the model’s pre-

diction behaviour. The RE metric is based on the equivalence between the

predicted RE and the actual RE’s amplitude difference within a period.

The ramp score can be expressed as:

ramp score =
1

tmax − tmin

∫ tmax

tmin

|SD(T (t)− SD(R(t))| dt (2.44)

Ramp Score describes the integral based on the cumulative error in the

ramp of the swing door between the tested and real values over a given

time.

The Table ?? summarises the performance results reported by the models

available for statistical purposes in this article. For comparison purposes,

the 10-minute forecast performance with higher usage was chosen as the

baseline forecast horizon in preference to models with different forecast

horizons in the same job by default.
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Table 2.3: Result reported in the DL-GSI-IHSF work.

Ref. Statistical Error1 FS1 Qualitative RE score Quantitative RE score Weather2 Multi Site 2

[32] 28% rRMSE @0min - - - ✓ ✓

[50] 140.5 W @1min 20.8% @1min - - ✓ -

[69] 4.51 kW @15min
26.22% @Sunny

16.11% @ Cloudy
- - ✓ -

[33] 2.51 kW @15min 15.70% @15min - - ✓ -

[71] 2.47kW @15min 17.11% @15min - - ✓ -

[54] ˜150W/m2 - - - - -

[58]

150W/m2 @Sunny

103W/m2 @Cloudy

71W/m2 @Overcast

- -

19W/m2 @Sunny

55W/m2 @Cloudy

58W/m2 @Overcast

✓ -

[47] 40.15% nRMSE 28.89% - - - -

[43] 88.35 W/m2 - - - - -

continued in next page. . .
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Table 2.3 Result reported in the DL-GSI-IHSF work (Continued).

Ref. Statistical Error FS Qualitative RE score Quantitative RE score Weather Multi Site

[56] 31.9% nMAP @1Hour - - - - ✓

[57] 8.85% nRMSE 25.14% - - ✓ -

[59] 2.20 kW @0min - - - ✓ -

[72] 80.14W/m2 11.88% - - ✓ -

[73] 80.47 W/m2 @15min - - - ✓ -

[74] 23.5% nRMSE @5min - - - - -

[75] 117 W/m2 - - - ✓ -

[76] 8.7% nRMSE - - - - -

[46] - 20% (MSE) - - - -

[77] 22.5% nRMSE 17.70% 98.9% Capture
11.3%

energy curtailment
✓ -

[55] 28.6w 26% 74.75% BP@ ConvLSTM-H 60.99 W - -

continued in next page. . .
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Table 2.3 Result reported in the DL-GSI-IHSF work (Continued).

Ref. Statistical Error FS Qualitative RE score Quantitative RE score Weather Multi Site

[42] - 20.40% -
19.6 W/m2/min RS,

0.34 TDM
- -

[34] ˜32% rRMSE @0min - - - ✓ -

[34] - ˜18% - - ✓ -

[78] 23.47% nRMSE 22.56% - - ✓ -

[79] 131.85 W/m2 - - - - -

[45] ˜12% nRMSE ˜19% - - ✓ -

[80] 63.98 W/m2 @0min - - - ✓ -

[82] 62.6 W/m2 14.2 - - - -

[83] 41.74 W/m2 - - - ✓ -

[36] 71.3 W/m2 21.45- - - - -

[53] Multiple Multiple - - ✓ ✓

continued in next page. . .
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Table 2.3 Result reported in the DL-GSI-IHSF work (Continued).

Ref. Statistical Error FS Qualitative RE score Quantitative RE score Weather Multi Site

[84] 18.27% rRMSE - - - ✓ ✓

[35] 109.1 W/m2 24.00% - 11.9 TDI ✓ -

[11] 101.1W/m2 30.90% - - ✓ -

[48] 15.25% nRMSE - - - ✓ -

[85] 44.292 W/m2 MAE - - - - -

[86] 80.02 W/m2 - - - - -

[87] 75.18 W/m2 - - - - -

1 For comparison purposes, the prediction result for unstated results are all 10 minutes. Please see the original article for specific

result.

2 Model performance is calculated separately for weather conditions.

3 Model performance differences are compared across multiple sites.
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2.5 Current Achievements in DL-GSI-IHSF

The DL-GSI-IHSF field is a nascent and rapidly developing area. On the

one hand, its predictive performance is continuously improving due to the

fast proliferation of computer vision fieldwork. On the other hand, com-

pared to rigorous traditional solar forecasting methods based on statistical,

physical, or image models, deep learning algorithms lack clear interpretabil-

ity and rigorous logical chains. Therefore, in the solar energy forecasting

field, where robustness is required, the reliability of using deep learning

methods in the experimental deployment stage is still controversial. As

Reichstein et al. [120] suggested in applying deep learning in Earth sci-

ence forecasting, deep learning models have great potential in data-driven

Earth system science fields. When applying deep learning methods, tradi-

tional physical models should not be abandoned but should strongly com-

plement existing physical knowledge. At the same time, in the field, since

researchers are still exploring the transfer of suitable deep learning models

to the solar energy forecasting model stage, some plug-and-play methods

lack research on the validity, practicality, and generalisation of the trans-

ferred models. Therefore, in studying DL-GSI-IHSF models, their forecast-

ing performance should be considered, and interpretability and rationality

should also be given importance in the research process. Nevertheless, the

work in the DL-GSI-IHSF field has achieved remarkable achievements.

In Sun et al.’s early work [32], the DL-GSI-IHSF deep model was first devel-

oped and validated. Their SUNSET (Stanford University Neural network

for Solar Electricity Trend) network, based on a standard convolutional

neural network, achieved 28% rRMSE performance in early nowcasting

work, which predicts PV output using simultaneous sky images. They

also explored the impact of different network depths and architectures on
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prediction performance and identified the optimal prediction architecture.

In later work [69], they added PV output history to the model, enabling

future 15-minute PV output forecasts with a forecast skill of 15.7%. Ad-

ditionally, they proposed a model with architecture that uses the comple-

mentary nature of image and numerical inputs, which could be leveraged

by concatenating the feature representations, leading to improved model

performance [33]. In addition, they also investigated various fusion meth-

ods [71], including data-level, feature-level, and decision-level fusion. They

found that early data-level fusion did not effectively extract features from

multimodal data to improve performance. However, feature-level solid fu-

sion or direct use of decision-level distribution prediction was beneficial for

the joint expression of the existing models and achieved performance opti-

misation. Among them, the two-step model with late decision-level fusion

achieved the best performance, with a forecast skill of 17.11%. Regard-

ing data set-specific research, the team attempted to balance the data set

by using pre-classified data sets [59] and data resampling methods [34] to

address the issue of uneven distribution of different sky conditions in the

model data set. The results showed that the nowcast model achieved about

6% performance improvement using the pre-classification method, while the

resampling method improved performance by about 1.74%. However, the

resampling method did not significantly improve the forecast method.

In the early work of Zhang et al. [50], the LSTM architecture was explicitly

used as a framework for extracting time-related features from the spatial

representation vectors of sequential images rather than implicitly embed-

ding the prediction information in the spatial features. Their work found

that using the LSTM model achieved a 20.8% 1-minute forecast skill, out-

performing the model architectures that used CNN (12%) and MLP (7%).

In addition, this work also practised the method of fusing ground observa-
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tion values with image analysis results and proposed a hybrid loss weight

method based on multitask learning. As mentioned above, subsequent

work has validated that mixed inputs can form complementary informa-

tion on target representation by their joint representation. Interestingly,

the LSTM-Full model developed by Zhang et al. has an inverted relation-

ship between prediction horizon and prediction performance. Generally

speaking, the longer the prediction horizon, the lower the prediction per-

formance of the baseline model (PM or SPM), making it easier to achieve

higher prediction scores. However, in their model, the model achieved the

best prediction score in the one-minute prediction, and the prediction per-

formance decreased with the extension of the prediction horizon.

Zhao et al. [47] were the first to apply 3D-CNN architecture to the DL-GSI-

IHSF field and achieved prediction of DNI 10 to 30 minutes in advance.

Their results showed that in the 10-minute forecast, the model using MLP

as the prediction head achieved an overall forecast skill of 17.06%. In

cloudy weather, where the baseline model did not perform well, it achieved

a forecast skill of 28.89%. In addition, their work also adopted a module

that embeds ground observation information to assist in prediction. It used

a pre-classification result based on cloud types as an additional learning

objective for multitask learning. Unfortunately, the work did not compare

the 3D-CNN with the general CNN architecture but compared it with

manually classified predictions. Therefore, although the model has spatially

extracted convolutional kernels and a theoretically superior framework, it

has not been directly proven in work.

Guen and Thome’s [74] and Kong et al. [55] in the same year incorporated

ConvLSTM into the research. In Kong’s work, the author comprehen-

sively compared LSTM, CNN, CNN-LSTM, ConvLSTM, and PredNet ar-

chitectures. The results showed that using a more complex spatiotemporal
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architecture did not beat the simple architecture of using numerical in-

put concatenation to extract image feature representations with CNN. The

study also found that using numerical input concatenation as an additional

input was a generally effective method for improving quantification results

for all models. However, the authors used BP in the qualitative analysis

to compare the specific RE that the model did not achieve. The results

showed that using a more reasonable ConvLSTM model could capture more

Ramp Events, but ConvLSTM still lagged behind CNN architecture in es-

timating Ramp amplitude. In addition, the study also innovatively used

the self-supervised learning PredNet architecture as the prediction end to

predict irradiance by extracting potential feature representations of the

sky images in the model’s logical loop. Unfortunately, this method did not

achieve better results in either qualitative or quantitative analysis.

In Guen and Thome’s work [74], the author pointed out the unreason-

able assumptions of previous spatiotemporal models in the computer vi-

sion field. He pointed out that previous spatiotemporal models assumed

that the model had complete prior knowledge of physics, which was unrea-

sonable [121] In his work, he used a simple physical constraint, namely a

partial differential equation, as a physical module to improve the model’s

performance by imposing additional physical constraints on the ConvLSTM

model in parallel. The results showed that the developed PhyDNet-Dual

achieved 23.5% nRMSE under the multitask learning method. In addi-

tion, his work also found that multi-step prediction of RNN models could

improve the model’s performance.

The work of Paletta et al. [42] extensively compared the performance of pre-

viously used CNN, CNN-LSTM, 3D-CNN, and ConvLSTM architectures.

They also innovatively used ramp score and TDI as RE and time distortion

measures, respectively. The results showed that the ConvLSTM architec-
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ture remained the most promising model, with a prediction performance

of up to 20.4% in a 10-minute forecast. However, the authors also pointed

out that although all models used images as spatial representation inputs,

they all behaved like a more intelligent SPM model, where the temporal

component of the model prediction did not advance with the injection of

spatial information. In other words, images did not fulfil their intended

function of enabling the model to anticipate the arrival of Ramp Events

through the dynamic display of spatial features.

In their subsequent work, Paletta et al. [35] reconstructed the deep infer-

ence framework and developed the ECLIPSE model, which encoded the

image using a CNN architecture and extracted temporal features from the

continuous image feature representation using a 3D-CNN architecture. Fi-

nally, the model predicted the following spatiotemporal representation by

recursively combining the current state’s spatiotemporal joint representa-

tion through the CGRN architecture. This innovative approach funda-

mentally changes the framework for spatiotemporal continuity prediction

in solar energy forecasting. The model has three separate encoding mod-

ules for inferring different feature vector representations. Ultimately, the

model achieved 10.2%, 23.6%, and 24.0% prediction performance in pre-

dicting 2-, 6-, and 10-minute lead times, respectively. In addition, the

work demonstrated the roles and necessity of each module in the predic-

tion through detailed ablation experiments and feature extraction. It is

worth noting that the authors found that predicting relative irradiance

changes improved the prediction performance compared to absolute irra-

diance changes. Additionally, similar to using observational data as an

additional input group in previous studies, the authors found that adding

irradiance as an extra channel to the image data to achieve data-level fu-

sion significantly improved the model’s prediction performance, increasing
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the final prediction performance to 18.5%, 26.1%, and 26.3%, respectively.

In the subsequent expansion [11], the authors used a method to reconstruct

the image by converting the polar coordinates of the sun and cloud layers in

fisheye sky images to Cartesian coordinates. This approach fundamentally

reconstructed the data and achieved unprecedented performance gains. Fi-

nally, the model achieved excellent forecast skills of 23.1%, 32.8%, and

30.9% in predicting 2-, 6-, and 10-minute forecast horizons, respectively.

2.6 Scientific Challenges based on Literature

Review

In this section, based on the knowledge gap summarised above, the main

scientific questions addressed in this thesis are presented.

2.6.1 Fusion of Visual Modalities with Other Modal-

ities in DL-GSI-IHSF

In the field of DL-GSI-IHSF, the black-box nature and high complexity

of deep learning models make them challenging to interpret, limiting their

development. Early work discovered that integrating image data with his-

torical solar energy records, as a multimodal fusion method, could effec-

tively improve model performance. This approach is similar to solar energy

forecasting based on image analysis models, which involves using extracted

features from images to adjust statistical models [33]. However, the recent

work of Paletta et al. [42] shows that mainstream convolutional and recur-

rent deep models still perform like intelligent persistence models in terms

of prediction, assuming that atmospheric conditions remain constant. In
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other words, while reducing the model prediction error, the complex spa-

tial information did not affect the model’s perception and prediction of

spatial information to make it respond to RE. The current mainstream

Late feature fusion-based Convolutional Neural Network model does not

exhibit sensitivity to different image inputs. This phenomenon in solar

energy forecasting models highlights existing issues in integrating spatial

information with other modalities, namely:

• In multimodal fusion models for intra-hour solar energy forecasting,

how can we quantify and determine each modality’s role in the final

forecast?

• How can we strengthen the modality fusion aspect of the current

architecture to truly utilise the spatial information in sky images for

solar energy forecasting?

2.6.2 Transfer Learning for DL-GSI-IHSFModels un-

der Different Climates

The geographical location of observation sites and climatic conditions strongly

influence solar irradiance, as indicated by historical statistics [122]. There-

fore, solar irradiance prediction models usually rely on local datasets. How-

ever, this poses a challenge for DL-GSI-IHSF models since their perfor-

mance is limited by the observatory’s spatial location and the local dataset’s

unique characteristics. Local datasets can directly impede the generaliz-

ability of DL-GSI-IHSF models with distinctive features. Moreover, acquir-

ing new datasets can be prohibitively expensive in terms of time, money,

and personnel resources, further hindering the development and deploy-

ment of these models for site-specific testing.
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In deep learning, one potential solution for datasets with limited data is

to transfer the knowledge, i.e., the weights within the model architecture,

from a model trained on a larger dataset to a model with limited data,

thereby improving the latter’s generalizability performance. This migra-

tion method can reduce the data collection and training time when deploy-

ing new models, effectively improving model training efficiency. However,

similar work has not yet been done in the DL-GSI-IHSF domain. Given

this background, we pose the following questions:

• Can the transfer learning approach based on weight transfer enable

the model to transfer the IHSF prediction features learned under one

set of climate and geographical conditions to a completely different

set?

• If transfer learning can be used, how can it impact model training?

2.6.3 Improving the Model Calculating Efficiency by

Simplify Model Architecture

The development of the DL-GSI-IHSF model primarily involves the trans-

fer of prior models from the computer vision domain. However, the de-

velopment and validation of computer vision models are often carried out

for highly complex tasks. For instance, ImageNet [123], the most well-

known dataset in computer vision, categorises 1.2 million images into 1000

classes based on content. In computer vision work, models are often de-

veloped in various depths to cope with tasks of different complexity levels.

Deeper models imply greater computational demands and higher perfor-

mance within a reasonable range. However, in the DL-GSI-IHSF work, the

phenomenon is quite the opposite. It has been found that using deeper
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or better-performing models in the computer vision domain to analyse sky

images does not effectively improve the model’s predictive performance;

instead, deeper models may lead to a decline in performance [77]. This

phenomenon is similar to the model overfitting issue in computer vision

when using deep networks [99]. In the ResNet study [99], the authors dis-

covered that the 1202-layer model performed slightly worse on the CIFAR-

10 dataset than the 32-layer model, and the cause of this was speculated

to be overfitting. However, in the context of DL-GSI-IHSF, only the 50-

layer model displayed evidence of overfitting [77], which is significantly less

than in deep vision studies. It is postulated that this discrepancy may be

attributed to the complexity of the prediction task, for which the dataset

of DL-GSI-IHSF is likely to be less intricate than generic depth models.

Therefore, we raise the following questions:

• Is even the simplest model in the computer vision domain still too

complex for the DL-GSI-IHSF work? In other words, does the DL-

GSI-IHSF require a complex and deep visual model to analyse im-

ages?

• Is there still room for simplification in the current DL-GSI-IHSF

model framework?

• How can we ensure that the computational requirements are met

without overfitting?
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Chapter 3

General Methodology and

Dataset

Chapter Abstract

The methodology and datasets utilised throughout the subsequent three

chapters were discussed in this chapter of this thesis. The methodology

section presents the DL-GSI-IHSF model framework grounded on the data-

model-analysis development process. The dataset section offered the online

public dataset retrieved from the Folsom and Nottingham datasets collected

from the local observatory archives. Both are applied in the subsequent

chapters.
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3.1 Research Framework

This section primarily introduced the overall research framework used in

this thesis, as shown in Figure 3.1. Each column in the figure represents

the three main research chapters and one experimental data collection part

of this paper. Each row corresponds to the primary steps of developing

deep learning models, followed by each chapter, namely data preparation,

model training, and model evaluation. Firstly, the data preparation part

mainly involves preparing the dataset required for model training, includ-

ing data collection, multi-source data alignment, data quality control, data

downsampling, data normalisation, and dataset partitioning. The parts

using publicly available datasets or data accessible through public calcu-

lation methods are indicated by their data sources. The sections using

data collected from local testbeds will be introduced later in this chapter.

Secondly, the model training mainly involves fitting the developed deep

learning model to the designed dataset. The overall framework, algorithm,

and other essential information of the model will be introduced in detail

in each research chapter. The specific framework of the model, including

the number of layers, details, resolution of each layer, and the number of

channels, will be disclosed in Appendix B. Thirdly, the model evaluation

part primarily focuses on the prediction results of the trained model on an

independent test set and comprehensively assesses the model’s predictive

performance according to the evaluation criteria in each chapter.

This thesis starts by reviewing the existing DL-GSI-IHSF work and reveal-

ing the model architecture issues concerning multi-modal vector represen-

tation fusion that existing models have overlooked. In the first research

chapter, a model was developed and debugged based on a relatively com-

plete online public dataset - the Folsom dataset from California, USA [39].
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This work mainly focuses on improving multi-modal representations’ fusion

and interaction processes. Next, in the second research chapter, we address

the poor generalisation of the prediction model in different environments

by attempting to transplant the prior weights obtained from training the

model on the Folsom dataset in the first part to the local dataset collected

in Nottingham, UK. Simultaneously, we verify the role of transfer learning

in tackling the problem of insufficient data during model generalisation.

Finally, in the third research chapter, we develop a model using local data

from Nottingham. We attempt to streamline the model architecture and

optimise the algorithm to achieve higher computational efficiency while

improving model performance.
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Figure 3.1: The research framework of this thesis, with each column representing a research topic and each row representing three
different phases of the topic.
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3.1.1 Development of DL-GSI-IHSF with Enhancing

Modality Interaction using Attention Mecha-

nism and Gate Mechanism

In the first research part of this paper, we reveal a potential flaw in the

current DL-GSI-IHSF model. Specifically, as reviewed in Sections 1 and

2, the current DL-GSI-IHSF models, although continuously incorporat-

ing more advanced and complex spatiotemporal reasoning-based computer

vision models, do not show significant influence from temporal image infor-

mation in the final predictions and still perform like a sophisticated SPM

model. It is believed that the widely-used method of concatenating multi-

modal feature representations is overly simplistic, lacking specific feature

representation alignment and feature interaction enhancement modules.

The model has not gained the ability to perform cross-modal reasoning.

Therefore, inspired by other multi-modal domains, the proven attention

and gating mechanisms were used to enhance feature representation and

interaction in multi-modal joint features. Based on these two patterns,

we develop four different architectures of interaction-enhanced models and

compare their performance with the mainstream CNN architecture based

on modal vector concatenation. In the model trained using the Folsom

dataset in the United States, it was found that the ViT-E model, which

employs early feature-level fusion, can search for features across modali-

ties through the global attention mechanism, achieving the most balanced

performance.
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3.1.2 Transfer Learning across Climates: Multi-climate

Training based on Model Transfer

The second part of this study identified a dilemma in promoting and val-

idating the DL-GSI-IHSF model. Regions with different climates require

data collection to train new models, which is costly and challenging. Ad-

ditionally, the model’s application is limited by its dependence on climate

and geography, necessitating additional training to predict outcomes in new

regions. To address this issue, transfer learning was employed as a com-

pelling solution. Initially, observational sites are established in the Notting-

ham region of the United Kingdom, and six months of data are collected

to serve as the transfer target. The ViT-E model trained on the Folsom

dataset is used as a pre-trained platform, and pre-trained knowledge is ex-

tracted. The Folsom dataset is particularly suitable for short-term solar

energy forecasting among arid and sunny California regions and undergoes

rigorous data quality control. During the transfer process, two different

methods are extant: one directly deploying the Nottingham dataset on

the already trained pre-trained model for further training, the other using

some or all of the pre-trained weight without additional training fine-tuning

the model’s prediction head. Additionally, we modelled another scenario

in which deep models are trained and deployed in datasets with scarce

data utilising source domain knowledge migration to overcome the training

bottlenecks caused by limited data. Lastly, we comprehensively compare

the performance and training costs of transfer learning with the brand-new

models trained from scratch to evaluate the application of transfer learning

in DL-GSI-IHSF models.
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3.1.3 Optimising and Simplifying the Localisation Model

In the third research part of this paper, another phenomenon was revealed

when transferring computer vision networks to the solar energy forecast-

ing domain. The network architecture’s performance is inconsistent with

the original computer vision and solar energy forecasting tasks. Specifi-

cally, when transferring networks with significant advantages in computer

vision datasets to the solar energy forecasting domain, their architecture

does not demonstrate a significant performance gap compared to essential

external networks. Simultaneously, in solar energy forecasting tasks, using

more complex visual networks does not exhibit higher spatial and temporal

resolution capabilities in model performance. Therefore, it was speculated

that capturing spatial features in sky images does not require highly com-

plex deep networks. Based on this background, we attempt to simplify

the ViT network architecture transferred from the computer vision domain

and optimise it through hyperparameters to improve the model’s predic-

tion performance while streamlining the model and enhancing computa-

tional efficiency. Finally, using a unified comparative modelling system, we

systematically compare differences in model performance and similarities

in computational efficiency, and explore the best local model structure.

3.2 Data Collection Platform

As introduced in the first chapter, for IHSF, sky images provide valuable

exogenous input with high spatiotemporal resolution. In our work, we

utilised two datasets. One is a dataset collected explicitly for solar fore-

casting, released by the University of California, San Diego (UCSD) [39]

This dataset covers data from 2014 to 2016 with a 1-minute interval, in-
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cluding sky images, solar irradiance data, and meteorological data. The

other dataset is a local Nottingham dataset, collected based on the solar

observation equipment at the University of Nottingham. The data collec-

tion started in November 2021 and includes sky images, solar irradiance

data, meteorological data, solar spectral data, and PV output data.

3.2.1 Folsom Dataset

The Folsom dataset is released by UCSD, specifically designed and collected

to accelerate the development of solar forecasting [39]. The dataset com-

prises four parts: 1. Multi-year quality-controlled solar irradiance infor-

mation and meteorological data; 2. High-resolution sky images were taken

at the exact location and time; 3. Satellite images of the exact location

and time; 4. NWP data of the exact location and time. The observation

station is located at 38.642N, 121.148W, Folsom, CA, which belongs to the

Csa climate in the Koppen Climate classification (C = Warm temperate, s

f = dry summer, a = hot summer). In this paper, we used irradiance infor-

mation, weather data, and high-resolution sky images from the dataset as

the raw data for model development. According to the earliest traceable

work [9], sky images were taken by a Vivotek FE8171V fisheye network

camera with a 3.1-megapixel complementary metal oxide semiconductor

(CMOS) sensor. The time resolution is 1 minute, the spatial resolution is

1536x1536, and the camera faces 15 degrees west of north. The dataset

includes three years of data (from January 2014 to December 2016). Fig-

ure 3.2 (b) shows the sky camera and the images generated. The RSR-2

device made solar irradiance observations from Augustyn, Inc. The device

has two Licor-200SZ pyranometers for measuring GHI and DHI, and DNI

is calculated based on the results and the solar angle simultaneously. It is
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worth noting that the typical error of this instrument is about 5% lower

than that of the highest precision class Precision Spectral Pyranometer and

slightly lower than the accuracy range of class 2 Pyranometer in the IS0

standard. Meteorological measurements, such as temperature and wind

speed, were collected by the Vaisala WXT520 Micro Weather Station. Me-

teorological and irradiance data were eventually recorded and synchronised

to the online database by the Campbell Scientific CR1000 data logger. All

instruments are connected to a local Network Time Protocol (NTP) server

to ensure time synchronisation. Figure3.2 (a) shows the distribution and

density relationship of solar irradiance data from 2014 to 2016.
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(a) Solar irradiance distribution in the Folsom dataset. (b) A sample of clear sky images
from the Folsom dataset and the
sky camera Vivotek FE8171V.

Figure 3.2: Data distribution and sample image presentation in the Folsom dataset.
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3.2.2 Nottingham Dataset

The Nottingham dataset includes solar irradiance and meteorological data

recorded by the data observation station on the roof of The Energy Tech-

nologies Building at the University of Nottingham Jubilee campus. Since

March 2019, solar irradiance and meteorological data have been collected

at an observation frequency of 1-minute average. Since November 2021,

sky images have been provided at an observation frequency of 15s/sample.

Since April 2022, full sky horizontal, tilted, and direct spectral information

has been collected at a resolution of 15s/sample. Moreover, since August

2022, the specific PV panel output data have been collected at a time reso-

lution of 1 minute/PV curve. The dataset is obtained from the observation

point of 52.952N, 1.184W, which belongs to the Cfb climate in the Koppen

Climate classification (C = Warm temperate, f = Fully humid, b = Warm

summer). The layout of the observation point is illustrated in Figure 3.3.

Sky images are acquired by the Mobitix Q26 fisheye network camera, which

is equipped with a 6.0-megapixel 1/1.8” CMOS sensor, as indicated in Fig-

ure 3.4 (b). In order to minimise the impact of camera factors on image

quality, the automatic exposure adjustment, noise reduction, and contrast

adjustment functions of the camera are deactivated, and the camera faces

west, reducing the resolution to 1028x1028 images. Solar irradiance is mon-

itored by the Razon+ Sun Tracker, which has a built-in PR1 Pyranometer

for measuring DHI and a PH1 Pyrheliometer for measuring DNI, and GHI

values are calculated based on the results. The instrument records one

minute of irradiance data and provides the average value. PR1 and PH1

belong to the second class Pyranometer in the ISO accuracy standard, and

the verified error and spectral instrument measurement difference is less

than 0.2%. The Maplins N23DQ Weather Station collects meteorological

data, including temperature, humidity, air pressure, wind speed, and wind
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direction. All data are transmitted to a unified router and then sent to

the data server for archiving. Furthermore, a Raspberry Pi with GPS sig-

nal timing is added to the router as an NTP server because the error of

the internet-based NTP server may exceed 500 milliseconds, and a Pulse-

per-Second chip is used as an auxiliary calibration signal. The local NTP

server can reduce the error to less than 1 microsecond and broadcast to

all instruments every 6 hours. The irradiance data for a whole year, from

October 2021 to September 2022, is depicted in Figure 3.4 (a).
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Figure 3.3: Distribution Map of Overhead Instruments at Nottingham Site.
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(a) Solar irradiance distribution in the Nottingham dataset (b) A sample of clear sky images from the
Nottingham dataset and the sky camera
Mobotix Q25.

Figure 3.4: Data distribution and sample image presentation in the Nottingham dataset.

110



3.3. OUTLINE OF FOLLOWING CHAPTERS

3.3 Outline of Following Chapters

This paper focused on expanding and improving existing DL-GSI-IHSF

models by examining their forecasting performance, evaluation metrics,

interpretability, scalability, practicality, and computational efficiency and

making necessary modifications.

In Chapter 4, an issue with the existing framework was identified: the lack

of emphasis on multimodal fusion. This issue was addressed by deploying

two specific mechanisms to optimise this module on the Folsom dataset and

compare the effects of five different network architectures on model perfor-

mance and sensitivity to image information. Based on the solar energy

forecasting performance, the best-performing ViT-E model was ultimately

chosen for further optimisation and investigation.

In Chapter 5, transfer learning was used to adapt the knowledge acquired

from the Folsom dataset to the Nottingham dataset. First, using the same

approach, we train a new baseline model on six months of Nottingham data.

Then, the parameters learned in the Folsom model were gradually trans-

ferred to the Nottingham dataset, adapting it to the local climate through

training or fine-tuning. The models obtained through transfer learning and

training from scratch were compared regarding model performance, train-

ing cost, and data acquisition cost. Finally, a simulation experiment was

conducted, training a model on two weeks of real-world continuous raw

data to compare the practical effects of transfer learning.

In Chapter 6, the ViT-E model was further streamlined and optimisedl

through model architecture search and hyperparameter search techniques.

The model was refined and modified by adjusting the model architecture,

loss function, and optimiser. Through model architecture search, we de-
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termine the most computationally efficient model architecture that ensures

model accuracy. By adjusting the loss function and optimiser, we further

reveal the effective parameter structure used in training Transformer-based

models. Ultimately, the findings were validated by comparing the per-

formance and computational efficiency of the optimised and unoptimised

models.
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Chapter 4

Enhancing Modality

Interaction with Attention and

Gate Mechanism

Chapter Abstract

The limitations of directly concatenating two modality features were em-

phasised in this chapter in the current state-of-the-art models. As an al-

ternative, we suggest enhancing the process of modality interaction. We

introduce gate and attention mechanisms to strengthen the correlation be-

tween the two modality vectors in the interaction stage. We use Forecast

Skill and Balance Precision to qualitatively and quantitatively compare the

performance of the models, respectively, to provide a unified perspective.

It was found that the ViT-E model using a global attention mechanism

gives a balanced approach to obtaining relatively optimal quantitative and

qualitative results.
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4.1 Introduction

As solar power generation grows, its inherent variability presents the grid

with issues related to reserve costs, dispatchability and ancillary generation,

and grid reliability in general [124]. Accurate solar irradiance forecasting

at different time scales is a prerequisite for effective solar energy utilisa-

tion and a critical step in the grid integration and management of solar

farms [125, 126]. Reliable solar forecasting tools improve the economics of

PV power generation and reduce the negative impact of PV uncertainty on

grid stability [127].

Changes in cloud cover are the leading cause of rapid changes in solar irradi-

ance. Since the prediction models based on statistical numerical regression

used in very short-term forecast models do not include information on fast-

moving clouds, alternative or additional data inputs that account for these

rapidly changing meteorological phenomena are required if accuracy at this

time scale is to be improved.

Ground-based sky imagery represents one such exogenous data source. It

plays a crucial role in solar energy forecasting due to its ability to provide

information on cloud distribution and motion. Solar irradiation models in-

formed by cloud motion data offer the potential to deliver accurate forecasts

of very short-term solar irradiation and thus provide valuable supporting

information for grid management and informing the market around power

supply and demand [128].

Currently, sky images taken by fish-eye cameras contain rich spatiotem-

poral features. Thus, the academic community widely accepts them as

exogenous data for intra-hourly level sky modelling [21, 26, 129]. The

main methods for predicting solar irradiance based on sky images can be
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divided into two categories. The first is a sky modelling approach based on

classical image analysis. Various methods are used to identify cloud pixels

in sky images and determine their spatial and temporal features, including

the red-blue ratio or difference, 3D cross-correlation, image feature corre-

lation, optical flow, and ray tracing. These methods are used to forecast

the impact of clouds on solar irradiance by combining cloud position es-

timates with estimates of cloud transmittance, which can be determined

through fixed, density-based, or height-based approaches. However, these

modelling approaches have limitations due to the complex physical prop-

erties of clouds, such as their motion and transparency, which cannot be

accurately accounted for using current methods. Therefore, the accuracy

of future irradiance forecasts using this approach remains limited. This ap-

proach is based on decision-level fusion, i.e. solar irradiation forecasts and

ramp forecasts are made independently of each other and only influence

each other when combined in the final stage, as shown in Figure 4.1 (a).

The second approach uses deep learning methods [42, 77, 50, 47, 54, 130,

131, 132, 133, 134]. This usually employs a combination of convolutional

neuron networks (CNN) [96] and recurrent neural networks [107] (RNN)

based methods to predict solar irradiance information for future periods.

The widely used CNN-based computer vision models, such as ResNet [99]

and VGGNet [98], can extract feature information from a dataset con-

taining many sky images using deep convolutional neuron networks to ob-

tain spatial dimensional perception capability. After extracting the spatial

information of the images, various methods can be used to obtain time-

series-based information. These include pre-processing by stacking a time

series of images [77], convolution processes using 3D-CNN with an extra-

temporal dimension [47], convolution-based long and short-term memory

(LSTM) network [42], convolution followed by feature-based LSTM net-
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works [50, 133], directly using regression algorithms for continuous re-

sults [77, 47], or combine feature engineering techniques with LSTM tech-

niques [131]. Combining the architecture of two networks and fitting them

using a large amount of data can obtain a network model with both spa-

tial and temporal feature perception. This stitching model can map the

relationship between specific features in continuous input image data and

forecast targets. This model type has been applied to short-term forecast

intervals for different resolutions. In contrast to models based on image

analysis, current deep learning models can be mainly categorised as late

feature fusion models, where the image and numerical values respectively

abstract features as a high-dimensional vector in their respective models

and concatenate the two vectors at the end of their respective operations,

as shown in Figure 4.1(b). The tandem high-dimensional vector can be con-

sidered a common feature extract based on the two modalities. The final

prediction is based on extracting available information from that vector.

While deep learning networks have been shown to deliver predictions with

greater accuracy than those based on feature engineering in ground-based

sky picture solar prediction, researchers cannot assess the relationships

between variables that affect performance due to its black box nature.

For example, using sky images as exogenous data to aid solar prediction

has improved model performance at time scales ranging from 2 minutes

ahead [35] to 1-hour ahead [57]. It was evident that the images play a

different role at these two different time scales, but the features it identifies

are not understood.

This paper argues that solar irradiance forecasting using ground-based im-

ages from which numerical features are extracted that describe the solar

field can be categorised as a general multimodal learning domain rather

than a pure computer vision domain. Multimodal learning is the combi-
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nation of different data types in deep learning to predict a target variable

through classification or regression tasks. For example, a medical diagnosis

can be made by combining CT images and clinical data (classification). A

speaker’s emotion can be predicted by analysing video images and audio

data (regression). As discussed in Chapter 2, the original motivation for

using sky images to assist solar energy prediction was to fill the gap of

short-term spatial information missing in statistical algorithms by utilising

the spatial information contained in the images.

As shown in Figure 4.1, for the broad field of image-informed multimodal

learning, besides the two architectures mentioned above, i.e. decision-level

and late feature-level fusion of image information, the fusion methods also

include data-level fusion (not shown in Figure) and early feature-level fu-

sion. Early feature-level fusion and late feature-level fusion extract feature

fusion within the model, with early fusion focusing on modal interactions

and late fusion focusing on feature extraction [135]. In deep learning mod-

els used for solar forecasting, two architectures are currently applied: late

feature-level fusion [42, 33, 50, 73] and decision-level fusion [71, 77]. In the

work of Paletta et al. [42], the use of numerical data as additional inputs

fused with a computer vision model improved the 2-minute forecast skill

(FS), which rose from -3.4% to 12.9% and the 10-minute FS, which rose

from 18.8% to 23.9%.

However, the literature suggests that the interest of researchers is currently

focused on the image feature side to improve overall forecasting power

through a more robust image network. This approach neglects both the

numerical component’s role in the model and whether it interacts effectively

with the image component. For example, the numerical regression-based

fully connected Multi-Layer neural network module (MLP) has been added

to forecasting models by default due to the use of PV logarithms as an
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additional numerical input in the work of Sun et. al. [33] and significantly

improved the performance of the model.

Another potential area of research responds to the fact that the image-

numerical bimodal model currently in use is not modal interaction friendly.

The prevailing image feature framework is the convolutional neuron net-

work (CNN), where specific features of an image are extracted by slid-

ing convolutional modules through the image and gradually constructing a

high-dimensional vector representation of the image by multi-layer superpo-

sition. This architecture means it is impossible to extract features present

in the 3D image and use these directly with complementary data held in a

1D array. Therefore, if data features of different dimensions are extracted

simultaneously by convolutional computation, i.e. early feature-level fu-

sion, this must be done by projecting the 1D data to a higher dimension

and concatenating it with another, a process that may lead to distortion

of the low-dimensional data. Venugopal et al. [71] compared CNN net-

works against PV output-based regression predictions with different fusion

methods. Their results showed that late feature- and decision-level fusion

achieved better prediction performance. However, data- and early feature-

level fusion failed to effectively interact with information across modalities

to achieve results beyond the baseline.

Multimodal learning adopts a unique feature extraction approach. Its

transformer architecture enables data from different modalities to be fed

into the encoder in parallel to achieve early feature-level fusion, as shown

in Figure 4.1(c). It can effectively address the challenges of inherent data

misalignment arising from the variable sampling rate and establish cross-

modal element correlations of each modality’s sequence [135]. Thus, the

transformer-based model is widely used in the multimodal learning fields

of image-language interpretation [136], image-sentiment recognition [137],
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(a) Decision-level fusion (b) Late feature-level fusion

(c) Early feature-level fusion

Figure 4.1: Schematic diagram of the model architecture for the different
fusion stages. The higher box represents the main inference module.
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the joint expression of video-audio-text [138, 139], etc. These applications

share commonality with the mixed-mode data feeds available for irradiation

forecasting. The original contributions of this chapter are:

1. To present two new approaches for picture-numerical bimodal model

interaction. Namely, an improvement of the late feature-level fusion

method using a gate architecture and a new early feature-level fusion

method based on the Transformer architecture.

2. To assess the performance of the model 2-, 6-, and 10-minute forecast-

ing horizons by scoring its quantitative statistical performance using

the Smart Persistence Model (SPM)-based FS metric and the quali-

tative performance of the model using the Ramp Events (RE)-based

Balanced Precision (BP) metric.

3. To show contradictions in the quantitative and qualitative perfor-

mance of late feature-level fusion models regarding single image and

numerical fusion. In particular, the widely used CNN model based

on late feature-level fusion obtained higher FS, resulting in lower BP.

We speculate on and attempt to demonstrate a link between this and

the poor sensitivity of its architecture to images.

4. To demonstrate that for the end-to-end single picture-numerical bi-

modal model, the central variability of the model, both architec-

turally and algorithmically, was most pronounced for the 2 minutes

ahead forecast. This variability fades with longer forecasting hori-

zons. At 10 minutes ahead of forecast, the validity of the image

information is extremely low, and all models have degenerated into

a mean reversion model that relies primarily on irradiance and clear

sky irradiance.
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The remainder of the paper is structured as follows: Section 4.2 presents

the overall experimental approach, including Data pre-processing, model

architecture, and evaluation methods; Section 4.3 presents results that show

quantitative and qualitative evaluation results for all models and discusses

the results; Section 4.4 presents the results-based comparison of model

performance with a critical discussion of existing architectures; and Section

4.3 presents our conclusions and recommendations for future work.

4.2 Methodology

Figure 4.2 illustrates the methodology adopted in this study—the ap-

proach to building a deep learning solar forecasting model based on image-

numerical fusion comprised of three stages. The first was a pre-processing

data stage, which aligned, filtered, sampled, and grouped the raw data

into a format suitable for training a deep learning model. The second was

a training stage, where the training dataset was fed into the model, and

the weights within the model were fixed by backpropagation. Following

this, the model was evaluated on a validation set to assess the performance

trained in the training dataset. Continuous iteration saves the model that

achieves the optimal result on the validation set, i.e. the model with the

most negligible loss, from ending the training process. The final stage in-

volved using a test dataset to obtain a forecast for comparison with ground

truth data to quantify the final performance of the different models studied

in this paper.

Clear sky index (CSI), i.e. the solar irradiance as a percentage of the

clear sky irradiance, was chosen as the target for forecasts rather than the

GHI, reflecting consensus within the solar forecasting community around
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its ability to improve the accuracy of solar irradiance forecasts made using

numerical regression algorithms [49], including those that involve image-

numerical multimodality approaches. Additionally, using CSI as a forecast

target has a beneficial inductive bias compared to the direct irradiance fore-

cast, i.e., the model assumes a priori knowledge of the clear sky background.

Forecasts generate an atmospheric transmission rate (or attenuation rate)

based on the transparent sky background, which is also consistent with tra-

ditional image analysis methods when harnessed for irradiance forecasting.

The reach of the forecast target was informed by the approach of Kong et

al. [55]. A forecast resolution of 4 minutes and a forecast span of 10 min-

utes were selected. The input data set was used in three models to generate

independent solar irradiance forecasts, each over 2-, 6-, and 10-minute time

horizons. Results were compared to quantify the relative forecasting per-

formance of the models under three different forecast horizons.

As shown in Figure 4.2, Section 2.1, the data pre-processing, explains the

process of going from raw to trainable data. Section 2.2 describes the

process of this paper’s five main supervised image-numerical multimodal-

ity models, along with other standard model architectures. Section 2.3

evaluation matrix introduces the two main criteria for model prediction

performance evaluation.

4.2.1 Data Pre-processing

Data for the experiments were obtained from the Folsom, California [39]

public database, supplemented by clear sky irradiance values from the Mc-

Clear [140] clear sky irradiance model. Output from the latter was gener-

ated using the timestamps of corresponding Folsom data points.
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Figure 4.2: Overview of the solar forecasting framework.

Inputs to each of the models comprised a set of time-synchronised data

that included clear sky irradiance (GHI, DNI, and DHI), measured irradi-

ance (GHI, DNI, DHI), weather data (dry bulb air temperature, humidity,

relative air pressure, wind speed, and wind direction) measured at ground

base stations, and solar geometry (solar zenith and solar azimuth angles).

Data Alignment and Quality Control The initial pre-processing stage

involves image compression, image alignment to numerical data, quality

control, and data normalisation. The Folsom dataset provides raw image

data (1536 pixels × 1536 pixels), solar irradiance data, and weather data.

These data first went through a process of temporal alignment using times-
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tamps, and the corresponding clear sky irradiance was then sourced from

the McClear clear sky model. Following this, quality control filters were

applied to screen each piece of data.

For numerical data, a quality control strategy following Yang’s [141] work

was used to reject data outliers, with decisions being made based on iden-

tifying extremely-rare limits [142], a diffuse ratio test [142], and other fil-

ters [128].

Images were down-sampled to 128 pixels × 128 pixels, considered the small-

est resolution that can be maintained for sky information, using the bilin-

ear method to match the input format of the ANN. In addition, the image

dataset showed occasional time shifts possibility due to cumulative errors

resulting from the continuous shooting. Data points that showed signif-

icant offsets (more than 15 seconds from the timestamps) were removed.

Finally, to balance the weights of all inputs, all RGB channels and numer-

ical data of the images were normalised to the interval [0, 1], except for the

solar altitude angle, which was normalised to [−1, 1] after a trigonometric

transformation.

Segmentation and Resampling of Dataset The Folsom dataset pro-

vides numerical and image data for three years from 2014-2016. In this

study, the 2014 data was used as the training set, the 2015 data as the

validation set, and the 2016 data as the test set. Following the data align-

ment and quality control stage, these contained 195k, 233k, and 228k data

points, respectively. Within these datasets, the sample size for sunny peri-

ods was much larger than that for non-sunny days, the former accounting

for approximately 60% of the entire dataset. As may be inferred from the

cumulative distribution of CSI on the left side of Figure 4.3, the dataset is
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unbalanced, with clustering of CSI values between approximately 0.9 and

1.05. Recent research [34] suggests that unbalanced datasets can generate

models biased towards non-critical conditions – in the case of the Folsom

dataset, the sunny periods. To guard against potential bias, a simple al-

gorithm was used to filter out consecutive data points within the sunny

period. Expressly, a data point was excluded if the preceding five and

following 10 points were’ sunny’ as defined by the limits of the data clus-

tering, i.e., a CSI greater than 0.9 and less than 1.05. The right side of

Figure 4.3 shows the data distribution after resampling, suggesting it is

better balanced. The remaining datasets contain 86K, 100K and 94K data

points, respectively.

Figure 4.3: Data before (left) and after (right) resampling CSI distribution

Due to computer memory and training time constraints, it was verified that

a quarter of the data was randomly sampled(in Appendix A, Figure A.1).

The final training, validation and test datasets used for analysis contained

approximately 21k, 25k and 23k data points, respectively. The detailed

monthly distribution of the final data is shown in Appendix A, Figure A.2

Due to the computer memory and training time constraints, only a quar-

ter of the training data were used, randomly sampled from the training

dataset. The final training, validation, and test datasets used in the anal-

ysis contained approximately 21k, 25k, and 23k data points, respectively.
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4.2.2 Development of Deep-learning Based Irradiance

Forecast Model

This section describes the model architectures and modules used in this

study. It presents the current dominant architecture for image-numerical

bimodal prediction models, i.e., late feature-level fusion architecture, before

presenting the new model proposed in this paper, which is based on Trans-

former encoder architecture and implements early feature-level fusion. The

two reference models against which this is benchmarked are then described

before comparing the performance of the three approaches. In reviewing

the findings, it is essential to bear in mind that modules with a temporal

dimension, such as the LSTM module or other Recurrent Neural Networks

(RNN), do not form part of the discussion as the focus of this paper is on

the exploration of the process of model fusion.

(a) Late Feature-level Fusion [33] (b) Early Feature-level fusion

Figure 4.4: Schematic diagram of the numerical-image bimodality model
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4.2.2.1 Bimodal Model based on Late Feature-level Fusion

Currently, mainstream deep learning-based image-numerical bimodal mod-

els are based on late-stage feature-level fusion architectures [47, 50, 42, 33,

55], as illustrated in Figure 4.4(a). The architecture consists of three main

components: an image embedding process that extracts the input image

features as high-dimensional vectors; a numerical embedding process that

extracts the numerical input features as high-dimensional vectors; and a

modal interaction module that extracts the joint features from the two

vectors after a process of concatenation, which ultimately derives the fore-

casting results.

CNN - Current Image Embedding Among the sky image-based PV

forecast models, CNN and other variants based on convolutional compu-

tation are currently the dominant image feature extractors due to their

excellent image resolution performance [55, 47, 42]. These extract features

from images in a continuous convolutional scan, building a weighting sys-

tem from detailed to macroscopic images by sequentially expanding the

receptive field size of the model through a multilayer repetitive architec-

ture. This study used the most widely accepted ResNet-18 model [99] as a

baseline model for CNN image extractors.

ViT - Proposed Image Embedding As mentioned above, methods

based on Transformer encoder architecture are emerging as a widely used

backbone network for various tasks. The Vision Transformer (ViT) has

been developed for image feature extraction [100]. Unlike the convolution-

based scanning adopted by CNN models, ViT-based vision models build

a weighted system by extracting interconnections between image patches.
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As a result, such models can establish relationships between pixels at dif-

ferent areas within the image. This paper postulates that since the main

feature of the sky image in short-term solar forecasts is primarily the rela-

tive relationship between regions occupied by clouds, clear sky and the sun,

the relative importance of fine-grain texture/detail in the image is lower.

Based on multiple self-attention, Vit models can extract the more critical

larger-scale features in sky images more efficiently.

(a) ViT architecture (b) Transformer Encoder

Figure 4.5: Schematic diagram of Vision Transformer (ViT) image embed-
ding.

For a module that acts only as an image feature extractor, the computa-
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tional process can be expressed as

zi0 =
[
xclass;x

1
pE; · · · ;xN

p E
]

+ Epos E ∈ R(P 2·C)×D,Epos ∈ R(N+1)×D

(4.1)

zi
′
l = MSA (LN (zil−1)) + zil−1, l = 1 . . . L

(4.2)

zil = MLP (LN (zi
′
l)) + zi

′
l, l = 1 . . . L

(4.3)

ẑi = LN
(
z0i L

)
(4.4)

As shown in Figure 4.5(a), the image input x ∈ RH×W×C is divided into N

patches of side length P and stitched into a 2D sequence xp ∈ RN×(P 2·C).

Following this, the pixels of each patch are projected linearly onto D dimen-

sions via transformer embedding, a learnable latent vector E ∈ R(P 2·C)×D.

Following the process described by Devlin et al. [143], the input after re-

shaping is stitched with an additional learnable class token, xclass, and

embedded with a learnable position component Epos ∈ R(N+1)×D, which

describes the spatial relationships between patches. Eventually, the image

part of the input is represented as zi0 ∈ R(N+1)×D. This input is added

to a standard Transformer encoder module, shown in Figure 4.5(b), i.e.,

a module based on a Multihead Self-Attention (MSA) process [144] and a

Multilayer Perceptron (MLP) process, iterated L times. Ultimately, the

learnable class token, xclass, is extracted, and after Layer Normalisation

(LN), is output as a high-dimensional vector ẑi, representing the image
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feature. Where the MSA module is calculated as:

Attention(Q,K,V) = softmax(
QKT

√
dk

)V (4.5)

MultiHead(Q,K,V) = Concat(head1, . . . , headh)WO (4.6)

where headi = Attention(QWQ
i ,KWK

i ,VWV
i ) (4.7)

Where, Equation 4.5 refers to the Scaled Dot-Product Self-Attention al-

gorithm, which searches attention by calculating the dot product of self-

attention points of the quarry, Q, and Key, K, and scales the attention

based on the dimension dk of Q and K, and then calculates the softmax

activation to obtain the relative attention weight. Finally, it performs the

V value. Equation 4.6 and 4.7 refer to the Multi-Head Attention algorithm.

First, Q, K, and V are projected into different representation subspaces,

i.e., multiple heads, by trainable matrices WQ, WK , and WV , respectively,

and self-attention is calculated independently using different representation

for Q, K and V. Then, the attention of multiple heads is concatenated

and scaled back to the input size through the trainable matrix WO.

MLP - Current Modality Interaction Embedding Currently, Mul-

tilayer perceptron (MLP), also known as multilayer feedforward Artificial

Neural Networks (ANN), are widely used as one-dimensional vector fea-

ture extractors in models with numerical inputs [145]. MLPs are also used

widely in the modal fusion phase of image-numerical bi-modal solar fore-

casting models [33, 47, 50, 42]. As mentioned above, when MLPs are used

as a cross-modal feature extractor, as shown in Figure 4.6(a), the direct

concatenation that takes place before feature extraction fails to make effec-

tive connections between the input parameters and the interaction of the

inter-model outputs is entirely dependent on the subsequent adaptive of the
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network architecture to such outputs. Also, due to the heterogeneity of the

different data, models based on MLPs face multiple challenges when per-

forming mapping (converting image information into irradiance data) and

fusion forecasting (combining information from two modalities to predict

ramp events). These challenges include instances where information from

different modalities has different predictive power and noise topology, or

instances where models cannot capture features from one of the modalities.

(a) MLP feature extractor (b) Gated-MLP feature extractor

Figure 4.6: Schematic diagram of modality interaction in late feature-level
fusion models.

MLP with Gate Architecture - Proposed Modality Interaction

Embedding In order to improve the attention given to target features

in the modality processed by the MLP and suppress feature activation in

irrelevant regions, this paper proposes adding a layer based on attention

gate architecture, as shown in Figure 4.6(b). This is like the input gate

architecture in LSTM [107]. The gate architecture generates a gating co-

efficient for each node in MLP with the same dimensionality as the input

feature. Then it converts this into an attention weight map multiplied by

the original feature. The attention gate focuses the model’s attention on

essential regions of the input data and neglects irrelevant regions. The

simplicity of this approach makes it possible to improve feature extraction
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without a significant increase in computing cost.

4.2.2.2 Transformer-based Early Feature-level Fusion

As mentioned above, the MSA-based ViT model finds applications beyond

image processing. Because the MSA module inputs are a series of 1D multi-

dimensional vectors or tensors, it is possible to input images and numerical

data in parallel. As an alternative to CNNs, such backbone networks have

been shown to offer outstanding capabilities in several fields dealing with

multimodality tasks, such as image and text [146], video and text [147], etc.

However, there is, as yet, no such work applied to the field of solar energy

forecasting. Therefore, inspired by Kim et al. [148], this paper speculates

that multimodality input short-term irradiance forecast models that com-

bine sky images and measurement logs can also be constructed using the

Transformer Encoder module as the backbone network to replace both the

CNN visual layer and the MLP numerical regression computational layer

to construct input data with early feature-level fusion.

Figure 4.7: Schematic diagram of image/text bimodal transformer archi-
tecture.
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The proposed early feature and fusion model is based on the Transformer

encoder architecture shown in Figure 4.7. The main inputs to the model

comprise image data and numerical data. For the image data, input follows

the patching process illustrated in Fig 4.5(a). For the numerical data, a

standard unbiased MLP for numeric features is used to up dimension the

numeric information to D, MLP(y) ∈ R1×D, and provide a learnable class

token. The numerical data are divided into five groups based on type: solar

irradiance, clear sky solar irradiance, sun angle, ground wind conditions,

and weather parameters (dry bulb air temperature, humidity and relative

air pressure). As with image processing similar to the ViT process, the

image part of the inputs is represented as zi0. Meanwhile, the learnable

class token for numerical data, yclass, combined with learnable position

embedding Eseq ∈ R(M+1)×D is used to describe the position relationships

within the data sequence. The numerical part of the input is represented

as zn0 ∈ R(M+1)×D. Finally, zi0 and zn0 are embedded separately in the

model type embedding process as ztypei and ztypen , before the process of

concatenation to generate z0 ∈ R(M+N+2)×D. The vector z0 is iteratively

updated through L-depth transformer layers up until the final sequence

zl. The final ẑ representing the forecast vector is generated by a linear

projection of the two learnable vectors z0i L and z0nL in series with hyperbolic

tangent activation.
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The overall data processing can be described as

zi0 =
[
xclass;x

1
pE; · · · ;xN

p E
]

+ Epos E ∈ R(P 2·C)×D,Epos ∈ R(N+1)×D

(4.8)

zn0 =
[
yclass ; MLP(y1); · · · ; MLP(yM)

]
+ Eseq Eseq ∈ R(M+1)×D

(4.9)

z0 =
[
zi0 + ztypei ; zn0 + ztypen

]
(4.10)

z′l = MSA (LN (zl−1)) + zl−1, l = 1 . . . L

(4.11)

zl = MLP (LN (z′l)) + z′l, l = 1 . . . L

(4.12)

ẑ = LN
(
[z0i L; z0nL

]
) (4.13)

For all experiments presented in this paper, hidden size D of 192, later

depth L of 12, patch size P of 8, MLP size of 192, and the number of

attention heads of 12 are used.

4.2.2.3 Smart Persistent Model

This paper uses the Smart Persistent Model (SPM) as the benchmark for

evaluating the performance of alternative modelling approaches. In con-

trast to the Persistent Model (PM), which assumes that solar irradiance

remains constant throughout the forecast interval, the SPM assumes that

the clear sky index remains constant. This offers the advantage that po-

tential seasonal and temporal factors are added to the model as default

preconditions and can be expressed as follows:
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ẑSPM(T + ∆T ) =
z(T )

zclear(T )
· zclear(T + ∆T )

Implicit in using an SPM is the requirement for a clear sky model as a

reference for clear sky irradiance. This paper uses the McClear model [140]

for clear sky irradiance generation.

4.2.2.4 AutoML - Additional Machine Learning Benchmarks

As part of evaluating the performance of image-numerical multi-modal

learning an additional predictive regression model based on only the nu-

merical input data was created to serve as an additional benchmark. This

used the AutoGluon [149] tool, which was used to train a forecast model

and is based on automated machine learning (AutoML). AutoGluon can

automate the model selection, hyper-parameter tuning and model integra-

tion. The final model was generated by integrating one or more of neural

networks: LightGBM boosting trees [150], CatBoost boosting trees [151],

random forests, extreme randomisation trees, and K-nearest Neighbours,

and based on multilayer stack resembling and repeated k-fold bagging strat-

egy to increase the final accuracy [149]. In the presentation and discussion

of the results, this model is referred to using the abbreviation NUM.

4.2.2.5 Summary of Models and Criteria for Evaluating Perfor-

mance

A summary of the models used in this paper is provided in Table 4.1. The

SPM, NUM, and CNN-L models represent benchmarks for persistence,

numerical-based machine learning, and combined image-numerical-based

deep approaches, respectively. ViT represents the image backbone net-
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work based on the Transformer encoder architecture proposed here as the

alternative to using a CNN. The terms appended to CNN and ViT define

the approach taken to fusion where -L represents late feature-level fusion

architecture, -LG represents different gate architecture, and -E represents

feature-level fusion architecture. More detailed model architecture is pre-

sented in Appendix B.
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Table 4.1: Irradiance forecasting models explored through this paper.

Models
Inputs Encoder architecture

Fusion Reference
Numerical Images Numerical Images

SPM ✓ Persistence / /
NUM ✓ AutoGluon / / [149]
CNN-L ✓ ✓ MLP Res-18 Late [33, 42, 55]
CNN-LG ✓ ✓ MLP Res-18 Late, Gated [107]
ViT-L ✓ ✓ MLP ViT-Base-patch8-128 Late [100]
ViT-LG ✓ ✓ MLP ViT-Base-patch8-128 Late, Gated [100, 107]
ViT-E ✓ ✓ Transformer ViT-Base-patch8-128 Early
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4.2.3 Evaluation Matrix

Two evaluation criteria were used to evaluate the performance of these

models. The first involved quantifying the error between the predicted

irradiance ẑ and the ground truth data z∗. Standard metrics widely used

by the solar forecasting community, and adopted in this paper, include FS

based on metrics such as RMSE, MAE or MSE to measure the running

accuracy of the forecast. The second criterion was based on BP, which

quantifies forecasting ability in the presence of a Ramp Event, i.e., a sudden

rise or fall in irradiance due to sudden changes in cloud cover.

Forecast Skill Statistical indicators such as RMSE, MAE or MSE tend

to behave in a homo-trending manner in solar forecasting. The Forecast

Skill (FS), adopted in this paper, used the Smart Persistent Model (SPM)

clear-sky model to represent the baseline performance and only RMSE to

quantify error, as follows:

Forecast Skill = (1− RMSEModel

RMSEBaseline

)× 100%

Balanced Precision Although FS can quantify the general error be-

tween model forecasts and ground truth, it does not demonstrate the ability

of models to forecast ramp events. These qualitative behaviours are crit-

ical in PV generation as the rapid power fluctuations increase the system

frequency stabilisation cost. Balanced precision (BP) is a metric developed

for ramp events [152], which defines a ramp as a rapid solar irradiance event

with a rate of change exceeding 10% of the maximum installed capacity.

This paper uses a modified version of the metric where periods exhibiting a

rate of change in GHI exceeding 100 W/m2/min are defined as ramp events
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– this is to reflect the fact that for the database used, there is not a grid as

a reference., Following the suggestions of Kong et al. [55], this paper also

defines the ramp direction. For each forecast, data can be classified into

three categories based on the magnitude and direction of change in solar

irradiance, i.e., positive ramp events where cloud cover diminishes, adverse

ramp events where cloud cover grows, and periods of relatively consistent

irradiation, implying an absence of ramp events. After categorising the

forecast data to identify ramp events, BP may be defined as:

Balanced Precision =
1

2

∑
c∈C

Tc

Nc

Where Tc represents successfully forecast events in the positive or nega-

tive ramp category and Nc represents the total sample in the positive or

negative ramp category.

4.3 Results

Modelling was undertaken using a PC with a 3.8 GHz AMD Ryzen 9 3900X

CPU and a GeForce RTX 2080 SUPER GPU on the Tensorflow 2.5 [153]

platform with Keras [154] built in. Five replicate trials were carried out

for each image model to reduce errors introduced by the random nature

of observation order and the randomness in random number generator in

training.
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4.3.1 Quantitative Solar Irradiance Forecasting

Results for the criteria used to evaluate the quantitative capabilities of the

five image-numerical models (CNN-L, CNN-LG, ViT-L, ViT-LG, ViT-E)

and two numerical models (SPM and NUM) are summarised in Table 4.2.

It may be seen that all models outperformed the SPM model, which was

used as the FS baseline predictive power. The AutoML-based NUM model

achieved the best forecast results at the 2-minute horizon; the CNN model

with a gate architecture achieved the best results for the 6-minute and

10-minute forecasts. Overall, there was a significant difference in model

FS levels at the 2-minute horizon, and this difference diminished as the

forecast horizon was extended. In particular, the models based on ViT as

the graphical feature extractor were all inferior to the CNN-based models

in FS.

It is worth noting that for the late feature level fusion models, the effect

of gate architecture is not significant, with the difference in FS being less

than 1% across all models, except the ViT-LG model, which delivers sig-

nificantly lower FS at the 2-minute time horizon. The ViT-E model, where

the numerical and image inputs share a single encoder, outperforms both

the ViT-L and ViT-LG models, where features are extracted separately and

then fused at all forecast time horizons. As shown by the linear regression

curves in Figure 4.8, the errors in all models manifest as an overestima-

tion of irradiance at lower irradiance and an underestimation at higher

irradiance.
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Table 4.2: GHI forecast results. The errors are expressed as mean ± standard deviation. Predicted skill was calculated relative to the
SPM model.

Models
2 min 6 min 10 min

RMSE (W/m2) ↓ FS (%) ↑ RMSE (W/m2) ↓ FS (%) ↑ RMSE (W/m2) ↓ FS (%) ↑
SPM 85.62 N/A 117.57 N/A 129.67 N/A
NUM 77.31 9.70 98.69 16.06 113.14 12.75
CNN-L 79.37±0.55 7.29±0.64 98.68±0.45 16.07±0.38 105.15±0.49 18.9±0.37
CNN-LG 79.89±0.66 6.68±0.76 98.54±0.64 16.18±0.54 104.15±0.37 19.68±0.29
ViT-L 82.77±0.82 3.32±0.96 99.97±0.65 14.97±0.55 105.28±1.27 18.81±0.98
ViT-LG 85.16±1.34 0.53±1.56 101.29±0.8 13.84±0.67 105.26±0.45 18.82±0.34
ViT-E 81.45±0.68 4.87±0.79 98.68±0.72 16.06±0.61 104.91±0.7 19.09±0.53
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Figure 4.8: Forecasts using the image-numerical bimodal models over three time horizons. The blue dashed line is the predicted linear
regression and the black dashed line is the expected regression (predicted value = actual value).
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4.3.2 Qualitative Solar Irradiation (Ramp Event) Fore-

casting

Table 4.3 presents the qualitative results for all models regarding how often

Ramp Events were accurately predicted, and Figure 4.9 illustrates perfor-

mance as a confusion matrix. It may be seen that models based on the ViT

framework achieve the best performance across all time horizons. It may

also be seen that the qualitative results exhibit a similar trend to the quan-

titative results, i.e., the variability between models decreases as the forecast

time horizon increases. However, the variability is more pronounced in the

case of qualitative results. At all horizons, the BP of the ViT-based models

was more significant than or equal to that of the CNN-based models. Addi-

tionally, the performance of the models with gate architectures exceeded or

equalled that of the non-gated models. Interestingly, the BP of the widely

used CNN-L fusion framework was even lower than that of the purely nu-

merical forecast-based model NUM for the 2-minute forecast. Even after

the addition of the gate architecture enhanced the model’s BP ability, its

performance was still lower than that of NUM. Finally, it may be seen that

models successfully captured falling RE more frequently than rising RE,

the exception being the ViT frame model over the 2-minute horizon.
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Table 4.3: Ramp Event forecasting results. For image-numerical models,
results are expressed as the mean ± standard deviation of the results of
five replicate trials.

Horizon Models Increase RE ↑ Decrease RE ↑ BP (%) ↑

2 min

SPM 0/1131 4/1071 0.19
NUM 135/1131 214/1071 15.96
CNN-L 62.6±62/1131 171.8±34.9/1071 10.78±3.41
CNN-LG 96.2±58.2/1131 188.6±29.7/1071 13.05±1.94
ViT-L 226.8±52.5/1131 180.8±55/1071 18.46±1.02
ViT-LG 241±29.6/1131 185.4±34.9/1071 19.31±1.1
ViT-E 239.4±18.8/1131 206.2±28.6/1071 20.21±2.01

6 min

SPM 0/1979 23/2028 0.57
NUM 421/1979 697/2028 27.82
CNN-L 518±84.7/1979 659.8±95.3/2028 29.35±2.26
CNN-LG 537.4±91.5/1979 759.4±59.7/2028 32.3±1.03
ViT-L 548.8±63.3/1979 752.6±33.2/2028 32.42±1.35
ViT-LG 609.2±25.8/1979 752.2±55.6/2028 33.93±1.78
ViT-E 671.8±28.7/1979 660.6±27.8/2028 33.26±0.9

10 min

SPM 0/2483 42/2603 0.81
NUM 212/2483 426/2603 12.45
CNN-L 808±61.7/2483 1101±74.9/2603 37.42±1.52
CNN-LG 819.8±33.5/2483 1072.8±85.6/2603 37.11±1.52
ViT-L 788±76.4/2483 1133.8±123.1/2603 37.64±1.58
ViT-LG 852.4±93.5/2483 1050±93.2/2603 37.33±2.55
ViT-E 819.6±140.4/2483 1060.6±148.6/2603 36.87±2.55
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Figure 4.9: Confusion matrix of Ramp predictive power for 5 different image-numerical models on 3 time horizon.
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4.4 Discussion

4.4.1 Comparison of Model Variability

Figure 4.10 shows all models’ combined FS and BP performance. As the

SPM model has little RE predictive power, it can be approximated as

being at the coordinate system’s origin and not plotted in the figure. As

observed in the work of Paletta et al., [35], the effect of architecture used

in different models fed by the same inputs gradually decreases as the size

of the forecast horizon grows. For the bimodal frameworks studied here,

it is difficult to identify any significant variability in the models at the

10-minute time horizon.

In reflecting upon performance, distinguishing between the relative impor-

tance of quantitative versus qualitative measures is worth distinguishing.

In the field of solar forecasting, the merit of a model is usually determined

using quantitative error, i.e., FS. The optimal strategy for such models fit-

ted by statistical errors for rapidly changing cloudy weather is often based

on mean reversion. However, capturing Ramp events is more critical for

very short-term solar forecasting (10 minutes or less) as the information

may be used to inform grid operability.
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Figure 4.10: FS and BP results for all models over different time horizons.
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Such ramp forecasts require the model to predict the occurrence of sudden

and significant changes in irradiance, as opposed to consistent predictions

of absolute irradiance, and metrics that quantify performance in terms of

statistical error, e.g., RMSE, tend to penalise the former qualities. The 2-

and 6-minute results from Figure 10 show that the models with high BP

performance, i.e., ViT-L and ViT-LG, perform poorly when performance

is expressed as FS, while the opposite is true for CNN models. The early

feature-level fusion model, ViT-E, maintained relatively strong BP per-

formance in the 2- and 6-minute predictions compared to the late model,

and both delivered the best FS. It is posited here that there are two main

reasons for this: the model’s ability to abstract image features and the

dual-modality strategy the model adopts to accommodate the visual and

numerical inputs.

4.4.2 Impact of Images in Bimodal Models

To explore the sensitivity of different models to the image input, randomly

selected images were used as inputs to the models on 17 June at 18:35 while

keeping the numerical input unchanged. The condition of the sky at this

time is shown in Image 1 of Figure 4.11, as are the replacement images used

in the analysis - Images 2 to 5, are taken from the same day but with dif-

ferent sky conditions and Image 6, which is fabricated and comprises only

black pixels. The output from this analysis is plotted in Figure 4.11 and

shows that models based on ViT as an image feature extractor are more

significantly affected by the image input than those based on CNN under

complex sky conditions. In addition, most models with gate architecture

(light blue in the figure) are more sensitive to images than those based

on late fusion (light brown in the figure). Furthermore, the ViT-E model
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Figure 4.11: Image sensitivity testing for a 2-minute time horizon. Image
1 is the original image input, and Images 2 to Image 6 are replacement
inputs. The upper panel shows the 2-minute ahead prediction from the
five image-numerical bimodal models. The blue dashed line represents the
output from the SPM model.

is always the most sensitive to images. Interestingly, when fed a picture

without any information, the output of CNN-L is almost unaffected, while

ViT-E deviates significantly from the reference GHI value. These results

suggest that the widely used CNN-L architecture is relatively insensitive to

image inputs. In particular, the model is highly insensitive to incorrect in-

put. The findings of Paletta et al. may explain this, [42] who suggest, after

evaluating multiple graphical models, that fusion models always behave like

a smarter SPM. i.e., the model lacks interaction between image and numer-

ical inputs, including alignment, translation, and co-representation. This

makes the model dependent on the numerical inputs and relatively insensi-

tive to the image-based output. To address this shortcoming, methods that

use an image feature extractor that is more effective at parsing images, such

as ViT, or enhancing the interaction between image and numerical data,
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such as a gate architecture, can be considered as more effective approaches.

4.4.3 Interaction of Image and Numerical Data in

ViT-E

Figure 4.12: ViT-E model visualisation indicating relative attention
weights. The colour of the heat map within each patch reveals its rela-
tive value in terms of average attention across all heads.

To understand how the Self-Attention mechanism processes image-numerical

information across modalities, the attention layer of the ViT-E model was

abstracted and overlaid with the input for visualisation, as shown in Fig-

ure 4.12. The visualised heat map consists of two main parts: on the left

side are the relative attention weights corresponding to the 256 patches in

the image input, and on the right side are the relative attention weights

corresponding to five sets of numerical inputs, in order from top to bottom:

irradiance, ambient environment, clear sky irradiance, wind condition, and

solar angle. Figure 4.13 shows the GHI prediction from the ViT-E model

for three different forecast horizons for 17 June. A sample of five images,

including those used in Figure 4.12, representing a range of sky conditions

were extracted and processed to visualise the model attention weights de-

scribed above, shown in Figure 4.14.
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(a)

Figure 4.13: GHI predictions from 17 June, based on ViT-E 2-, 6-, and 10-minute forecasts.

152



4.4.
D
IS
C
U
S
S
IO

N

(a)

Figure 4.14: Attention map of the ViT-E model based on five representative GHI conditions from Figure 4.13.
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It may be seen from Figure 4.14, that the longer the forecasting horizon,

the lower the attention weight of the model to the image-side input and the

higher the attention weight to the numerical input. In the 2-minute ahead

prediction, different levels of cloud cover and sun position significantly af-

fect the model’s attention. For scenarios with low cloud-sun correlation,

such as those with significant areas of clear sky in the region around the

sun, or those where the sun is obscured by cloud, the model assigns weights

to numerical and image models in a balanced manner. The model assigns

more attention to the images for scenarios with high cloud-sun correlation,

such as cloud approaching or cloud blocking part of the sun. In the 6-

minute ahead model, although the distribution of attention weights for the

images reflects that of the 2-minute ahead model, the weighting of the nu-

merical data is the most critical part of the model. This trend of assigning

a gradually decreasing image weighting continues in the 10-minute ahead

model. The model primarily depends on irradiance and clear sky irradiance

numerical inputs rather than the images.

This pattern of behaviour explains the variability in model performance

observed in Figure 4.10 10, where the forecast accuracy declines as the

prediction window is lengthened. That is, the impact of the details in the

pictures on the prediction decreases as the prediction scale is lengthened.

Although other potentially valuable information visible in the images (e.g.,

air mass) might still benefit the model’s predictive capabilities and thus out-

perform models without an image input, enhancing the feature extraction

capability for the images for these more extended time horizon forecasts

is unlikely to deliver better model performance. This observation matches

that made concerning models based on the classical image analysis method

for forecasting GHI [26], i.e., the gain offered by including image data in

predictions is more pronounced for time horizons below five minutes and
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gradually decreases for those beyond five minutes.

We believe the trend is a good explanation for model performance variabil-

ity in Figure 4.10 declines as the prediction window is lengthened. That

is, the impact of the details in the pictures on the prediction is gradually

decreasing as the prediction scale is lengthened. Although other potentially

visible information in the images (e.g., air mass) can still enable the model

to benefit in prediction and thus outperform the model without image in-

put, enhancing the model’s feature extraction capability for the images at

this point no longer leads to better model performance. This is similar

to the model based on the classical image analysis method for forecasting

GHI [26], i.e., the gain of image data on prediction is more pronounced

within five minutes, while it starts to decrease gradually after five minutes.

The results from this study suggest that there are advantages to using

the transformer framework for combined image-numerical ultra-short-term

solar forecasting. Specifically, the model extracts features based on the

association between each input element, i.e., image patches and numerical

features and dynamically assigns the impact of each element on the final

prediction based on these features. ANN-based architectures do not confer

this functional advantage as model fusion feature extractors.

In addition, as shown in Figure 4.14, the 10-minute forecast irradiance

has a similar weighting to the clear irradiance. In other words, clear sky

irradiance is of equal importance to prevailing irradiance for solar irradiance

prediction. The advantages of using CSI, i.e. the ratio of GHI to clear GHI,

rather than using GHI directly as a prediction target [49], are intuitively

demonstrated.
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4.5 Summary

Accurate short-term forecasting is essential for predicting solar power out-

put and, thus, for effective grid management. This study found that the

modal interaction component has been under-appreciated in previous stud-

ies of deep learning models for solar forecasting that combine images with

numerical inputs. Also, there is ambivalence between the quantitative and

qualitative performance of late feature-level fusion models for single images

and numerical fusion in such models. Therefore, this project proposed the

ViT-E model as complementarity in quantitative and qualitative forecast

performance by varying the modal interactions to achieve relatively supe-

rior performance. In addition, the study explored the weighting of image

inputs in this model class. The results show that the longer the forecast

duration in a single image forecast, the less importance the image accounts

for. At forecasts of up to 10-minute horizons, the features that can be

extracted from the image input by current vision models are minimal. As

mentioned in [120], the model’s accuracy is as important as its interpretabil-

ity in advancing its understanding and development. This study reveals a

potential shortcoming in current multimodal solar prediction: model vali-

dation relies only on performance improvements for the results, and there

is a lack of interaction studies between the actual performance of the dif-

ferent modes of the model, such as ablation experiments. Transformer-like

models have full potential in hybrid modelling for solar energy prediction

due to the intuitive interpretability of their framework. Furthermore, in

future work, we propose to use the RNN framework in combination with

the Transformer framework for Seq2sqe models with dynamic picture data

streams as a framework to drive the current prediction framework.
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Chapter 5

Rapid Deployment of

Pre-trained Models for

Climate across Domains using

Transfer Learning

Chapter Abstract

A solution to the difficulties of forecasting solar energy was presented in

this chapter using deep learning models by emphasising the importance

of data diversity and the expenses involved in collecting data. Transfer

learning for the DL-GSI-IHSF domain was proposed to adapt models to

different climates and situations where training data is limited. We in-

troduce two methods of adaptation - feature space adaptation and label

adaptation - and confirm their effectiveness by calculating cosine similarity

between latent representation vectors of multimodal features. The quan-

titative analysis based on Smart Persistence Model and F1 score demon-
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strated the feasibility of transfer learning in solar energy forecasting with

stable model performance using just 4.5% of the dataset size and a 90%

reduction in training time.
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5.1 Introduction

There are still many difficulties and challenges in applying deep learning

models in solar energy forecasting. Firstly, since solar irradiance informa-

tion is highly correlated with climate, weather, and geographical factors,

verifying or deploying models under different climate or geographical condi-

tions requires recollecting data and retraining [4] The current DL-GSI-IHSF

model is trained with the assumption of forecasting under the same climate

and geographical conditions, so it cannot directly use well-trained models

for forecasting in different locations [35, 55, 77, 50] Studies have shown that

running a pre-trained model on a dataset of the exact specifications at an-

other location results in significant errors. Furthermore, collecting new

datasets is extremely costly [53]. Compared to traditional solar energy

forecasting methods, deep learning-based approaches demand higher qual-

ity and larger quantities of datasets [31]. The generalisation performance

of a model dramatically depends on the diversity of the dataset [101]. It

is generally accepted that at least one year of data is required to ensure

data diversity for training models in DL-GSI-IHSF. Thus, a considerable

amount of time is needed to collect data when assessing the potential per-

formance of a model locally. The diversity of datasets is crucial to the

generalisation performance of a model, as it ensures that the model can

handle various scenarios encountered in real-world applications. Training

a model with a dataset lacking diversity can lead to sample bias, affecting

the model’s accuracy. Taking Nottingham as an example, clear-sky solar

irradiance can reach up to 1200W/m2 in the summer and only 300W/m2 in

the winter. Training a model with only a portion of incomplete data, which

does not cover the full range of solar irradiance values, will likely result in

overestimating or underestimating the final prediction. This highlights the

importance of comprehensive data collection for solar energy forecasting
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models. Thus, costly data collection is an unavoidable process for develop-

ing new solar prediction models or deploying already proven solar prediction

models in new regions. In summary, although deep learning models have

potential in solar energy forecasting, practical applications have many diffi-

culties and challenges, such as data diversity and the costs associated with

data collection. Addressing these issues requires rethinking data collection

methods and model training to improve models’ generalisation performance

and accuracy, ensuring that they can be effectively applied across various

geographical locations and climates.

For incomplete or small datasets, transfer learning is a popular method

in deep learning. Transfer learning improves the performance of a model

in related sub-tasks by transferring the ”knowledge” learned from a large

dataset. For example, in the work of Zeiler et al.[155], the authors achieved

impressive results by transferring the weights pre-trained on the ImageNet

dataset to another natural image dataset with a small number of images.

Compared to the retrained model, the pre-trained model with transfer

weights increased the accuracy on the Caltech-256 dataset from 46.5% to

86.5%. Moreover, subsequent research found that the knowledge that a

model can transfer is not limited to similar tasks. For instance, Shin et

al.[115] discovered that transferring pre-trained weights from ImageNet to

medical images for segmentation also improves model performance and re-

duces training time, even though medical images in the new task have

completely different properties from natural images in ImageNet.

In this chapter, we proposed applying two different transfer learning meth-

ods, aiming to transfer the knowledge of a well-trained model on the LA

Folsom dataset in the United States to the Nottingham dataset in the UK.

The two datasets were collected at geographically different locations with

different climates and slightly different equipment. The original contribu-
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tions of this chapter are as follows:

1. We propose feature space adaptation and label adaptation methods in

the DL-GSI-IHSF domain for training models using transfer learning

between different climates. Moreover, we limit the original dataset

based on various undersampling rates to simulate the transfer learning

of models when the training dataset is insufficient.

2. By calculating the cosine similarity between the latent representation

vectors of multimodal features, we directly verify the effectiveness of

model transfer.

3. At a 2-minute-ahead prediction scale, we perform quantitative analy-

sis on the model using the FS metric based on the Smart Persistence

Model (SPM), as well as a quantitative comparison of the model’s

Ramp Event (RE) detection rate using the F1 score based on RE

detection.

4. Through cross-comparison, we confirm the feasibility of applying trans-

fer learning in DL-GSI-IHSF. By using transfer learning methods, we

can obtain stable model performance with only 5% of the dataset size

and save 90% of the training time.

The remainder of the paper is structured as follows: Section 5.2 systemati-

cally compares the source dataset for transfer learning, the Folsom dataset,

with the target dataset, the Nottingham dataset; Section 5.3 verifies the

feasibility of transfer learning by compare the proposed model in Chap-

ter 4 on the Nottingham dataset; section 5.4 presents the methodology of

transfer learning, with the experimental setup transfer learning; Section 5.5

present the results of all experiment, Section 5.6 presents a discussion of

the experimental results, and Section 5.7 concludes the whole Chapter.
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5.2 Survey of Datasets

This section mainly compares the differences between the Folsom dataset

and the Nottingham dataset. Although both datasets contain the same

types of data, there are significant differences in the details due to different

observation equipment, installation standards, and geographical locations.

The comparison focuses on differences in meteorological features due to

geographical location, similarities and differences in data observation in-

struments, and a comparison of image data features with the accuracy and

distribution of meteorological data.

5.2.1 Meteorological Data

Table 5.1: Differences in meteorological data information between the data
sets.

Folsom Nottingham

Longitude and latitude
38.642◦ N
121.148◦ W

52.952◦ N
1.184◦ W

Köppen climate
classification

Csa Cfb

GHI Measuring
Instruments

LI-200SZ
Pyranometers

Calculated

DNI Measuring
Instruments

Calculated
RaZON+ PH1
Pyrheliometer

DHI Measuring
Instruments

LI-200SZ
Pyranometers

RaZON+ PR1
Pyranometer

Classification to
ISO 9060:1990

˜±5% Typical error
compare to First Class

Second Class

Data set size 656k 96k
Duration of data set collection 3 Years 6 Months
Train/val/test set size 21K/25K/23K 58K/19K/19K

Differences in geographical locations of the observation stations directly

lead to differences in the sample distribution of the observed datasets. Ta-

ble 5.1 shows the geographical environmental conditions of the two dataset

collection sites. Taking the Folsom dataset from 2015 and the Nottingham
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dataset from 2022 as examples, as shown in Figure 5.1 (a), the amount

of data collected per month differs significantly due to the impact of lati-

tude differences on daylight duration. The UK dataset has longer summers

and shorter winters. Additionally, the limitation of the fisheye lens’s effec-

tive viewing angle (SZA less than or equal to 75 degrees) exacerbates this

quantity difference. For example, in Nottingham, the solar zenith angle

rarely exceeds 75 degrees throughout December. Therefore, after quality

control screening, only 87 samples remain for the entire month. Further-

more, the Folsom data station belongs to the Csa type (C = temperate

climate, s = dry summer, a = hot summer) in the Köppen climate classi-

fication, while the Nottingham data station belongs to the Cfb type (C =

temperate climate, f = no dry season, b = warm summer). These climatic

differences are reflected in the datasets as shown in Figures 5.1 (b) and (c).

In Figure 5.1 (b), Folsom’s irradiance distribution is generally higher than

Nottingham’s on a monthly basis. Even during the summer months when

daylight duration and solar angles in Folsom are slightly lower than those

in Nottingham, the dry and hot climate conditions with fewer clouds re-

sult in higher average values despite lower extremes. Looking at the whole

year, as shown in Figure 5.1 (c), GHI density distribution in Folsom is

relatively even, while Nottingham has a significantly higher density of low

irradiance values due to the wet and cloudy climate. The two-dimensional

visual heatmaps also shows the same trend. In Figure 5.2, the data for

Nottingham lacks continuity throughout the year, especially for the DNI

data. This means that direct sunlight is being disturbed by cloud cover at

frequent intervals. In contrast, Folsom’s dry summer idiosyncrasies allow

for sufficient and continuous sunlight in the summer. For example, there

was little blockage throughout the summer of 2016 in Folsom dataset.

In addition to data distribution, the equipment used to collect solar irradi-
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ance and meteorological data at the two sites is also different. According

to [39], the Folsom site uses two LI-200SZ Pyranometers [156] to collect

GHI and DHI data, and then calculates the difference and solar angle to

derive DNI. In contrast, at the Nottingham site, as mentioned earlier, the

Razon+ automatic solar tracker [157] collects DHI and GHI data, and GHI

values are calculated based on the solar angle sum. It is worth noting

that the pyranometers used at the two observation sites have significant

differences in accuracy. As reported in [158], the LI-200SZ, as a photodi-

ode pyranometer, has a GHI measurement error of 4.4% under clear sky

conditions, which is consistent with the ”typical error of about 5% accord-

ing to ISO 9060:2018 First Class” stated in [39]. On the other hand,

PR1 and PH1, as thermopile pyranometers and pyrheliometers, have clear

sky GHI errors of 0.3% and 0.03%, respectively [157]. According to ISO

9060:2018 [159], they can be classified as Second Class, with typical er-

rors less than 1% different from First Class. Moreover, the authors point

out that although the accuracy of the LI-200SZ can be improved through

calibration, its error remains an order of magnitude higher than that of

thermopile pyranometers due to its limited accuracy outside the low-error

field of view (60 degrees).
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(a) Data volume of raw data.

(b) Distribution of monthly data GHI.

(c) Density distribution of annual GHI data

Figure 5.1: Comparison of sample size and distribution between the Folsom
dataset and the Nottingham dataset, for 2015 and 2022, respectively.
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(a) Visual heatmaps of Nottingham dataset, from 2021 Oct. to 2022
Sep.

(b) Visual heatmaps of Folsom dataset, from 2014 to 2016.

Figure 5.2: Two-dimensional visual heatmaps of Folsom and Nottingham dataset.
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5.2.2 Image Data

In this section, we compare the Folsom and Nottingham datasets, particu-

larly focusing on the differences and similarities in the image samples. As

shown in Table 5.2, the cameras used to record images in the two datasets

are not identical. The Nottingham dataset camera has superior perfor-

mance, with higher original pixel resolution, a larger aperture, and better

light sensitivity. It is worth discussing the noticeable differences in the

Table 5.2: Differences in image data between the data sets.

Folsom Nottingham

Camera model Vivotek FE8171V MOBOTIX Q25
Sensor size 1/2” CMOS 1/1.8” CMOS
Original Resolution 2480× 1536 3072× 2048
Aperture size f/2.8 f/2.0
Light sensitivity 1.17 Lux 0.1 Lux
Output Resolution 1536× 1536 1028× 1028
Orientation 15 degrees west of north Due West
Sun Marker Yes No

actual image output quality, as illustrated in Figure 5.3.Firstly, for the

Nottingham dataset, the intense sunlight leads to overexposure in the solar

region, resulting in a lack of information around this area. In contrast, the

Folsom dataset has the fully overexposed (RGB values all at 255) solar re-

gion blackened. As a result, the information on whether the sun is directly

visible can be discerned in the Folsom dataset. For instance, as shown in

the Cloudy Sky image on the Figure 5.3 right, the Folsom dataset preserves

the position and visibility of the sun shining through thin clouds, while this

information is entirely unknown in the Nottingham dataset. We once at-

tempted to determine the solar azimuth in the Nottingham dataset using

the same method, but due to camera quality limitations and an exten-

sive overexposure area, it proved to be impractical. Additionally, another

noteworthy point is the prominent image noise in the Folsom dataset, as
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demonstrated in the bottom-left image. We speculate that this might be

due to the wear and tear of the transparent protective shell. The image

clearly shows noise created by the refraction of sunlight on the protective

shell, as well as lens flare reflections formed in the centre of the image

due to the shell’s imperfect transparency. This phenomenon is particularly

noticeable on sunny days.

Figure 5.3: Schematic of the sky images for the two data sets under different
weather conditions.

In summary, the differences between the two datasets are mainly attributed

to the geographical location and the observation equipment used. The geo-

graphical location leads to differences in meteorological features, while the

observation equipment contributes to the variations in data accuracy and
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distribution. Understanding these differences is essential when applying

transfer learning or comparing the performance of models across different

datasets. As such, it is crucial to consider the impact of these factors

when developing and deploying solar prediction models in various regions

or under different conditions.

5.3 Feasibility Study

This section shows the feasibility experiments conducted before the trans-

fer experiments. We believe that a prerequisite for the transfer experiment

is that the ViT-E model maintains the architectural superiority described

in Chapter 5 when applied to the Nottingham dataset. Therefore, we

repeated the experiments from Chapter 5 using the Nottingham dataset

without changing the training mode, optimisation strategy, loss function,

or any other details. The only change was to emphasise the model degra-

dation trend observed in Chapter 5 by reducing the forecast resolution

from 4 to 2 minutes. The advance forecast was changed from 2-, 6-, and

10-minute forecasts to 2-, 4-, 6-, 8-, and 10-minute forecasts. It is worth

noting that since the loss function of the training model is the mean square

error, the model’s response to RE is influenced by the dataset itself and

is not constrained by the loss function. Therefore, the model’s BP per-

formance, as exhibited by dataset characteristics, was not demonstrated

in the feasibility study. Figure 5.4 shows the experimental results of the

predictions. As shown in the figure, the overall trend of the model’s perfor-

mance on the Nottingham dataset regarding FS on the test set is similar to

that on the Folsom dataset. Specifically, model differences diminish as the

prediction time increases. However, unlike the Folsom dataset, the CNN-

LG architecture on the Nottingham dataset did not exhibit a comparable
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Figure 5.4: FS results for feasibility studies on both dataset.

advantage in FS; rather, it performed worse than the ViT-LG and ViT-E

models. We speculate this may be due to the dataset differences caused by

climatic factors. The warmer, humid climate leads to a much higher fre-

quency of cloudy weather in Nottingham than in Folsom. Although, based

on the method mentioned in Section 4.2, continuous clear-sky samples were

removed from both datasets to balance the number of samples, the Not-

tingham dataset still contains many more RE samples than the Folsom

dataset. In the Nottingham dataset validation set, RE samples account

for 16.69% of the total samples (3210 out of 19237), while in the Folsom

dataset, RE samples account for only 9.3% (2197 out of 23583). We believe

that such climatic differences make it difficult for the CNN-LG framework,

which relies on numerical inputs, to maintain an advantage in FS through

numerical inference. Meanwhile, the climatic differences also contribute
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to the variation in FS performance between the two datasets. The SPM

model performs worse in cloudy and rapidly changing weather, leading to a

higher FS, calculated based on the SPM model. For example, the 2-minute

RMSE error of the SPM model in the Folsom dataset is 85.62W/m2, while

it is 117.89W/m2 in the Nottingham dataset.

In summary, we believe that the ViT-E model, based on early modal inter-

action, demonstrates similar advantages in the feasibility study as in Chap-

ter 5, as it can effectively balance image and numerical inputs. Moreover,

the Nottingham dataset exhibits more serious prediction difficulty and spa-

tial complexity than the Folsom dataset. The ViT-E model demonstrates

superior quantitative performance from the outset when processing more

complex datasets. Furthermore, the trend of diminishing model differences

with increasing prediction time is again confirmed.

5.4 Methodology

In this section, we mainly introduce the transfer learning methods used

in the following sections, the experimental deployment, and the evaluation

metrics.

5.4.1 Definition

Domain A domain D consists of two parts: the feature space X and a

marginal distribution X, where X represents a set of instances, such as the
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input X in Equation 2.13. It can be expressed as:

D = {X , P (X)} (5.1)

where X = {x|xi ∈ X , i = 1, . . . , n} (5.2)

Task A task, T , is composed of a label space Y and a decision function

F . In this paper, the labels y in Y are the results of the elements x in

X passed through the decision function F , which is a specific deep model

regression, i.e.

T = {Y , F} (5.3)

where F(xj) = {E(yk|xj)|yk ∈ Y , k = 1, . . . , |Y|} (5.4)

In this chapter, in deep model based on a task for regression, yt+∆t is

the only element in the target space Y and the only expectation when

the input xj is given. In the multitask learning mentioned in Chapter

2, the target space can contain multiple different targets Y . Also, if the

prediction is based on probability prediction rather than regression, the

mapping relationship of F should be P (yk|xj).

Transfer Learning Transfer learning refers to the process of improving

the performance of the decision function, i.e., the deep model, FT , in the

target domain by leveraging the implicit knowledge in the source domain

for a given specific source domain and source task (DS, TS), and target

domain and target task (DT , TT ).
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5.4.2 Method of Transfer Learning in DL-GSI-IHSF

In this chapter, we employ the Inductive Transfer Learning method [160],

which specifically means that the label in source and target domains are

available. Meanwhile, in DL-GSI-IHSF, based on the categorisation of the

consistency between the source and the target feature spaces and label

spaces. The transfer learning method can be considered as homogeneous

transfer learning, which represent consistency in source and target domains,

i.e., X S = X T and YS = YT . Please note that the prerequisite here is for

the prediction target to be CSI, and it is assumed that the Clear Sky Index

calculation can completely eliminate the effects of irradiance cycles and ge-

ographical factors on solar irradiance through normalisation. If the predic-

tion target is Irradiance itself, due to meteorological cycles and geographi-

cal influences, even with identical input conditions, the prediction outputs

would be different, i.e., YS ̸= YS. Specifically, as shown in Figure 5.11,

Figure 5.5: Schematic diagram with transfer learning process.

transfer learning is achieved through weight transfer and fine-tuning. The

model first undergoes sufficient pre-training on the source domain, i.e., the

Folsom dataset, using the ViT-E architecture. After completing the pre-

training process, the weights obtained from the model training are saved.
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Next, the model weights are loaded into the model before training on the

target domain, i.e., the Nottingham dataset, to achieve knowledge transfer.

It is worth noting that the transferred weights only include the projection

embedding and backbone layer, while the predict head for each training is

randomly initialised. Finally, the model completes the entire training pro-

cess on the Nottingham dataset with the pre-trained weights as the starting

point. This retraining process on the new model is also called fine-tuning.

5.4.3 Experiment Setup

Experiment 1: Exploring the Effectiveness of Transfer Learning

First, we validated the effectiveness of transfer learning. Here, effectiveness

is defined as the migrated weights not being fully iterated away during the

model weight search. Effectiveness can be obtained by cosine similarity.

Cosine similarity is a method for measuring the difference between two

vector individuals in the feature space; if the directions of the two vectors

are consistent, i.e., the angle between them is close to zero, the two vectors

are more similar. If transfer learning is effective, the model weights fine-

tuned based on one pre-training weight should have the highest similarity

to the pre-training weights themselves. The formula of Cosine similarity

expressed as

cos Θ =
a ∗ b
|a| ∗ |b|

(5.5)

We use the output vector of the backbone network, which represents the

multimodal semantic representation vector in the model, i.e., y in Equa-

tion 2.5, as the standard vector. Through repeated experiments, we ob-

tained five sets of pre-trained weights. These weights are identical in the

training process, with only differences caused by randomness. First, we

compared the similarity of y in the five pre-trained models and the similar-
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ity of y in the target models trained using the weights of the five different

pre-trained models with the source model y. Finally, the effectiveness of

model transfer learning is validated through cross-comparison of model

similarities.

Experiment 2: Effect of Pre-training Randomness on Transfer

Learning. As discussed in Chapter 2, due to the inherent randomness in

deep learning, the pre-trained weights used for transfer learning themselves

contain a certain degree of uncertainty and variability. To verify the impact

of randomness-induced differences on transfer learning in Experiment 1, we

collected the time required to fit models based on five pre-trained weights

and the performance of the models for comparison.

Experiment 3: Applying Different Target Domain Adaptation

Strategies During the fine-tuning process of the model in the target do-

main, there are various methods to choose from [161]. In this chapter,

we conducted experiments using two basic methods. The first method is

feature space adaptation. Specifically, based on the label pairing in the

target task (i.e., (xT , yT )), the transferred weights are further trained to

adapt the inference part of the model to the new task TT . Meanwhile, to

prevent the model from completely changing the pre-trained weights dur-

ing fine-tuning, the learning rate is set to one-tenth of the original value.

The second method is label space adaptation. This method directly uses

the pre-trained weights without any modification. By freezing the infer-

ence layer during the training process, the feature extraction and inference

methods from the source domain are used to obtain the representation

vector. During the training process, only the inference head, which is re-

sponsible for mapping the representation vector to the prediction result, is
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trained. Moreover, since there are two parts to the inference module for

the ViT-E model, the projection embedding and backbone interface layer

(i.e., Transformer Encoder), we tested freezing different parts separately

for a detailed comparison.

Experiment 4: Training Models using a Limited Target Domain

Dataset As mentioned earlier, one potential advantage of transfer learn-

ing is that when the size of the source domain dataset is larger than that

of the target domain dataset, the transferred knowledge can still achieve

better generalisation in the target domain with a limited dataset. To verify

this, we further reduced the size of the dataset. Specifically, based on the

dataset sensitivity validation in Chapter 3 and report in work of Paletta

et al. [42], we consider that in a complete one-year dataset, the trend of

improving the model by enriching the dataset size begins to slow down

starting from a dataset size of 25K samples. In other words, the model’s

generalisation reaches a bottleneck at 25K samples, making it improve con-

tinues more difficult. However, due to limitations in data collection and

data quality, the Nottingham dataset actually only contains six months of

data, so we still used the entire dataset for fitting experiments. Overall, we

started with the entire Nottingham dataset (a total of 55K samples), ran-

domly downsampled the dataset size to 25K, and further randomly down-

sampled to 12.5K, 7.5K, 5K, and 2.5K. We compared transfer learning with

learning from scratch, testing the fitting performance of transfer learning

in datasets with insufficient sample sizes.

Experiment 5: Modelling Finite Datasets in the Real World In

the setting of Experiment 4, random downsampling was used to obtain a

limited dataset. This approach has a limitation in that random sampling
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preserves the diversity of the dataset to the maximum extent, thereby en-

abling the model to achieve better performance. Therefore, we used another

downsampling method, namely, random continuous sampling. We ran-

domly extracted three consecutive 14-day subsets from the original dataset

as the dataset, simulating whether the model can achieve training with

extremely limited dataset sizes through transfer learning in real situations.

Specifically, we used data segments starting from March 4, June 7, and

September 9, 2022, as training sets, without applying clear sky filters to

the data. Ultimately, the three datasets contained 6.4K, 9.6K, and 6.8K

data points, respectively, as shown in Figure 5.6.

5.4.4 Summary

This section mainly introduces the methodology of the experiments in this

chapter. First, we defined the specific concept of transfer learning and pro-

vided a formula explanation. Then, we explained the implementation of the

transfer learning method in this paper. Finally, we designed step-by-step

experiments for the parts we were interested in. The specific experimen-

tal design is shown in Table 1. In Experiments 1 and 2, we compared

the effectiveness and results of using different random weights in transfer

learning and used the best-performing model in Experiments 1 and 2, i.e.,

Model #3, as the pre-trained weights for all remaining models. In Experi-

ments 3 and 4, we cross-compared the effects of freezing different modules

at all downsampling ratios. In Experiment 5, we further integrated the

two best-performing patterns from Experiments 3 and 4 for live simula-

tion experiments. It is worth noting that the transfer experiments in this

chapter were conducted on 2-minute ahead forecasts only. Here we use a

conclusion from Chapter 4 that the superior performance of the model is
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consistent across forecasting scales and that 2-minute ahead forecast under

2-minute forecast resolution is the forecasting horizon with the greatest

model variability. In addition, the hyperparameters used in this chapter

are fully inherited from those shown in Chapter 4.

Source Model Target Dataset Size Frozen Layers

Exp. 1 & 2 5 Trained Models 55k Unfrozen layer

Exp. 3 & 4 #3 Model in Exp. 1 55k to 2.5k

Unfrozen layer
Freeze projection layer
Freeze inference layer
Freeze all layer

Exp. 5
#3 Model in Exp. 1 6.4k (Mar 4 to 18)

Unfrozen layer
Freeze all layer

#3 Model in Exp. 1 9.6k (Jun 7 to 21)
Unfrozen layer
Freeze all layer

#3 Model in Exp. 1 6.8k (Sep 9 to 23)
Unfrozen layer
Freeze all layer

5.5 Result

Modelling was undertaken using a PC with a 3.8 GHz AMD Ryzen 9 3900X

CPU and a GeForce RTX 2080 SUPER GPU on the Tensorflow 2.10 [153]

platform with Keras [154] built in. To reduce errors introduced by random

nature in modelling, including the randomness in observation order and the

randomness in random number generator in training, five replicate trials

were carried out for each image model.

5.5.1 Experiment 1: Effectiveness of Transfer Learn-

ing

The results of the model effectiveness verification are shown in Figure 5.7.

The cosine similarity is calculated based on the angle between feature vec-

tors, so the closer the result is to 1, the higher the similarity. Figure 5.7
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(a) shows the cosine similarity between 5 source domain models, #1 to #5.

It can be observed that despite the inevitable randomness in the training

process, the impact of the model’s randomness on the final trained model is

minimal. All models exhibit consistency in the latent semantic space. Fig-

ure 5.7 (b) shows the similarity between the target domain models and the

source domain models after further training on the target domain dataset

using the five source domain models. As can be seen from the figure, on

the one hand, the target domain models after transfer learning are mostly

more similar to their corresponding source domain models. On the other

hand, the diversity trend between source domain models is preserved after

transfer learning. For example, the high similarity between yS
#2 and yS

#4 is

consistent with the similarity between the post-transfer learning yT
#2 and

yT
#4.
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(a) Irradiance and Clear sky Irradiance during Mar 4 to 18.

(b) Irradiance and Clear sky Irradiance during Jun 7 to 21.

(c) Irradiance and Clear sky Irradiance during Sep 9 to 23.

Figure 5.6: Three consecutive two-week datasets of the downsampled
dataset in the mock-up experiment.
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(a) Cosine similarity between five source domain models. (b) Cosine similarity between source domain model and target domain
model.

Figure 5.7: Results on the validity of transfer learning based on cosine similarity. Note that the actual value of yS
#2 and yS

#4 similarity
in figure (a) is 0.9999998987, limited by the progress display, which shows 1.00000.
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5.5.2 Experiment 2: Effect of Pre-training Random-

ness on Transfer Learning

Figure 5.8 illustrates the influence of performance gaps, resulting from the

randomness of 5 distinct source domain models, on the target domain mod-

els during transfer learning. Figure 5.8 (a) presents a comparison between

the performance of source and target domain models. As evident in the fig-

ure, the impact of randomness on model performance is comparable across

different domains, with an approximate error of 2%. Furthermore, the

source and target domain models exhibit no consistency in performance.

For instance, the top-performing model #3 in the source domain lags after

transfer learning, whereas the underperforming model #4 in the source do-

main excels in the target domain. Figure 5.8 (b) highlights the influence of

source domain model performance on transfer learning duration. Notably,

compared to target domain model performance, the transfer training dura-

tion exhibits a stronger correlation with source domain model performance.

The top and bottom-performing models #3 and #2 in the source domain

demonstrate a significant difference in retraining time. Despite model #3

in the source domain having a performance gap of 2.3% compared to model

#2, its transfer learning time is reduced by one-third.

5.5.3 Experiment 3 & 4: Influence of Freezing Mod-

ules and Limited Datasets in Transfer Learning

Table 5.3 and Figure 5.9 show the performance of models in terms of FS

under various dataset sizes and transfer learning strategies. As the figures

indicate, on one hand, from the perspective of dataset dimensions, the FS of

the models decreases as the number of samples in the dataset diminishes.
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(a) Source domain model loss versus target do-
main model loss.

(b) Source domain model loss versus transfer
training time.

Figure 5.8: comparison of source domain model performance in terms of
target domain model performance and training efficiency.

The most prominent characteristic is that the approach of training new

models from scratch without utilising transfer learning methods becomes

highly unstable and struggles to maintain model accuracy when data is

limited. When the sample size drops to 7.5k, models trained from scratch

exhibit a significantly lower FS compared to transfer learning, with some

instances displaying a substantial decline in FS. As the sample size further

decreases to 5k, models trained from scratch start to experience a noticeable

decline in FS.
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On the other hand, even when the sample size is reduced to 2.5k, the

four transfer learning methods still manage to maintain relatively high

performance levels despite the overall decrease in model performance. No-

tably, the method that freezes all layers during training on 2.5k samples

even surpasses the performance of CNN-LG trained on the entire dataset.

Comparing different transfer learning methods, employing Feature Space

Adaptation approaches, such as not freezing any layers or only freezing

the projection layer while leaving the core inference layer unfrozen, can

achieve performance levels similar to training from scratch when sufficient

data is available. In contrast, methods that lock the core inference layer

exhibit relatively poorer performance when data is abundant. However,

an exception occurs with the 2.5k dataset, in which the two methods that

fully inherit the source domain model’s core inference layer achieve the best

performance.

Table 5.3: Forecast skill for different transfer learning strategies and dataset
sizes.

Dataset
Size

Forecast Skill (%)

New
Training

Unfrozen
layer

Freeze
inference

layer

Freeze
projection

layer

Freeze all
layer

2.5k 10.24±2.44 12.85±0.33 13.12±0.52 12.96±0.25 13.26±0.34
5k 11.64±2.34 13.47±0.25 12.97±0.52 13.62±0.23 12.94±0.49
7.5k 12.69±1.09 13.54±0.24 13.38±0.30 13.53±0.42 13.22±0.37
12.5k 14.07±0.45 13.48±0.61 13.87±0.13 13.77±0.65 13.88±0.19
25k 14.42±0.31 14.41±0.10 14.16±0.60 14.38±0.33 14.21±0.46
55k 16.15±0.50 16.20±0.52 15.66±0.35 16.04±0.52 14.51±0.40

Table 5.4 and Figure 5.10 display the F1 Score1 of the models in fore-

casting RE. As the figures demonstrate, the F1 Score, which is derived

entirely from the regression forecast values without explicit loss function

1In practice, we found that the recall rate of the models also exhibited significant
fluctuations on the Nottingham dataset, characterised by frequent abrupt changes in
sky conditions. Consequently, we employed the balanced F1 Score (Eq. 2.43) as a
comprehensive measure, replacing the balanced precision (Eq. 2.42) used in Chapter 4.
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Figure 5.9: Forecast skill for different dataset sizes and transfer learning
approaches.

constraints, is not noticeably affected by the dataset size. Apart from

achieving better performance on the complete dataset, the models exhibit

comparable results across all downsampled datasets. Interestingly, if all

layers are completely frozen and only the prediction head is adapted, the

F1 Score performance on the 55k and 2.5k datasets is virtually identical.

Overall, the two models trained entirely on independent datasets, i.e., those

trained exclusively on the new dataset and those trained on the source

dataset with all layers locked on the new dataset, exhibit relatively superior

performance. In contrast, models that combine both datasets for feature

adaptation perform less optimally.

Figure 5.11 illustrates the time consumed in training the models. Over-

all, training models with less data can reduce the training time; however,

this also implies a loss in model performance. On the other hand, transfer

learning methods that freeze the inference core can significantly save train-
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Table 5.4: F1 score for different transfer learning strategies and dataset
sizes.

Dataset
Size

F1 Score (%)

New
Training

Unfrozen
layer

Freeze
inference

layer

Freeze
projection

layer

Freeze all
layer

2.5k 35.85±0.84 35.14±1.01 33.60±0.28 34.11±1.90 36.36±0.45
5k 35.05±0.80 34.58±1.57 34.65±1.21 34.78±0.91 35.22±1.39
7.5k 35.94±2.00 34.94±1.17 34.45±1.12 33.81±2.16 35.02±0.73
12.5k 36.18±2.04 35.21±0.94 34.22±2.15 34.78±1.52 35.75±1.35
25k 35.04±1.30 35.59±2.00 34.78±0.47 35.94±1.61 35.82±0.97
55k 38.87±1.43 39.10±2.00 38.57±1.55 37.24±2.19 36.54±0.95

ing time when a larger dataset is. With 55k samples, freezing the inference

layer can reduce training time by approximately 10%, while freezing both

the inference and projection layers can save around 40% of the training

time. When the dataset is smaller than 12.5k, all transfer learning meth-

ods shorten the training time. At 2.5k samples, utilising transfer learning

methods takes less than one hour, compared to the three hours required

for training from scratch, reducing the training time cost by over 60%.

Another intriguing observation is that continuing to train the inference

module with feature adaptation methods demands more training time on

the original dataset compared to training from scratch.

5.5.4 Experiment 5: Modelling Finite Datasets in the

Real World

Figure 5.12 shows the training results under the simulated conditions. We

also used the 7.5K-sized dataset from Experiment 4 to facilitate the com-

parison of model performance. The figure shows that the models trained

from scratch using the three simulated datasets did not achieve stable re-

sults. Among them, the performance of the model trained with the two-
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Figure 5.10: F1 Score for different dataset sizes and transfer learning ap-
proaches.

week dataset from March is only comparable to that of the SPM model,

about 4% FS. In the models obtained through transfer learning, the two-

week dataset from June achieves results close to those obtained with the

full-year downsampled data. It is worth noting that due to the duration

of sunlight, the June data contains about 30% more data points than the

March and September data, reaching 9.6K. In addition, the solar path also

influences the diversity of the images. The March data’s minimum solar

zenith angle (SZA) is as high as 54 degrees, while the minimum SZA for

June is 29 degrees and 47.7 degrees for September. Smaller SZA values

mean that the sun is closer to the centre of the image, which implies that

the diversity of sun positions in the sky image data from March is limited.
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Figure 5.11: Training Time for different dataset sizes and transfer learning
approaches

5.6 Discussion

In this discussion, we have integrated the findings from three sections to

provide a comprehensive analysis of transfer learning in the context of DL-

GSI-IHSF. Our study offers valuable insights into the impact of transfer

learning on model performance, training time, and data requirements and

highlights potential avenues for future research.

Our results show that transfer learning can effectively improve the perfor-

mance of the ViT-E model in the DL-GSI-IHSF domain, mainly when the

available training data is limited. Figures 5.7 and 5.8 demonstrate that

some features of the source domain model are preserved during the trans-

fer learning process, while Figure 5.9 and 5.10 emphasise the superiority of

transfer learning when working with limited datasets.

As shown in Figure 5.13 with the horizontal axis representing training time
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Figure 5.12: The model’s results trained by collecting data for two consec-
utive weeks are compared with a full year of data downsampled to 7.5K
data.

and the vertical axis representing model accuracy, further highlights the

time efficiency of transfer learning. It demonstrates that transfer learning

can achieve stable and relatively superior performance with only 2.5k sam-

ples (4.5% of the total dataset) and 10% of the training time compared to

traditional learning methods.

We can optimise model performance and training time by providing the

target domain model with a better starting point and utilising different

transfer learning strategies. However, the performance consistency between

source and target domain models remains an open question that warrants

further investigation, as illustrated in Figure 5.8.

Future research should explore more complex transfer learning mechanisms,

such as shared representations or alignment methods, which could constrain

the target domain model during training and improve the consistency be-

tween the source and target domain models in terms of performance. More-
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Figure 5.13: Training time versus forecast skill for all models and all
datasets.

over, investigating the potential for 0-shot or few-shot learning [162] in the

DL-GSI-IHSF domain could provide new ideas and methods for widespread

deployment and use.

Transfer learning offers two crucial benefits regarding time and cost: re-

duced training time and dataset collection time. With transfer learning,

the model’s training time reduces significantly without compromising the

model’s accuracy level; this is enabled by giving the model a better starting

point and freezing a fraction of the model’s weights. Furthermore, transfer

learning facilitates quicker model performance evaluation at the start of

data collection without waiting for a complete data collection cycle.

Nevertheless, our study has identified certain limitations of current transfer

learning methods, particularly related to generalisation when fine-tuning

actual collected data. Our findings suggest that the model’s excellent

performance on the June data and average performance in the other two
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datasets were most likely due to a lack of picture diversity. This issue might

be because transfer learning, as applied in this chapter, only offers a better

initial model value and lacks guidance on the target domain task during

training aids, such as common feature representation. Future research di-

rections could focus on enhancing the adaptation of feature space during

transfer learning, for example, by using prior knowledge constraints on the

target domain. Such an approach would address the issue of limited gen-

eralizability in fine-tuned data and ultimately improve the model’s overall

performance post-transfer learning.

In conclusion, our study demonstrates the potential benefits of employing

transfer learning in the DL-GSI-IHSF domain, offering valuable insights

and paving the way for future research. By refining our understanding of

transfer learning strategies, exploring more sophisticated mechanisms, and

addressing current limitations, we can continue to advance the field and

develop more effective solutions for real-world applications.

5.7 Summary

Extracting and generalising the empirical knowledge of solar energy fore-

casting from existing datasets is crucial for advancing DL-GSI-IHSF re-

search. Focusing on and developing the transferability of models can not

only positively impact model research and communication but also save

time and cost in practical deployment. In this chapter, we first compared

the limited Nottingham dataset with the Folsom dataset used in Chapter

4, clarifying the differences between the datasets before and after transfer.

We found that solar irradiance variations are more complex in the colder

and wetter Nottingham area compared to the Folsom dataset. Frequent
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RE occurrences can be observed throughout the year. Next, we compared

the performance of the three models proposed in Chapter 3 based on the

Nottingham dataset, verifying the superiority of the ViT-E model archi-

tecture. The results show that in the more complex Nottingham region,

the ViT-E model, which employs attention mechanisms for early modal-

ity interaction, achieves better FS and meets the prerequisites for transfer

learning.

In the transfer experiments of this paper, we used a relatively basic weight

transfer method. Through gradual exploration, we found that the weight

transfer-based method can effectively transfer the prior knowledge of pre-

trained models under different climatic conditions, enabling them to play a

role in DL-GSI-IHSF downstream tasks in different climates. Moreover, the

model can achieve effective training with very few datasets by combining

different transfer strategies. At the same time, transfer learning can save

the time and cost of model training and data collection. In this project, the

prediction model can perform the CNN architecture on a complete dataset

using only one-tenth of the training time and one-twentieth of the dataset

size compared to training from scratch.

Furthermore, this chapter combined transfer learning methods and phe-

nomena from other research fields to conduct a detailed analysis of transfer

learning in the DL-GSI-IHSF domain of this work. In the simulation exper-

iment, although the method of using continuous two-week data for transfer

learning also gained a specific performance improvement from the source

dataset, its performance was not as good as the potential demonstrated by

the dataset with excellent generalizability. Therefore, in future work, we

recommend adopting more advanced transfer learning strategies to achieve

more efficient transfers in datasets with limited temporal diversity.
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Chapter 6

Simplification and

Optimisation of ViT-E

Chapter Abstract

The focus of this chapter was on enhancing the performance of the ViT-E

model by implementing architectural refinements and conducting hyper-

parameter tuning. As the model architecture was investigated, it became

evident that the DL-GSI-IHSF model possesses potential for further simpli-

fication. By employing merely 25% of the depth of the source visual model,

we succeed in preserving the model’s computational efficiency and overall

performance. Moreover, we utilise hyperparameter search techniques to

meticulously fine-tune the model’s primary hyperparameters. The ulti-

mate results demonstrated that the optimised model can significantly re-

duce training time by nearly 60% while simultaneously boosting forecast

skill by 2.7%.
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6.1 Motivation

In various deep learning applications, model structure, hyperparameters

tuning and optimisation play a crucial role in model performance. Proper

model structure enhances the efficiency and accuracy of the prediction

model. Furthermore, fine-tuning hyperparameters can optimise the train-

ing process, rendering it more efficient and stable, increasing the odds of

the model reaching its theoretical optimal performance.

However, the current DL-GSI-IHSF article does not sufficiently address

model architecture. Optimising and debugging model architectures is a

subjective task that even experienced researchers sometimes find challeng-

ing to explain. Additionally, model debugging does not have a significant

degree of regularity, requiring a combination of guesswork and iterative

experimentation [113]. Debugging often entails a high computational cost,

requiring hundreds or even thousands of iterations, in contrast to model

training. Furthermore, local computational units can significantly influence

hyperparameter tuning, leading to non-generalisable results. As a conse-

quence, the model debugging and tuning efforts are considerably hampered.

This section ensures that the ViT-E model in the previous section complies

with basic model architecture simplification and hyperparameter tuning.

This work also aims to test several deep model hyperparameter optimi-

sation strategies designed primarily for the DL-GSI-IHSF sector to verify

their efficiency. This testing is done to optimise model performance.

Unless otherwise stated, the experiments described in this chapter were

carried out in the same experimental environment as in Chapter 5.5.
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6.2 Model Architecture Simplification

As introduced in Chapter 2, in the work of DL-GSI-IHSF, the current

mainstream model development method is to transplant validated com-

puter vision models. By extracting image features from all-sky images

through spatiotemporal analysis, single-modality solar forecasting can be

performed directly, or multi-modality forecasting can be conducted with

historical numerical input. In this process, the architecture of the com-

puter vision model is often directly used as it was during the initial model

development, without further editing or validation. On the one hand, the

direct use of general-purpose machine vision models has been extensively

validated in various fields and has higher credibility. On the other hand,

general-purpose machine vision works are usually built into deep learning

frameworks, such as TensorFlow, which can be quickly and easily called

directly without the need to build the model framework.

However, this simple, quick, and validated approach in other fields is not

rigorous when applied to solar forecasting. Specifically, the transplanted

models have not been thoroughly investigated and researched for their ar-

chitectural effectiveness, and their design goals and concepts do not fully

align with the needs of solar forecasting. In terms of model architecture,

Chapter 4 examines the modal validity of the current model and potential

flaws in fusion. In addition to the model architecture, solar forecasting dif-

fers from computer vision tasks regarding prediction objectives. In partic-

ular, the solar forecasting task is not a pure regression task. As previously

introduced, solar forecasting is a numerical prediction task with regression

properties on the one hand, and its values have a dual-periodicity character-

istic in the ideal clear-sky state, i.e., the daily-cycle variation of irradiance

and the annual-cycle variation of solar angle. In addition to the regression

197



6.2. MODEL ARCHITECTURE SIMPLIFICATION

task, the periodic numerical prediction will be interrupted by ramp events

caused by cloud movement, resulting in instantaneous changes of up to

several tens of percent [4]. In other words, the solar forecasting task is a

dual-periodicity numerical regression task and an anomaly detection task.

The model needs to predict upcoming anomalies and estimate the magni-

tude of the anomalies. Therefore, directly transplanting computer vision

models aimed at image classification without testing in model construction

lacks rigour.

At the same time, the complexity of image feature extraction requirements

differs between solar forecasting and traditional computer vision classifica-

tion tasks. Taking ImageNet [123], the most widely used dataset in general

CV model design, as an example, its main task is to classify the main con-

tent of images into 1,000 predefined categories. In contrast, the specific

task of sky images is to identify and distinguish cloud pixels, sky pixels,

and sun pixels. Some models also include the derivation of potential ramp

events through pixel flow. Regarding image data complexity, ImageNet

images are much more complex than sky images. ImageNet images can

contain diverse information, such as objects commonly found in nature,

textures, structures, and colours. In contrast, sky images only contain the

sky background, clouds, and the sun, with colours limited to blue and white.

Therefore, it is unreasonable to apply models in tasks of different complex-

ity directly. Similar phenomena have been observed in previous DL-GSI-

IHSF work, as shown in Figure 6.1. In the work by Wen et al. [77], they

compared three advanced models at the time, VGGNet [98], ResNet [99],

and DenseNet [102], when selecting backbone models. The authors used

the shallowest versions of VGGNet and DenseNet present in their original

work, VGG-11, and Dense-121 (where 11 and 121 represent the number

of model layers), while they used three different depth models for ResNet:
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Res-18, Res-34, and Res-50. The authors found that, on the one hand,

the improvement brought to the solar forecasting domain by increasing

model complexity was more significant at lower complexity levels, such as

from VGG-11 to Res-18. However, as the model’s complexity continued to

deepen, the improvement began to slow down. For example, Res-34 only

improved solar forecasting by less than 0.5% compared to Res-18, while it

improved ImageNet performance by nearly 3%. On the other hand, the

authors found that overfitting began to occur when the model depth was

further increased to Res-50 in solar forecasting. In the performance of the

original work of ResNet on ImageNet, according to the original authors,

performance improvement could still be observed with a 152-layer model.

Overfitting was reported when the model was deepened to 1,202 layers [99].

In our experiments, we also observed similar phenomena. As shown in the

figure, according to the results in Table 4.2 of Chapter 4, CNN-L (based

on Res-18 architecture) and ViT-L (based on ViT-B/16 architecture [100],

but using different image patch size) also showed similar characteristics.

On the one hand, as analysed in Chapter 4, this is due to the influence

of unbalanced modalities; on the other hand, the results also indicate that

models that perform better on ImageNet may not necessarily be suitable

for solar forecasting.

Therefore, we believe that, whether from direct observation or objective

experiments, both reveal the same problem: the complexity of the image

feature extraction task in DL-GSI-IHSF work is far lower than that of com-

puter vision-based image classification tasks. As a result, we hypothesise

that although the ViT-E model based on the ViT architecture has been

designed using the simplest version of the ViT-B//16 model, it may still

be further simplified in terms of model architecture without affecting per-

formance. In this section, we test and simplify two dimensions of the ViT-E
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Figure 6.1: Performance of the same model in ImageNet dataset versus
Folsom Dataset, evaluated in ImageNet as Top-1 Accuracy of Image Clas-
sification [98, 99, 102, 100], and in Folsom dataset as a simultaneous pre-
diction of RMSE [77]. Note that the negative axis is inverted as smaller
RMSE values represent better model performance.

Table 6.1: Search space for model architecture.

Search items Default Search space

Depth 12 1,2,3,6,12,16,24
Number of Head 12 1,2,3,6,12,18,24

model: the depth of the Transformer Encoder Layer, the main inference

layer of the model, and the number of heads in the multi-headed self-

attention mechanism. We used a manual grid search method to compare

models by traversing the parameters in the search space. Table 6.1 shows

the search space for the different search items. All models were repeated

five times to minimise the effect of randomness on model performance. It

is worth noting that as the model architecture search requires a large num-

ber of iterative trials, the smallest dataset that can train a stable model

from Figure 5.9 in Chapter 5, i.e. 12.5K dataset, is used in this section for

validation, while training the model only at the 2 minutes ahead forecast

where the model differences are most pronounced.
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Figure 6.2: Performance of the model in 2-minute forecasts at different
depths. The folded line shows the trend of the optimal performance in the
repeat models.

6.2.1 Model Simplification on Depth of Transformer

Encoder

The depth of a model refers to the number of layers used for computa-

tion. Theoretically, deeper models should have a better generalisation and

representational capabilities [163]. However, in practical applications, it

is not always the case that deeper models yield better performance [99].

Overly deep models can cause overfitting, reducing the model’s general-

isation ability [101]. As mentioned earlier, we believe the complexity of

parsing graphical information in solar forecasting is far lower than that in

general computer vision tasks. Therefore, the main goal of this section

is to investigate whether there is room to reduce the model depth in the

ViT-E module. We train models with different depths while maintaining

the number of heads at 12. The results are shown in Figure 6.2.
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As shown in the figure, the model maintains nearly the same optimal per-

formance within the search space from depth 3 to depth 18 and experiences

a significant drop when reaching depth 24. The optimal FS performance

is achieved at 18 with 14.52%, followed by 14.39% at a depth of 3. At

the same time, regarding training efficiency, the model depth directly de-

termines the number of trainable parameters, which influence the training

efficiency of the model. In ViT-E, each Transformer Encoder layer has 0.44

million parameters, accounting for more than half of the total 0.85 million

parameters in the other two modules (projection layer and prediction head).

The figure shows that the model computation time increases linearly with

depth. When the depth reaches 24, the average training duration is 6.6

hours. Therefore, we choose to compress the model depth to 3 layers to

balance performance and computation time. It is worth noting that the

3-layer model has a significant drawback. Although the optimal perfor-

mance of a single model is comparable to that of other optional depths,

the training process is not stable enough. Compared to the deeper 6 to 18

layers, the 3-layer model has the most considerable performance variation

in repeated experiments among all models, indicating that it is most sus-

ceptible to randomness. Therefore, we made a series of adjustments to this

depth model in the following experiments, aiming to improve the stability

of the model training process.

6.2.2 Model Simplification on Head in MSA

The multi-head self-attention mechanism is the core reasoning mechanism

of the Transformer architecture. The term ”multi-head” refers to the MSA

block mapping the input matrix to different attention heads through the

trainable matrix WO, as shown in Equation 4.6. The multi-head mecha-
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Figure 6.3: Performance of the model in 2-minute forecasts at different
head in MSA. The folded line shows the trend of the optimal performance
in the repeat models.

nism allows a single set of queries, keys, and values to perform different

query behaviours (such as different distances and dimensions) in different

representation subspaces [164]. Therefore, more heads are considered to

capture richer information, improving the model’s expressive power and

accuracy. In the original design of ViT-E, we directly followed the original

design of ViT-B/16, i.e., 12 heads. In this section, we search for the num-

ber of heads based on the three-layer model depth in Figure 6.2, and the

results are shown in Figure 6.3.

As shown in Figure 6.3, there is no clear pattern in the number of heads in

MSA for model prediction. Except for the significant decrease in optimal

performance when the number of heads is 1 and 6, the optimal perfor-

mance of the model under other head numbers does not differ much. In

the model architecture design, the ViT-E model refers to the native ViT
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work. The authors evenly split the weights parameters into each represen-

tation subspace when mapping a set of queries, keys, and values to different

subspaces. Therefore, the total parameter amount of the queries, keys, and

values do not change during the calculation, so using a different number of

prediction heads does not significantly affect the computation time of the

model under the premise of unchanged model depth. Regarding training

process stability, the optimised result in Figure 6.2 based on 12 prediction

heads shows the worst stability. Finally, we decided to adjust the number

of prediction heads to 3. On the one hand, three prediction heads achieve

the best performance in the weight search architecture. On the other hand,

three heads can keep the matrix dimensions in each head consistent with

the original model (ViT-B/16 has a matrix dimension of R64×(N+1) in each

head).

6.3 Hyperparameter Tuning

6.3.1 Introduction

The performance of deep learning models mainly manifests in the model’s

prediction performance, such as accuracy and generalisation, and the model’s

computational efficiency. The primary purpose of hyperparameter tuning

is to maximise the performance of deep learning models. However, the

tuning process often faces significant challenges. On the one hand, differ-

ent architectures, algorithms, and optimises have unique optimal hyper-

parameter combinations. When adjusting the model’s architecture or us-

ing different optimises, the best hyperparameter combination will change

accordingly [165]. Additionally, as previously mentioned, the training of

deep learning models inevitably faces the influence of randomness. Con-
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sequently, the hyperparameter adjustment process in deep model design

often requires extensive time for repeated testing [166].

On the other hand, due to the black-box nature of deep learning, the influ-

ence of hyperparameters in the model is often based on the model’s results

and researchers’ subjective judgement. Simultaneously, the process lacks

deductive reasoning [167]. Therefore, the model’s hyperparameter adjust-

ment process is not strictly a rigorous scientific exploration but a process

driven by experience, which may include a large number of subjective at-

tempts and even unfounded guesses by researchers.

In this section, we made a series of adjustments to the ViT-E model’s hy-

perparameters. Our goal is slightly different from the original intention of

hyperparameter tuning. In addition to searching the hyperparameter space

to determine the best combination, the ViT-E project employs some ”de-

fault” deep learning optimisation techniques, such as weight decay [168],

learning rate decay [169, 170], and others. These methods generally im-

prove the model’s computational performance during training. This sec-

tion tested these techniques to determine their roles in ViT-E. It is worth

noting that the model’s hyperparameters are also influenced by the data

pipeline, which is responsible for transferring data from the hard disk to

the network [171]. The training platform’s hardware determines the data

transmission rate in the data pipeline.

Therefore, this section’s specific values of hyperparameter adjustments have

absolute numerical reference significance only on the local machine or when

using completely identical machines [172]. To provide a more generalised

understanding, we recommend that researchers consider the hardware con-

straints, data pipeline efficiency, and the specific requirements of their tasks

when adjusting hyperparameters. Additionally, employing automated hy-
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perparameter tuning techniques, such as Bayesian optimisation [173], ran-

dom search [165], and Hyperband [166], can help to alleviate the challenges

faced during the hyperparameter optimisation process, improving both pre-

diction performance and computational efficiency.

6.3.2 Methodology

This study employed the ViT-E model as a basis for hyperparameter tun-

ing. We first fixed the model architecture, utilising a three-layer model

with three MSA heads, as validated in the preceding section. Although the

Adam optimiser was initially considered, it was abandoned due to its poor

performance in preliminary experiments. Consequently, we continue to opt

for the SGD optimiser with a momentum of 0.9. In our weight search,

we refrained from utilising automated search methods such as random or

Bayesian optimisation. Instead, we employed a more straightforward man-

ual approach to gain insights into the model’s performance during the con-

vergence process.

Batch Size Batch size denotes the number of samples input into the

model for gradient computation during the deep model parallel process, as

illustrated in Equation 1.8. It signifies the number of samples the model

can process in parallel simultaneously. Theoretically, with hyperparameter

optimisation, batch size does not impact the model’s computation accuracy.

Regardless of batch size, the model can achieve its maximum potential per-

formance [174]. However, other batch-sensitive hyperparameters, such as

weight decay and learning rates, may influence the model’s final perfor-

mance [113]. Furthermore, batch size significantly affects the model’s com-

putational efficiency, as it determines the training time and consumption of
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computational resources. Ideally, doubling the batch size would double the

model’s parallelism, increasing training throughput. In practice, however,

factors such as disk read and write speeds or CPU processing speeds be-

come bottlenecks, ultimately affecting the model’s computational efficiency.

Additionally, a larger batch size can reduce sample variance in each batch,

accelerating the training process [174]. However, reduced sample variance

translates to less noise, which can render the model more susceptible to

overfitting.

Learning Rate The learning rate dictates the proportion of the gradient

to the weight during the model fitting process, significantly impacting the

model’s computational performance and efficiency. As the model minimises

loss, the learning rate governs its convergence efficiency. A more significant

learning rate enables faster parameter updates, thereby hastening model

convergence. Conversely, a lower learning rate facilitates fine-tuning the

minimum value of the loss as the model approaches the optimal solution.

Moreover, since the loss may have local optima, a larger learning rate can

help the model escape local optima in search of the global optimum [170].

Therefore, determining an appropriate learning rate curve is essential dur-

ing model training. In this section, we searched for the optimal learning

rate size and experimented with custom learning rate curves, including

cosine decay and cosine annealing strategies [169].

Weight Decay Weight decay, or L2 regularisation, is a strategy to pre-

vent model overfitting. It restricts the growth of model weight values by in-

troducing a weight penalty term to the loss function. Limiting the model’s

weight values reduces overfitting risks during training and simplifies the

model to some extent, as smaller weight values are closer to the vector
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Table 6.2: Search space for hyperparameters in ViT-E.

Parameters Default Turning Range Description

Batch Size 64 [4, 8, 16, 32, 64, 128, 256]
The number of training
samples per iteration.

Learn Rate 8e-4
[5e-3, 1e-3, 8e-4, 5e-4,
1e-4, 8e-5, 5e-5]

The step size in updating
model weights.

Learn Rate
Curve

CA-R
[Constant,
CA-NR, CA-R]

Adjusting the learning
rate over training iterations.

Weight Decay 1e-4
[1e-1, 1e-2, 1e-3, 1e-4,
1e-5, 0]

The strength of the weight
decay regularisation.

origin. This simplification decreases the model’s complexity, enhancing

its generalisation capabilities [168]. Consequently, weight decay effectively

balances the trade-off between model complexity and generalisation per-

formance.

In conclusion, this study focused on refining the ViT-E model by carefully

tuning hyperparameters, including batch size, learning rate, and weight

decay. We emphasised the importance of selecting an appropriate model

architecture, optimiser, and weight search method to optimise performance

during the convergence process. Our investigation into the relationship

between batch size and computational efficiency, learning rate and conver-

gence efficiency, and weight decay and overfitting prevention provided valu-

able insights for improving the model’s overall performance. Furthermore,

exploring custom learning rate curves, such as cosine decay and cosine an-

nealing strategies, contributed to a more nuanced understanding of learning

rate allocation during training. Table 6.2 shows the hyperparameter search

space. These findings underscore the critical role that hyperparameter tun-

ing plays in maximising the potential of deep learning models and achieving

optimal results in various applications.
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Figure 6.4: Comparison of model throughput in different batch sizes.

6.3.3 Result

Batch size Batch size is a hyperparameter limited by hardware and data

pipeline I/O (Input and Output) considerations. As previously mentioned,

theoretically, batch size does not affect model accuracy. Generally, to max-

imise computational efficiency by arranging data neatly in memory, the

batch size is set to a power of 2. In our computing environment, the max-

imum batch size the device’s memory can support is 28. In this section,

we tested the computational efficiency of batch sizes ranging from 22 to 28

on our local device. The results are shown in Figure 6.4. When hardware

and data pipeline constraints are absent, doubling the batch size can dou-

ble the model’s throughput range in an ideal state. However, as shown in

the figure, only increasing the batch size from 8 to 16 doubled the model’s

computational efficiency. At other batch sizes, while increasing batch size

can improve throughput, it does not result in throughput growth close to
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doubling. Our investigation found that this phenomenon is due to different

parts of the data pipeline limiting data processing efficiency. When the

batch size is small, the total batch count is large because the total batch

count is inversely proportional to the batch size. The data pipeline needs

to repeat the read-map-pack preparation process for each batch, decreasing

batch processing speed due to the impact of CPU computational efficiency.

When the batch size is too large, many samples must be read and writ-

ten to the disk simultaneously, which becomes the bottleneck of training

efficiency. Additionally, increasing the batch size reduces the number of

iterations per epoch, resulting in slower model fitting speeds. Based on our

findings, we ultimately conducted a hyperparameter search with a batch

size of 64 samples per batch, as it had an average training speed 50% faster

than a batch size of 128.

Learning Rate The ratio of the gradient to the weight during the model’s

gradient descent process. A larger learning rate is beneficial for quick model

fitting, while a lower learning rate is beneficial for fine-tuning the weight

parameters. In order to adjust the learning rate at different stages of train-

ing, deep models are typically trained using a learning rate curve that varies

with the training step, as shown in Figure 1. In previous training, we de-

faulted to using a cosine decreasing strategy to adjust the learning rate,

which gradually decreases as the model iterates, while using a larger initial

learning rate. We first searched for the effect of the initial learning rate

on the model performance. In this work, the initial learning rate, i.e. the

learning rate of the model at the first epoch, is also the maximum learning

rate during the whole training process. Figure 6.5 shows the effect of the

learning rate on the prediction performance of the model: We conducted

repeated experiments with seven different learning rates to test the results.
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Figure 6.5: Comparison of model forecast skill in different learning rates
with batch size 64.

The default learning rate used was 8e-4, also the recommended learning

rate for the ViT model [100]. The figure shows that the recommenda-

tion learning rate shows optimal performance across the search space. The

model obtains the maximum performance improvement with an increased

learning rate before 8e-4 and decreases after exceeding it. Additionally,

the model’s training time gradually decreases as the model’s initial learn-

ing rate increases. Considering training time and accuracy, we maintained

a learning rate of 8e-4 for further exploration.

It is worth noting that the learning rate set in the above figure is the

initial learning rate. As mentioned earlier, we hope the learning rate can

be relatively large in the initial stage of training to improve the model’s

rough fitting efficiency. When the model approaches the optimal point, we

hope the learning rate can gradually decrease to achieve fine-tuning. In this

study, we used the standard Cosine annealing [169] strategy by gradually
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Figure 6.6: Three different learning rate control strategies.

reducing the learning rate through a cosine function during the training

process, as shown in Figure 6.6. It can be represented by the equation

below:

ηi = ηmin +
1

2
(ηmax − ηmin)(1 + cos (

i

I
π)) (6.1)

= ηmax(r +
1

2
(1− r)(1 + cos (

i

I
π)) (6.2)

where r =
ηmin

ηmax

(6.3)

where, η represents the learning rate, i and I represent the current epoch

and the total number of epochs in the decay process, respectively, and r

represents the total decay rate. In this study, ηmax is the initial learning

rate, 8e-4, I is set to 100, and r is set to 0.01. The learning rate decay

process through the Cosine annealing strategy is shown in Figure 6.6. In the

standard Cosine annealing strategy, the decay process is repeated several

times (i.e., Repeat=True in the figure). There is a variant of this strategy
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Figure 6.7: Comparison of model forecast skill in different learning rate
control strategies with start learning rate 8e-4.

where no repetition occurs. After reaching 100 epochs, the model’s learning

rate maintains 0.01 times the initial learning rate and does not change. The

impact of different strategies on model weight is shown in Figure 6.7.

Weight Decay Weight decay is a regularisation technique employed to

mitigate overfitting during the network training process. Specifically, weight

decay restricts the complexity of model weights by incorporating the squared

sum of all weights in the network into the model’s loss function, following

a certain proportion. In this section, the hyperparameter under investi-

gation is the intensity of weight decay, i.e., the multiplication coefficient

associated with the squared sum of weights. The results are illustrated in

Figure 6.8.

It should be noted that, due to the inability of some models to fit prop-

erly when the weight decay is excessively large, a direct comparison using

validation set results was conducted, rather than evaluating the models on

the test set after training. Consequently, the vertical axis in the figure
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Figure 6.8: Comparison of model forecast skill in different weight decay
rate.

represents the validation set loss, not the test set FS mentioned previously.

In other words, a smaller loss implies superior performance, which is con-

trary to the previous interpretation. As demonstrated in the figure, the

model’s performance initially improves and then deteriorates as the weight

decay coefficient gradually increases. The optimal performance is achieved

with a weight decay ratio of 1E-4. To further analyse the impact of weight

decay on model training, Figure 6.9 displays the training process of the

best-performing models in six repeated experiments with different weight

decay rates.
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Figure 6.9: Figure: Comparison of model training performance with different weight decay rates, where the training curve is smoothed
using an EMA with a smoothing factor of 0.2. The labeled points in the figure represent the actual minimum loss values saved during
the training process.

215



6.4. DEPLOY OPTIMISATION STRATEGIES ON FULL DATASETS

As shown in the figure, the model is almost unable to complete training

when the weight decay value is 0.1. In the experiments, the model’s weight

fitting was effective only once among the five repeated trials, as shown in

the figure, and was unsuccessful in the other four instances. When the

weight decay is set to 0.01, the training efficiency of the model significantly

declines. The section shown in the figure is not fully displayed due to

space constraints. Limited by the maximum training epochs of 500, the

model could not complete the entire training process. In an unrestricted-

duration test, training stopped at 1.2K epochs, and the best loss achieved

was 0.1552. In conclusion, the default weight decay of 1E-4 continues to

be the optimal choice for the model.

6.4 Deploy optimisation strategies on full datasets

In this section, we synthesise the search results from the previous two sec-

tions and conduct performance optimisation tests on the complete dataset

using the ViT-E model. Due to the optimisation process, in order to save

training time costs, the actual adjustments were performed on a smaller

dataset (12.5K samples), so the limited dataset size still affects the model’s

performance. To test the model’s achievable optimal performance, after

the optimisation process, the results of the optimisation method on the full

Nottingham dataset are shown in the following Table:

Table 6.3: Performance comparison of optimisation strategies on two dif-
ferent datasets

Dataset
Model Architecture Hyperparameter Result (Average)

Model
Depth

Number
of Head

Batch
Size

Initial
Learning

Rate

Learning
Rate

Decay

Weight
Decay

Forecast
Skill

F1

Score
Training
Time (h)

12.5K
Original 12 12 8 8.00E-03 CA-R 1.00E-04 14.07% 35.67% 4.13

Optimised 3 3 64 8.00E-03 CA-NR 1.00E-04 14.48% 36.19% 1.18

55K
Original 12 12 8 8.00E-03 CA-R 1.00E-04 16.1% 38.87% 6.47

Optimised 3 3 64 8.00E-03 CA-NR 1.00E-04 16.55% 39.38% 2.62
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As shown in the table, after optimisation, the model’s prediction score

increased by 2.9%, while the F1 score decreased by -1.4% in the smaller

debugging dataset. Additionally, the model’s computational efficiency im-

proved by 71.4%. After deploying the optimised model on the complete

Nottingham dataset, both the prediction scores and F1 scores increased

by 2.7% and 1.3%, respectively, and computational efficiency improved by

59.5

6.5 Summary

The model’s hyperparameters have a significant impact on its performance.

In this chapter, we conducted a careful search for the model’s architecture

and hyperparameters. Ultimately, on the complete dataset, the entire op-

timisation strategy improved the model’s forecast skill by 2.7% and the F1

metric score by 1.3%. Furthermore, it saved nearly 60% of the training

time. During the model tuning process, we confirmed the speculation pro-

posed earlier in the text. Specifically, we found that the parsing complexity

of sky images is far lower than the standard image classification tasks in

computer vision, so the demand for the model’s parsing ability is lower and

does not require a deep model architecture. In addition, in this chapter,

we also tested some mainstream model optimisation strategies, such as co-

sine annealing strategy and weight decay strategy. The results showed that

the performance of the model in the DL-GSI-IHSF work can be optimised

based on general deep model optimisation strategies. It is worth noting

that this paper only searched for some major hyperparameters, and there

are still other potentially effective hyperparameters not within the search

scope. Moreover, the model’s hyperparameters are directly related to the

model’s architecture and data pipeline design, so the conclusions of this pa-
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per have certain limitations, particularly in the specific numerical results

of hyperparameter searches.
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7.1 Summary of Contributions

In general, in this paper we explore the current state of DL-GSI-IHSF and

iterate and optimise existing methods from different perspectives. Specifi-

cally, we optimise the existing DL-GSI-IHSF work in three ways.

7.1.1 Fusion Interaction of Sky Images and Measure-

ment Data

Drawing from experience, a description of objects based on multiple modal-

ities and dimensions is invariably more comprehensive than one based on a

single modality. The heterogeneous noise topologies across different modal-

ities can be filtered through cross-validation, leading to a more accurate de-

scription of the subject. This is also true for the DL-GSI-IHSF framework,

where the developed models achieve superior results on specific metrics

by cross-processing image information and measurement data compared to

single modality approaches. However, in Chapter 4, we pointed out that

the deep learning methods guided by minimising loss function inherently

exhibit certain biases. Loss functions designed based on numerical regres-

sion direct the model training toward numerical regression, resulting in a

lack of sensitivity to anomalous predictions. Consequently, most models in

existing work demonstrate a deficiency in their ability to anticipate Rapid

Events (RE).

In Chapter 4, we enhanced the modality interaction of existing models at

the architectural level. By incorporating advanced structures controlling

information interaction in two types of deep models, gate structures and

attention mechanisms, we constructed a more comprehensive model inter-

action mechanism. This method effectively improved the models’ anomaly
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detection capabilities. In particular, the ViT-E model, based on early

modality interaction, increased the RE capture rate by 10% in the so-

lar energy prediction task two minutes ahead without sacrificing regression

performance.

Through the visualisation analysis of model results, we found that re-

searchers overestimated the effective prediction range of sky images. The

prevailing consensus suggests that sky images can effectively forecast solar

irradiance and slope events within 15 minutes. However, in our visualisa-

tion analysis, the effectiveness of numerical inputs surpassed images at the

6-minute mark, and images became almost insignificant for predictions 10

minutes ahead. Additionally, we highlighted the inherent logical contradic-

tion between regression prediction and anomaly prediction when using a

single generic regression function as the model’s loss function. Specifically,

regression loss functions constrain model weights to converge toward mean

regression, which inadvertently leads to the failure of anomaly detection.

7.1.2 Transfer Learning Based on Different Climate

Conditions

In practice, the deployment and validation process of DL-GSI-IHSF is

lengthy. Even after device deployment, the data collection platform still

requires a continuous year of localised information for complete deep model

training. Such a time cost is excessive and impractical for model valida-

tion. Therefore, in Chapter 5, we propose using transfer learning methods

to propagate knowledge within the models. By inheriting experience from

rich datasets, the time cost of data collection and debugging is reduced

when deploying the model at new locations. Moreover, we selected two

datasets with significant climate differences to verify whether the trans-
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ferred knowledge can successfully migrate under complex climate changes.

In Chapter 5, we accomplished model knowledge propagation under dif-

ferent climates through weight transfer methods. We first compared the

similarities and differences between the two datasets in detail before the

actual transfer and conducted feasibility pre-experiments to verify the ad-

vanced model architecture. In the formal experiment, we confirmed the

effectiveness of model transfer learning by comparing the cosine similarity

before and after the transfer. Next, we compared the transfer performance

of weight space adaptation and label space adaptation. By downsampling

and continuously sampling the original dataset, we compared the specific

performance of transfer learning in situations with insufficient data.

The transfer learning results confirmed the feasibility of implementing trans-

fer learning in the DL-GSI-IHSF domain. Furthermore, the best-performing

experiment demonstrated that provided data diversity is ensured, transfer

learning can achieve a relatively stable model using only 4.5% of the original

dataset and 10% of the time. We employed transfer learning to conduct

transfer experiments using a 2-week dataset in the continuous sampling

method representing pseudo-real experiments. The results indicate that

the generalisation of the dataset is crucial in transfer learning. In some

cases where diversity is insufficient, the model may fail to complete trans-

fer training.

These findings emphasise the importance and effectiveness of transfer learn-

ing in the DL-GSI-IHSF domain, highlighting its potential to reduce data

collection and training time while maintaining model performance. Trans-

fer learning’s success, however, is contingent upon ensuring adequate data

diversity and generalisation in the datasets used for training.
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7.1.3 Local-based Model Simplification and Optimi-

sation

In our previous work, we found that leading models in the deep vision

domain did not exhibit a significant performance advantage in DL-GSI-

IHSF. We speculate that the difference in performance superiority may be

due to the varying task complexity, that is, the complexity of sky images

is much lower than that of images in general image classification tasks.

Moreover, we noticed a lack of effective validation for plug-and-play opti-

misation modules in the deep learning domain in previous work. There-

fore, in Chapter 6, we first carried out simplification tests on the model

architecture to compare whether reducing the model depth would affect its

performance. In addition, we further adjusted the hyperparameters of the

simplified model and tested the effectiveness of some popular deep model

optimisation strategies in DL-GSI-IHSF.

During the model depth simplification process, we found that when the

ViT-E model was simplified to a quarter of the original model’s inference

module depth, the stability of model training was reduced. However, the

achievable optimal performance of the model was not affected at this point.

As the model depth was further reduced, the model’s optimal performance

began to decline. In the process of simplifying the model’s parsing head,

we further reduced the number of parsing heads to three. In the hyperpa-

rameter adjustment, we made further adjustments to several important hy-

perparameters to optimise the model’s performance. Ultimately, through

model architecture optimisation and hyperparameter tuning, the model

achieved a 2.7% performance improvement on the complete dataset and

reduced training time by 60%.

During the model optimisation process, the speculation that graphic pars-
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ing complexity in DL-GSI-IHSF work is lower than general image classifi-

cation tasks was confirmed. The effectiveness of several basic model tuning

strategies was also examined. This has guiding significance for the future

design of DL-GSI-IHSF model.

7.2 Future Work

In this thesis, we provide a systematic review of DL-GSI-IHSF. As a class

of methods within the GSI-IHSF framework, Deep Learning (DL) meth-

ods are currently the most advanced prediction methods in the evalua-

tion system. By learning cloud movement patterns in large datasets, deep

models can effectively capture spatiotemporal information in sky images,

predict upcoming RE, and assist in real-time power system dispatching.

Deep learning requires high-quality data and computational resources dur-

ing model development compared to traditional image analysis-based mod-

elling methods. However, its calculation time during actual prediction is

almost negligible compared to traditional methods. Chapter 2 summarises

the general development framework of DL-GSI-IHSF, data collection and

preprocessing, model architecture design and optimisation, and model eval-

uation from different perspectives. On the other hand, although Chapters

4, 5 and 6 of this paper explore and extend the DL-GSI-IHSF work to some

extent, this field is far from perfect. It requires more time to address the

remaining issues and emerging challenges. In the end, we distil several im-

portant issues and potential research directions in DL-GSI-IHSF that are

worth further exploration in the future:

1. Dataset influence on the model: As the main factor affecting com-

puter vision deep learning models, the quantity and quality of image
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data have not yet received attention in DL-GSI-IHSF work. Most cur-

rent studies are based on modelling a single local or publicly available

online dataset rather than multiple datasets simultaneously. At the

same time, strict comparative experiments are required for image or

dataset model validation. For example, climate and geographic fac-

tors at different dataset collection sites will significantly affect the

performance of solar energy forecasting models. It is unrealistic to

compare datasets across climates. Therefore, a potential research

direction is the comparative study of dataset collection equipment,

such as sky cameras and pyranometers. On the one hand, comparing

datasets helps improve model performance validation and determine

the source of performance differences. On the other hand, compar-

ative research on data collection equipment can provide recommen-

dations for equipment selection and installation during the actual

deployment of DL-GSI-IHSF.

2. Data preprocessing based on solar energy forecasting background:

Existing work has demonstrated the potential of solar energy forecast-

ing prior knowledge in data preprocessing for deep models. There-

fore, preprocessing methods combining physics-based solar energy

forecasting background knowledge with deep models are promising,

for example, fisheye distortion correction, Clear Sky Library method,

optical flow, and cloud dynamics. Transforming the data into an ex-

pression easier for deep models to recognise through prior knowledge

or incorporating it directly as part of deep modelling is a promising

research direction.

3. Multi-task learning and loss functions for ramp event-oriented tasks:

DL-GSI-IHSF models mostly use MAE or MSE loss functions, which

are general-purpose loss functions for regression tasks. However,
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short-term changes in solar irradiance as a forecasting target are not

purely regression-based predictions but a combination of regression-

based predictions and anomaly detection. Anomalous signals, i.e.,

ramp events, interrupt the model’s continuously differentiable regres-

sion distribution. To our knowledge, no models have been explicitly

designed for anomaly detection in ramp event prediction. Therefore,

applying multi-task learning methods and designing specific model

architectures and loss functions for ramp events may be a potential

research direction.

4. Probabilistic forecasting: Most current deep learning networks pro-

vide deterministic predictions, which are numerical values lacking any

probabilistic or interval-based information. However, this approach

presupposes an unwarranted precision that may not align with me-

teorological forecasting’s inherently probabilistic nature. Therefore,

presenting forecasts with a confidence level is crucial for meteorolog-

ical applications. Recent studies have proposed proprietary model

architectures to generate probabilistic ranges, providing additional

information on the uncertainty of the forecast. Incorporating proba-

bilistic predictions in GSI-IHSF can improve solar energy forecasting

and enable the real-time design of downstream power system modules

during operation.

5. Standardised evaluation metrics: As mentioned earlier, current model

evaluation metrics, especially for ramp event evaluation, are diverse

and inconsistent. This diversity hinders the comparison between

models and the evaluation of algorithms. Therefore, future research

should focus on developing standardised evaluation metrics for DL-

GSI-IHSF models, particularly for assessing ramp events. Establish-

ing a unified set of evaluation metrics would facilitate more accurate
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comparisons among different models and help researchers identify the

most effective approaches in solar energy forecasting.

228



Bibliography

[1] IEA. World energy outlook 2022, 2022.

[2] Energy & Industrial Strategy Department for Business. Solar photo-

voltaics deployment, 2023.

[3] IEA. Solar pv power generation in the net zero scenario, 2010-2030

– charts – data & statistics.

[4] Dazhi Yang, Wenting Wang, Christian A Gueymard, Tao Hong, Jan

Kleissl, Jing Huang, Marc J Perez, Richard Perez, Jamie M Bright,

and Xiang’ao Xia. A review of solar forecasting, its dependence

on atmospheric sciences and implications for grid integration: To-

wards carbon neutrality. Renewable and Sustainable Energy Reviews,

161:112348, 2022.

[5] Matthew Lave and Jan Kleissl. Solar variability of four sites across

the state of colorado. Renewable Energy, 35(12):2867–2873, 2010.

[6] Rich H Inman, Hugo TC Pedro, and Carlos FM Coimbra. Solar

forecasting methods for renewable energy integration. Progress in

energy and combustion science, 39(6):535–576, 2013.

[7] Mazaher Karimi, H Mokhlis, Kanedra Naidu, Sohel Uddin, and

AH Abu Bakar. Photovoltaic penetration issues and impacts in distri-

229



bution network–a review. Renewable and Sustainable Energy Reviews,

53:594–605, 2016.

[8] Fan Lin, Yao Zhang, and Jianxue Wang. Recent advances in intra-

hour solar forecasting: A review of ground-based sky image methods.

International Journal of Forecasting, 2022.

[9] Yinghao Chu, Hugo TC Pedro, Lukas Nonnenmacher, Rich H Inman,

Zhouyi Liao, and Carlos FM Coimbra. A smart image-based cloud

detection system for intrahour solar irradiance forecasts. Journal of

Atmospheric and Oceanic Technology, 31(9):1995–2007, 2014.

[10] Yinghao Chu, Hugo TC Pedro, Mengying Li, and Carlos FM Coim-

bra. Real-time forecasting of solar irradiance ramps with smart image

processing. Solar Energy, 114:91–104, 2015.

[11] Quentin Paletta, Anthony Hu, Guillaume Arbod, Philippe Blanc, and

Joan Lasenby. Spin: Simplifying polar invariance for neural networks

application to vision-based irradiance forecasting. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recog-

nition, pages 5182–5191, 2022.

[12] Sadra Babaei, Chaoyue Zhao, and Lei Fan. A data-driven model of

virtual power plants in day-ahead unit commitment. IEEE Transac-

tions on Power Systems, 34(6):5125–5135, 2019.

[13] Yuri V Makarov, Clyde Loutan, Jian Ma, and Phillip De Mello. Op-

erational impacts of wind generation on california power systems.

IEEE transactions on power systems, 24(2):1039–1050, 2009.

[14] David Ganger, Junshan Zhang, and Vijay Vittal. Forecast-based

anticipatory frequency control in power systems. IEEE Transactions

on Power Systems, 33(1):1004–1012, 2017.

230



[15] Samuel R West, Daniel Rowe, Saad Sayeef, and Adam Berry. Short-

term irradiance forecasting using skycams: Motivation and develop-

ment. Solar Energy, 110:188–207, 2014.

[16] Qingyong Li, Weitao Lu, Jun Yang, and James Z Wang. Thin cloud

detection of all-sky images using markov random fields. IEEE Geo-

science and remote sensing letters, 9(3):417–421, 2011.

[17] K Stefferud, J Kleissl, and J Schoene. Solar forecasting and variability

analyses using sky camera cloud detection[online] motion vectors. In

2012 IEEE Power and Energy Society General Meeting, pages 1–6.

IEEE, 2012.

[18] Handa Yang, Ben Kurtz, Dung Nguyen, Bryan Urquhart, Chi Wai

Chow, Mohamed Ghonima, and Jan Kleissl. Solar irradiance fore-

casting using a ground-based sky imager developed at uc san diego.

Solar Energy, 103:502–524, 2014.

[19] Zhenzhou Peng, Dantong Yu, Dong Huang, John Heiser, Shinjae Yoo,

and Paul Kalb. 3d cloud detection and tracking system for solar

forecast using multiple sky imagers. Solar Energy, 118:496–519, 2015.

[20] Yinghao Chu, Mengying Li, Hugo TC Pedro, and Carlos FM Coim-

bra. A network of sky imagers for spatial solar irradiance assessment.

Renewable Energy, 187:1009–1019, 2022.

[21] Chi Wai Chow, Bryan Urquhart, Matthew Lave, Anthony

Dominguez, Jan Kleissl, Janet Shields, and Byron Washom. Intra-

hour forecasting with a total sky imager at the uc san diego solar

energy testbed. Solar Energy, 85(11):2881–2893, 2011.

[22] Samuel R West, Daniel Rowe, Saad Sayeef, and Adam Berry. Short-

231



term irradiance forecasting using skycams: Motivation and develop-

ment. Solar Energy, 110:188–207, 2014.

[23] Bijan Nouri, Pascal Kuhn, Stefan Wilbert, Christoph Prahl, Robert

Pitz-Paal, Philippe Blanc, Thomas Schmidt, Zeyad Yasser, Lour-

des Ramirez Santigosa, and Detlev Heineman. Nowcasting of dni

maps for the solar field based on voxel carving and individual 3d

cloud objects from all sky images. In AIP Conference Proceedings,

volume 2033, page 190011. AIP Publishing LLC, 2018.

[24] Guang Wang, Ben Kurtz, and Jan Kleissl. Cloud base height from

sky imager and cloud speed sensor. Solar Energy, 131:208–221, 2016.

[25] Lydie Magnone, Fabrizio Sossan, Enrica Scolari, and Mario Paolone.

Cloud motion identification algorithms based on all-sky images to

support solar irradiance forecast. In 2017 IEEE 44th Photovoltaic

Specialist Conference (PVSC), pages 1415–1420. IEEE, 2017.

[26] Ricardo Marquez and Carlos FM Coimbra. Intra-hour dni forecasting

based on cloud tracking image analysis. Solar Energy, 91:327–336,

2013.

[27] Bijan Nouri, Stefan Wilbert, Luis Segura, P Kuhn, Natalie Hanrieder,

A Kazantzidis, Thomas Schmidt, L Zarzalejo, Philipp Blanc, and

Robert Pitz-Paal. Determination of cloud transmittance for all sky

imager based solar nowcasting. Solar Energy, 181:251–263, 2019.
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Rodŕıguez-Beńıtez, and David Pozo-Vázquez. Using a multi-view

convolutional neural network to monitor solar irradiance. Neural

Computing and Applications, pages 1–13, 2021.

[85] Xinyang Zhang, Zhao Zhen, Yiqian Sun, Yagang Zhang, Hui Ren, Hui

Ma, Jian Yang, and Fei Wang. Solar irradiance prediction interval

240



estimation and deterministic forecasting model using ground-based

sky image. In 2022 IEEE/IAS 58th Industrial and Commercial Power

Systems Technical Conference (I&CPS), pages 1–8. IEEE, 2022.

[86] Amirhossein Dolatabadi, Hussein Hassan Abdeltawab, and Yasser

Abdel-Rady I Mohamed. Deep reinforcement learning-based self-

scheduling strategy for a caes-pv system using accurate sky images-

based forecasting. IEEE Transactions on Power Systems, 2022.

[87] Prajowal Manandhar, Marouane Temimi, and Zeyar Aung. Short-

term solar radiation forecast using total sky imager via transfer learn-

ing. Energy Reports, 9:819–828, 2023.
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Appendix A

Examining the Impact of

Dataset on Model Performance

Figure A.1: Sampling rate validation experiments on Folsom dataset with
ViT-E model. The training set was used to train five different models with
sampling rates of 0.05, 0.1, 0.15, 0.25, 0.5, 0.75 and 1.0. The models were
then validated under the same validation set. The model loss tends to
flatten out above 0.25 sample ratio.
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Figure A.2: Monthly CSI distribution of raw data on Folsom dataset, compared to Clear sky filtered data and 25% randomly sampled
filtered data.
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Appendix B

Model Algorithm and

Architecture

Algorithm 1 Late Feature-level fusion

1: for input [xnumerical,ximage] in (Xnumerical,Ximage) do
2: xnumerical feature = MLP(xnumerical)
3: if Image feature extractor is CNN (model CNN-L(G)) then
4: ximage feature = MLP(ximage)
5: else if Image feature extractor is ViT (model ViT-L(G)) then
6: ximage feature = ViT(ximage)
7: end if
8: xfusion feature = concat(ximage feature,xnumerical feature)
9: if Gated model (CNN-LG or ViT-LG) then

10: fgated factor = MLP(xfusion feature, activation function = tanh)
11: xgated fusion feature = xfusion feature × fgated factor

12: x = MLP(xgated fusion feature)
13: else if non-Gated model (CNN-L or ViT-L) then
14: x = MLP(ximage feature)
15: end if
16: return Output x
17: end for
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Algorithm 2 Early Feature-level fusion

1: for input [xnumerical,ximage] in (Xnumerical,Ximage) do
2:

3: Patching images and Linear projection from ximage to xp (Eq 4.8)
4: Concatenating xp with an additional learnable token xclass (Eq 4.8)
5: Superimposing xp with a learnable position matrix Epos become

zi0(Eq 4.8)
6:

7: Linear projection numerical input from xnumerical to MLP(yM) (Eq
4.9)

8: Concatenating MLP(yM) with an additional learnable token yclass

(Eq 4.9)
9: Superimposing MLP(yM) with a learnable sequence matrix Eseq be-

come zn0(Eq 4.9)
10:

11: Superimposing zi0, zn0 with learnable modality type matrix ztypei ,
ztypen , respectively (Eq 4.10)

12:

13: xfusion feature = ViT([zi0, zn0]) (Eq 4.11 4.12 4.13)
14: x = MLP([xclass, yclass])
15: return Output x
16: end for

Table B.1: Hyperparameters of the SGD optimizer for training models

Hyperparameters CNN-L CNN-LG ViT-L ViT-LG ViT-E
Learning rate 0.01 0.01 0.0008 0.0008 0.0008
Optimiser SGD SGD SGD SGD SGD
Optimiser momentum 0.9 0.9 0.9 0.9 0.9
Loss MSE MSE MSE MSE MSE
Weight decay 0.0001 0.0001 0.0001 0.0001 0.0001
Batch size 64 64 8 8 8
Training epochs 80 80 80 80 80
Warm up percentage 25% 25% 0 0 0
Learning rate decay Cosine Cosine Cosine Cosine Cosine
Early stop True True True True True
Early stop tolerance 20 20 20 20 20
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Table B.2: The details of ViT-E model

Block Layer Resolution Channels
Image Inputs - 128 × 128 × 3 1
Image Patch Embedding Conv 8 × 8 128 × 128 × 3 → 8 × 8 × 3 1 → 256

Image Class Token
Transfer Embedding Projection 8 × 8 × 3 → 192 256 → 256
Class Token Concat 192 256 → 257

Position Embedding Position Embedding 192 257
Numerical Inputs - 14 (3 + 3 + 3 + 2 + 3) 1

Numerical Class Token
Numerical Projection (MLP) 14 → 192 5
Class Token Concat 192 5 → 6

Sequence Embedding Sequence Embedding 192 6
Concatenation Concat 192 263 (257 + 6)

Attention Block × 12

LayerNorm 192 263
Multi-Head Attention × 12 192 263
Add (residual connection) 192 263
LayerNorm 192 263
Multi-Head Attention × 12 192 263
Add (residual connection) 192 263

Layer Normalization LayerNorm 192 263

Regression Head

Extract Class Token 384 1
MLP 768 1
MLP 512 1
MLP 64 1
MLP 1 1

Table B.3: The details of ViT-LG model.

Block Layer Resolution Channels
Image Inputs - 128 × 128 × 3 1
Image Patch Embedding Conv8 × 8 128 × 128 × 3 → 8 × 8 × 3 1 → 256

Image Class Token
Transfer Embedding Projection 8 × 8 × 3 256 → 256
Class Token Concat 8 × 8 × 3 256 → 257

Position Embedding Position Embedding 8 × 8 × 3 257

Image Attention Block × 12

LayerNorm 192 257
Multi-Head Attention × 12 192 257
Add (residual connection) 192 257
LayerNorm 192 257
Multi-Head Attention × 12 192 257
Add (residual connection) 192 257

Image Feature Vectorisation Extract Class Token 192 1
MLP 768 1
MLP 64 1

Numerical Inputs - 14 (3 + 3 + 3 + 2 + 3) 1

Numerical Feature Vectorisation
MLP 14 → 16 1
MLP 16 1

Concatenation Concat 80 (64 + 16) 1

Regression Head

MLP 80 1
Gate MLP 80 1
Gate Multiply 80 1
MLP 64 1
MLP 16 1
MLP 1 1
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Table B.4: The details of ViT-L model.

Block Layer Resolution Channels
Image Inputs - 128 × 128 × 3 1
Image Patch Embedding Conv 8 × 8 128 × 128 × 3 → 8 × 8 × 3 1 → 256

Image Class Token
Transfer Embedding Projection 8 × 8 × 3 256 → 256
Class Token Concat 8 × 8 × 3 256 → 257

Position Embedding Position Embedding 8 × 8 × 3 257

Image Attention Block × 12

LayerNorm 192 257
Multi-Head Attention × 12 192 257
Add (residual connection) 192 257
LayerNorm 192 257
Multi-Head Attention × 12 192 257
Add(residual connection) 192 257

Image Feature Vectorization Extract Class Token 192 1
MLP 768 1
MLP 64 1

Numerical Inputs - 14 (3 + 3 + 3 + 2 + 3) 1

Numerical Feature Vectorization
MLP 14 → 16 1
MLP 16 1

Concatenation Concat 80 (64 + 16) 1

Regression Head

MLP 80 1
MLP 64 1
MLP 16 1
MLP 1 1

Table B.5: The details of CNN-LG model.

Block Layer Resolution Channels
Image Inputs - 128 × 128 × 3 1

ResNet Block Conv 1
Conv 7 × 7 128 × 128 × 3 → 64 × 64 × 3 1 → 64
Max Pooling 3 × 3 64 × 64 × 3 → 32 × 32 × 3 64

ResNet Block Conv 2 × 2

Conv 3 × 3 32 × 32 × 3 64
BatchNormal 32 × 32 × 3 64
Conv 3 × 3 32 × 32 × 3 64
BatchNormal 32 × 32 × 3 64
Add (residual connection) 32 × 32 × 3 64

ResNet Block Conv 3 × 2

Conv 3 × 3 32 × 32 × 3 → 16 × 16 × 3 64 → 128
BatchNormal 16 × 16 × 3 128
Conv 3 × 3 16 × 16 × 3 128
BatchNormal 16 × 16 × 3 128
Add(residual connection) 16 × 16 × 3 128

ResNet Block Conv 4 × 2

Conv 3 × 3 16 × 16 × 3 → 8 × 8 × 3 128 → 256
BatchNormal 8 × 8 × 3 256
Conv 3 × 3 8 × 8 × 3 256
BatchNormal 8 × 8 × 3 256
Add (residual connection) 8 × 8 × 3 256

ResNet Block Conv 5 × 2

Conv 3 × 3 8 × 8 × 3 → 4 × 4 × 3 256 → 512
BatchNormal 4 × 4 × 3 512
Conv 3 × 3 4 × 4 × 3 512
BatchNormal 4 × 4 × 3 512
Add(residual connection) 4 × 4 × 3 512

Image Feature Transformation Global Average Pooling 512 1
MLP 64 1

Numerical Inputs - 14 (3 + 3 + 3 + 2 + 3) 1

Numerical Feature Transformation
MLP 14 → 16 1
MLP 16 1

Concatenation Concat 80 (64 + 16) 1

Regression Head

MLP 80 1
Gate MLP 80 1
Gate Multiply 80 1
MLP 64 1
MLP 16 1
MLP 1 1
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Table B.6: The details of CNN-L model.

Block Layer Resolution Channels
Image Inputs - 128 × 128 × 3 1

ResNet Block Conv 1
Conv 7 × 7 128 × 128 × 3 → 64 × 64 × 3 1 → 64
Max Pooling 3 × 3 64 × 64 × 3 → 32 × 32 × 3 64

ResNet Block Conv 2 × 2

Conv 3 × 3 32 × 32 × 3 64
BatchNormal 32 × 32 × 3 64
Conv 3 × 3 32 × 32 × 3 64
BatchNormal 32 × 32 × 3 64
Add (residual connection) 32 × 32 × 3 64

ResNet Block Conv 3 × 2

Conv 3 × 3 32 × 32 × 3 → 16 × 16 × 3 64 → 128
BatchNormal 16 × 16 × 3 128
Conv 3 × 3 16 × 16 × 3 128
BatchNormal 16 × 16 × 3 128
Add (residual connection) 16 × 16 × 3 128

ResNet Block Conv 4 × 2

Conv 3 × 3 16 × 16 × 3 → 8 × 8 × 3 128 → 256
BatchNormal 8 × 8 × 3 256
Conv 3 × 3 8 × 8 × 3 256
BatchNormal 8 × 8 × 3 256
Add (residual connection) 8 × 8 × 3 256

ResNet Block Conv 5 × 2

Conv 3 × 3 8 × 8 × 3 → 4 × 4 × 3 256 → 512
BatchNormal 4 × 4 × 3 512
Conv 3 × 3 4 × 4 × 3 512
BatchNormal 4 × 4 × 3 512
Add (residual connection) 4 × 4 × 3 512

Image Feature Transformation Global Average Pooling 512 1
MLP 64 1

Numerical Inputs - 14 (3 + 3 + 3 + 2 + 3) 1

Numerical Feature Transformation
MLP 14 → 16 1
MLP 16 1

Concatenation Concat 80 (64 + 16) 1

Regression Head

MLP 80 1
MLP 64 1
MLP 16 1
MLP 1 1
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