
 

 

 

UNIVERSITY OF NOTTINGHAM 

 

DOCTORAL THESIS 

 

Determining uncertainty in the 

functional quantities of fringe 

projection 

 

Author: 

George Gayton 

 Supervisors: 

Mohammed Isa 

Richard Leach 

 

 

 

 

 

 

 

 

 

 

Submitted to the University of Nottingham for the degree of Doctor of Philosophy 

 

March 2022 

 





iii 

 

 

 

Determining uncertainty in the 

functional quantities of fringe 

projection 

 

George Gayton 

 

 

 

 

What makes a man turn neutral? Lust for gold? Power? Or were you just born with 

a heart full of neutrality? 

-Zapp Brannigan, decorated hero 

 

 

 

 

 

 



iv 

 



v 

 

Abstract 

Fringe projection systems can acquire a point-cloud of more than a million 

points in minutes while not needing to ever physically touch the measurement 

surface and can be assembled using relatively inexpensive off-the-shelf 

components. Fringe projection system can conduct measurements faster than 

their tactile counterparts and typically require less training to do so. 

The disadvantage of using a fringe projection system is the measurements are 

less accurate than alternative tactile methods – and typical methods to obtain 

an uncertainty evaluation within fringe projection require a tactile system as a 

comparator. Anterior to any measurement, fringe projection systems undergo 

a calibration, whereby the set of functional quantities (defined in this thesis as 

the system parameters) are found that define the measurement (the point-

cloud) from the indication (a set of images). The accuracy of the estimated 

parameters will define the accuracy of any measurements made by the system. 

The calibration process does not evaluate any uncertainty of the estimated 

system parameters – the accuracy of the estimation of the parameters remains 

unknown, as is their exact effect on the measurement result.  

In this thesis, an investigation into the using the system parameters to evaluate 

the uncertainty of fringe projection measurements is made. Firstly, a method to 

localise the centre of ellipses in camera images with an uncertainty is given. 

This uncertainty is used to derive the uncertainty in the estimated system 

parameters. The uncertainty in the system parameters is tested by using the 

system parameters to measure known artefacts, a flatness artefact and two 

sphere-based artefacts, where the propagated uncertainty is tested against the 

measurement error. The accuracy of the system parameters are tested by 

comparing the measurement error of the measurements with measurements 

made on a commercial system, the GOM ATOS Core 300. In addition, an 

exhaustive study is undertaken on the calibration, including applying 

curvature, specificity and parameter stability tests on the non-linear regression 

used within calibration. 

The sphere-based measurements were found to not be robust enough against 

measurement noise in fringe projection to be able to provide information on 

errors caused by the system parameters. This thesis raises questions as to the 
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appropriateness of using sphere-based measurements to represent the 

performance of a fringe projection system. The flatness measurements made 

using the estimated system parameters achieved an accuracy of approximately 

30 μm across a 300 mm × 140 mm flatness artefact, which is similar to 

measurements made by the commercial system. However, the estimated 

uncertainty was unable to explain all measurement discrepancy between the 

fringe projection measurements and the tactile measurements. The result 

specificity test indicated poor specificity of the mathematical model of fringe 

projection, namely the camera pinhole model with Brown-Conrady distortion. 

It is concluded that the level of accuracy of the mathematical model has become 

a limiting factor in the accuracy of fringe projection measurements, instead of 

the accuracy of the inputs to the calibration. Therefore, the uncertainty of the 

system parameters cannot be used to evaluate an uncertainty of a measurement 

made using a fringe projection system. 
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 – Introduction 

This chapter introduces this thesis, including its objectives and novel 

contributions, and will provide context for proceeding chapters. First, Section 

1.1 presents fringe projection systems and establishes the service that they 

perform. A brief overview of the basic working principles of fringe projection, 

as well as the advantages fringe projection offers over traditional measurement 

techniques is introduced in Section 1.2. Section 1.3 outlines the specific issue 

that is present in current fringe projection systems that this thesis will 

contribute towards solving. Section 1.4 will provide a summary of the objective 

of this thesis. Lastly Section 1.5 will detail limitations of this thesis that have 

been chosen to limit the scope. 

 Coordinate metrology 

The complexity of manufactured goods has been increasing since the first 

Industrial Revolution, and continues to increase to this day with the “fourth 

Industrial Revolution” – smart automation and additive manufacturing [2]. As 

manufacturing processes increase in complexity, so too do metrological 

instruments designed to control the manufacturing processes [3]. 

When considering the manufacture of any part, given that all dimensions must 

be to specification, some aspects of dimension are more important than others. 

Geometric dimensioning and tolerancing (GD&T) enables control over the 

conformance of the part. GD&T encapsulates a broad range of possible 

dimensions - the full list is defined in the International Organisation for 

Standardisation (ISO) standard 1101 [4]. Form is one aspect of GD&T, and 

describes an object’s shape, e.g. cylindricity, parallelism, flatness [5]. 

Coordinate measurement systems (CMSs) were developed in the 1970s, by 

manufacturing company Ferranti, to speed up inspection times which were 

lagging behind manufacturing times [6]. CMSs are versatile measurement tools 

for measuring an object’s dimension and form [7]. CMSs provide data on the 

object’s surface as a discrete set of coordinates in three-dimensional (3D) space, 

hereby called the point-cloud. The point-cloud can be analysed to give 

information on the form of the object being measured [8, 9]. 
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CMSs can assume many different configurations but can be roughly 

categorised into two distinct types - tactile CMSs and optical CMSs. Tactile 

CMSs typically consist of a probe mounted onto a gantry system [7] (although 

this is not always the case [10]), with the probe tip registering each point within 

the point-cloud by physically touching the surface of the object. The gantry 

system simultaneously moves the probe tip and tracks its location. When the 

probe registers a pre-specified deflection, caused by the normal force of the 

object, the coordinate of the probe tip is recorded. Tactile CMSs are highly 

specialised, expensive systems that, depending on the size of the object being 

measured and the desired point-cloud density, can take many hours to acquire 

an accurate measurement. 

 Brief overview of fringe projection 

Optical CMSs, instead of relying on the physical deflection of a probe, use the 

reflection of light to probe a surface. Fringe projection systems are a type of 

optical CMS, and, unlike tactile CMSs, fringe projection systems can be 

assembled using relatively inexpensive off-the-shelf components. Where a 

tactile CMS typically takes approximately thirty minutes to acquire roughly 

thousands of points, fringe projection systems take only minutes to acquire 

more than a million points over a similar measurement area. While tactile CMSs 

must physically touch a part to measure it, fringe projection systems do not.  

Fringe projection system are well-suited for the measurement of simple and 

complicated forms [11-13]. A fringe projection system can measure 

manufactured parts autonomously in real-time [14-16] or be used to augment 

an operators vision with augmented reality [17]. Fringe projection systems are 

also well-suited for in-situ measurements on the production line, avoiding the 

need to relocate parts elsewhere for inspection [18]. The detection of early build 

faults busing fringe projection saves build material and time [19]. Fringe 

projection systems are one of the few measurement systems capable of 

providing in-situ topography measurements of the additive manufacturing 

process [20-22]. An example of a fringe projection measurement is shown in 

Figure 1.1. 
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Figure 1.1 Example of a fringe projection measurement. A 

measurement of a skull from the Zoology collection, School of Life 

Sciences, University of Nottingham, Thomas Hartman. Each dot is a 

single point within the point-cloud. 

Fringe projection systems belong to a subset of optical CMS known as 

triangulation-based optical CMS – similar in operation to laser line scanners 

and photogrammetry [23]. A detailed overview of the measurement process is 

given in Chapter 2, a summary is given here. Triangulation-based optical CMS 

measure the surface of an object by recording the interaction of light with the 

object’s surface, and using the principles of triangulation to record 3D points in 

the point-cloud. To complete a measurement, a projector first projects a pattern 

onto a measurement surface. A camera, offset from the projector, records the 

image of the projected pattern, which appears distorted due to surface 

geometry. The camera image is then decoded, to find corresponding two-

dimensional (2D) locations between the camera and projector images, allowing 

3D points to be triangulated. 

 Uncertainty evaluations in fringe projection 

Measurement uncertainty is the quantification of the statistical dispersion of 

measurement values that can reasonably be attributed to the true value being 

measured [1]. The accepted method of evaluating uncertainty is detailed in the 

Guide to Uncertainty in Metrology (GUM) [24]. Measurement uncertainty 

allows the meaningful comparison of two measurements of the same object. 

Without uncertainty, the disparity in measurements cannot be accounted for, 

and it will remain unknown as to how to treat the disparity in measurements. 

A fringe projection system goes through what is often referred to as a 

calibration, whereby a set of values (defined in this thesis as the system 

parameters) are found that define the measurement value (the point-cloud) 
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from the indication (a set of images). Typically, the calibration procedure 

provides an uncertainty associated with each value found, but in fringe 

projection this is typically not the case. According to The International 

Vocabulary of Metrology [1], this would therefore not qualify as a calibration. 

To remain congruent with current literature on fringe projection, the calibration 

procedure will remain known as calibration in this thesis. 

Typically, to provide an uncertainty with a fringe projection measurement, a 

study must be completed by comparing a fringe projection measurement of an 

artefact that has been independently measured using a calibrated instrument. 

This must be completed for every unique measurement and can be resource 

intensive. It would be useful to only have to complete this process once during 

a set time period – like a tactile CMS. The series of standards ISO 15530 [25] 

details the determination of uncertainty in tactile CMS. Tactile CMS share some 

similarities to triangulation-based optical CMS, in that they both fulfil a similar 

measurement role. In 0, a comprehensive review of influence quantities in 

fringe projection is given, showing why fringe projection measurements are 

sensitive to surface characteristics, such as optical properties and topography, 

making ISO 15530 unsuitable for application to triangulation-based optical 

CMS. 

In Chapter 3 and Chapter 4, a review of the current literature on methods of 

evaluating uncertainty in fringe projection measurements is given. Chapter 3 

concludes that the evaluation of uncertainty in fringe projection is problematic 

even when ignoring the measurement surface in the evaluation of uncertainty. 

The light-surface interaction is a complex process, so producing a completely 

calibrated measurement from a fringe projection system is outside the scope of 

this thesis. Not all fringe projection measurements are highly sensitive to the 

measured surface; and for this category of measurements, it would be beneficial 

to have an uncertainty value derived from the system parameters (ignoring the 

surface problem).  

 Thesis objectives 

The objective of this thesis is to provide an uncertainty on a fringe projection 

measurement derived only from the system parameters. The uncertainty on 

these parameters must be obtained during the calibration. The benefit of this 

approach is this will require no extra work from the operator of the system. The 

completion of this objective will require: 

1. A novel method to obtain uncertainty from the reference measurement 

procedure – given in Chapter 6. A novel procedure is given that enables 
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the estimation of the centre of an ellipse along with an uncertainty – 

which is a key input to the calibration. 

2. A novel method to obtain an uncertainty during the calibration of a 

fringe projection system – given in Chapter 7. It is popular to estimate 

the system parameters using a non-linear regression – which can 

provide an uncertainty estimate. Obtaining the uncertainty this way is a 

novel application within fringe projection. 

a. A method to quantify if the working conditions of the non-linear 

regression have not been violated – given in Chapter 7. The use 

of the tests used in this thesis is novel. The parameter stability test 

derived in this thesis is a novel test used to detect thermal 

instabilities during the calibration procedure. 

3. A method to propagate the uncertainty in the system parameters to a 

measurement made using a fringe projection system – given in Chapter 

8, using a novel triangulation method given in Chapter 2. The method 

used to propagate uncertainty from the system parameters in this thesis 

is necessary but is computationally expensive. The novel triangulation 

method given in Chapter 2 greatly reduces the computation time of the 

uncertainty propagation. 

4. The validation of the evaluated uncertainties of the system parameters – 

given in Chapter 8. 

 Thesis limitations 

To limit the scope of this thesis the following limits are given to the definition 

of fringe projection: 

1. Fringe projection is defined as one camera and one projector only. 

2. Fringe projection techniques are limited to full-field triangulation 

methods only. 

3. Correspondence algorithms are limited to temporal correspondence 

algorithms only. 

4. Computing power is limited to off-the-shelf components only. 

5. Static fringe projection systems only are considered (i.e., static systems 

measuring static targets). 

 





 

 – Measurement theory of 

fringe projection 

This chapter outlines the basic theory required to understand a fringe projection 

system. The measurement process is described in detail, focussing on the 

implementations of methods that are specific to this thesis. An overview of the 

complete measurement process is given in Section 2.1. Section 2.2 gives a description 

of the experimental set-up used in this thesis. 

Fringe projection systems are known as triangulation-based optical CMS – because 

the measurement model is based on triangulation. Triangulation is defined as the 

process of determining the location of a point by forming triangles from known 

positions [26]. In fringe projection, a camera and projector provide two angles within 

a triangle, system calibration provides a length, and the measurement surface is found 

as the final unknown corner of a triangle. The method of triangulation within the 

context of fringe projection is described in Section 2.3. Additionally, Section 2.3.2 

defines a novel triangulation method that can be completed faster than comparable 

methods. 

For a camera and a projector to provide an “angle” within the triangle, the location of 

the same point on the measurement surface must be localised within the camera and 

projector image. In this thesis, the act of correspondence refers to the decoding method 

that locates the two-dimensional (2D) sub-pixel location (image points) in both the 

camera and projector images that originate from the same point in three-dimensional 

(3D) space. The method of correspondence is described in Section 2.4. 

For completeness, Section 2.5 defines the extension of the methods described in 

chapter to an over-determined system, i.e., where there are multiple cameras and 

projectors. Expanding on the model defined in Section 2.3, Section 2.6 defines the way 

in which uncertainties in fringe projection measurement are represented in this thesis. 

 Measurement process overview 

This section will provide context on the following sections of this chapter by defining 

the entire measurement procedure. Prior to a measurement, a calibration step 

provides values that are used in the to generate measurements. Images are captured 

during the imaging stage. These images are then decoded in the correspondence 
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decoding. Camera and projector images typically contain some minor optical 

distortions, and so distortion correction is performed on the image points during the 

distortion correction stage (although distortion correction can instead be performed 

earlier, on the image itself, and projector distortion specifically can be corrected pre-

imaging stage). Finally, each 3D point is realised in the triangulation stage using the 

quantities that define the fringe projection system. The entire measurement pipeline 

is represented graphically in Figure 2.1. 

 

Figure 2.1 The flow of data in fringe projection to define a measurement 

value, from image acquisition to the 3D point-cloud output. 

There are many optional filtering techniques that can be applied at various stages of 

the measurement process. Prior to the correspondence decoding stage, the raw camera 

images can be filtered of unnecessary pixels or saturated pixels. During the 

correspondence stage, a quality metric can be used to remove areas of an image where 

the correspondence algorithm has performed poorly [27]. In a final step, the output 

point-cloud itself can be filtered to remove various imperfections [28]. A review of 

fringe projection techniques can be found in Chen, Xu [29], Feng, Zuo [30] and Xu and 

Zhang [31]. Multiple cameras/projectors can be used in many different combinations 

[32]; this thesis will be limited to single camera-projector fringe projection systems to 

limit the scope. 
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 Experimental set-up 

This section will detail the experimental set-up used to conduct tests, calibrations, and 

measurements. The fringe projection components are mounted onto a static structure 

made of aluminium hex-bars, that are mounted to an optical mat. The fringe projection 

system sits in a semi-clean room with temperature kept between 20.5℃ and 21.5℃. It 

is assumed that the surrounding air is constant in temperature and the particulate 

content and humidity is negligible. The camera is a Prosilica GT5120 with an attached 

Soligor optic. The resolution of the camera is 5120 × 5120 and the focal length is 

~40 mm. The projector is a Texas Instruments 4500 Lightcrafter with a resolution of 

912 × 1140 and a focal length of ~20 mm. The projector and camera are synchronised 

using the 59 Hz signal from the High-Definition Multimedia Interface (HDMI). The 

working volume of the fringe projection system is approximately 300 mm ×

200 mm × 200 mm. 

This thesis will establish some common coordinate systems. The two axes of 

images are given by (𝑢, 𝑣), with any non-italic subscripts detailing what 

component the coordinates belong to, e.g., (𝑢c, 𝑣c) are the image coordinates 

for the camera. Global coordinates are given by (𝑥, 𝑦, 𝑧). The global 

coordinate system is aligned with the camera coordinate system, with the 

origin of the global coordinate system centered onto the camera coordinate 

system. The configuration of the fringe projection system as well as the 

coordinate systems used in this thesis are shown in  

Figure 2.2. 
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Figure 2.2 The hardware along with the coordinate systems used in this 

thesis.  Camera coordinates are in yellow, projector coordinates are in orange 

and global coordinates are in green. 

 Measurement model 

In this section, the fundamental mathematical model that defines fringe projection 

measurements from their indication, the triangulation model, is defined. In fringe 

projection, both cameras and projectors are described by the pinhole camera model, 

which will be defined in Section 2.3.1. The fringe projection measurement model is 

given in Section 2.3.2. 

 Pinhole camera model 

The pinhole camera model describes the mathematical relationship between a 3D 

point and its corresponding 2D point projected onto the image plane. The pinhole 

model is given by 

 𝑠𝒖ሬሬԦ = 𝑲൫𝑹𝒙ሬሬԦ + 𝒕Ԧ൯, (2.1) 

where 𝑹 and 𝒕Ԧ describe rotations and translations of the point 𝒙ሬሬԦ from an arbitrary 

global coordinate system to the camera’s own coordinate system. The matrix 𝑲 is an 

upper triangular matrix that describes the scaling, skewing and translation operation 

of the camera on the point 𝒙ሬሬԦ. The scalar 𝑠 is a scaling term, where every object has an 
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ambiguity of scale arising from mapping a 3D object onto a 2D plane. The 

transformations 𝑲 and 𝑹 and vector 𝒕Ԧ together define a projective transformation of 

the 3D point 𝒙ሬሬԦ to the 2D image point 𝒖ሬሬԦ. A graphical representation of the pinhole 

camera model (eq. (2.1)) is given in Figure 2.3. In the pinhole model, it is common to 

show the projective plane as inverted and positions opposite the pinhole, as is 

physically realistic in pinhole cameras. In this thesis, the convention will be to show 

the image as non-inverted and positioned in front of the pinhole. 

 

Figure 2.3 The pinhole camera model describing the projection of 3D points 

𝒙ሬሬԦ, first to a projective plane, and then to the camera image. 

The inverse of eq. (2.1) from an image point 𝒖ሬሬԦ to a global point 𝒙ሬሬԦ is given by  

 𝒙ሬሬԦ = 𝑠𝑹−1𝑲−1𝒖ሬሬԦ − 𝑹−1𝒕Ԧ, (2.2) 

or alternatively in the form 

 𝒙ሬሬԦ = 𝒕Ԧ′ + 𝑠𝒖ሬሬԦ′. (2.3) 

Given the parameters 𝑲, 𝑹 and 𝒕Ԧ are known, a single camera can define a global point 

𝒙ሬሬԦ to somewhere along a line in 3D space, given by the vector 𝒖ሬሬԦ′. This concept is shown 

in Figure 2.4, where the 3D object exists somewhere along the vectors defined by Eq. 

(2.3). The pinhole camera can define only in which direction global point 𝒙ሬሬԦ exists, and 

not the depth along this direction. In other words, a pinhole camera can be considered 

as a direction sensor [33].  
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Figure 2.4 An arbitrarily rotated and translated camera defined as a 

direction sensor. 

With two direction sensors, along with the known transformation between them, the 

original point 𝒙ሬሬԦ can be triangulated. Fringe projection systems triangulate 3D points 

by using both the camera and the projector as direction sensors, and therefore are 

known as triangulation-based optical CMSs. 

 Triangulation 

This section will detail how to solve for the global position 𝒙ሬሬԦ using two direction 

sensors. This section will include a novel solution to the fringe projection 

measurement model that is simple to understand as well as faster than alternative 

solutions. In eq. (2.2) the parameter 𝑲 is known and setting 𝑹 = 𝕀3 and 𝒕Ԧ = 𝟎ሬሬԦ without 

loss of generality, only the scalar 𝑠 remains to be found. Consequently, only a single 

coordinate from a second direction sensor is required to fully realise the 3D point 𝒙ሬሬԦ, 

provided the second direction sensor is sufficiently rotated and translated from the 

first. In fringe projection, a projector is modelled as a camera, so the camera and 

projector are both defined by two pinhole models given by 

 𝑠c𝒖ሬሬԦc = 𝑲c൫𝑹c𝒙ሬሬԦ + 𝒕Ԧc൯ (2.4) 

 𝑠p𝒖ሬሬԦp = 𝑲p൫𝑹p𝒙ሬሬԦ + 𝒕Ԧp൯, (2.5) 
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where the subscripts c an p distinguishes if the variable defines the camera or the 

projector. Defining the camera as a direction sensor gives 

 𝒙ሬሬԦ = 𝑠c𝑹c
−1𝑲c

−1𝒖ሬሬԦc − 𝑹c
−1𝒕Ԧc. (2.6) 

The projection of a line in the projector’s image space is shown in Figure 2.5. 

 

Figure 2.5 A projector in a fringe projection system projecting an image 

consisting of a single blue line.  

The projection of a line in image space can be described as a plane in the global 3D 

coordinate system 

 𝒏ሬሬԦ ⋅ ൫𝒙ሬሬԦ + 𝑹p
−1𝒕Ԧp൯ = 0, (2.7) 

where 𝒏ሬሬԦ describes the plane normal of ‖𝒏ሬሬԦ‖ = 1. The vector given by −𝑹p
−1𝒕Ԧp gives the 

origin of the projector coordinate system in a global coordinate system. Combining 

eq. (2.6) and eq. (2.7) gives 

 ൫−𝑹c
−1𝒕Ԧc + 𝑠c𝑹c

−1𝑲c
−1𝒖ሬሬԦc + 𝑹p

−1𝒕Ԧp൯ ⋅ 𝒏ሬሬԦ = 0, (2.8) 

and the unknown scalar 𝑠c can be found using 

 
𝑠c =

൫𝑹c
−1𝒕Ԧc − 𝑹p

−1𝒕Ԧp൯ ⋅ 𝒏ሬሬԦ

𝑹c
−1𝑲c

−1𝒖ሬሬԦc ⋅ 𝒏ሬሬԦ
, (2.9) 
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with the plane normal 𝒏ሬሬԦ being a function of projector image coordinates. The plane 

normal 𝒏ሬሬԦ is found using the cross-product of two vectors that exist on that plane. 

Defining the projector as a direction sensor,  

 𝒙ሬሬԦ = −𝑹p
−1𝒕Ԧp + 𝑠p𝑹p

−1𝑲p
−1𝒖ሬሬԦp, (2.10) 

and defining the two vectors on the plane to be 𝒖ሬሬԦp and 𝒖ሬሬԦp + 𝜹ሬሬԦ, where 𝜹ሬሬԦ is some vector 

that lies within the plane. Without loss of generality setting 𝑠p = 1, the plane normal 

is given by 

 𝒏ሬሬԦ = 𝑹p
−1𝑲p

−1𝒖ሬሬԦp × 𝑹p
−1𝑲p

−1൫𝒖ሬሬԦp + 𝜹ሬሬԦ൯, (2.11) 

which is simplified to 

 𝒏ሬሬԦ = 𝑹p
−1𝑲p

−1𝒖ሬሬԦp × 𝑹p
−1𝑲p

−1𝜹ሬሬԦ. (2.12) 

Under matrix transformations 𝑹p
−1𝑲p

−1, the cross product is simplified to 

 𝒏ሬሬԦ = 𝑹p
−1 det൫𝑲p

−1൯𝑲p
T ൫𝒖ሬሬԦp × 𝜹ሬሬԦ൯. (2.13) 

The cross product 𝒖ሬሬԦp × 𝜹ሬሬԦ can instead be represented as a linear mapping 𝑨𝒖ሬሬԦp, where 

the linear encoding transform 𝑨 defined explicitly by 𝜹ሬሬԦ, the vector parallel to the 

projected plane. For example, if the projected plane was projected along the x-axis, 

𝜹ሬሬԦ = [1 0 0]T, then 

 
𝑨𝑥 = ൥

0 0 0
0 0 1
0 −1 0

൩. (2.14) 

If instead, the projected plane was along the y-axis, 𝜹ሬሬԦ = [0 1 0]T, 

 
𝑨𝒚 = ൥

0 0 −1
0 0 0
1 0 0

൩, (2.15) 

where subscripts have been used to differentiate the two transforms. The projected 

plane can be defined for any arbitrary direction. The final form for the plane normal 

is 

 𝒏ሬሬԦ = 𝑹p
−1 det൫𝑲p

−1൯𝑲p
T 𝑨𝒖ሬሬԦp. (2.16) 

Substituting eq. (2.16) into eq. (2.9) gives the final form to solve for 𝑠c 

 
𝑠c =

൫𝑹c
−1𝒕Ԧc − 𝑹p

−1𝒕Ԧp൯ ⋅ ൫𝑹p
−1𝑲p

T𝑨𝒖ሬሬԦp൯

(𝑹c
−1𝑲c

−1𝒖ሬሬԦc) ⋅ ൫𝑹p
−1𝑲p

T𝑨𝒖ሬሬԦp൯
. (2.17) 
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Setting the global coordinate system to be aligned with the camera for convenience, 

𝑹c = 𝕀3 and 𝒕Ԧc = 𝟎ሬሬԦ gives 

 
𝑠c =

൫−𝑹p
−1𝒕Ԧp൯ ⋅ ൫𝑹p

−1𝑲p
T𝑨𝒖ሬሬԦp൯

(𝑲c
−1𝒖ሬሬԦc) ⋅ ൫𝑹p

−1𝑲p
T𝑨𝒖ሬሬԦp൯

. (2.18)  

Note, this is a novel approach to fringe projection triangulation compared to 

alternative methods [34, 35]. Eq. (2.18) solves for the unknown scale, 𝑠c, allowing the 

full triangulation of a 3D point from the camera. The function inputs include the 

camera and projector 2D image coordinates, {𝒖ሬሬԦc, 𝒖ሬሬԦp}, as well as a series of constants 

{𝑲c, 𝑲p, 𝑹p, 𝒕Ԧp}. The constants {𝑲c, 𝑲p, 𝑹p, 𝒕Ԧp} are the system’s quantity values that 

define the relation between 2D image coordinates {𝒖ሬሬԦc, 𝒖ሬሬԦp} to the final 3D point 𝒙ሬሬԦ, and 

will hereby be called the system parameters, and will be denoted using a single vector 

holding the component values of {𝑲c, 𝑲p, 𝑹p, 𝒕Ԧp}. For completeness, the full 

triangulation function is given as 

 
𝑓Δ൫𝒖ሬሬԦc, 𝒖ሬሬԦp, 𝜽ሬሬԦ൯ =

൫𝑹p
−1𝒕Ԧp൯ ⋅ ൫𝑹p

−1𝑲p
T𝑨𝒖ሬሬԦp൯

(𝑲c
−1𝒖ሬሬԦc) ⋅ ൫𝑹p

−1𝑲p
T𝑨𝒖ሬሬԦp൯

𝑲c
−1𝒖ሬሬԦc. 

 
(2.19)  

The assumption made here, is that both the camera and projector are accurately 

described by the pinhole camera model and the projected line from the projector is 

infinitely thin. However, both the camera and the projector are subject to optical 

distortions (see Section 2.3.3) and resolution limitation of the optics (a discussion is 

given in Section 2.3 and Section 3.1).  

Alternative methods exist that range in simplicity, accuracy, and computational 

speed. A comparable method is Zhang’s method [34], with both methods sharing the 

same assumptions. The method presented here, however, is faster and more memory-

efficient compared to Zhang’s method. The eq. (2.18) can be simplified to a single 

rational equation to allow rapid triangulation 

 
𝑠c =

𝑎𝜂 + 𝑏

(𝑐 + 𝑑𝑢c + 𝑒𝑣c)𝜂 + 𝑓 + 𝑔𝑢c + ℎ𝑣c
, (2.20) 

where the encoding projector coordinates have been replaced by a single coordinate 

𝜂. Eq. (2.19) is identical with Zhang’s method up to numerical precision but has fewer 

operations per pixel required to define the final 3D point 𝒙ሬሬԦ – a comparison is given in 

Table 2.1. The computational speed boost will be useful later for the method give in 

Section 8.1.  

Table 2.1 Comparison of the number of operations per pixel between 

triangulation methods. 
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 Total number of 
operations (per pixel) 

Number of stored 
variables (total) 

Eq. (2.19) 32 13 

Zhang 537 20 

To compare the computation time and accuracy between the Zhang’s method and Eq. 

(2.19), 300 random measurement scenarios were created by drawing values from 

uniform distributions defined in Table 2.2. The principle point was taken to be the 

centre of the image for both the camera and projector. The results can be found in 

Figure 2.6. 

Table 2.2 Uniform distributions for testing Eq. (2.19) against Zhang’s method. 

  Input Mean Value Half-width 

C
am

er
a 

Focal length - x 1200 100 

Focal length - y 1200 100 

Resolution - x 1024 300 

Resolution - y 768 300 

Skew 0 0 

P
ro

je
ct

o
r 

Focal length - x 600 100 

Focal length - y 600 100 

Resolution - x 1024 300 

Resolution - y 768 300 

Skew 0 0 

E
x

tr
in

si
cs

 

Focus point - x 0 100 

Focus point - y 0 100 

Focus point – z 1000 100 

Translation – x 0 100 

Translation – y 0 100 

Translation – z 0 100 

  Correspondence 

map 

1

2
×Projector 

resolution - x 

1

2
×Projector 

resolution - x 
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(a) 

 
(b) 

Figure 2.6 Comparison of the model used here and Zhang’s 

measurement model in terms of (a) maximum absolute difference 

between points and (b) computation time. 

 

The simple rational function given in eq. (2.19) is very similar to the alternative linear, 

polynomial and inverse models given in [30]. While some alternative methods can 

achieve comparable accuracy, the method described above is typically more robust 

when measuring objects outside of the volume that encompasses all the measured 

points used within the calibration, also known as the calibration volume. 
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A common issue of simpler models is that the linear assumptions used in these models 

are only valid for certain positions in the measurement volume [36]. The linear method 

only approximates the model well over a small measurement height and is subject to 

stricter geometric constraints. The inverse linear method captures more of the rational 

nature of the eq. (2.19), and is not subject to any such geometric constraints. 

Polynomial models are sometimes favoured for their simplicity as they effectively 

eliminate the need for distortion correction since the calibration is performed locally 

across the image [37] – but they are subject to over-fitting issues. More complex 

methods, such as the cross-ratio method [38], are effectively insensitive to common 

fringe projection problems, such as pixel-to-pixel non-linearity, but the disadvantage 

is that they require a precision motion stage during the calibration. Lately, using 

neural networks to perform the triangulation have become increased in popularity, 

but typically require a lot of training data, which is time-consuming to create [39], 

although this can be overcome with virtual training [40] or unsupervised learning 

techniques [41]. 

 Distortion model 

This section will detail the nonlinear extension to the pinhole camera model described 

in Section 2.3.1. The pinhole model described in Section 2.3.1 is an idealisation of the 

true nature of optical devices, being a geometrical interpretation of light propagation. 

In fact, an optical device will always exhibit geometric distortions and aberrations, 

due to imperfect optics and the wave nature of light. Therefore, additional nonlinear 

terms are included to model the distortion apparent in all cameras. The mathematical 

model used for this purpose is called the distortion model. 

Several distortion models exist in literature, varying greatly in simplicity and accuracy 

[42]. Distortion correction is typically a trade-off between accuracy and numerical 

stability during the calibration procedure [42], with complexity varying from a couple 

of parameters [43] to many [44]. A common distortion model is the Brown-Conrady 

model [45], that splits the distortion into radial and tangential components, although 

other representations exist [46-48]. Despite the popularity of the Brown-Conrady 

model, there is ongoing debate about the importance of certain distortion coefficients 

with respect to accuracy. Although it is rarer to include the distortion centre as a 

parameter, Sun and Cooperstock [49] found that the distortion centre is an important 

parameter to include. Each optical system will have its own distortion that will lend 

itself to certain models [42]. It is worth noting that some triangulation methods, 

including the polynomial model, inherently correct for optical distortion, but still have 

the problem in deciding how many parameters is sufficient [50]. 

Due to the widely accepted use of the Brown-Conrady model [35, 51-53], it was chosen 

as the modelling function for this thesis. The distortion function is given by 
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 𝑓D(𝒖ሬሬԦ, 𝝉ሬԦ) = 𝒖ሬሬԦD (2.21) 

 𝒖ሬሬԦD = (𝒖ሬሬԦ − 𝒖ሬሬԦDC)(1 + 𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6)

+ ቆቂ
𝑝1

𝑝2
ቃ 𝑤 + ቂ

𝑝2

𝑝1
ቃ (𝑟2 + 2(𝒖ሬሬԦ − 𝒖ሬሬԦDC)2)ቇ + 𝒖ሬሬԦDC 

(2.22) 

with distortion centre given by 𝒖ሬሬԦDC = [𝑢DC, 𝑣DC]T and distortion coefficients given by 

𝝉ሬԦ = [𝑘1 𝑘2 𝑘3 𝑝1 𝑝2 𝑢DC 𝑣DC]. The quantities 𝑟 and 𝑤 are defined by 

 𝑟2 = (𝑢 − 𝑢DC)2 + (𝑣 − 𝑣DC)2 (2.23) 

 𝑤 = (𝑢 − 𝑢DC)(𝑣 − 𝑣DC). (2.24) 

The radial and tangential components of the Brown-Conrady model are shown in 

Figure 2.7. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2.7 Distortion modelled using the Brown-Conrady model. 

Distortions shown are (a) radial “barrel” distortion, (b) radial 

“pincushion” distortion, (c) tangential distortion and (d) 

combined radial and tangential distortion. 

 

The distortion function 𝑓D(𝒖ሬሬԦ, 𝝉ሬԦ) is unique to each (𝑢, 𝑣) image location, yet the 

projector only needs to resolve one dimension during the correspondence decoding 
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phase to fully triangulate a 3D point. If only one axis of the projector 2D image point 

is resolved during the correspondence stage, the projector point cannot immediately 

undergo a distortion correction. It is common therefore, to pre-distort the projector 

images prior to a measurement, so the distortion converts the image back to its ideal 

[51]. In this thesis, it was instead chosen to repeat the correspondence twice to resolve 

both axes of the 2D image point of the projector, i.e., projecting both horizontal and 

vertical fringes to fully define the projector image location.   

 Distortion correction 

In Section 2.3.3, a model was given that described the typical nonlinear distortion 

found in all cameras. This model, in conjunction with the camera pinhole model, 

describes the propagation of light from an object to the charge-coupled device (CCD) 

in the camera (called “forward” propagation). However, the triangulation method 

given in Section 2.3.2, eq. (2.22), describes the inverse operation (called “backwards” 

propagation). However, eq. (2.22) has no analytical inverse. Some simple radial-only 

distortions can be analytically inverted [54], but most distortion models cannot. Most 

inverse distortions are computed numerically instead [55]. To enable a fast 

triangulation method, a simple, quick algorithm is needed, to estimate the pre-

distorted coordinates given the distorted coordinates and distortion coefficients. The 

pre-distorted coordinates can be found with the following numerical algorithm, given 

in Algorithm 1, called fixed-point iteration, used by OpenCV 4.5.5 [56].  

Algorithm 1 Fixed-point iteration method used as the inverse mapping 

operation. 

 

The fixed-point iteration method is only guaranteed to be converge to the correct 

answer under specific conditions. Using the above definitions, defining the function 

Take estimate of undistorted point as the same as the distorted point 𝒖ሬሬԦ𝑖 =
𝒖ሬሬԦDC 

While not converged: 

 Compute distortion of estimated point 𝑓D(𝒖ሬሬԦ𝑖, 𝝉ሬԦ) = 𝒖̂DC,𝑖 

 Find difference between distorted estimate and actual point  

   𝒖ሬሬԦ𝑖 − 𝒖̂DC,𝑖 = 𝜹ሬሬԦ𝑖 

 Update estimate with the difference 𝒖ሬሬԦ𝑖+1 = 𝒖ሬሬԦ𝑖 + 𝜹ሬሬԦ𝑖 

 Iterate 𝑖 = 𝑖 + 1 

 Compute the magnitude of the change during this iteration ‖𝜹ሬሬԦ𝒊‖ 

 If ‖𝜹ሬሬԦ𝒊‖ < 𝜖: 

  The method has converged. 

 End If 

End While 
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 𝑔(𝒖ሬሬԦ) = 𝑓D(𝒖ሬሬԦ, 𝝉ሬԦ) − 𝒖ሬሬԦD, (2.25) 

where 𝒖ሬሬԦD and 𝝉ሬԦ are considered known constants, 𝑔(𝒖ሬሬԦ) = 0 when 𝒖ሬሬԦ correctly maps to 

𝒖ሬሬԦD, i.e., when the inverse is found. This mapping is only guaranteed to be found by 

the fixed-point iteration method in the case 

 
0 <

d

𝑑𝒖ሬሬԦ
𝑔(𝒖ሬሬԦ) ≤ 1 (2.26) 

for all values of 
d

𝑑𝒖ሬሬԦ
𝑔(𝒖ሬሬԦ), i.e. the distortion function must be monotonically increasing. 

Typically, a camera’s distortion function is monotonically increasing over the CCD 

area, a camera that fails this condition will not make a usable direction sensor given 

each pixel will not have a well-defined direction and will therefore invalidate the 

triangulation method. 

Computing the derivatives is one method to test for convergence. An alternative 

simple method is to test the convergence using a set of predetermined values. Firstly, 

an estimation of the distortion coefficients, along with the camera matrix, is supplied 

by calibrating the camera using the method given in Chapter 7. Then, each distortion 

coefficient 𝜏𝑖 is sampled from a uniform distribution, 𝒰(0.5𝜏𝑖, 1.5𝜏𝑖). For alacrity, only 

100×100 points are sampled across the CCD, sampled evenly in the range 0 to 5120 in 

both axes (see Section 2.2), to be distorted. The points are distorted using the analytical 

function eq. (2.22), and then corrected using the fixed-point iteration method, 

Algorithm 1. The original and the undistorted points are then analysed for their 

maximum absolute error. This is repeated 10,000 times and the results in Figure 2.8 

show that the fixed-point iteration method converges as expected within the region of 

the estimation of the distortion coefficients provided by the camera calibration. The 

error of the fixed-point iteration method in this circumstance is less than 2 × 10−3 

pixels and 0.5 × 10−3 pixels in the camera and projector respectively – and is therefore 

considered negligible. 
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(a) 

 

(b) 

Figure 2.8 The maximum absolute error from the distortion-

correction algorithm. Error is given for (a) the camera parameters 

and (b) the projector parameters. 

 

 Correspondence decoding 

In this section, the method used to provide the 2D points within the camera and 

projector image plane that correspond to the same 3D point in global space is defined. 

2D image points that originate from the same 3D points are “corresponding image 

points” will hereby be shortened to “correspondences”. 
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In Section 2.3.2, it was demonstrated that only a single additional measurement 

dimension is necessary to encode information to fully-realise a 3D point. A simple 

algorithm, then, could project a series of individual lines from the projector. The 

problem with this approach is that, to obtain a full-field measurement, it would take 

a considerable amount of time. Instead, modern techniques utilise the full projector 

image and decode all pixels at once. The correspondence algorithm method can be 

seen as a communication problem, with each projector pixel as a transmitter and the 

camera pixels as receivers. The projection signal is subject to degradation and 

aberration from the optics of the projector and camera and the surface of the object 

being measured. The objective of the correspondence algorithm is to provide accurate 

correspondence information as robustly as possible, using as few images as possible. 

Correspondence algorithms typically favour using low spatial-frequency content in 

the projection images. The optical resolution of the projector will limit the higher 

spatial-frequency content of projected images. This can be used, to a great effect, to 

remove higher spatial-frequency errors/noise from projected images [57, 58]. 

Correspondence algorithms therefore usually encode correspondence information in 

the phase of projected sinusoids [59] – although this is not always the case [60]. 

A common correspondence algorithm is the three-phase shift algorithm. A series of 

sinusoids are projected, each with a specific phase-shift, and the projector locations 

are encoded into the sinusoids phase. The underlying phase distribution can then be 

found. The intensity of a fringe pattern across 𝑘th image 𝐼𝑘 can be expressed as 

 𝐼𝑘(𝑢, 𝑣) = 𝐴 cos(𝜙(𝑢, 𝑣) + 𝛿𝑘) + 𝐵, (2.27) 

where 𝜙(𝑢, 𝑣) is the phase distribution, 𝛿𝑘 is the phase shift and coefficients 𝐴 and 𝐵 

are the contrast and offset coefficients respectively. Using the phase shifts 𝛿𝑘 =

{−
2𝜋

3
, 0,

2𝜋

3
}, the “wrapped” phase distribution 𝜙w(𝑢, 𝑣) is found along with a quality 

metric 𝛾(𝑢, 𝑣) using 

 
𝜙w(𝑢, 𝑣) = tan−1 ቆ

ξ3(𝐼0 − 𝐼2)

2𝐼1 − 𝐼0 − 𝐼2
ቇ (2.28) 

 
𝛾(𝑢, 𝑣) =

𝐴

𝐵
=

ඥ3(𝐼0 − 𝐼2)2 + (2𝐼1 − 𝐼0 − 𝐼2)

𝐼0 + 𝐼1 + 𝐼2
. (2.29) 

While sinusoids avoid the spatial-frequency cut-off, they are periodic, and so certain 

pixels across the projector image will contain identical information. The obtained 

phase distribution 𝜙w(𝑢, 𝑣) is said to be wrapped, since 𝜙w(𝑢, 𝑣) = mod(𝜙(𝑢, 𝑣), 2𝜋𝑃), 

with 𝑃 denoting the fringe pitch (wavelength of the projected fringes). The wrapped 

phase 𝜙w(𝑢, 𝑣) is therefore defined within the range [0,2𝜋𝑃). A larger fringe pitch can 

be used at the expense of sensitivity [61]. The conversion of the wrapped phase to the 
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absolute (or “unwrapped” phase) is called unwrapping. The decoding via three-phase 

shifting is shown in Figure 2.9. 

 

Figure 2.9 The “wrapped phase” defined from using three phase-shifted 

sinusoid images. 

Correspondence algorithms can generally be classified into two different categories, 

spatial and temporal algorithms [35], although some newer algorithms combine the 

two as spatiotemporal algorithms [62]. Spatial algorithms decode the correspondence 

information across the captured image, or “spatially”, so generally require fewer 

images. Since only one image is required, spatial correspondence algorithms have a 

lower acquisition time [63] and are favoured in high-speed situations. 

Common spatial algorithms include the Fourier transform, windowed Fourier 

transform and the wavelet transform methods [64-66]. Other spatial algorithms 

include adding additional information to the projected image [67] or using parameter 

information [68, 69]. Temporal algorithms decode the correspondence information 

across multiple images of altering projections, or “temporally”. Temporal algorithms 

are, in general, far more robust and accurate at the cost of higher acquisition time and 

are therefore favoured in metrological applications [70-72].  

Popular temporal algorithms include heterodyne [73, 74], multi-frequency [75] and 

number-theoretical methods [76], and state-of-the-art systems have begun using 

neural networks to obtain the absolute phase map [77, 78]. The heterodyne method is 

considered accurate but prone to more unwrapping errors than other methods [71]. 

The general method behind the heterodyne method is to use the heterodyne principle 

to create artificially large fringe pitches that can be used to unwrap shorter fringes. 

The multi-frequency method projects larger fringe pitches (increasing fringe pitch 𝑃) 

to unwrap the shorter fringe pitches [79]. The number-theoretical method relies on 

fringe integers being co-prime throughout the image, therefore never sharing a 

common fringe jump.  
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For this thesis, it was decided that a modified heterodyne technique, given in Lai, Li 

[80], will be used for its simplicity and robustness against phase-unwrapping errors. 

The 𝑖th phase map is made up of an integer order Φ𝑖 and a fractional order Δ𝜙𝑖, 𝜙𝑖 =

Φ𝑖 + Δ𝜙𝑖. Fringe pitches are given by 𝑃1 < 𝑃2 < 𝑃3. The integer order Φ3 = 0 because 

𝑃3 is chosen so that it spans the entire image. The phase maps can be successively 

unwrapped with 

 
Φ2 = round ൬

𝑃3Δ𝜙3

𝑃2
− Δ𝜙2൰ (2.30) 

 
Φ1 = roundቆ

𝑃2(Φ2 + Δ𝜙2)

𝑃1
− Δ𝜙1ቇ 

(2.31) 

 𝜙1 = Φ1 + Δ𝜙1, (2.32) 

giving an absolute phase map. Three phase maps were used in this case, but this 

technique is not limited to three. The modified heterodyne method is shown 

graphically in Figure 2.10. 

 

 

Figure 2.10 The modified heterodyne method.  The largest wrapped phase 

map is used to unwrap the second largest phase map, which in turn is used 

to unwrap the final highest frequency phase map. 

The correspondence decoding allows the indirect observation of the projector image, 

as if the projector is an equivalent camera. In Figure 2.11, the camera images are of a 

dot-grid artefact, and the modified heterodyne method above was then used to infer 
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what the projector was seeing by interpolating from the camera images. The borders 

were manually cropped, the images rescaled and noisy pixels were removed for 

clarity. 
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Figure 2.11 Projector images (bottom) inferred from camera images 

(Top)  

 

 Pixel-to-pixel calibration 

In Section 2.4, it is assumed above that a projected sinusoid is recorded as a sinusoid 

within the camera. In other words, the projector output is related to the camera input 

with a single additive and multiplicative component 

 𝐼c = 𝐴 + 𝐵𝐼p. (2.33) 

If this is not true, the sinusoid will become corrupted with higher-order components 

and cannot be modelled by eq. (2.27) giving a systematic error within the phase map 

[81]. Often, projectors are “corrected” for human vision by varying the output intensity 

exponentially instead of linearly. Correcting for this is called  “gamma correction”. This 

correction is completed by modelling the relationship 𝐼c = 𝑓൫𝐼p൯ and computing the 

inverse function 𝑓−1 so that eq. (2.27) is true.  

A poor camera-projector response function will give a systematic error throughout the 

measurement volume. Like optical distortion, there are two main ways of 

compensating for this error: active and passive compensation. Active compensation 

alters the input projection image, so the image is pre-distorted, back to the original 

image. Passive compensation alters the camera image output instead. Active is 

recommended since it does not change with projector defocus [82]. Alternatively, 

modified phase-shifting methods can be used that will not produce an error when the 

system exhibits some form of gamma [83]. 
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To perform a gamma correction, a series of images of a single intensity are projected, 

allowing the camera-projector response to be modelled. In a first step, the gamma 

correction measures the response curve of the camera input by gradually increasing 

the projector output. The basic gamma response curve model is given by 

 𝐼cam = 𝑎𝐼proj
𝛾

+ 𝑏. (2.34) 

It has been found that many projectors do not follow such a simple model and instead 

require a seventh order polynomial [35], 

 
𝐼cam = ෍ 𝑐𝑖𝐼proj

𝑖

7

𝑖=0

. (2.35) 

Additionally, the camera and projector can suffer from synchronisation issues that can 

lead to nonlinear pixel-to-pixel response. A typical projector produces a specific 

intensity value by switching a micromirror on and off rapidly, creating an intensity 

value from a series of on/off switches. The array of micromirrors is called a digital 

micromirror device (DMD). Each image is projected as a series of 1-bit images 

sequentially over a specific time interval. 

Consider a time interval split into 256 equal time periods, given that the projected 

image is an 8-bit image. Using the most significant bit first scheme, during the first 128 

periods, the first bit is projected, and for the next 64 periods the second bit is projected, 

and so on. In this way, a specific intensity given as an 8-bit number is described over 

a specific time interval using 8 1-bit images, the diagram showing this is given in 

Figure 2.12. 

 

Figure 2.12 A DMD pixel projecting the intensity value 170 (10101010) as a 

series of off-on exposures. 
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To obtain a linear camera-projector response, it is very important for the camera to 

expose its charge-coupled device (CCD) for the duration of the on-off sequence. If the 

camera-projector pair are out of sync, there will be partial integrations of frames, 

leading to non-correctable, non-linear relationships. Projectors that use liquid crystal 

displays (LCD) or liquid crystal on silicon (LCoS) have far less stringent 

synchronisation requirements because they do not encode intensity temporally [84]. 

A camera-projector response curve considering gamma or asynchronisation is given 

in Figure 2.13. 

 

Figure 2.13 Camera-projector response curves. (blue dashed line) Linear 

response, (orange line) an uncorrected gamma response, and (green line) a 

non-linear response from an asynchronous camera-projector. 

Synchronisation is usually achieved using an external signal. An external signal, sent 

to both the camera and projector simultaneously can trigger both to begin exposing 

the CCD and projecting images respectively. A projector could also send a trigger 

signal to indicate an image is currently being projected. The final step is to tune delays 

within the projector or camera to synchronise both to each other. Alternative methods 

include using software [85] or using field programmable gate arrays (FPGA) to handle 

the synchronisation of multiple cameras and projectors [86-88]. 

 Extension to over-determined systems 

The fringe projection techniques so far have been limited to single projector-camera 

systems that solve the triangulation exactly. This thesis is limited in scope to single 

camera/projector fringe projection systems, but for completeness, fringe projection 

methods that include additional cameras will be given here, where each 3D point is 

over-determined.  
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The triangulation method in Section 2.3.2 can be extended to over-determine each 

point with just one camera and projector by leveraging the two dimensions of the 

projector, instead of just one. Eq. (2.6) can be altered, and the subscript 𝑖 will now 

differentiate 𝑀 different camera sensors, instead of differentiating the camera and 

projector. 

 𝒙ሬሬԦ = 𝑠𝑖𝑹𝑖
−1𝑲𝑖

−1𝒖ሬሬԦ𝑖 − 𝑹𝑖
−1𝒕Ԧ𝑖, (2.36) 

 𝒙ሬሬԦ = 𝒕Ԧ𝑖
′ + 𝑠𝑖𝒖ሬሬԦ𝑖

′, (2.37) 

The problem now becomes finding the over-determined intersection of 𝑀 lines; the 

solution can be found in Juarez-Salazar, Giron [33], 

 𝒙ሬሬԦ = ൭෍ 𝑫𝑖

𝑀

𝑖=0

൱

−1

൭෍ 𝑫𝑖𝒕Ԧ𝑖
′

𝑀

𝑖=0

൱ (2.38) 

 𝑫𝑖 = 𝕀3×3 −
𝒖ሬሬԦ𝑖

′𝒖ሬሬԦ𝑖
′T

𝒖ሬሬԦ𝑖
′T𝒖ሬሬԦ𝑖

′
. (2.39) 

Fringe projection systems with additional cameras have a unique advantage over 

single camera/projector systems – the measurement can be derived entirely from the 

two cameras. Instead of using the projector to solve for 𝑠c in eq. (2.4), the projector 

exclusively provides correspondence points for the two cameras [32]. The realisation 

of projector pixel locations is guaranteed to be more error prone than the camera since 

pixel locations are inferred from the camera. Therefore, the advantage of this method 

is that measurement accuracy is no longer dependent on the projector and the 

realisation of its parameters.  

This method will no longer provide an exact correspondence solution due to noise 

within the camera images, and so the phase maps within each camera must be 

correlated [89-91], which can be time consuming [92], rather than analytically solved. 

The extra correlation step adds complexity which was considered unnecessary for this 

thesis. 

 Frustrum model 

This section will expand upon the concepts first defined in Section 2.3, to create a 

model that will give an intuitive framework to describe the concept of errors in fringe 

projection. The model created here will be used throughout this thesis. This section 

will be based on the concept of direction sensors, defined in Section 2.3.1, and how 

they can be used to recreate a 3D object, given in Section 2.3.2. In fringe projection, the 

projector acts only as an additional sensor to ascertain depth within the camera 
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coordinate system. Considering fringe projection in this way allows a simple 

interpretation of fringe projection using projective (also called homogeneous) 

coordinates. A point in Cartesian coordinates is represented in projective coordinates 

by  

 ቎

𝑥
𝑤Τ

𝑦
𝑤ൗ

1

቏, (2.40) 

where the 𝑧 coordinate has been replaced by depth coordinate 𝑤 for clarity. Projective 

coordinates give an instinctive way to deal with direction sensors. By arbitrarily 

describing the camera coordinate system as aligned with the global coordinate system 

(𝑹 = 𝕀3×3, 𝒕Ԧ = 𝟎ሬሬԦ), eq.(2.3) becomes 

 
𝒙ሬሬԦ = 𝑠൫𝑲p, 𝝉ሬԦp, 𝑹p, 𝒕Ԧp൯ ൥

𝑢c
′(𝑲c, 𝝉ሬԦc)

𝑣c
′(𝑲c, 𝝉ሬԦc)

1

൩, (2.41) 

where the functional dependencies have been explicitly stated. Errors in the camera 

parameters will cause an error in the 𝑥𝑦 plane of a homogeneous coordinate system, 

errors in the projector parameters will cause an error in the depth 𝑤 of a homogeneous 

coordinate system. Figure 2.5 is expanded to show this in Figure 2.14. The camera line, 

given some thickness shown by its cross-section on the camera image plane, intersects 

the projected projector planes, given as a maximum and minimum. The uncertainty 

in the camera line, denoted here as some ellipse, and the uncertainty in the projector 

plane location, given as maximum and minimum planes, has created a volume of 

uncertainty associated with the point 𝒙ሬሬԦ, shown in orange, that is similar in shape to a 

frustum. The uncertainty is shown as a hard boundary here for clarity but would in 

reality be some probability density. Although the two intersecting planes are not 

parallel, they are very close to parallel, and so this will be referred to in the rest of this 

thesis as the uncertainty frustum – this model being called the frustrum model. 
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Figure 2.14 An expanded look into global point 𝒙ሬሬԦ as shown in Figure 2.5. 

 Summary 

This chapter defines the entire measurement pipeline for a fringe projection system. 

Where necessary, methods have been chosen that are suitable for requirements of this 

thesis. Methods have been chosen based on the fewest limitations to working 

conditions, with the most robustness, with little concern for measurement speed. Only 

fringe projection systems consisting of a single camera and projector will considered 

in this thesis for simplicity.  

In Section 2.3.2, a novel triangulation method has been defined that allows rapid 

triangulation of a measurement surface, that requires fewer mathematical operations 

than a similar, popular method. The lower computation time of the triangulation 

method will be useful for use within a Monte-Carlo simulation. In Section 2.4, a 

correspondence method is outlined that will provide high accuracy measurements 

during a reasonable measurement acquisition timeframe. In Section 2.5, an extension 

of the current method was given for overdetermined systems, where it was shown the 

additional complexity this configuration gives. Lastly, in Section 2.6, the frustum 

model was defined that will be used to define uncertainty in fringe projection 

throughout this thesis. 
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 – Influence quantities in 

fringe projection 

This chapter explores the influence quantities that will affect a fringe projection 

measurement result. An influence quantity is a quantity that, in a direct 

measurement, does not affect the quantity that is actually measured, but affects 

the relation between the indication and the measurement result [1]. An example 

of an influence quantity is the internal temperature components within the 

fringe projection system, which will change the properties of the optical 

components in the measurement system thereby changing the measurement 

result. Another example is the camera’s optics, which determine the quality of 

image formation. An influence quantity may originate externally, or it can be 

inherent within the system. There are many influence quantities in fringe 

projection, and together they can have a complicated causal relationship with 

the measurement result. In this chapter, it is shown that there are many factors 

that affect a fringe projection measurement result, and it is difficult to 

accurately determine their precise effect. 

Each parameter included in the triangulation function eq. (2.19) (listed in Table 

7.1) will determine the measurement and can be considered an influence 

quantity. However, there are also many influence quantities that are not 

inherently included in the triangulation function, which is problematic for any 

attempts to evaluate uncertainty, as each influence quantity must be controlled 

or accounted for. The pinhole camera model, and by extension fringe 

projection, is based on geometrical optics, i.e., light is treated as a ray. However, 

to obtain certain properties of the camera and projector associated with their 

optics, a wave optics approach is sometimes preferable, i.e., treating light as a 

wave to calculate the camera’s or projector’s optical resolution [93].  

The rest of this chapter will be dedicated to defining a comprehensive list of 

influence quantities. The list of influence quantities can be summarised as: 

system parameters (found during the calibration step), spatial-frequency 

bandwidth limitation of the optics as well as the sampling resolution of the 

CCD and DMD, given in Section 3.1, pixel-to-pixel non-linearity given in 

Section 3.2, surface geometry and surface optical characteristics given in 

Section 3.3, and environmental factors given in Section 3.4. 
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 Instrument resolution 

Instrument resolution is defined as the smallest discernible measurable interval 

of the system. In fringe projection, instrument resolution is a function of optical 

resolution (the ability of the camera and projector to resolve detail) and the 

optical characteristics of the measurement surface. The optical resolution is a 

defined by both the focussing limitation of the optics and the sampling 

resolution of the CCD or DMD.  

As direction sensor, the ability of the camera to resolve detail is directly related 

to the ability of the camera to resolve direction – and therefore will limit the 

accuracy of the triangulation measurement [94, 95]. Additionally, each sample 

point (pixel) within the CCD collects light over a finite area. This is known as 

sampling quantization, and is a limit to the accuracy of any optical sensor [96]. 

Considering the simple case of projecting only a single plane of light to obtain 

correspondence, the resolution can be well-defined using the frustrum model 

(see Section 2.6), shown in Figure 3.1. In this approximation, the effect of 

resolution is very similar to the limitation in accuracy of system parameters. 

The method to define the resolution limit values is an ongoing question. 

 

Figure 3.1 The optical resolution of the camera (purple) and the 

projector (orange and green) placing limits on the accuracy of a 

triangulation position (red). 
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Similar to a microscope, a camera can be modelled as applying a linear filter in 

spatial-frequency space [97]. The image acquired by the camera during a 

measurement will therefore be attenuated by the optics of the camera. The 

attenuation of the image is stronger at higher spatial frequencies of the image, 

compared to lower spatial frequencies, illustrated in Figure 3.2. 

  

Figure 3.2 A linear filter applied on a wave of exponentially 

increasing spatial frequency. 

The attenuation of higher spatial frequencies phenomenon is described by a 

linear filter. The instrument resolution can therefore be limited by this linear 

filter. However, the correspondence and triangulation algorithms are non-

linear trigonometric and rational functions – the exact effect optical resolution 

will have on the measurement is unclear without extensive simplifications. It 

has been proposed that optical instruments can be described using an 

instrument transfer function (ITF) [98], i.e. the measured surface spatial 

frequencies are linearly related to the true surface spatial frequencies. The ITF 

is useful in determining the smallest discernible measurable interval of a 

measurement surface and, therefore, will be important in evaluating the 

measurement uncertainty. The validity of the ITF approach to fringe projection 

systems is given in Zhang, Davies [99], who also define the limits to that 

validity. 

Unfortunately, the ITF is only applicable to fringe projection under strict linear 

assumptions, and the limits are broken when considering significant range of 

depth values within the measurement. The ITF approach is further complicated 

when considering that measurement sensitivity is dependent on position 

within the measurement volume. Any consistent ITF must consider spatial 
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variance [100], yet the ITF is typically considered spatially-invariant for 

simplicity. Additionally, in fringe projection, the ITF is a function of the 

measurement surface [101] as well as the optics, and is discussed further in 

Section 3.3. A alternative method to calculate instrument resolution is given in 

Guidi, Russo [102] who consider the instrument resolution within the 𝑥𝑦 plane 

and the 𝑧-axis as two separate independent quantities. 

There is no generic method for evaluating the effect of optical resolution on the 

point-cloud. Neighbouring pixels (and by extension, neighbouring points in 

the point-cloud), will be innately linked by the spatial frequency limitation of 

the optics and the sampling quantisation of the CCD. While this effect is 

generally local, overall, it will make a sizeable contribution uncertainty 

evaluation complexity, since each point-point relationship must be accounted 

for. 

Sampling resolution limits in the projector can be problematic due to the 

perceived edges of each micromirror. Fringe projection systems that have 

highly mismatched CCD/DMD sampling resolution will suffer reduced 

accuracy [103]. The projector relies upon the finite optical resolution of its own 

optics to remove the quantization effects of the DMD, and will not adversely 

affect the measurement result [101, 104] – the projector is often purposefully 

blurred to produce higher quality fringes and measurements [57, 58, 104, 105].  

The resolution model given in Figure 3.1 therefore does not apply to full-field 

projection images – since an optical resolution limit is limiting the spatial-

frequency content of the projection, and projections are typically chosen to be 

absent of high spatial-frequencies. In the phase-retrieval regime, the projector 

optical resolution will limit the frequency of the projected fringes, limiting the 

robustness of the measurement against noise. Figure 3.1 can be updated to 

reflect the phase-retrieval regime, shown in Figure 3.3. Instead, a sinusoid is 

projected that is limited in frequency by the optical resolution of the projector. 

The camera can resolve the sinusoid to a limited accuracy – a higher frequency 

sinusoid will be far less sensitive to errors in resolving the sinusoid. 

Additionally, in some cases, the camera resolution invalidate 

 𝐼𝑘(𝑢, 𝑣) = 𝐴 cos(𝜙(𝑢, 𝑣) + 𝛿𝑘) + 𝐵. (2.27) 

This is explored in more detail given in Section 3.3 given it is fundamentally a 

measurement surface quantity. 
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Figure 3.3 The limitation of optical resolution on the measurement 

result  

 Pixel-to-pixel non-linearity 

The section will explore the relationship between DMD micromirror output 

and CCD pixel input. Pixel-to-pixel non-linearity is defined as deviation from 

the ideal case where CCD pixel measurements are linearly dependent on DMD 

micromirror output. The correspondence (see Section 2.4) is found pixel-by-

pixel, with each DMD micromirror projecting its own time-varying sinusoidal 

signal The DMD image is described by a sinusoidal function, using two 

coefficients for the contrast 𝐴 and the offset 𝐵. If the correspondence obeys any 

model but this contrast-offset model, a sinusoid as output b the projector will 

not be measured as sinusoidal by the camera, so there will be some systematic 

error in the measurement. However, there is rarely an ideal linear relationship 

between projector irradiance output and camera irradiance input [106]. The 

correction for non-linear mapping between projection irradiance output and 

camera irradiance input is called pixel-to-pixel, detailed in Section 2.4.1. 

Crosstalk is problematic when colour is used to encode information, and must 

be corrected [83, 107, 108]. Properties of the camera and projector optics are also 

wavelength dependent, and can cause chromatic aberrations that are often 
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corrected [109]. These issues can be ignored when using monochromatic 

encoding for the correspondence algorithm. Both the camera and the projector 

are limited to recording/projecting a select range of values. Exceeding the 

camera pixel’s maximum value is called “saturating” the pixel, and is 

problematic for the correspondence algorithm [110, 111]. 

Camera-projector asynchronisation is another problem that can affect the 

linearity of the camera-projector relationship. Unlike the camera CCD, the 

projector DMD defines an output intensity by the physical switching of a 

mirror – a binary output. A single camera image acquisition must therefore 

integrate over time the binary outputs that equate to an eight-bit integer. This 

is known as camera-projector synchronisation, and a high degree of 

synchronisation must be attained before errors can be removed [85]. All 

projectors suffer from “jitter” – uncertainty in the projection image start time 

and duration, which can be seen as a contributor to DMD noise [112]. The CCD 

will also exhibit its own form of noise, a combination of photon shot noise, dark 

current, amplification noise and digitisation noise, with different noise sources 

dominating in specific circumstances [113, 114]. 

 Measurement Surface 

This section shall explore measurement surface characteristics as an influence 

quantity. The measurement surface is a significant influence quantity and 

should be taken into account when performing a measurement [115] When 

finding matching correspondences, each CCD pixel can be considered as a 

detector receiving a signal emitted by a DMD micromirror, with the 

measurement surface acting as a perturbator of the signal. Certain surface 

effects, such as measurement surface angle and sub-surface scattering, produce 

predictable errors. The angle of the surface will dictate the level of light 

returned to the sensor, reducing the measurement signal-to-noise ratio at high 

angles [116]. Sub-surface scattering can be seen as a linear filter that attenuates 

the high-spatial frequency content of images [101, 117].  

When considering changes of contrast on the surface, or measurement surface 

discontinuities, limitations of optical resolution may produce erroneous points 

[101]. If the measurement surface has a highly non-smooth reflectivity, the 

contrast will corrupt neighbouring pixels and cause a systematic error [118, 

119], illustrated in Figure 3.4. 
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Figure 3.4 Error in a phase map (right) caused by a contrast 

boundary and optical resolution when imaging the dot grid (left). 

Another assumption inherent in the correspondence decoding, given in Section 

2.4, is that each camera pixel is dependent on a set of localised projector pixels, 

i.e., that each pixel is related by a projective transformation, along with a 

filtering operation. But this assumption fails in the event of multiple reflection, 

which occurs when a photon reflects twice off the measurement surface before 

travelling to the CCD [120]. This measurement error is particularly difficult to 

identify, since it requires information on the geometry of the surface being 

measured [121]. 

It is unclear how to account for the effect of non-smooth reflectivity and 

multiple reflections on the measurement result – there is no analytical solution. 

Both effects are dependent on the measurement object, and the effect of non-

smooth reflectivity is additionally dependent on camera optical characteristics 

and parameters. Unlike optical resolution, multiple reflections have no limit on 

their range, and could in theory link any pixel to any other [121], making it 

difficult to evaluate their contribution to data-density, since it would always be 

highly object-dependent. 

 Environment 

This section will identify how the environment can affect and fringe projection 

measurement result. Temperature is a significant influence factor in fringe 

projection. The expansion of materials due to temperature will affect optical 
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housing and optical components, which is critical to their performance. 

Temperature will therefore modify both the intrinsic [122] and extrinsic [123] 

parameters of fringe projection systems, and can in principle be corrected [124]. 

However, while the change in focal length and the principal point of the optic 

resulting from thermal expansion can be compensated, the distortion 

parameters tend to vary unpredictably [125]. 

It is assumed that light propagates in a straight line from the object to the optic. 

However, the medium in which the light propagates is never fully 

homogenous, which can induce significant errors in optical systems [126]. In 

Figure 3.5 shows the effect of an inhomogeneous medium on the fringe 

projection model, shown in Figure 2.5. A ray of light propagating to a camera 

pixel encounters a medium of different refractive index that bends the path 

slightly, and the camera incorrectly perceives the light as coming from a 

different source.  

 

Figure 3.5 A medium of slightly different refractive index altering 

the path of a travelling ray of light. 

Vibration is another influence factor [127], and methods exist to reduce noise 

and vibration [128]. The ambient light condition can break many 

correspondence algorithm assumptions; fringe projection systems can be made 

more robust by using the correct correspondence algorithms [110, 111, 129]. In 

Section 2.4, the ambient light coefficient is estimated from several images taken 

over time, and if the ambient light is temporally varying, this assumption will 
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be rendered incorrect. This assumption is commonly broken in environments 

with overhead lights synchronized with mains electricity, varying at 50 Hz. 

 Summary 

This chapter outlines the influence quantities that affect fringe projection 

systems, many of which are not inherently included in the current fringe 

projection measurement model. Defining the exact affect each influence 

quantity has on the measurement outcome can be complicated. For example, 

the optical resolution limit of the camera optics will only affect the 

measurement of surfaces with sufficiently high spatial-frequencies in contrast 

or height. However, many influence quantities can become negligible in certain 

circumstances. Measuring the correct artefact in the right conditions will allow 

the measurement result accuracy to be limited only by the accuracy of the 

system parameters and model used to generate the result. This will allow a 

method for which to validate any uncertainty estimation in the measurement 

result propagated from the uncertainty in the system parameters. 

 





 

 – General methods in 

uncertainty evaluation 

This chapter will provide a background to general methods in uncertainty 

evaluation that are relevant to this thesis. This section is split into four parts. 

Section 4.1 gives a definition of uncertainty. Section 4.2 defines an analytical 

method to propagate uncertainty and Section 4.3 defines a numerical method 

to propagate uncertainty – both of which will be useful in determining the 

uncertainty in a measurement caused by the system parameters. Section 4.4 

describes a method to determine the validity of an uncertainty evaluation. 

 Uncertainty 

No measurement can be made with absolute certainty, and therefore every 

measurement should be expressed with along with a quantity defining the 

dispersion of values that are reasonably attributed to the measurand. 

Uncertainty is the quantification of that statistical dispersion [1]. A 

measurement with uncertainty is written as  

𝑎 ± 𝑏(units) @ 𝑘% confidence 

and is incomplete without all the above components. In this thesis, unless 

otherwise stated, the uncertainty will be stated at a confidence will be at 95%. 

The central limit theorem states that the summation of many independent 

random variables tends towards a normal distribution, including the case 

where the independent variables being summed are, themselves, not normally 

distributed. It is common to assign the normal distribution as a variable’s 

probability distribution function (PDF). 

The GUM gives two methods to obtain the uncertainty (both quantities 𝑏 and 

𝑘), named type A and type B. A type A evaluation of uncertainty is completed 

by repeating the measurement. This is method will reveal the distribution of 

quantities associated with a particular measurement, but not any information 

on how accurate the expected value of such a distribution is. A type B 

uncertainty evaluation is any method not following a type A uncertainty 

evaluation. The analytical and Monte-Carlo method given in Section 4.2 and 

Section 4.3 respectively are both type B methods. 
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 Analytical 

The standardised analytical evaluation of uncertainty is set out in the GUM 

(2008), a brief overview of which is given here. For an introduction to the basic 

mathematical approach to uncertainty evaluation, see [130] and [131]. Consider 

a measurement model that acts on inputs 𝒙ሬሬԦ with influence quantities 𝜣ሬሬԦ to 

output measurement 𝒚ሬሬԦ 

 𝒚ሬሬԦ = 𝑓൫𝒙ሬሬԦ, 𝜣ሬሬԦ൯. (4.1) 

Note that the system parameters are a subset of the complete list of influence 

quantities 𝜽ሬሬԦ ⊂ 𝜣ሬሬԦ. Given a small perturbation on the influence quantities 𝜣ሬሬԦ, the 

measurement outcome will similarly undergo a small perturbation 

 𝒚ሬሬԦ + 𝛿𝒚ሬሬԦ = 𝑓൫𝒙ሬሬԦ, 𝜣ሬሬԦ + 𝛿𝜣ሬሬԦ൯. (4.2) 

None of the function inputs or outputs need to be in vector form but doing so 

simplifies the following. Given the function 𝑓 is not at all guaranteed to be 

linear, a Taylor expansion of eq. (4.2) around 𝜣ሬሬԦ is given by 

 
𝑓൫𝒙ሬሬԦ, 𝜣ሬሬԦ + 𝛿𝜣ሬሬԦ൯ = ෍

1

𝑗!
൫𝛿𝜣ሬሬԦ ⋅ ∇൯

𝑗
𝑓൫𝒙ሬሬԦ, 𝜣ሬሬԦ൯

∞

𝑗=0

. (4.3) 

Limiting eq. (4.3) to the first order terms only gives 

 𝑓൫𝒙ሬሬԦ, 𝜣ሬሬԦ + 𝛿𝜣ሬሬԦ൯ = 𝑓൫𝒙ሬሬԦ, 𝜣ሬሬԦ൯ + ൫𝛿𝜣ሬሬԦ ⋅ ∇൯𝑓൫𝒙ሬሬԦ, 𝜣ሬሬԦ൯, (4.4) 

with  

 
∇ = ൤

𝜕

𝜕𝛩1

𝜕

𝜕𝛩2
⋯

𝜕

𝜕𝛩𝑛
൨. (4.5) 

Assuming 𝛿𝜣ሬሬԦ is small, higher order contributions of the Taylor series can be 

neglected. Given that the mean and covariance of the input quantities is known, 

the covariance of the output quantities can be found by 
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𝜮𝑦 = 𝔼 ൤ቀ𝑓൫𝒙ሬሬԦ, 𝜣ሬሬԦ൯ − 𝑓൫𝒙ሬሬԦ, 𝜣ሬሬԦ + 𝛿𝜣ሬሬԦ൯ቁ
2

൨ 

= 𝔼 ൤ቀ𝑓൫𝒙ሬሬԦ, 𝜣ሬሬԦ൯ − 𝑓൫𝒙ሬሬԦ, 𝜣ሬሬԦ൯ − ൫𝛿𝜣ሬሬԦ ⋅ ∇൯𝑓൫𝒙ሬሬԦ, 𝜣ሬሬԦ൯ቁ
2

൨ 

= 𝔼 ൤ቀ൫𝛿𝜣ሬሬԦ ⋅ ∇൯𝑓൫𝒙ሬሬԦ, 𝜣ሬሬԦ൯ቁ
2

൨ 

= 𝔼 ൤ቀ൫𝛿𝜣ሬሬԦ ⋅ ∇൯𝑓൫𝒙ሬሬԦ, 𝜣ሬሬԦ൯ቁ
T

ቀ൫𝛿𝜣ሬሬԦ ⋅ ∇൯𝑓൫𝒙ሬሬԦ, 𝜣ሬሬԦ൯ቁ൨ 

= 𝔼 ቂ∇𝑓൫𝒙ሬሬԦ, 𝜣ሬሬԦ൯𝛿𝜣ሬሬԦ𝛿𝜣ሬሬԦT∇𝑓൫𝒙ሬሬԦ, 𝜣ሬሬԦ൯
T

ቃ 

= ∇𝑓൫𝒙ሬሬԦ, 𝜣ሬሬԦ൯𝔼ൣ𝛿𝜣ሬሬԦ𝛿𝜣ሬሬԦT൧∇𝑓൫𝒙ሬሬԦ, 𝜣ሬሬԦ൯
T

 

= 𝓙𝑽൫𝒙ሬሬԦ, 𝜣ሬሬԦ൯𝓙T 

(4.6) 

where 𝔼[… ] is the expected value operator. The multi-variate derivative is 

defined as the Jacobian ∇𝑓൫𝒙ሬሬԦ, 𝜣ሬሬԦ൯ = 𝓙, and is also known as the sensitivity 

matrix. The covariance between the outputs is given by 𝑽൫𝜣ሬሬԦ, 𝜣ሬሬԦ൯.  

There are number of assumptions made for this analytical method to work. The 

conditions for the GUM uncertainty framework are given below [132]: 

1. Measurement model must be approximately linear under small 

perturbations. If higher-order terms in the Taylor expansion become 

non-negligible, the approximation is no longer valid. 

2. The central limit theorem must apply. 

3. Uncertainty sources must be quantifiable. 

4. Measurement model must be differentiable. If this is not the case, then 

the sensitivity coefficient must be able to be found empirically. 

5. The Welch-Satterthwaite formula for calculating effective degrees of 

freedom must apply. 

If the off-diagonal components of 𝑽൫𝜣ሬሬԦ, 𝜣ሬሬԦ൯ are zero, i.e. the influence quantities 

are completely uncorrelated, then eq.(4.6) can be simplified to  
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൰

2

𝜎𝛩1
2 + ൬

𝜕𝑦

𝜕𝛩2
൰

2

𝜎𝛩2
2 + ⋯. (4.7) 

From eq. (4.7) it can be seen how the central limit theorem applies to many cases 

of measurement uncertainty when considering first-order expansions only. 

 Monte-Carlo method 

Another method of propagating uncertainty is the Monte-Carlo method. 

Information on how to apply the Monte-Carlo method to a measurement 

system is found in supplement 1 to the GUM (2008). ISO 15530 part 4 concerns 

the use of Monte-Carlo method regarding tactile CMSs. The Monte-Carlo 
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algorithm is outlined Algorithm 2, with a graphical representation given in 

Figure 4.1. 

Algorithm 2 Monte-Carlo method to establishing a confidence 

interval. 

 

For more computational expensive processes, the algorithm can be repeated 

until convergence instead [133]. Random number sampling can be found in 

Von Neumann [134]. 

 

 

Figure 4.1 The propagation of uncertainty using the Monte-Carlo 

method. 

The Monte-Carlo method is effective when the analytical method is not 

applicable due to the stated assumptions being broken, if the covariance matrix 

𝑽 is too large to handle (the covariance matrix size scales to the power of 2), or 

if a function has no analytically derivable sensitivity coefficients. 

Define the virtual process 𝑓(… ) that is under investigation.  

Define the arbitrary PDF, 𝒬(… ), of each input vector 𝒙ሬሬԦ𝑖, that is fed into the 

 virtual process. 

For 106 repetitions: 

 Sample a random number 𝒙̃𝑖 from 𝒬(… ) for all input vectors. 

 Find virtual output 𝒚̃𝑛 = 𝑓(… ) using the samples 𝒙̃𝑖. 

End For 

Define a PDF of the virtual outputs 𝒚̃𝑛. 

Generate a confidence interval 𝝈ሬሬԦ𝒚. 
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 Reduced 𝝌𝟐 test 

This subsection will define the 𝜒2 test that will be used in this thesis to conduct 

tests on uncertainties. Traditionally, a 𝜒2 test is used to determine if two 

quantities are significantly different given their distribution is known. The sum 

of a squared set of 𝑘 quantities, drawn from normal distribution of mean 0 and 

variance 1, 𝑥𝑖~𝒩(0,1), will follow a 𝜒𝑘
2 distribution, with 𝑘 determining the 

degrees of freedom, 

 
෍ 𝑥𝑖

2

𝑘

𝑖=0

= 𝑦~𝜒𝑘
2. (4.8) 

A quantity drawn from an arbitrary normal distribution 𝒩(𝜇, 𝜎) can be 

transformed into a quantity drawn from 𝒩(0,1) by 

 𝑥𝑖 − 𝜇

𝜎
= 𝑥𝑖

′~𝒩(0,1). (4.9) 

The transform can also be generalised to 𝑁 dimensions where 𝒙ሬሬԦ𝑖~𝒩(𝝁ሬሬԦ, 𝑽). 

Because the covariance matrix is—by definition—a Hermitian positive semi-

definite matrix, it can be decomposed 

 𝑪𝑪T = 𝑽, (4.10) 

using a Cholesky decomposition [135]. A set of random uncorrelated variables 

drawn from 𝒩൫𝟎ሬሬԦ, 𝕀N×N൯ can be given arbitrary correlations by applying the 

linear transform 𝑪, and can therefore be uncorrelated with 

 𝑪−1(𝒙ሬሬԦ𝑖 − 𝝁ሬሬԦ) = 𝑥𝑖
′~𝒩൫𝟎ሬሬԦ, 𝕀𝑁×𝑁൯. (4.11) 

Given 𝑘 samples of vector 𝒙ሬሬԦ𝑖 of size 𝑁, the appropriate 𝜒2 test is given by 

 
෍(𝒙ሬሬԦ𝑖 − 𝝁ሬሬԦ)T𝑽−1(𝒙ሬሬԦ𝑖 − 𝝁ሬሬԦ)

𝑘

𝑖=0

= 𝑦~𝜒𝑘×𝑁
2 , (4.12) 

where 𝑦 is checked against a critical value of the 𝜒𝑘×𝑁
2 , which here is a value at 

which only 5% of values drawn from 𝜒𝑘×𝑁
2  are expected to be higher. For 

simplicity, a reduced 𝜒2 test is 

 1

𝑘𝑁
෍(𝒙ሬሬԦ𝑖 − 𝝁ሬሬԦ)T𝑽−1(𝒙ሬሬԦ𝑖 − 𝝁ሬሬԦ)

𝑘

𝑖=0

= 1, (4.13) 

And is typically used for testing an uncertainty interval. A test result of ≫ 1 

means either 𝝁ሬሬԦ or 𝑽 or both are invalid. A test result or ≪ 1 means the 

covariance matrix 𝑽 is too large. A test result ≈ 1 indicates success.  
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 Summary 

This chapter has provided relevant background methods in determining 

uncertainty for a fringe projection measurement. The methods included here 

are a general analytical method and a numerical method, namely the Monte-

Carlo method, to propagate uncertainty. Finally, a test is given that can be used 

to evaluate the validity of a proposed uncertainty value for a measurement. 

 



 

 – Methods of fringe 

projection uncertainty evaluation 

In this chapter, the current state of the art in uncertainty evaluation in fringe 

projection is reviewed. Several factors have hindered the development of 

uncertainty within fringe projection; a lack of independent traceable 

realisations of system parameters, significant uncertainty evaluation 

complexity, domination of errors related to the measurement surface and 

difficulty in verifying uncertainty conditions. 

Given a valid method to propagate uncertainty to the final measurement, an 

independent realisation of the system parameters would allow an evaluation 

of uncertainty of the measurement independent of the measurement surface. 

However, there are limited methods to independently measure the focal length 

of a camera [136], and no accepted way to independently measure the origin of 

the camera and projector pinhole models [137]. No direct measurements of 

these parameters can be made with traceable instruments, instead novel 

methods must be used.  

The following sections will cover the current state of literature evaluating 

uncertainty in fringe projection systems. Uncertainty models can generally be 

categorised into three groups: geometrical, empirical, and virtual models. 

Geometrical models typically define uncertainty using parameters taken from 

the fringe projection measurement model. The advantage of this method is that 

each model is based on a real physical attribute, which can provide information 

on improvements to be made to the system. Empirical models do not base 

parameters on physical attributes of the system. The advantage of an empirical 

model is its simplicity – but that same simplicity may prevent the model from 

representing more complex aspects of a fringe projection system. Virtual 

models aim to recreate the measurement virtually, using a full description of 

the measurement scenario. The virtual technique is the most complicated, but 

it has the advantage of being constrained by fewer working assumptions than 

either geometrical or empirical models. This section will cover geometrical 

models in Section 5.1, empirical models in Section 5.2 and virtual models in 

Section 5.3. 
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 Geometrical models 

With fringe projection primarily based on geometrical optics, many uncertainty 

evaluations have been based on using the parameters that derive from the 

pinhole camera model. Generally, this works best when describing phenomena 

that are well-described by geometrical optics but can fail when considering 

phenomena that are less well-described, such as resolution.  

Due to the simplicity of alternative triangulation methods (see Section 2.3.2), it 

is common to create an uncertainty model based on these methods [138-140]. 

Such uncertainty models would similarly be subject to limited working 

constraints and simplifications. Certain extensions on the alternative models 

allow for a more comprehensive uncertainty evaluation on the parameters 

[141]. Existing uncertainty models based on Zhang’s method are highly 

simplified [114, 142], but highlight the difficulty in quantifying the uncertainty 

of fringe projection – that there will be significant correlation between 

calibration parameters and world coordinates used in the calibration step. 

Geometrical models based on the analytical method have problems dealing 

with the high data-density. Each point within the point-cloud is derived from 

a common set of parameters that define the fringe projection system, see Section 

2.3.2. The error of every point will therefore be highly correlated with the error 

of every other point. For 𝑛 points there will exist a covariance matrix of size 

𝑛 × 𝑛. One simplification is to assume homoscedasticity, i.e., the error of each 

point is independent and identically distributed, allowing uncertainty to be 

represented by a single quantity. Another simplification is to assume the errors 

are heteroscedastic, but uncorrelated, allowing uncertainty to be represented 

by just 𝑛 terms. However, since every point is derived from the same set of 

uncertain parameters, both assumptions of homoscedasticity and uncorrelated 

heteroscedasticity fail. 

Each point within a point-cloud is only known by its relative position, i.e., its 

position in relation to every other point. The fitting of prismatic shapes is 

generally insensitive to measurement noise that is uncorrelated using the 

correct fitting algorithms [143]. Evaluating uncertainty using only 

heteroscedastic, uncorrelated terms neglects local effects on the measurement 

point-cloud that is the result of uncertainty in system parameters. The off-

diagonal terms within the covariance matrix cannot be ignored and must be 

accounted for. 

Computational complexity can be quantified using big 𝑂 notation. Big 𝑂 

notation defines how a function behaves when its argument tends to infinity 
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and is given by some function 𝑓, written as 𝑂൫𝑓(𝑛)൯, with 𝑛 being the size of 

the function argument. Using a multivariate Gaussian to model the distribution 

of quantities for each point in a point-cloud of 𝑛 points uses 𝑛 × 𝑛 coefficients. 

Therefore, the computation cost scales by 𝑂(𝑛2), but given there are only ∑ 𝑖𝑛
𝑖=1  

unique coefficients, the memory scales by 𝑂 ቀ
𝑛(𝑛+1)

2
ቁ. The benefit of fringe 

projection is the increased data density – a typical measurement is upwards of 

a million points. Fringe projection’s high data-density is problematic for 

geometrical models. In Figure 5.1, the approximate memory size of the 

relationship coefficient when measuring two spheres or a flat plane is shown.  

 

Figure 5.1 A log plot giving the memory size of an optimized 

covariance matrix of a point cloud. It is assumed here each value is 

stored as a 64-bit float. Typical off-the shelf memory is taken at 32 

GB. A sphere is approximated to have between 4 × 104 to 1.4 × 105 

points. A typical flat plane measurement is approximated to have 

between 5 × 105 to 2 × 106 points. 

Common simplifications are to ignore uncertainty in the distortion coefficients 

[138, 139] or only focus on single influence quantities such as pixel quantization 

[144]. The problem with considering only one influence factor at a time is the 

lack of consideration for interactions between influence quantities. More 

rigorous models that do include distortion, find that the measurement result is 

highly-sensitive to distortion parameters and should not be ignored [145]. 

Other uncertainty models can derive effective uncertainties in common 

intrinsic parameters from gauge blocks [146], but still neglect distortion 

parameters [147, 148]. Additionally, many methods will neglect the 



78 Chapter 5 – Methods of fringe 

projection uncertainty evaluation 

contribution of the correspondence algorithm to the uncertainty – this is known 

as “phase error”, which is a significant component of the error with fringe 

projection [149].  

Monte-Carlo methods allow for a reduction in analytical complexity at the cost 

of computation time [150], which is useful when propagation uncertainty in 

both triangulation methods [149] and correspondence methods [151]. The 

Monte-Carlo method is also able to propagate uncertainty in numerical 

calculations, such as those used in camera calibration [152, 153], although this 

method has yet to be applied to fringe projection. 

 Empirical models 

Empirical models do not base their parameters on the pinhole model and are 

instead based on variables chosen for their ease of use. Variables may be 

derived from some theoretical foundation. Empirical models will require their 

own evaluation, i.e. an additional round of measurements to discern the 

relationship between uncertainty and the chosen variables. An example of this 

is a simple model evaluating uncertainty purely as a function of position and 

orientation of an object within the measurement volume [154]. The advantage 

of these models is that the parameters used are significantly lower in number 

and easier to determine. The benefit of using an empirical model, such as the 

model given in Sankowski, Włodarczyk [154], is that the simplicity allows 

measurement performance to be tracked day-by-day, with certain conditions 

triggering a re-calibration. An empirical model can also be used to optimise 

camera calibration in terms of select parameters such as the number of targets 

used [155]. 

Performance verification is an example of an empirical model. A performance 

verification test relates measurement length and size to a maximum 

permissible error (MPE), which is like an uncertainty. Performance verification 

test will be included here for completeness. ISO 10360-13 [156] is a new 

standard dealing with performance verification in optical CMS such as fringe 

projection. VDI/VDE 2634-3 [157] also deals with performance verification in 

the same manner. The two performance verification methodologies use 

measurements provided by artefact features, such as sphere-to-sphere distance 

or flatness. The measured features are compared against the same traceable 

“true” features. Performance verification can be a useful tool to compare 

competing fringe projection systems. However, such a performance 

verification only demonstrates that the machine meets its specification for 

measuring simple features. Performance verification does not give an 
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uncertainty value. To obtain a more generic uncertainty would require 

“sampling” the measurement volume at many different locations. Even then the 

uncertainty evaluation would only be valid for measuring surfaces that have 

the same optical characteristics [115, 158]. The current performance verification 

tests given in ISO 10360-13 do not accurately reflect the true nature of the 

measurement error [159]. 

Spatial kriging, otherwise known as Gaussian process regression, is a powerful 

tool allowing the full estimation of a continuous field from a few discrete 

sampling points, along with an uncertainty, and lends itself well to point-

clouds [160]. Spatial kriging can estimate the uncertainty that comes with 

interpolating between discrete measurement points by estimating the range of 

interaction within the dataset. A typical 1D example of spatial kriging is 

illustrated in Figure 5.2. Kriging has recently been used to estimate fringe 

projection uncertainty with respect to position within the measurement volume 

[161]. Kriging can also be used to estimate camera distortion [162], and can be 

adapted for use in a projector [51] to allow for distortion estimation [163].  

The downside to spatial kriging is the expensive computational cost of 

interpolating points. Spatial kriging is an 𝑂(𝑛3) problem [164], and it is common 

to use hardware acceleration, such as the GPFlow library that runs on 

TensorFlow [165, 166], to improve computation time. By approximating the 

dataset with 𝑚 latent variables, instead of using all 𝑛 datapoints, sparse kriging 

can reduce the complexity of interpolation form 𝑂(𝑛3) to 𝑂(𝑛𝑚2) [167]. Kriging 

has only recently been introduced to fringe projection; further research is 

required to optimise this approach.  
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Figure 5.2 Spatial kriging of an arbitrary noisy function. The red line 

indicates the mean predicted outcome of the function, while the 

shaded area is a 95% confidence interval. 

Since an empirical model chooses parameters based on simplicity over physical 

reality, it is difficult to know exactly when an empirical model is valid. The 

measurement artefacts used to characterise parameters in an empirical model 

must be chosen carefully, otherwise the empirical uncertainty will be 

intrinsically linked to the specific measurement object. 

 Virtual models 

Complexity can make more traditional analysis methods ineffective. If a 

complete, rigorous model is available that describes a physical process, then 

that model can be used to create a “digital twin” of the process in question. 

Digital twins are used to faithfully recreate a physical process, when that 

physical process is too costly to run, such as modelling airplane component 

degradation [168] or city-planning [169]. A digital twin is built from first 

principles, e.g., the propagation of light (as either a ray or a wave). In this way, 

the digital twin can model arbitrary processes by recreating the measurement 

indication, in the case of fringe projection a camera image. The camera image 

would subsequently be input to the measurement process to create a final 

measurement result, a point-cloud. Using the Monte-Carlo method (see Section 

4.3), a set of measurement results can be built up using random sampling, and 

an uncertainty obtained. Virtual models are well-suited to handle the complex 

interrelationships between influence quantities, such as camera optical 
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resolution and surface reflectivity, since they are inherently modelled by the 

digital twin. 

The concept of the digital twin is a significant part of Industry 4.0 [170], and 

can be used to automate measurement strategies in tactile CMS [171-173]. 

Digital twin guides can be found in GUM supplement 1 [150] and NPL [174]. 

Digital twins have been used extensively in tactile CMS [175, 176] and can be 

used in non-ideal industrial conditions [177]. Digital twins for optical CMS exist 

[178] but are typically limited.  

Digital twins produce results that are only as accurate as the model used to 

create the twin. Trust in the twin requires validation and verification [179]. In 

theory, a virtual model should have comparable physics, be accurate and low 

computation times, but in practice, there is often a trade-off. Choosing the 

correct model can raise difficult questions [180]. It remains an open question as 

to whether a virtual instrument can be applied to fringe projection. 

Current virtual models of fringe projection vary in complexity. Some models 

only vary the phase in the correspondence algorithm [181, 182], being only 

applicable to simple linear triangulation methods, see Section 2.3.2. More 

sophisticated methods may use ray tracing. Ray tracing is a widely-used 

method that can simulate the propagation of light, based on geometrical optics 

[183]. 

Fringe projection models based on ray tracing vary in complexity. Basic models 

assume negligible distortion and Lambertian reflectivity [40, 184-186]. More 

advanced models can include surface scattering, modelled using a measured 

bidirectional reflectance distribution function (BRDF) representation of the 

measurement surface optical characteristics [187, 188]. Ray tracing models can 

be even more comprehensive and consider the effects of multiple-scattering 

[189-191]. 

While virtual models are adept at handling complex influence quantities and 

their interrelationships, it can be difficult to verify the virtual model is 

functioning correctly. A fringe projection system measurement provides a very 

complicated scene to render with ray tracing. The influence factors and their 

interrelationships (see Chapter 3), such as the relationship between surface 

contrast discontinuities and optical resolution of the camera, show that 

common approximations for multiple scattering, surface reflectivity and 

resolution will invalidate the virtual model in some way. The magnitude of the 

errors introduced by such approximations is unknown. It remains an open 
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question exactly how accurate a digital twin is required to be, in the trade-off 

between accuracy and computation time, to faithfully model fringe projection. 

 Summary 

This chapter categorises three distinct models available in literature to evaluate 

uncertainty in fringe projection. Models are categorised into geometrical, 

empirical, and virtual models. In addition to categorisation, the limitations, and 

advantages of each model have been discussed. Each model has currently failed 

to evaluate uncertainty in fringe projection. Geometrical models become too 

complex when considering complex phenomena such as resolution. Empirical 

models add extra work while their validity across different measurements is 

generally poor. Virtual models are currently beyond capabilities to validate the 

model. 

 



 

 – Feature localisation 

The aim of this chapter is to develop a method of localising features within 

images that are both accurate and provides a reasonable evaluation of 

uncertainty. Calibration requires known quantities and a measurement of those 

same known quantities, as well as a method to compare the two. The calibration 

method used in this thesis is defined in Chapter 7. In fringe projection, the 

measurement of a known quantity is typically completed using an artefact with 

features of known position that can be localised within the camera image. The 

act of identifying and accurately localising all sets of features is called feature 

localisation in this thesis. The feature localisation method defined here must 

provide both the position of each feature as well as an uncertainty evaluation. 

The calibration will then provide a parameter estimation with an uncertainty 

that can be propagated through to the final measurement. Failures in the 

feature localisation will also propagate to the final measurement and provide a 

poor measurement or uncertainty evaluation. 

In Section 6.1, the choice of feature artefact is discussed, and a dot grid artefact 

is chosen as the calibration artefact. Section 6.2 provides information on the dot 

grid as well as independent measurements of the dot grid and its features. An 

overview of the feature localisation method is given in Section 6.3, and Sections 

6.4, 6.5, 6.7 and 6.8 all define specific sections of feature localisation. Section 6.6 

provides validation on certain sections of feature localisation. A repeatability 

test in Section 6.9 is used to provide information on the warm-up time of the 

fringe projection system. 

 Feature artefacts 

This section will discuss feature artefacts used in the calibration of fringe 

projection systems. A feature artefact provides a set of identifiable marks, 

called fiducials, that provide a known reference quantity – the relative positions 

of all fiducials on the artefact. Typically, the same artefact is imaged multiple 

times in different positions and orientations, each unique image of an artefact 

is called a pose. An ideal feature artefact is chosen for its information content, 

and the accuracy and precision to which its features can be localised. 
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Feature artefacts are split into two categories, active and passive artefacts. An 

active artefact dynamically generates its fiducials providing much higher 

information content. The feature localisation work is entirely completed by the 

active target. Active targets work by typically following an algorithm such as 

those referenced in Section 2.4, such as binary patterns [192], through the use 

of a liquid crystal display (LCD). Active targets generally provide higher 

accuracy at lower spatial frequencies than passive targets, so are useful when 

performing feature localisation on defocused systems [193, 194]. Active 

artefacts require some pre-processing to increase the accuracy of the feature 

localisation due to pixel-quantization and refraction effects [193, 195]. 

Obtaining an uncertainty in a localised feature on an active artefact is far more 

complex compared to the passive artefact given its more complex nature. To 

reduce complexity in an uncertainty evaluation on the feature localisation, 

active targets will not be chosen. 

Passive artefacts have fixed fiducials and are generally more widely used than 

active artefacts given their availability and well-established use in calibrations. 

Typically, a passive target is limited by its original manufacturing accuracy, but 

this can be improved by including the target in the optimisation [196, 197]. The 

accuracy of the feature artefact can be problematic, but more sophisticated 

calibration algorithms can alleviate some of the problems [198]. There are many 

choices of passive artefacts, the only limitation is the ability of the artefact to 

provide enough easily recognisable fiducials to estimate all parameters of the 

system, given that every pose of the feature artefact adds 6 parameters to be 

estimated [199]. The calibration of a fringe projection system adds another 

constraint to the choice of feature artefact: to obtain the fiducial locations in the 

projector image, the artefact must not hinder the correspondence decoding 

process. Many fiducials are provided as a coloured pattern on the surface of the 

artefact. It is well-known that the measurement surface, and in particular 

contrast discontinuities, greatly affect the measurement result (see Section 3.3). 

The choice of fiducial, as well as the choice of surface material will greatly affect 

the inference of projector points. 

The most popular pattern in camera calibration is the checkerboard [200, 201], 

with every corner providing a fiduciary marker. Feature localisation is 

completed by either calculating saddle points or by projecting lines across the 

artefact’s surface [202]. However, the sharp discontinuities in contrast across 

the surface degrade make it difficult to accurately infer the projector pixel 

location at the corners [203]. Additionally, determination of checkerboard 

corners is greatly influenced by the exposure levels of the camera, which must 

be finely tuned so as to avoid underexposure or overexposure [204] – which is 
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particularly difficult when considering fringe projection. Checkerboards can be 

coloured so as not to interfere with the colour used by the projector during 

correspondence decoding, but this method is not perfect. 

An alternative common pattern is the dot grid [205]. Although the dot grid also 

contains contrast discontinuities, they are symmetrical about the point of 

interest, which greatly simplifies the inference of the projector points. 

Therefore, the dot grid is generally favoured for fringe projection calibration 

[206]. However, a disadvantage of the dot grid is there is an extra processing 

step to correct for eccentricity [44, 207-210], see Section 6.8. 

Traditionally, the pattern of dots is uniform, but can be random. Random dot 

patterns provide similar benefits of using a traditional dot pattern in fringe 

projection, but offer slightly higher information content [211]. Instead of well-

defined features, noise-like patterns can be used to provide even more 

information content [212]. However, the processing step in the noise-like 

patterns is far more complicated, and the pattern will suffer from the contrast 

discontinuity problem that also plagues checkerboards. 

Dot grids provide the simplest fiducials while also maintaining good levels of 

accuracy and being easily obtainable. The errors caused by contrast 

discontinuities as fiducials can be easily managed by a dot grid given its 

symmetry, making the inference of the projector dot centre simple and accurate 

as opposed to a checkerboard. Therefore, the dot grid is chosen as the feature 

artefact for use in this thesis.  

 Dot grid 

This section will define the dot grid to be used in the proceeding work. The dot 

grid used in this work, obtained from Calib.io, is shown in Figure 6.1. 
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Figure 6.1 Calib.io dot grid used for the calibration throughout this 

thesis. 

The position and quality of the dots were measured by Veras metrology using 

an optical CMS. The optical CMS has a maximum permissible error (MPE) of 

𝑀𝑃𝐸𝐿 = 2.5 μm +
𝐿

1000
 μm, where 𝐿 is a length in mm.  The MPE shall be treated 

as a uniform distribution of half length 𝑀𝑃𝐸𝐿. The MPE can be related to an 

uncertainty given as 𝜎𝑀𝑃𝐸
2  by 

 𝜎𝑀𝑃𝐸
2 =

2 × 𝑀𝑃𝐸𝐿
2

12
. (6.1) 

Each dot has an inherent error of non-circularity given by the quantity 

circularity. The circularity is defined as the difference in diameter between the 

largest circle that can be drawn inside the section and the smallest circle that 

can be drawn outside the section, while maintaining concentricity between the 

two circles. This concept is shown in Figure 6.2. The circularity shall be treated 

as a non-uniform distribution  
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Figure 6.2 The fitted circle (green) and the difference between the 

minimum and maximum fitted circles (red area). 

The final uncertainty on the position of the dot centre can be found by 

propagating the uncertainty of the circularity through a circle fitting function 

 𝑿𝜷ሬሬԦ = 𝒚, (6.2) 

 ቂ
𝑥1 𝑦1 1

⋮
ቃ ቎

2𝑥c

2𝑦c

𝑟2 − 𝑥c
2 − 𝑦c

2
቏ = ൤𝑥1
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2

⋮
൨ . (6.3) 

The uncertainty, defined by the circularity and treated as a uniform 

distribution, can be transformed to a normal distribution width 𝜎CIRC using eq. 

(6) from the GUM  

 𝜎CIRC
2 (𝑥2 + 𝑦2) = ቀ

𝜀CIRC

2
ቁ

2

×
1

12
, (6.4) 

where 𝜀CIRC is the form error value. Although strictly there are errors in both 

the regressors 𝑿 and dependent variable 𝒚ሬሬԦ, it is approximated that errors only 

appear in the dependent variable which will greatly simplify the following 

analysis. The approximations 𝜎CIRC
2 (𝑥c) = 𝜎CIRC

2 (𝑦c) and 𝜎CIRC
2 (𝑥c, 𝑦c) = 0 are also 

used for simplicity. There will some covariance and heteroscedasticity between 

the axes 𝑥 and 𝑦 from the printing process, but this can be expected to be 

negligible. The errors can therefore be found by 

 𝜎CIRC
2 = 𝜎2(𝑥2 + 𝑦2)

1

∑ 𝑥𝑖
2𝑁

𝑖=1

. (6.5) 

where 𝑁 is the number of points used in the regression. The expectation of the 

square is given as 
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 𝔼(𝑥𝑖
2) =

1

𝑁
෍ 𝑥𝑖

2

𝑁

𝑖=1

=
𝑟2

2
, (6.6) 

and therefore the eq. (6.5) can written as  

 𝜎CIRC
2 =

2

𝑁𝑟2
𝜎2(𝑥2 + 𝑦2). (6.7) 

The uncertainty in position due to non-circularity is related to the circularity 

quantity by 

 𝜎CIRC
2 =

𝜀CIRC
2

24𝑁𝑟2
. (6.8) 

The highest measured circularity on the got grid is 100 μm. For dot of size 

3.6 mm measured using 50 points, the resulting uncertainty in position is 

approximately 0.2 μm. The lowest uncertainty resulting from the MPE is 

approximately 1.5 μm – the circularity will have a small, almost negligible effect 

on the overall uncertainty. The uncertainty in 𝑥 and 𝑦 of each point is found by 

 𝜎2(𝑥) = 𝜎2(𝑦) = 𝜎CIRC
2 + 𝜎MPE

2 . (6.9) 

The dot grid was also measured for its flatness. The deviation of the dot grid 

was found by measuring the dot grid on a tactile CMS, given an MPE of 2.5 μm. 

The flatness deviation was found to be approximately 40 μm. The dot grid is 

assumed to be perfectly stiff, and not bend during the calibration. There will 

however be some bending in the calibration board, but it is assumed to be 

negligible. Similarly treating the MPE as a uniform distribution, a transform to 

a normal distribution gives 

 𝜎2(𝑧) =
52

12
≅ 3 μm. (6.10) 

The magnitude of the uncertainty ඥ𝜎2(𝑥) + 𝜎2(𝑦) for every dot on the dot grid 

is shown in Figure 6.3. The deviation from flat measured across the dot grid is 

given in Figure 6.4. 
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Figure 6.3 The magnitude of the uncertainty in the x and y plane of 

each dot across the dot grid. 

 

Figure 6.4 The deviation from flat across the dot grid board with the 

dots in black. 

 Feature localisation overview 

This section will give an overview of the feature localisation method used in 

this thesis. Given the circular fiducials of the dot grid are imaged as an 
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approximately elliptical shape, this feature localisation method is named the 

ellipse localisation method. Dots refer specifically to the artefact fiducials, while 

ellipses refer specifically to the image of the dots, i.e., their projective transform 

to the image plane. Alternative dot localisation techniques can be found in [44, 

207, 208]. The feature acquisition method must go through several steps, to 

produce a fully localised point within both the camera and projector images. 

An overview of the process is given in Figure 6.5.  

 

Figure 6.5 The outline of the algorithm to localise the centres of dots 

within the camera and projector images. 

Prior to any measurements taking place, a start-up procedure is completed to 

allow thermal equilibrium within the camera and projector to be reached. For 

each pose, a single, well-illuminated image is taken followed by a series of 

images of projected sinusoids following the method given in Section 2.4. The 

camera ellipse locations are found in the single well-illuminated camera image. 

The method of obtaining the camera images used for the ellipse localisation is 

given in Section 6.4. The method to localise the ellipse centres in the camera 

image is given in Section 6.5. The images of projected sinusoids are decoded, to 

give a one-to-one correspondence map of camera pixels to projector pixels, 

called the phase map, using the method given in Section 2.4. The inside of the 

ellipses (the fiducial) provides poor phase measurements, so the surrounding 

local phase is used to estimate the phase map at the centre of the ellipse, and 

therefore convert the ellipse centre from camera coordinates to projector 

coordinates. The camera to projector coordinate transformation method is 
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given in Section 6.7. Given the centre of the dot does not map to the centre of 

the ellipse, Section 6.8 gives a correction method called eccentricity correction. 

 Image acquisition 

This subsection details the imaging process used exclusively within the 

calibration. The aim of this subsection is to acquire images of the dot grid as 

accurately as possible. During the imaging step, a single, globally-illuminated 

image is taken of the dot grid, from which the camera ellipses are extracted in 

Section 6.5. Following this, a series of sinusoids are projected and captured, 

referred to as the “sinusoid images”, that form the images of the modified 

heterodyne correspondence algorithm defined in Section 2.4. The sinusoid 

images will be decoded to give the projector mapping, from which the projector 

ellipse locations are inferred in Section 6.7. 

Since the dot grid is on a flat plane, images of the dot grid can be expected to 

be absent of high-frequency components – except at the ellipse boundaries. 

However, the boundaries are not used in the inference of projector pixels. To 

reduce the impact that noise has on the phase map, sinusoid images can be 

filtered to remove high spatial-frequency components from the image. The cut-

off frequency choice is a trade-off between removing high spatial frequency 

noise and corrupting the surrounding phase map with the ellipse boundary. 

The filter is chosen to be a Gaussian filter with width 𝜎 = 0.28, shown in Figure 

6.6. 

 

Figure 6.6 Gaussian filter used on the sinusoid images to reduce 

noise. 
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It was noted by Smith and Cope [125] that calibration should always be 

undertaken in the same conditions that a typical measurement will be carried 

out in. Changes in the system temperature affect optics, the CCD and the DMD, 

while temperature of the surrounding medium can alter the optical path of 

light rays. The temperature is a significant influence factor when considering 

the accuracy of the calibration, see Section 3.4. 

Although a temperature compensation method can be used to alleviate change 

in focal length, the distortion parameters vary unpredictably, see Section 3.4. 

For this thesis, it was chosen not to use temperature compensation methods, to 

reduce complexity. Instead, it was assumed the fringe projection system 

reaches an equilibrium temperature after some time period. It is common to 

implement a warm-up period in fringe projection systems, for example in the 

GOM ATOS Core 300. The time period for this fringe projection system was 

found to be 45 mins, the result of which is taken from the repeatability test 

given in Section 6.9. 

Secondly, pixels can be identified as saturated using the globally illuminated 

image. Any pixels values at 1023 are considered saturated. By streaming the 

camera image to the user while calibrating, the number of saturated pixels can 

be minimised by highlighting them to the user, to avoid positions of the board 

that are problematic. 

 Camera ellipse localisation 

This section will detail how the centres of the ellipses are localised within 

camera images. This section will also evaluate the uncertainty on the localised 

ellipse centres. To localise the ellipses, gradient methods have been found to be 

a robust method [213], and therefore will form the basis of the method used in 

this thesis. Ellipse centres are localised using an estimation of the ellipse 

boundary, located at gradient peaks within the image. The sub-pixel gradient 

peaks are found using a series of line-spread functions. A rough ellipse centre 

location is found using the method findCirclesGrid in OpenCV 4.5.5. Ellipse 

boundary estimation outliers are removed using a RANSAC algorithm. Finally 

an ellipse is fit to the remaining points using a weighted total least-squares 

algorithm. A typical measurement is given in Figure 6.7 where a poorly imaged 

ellipse has been highlighted. There are several obvious issues with this 

particular dot: there is some specular reflection corrupting the edge pixels; 

there is some significant specular reflections inside the dot; and the projector 

pixels (providing the global illumination) are somewhat visible. The dot 

localisation algorithm must be robust against these specific issues. 
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Figure 6.7 Rough estimation and extraction of an imaged ellipse from 

a dot grid artefact and its surrounding area. 

 Gradient image 

To obtain the gradient image, a 101 × 101 pixel region of the image centred on 

the estimated dot location rounded to the nearest integer is extracted. The 

gradient image 𝑰G is found using convolution of the image with the Sobel 

kernels 𝑺𝑥 and 𝑺𝑦 

 𝑺𝑥 = ൥
−1 0 1
−2 0 2
−1 0 1

൩ (6.11) 

 𝑺𝑦 = ൥
1 2 1
0 0 0

−1 −2 −1
൩, (6.12) 

 𝑰G = (𝑺𝑥 ⊛ 𝑰D)2 + ൫𝑺𝑦 ⊛ 𝑰D൯
2
 (6.13) 

with ⊛ defining a convolution. 

 Line-spread function 

To find the sub-pixel location of the gradient peak, a series of line-spread 

functions are taken of the gradient image that expand radially from the 

estimated centre of the ellipse. It is assumed that the initial ellipse estimation is 

within ±1 pixels. The number of line-spread functions are chosen to be the 

maximum number possible while remaining somewhat independent of each 

other at the ellipse boundary. The extracted gradient image is given in Figure 

6.8. Each white line constitutes a line over which a line-spread function will be 

interpolated from. 
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Figure 6.8 Gradient image with radially expanding lines over which 

line-spread functions are interpolated over. 

The line-spread function is interpolated from the gradient image using a 

bilinear interpolation given by 

 𝑦 = 𝐴(𝑢 − 𝑢𝑣) + 𝐵𝑢𝑣 + 𝐶(1 − 𝑢 − 𝑣 + 𝑢𝑣) + 𝐷(𝑣 − 𝑢𝑣), (6.14) 

where 𝐴, 𝐵, 𝐶, 𝐷 represent the four closest pixel values, and 𝑢, 𝑣 are the sub-pixel 

lengths denoting the position of the new value between pixels 𝐴, 𝐵, 𝐶, 𝐷. A 

diagram of the bilinear interpolation is given in Figure 7. 

 

Figure 6.9 Linear interpolation scheme of a 2D image. The value 

𝐴, 𝐵, 𝐶, 𝐷 are the intensity values of the array at that location, 𝑢 and 𝑣 

are the inter-array coordinates of range [0,1). 
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 Peak determination 

The ellipse boundary is estimated to be at the peak of each line-spread function. 

All line-spread functions are refined together during a single non-linear 

regression using the Levenberg-Marquardt algorithm. Each line-spread 

function is fitted with a Gaussian function, given by: 

 
𝑦 = 𝑔(𝑥, 𝐴, 𝜇, 𝜎) = 𝐴𝑒

−
(𝑥−𝜇)2

2𝜎2 . (6.15) 

The parameters 𝐴, 𝜇, 𝜎 are the peak height, peak centre and peak width to be 

found during the fitting. The fitting process is detailed explicitly in Appendix 

A. The peak height 𝐴 and the peak centre 𝜇 are line-specific parameters. The 

peak width 𝜎 is a dot-specific parameter that is shared by all line-spread 

functions – reducing the degrees of freedom of the overall problem which will 

increase the accuracy and robustness. 

The Gaussian function is chosen for this method because it is assumed that the 

line-spread function follows a similar function to a Gaussian function and 

because the tails of the Gaussian function quickly approaches zero. This is 

advantageous, since there is a lot of noise on either side of the peak, and this 

noise will have no effect on the Gaussian fitting. This allows the Gaussian 

function to effectively filter noisy false peaks on either side of the main contrast 

peak. The disadvantage is that a poor initial estimation will lead to the 

Gaussian function fitting to the wrong peak. A Gaussian function fitted to a 

line-spread function shown in Figure 6.8 is given in Figure 6.10. 

 

Figure 6.10 Gaussian function (red) fitted to the line-spread function 

(black). 
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The Levenberg-Marquardt algorithm requires an estimate, which is found by 

assuming that the semi-major and semi-minor axes of each ellipse do not 

greatly vary, and therefore the peak should occur in roughly the same place. 

The peak estimate is then found by finding the maximum value of the sum of 

all line-spread functions. Since the start of all line-spread functions begin in the 

same pixel, any specular reflection here will appear in all line-spread functions 

and could dominate the sum. An example of this can be seen at around 𝑋 ≈ 0.1 

in Figure 6.10. Given the dot-grid artefact is never far enough away that the 

ellipse will spear small in the camera image, the first 20% of the line-spread 

function is discarded during the initial estimate so there can be no dominating 

effects from specular reflections. If the true Gaussian peak is not within the 

estimated Gaussian curve, the Jacobian could be zero at the true Gaussian peak 

location, and therefore the Levenberg-Marquardt algorithm will fail to 

converge to this location. Therefore, an initial estimate of the Gaussian curve is 

provided that is large enough to always encompass the true Gaussian peak 

location – avoiding this issue. Significant specular reflection close the ellipse 

boundary can lead to fitting to the wrong peak, seen in Figure 6.11. 

 Outlier removal 

There is no guarantee that the Gaussian peaks fitted in Section 6.5.3 have 

converged to the correct peak – the outliers in the peak centre estimation data 

must be removed as they do not conform to a normal distribution of errors. A 

random sample consensus (RANSAC) algorithm is used to determine if any 

line-spread functions have fitted to the wrong peak. The ellipse RANSAC 

cleaning algorithm is given in Algorithm 3 below. A series of ellipses are 

defined from a randomly subsampled set of five ellipse boundary points. For 

each randomly defined ellipse, the distance of each point to the ellipse 

boundary is found. The point-to-boundary distance is used to judge the 

viability of the ellipse, where the best ellipse has the lowest collective point-to-

boundary distance. Points are discarded based on the collection of point-to-

boundary distances. 
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Algorithm 3 Ellipse RANSAC algorithm used to identify and remove 

erroneous boundary estimations of ellipses. 

 

The calculation of point-to-ellipse perimeter distance is given in Chou [214]. 

The extracted dot in Figure 6.7 has some significant specular reflections that 

have corrupted the boundary of the ellipse and have the potential for the 

Gaussian to fit to false peaks within the ellipse. A single false peak and several 

poor edge points can be found in the located sub-pixel boundary points given 

in Figure 6.11. The RANSAC algorithm is subsequently able to differentiate 

these corrupted points, denoted as red in the figure. It should be noted that the 

method given in Chou [214] can suffer from numerical inaccuracies – 

particularly oblique ellipses may produce invalid results. Any invalid results 

will be reflected in the uncertainty estimation and will be essentially removed 

from the calibration using the weighting matrix. All ellipses used in this 

calibration were far from this condition. 

Set 𝑁best to 0 

Set maximum distance 𝑑max 

For number of iterations: 

 Randomly sample 5 points without replacement from the total dataset. 

 Fit ellipse to sampled points using the least-squares regression,  

  described in Appendix B 

 Calculate the smallest distance, 𝑑 from each point to the ellipse  

  perimeter. 

 Calculate 𝑁 = ∑(𝑑 < 𝑑max). 

 If 𝑁 > 𝑁best: 

  𝑁 = 𝑁best. 

  Store ellipse coefficients. 

 End If 

End For 
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Figure 6.11 The located sub-pixel boundary of an imaged ellipse. 

Points that have been found to be erroneous are coloured red, 

remaining points are coloured blue. 

 Ellipse fitting 

The ellipse centre can now be localised using the estimated ellipse boundary 

points. An ellipse is defined as ellipse function 𝑓e, 

 𝑓e(𝑥, 𝑦, 𝑥0, 𝑦0, 𝑎, 𝑏, 𝜙)

= ቆ
(𝑥 − 𝑥0) cos 𝜙 + (𝑦 − 𝑦0) sin 𝜙

𝑎
ቇ

2

+ ቆ
−(𝑥 − 𝑥0) sin 𝜙 + (𝑦 − 𝑦0) cos 𝜙

𝑏
ቇ

2

= 1, 

(6.16) 

where (𝑥0, 𝑦0) is the ellipse centre, 𝑎 and 𝑏 are the semi-major and semi-minor 

axes respectively and 𝜙 is an arbitrary rotation. Eq. (6.17) can be compactly 

written with the implicit matrix equation 

  

ቈ
𝑥
𝑦
1

቉

T

ۏ
ێ
ێ
ێ
ێ
𝐴ۍ

𝐵

2

𝐷

2
𝐵

2
𝐶

𝐸

2
𝐷

2

𝐸

2
𝐹ے

ۑ
ۑ
ۑ
ۑ
ې

ቈ
𝑥
𝑦
1

቉ = 0 (6.17) 

 𝒙ሬሬԦT𝑴𝒙ሬሬԦ = 0. (6.18) 

The ellipse fitting algorithm is needed to find coefficients 𝒎ሬሬሬԦ = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹} 

with robustness and accuracy. Given the magnitude ‖𝑴‖ is arbitrary, the 

ellipse coefficients are often shortened to 𝒎ሬሬሬԦ′ = {𝐴′, 𝐵′, 𝐶′, 𝐷′, 𝐸′} to remove this 
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degree of freedom. For information on ellipse fitting algorithms, see Appendix 

B . 

An ordinary least-squares estimation will neglect any error in the regressors. 

Weighted total least-squares will consider the error of the regressors in 

determining the outputs. The weighted total least-squares method given here 

is taken from Amiri-Simkooei and Jazaeri [215] and adapted to the least-

squares method used in Fitzgibbon, Pilu [216]. The weighted total least-squares 

method given in Amiri-Simkooei and Jazaeri [215] is a natural extension to the 

iteratively reweighted least-squares method, described in Appendix B. The 

method given below allows the propagation of uncertainty from ellipse points 

to the ellipse coefficients. 

At each iteration, instead of estimating the error in the observation vector 𝒚ሬሬԦ as 

a parameter during the regression, the error can be estimated from propagating 

the error in the regressor matrix to the dependent variable. The dependent 

variable in this case is given by 𝒚ሬሬԦ = 𝟏ሬሬԦ. The uncertainty in 𝒚ሬሬԦ is given by 𝑽𝑦. The 

uncertainty in the regressor matrix 𝑨 is given by 𝑽𝐴. The notation convention is 

transposed to that supplied in Amiri-Simkooei and Jazaeri [215] to maintain 

consistency with the matrix notation used within this thesis. The ellipse 𝒎ሬሬሬԦ′ is 

found as the solution to 

 
𝒚ሬሬԦ = 𝑨𝒙ሬሬԦ = ൥

𝐴11 𝐴12 ⋯
𝐴21 ⋱ ⋱

⋮ ⋱ ⋱
൩ 𝒎ሬሬሬԦ′. (6.19) 

The regressor uncertainty, 𝑽𝑨, is given in row-leading format (as opposed to 

column-leading in Amiri-Simkooei and Jazaeri [215]). For an ellipse containing 

𝑁 points, the columns and rows of 𝑽𝑨 are covariances of 

 [𝐴11 … 𝐴1𝑁 𝐴21 …]. (6.20) 

It is noted in Amiri-Simkooei, Zangeneh-Nejad [217], that both 𝑽𝑦̂ and 𝑬𝑨 

exhibit some randomness and the weighted total least-squares is only a linear 

approximation. Therefore, when estimating the final uncertainty, a loss 

function is used to estimate the impact of the estimation of 𝒎ሬሬሬԦ′, assuming 𝑽𝑦 to 

be correct, given as 

 𝜎2 = max ൬1, ൫𝒚̂ − 𝑨෡𝒎ሬሬሬԦ𝑖+1 
′ ൯

𝐓
𝑽𝑦̂

−1൫𝒚̂ − 𝑨෡𝒎ሬሬሬԦ𝑖+1 
′ ൯൰. (6.21) 

The total weighted least-square method to fit ellipses is defined in Algorithm 4 

below. 
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Algorithm 4 Weighted total least-squares ellipse estimation. 

In the algorithm above, ⊗ is the Kronecker product. The vec operator 

transforms a matrix into a vector, and its inverse, vec−1, transforms a vector 

into a matrix 

The weighted total least-squares algorithm allows the uncertainty in the ellipse 

boundary points found above to be propagated to uncertainty in the ellipse 

coefficients. An alternative unweighted total least-squares method to estimate 

ellipses is found in Fang, Wang [218]. The novelty here is this is the first time a 

weighted total least-squares method is applied to ellipses for the application of 

calibration of a fringe projection system. The weight total least-squares method 

is tested against other ellipse methods, as well the uncertainty, in Section 6.6.1. 

The image ellipse localisation algorithm is tested in Section 6.6.2. The 

uncertainty in boundary points is shown in Figure 6.12(a), and the uncertainty 

of the ellipse is shown Figure 6.12(b). 

Obtain least squares estimation of the ellipse, 𝒎ሬሬሬԦ𝑖=0
′ = (𝑨T𝑨)𝑨T𝒚ሬሬԦ 

Set 𝑖 = 0 

While not converged: 

 Estimate updated covariance matrix 𝑽𝑦̂ = 𝑽𝑦 + (𝕀 ⊗ 𝒎ሬሬሬԦ𝑖
′)T𝑽𝐴(𝕀 ⊗ 𝒎ሬሬሬԦ𝑖

′) 

 Estimate errors 𝒆ሬԦ𝑨 − 𝑽𝑨(𝕀 ⊗ 𝒎ሬሬሬԦ′)𝑽𝑦̂
−1(𝒚ሬሬԦ − 𝑨𝒎ሬሬሬԦ𝑖

′) 

 Convert to matrix 𝑬𝑨 = vec−1(𝒆ሬԦ𝑨)  

 Estimate updated regressor matrix 𝑨෡ = 𝑨 − 𝑬𝑨 

 Estimate update observation vector 𝒚̂ = 𝒚ሬሬԦ − 𝑬𝑨𝒎ሬሬሬԦ𝑖
′ 

 Solve for the ellipse using weighted least – squares   

   𝒎ሬሬሬԦ𝑖+1
′ = ൫𝑨෡T𝑉𝒚̂

−1𝑨෡൯𝑨෡T𝑉𝒚̂
−1𝒚̂ 

 If ‖𝒎ሬሬሬԦ𝑖+1
′ − 𝒎ሬሬሬԦ𝑖

′‖ < 1 × 10−10: 

  Break While loop, the algorithm has converged 

 End If 

 Iterate 𝑖 = 𝑖 + 1 

End While 

Estimate error using the loss function: 

𝜎2 = max ൬1, ൫𝒚̂ − 𝑨෡𝒎ሬሬሬԦ𝑖+1 
′ ൯

𝐓
𝑽𝑦̂

−1൫𝒚̂ − 𝑨෡𝒎ሬሬሬԦ𝑖+1 
′ ൯൰  

Estimate uncertainty using 𝜎2൫𝑨෡T𝑉𝒚̂
−1𝑨෡൯ 
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(a) 

 
(b) 

Figure 6.12 Uncertainty of the imaged ellipses (a) boundary and (b) 

ellipse centre and perimeter at 95% confidence. 

 

 Camera ellipse localisation validation 

In this section, a series of tests are performed on the methods developed in 

Section 6.5 to validate their performance. In Section 6.6.1, the accuracy of 

different ellipse fitting algorithms are tested against each other. Additionally, 
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the weighted total least-squares method defined in Section 6.5.5 will be tested 

for validity. In Section 6.6.2, the ellipse localisation method defined in Section 

6.5 will be tested for validity using virtual ellipses. 

 Ellipse fitting algorithm test 

In this section, existing ellipse fitting algorithms are compared against each 

other to test how accurately they localise the centre of an ellipse given the 

boundary point estimations. The following ellipse fitting methods will be 

tested: least-squares, iteratively-reweighted least-squares, weighted total least-

squares, Taubin and hyper-renormalisation. The methods least-squares and 

iteratively-reweighted least-squares are defined in Appendix B, weighted total 

least-squares is defined in Section 6.5.5, and Taubin and hyper-renormalisation 

methods are not defined in this thesis but can be found in Kanatani, Sugaya 

[219]. The covariance matrix estimated using the weighted total least-squares 

method defined in Section 6.5.5 will be tested using the reduced 𝜒2 condition. 

Each algorithm is tested on a set of randomly generated ellipse points, where 

the set of ellipse points will be designated the term virtual ellipse. Four tests 

were conducted using varying correlation between points and a set lengths of 

arc of the ellipse. For each virtual ellipse, a random covariance matrix was 

created that would be used to randomly perturb 50 points of an ellipse. To 

simulate the RANSAC algorithm in Section 6.5.4, each point has a 40% chance 

of being discarded. Each ellipse fitting method is tested with 10000 virtual 

ellipses. The distribution of the virtual ellipse parameters are given in Table 6.1. 

Each distribution was chosen to be representative of the conditions the fitting 

algorithms are to perform in. 

Table 6.1 Ellipse quantities and the distributions they are drawn 

from. 

Quantity Distribution 

Centre of ellipse, ቂ
𝑥0

𝑦0
ቃ 𝒩 ቀቂ

0
0

ቃ , 0.1 × 𝕀2×2 ቁ 

Ellipse axes, ቂ
𝐴
𝐵

ቃ 𝒩 ቀቂ
25
25

ቃ , 𝕀2×2 ቁ 

Rotation of ellipse, 𝜙 𝒰(0, 2𝜋) 

Point error, 𝜎 𝒩(0,0.5) 

Correlation, 𝜌 𝒰(0, 1) 

 

Each generated ellipse point was perturbed using a Gaussian error defined by 

𝒩 ቀቂ
0
0

ቃ , 𝑽Rቁ, where 𝑽R is a covariance matrix generated using correlation 

coefficient 𝜌 
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 𝑽𝑅 = 𝕀2×2𝜎𝑅 + ൤
0 𝜌
𝜌 0

൨ 𝜎2. (6.22) 

The algorithm used to define each ellipse is given in Algorithm 5. 

Algorithm 5 Monte-Carlo test of ellipse fitting functions 

 

The results of the full Monte-Carlo test for the five ellipse fitting methods are 

given in Figure 6.13. The ellipse fitting techniques show very similar across all 

scenarios and are all ill-conditioned in the half-ellipse scenario. It is to be 

expected therefore that ellipses in the dot-localisation algorithm that have a 

significant portion of the ellipse boundary corrupted with noise will have 

significantly higher errors in the ellipse fitting. 

For 10000 repetitions: 

 Create random covariance matrix 𝑽R 

 Find Cholesky decomposition of 𝑽R = 𝑪𝑪T 

 Create random ellipse 𝒙ሬሬԦ edge points 

 Generate vector of independently and identically distributed random 

  variables, sampled from 𝝃ሬԦ~𝒩(0, 1)  

 Apply correlation to the random variables with 𝑪𝝃ሬԦ 

 Perturb ellipse edge points 𝒙̆ = 𝒙ሬሬԦ + 𝝃ሬԦ 

 Randomly discard roughly 40% of boundary points 

 Fit ellipse to boundary points 𝒙̆ 

End For 
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Figure 6.13 Comparison of the ellipse fitting methods for a full 

ellipse, three-quarter ellipse and half ellipse.  

Additionally, the uncertainty evaluation of the fitting process from the 

weighted total least-squares fitting for the centre of the ellipses is tested using 

the reduced 𝜒2 test, see Section 4.4. Since each ellipse fitting can be solved with 

at least four ellipse solutions (given the four-way symmetry of an ellipse), only 

the ellipse centre is tested. Regardless, it is only the ellipse centre information 

that is important in the ellipse localisation algorithm. The reduced 𝜒2 test 

results of the weight total least-squares method for each ellipse fitting test was 

0.86, 0.87 and 0.87 for the full ellipse, three-quarter ellipse and half ellipse tests 

respectively. This result shows that the weighted total least-squares function, 

provided with the correct weighting matrix, adequately provides an accurate 

estimation of the ellipse centre rivalling most fitting methods, as well as a 

reasonable estimate of the uncertainty in the ellipse centre. 

 Ellipse localisation test 

In this section, the complete camera ellipse localisation method defined 

throughout Section 6.5 will be tested using a series of virtual ellipse. A virtual 

ellipse in this section is defined as a virtual image, unlike the previous section. 
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To ensure the generated virtual ellipses are consistent with measured ellipse, 

the virtual ellipses will be generated using parameters sampled from real 

measured ellipses. The ellipses are defined using the following parameters 

given in Table 6.2. The parameters are shown in Figure 6.14. The internal 

distribution defines the distribution of intensity values inside the ellipse, while 

the external distribution defines the distribution of intensity values outside the 

ellipse. Specular components within the ellipse are defined as intensity values 

that do not conform to the internal intensity distribution. The blurring kernel 

defines the blur of the image of the ellipse. 

 

Table 6.2 Virtual ellipse parameters. 

Definition Unit 

Ellipse position X axis pixels 

Ellipse position Y axis pixels 

Ellipse semi-major axis pixels 

Ellipse semi-minor axis pixels 

Internal pixel distribution mean unitless 

Internal pixel distribution scale unitless 

External pixel distribution mean unitless 

External pixel distribution scale unitless 

Specular volume unitless 

Specular max unitless 

Blurring kernel width pixels 

 

Figure 6.14 Image of ellipse annotated with the parameters used to 

define ellipses. 



106 Chapter 6 – Feature localisation 

The distributions of the ellipse parameters given above are defined from the 

current dataset of ellipses found during the calibration. This way, the virtual 

dataset will accurately represent the real dataset. To define each parameter 

distribution, each ellipse is first extracted. The internal intensity values are 

defined as all pixels within a perimeter offset −5 pixels from the estimated 

ellipse boundary. The external values are defined as all pixels outside the 

ellipse defined by a perimeter offset +5 pixels from the estimated ellipse 

boundary, so as not to include any pixels corrupted by the contrast boundary, 

shown in Figure 6.15. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6.15 The distinction between “inside” an ellipse and 

“outside” an imaged ellipse. (a) The extracted ellipse. (b) The offset 

perimeters from the estimated ellipse used to define the boundary 

between the inside and outside of the ellipse. (c) The internal pixels 

and (d) the external pixels. 
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The internal and external histogram plots of the internal and external pixels, 

along with a fitted log-normal distribution, shown in Figure 6.16. It should be 

noted that several pixel values are missing – this is possibly due to the camera 

outputting 8-bit numbers, and interpolates pixel values to 10-bit. The error this 

causes is about 0.1% error, negligible compared to the phase error values. 

 
(a) 

 
(b) 

Figure 6.16 The histograms (blue) and overlaid probability 

distribution functions (red) of the (a) internal pixels and (b) the 

external pixels. 

 

The specular components are isolated by identifying pixels that are higher 99% 

of other pixels within the internal region, shown in Figure 6.17. Specular 

components are defined by two parameters, specular volume that defines the 

extent of speckle in the ellipse, and speckle max 
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Figure 6.17 The internal pixels that have been identified as specular 

reflections (red). 

Repeating this for every dot in the calibration gives a distribution of all ellipse 

parameters. The distributions are generally not well-defined by a parametric 

distribution. Kernel density estimation (KDE) is a non-parametric way to 

estimate a variables probability distribution function [220]. The theory of KDE 

and the practical application is outside the scope of this thesis and only a basic 

overview is given here. The KDEpy library is used in this thesis for any KDE 

computations. A kernel density estimate is very similar to a histogram but can 

be endowed with properties such as smoothness or continuity by using a 

suitable kernel. The choice of kernel, i.e., the level of smoothing, and can be 

optimally chosen from the data. Resampling data from the fitted KDE is 

equivalent to (1) first resampling the original data (with replacement), then (2) 

adding noise drawn from the same probability density as the kernel function 

in the KDE. The resampling method can be extended to arbitrary extra 

dimensions. Some consideration must be taken for the correlation between 

some variables. For example, a poor contrast will give a poor ellipse 

localisation. Therefore, the input and output distribution parameters are 

treated in a single 4D KDE. The histograms of each parameter, along with a 

fitted KDE, is give in Figure 6.18. 
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Figure 6.18 KDE of all parameters used to create a virtual ellipse, 

defined using the calibration dataset. 

Some sampled KDEs can produce invalid samples, such as a negative internal 

scale value. In the case an invalid value is drawn, the value is redrawn. The true 

blurring kernel is unknown, and so the test will be repeated with four different 

blurring kernels. The virtual ellipses along with the blur kernels is shown in 

Figure 6.19. 
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(a) 

 
(b) 

 
(c) 

Figure 6.19 (a) Blurring kernels used in the creation of (b) virtual 

ellipses. (c) Four ellipses from the calibration dataset chosen at 

random. 

 

The results of the ellipse localisation algorithm are given in Figure 6.20, and the 

𝜒2 values are given in Figure 6.21. The ellipse localisation performs well with 

all blurring kernels, with the best performance with the square blur kernel. 

Some significant outliers exist where the simulated data has a substantial 

portion of the ellipse boundary corrupted. The 𝜒2 test values show that the 

uncertainty evaluation of the ellipse localisation consistently over-estimates the 

uncertainty in the ellipse locations. 

 

Figure 6.20 Error in ellipse localisation from the Monte-Carlo test 

using each of the four blurring kernels. 
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Figure 6.21 The 𝜒2 values for all ellipse localisation from the Monte-

Carlo test of each blurring kernel. 

 Projector ellipses inference 

This section describes the method used to infer the projector ellipse centre, 

using the camera ellipse centres found using the method in Section 6.5, and the 

decoded mapping images captured and decoded using the method given in 

Section 2.4. Inference is given in three steps, mapping region extraction, 

transform estimation and finally transform application. 

As with the camera, a 101 × 101 region around the ellipse centre is extracted, 

so that the ellipse exists in the centre of the image. The ellipse centre and its 

boundary will not give accurate mapping data and must be discarded. The 

discarded area is found by expanding both the semi-major and semi-minor axes 

by 8 pixels. Pixels located within the expanded ellipse are discarded, leaving 

only the surrounding mapping region that is uncorrupted by a contrast 

boundary or poor contrast, shown in Figure 6.22. 



112 Chapter 6 – Feature localisation 

 

(a) 

 
(b) 

Figure 6.22 Cropped region around the dot for the camera-to-

projector mapping of the (a) 𝑢-axis and (b) 𝑣-axis. 

 

The dot grid is located on a flat plane, so the mapping is given by a rational 

function. However, locally, the mapping can be considered linear and is given 

by  

 
ቂ
𝑢p

𝑣p
ቃ = ቂ

𝐴 𝐵 𝐶
𝐷 𝐸 𝐹

ቃ ቈ
𝑢c

𝑣c

1
቉. (6.23) 

The coefficients 𝑿ሬሬԦ = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹} can be found using the linear regression 

𝒖ሬሬԦp = 𝒖̂c𝑿ሬሬԦ (note that 𝒖̂ ≠ 𝒖ሬሬԦ), 

 

ቂ
𝑢p

𝑣p
ቃ = ൤

𝑢c 𝑣c 1 0 0 0
0 0 0 𝑢c 𝑣c 1

൨

ۏ
ێ
ێ
ێ
ێ
ۍ
𝐴
𝐵
𝐶
𝐷
𝐸
𝐹ے
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, (6.24) 

and the uncertainty can be found with 

 𝑽𝑿ሬሬԦ = 𝜖2(𝒖̂𝑐
T𝒖̂𝑐)−1. (6.25) 

The errors in [𝑢p 𝑣p]T are heteroscedastic, the error in 𝑢p or 𝑣p will be larger 

depending on the board orientation and the orientation of the projector with 

respect to the camera. However, the two mappings [𝑢c 𝑣c 1] → 𝑢p and 

[𝑢c 𝑣c 1] → 𝑣p are both independent (there are no off-diagonal terms in 

(𝒖̂c
T𝒖̂c)−1 defining their interaction). The estimate therefore can be found 

independently using 
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𝜖𝑥

2 = ෍ ቆ𝑢p𝑖 − [𝐴 𝐵 𝐶] ቈ
𝑢c𝑖

𝑣c𝑖

1
቉ቇ

2𝑁

𝑖=1

 (6.26) 

 
𝜖𝑦

2 = ෍ ቆ𝑣p𝑖 − [𝐷 𝐸 𝐹] ቈ
𝑢c𝑖

𝑣c𝑖

1
቉ቇ

2𝑁

𝑖=1

. (6.27) 

The error in projector dimensions 𝑢c and 𝑣c are given in Figure 6.23 (a) and (b) 

respectively. It is also noted that the errors in [𝑢p 𝑣p]T will both present 

autocorrelation, but since the number of observations are high, the errors are 

assumed to asymptotically follow a normal distribution. 

 

(a) 

 
(b) 

Figure 6.23 Error in the camera-to-projector mapping of the (a) 𝑢-axis 

and (b) 𝑣-axis. 

With the transform found, the projector ellipse centres can be found by 

applying the transform to the elliptical centre points. Uncertainty can be 

propagated from the elliptical centres, along with the transform, using the 

propagation of uncertainty given in Section 2.3. 

 Eccentricity correction 

Consider a circle described by the conic 

 𝒙T𝑴𝒙 = 0. (6.28) 

Since 𝑴 describes a circle or radius 𝑟, 𝑴 is given by 

 
𝑴 = ൥

𝑟 0 0
0 𝑟 0
0 0 −𝑟2

൩. (6.29) 

The circle sits at the origin (0,0) without loss of generality. The circle is 

transformed into an ellipse using a projective transformation 𝑯,  
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𝑯 = ൥

ℎ11 ℎ12 ℎ13

ℎ12 ℎ22 ℎ23

ℎ13 ℎ23 ℎ33

൩. (6.30) 

Applying the projective transform on eq. (6.28) gives 

 𝒙T𝑯T𝑴𝑯𝒙 = 0, (6.31) 

which is equivalent to redefining the conic 𝑴 as 

 𝑴′ = 𝑯T𝑴𝑯 (6.32) 

 

𝑴′ = ൥

𝑚11 𝑚12 𝑚13

𝑚12 𝑚22 𝑚23

𝑚13 𝑚23 𝑚33

൩. 
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2 + ℎ21

2 − ℎ31
2 𝑟 

𝑚12 = ℎ11ℎ12 + ℎ21ℎ22 − ℎ31ℎ32𝑟 
𝑚13 = ℎ11ℎ13 + ℎ21ℎ23 − ℎ31ℎ33𝑟 

𝑚22 = ℎ12
2 + ℎ22

2 − ℎ32
2 𝑟 

𝑚23 = ℎ12ℎ13 + ℎ22ℎ23 − ℎ32ℎ33𝑟 

𝑚33 = ℎ13
2 + ℎ23

2 − ℎ33
2 𝑟 

(6.33) 

Note that 𝑴′ has been divided by 𝑟 for simplicity, which will have no impact 

on the properties of 𝑴′. The centre of the ellipse (𝑥0, 𝑦0) is found using 

 𝑥0 =
𝑚22𝑚13 − 𝑚12𝑚23

𝑚12
2 − 𝑚11𝑚22

 (6.34) 

 𝑦0 =
𝑚11𝑚23 − 𝑚12𝑚13

𝑚12
2 − 𝑚11𝑚22

, (6.35) 

and the circle centre can be found by applying the projective transformation 𝑯 

on the circle centre 

 
𝑯 ൥

0
0
1

൩ = ൥

ℎ13

ℎ23

ℎ33

൩ ≠ 𝑠 ቈ
𝑦0

𝑥0

1
቉. (6.36) 

The centre of the circle, therefore, is not projected onto the centre of the ellipse 

– every dot localisation will suffer from eccentricity error, requiring correction. 

The error is displayed graphically in Figure 6.24. 
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Figure 6.24 Eccentricity error caused by the circle centre not being 

projected onto the ellipse centre. 

The eccentricity error is a function of the projective transform, which itself is a 

function of the camera intrinsic and feature extrinsic parameters. This is 

problematic, because the eccentricity error is a function of the parameters 

estimated during the calibration. Given the function that describes the back 

propagation onto the camera, the correction can be found by finding the 

difference between the back propagation of the centre of the dot, and the ellipsis 

fitting of the back propagated edges of the dot. A similar method can be found 

in Gong, Liu [221]. 

 Repeatability test 

In this section, the repeatability of the ellipse localisation will be investigated 

as well as the uncertainty interval of the dot localisation. The repeatability will 

be defined by the CCD noise, projector jitter, DMD noise and environmental 

light noise. Additionally, the camera and projector optics are sensitive to 

internal temperatures. By repeatedly measuring a dot grid, any statistically 

significant external influencing effects not included in the uncertainty 

evaluation can be found. The magnitude of the change in dot location can be 

used as an indicator that the system has reach thermal equilibrium when the 

mean of each dot locations stop moving across the image and exhibit only 

Gaussian noise about a central mean location. 

Two tests will be completed. The first will place the dot grid in differing 

positions across the measurement volume to test for consistency across position 

and orientation, as well as the impact the time in-between measurement has. 
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The second test will be a longer sustained test using one position only to test 

the uncertainty interval. 

Firstly, after turning on all system components (i.e., starting from “cold”), a 30 

minute start-up procedure is completed, to ignore dot location data made when 

the system is far from thermal equilibrium. Immediately following this, 5 

consecutive positions are investigated for several minutes each. The dot grid is 

placed in unique positions and orientations to test for significant differences in 

localisation. For each position, the dot grid is measured repeatedly for 

approximately 10 minutes each. The results are given in Figure 6.25, and the 

positions in Figure 6.25 are given in Figure 6.26. The coloured spread represents 

a single standard deviation from the mean (black line) ellipse location of all the 

points in each camera image. Despite having far higher pixel density, the 

camera remains far more repeatable as well as having far less drift than the 

projector. The projector has significant drift for the first 15 min of operations 

and so the system warm-up time must be set at 45 min. Additionally, in the 

projector images, the first few sets of images for each position are significantly 

different from the rest. This indicates that in the small amount of time it takes 

to set up the new artefact position, the system has fallen somewhat out of 

equilibrium. 
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(a) 

 
(b) 

Figure 6.25 Distance from mean ellipse location taken of 

artefact in each position against the time of the first 

measurement. Distance measured on the (a) camera 

image plane and (b) projector image plane. 
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(a) 
 

(b) 
 

(c) 

 
(d) 

 
(e) 

Figure 6.26 (a-e) Position 1-5 of the board during repeatability test 

as seen by the camera. 

 

In the second test, shown in Figure 6.27, the system is again warmed-up for 

30 min before repeating the test, but this time only in one position. Once 

equilibrium has been reached, i.e., the ellipse locations are no longer trending 

away from the initial position, the succeeding ellipse locations can be tested 

using a 𝜒2 test. The camera does not seem to reach a stable equilibrium, but the 

range of motion is small enough to be considered for testing. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6.27 Distance from initial ellipse location for the (a,c) 

camera and (b,d) projector against the time of the first 

measurement. There is a line drawn at time = 15 min to indicate 

where thermal equilibrium has been reached for the projector. In 

(c) and (d), the drift is magnified 500X and 10X respectively for 

clarity. 

 

The 𝜒2 test results are given in Table 6.3. The results indicate there are no 

statistical outliers when considering the repeatability with regards to the 

uncertainty evaluation. 

Table 6.3 Repeatability test results of the camera and projector. 

 Test value p-value 

Camera 154 12773 

Projector 793 12773 

 

 Summary 

This chapter provides a method to obtain feature locations within a camera 

image of a dot grid artefact, along with an uncertainty evaluation. A dot grid 

artefact is chosen as the feature artefact for use during calibration for its ease of 

use in fringe projection calibration. The dot grid artefact is independently 
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measured using tactile and optical CMS to obtain dot centres and their 

circularity. The feature localisation method is based upon fitting an ellipse to 

estimated ellipse boundary points, found using a non-linear regression of a 

Gaussian curve fitted to 1D lines interpolated from a gradient image. The 

ellipse parameters are estimated using a weighted total least-square estimator.  

The repeatability and validity of the feature localisation method was rigorously 

tested, where the weighted total least-square estimator was tested in Section 

6.6.1, the entire ellipse localisation method was tested on simulated data in 

Section 6.6.2 and the ellipse localisation method was used repeatedly on real 

data in Section 6.9. It was found in Section 6.6.1 that the estimator provided 

accurate ellipse centre determinations as well as valid uncertainties. In Section 

6.6.2 proved the uncertainty evaluation tended to be an overestimate. Section 

6.9 was used to find the warm-up time of the fringe projection system, i.e., how 

long it takes for thermal equilibrium to be obtained so system parameters 

remain constant. A warm-up time of 45 minutes was found to be sufficient. 

The feature localisation method presented in this chapter is an improvement 

over existing feature localisation methods, given this method can provide an 

evaluation of uncertainty on any localised ellipse. This is the first time an 

uncertainty has been provided on a feature used in the calibration of fringe 

projection systems. 

 



 

 – Calibration of a fringe 

projection system 

In this chapter, the method used to calibrate a fringe projection system along 

with an uncertainty evaluation is given. Firstly, an overview of current 

calibration methods is given in Section 7.1. The non-linear calibration method 

used in this thesis is explicitly defined in Section 7.2, which includes some novel 

contributions that allow the evaluation of uncertainty alongside the estimation 

of parameters. In Section 7.3, the outcome of the calibration is given as well as 

a novel estimation of resolution as well throughout the fringe projection 

measurement volume, obtained as a by-product of the calibration. In Section 

7.4, a series of tests are performed on the calibration method to validate the 

method. 

 Overview of fringe projection calibration 

This section will give a brief overview of the calibration process of a fringe 

projection system. In fringe projection, the act of calibration is the operation 

that obtains the system parameters that define the relationship between the 

observed 2D image points and the 3D measurement points. The accuracy in 

determination of the system parameters will be directly reflected in the 

accuracy of a fringe projection measurement. System parameters are split into 

two categories: intrinsic and extrinsic parameters. Intrinsic parameters describe 

the pinhole models of camera and projector along with its geometric distortion. 

Extrinsic parameters define the Euclidean transformation between coordinate 

systems. The complete list of system parameters defining the camera and 

projector are given in Table 7.1 and Table 7.2 respectively.  
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Table 7.1 Complete list of camera parameters required to triangulate 

a point. 

Category Parameter category Parameter 

Intrinsic 

Pinhole 

Focal length, u-axis 

Focal length, v-axis 

Skew 

Principal point, u-axis 

Principal point, v-axis 

Distortion 

Radial coefficient 𝑘1 

Radial coefficient 𝑘2 

Radial coefficient 𝑘3 

Tangential coefficient 𝑝1 

Tangential coefficient 𝑝2 

Distortion centre 𝑢DC 

Distortion centre 𝑣DC 
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Table 7.2 Complete list of projector parameters required to 

triangulate a point. 

Category 
Parameter 

category 

Parameter 

Intrinsic 

Pinhole 

Focal length, u-axis 

Focal length, v-axis 

Skew 

Principal point, u-axis 

Principal point, v-axis 

Distortion 

Radial coefficient 𝑘1 

Radial coefficient 𝑘2 

Radial coefficient 𝑘3 

Tangential coefficient 𝑝1 

Tangential coefficient 𝑝2 

Distortion centre 𝑢DC 

Distortion centre 𝑣DC 

Extrinsic 

Rotation 

Rotation parameter 𝑟1 

Rotation parameter 𝑟2 

Rotation parameter 𝑟3 

Translation 

Translation 𝑥 

Translation 𝑦 

Translation 𝑧 

 

Calibration is carried out by measuring a known artefact and estimating the 

parameters through regression. In this thesis, the known artefact is chosen to 

be a dot grid (see Chapter 6). A general calibration model function is of the form 

 𝒚ሬሬԦ = 𝑓൫𝒙ሬሬԦ, 𝜽ሬሬԦ൯, (7.1) 
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where 𝒚ሬሬԦ describes the measurement output, 𝒙ሬሬԦ gives the input and 𝜽ሬሬԦ describes 

the estimated parameters. Typically, the known artefact points, 𝒙ሬሬԦ are 

propagated to the image plane using the pinhole camera model, (see Section 

2.3.1) using 𝜽ሬሬԦ to produce estimation of image points 𝒚̂, and the regression 

minimises the geometric distance  

 ‖𝒚ሬሬԦ − 𝑓൫𝒙ሬሬԦ, 𝜽ሬሬԦ൯‖. (7.2) 

The propagation to the image plane is called forward propagation, and the 

exact method is given in Section 7.2.3. Alternatively, it is possible to project 

backwards to the artefact instead of forwards towards the image plane, which 

provides a more accurate calibration in the presence of large camera distortions 

[222]. 

There are two calibration schemes to minimise eq.(7.2), linear and non-linear. 

Linear calibration is based on a linear regression that requires all calibration 

points be known in 3D a-priori. Non-linear calibration is based on a non-linear 

regression; only the relative position of the calibration points are known a-

priori and the absolute position is estimated along with the system parameters. 

Linear calibrations generally require extra equipment compared to non-linear 

calibrations to provide a-priori information on the position of calibration 

points. Typically, non-linear calibration is a more robust, accurate and flexible 

method when compared to alternative linear calibration methods [223]. The 

advantage of linear calibration methods is their computational simplicity [224]. 

Bundle adjustment can be considered an extension to the non-linear calibration 

where the artefact points are also refined during optimisation [225]. Other 

alternative calibration methods can be based on projective invariants [226]. 

Given non-linear calibration is very popular for its low set-up cost and high-

accuracy, it shall serve as the basis of calibration in this thesis. 

 Calibration method 

In this section, the calibration method will be explicitly defined, including the 

steps required to include an estimation of the uncertainty in the parameters in 

addition to the parameters themselves. In Section 7.1, non-linear calibration 

was chosen as the calibration method for this thesis for its accuracy and 

robustness. Non-linear calibration of fringe projection systems is an extension 

to the non-linear calibration of cameras [201], and was introduced to fringe 

projection systems in Zhang and Huang [227]. Fundamentally, non-linear 

calibration is a non-linear regression, the solution to eq. (7.2) is found by 

making successive linear approximations to eq. (7.2). The function 𝑓 in eq. (7.2) 
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can be approximated using a first order Taylor expansion about an epicentre 

𝜽ሬሬԦe 

 𝑓൫𝒙ሬሬԦ, 𝜽ሬሬԦ൯ ≈ 𝑓൫𝒙ሬሬԦ, 𝜽ሬሬԦe൯ + 𝓙൫𝜽ሬሬԦe൯൫𝜽ሬሬԦ − 𝜽ሬሬԦe൯, (7.3) 

with the Jacobian 𝓙൫𝜽ሬሬԦe൯ defined as the gradient of 𝒚ሬሬԦ with respect to 𝜽ሬሬԦ, evaluated 

at 𝜽ሬሬԦ = 𝜽ሬሬԦe, 𝓙൫𝜽ሬሬԦe൯ = ቂ
𝜕𝑓

𝜕𝜽ሬሬԦ
ቃ

𝜽ሬሬԦe

, and will be herein shortened to 𝓙. The calculation of 

the Jacobian itself can be challenging, calculation methods are given in Section 

7.2.4. From the epicentre 𝜽ሬሬԦe, a vector 𝜹ሬሬԦ = 𝜽ሬሬԦ − 𝜽ሬሬԦe can be found that minimises 

eq. (7.2), given by  

 ቀ𝓙T𝓙 + 𝜆diag(𝓙T𝓙)ቁ𝜹ሬሬԦ = 𝓙T𝝐ሬԦ = 𝓙T ቀ𝒚ሬሬԦ − 𝑓൫𝒙ሬሬԦ, 𝜽ሬሬԦe൯ቁ. (7.4) 

Iteratively finding the solution to eq. (7.4) is known as the Levenberg-

Marquardt algorithm and is guaranteed to at least find the local minimum 

[228]. The Levenberg-Marquardt algorithm requires an approximate solution, 

which can be found analytically, given some assumptions [201]. 

Heteroscedasticity is problematic in non-linear regression, and typically a 

requirement for a successful regression is that the errors in the vector 𝝐ሬԦ be 

uncorrelated. This requirement can be removed by instead supplying the 

correct weighting matrix in the optimisation, altering eq. (7.4) to give 

 ቀ𝓙T𝑾𝓙 + 𝜆diag(𝓙T𝑾𝓙)ቁ𝜹ሬሬԦ = 𝓙T𝑾𝝐ሬԦ (7.5) 

with 𝑾 = 𝑽𝜖
−1. It is possible to improve the convergence speed of the 

Levenberg-Marquardt algorithm by adding an acceleration term [229] – but this 

is not implemented in this thesis. 

The above methodology can be extended to include projectors, by considering 

the projector as a camera [34, 230]. The projector image is indirectly observed 

using a suitable correspondence algorithm, see Section 2.4, fully defining both 

axes by completing the correspondence decoding once for each axis. The 

camera and projector pinhole parameters and board orientations (in the 

respective views) can be approximated separately and refined either jointly or 

separately. Parameters regressed separately will be referred to as serial 

calibration and parameters regressed jointly will be referred to as parallel 

calibration in this thesis. Estimating parameters jointly reduces the total 

degrees of freedom of the regression since the artefact position and orientation 

must be estimated only once per view. It is expected therefore that a parallel 

calibration should produce parameter estimates of higher accuracy. 
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If the linearization eq. (7.3) approximation holds, the region for which the 

parameter solution exists can be considered linear. For a linear system given by 

𝒚ሬሬԦ = 𝑿𝜽ሬሬԦ where the covariance matrix of the observations 𝒚ሬሬԦ, given as 𝑽𝑦 is 

known, the covariance matrix of the parameters 𝜽ሬሬԦ, given by 𝑽𝜃, is defined  

 𝑽𝜃 = ൫𝑿T𝑽𝑦
−1𝑿൯

−1
. (7.6) 

During the non-linear regression, the following linear system is solved for 𝜹ሬሬԦ, 

 𝓙𝜹ሬሬԦ = 𝒚ሬሬԦ − 𝑓൫𝒙ሬሬԦ, 𝜽ሬሬԦe൯ = 𝝐ሬԦ, (7.7) 

then the parameter covariance matrix 𝑽𝜃 is given by  

 𝑽𝜃 = (𝓙T𝑽𝜖
−1𝓙)−1, (7.8) 

where 𝑽𝜖 is the covariance matrix of the vector 𝝐ሬԦ = 𝒚ሬሬԦ − 𝑓൫𝒙ሬሬԦ, 𝜽ሬሬԦe൯.  

In eq. (7.5) it was shown the role the weighting matrix (inverse of the covariance 

matrix 𝑽𝜖) has in a non-linear regression where the input data is correlated or 

heteroscedastic. In the case of fringe projection: 

1. When considering parallel calibration, the projector and camera images 

have different scales, and since the reprojection error used to regress the 

uncertainties is calculated on the image plane, the projector and camera 

image points will have completely different uncertainties. 

2. The projector ellipse image locations are inferred from camera ellipse 

image locations, and are therefore correlated in some way and will have 

higher errors when compared at the same scale. 

3. The same artefact provides repeated measurements, all repeated 

measurements of the same dot on the dot grid will be correlated in some 

way. 

Therefore, a weighting matrix may be required to perform an optimal non-

linear regression for both the serial and parallel calibration methods. This 

introduces a new issue – the calculation of the weighting matrix. The 

reprojection error 𝝐ሬԦ is a function of both the observation 𝒚ሬሬԦ (the ellipse centres), 

the regressor 𝒙ሬሬԦ (the artefact dot positions) and the estimated parameters 𝜽ሬሬԦ. 

Therefore, so is the covariance matrix 𝑽𝜖 a function of 𝒚ሬሬԦ, 𝒙ሬሬԦ and 𝜽ሬሬԦ. The 

covariance matrix 𝑽𝜖 can be found by propagating error from the artefact 𝒙ሬሬԦ, 

given as 𝑽𝑥, by 

 𝑽𝜖 = 𝑽𝑦 + 𝓙𝑽𝑥𝓙T
. (7.9) 
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Eq. (7.9) can be solved during each iteration of the Levenberg-Marquardt 

algorithm or alternatively, using the assumption that 𝑽𝜖 is somewhat constant 

near the solution locus, an earlier estimation of 𝓙𝑽𝑥𝓙T from a solution of 𝜽ሬሬԦ that 

is very close to the solution – which is used in this thesis. 

It is typical to use 25 positions within the calibration to ensure there is enough 

data redundancy. Given there are 𝑁pos number of positions, 𝑁art number of 

points on the artefact, and each point has two degrees of freedom and is 

measured once in the camera and once in the projector, the regression has 

𝑁pos × 𝑁art × 2 × 2 degrees of freedom. In the case of this thesis, there are 18400 

degrees of freedom, so the weighting matrix has the size 18400 × 18400 – the 

data density can be memory intensive. Because the dot grid is measurement 

many different times, consecutive measurements of the same point will be 

correlated, so 𝑽𝜖 will have significant off-diagonal terms. 

The parallel method is based on simplifying the weight matrix 𝑾 by taking 

advantage of the matrix sparsity, while the serial method will characterise the 

camera and projector separately. The parallel method is expected to have a 

higher accuracy – there are less parameters to estimate. The serial method 

leaves some degrees of freedom that will be investigated as a validation tool. 

The covariance matrix can be reduced by a factor of four by eliminating any 

correlation between camera and projector points. The covariance matrix is 

separated into the camera and projector components and inverted separately. 

The projector points are inferred from the camera points, and the easiest way 

to remove correlation is to use each dot only once in either the camera or the 

projector views. Splitting the input dots roughly in half will reduce the 

computational complexity roughly by a factor of 16.  

 Serial method 

The serial method of characterising both the camera and projector separately – 

with the explicit aim to reduce computational complexity. Both the camera and 

the projector will have their own unique estimates of the feature artefact 

location and orientation. Both artefact estimates are given in coordinate 

systems that are centered and aligned with the camera and projector “pinhole”. 

Therefore, given 𝑁 positions, there are 𝑁 estimates of the camera-projector 

transformed, otherwise known as the extrinsic. The estimation of 𝒒ሬሬԦ and 𝒕Ԧ is 

hereby known as the extrinsic estimation. 

The camera-projector transform 𝒒ሬሬԦ and 𝒕Ԧ relates the camera’s artefact estimation, 

𝑹c and 𝒕Ԧc, with the projector’s artefact transform 𝑹p and 𝒕Ԧp using 
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 𝑹൫𝑹c𝒙ሬሬԦ + 𝒕Ԧc൯ + 𝒕 = 𝑹p𝒙ሬሬԦ + 𝒕Ԧp. (7.10) 

Equating coefficients gives the extrinsic estimation 

 𝑹 = 𝑹p𝑹c
−𝟏 (7.11) 

 𝒕Ԧ = 𝒕Ԧp − 𝑹p𝑹c
−𝟏𝒕Ԧc. (7.12) 

Explicitly, eq.(7.11) and eq. (7.12) are given as  

 𝒒ሬሬԦ = 𝑓𝒒ሬሬԦ൫𝒒ሬሬԦc, 𝒒ሬሬԦp൯ = ℛൣℛൣ𝒒ሬሬԦp൧ℛ[𝒒ሬሬԦc]−1൧ (7.13) 

 𝒕Ԧ = 𝑓𝒕Ԧ൫𝒒ሬሬԦc, 𝒒ሬሬԦp൯ = 𝒕Ԧp − ℛൣ𝒒ሬሬԦp൧ℛ[𝒒ሬሬԦc]−1𝒕Ԧc. (7.14) 

The errors within the feature artefact parameter estimations 𝒒ሬሬԦc, 𝒕Ԧc, 𝒒ሬሬԦp, 𝒕Ԧp are 

highly correlated and must be considered in the following evaluation. For the 

following derivation, individual components of vectors are denoted using a 

superscript coordinate 𝑗, with 𝑗 signifying the 𝑗th artefact position. For example, 

𝒒ሬሬԦc
10 is the artefact orientation in the camera coordinate system in the 10th 

position.  

To conserve and propagate correlation between the intrinsic and extrinsic 

values, the intrinsic values will be include in calculations. The intrinsic values 

are given as 𝜽ሬሬԦc and 𝜽ሬሬԦp for the camera and projector respectively. The rows and 

columns of the combined covariance matrix 𝑽com is given by 

 ቂ൫𝜽ሬሬԦc൯
T

൫𝜽ሬሬԦp൯
T

(𝒒ሬሬԦc
1)T ൫𝒕Ԧc

1൯
T

൫𝒒ሬሬԦp
1൯

T
൫𝒕Ԧp

1 ൯
T

…ቃ. (7.15) 

The Jacobian of the 𝑗th position, 𝓙𝑗, is then given by 

 

𝓙𝑗 =

ۏ
ێ
ێ
ێ
ێ
ቈۍ

𝜕𝒒ሬሬԦ𝑗

𝜕𝒒ሬሬԦc
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቉

3×3

[𝟎]3×3 ൥
𝜕𝒒ሬሬԦ

𝜕𝒒ሬሬԦp
𝑗

൩

3×3

[𝟎]3×3

ቈ
𝜕𝒕Ԧ𝑗

𝜕𝒒ሬሬԦc
𝑗
቉

3×3

ቈ
𝜕𝒕Ԧ𝑗

𝜕𝒕Ԧc
𝑗
቉

3×3

൥
𝜕𝒕Ԧ𝑗

𝜕𝒒ሬሬԦp
𝑗

൩

3×3

൥
𝜕𝒕Ԧ𝑗

𝜕𝒕Ԧp
𝑗

൩

ے3×3
ۑ
ۑ
ۑ
ۑ
ې

. (7.16) 

For ease, the Jacobian is defined using the auto-differentiation tools in 

Tensorflow and the entire Jacobian is defined by 

 

𝓙 =

ۏ
ێ
ێ
ێ
ۍ
𝕀 𝟎 𝟎 𝟎 𝟎
𝟎 𝓙1 𝟎 𝟎 𝟎

𝟎 𝟎 𝓙2 𝟎 𝟎
𝟎 𝟎 𝟎 ⋱ 𝟎
𝟎 𝟎 𝟎 𝟎 𝓙𝑁ے

ۑ
ۑ
ۑ
ې

. (7.17) 
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The covariance estimate of all extrinsic estimations 𝒒ሬሬԦ1, 𝒕Ԧ1 → 𝒒ሬሬԦ𝑁 , 𝒕Ԧ𝑁 is given by 

 𝑽com = ൤
𝑽int ⋯
⋯ 𝑽ext

൨ = 𝓙𝑽com𝓙T, (7.18) 

where 𝑽com is split into the intrinsic section 𝑽int and the extrinsic section 𝑽ext. 

Given the covariance matrix of each estimation is known, 𝑽ext, the best 

estimation of camera-projector transform 𝒒ሬሬԦ and 𝒕Ԧ will minimise the 𝜒2 value 

 

ۉ

ۈ
ۇ

ۏ
ێ
ێ
ێ
ۍ
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ۑ
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ۊ
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ۈ
ۇ

ۏ
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ێ
ۍ
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ۑ
ۑ
ۑ
ې
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ۑ
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ۑ
ې
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ۋ
ۊ

×
1

6𝑁
. (7.19) 

Eq. (7.19) can be minimised using a weighted mean over all estimates 𝒒ሬሬԦ𝑗 , 𝒕Ԧ𝑗 , 

essentially solving the linear system 𝒚ሬሬԦ = 𝑨𝒙ሬሬԦ 

 

ۏ
ێ
ێ
ێ
ۍ
𝒒ሬሬԦ1

𝒕Ԧ1

⋮
𝒒ሬሬԦ𝑁

𝒕Ԧ𝑁 ے
ۑ
ۑ
ۑ
ې

= ቂ
𝕀6×6

⋮
ቃ

6𝑁×6
൤
𝒒ሬሬԦ

𝒕Ԧ
൨, (7.20) 

with the solution given by the weighted linear system 

 

൤
𝒒ሬሬԦ

𝒕Ԧ
൨ = (𝑨T𝑽ext

−1𝑨)−1𝑨𝑽ext
−1

ۏ
ێ
ێ
ێ
ۍ
𝒒ሬሬԦ1

𝒕Ԧ1

⋮
𝒒ሬሬԦ𝑁

𝒕Ԧ𝑁 ے
ۑ
ۑ
ۑ
ې

. (7.21) 

Finally, estimating the covariance matrix, 𝑽𝜃, of the system parameters is found 

using the law of propagation of uncertainty 

 
𝑽𝜃 = ൤

𝕀 𝟎
𝟎 (𝑨T𝑽ext

−1𝑨)−1𝑨𝑽ext
−1൨ 𝑽com ൤

𝕀 𝟎
𝟎 (𝑨T𝑽ext

−1𝑨)−1𝑨𝑽ext
−1൨

T

 (7.22) 

The serial method leaves an additional 6𝑁 degrees of freedom over the parallel 

method that will inevitably lead to a lower accuracy in estimated parameters 

𝜽ሬሬԦ. The eq. (7.19) is not guaranteed to be minimised and the extra degrees of 

freedom allow the parameter estimates of the camera and projector to be 

checked against each other. If the parameter estimates agree with each other, 

eq. (7.19) will be equal or less than 1. 

 Parallel method 

The advantage of the parallel method over the serial method is there are 6𝑁 

less parameters to estimate, that should theoretically increase the accuracy of 
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the camera and projector parameter estimations. The disadvantage of the 

parallel method is the added complexity in estimating the input covariance. In 

the serial method, an input covariance that is incorrect by a scalar 

multiplication will only produce a parameter estimate covariance that is 

slightly too high. In the parallel method, the input covariance must now be 

consistent in regard to the camera and projector. The parallel method makes an 

alteration to the forward propagation method in Algorithm 7. The new forward 

propagation method is in Algorithm 6. 

Algorithm 6 Forward propagation of the artefact points 𝒙ሬሬԦ of the 𝑖th 

position in the parallel method. 

 

 Forward propagation 

This section will detail the propagation of light from artefact to image plane, 

given as function 𝑓 in eq. (7.1), also called forwards propagation. The rotation 

convention used here is the Rodrigues rotation formula, otherwise known as 

the axis-angle representation of rotations. Alternative representations include 

quaternions [231], Euler angles [232] and rotors [233]. The operator that 

converts a Rodrigues vector 𝒒ሬሬԦ into its corresponding rotation matrix 𝑹 is given 

by the Rodrigues operator ℛ 

 𝑹 = ℛ(𝒒ሬሬԦ) (7.23) 

 𝒒ሬሬԦ = ℛ−1(𝑹) (7.24) 

The algorithms defining the Rodrigues and inverse Rodrigues operator are 

defined in Appendix C, in Algorithm 12 and Algorithm 13. The function 

defining the forward propagation is defined as 

Transform into camera coordinate system 𝒙ሬሬԦ1 = ℛ(𝒒ሬሬԦ𝑖)𝒙ሬሬԦ + 𝒕Ԧ𝒊 

Camera: 

Transform into homogenous coordinates 𝒙ሬሬԦ2 =
𝒙ሬሬԦ𝟏

[0 0 1]𝒙ሬሬԦ𝟏
 

Apply optical distortion function 𝒙ሬሬԦ3 = 𝑓D(𝒙ሬሬԦ2, 𝝉ሬԦc) 

Apply camera matrix 𝒖ሬሬԦc = 𝑲c𝒙ሬሬԦ3 

Projector: 

Transform into projector coordinate system 𝒙ሬሬԦ4 = ℛ(𝒒ሬሬԦ)𝒙ሬሬԦ1 + 𝒕Ԧ 

Transform into homogenous coordinates 𝒙ሬሬԦ5 =
𝒙ሬሬԦ𝟒

[0 0 1]𝒙ሬሬԦ𝟒
 

Apply optical distortion function 𝒙ሬሬԦ6 = 𝑓D൫𝒙ሬሬԦ5, 𝝉ሬԦp൯ 

Apply camera matrix 𝒖ሬሬԦp = 𝑲p𝒙ሬሬԦ6 
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 𝒖ሬሬԦ = 𝑓൫𝒙ሬሬԦ, 𝒒ሬሬԦ, 𝒕Ԧ, 𝑲, 𝝉ሬԦ൯, (7.25) 

where the forward propagation is defined in Algorithm 7 and shown 

graphically in Figure 7.1. 

Algorithm 7 Forward propagation of artefact points 𝒙ሬሬԦ in the 𝑖th 

position to the image points 𝒖ሬሬԦ. 

 

Transform into camera/projector coordinate system 𝒙ሬሬԦ = ℛ(𝒒ሬሬԦ𝑖)𝒙ሬሬԦ + 𝒕Ԧ𝑖 

Transform into homogenous coordinates 𝒙ሬሬԦ =  𝒙ሬሬԦ
[0 0 1]𝒙ሬሬԦൗ  

Apply optical distortion function 𝒙ሬሬԦ = 𝑓D(𝒙ሬሬԦ, 𝝉ሬԦ) 

Apply camera matrix 𝒖ሬሬԦ = 𝑲𝒙ሬሬԦ 
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Figure 7.1 Graphical representation of the forward propagation 

algorithm in Algorithm 7. (a) The board ellipse centres 𝒙ሬሬԦ (red x) and 

dot boundaries (black), (b) a general rotation and translation, (c) 

conversion to homogeneous coordinates, (d) blown up image of the 

homogeneous coordinates at 𝑤 = 1, (e) distortion of points (green) 

and (f) the application of the camera matrix to the distorted points. 

 Jacobian calculation 

The Levenberg-Marquardt algorithm requires a Jacobian to be calculated – or 

at least a reasonable estimate. An analytical derivative becomes prohibitively 

complex when considering models that include distortion parameters. 

Estimation methods can be used to reduce the number of explicit calculations 
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of the Jacobian, by using Rank-1 Broyden updates [234]. An approximation of 

the Jacobian can be calculated  

 
𝓙 ≅

𝑓൫𝒙ሬሬԦ, 𝜽ሬሬԦ + 𝜟 × 𝟏ሬሬԦ൯ − 𝑓൫𝒙ሬሬԦ, 𝜽ሬሬԦ − 𝜟 × 𝟏ሬሬԦ൯

2𝜟
, (7.26) 

where 𝜟 is some small perturbation to 𝜽ሬሬԦ. However, eq. (7.26) is subject to 

numerical inaccuracies, and the perturbation 𝜟 must be carefully chosen to 

avoid numerical issues. Recently, auto-differentiation methods have become 

popular due to their use in training neural networks. Auto-differentiation tools 

allow the rapid calculation of almost arbitrarily complex functions. Many auto-

differentiation tools are available to researchers, including Theano, PyTorch 

and Tensorflow. The advantage of auto-differentiation of numerical methods 

is that they do not suffer from the same magnitude of numerical inaccuracies, 

whilst having similar computational costs. For this thesis, it was chosen that 

auto-differentiation tools would be used to eliminate concerns over numerical 

inaccuracies. Tensorflow was chosen arbitrarily for its auto-differentiation 

tools. 

 Conditions 

The estimate 𝜽ሬሬԦ defined during the non-linear regression is only valid under 

specific conditions. The conditions are given as: 

Linearity. The linearisation used to estimate the parameters in the non-linear 

regression must accurately represent the function over a small interval. A 

model that is significantly non-linear will not be well approximated by a first-

order Taylor approximation, and while the parameter estimate 𝜽ሬሬԦ may still be 

correct, the covariance estimate 𝑽𝜃 given in eq. (7.8) will be invalid. 

Normality. The errors introduced in the measurements must follow a Gaussian 

distribution. If the errors do not follow a Gaussian distribution, then the input 

uncertainty 𝑽𝜖 is incorrect and there will unaccounted errors propagated to the 

solution 𝜽ሬሬԦ. Generally given the number of observation used in the calibration, 

it is assumed that the errors asymptotically follow a normal distribution. 

Specificity. Given there are no errors in the regressor vector 𝒙ሬሬԦ or the 

observation vector 𝒚ሬሬԦ, the function 𝑓൫𝒙ሬሬԦ, 𝜽ሬሬԦ൯ must accurately predict 𝒚ሬሬԦ. A model 

that does not comply with this condition is known as misspecified, and the 

covariance matrix estimate 𝑽𝜃 given in eq. (7.8) will be invalid. 

Additionally, there is no guarantee the assumptions used in the non-linear 

regression, specifically linearity and specificity, are not broken. A method is 

required to test both of these assumptions. The measures of non-linearity used 
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in this thesis are the parameter-effects curvature Τ and the intrinsic curvature 

Υ found in [235] and the Clarke curvature Γ found in [236]. A function that is 

highly non-linear will not remain flat around the solution locus, and therefore 

the covariance matrix 𝑽𝜃 will not be valid. These test statistics are computed in 

Section 7.4.The test for model specificity in a non-linear regression is given in 

White, 1981 [237]. This test is sensitive to heteroscedasticity. White describes a 

similar test that is not sensitive to heteroscedasticity, and more general test in 

[238]. 

 Calibration outcome 

This section will detail the outcome of the calibration. The calibration input 

data is given in Section 7.3.1. The parameters estimated using the serial, 

weighted serial, parallel and weighed parallel methods are given in Section 

7.3.2. A novel metric that can be used to estimate a spatially-dependent 

resolution metric of the camera is given in Section 7.3.3. A comparison of the 

uncertainty in the input data caused by the board artefact itself and the ellipse 

localisation methods is given in Section 7.3.4. 

 Calibration input data 

This section will present the calibration data that will be used in the non-linear 

regression. A total of twenty-seven unique positions and orientations of the 

board were imaged to create 2592 camera points and 2376 projector points. 

Each position is shown in Figure 7.2. 

 

Figure 7.2 Location of the 27 board locations and orientations used for 

the calibration. 

The triangulation method used in this thesis is similar to Zhang’s method [34], 

and is assumed to be similarly robust for measuring points outside of the 

“calibration volume”, i.e., outside the range of points used to calibrate the 
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system [30]. Nevertheless, a limit is placed on measurements as to only include 

points measured within the areas of images that have been calibrated. In any 

future measurement, to ensure any measurements made using the system 

parameters are not invalidated from measuring outside any calibrated region, 

both the camera and the projector will remove points outside of a boundary 

provided by the calibration points. The boundary with the calibration points is 

shown in Figure 7.3. 

 
(a)  

(b) 
Figure 7.3 Image points used in the calibration for the (a) camera 

and (b) projector. Upon any future measurement, any points 

within the black boundary will be discarded. 

 

 Parameter estimations 

The parameter estimations obtained using the serial, weighted serial, parallel 

and weighted parallel methods are given in Table 7.3. 

Table 7.3 Parameter estimations. 

 Unit Parameter Serial Weighted 

serial 

Parallel Weighted 

parallel 

C
am

er
a 

m
at

ri
x

 

p
ix

el
 

𝑓𝑥 8520 8536 8510 8534 

𝑓𝑦 8485 8536 8477 8535 

𝑠 20.00 -0.4431 20.11 -0.4917 

𝑢0 2674 2676 2674 2675 

𝑣0 2544 2538 2543 2537 

C
am

er
a 

d
is

to
rt

io
n

 

- 

𝑘1 -0.0158 -0.0339 -0.0173 -0.034 

𝑘2 -0.0323 0.1264 -0.0263 0.1219 

𝑘3 0.0541 -0.1619 0.0452 -0.1891 

𝑝1 -0.0070 -0.0011 -0.0069 -0.0011 
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𝑝2 0.0019 -0.0004 0.0020 0.0004 

𝑢𝑑𝑐 -0.0771 -0.0097 -0.0779 -0.0094 

𝑣𝑑𝑐 0.2730 0.0070 0.2679 0.0060 
P

ro
je

ct
o

r 

m
at

ri
x

 

p
ix

el
 

𝑓𝑥 1123 1121 1121 1121 

𝑓𝑦 -2247 -2243 -2242 -2242 

𝑠 -0.2423 0.0083 -0.3997 -0.2741 

𝑢0 443 442 443 443 

𝑣0 1187 1187 1186 1187 

P
ro

je
ct

o
r 

d
is

to
rt

io
n

 

- 

𝑘1 0.0495 0.0543 0.0579 0.0551 

𝑘2 -0.1765 -0.1906 -0.2236 -0.1942 

𝑘3 0.0845 0.0960 0.1461 0.1000 

𝑝1 0.0006 0.0001 0.0007 0.0001 

𝑝2 0.0002 0.0002 0.0002 0.0002 

𝑢𝑑𝑐  -0.0033 -0.0042 -0.0062 -0.0048 

𝑣𝑑𝑐  0.0121 0.0167 0.0252 0.0175 

P
ro

je
ct

o
r 

ex
tr

in
si

cs
 - 

𝑞1 0.2659 0.2651 0.2654 0.2651 

𝑞2 -0.2823 -0.2830 -0.2830 -0.2830 

𝑞3 1.5706 1.5719 1.5707 1.5719 

m
m

 𝑡𝑥 5.7123 5.6859 5.7361 5.6857 

𝑡𝑦 306.3578 306.3366 306.4418 306.2259 

𝑡𝑧 -44.3868 -44.4270 -44.2130 -44.4299 
 

The results of both weighted methods are very similar to each other, as are the 

results of the unweighted methods. Notably the skew parameter is very 

different across the methods. All methods strongly agree on the focal lengths 

of the camera, as well as the extrinsic estimates. The correlation matrices are 

shown in Figure 7.4. 
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Figure 7.4 Correlation matrix of the parameter estimate from each 

calibration method. 

Similar with the parameter estimate itself, the weighting matrix generally gives 

a similar correlation matrix for both the weighted serial and weighted parallel 

method estimates. The serial method gives no correlation between the camera, 

projector or extrinsic parameters, while the weighted serial methods gives no 

correlation between the projector and camera parameters. The cause being the 

serial method does regress camera and projector parameters independently. 

The weighted serial and weighted parallel also have similar correlation 

coefficients for both the extrinsic estimates, 𝒒ሬሬԦ and 𝒕Ԧ, despite both methods 

deriving each value very differently. The weighting matrix produces large 

changes in the correlation of most coefficients, that would otherwise be 

unchanged across serial and parallel methods. 

 

 Optical resolution estimate 

As a by-product of the ellipse localisation method, an estimate of the camera 

resolution is made. In Section 6.5.3, ellipse boundaries are determined using a 

fit of a Gaussian function to a radially-sampled line-spread function. The width 
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of the Gaussian is related to the resolution of the camera. The line-spread 

function width is shown in Figure 7.5.  

 

 
(a) 

 
(b) 

Figure 7.5 The width of the Gaussian line-spread function in (a) 3D 

and (b) plotted against distance from the camera pinhole origin. 

The lateral distance is the distance in the XY plane to (0,0). 

 

The point spread function (PSF) describes the response of an imaging system 

to a point source or point object, and is related to a line-spread function [93]. 

The line-spread function width found here could possibly be used to estimate 

a spatially-variant PSF for a camera without requiring any additional data to 
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be collected. This novel method may be a useful tool in the future in obtaining 

a full uncertainty evaluation of fringe projection measurements, see Section 

9.5. 

 Input data covariance 

This section will show the input uncertainty estimate. The positional 

uncertainty of each dot in the dot grid is given in Section 6.2. The uncertainty 

of the board is propagated to the image plane of the camera and projector in 

Section 7.2. The comparison of the input covariances is given in Figure 7.7. 

 

Figure 7.6 Comparison of the uncertainty contributed form the dot 

grid and the ellipse localisation in the camera image. 
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Figure 7.7 Comparison of the uncertainty contributed form the dot 

grid and the ellipse localisation in the projector image. 

The uncertainty of the board is generally very low compared to the uncertainty 

of the ellipse localisation method for both the camera and the projector. The 

projector has far higher uncertainty in one axis compared with the other. This 

is to be expected and is a consequence of triangulation. 

 Calibration validation 

In this section, several tests are carried out to validate the calibration method 

defined in this chapter. The tests given in Section 7.4.1, Section 7.4.2 and Section 

7.4.3 will validate the conditions given in Section 7.2.5. Section 7.4.3 specifically 

provides a novel method of testing for parameter stability during the 

calibration procedure. Section 7.4.4 will test the non-linear regression for 

convergence to a non-global minimum. Section 7.4.5 will compare the 

uncertainty of estimated points against the estimated error of each point. 

 Specificity test 

In this subsection, White’s specificity test [237] is used to test the specificity of 

the pinhole model with distortion to fringe projection. Correct specificity is one 

of the assumptions used in linear regression, and if broken, will render the 

covariance estimation incorrect. In other words, the specificity test is used to 

check if the model used in the linear regression is correct up to some additive 

error. To reject this hypothesis implies there are variables excluded from the 
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model, and therefore the model is misspecified. The specificity test in White 

[237] is specifically a specificity test for non-linear regression models For a non-

linear regression that, in the final step, computes the Jacobian 𝓙 and the 

residuals 𝝐ሬԦ at the solution 𝜽ሬሬԦ, the specificity test is given by finding the solution 

𝜶ሬሬԦ to 

 ሬԦ𝝐2 = 𝛼0⨀𝟏ሬሬԦ + 𝝍ሬሬԦ𝜶, (7.27) 

where 

 𝝍 = 𝓙⨀𝓙, (7.28) 

with ⨀ being the Hadamard product. The test will fail if there is a solution to 

eq. (7.27) that has some sufficient statistical power, i.e., if the square residual 𝝐ሬԦ2 

can be modelled in some way. Given there are 𝑁 observations and 𝑃 parameters 

being estimated in the non-linear regression, the resulting “artificial residual” 

on 𝝐ሬԦ2 is used as a quantity value to test how much structure remains in the 

residuals 𝝐ሬԦ2. The test is completed by computing the constant-adjusted 

coefficient of determination, 𝑅2, given by  

 

𝑅2 = 1 −
∑ ቀ 𝝐ሬԦ2 − ൫𝛼0⨀𝟏ሬሬԦ + 𝛙𝛂ሬሬԦ൯ቁ

2

var(𝝐ሬԦ2)
×

𝑛 − 1

𝑛 − 𝑝 − 1
. (7.29) 

The coefficient of determination is a measure of statistical power in the solution 

to eq. (7.27), i.e., how well does the solution (𝛼0, 𝛂ሬሬԦ) adequately explain 𝝐ሬԦ2. The 

value 𝑛 × 𝑅2 is compared against the critical value of the 𝜒2 distribution at 𝑝 

degrees of freedom. If the value 𝑛𝑅2 exceeds the critical value, the model is 

misspecified. 

In White [237], it was shown that this test will also fail in the presence of 

heteroscedasticity. In Section 7.2, it was made clear that the image points in the 

calibration are correlated with one another. However, a method was given in 

Chapter 6 to estimate the covariance (and by extension the correlation) between 

image points with covariance matrix 𝑽. Given a regressor matrix 𝑿 and 

observation vector 𝒚ሬሬԦ, a weighted linear regression can be seen as a transformed 

linear regression, transformed using the matrix 𝑪𝑪T = 𝑽, and applying the 

transform 𝑪 to the linear regression formula to obtain 

  ((𝑪−1𝑿)T𝑪−1𝑿)−1(𝑪−1𝑿)T𝑪−1𝒚ሬሬԦ (7.30) 

 (𝑿T𝑪−T𝑪−1𝑿)−1𝑿T𝑪−T𝑪−1𝒚ሬሬԦ (7.31) 
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 (𝑿T(𝑪𝑪T)−1𝑿)−1𝑿T(𝑪𝑪T)−1𝒚ሬሬԦ (7.32) 

 (𝑿T𝑽−1𝑿)−1𝑿T𝑽−1𝒚ሬሬԦ. (7.33) 

The weighted least squares regression is therefore a transformed linear 

regression. Expanding this to non-linear regression, at the solution locus 𝜽ሬሬԦe, the 

solution 𝜽ሬሬԦe + 𝚫𝜽ሬሬԦ = 𝜽ሬሬԦ is given using the Jacobian of the solution locus 𝓙 as the 

regressor matrix 

 𝓙𝚫𝜽ሬሬԦ = 𝒚ሬሬԦ − 𝑓൫𝒙ሬሬԦ, 𝜽ሬሬԦe൯ = 𝒓ሬԦ (7.34) 

 (𝓙T𝑽−1𝓙)−1𝓙T𝑽−1𝒓ሬԦ. (7.35) 

The same transform can therefore be applied to eq. (7.27) and eq. (7.28) to 

remove the heteroscedasticity present in the calibration, giving the updated 

equations 

 (𝑪−1ሬԦ𝝐)2 = 𝛼0 + 𝝍ሬሬԦ𝜶 (7.36) 

 𝝍 = (𝑪−1𝓙)⨀(𝑪−1𝓙). (7.37) 

The test will now fail if the covariance matrix 𝑽 is incorrect, or if the model is 

misspecified. The test is insensitive to any scalar multiplicative error in 

covariance matrix 𝑽, given the scalar multiplication will cancel in eq. (7.36). In 

the context of the serial and parallel calibration methods, the serial method is 

completely insensitive to a scalar multiplicative error in the covariance matrix 

for the camera and projector regression input. However, the parallel method 

will be sensitive to a scalar multiplicative error, considering the covariance 

matrix is a concatenation of the projector and camera regression input 

covariance matrices. Overestimating or underestimating the uncertainty in the 

camera or projector matrices in relation to each other will cause this test to fail. 

The test is performed on the camera and projector regression estimations 

individually in the serial method and once on the parallel method regression 

estimation. 

In the serial calibration there are 27 positions measured, giving 5 pinhole 

parameters, 7 distortion parameters 27 × 6 extrinsic parameters, for a total of 

174 parameters.  

The critical value of the 𝜒2 distribution with 174 degrees of freedom is 206, i.e., 

95% of values are expected to be below 206. In the parallel calibration, there are 

now 10 pinhole parameters, 14 distortion parameters and an additional 6 
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parameters describing the rotation and translation from the camera coordinate 

system to the projector coordinate system, giving a total of 192 parameters. The 

critical value of the 𝜒2 distribution with 174 degrees of freedom is 225. 

Table 7.4 Specificity test results for the weighted serial and weighted 

parallel method. 

 Test value Critical value 

Weighted serial (camera) 880 206 

Weighted serial (projector) 1116 206 

Weighted parallel (all) 5560 225 

 

This specificity test, outlined in White [237], is used in this case to 

simultaneously test the covariance matrix of inputs used in the calibration, and 

the model. The specificity test fails for both methods and appears worse in the 

parallel method. The failure could indicate that the distortion model does not 

completely explain all observed ellipse locations. The failure could also indicate 

that the covariance matrix estimation, 𝑽𝜖 is poor. Another possible failure mode 

is the covariance matrices for the camera and projector have a scalar 

multiplicative error in relation to each other. In the latter, it would be expected 

that only the parallel method would fail, since the covariance matrices need to 

be accurate in relation to each other in the parallel method, but not the serial 

method. Given the higher test score in the parallel method, this could indicate 

this to be true. 

 Curvature test 

In this section, the non-linearity on the parameter covariance estimate in a non-

linear regression will be tested. Given the calibration uses a linear 

approximation of a non-linear problem, significant non-linearity will invalidate 

the linear approximations. Significant non-linearity will reduce the efficacy of 

the covariance estimation.  

The measures of nonlinearity used in this thesis are the parameter-effects 

curvature Τ, the intrinsic curvature Υ and the Clarke curvature Γ. The 

derivation of these measures are beyond the scope of this thesis. The derivation 

of the parameter-effects curvature, Τ, and the intrinsic curvature, Υ, can be 

found in Bates and Watts [235] and Seber and Wild [239], and the derivation of 

the Clarke curvature Γ can be found in Clarke [236]. The parameter-effects 

curvature Τ depends only on the particular parametrisation used, and can be 

effectively reduced by choosing the right model. The intrinsic curvature Υ is a 

measure of non-linearity of the problem itself, and is invariant of the chosen 
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model. The Clarke curvature Γ is an extension of the parameter-effects 

curvature, and can provide a non-linearity measure in individual specific 

parameters. 

The following non-linearity tests require the calculation of the Hessian matrix, 

which in this case is a three-dimensional tensor, in this subsection only, the 

standard notation convention used in this thesis will be dropped in favour of 

tensor notation with the Einstein summation convention. In this subsection 

only, indices represent coordinates in an arbitrary N-dimensional tensor, where 

both subscripts and superscripts are used for indices (and superscripts do not 

infer an exponent). For example, a 2D matrix that was denoted 𝑿 is now 

denoted 𝑥𝑗
𝑖 = 𝑥𝑖𝑗 = 𝑥𝑖𝑗. To denote the exponent 𝑘 of variable 𝑥𝑗

𝑖, which would 

otherwise be denoted as 𝑿𝑘, is now denoted as ൣ 𝑥𝑗
𝑖൧

𝑘
. A variable without indices 

is a scalar. According to this convention, when an index appears twice in a 

single term and is not otherwise defined, it implies the summation of that term 

over the index. For example, if the index 𝑖 ∈ {1,2,3}, 

 
𝑦 = 𝑐𝑖𝑥

𝑖 = ෍ 𝑐𝑖 × 𝑥𝑖

3

𝑖=1

. (7.38) 

For consistency, the indices 𝑢, 𝑣 are used exclusively to denote the 𝑁 

observation coordinates, 𝑢, 𝑣 ∈ {1, … 𝑁} and 𝑎, 𝑏, 𝑐, 𝑖, 𝑗 are used exclusively to 

denote the 𝑃 parameter coordinates, 𝑎, 𝑏, 𝑐, 𝑖, 𝑗 ∈ {1, … 𝑃}. The Jacobian and the 

Hessian are given by 

 
𝜂𝑖𝑗

𝑢 =
𝜕2𝑓(𝑥𝑢, 𝜃)

𝜕𝜃𝑖𝜕𝜃𝑗
 (7.39) 

 
𝜂𝑖

𝑢 =
𝜕𝑓(𝑥𝑢, 𝜃)

𝜕𝜃𝑖
. (7.40) 

The inverse of square of the Jacobian, otherwise given as (𝓙T𝓙)−1, is given by 

 𝑔𝑖𝑗 = ൣ𝜂𝑖
𝑛𝛿𝑛𝑚𝜂𝑗

𝑚൧
−1

 (7.41) 

 𝛿𝑢𝑣 =
1
0

  if 
𝑢 = 𝑣

otherwise
. (7.42) 

The projection matrix, otherwise given as 𝑿(𝑿T𝑿)−1𝑿T for the linear model 𝒚ሬሬԦ =

𝑿𝜷ሬሬԦ, is given by 

 𝑃𝑢𝑣 = 𝜂𝑖
𝑢𝑔𝑖𝑗𝜂𝑗

𝑣 . (7.43) 

The measures of Clarke curvature Γ is defined as 



7.4 Calibration validation  145 

 
Γj = ൫𝑔𝑗𝑗൯

−
3
2𝑔𝑗𝑎𝑔𝑗𝑏𝑔𝑗𝑐𝜂𝑎

𝑢𝛿𝑢𝑣𝜂𝑏𝑐
𝑣 , (7.44) 

and the non-linear model is considered acceptably linear in the case that 

|
1

2
Γ𝑠𝑐| < .1. Otherwise, curvature effects are too large to ignore. The parameter-

effects curvature Τ and intrinsic curvature Υ are calculated along the vector 𝛼𝑖 

in the 𝑃-dimensional parameter space. 

 
Τ =

‖𝛼𝑖𝑃𝑣𝑢𝜂𝑖𝑗
𝑢 𝛼𝑗‖

‖𝜂𝑗
𝑢𝛼𝑗‖

2  (7.45) 

 
Υ =

‖𝛼𝑖([𝕀 − 𝑃]𝑣𝑢)𝜂𝑖𝑗
𝑢 𝛼𝑗‖

‖𝜂𝑗
𝑢𝛼𝑗‖

2 . (7.46) 

Given the curvature will depend on the choice of 𝛼𝑖, a good decision would 

find the maximal value of 𝛼𝑖. Computationally, this is particularly tricky given 

the size of the tensors involved. The parallel calibration method uses 27 

positions, 184 points per position and therefore the Hessian 𝜂𝑖𝑗
𝑢  has the size 

192 × 192 × 9936 – although most entries of the Hessian are 0. A method is 

presented here that will give a low-cost approximation of 𝛼𝑖. An approximate 

solution of 𝛼𝑖 can be found by estimating the vector 𝛼𝑖 that instead maximises 

 ෍ 𝛼𝑖𝑃𝑢𝑣𝜂𝑖𝑗
𝑣 𝛼𝑗

𝑢

, (7.47) 

which is simply the eigenvector of 

 ෍ 𝑃𝑢𝑣𝜂𝑖𝑗
𝑣

𝑢

 (7.48) 

 that corresponds to the largest eigenvalue. To evaluate if the measures Τ and 

Υ are within reasonable limits, both measures are scaled  

 Τ′ = Τσξ𝑃 (7.49) 

 Υ′ = Υσξ𝑃, (7.50) 

where σ in this case is the standard error of the non-linear regression. The 

combined curvature measures ඥ[Τ′]2 + [Υ′]2 are compared against the 

confidence region given by 

 
ζ =

1

ඥ𝐹(𝑃, 𝑁; 0.05)
. (7.51) 
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If ඥ[Τ′]2 + [Υ′]2 > ζ, the parameter estimations must be rejected. Otherwise, 

the curvature can be accepted as low enough so as to still provide a reasonable 

estimation of the parameters. The results of the Clarke curvatures are given in 

Figure 7.8 and the parameter-effects and intrinsic curvatures are given in Table 

7.5. 
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(a) 

 
(b) 
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(c) 

Figure 7.8 The Clarke curvatures Γ of the system parameters. (a-b). 

Camera and projector parameters estimated using the serial 

method. (c) Parameters estimated using the parallel method. 

 

Table 7.5 Parameter-effects and intrinsic curvature measures for the 

parallel and serial methods. 

 Parameter-

effects, Τ′ 

Intrinsic, 
Υ′ 

Combined, 

ඥ[Τ′]2 + [Υ′]2 

Limit, 𝜁 

W. serial (camera) 5 × 10−4 6 × 10−7 5 × 10−4 0.92 

W. serial (projector) 3 × 10−4 8 × 10−8 3 × 10−4 0.92 

Parallel 4 × 10−4 5 × 10−7 4 × 10−4 0.92 

 

The non-linearity is well within acceptable limits for both methods. The 

parameter with the highest non-linearity measure is the skew component in the 

pinhole matrix of the camera. Bates and Watts [235] show that an increase in 

the number of observations can reduce the non-linearity – in a calibration with 

fewer observations, it may be prudent to remove the skew component of the 

pinhole camera matrix. The projector, however, does not show the same 

behaviour. 

 Parameter stability test 

In Section 3.4, it was made known that optical characteristics are a function of 

temperature – so must be considered within the calibration. Consider the 

simple camera pinhole model describing the back propagation 
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𝑢 =

𝑓𝑇(𝒓ሬԦ1
T𝒙ሬሬԦ + 𝑡𝑥)

(𝒓ሬԦ3
T𝒙ሬሬԦ + 𝑡𝑧)

, (7.52) 

where 𝑹T = [𝒓ሬԦ1 𝒓ሬԦ2 𝒓ሬԦ3] and 𝒕ԦT = [𝑡𝑥 𝑡𝑦 𝑡𝑧] and the focal length 𝑓𝑇 has been 

explicitly defined as a function of temperature, 𝑇. The output 𝑢 can be kept 

constant even in the case that 𝑓𝑇 is evolving by compensating with the 

Euclidean transforms 𝑹 and 𝒕Ԧ. In the case of many cameras and projectors and 

with randomly varying optical characteristics, this effect may be cancelled out 

by estimating all parameters in parallel. In the case of one projector and one 

camera being calibrated, both will have a time-dependent systematic error if 

both the camera and projector are not in thermal equilibrium. The internal 

temperature, therefore, will cause a systematic error in the estimation of the 

camera and the projector parameters. Furthermore, these systematic errors will 

not produce a detectable difference in the residual vector 𝝐ሬԦ, otherwise known 

as the reprojection error due to the redundancy in eq. (7.52).  

This section will define the parameter stability test to detect unstable intrinsic 

parameters. While the parameter stability test does not guarantee an accurate 

estimation of parameters, it does prevent the thermal equilibrium condition 

from failing while being undetected. The test will fail if the linear regression 

conditions are broken or if the uncertainty matrices are 𝑽𝜖 are poor. The 

disadvantage of the test is there is no indication of what condition has broken 

during a failure, and the test can be arbitrarily passed by estimating huge 

uncertainty in 𝑽𝜖. 

The method in Section 7.2.1 gives a weighted estimation of the extrinsic 

parameters (the Rodrigues rotation vector 𝒒ሬሬԦ and translation 𝒕Ԧ) describing the 

transform between the camera and the projector, along with an uncertainty. For 

the unweighted serial method, this is found using an estimate of the parameter 

covariance matrix, given by the estimator  

 
𝑽𝜃 =

‖𝝐ሬԦ‖

𝑁 − 𝑃
(𝓙T𝓙)−1, (7.53) 

where 𝑁 equals the number of observations iwthin the regression and 𝑃 equals 

the number of parameters obtain from the regression. For the weighted serial 

method, the parameter covariance matrix is found using the weighted 

estimator, 

 𝑽all = (𝓙T𝑽𝜖
−1𝓙)−1. (7.54) 

With an estimated uncertainty of the parameters 𝑽all obtained, each estimate of 

the camera-projector transform can be compared for agreement, i.e., if there is 
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any statistically significant deviation from the final estimate of the camera-

projector transform. A 𝜒2 test can now be completed using  

 ൫𝜽ሬሬԦall − 𝟏ሬሬԦ ⊗ 𝜽ሬሬԦe൯
T

൫𝑽all + 𝑽𝑞,𝑡 ⊗ 𝕀൯
−1

൫𝜽all − 𝟏ሬሬԦ ⊗ 𝜽ሬሬԦe൯, (7.55) 

where ⊗ is the Kronecker product. A comparison of the camera-projector 

transforms estimate from each artefact with the final estimate is given in Figure 

7.9. With some exceptions, the application of the covariance matrix has reduced 

the deviation of the quantity values. The critical value of a 𝜒2 distribution with 

26 × 6 = 162 degrees of freedom is 192.7, where the unweighted serial method 

obtained a score of 1691.5, and the weighed serial method obtained a score of 

80.4. The parameter stability test will also fail when the covariance matrix 𝑽all 

is unable to explain the discrepancy in different camera-projector transforms 

for all artefact positions. The results of the 𝜒2 cost of each artefact position is 

given in Figure 7.9. 
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(a) 

 
(b) 

Figure 7.9 Comparison of the twenty-seven estimations of the 

transform between the camera and projector. Estimation obtained 

using the (a) serial method and (b) unweighted serial method. 

 

 False convergence test 

The non-linear regression in the calibration is only guaranteed to find a local 

minimum, not the global minimum. There is a significant chance that the non-

linear regression returns a local minimum that does not correspond with the 

global minimum. Furthermore, the process is deterministic, i.e., repeating the 

non-linear regression using the same estimate will lead to the same outcome. 
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In this section, by randomly varying the input estimate to the non-linear 

regression by ±5%, the outcome of 200 non-linear regressions will be analysed 

to estimate how much the non-linear regression provides a non-global 

minimum. Both the weighed serial and weighted parallel methods will be 

tested. The first test will look at the reprojection error, since the reprojection 

error is used to estimate when the non-linear regression is complete, the values 

of the reprojection error should correspond well with identified minimums. 

The histogram of reprojection errors across all 200 repeats is given in Figure 

7.10. 

 

Figure 7.10 Histogram of the reprojection errors of the weighted 

serial and weighted parallel method across all 200 repeated 

regressions. 

The histogram of reprojection errors show that the regression of camera and 

projector parameters in the serial method and the parallel method all have a 

minimum at a reprojection error of 2.18 μpixels, 0.06 μpixels and 1.31 μpixels 

respectively. In Figure 7.11, the estimations of the camera and projector focal 

lengths and principal points is given. When comparing to the values of the 

camera focal length in both the 𝑥-axis and the 𝑦-axis, there is not such a clear 

distinction of minima. Except for the projector in the serial method, there are 

not clear global minimum – the local minimum returned from the non-linear 

regression are not single points in the 𝑃-dimensional parameter space. It is 

likely caused by the extrinsic and focal length both parameters giving similar 

effects on the projected point. Both the principal point and focal length values 

converge to a central location. Although it is difficult to conclusively prove the 

parameter estimation is the “true” global minimum as the surrounding 

parameter space must be thoroughly searched, this test gives a good indication 

that the true minimum has been reached. This test shows that in general, it is 

necessary to explore some of the local parameter space by repeating the non-
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linear regression with different initial estimates, since only ~25% of the serial 

method camera regression estimates and ~10% of the parallel method 

regression estimates were close to the minimum. 
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(a) 

 
(b) 

Figure 7.11 Parameter values of the camera and projector for all 

repeats of the non-linear regression in the weighted serial and 

weighted parallel methods. (a) The focal lengths and (b) the 

principal points. 
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 Reprojection error test 

In this section, the covariance of the inputs to the non-linear regression 𝑽𝜖 can 

be tested on the reprojection errors. The test will consist of a reduced 𝜒2 test on 

the reprojection errors, given by 

 𝝐ሬԦT𝑽𝜖
−1𝝐ሬԦ. 7.56 

The test will be conducted on the weighted serial and weighted parallel 

calibration methods. The weighted serial method gave a reduced 𝜒2 test score 

of 0.08 and 0.25 for the camera and projector respectively, while the parallel 

method gave a reduced 𝜒2 test score of 0.19. All test scores are below the 

expected value of approximately 1. Therefore, either the non-linear regression 

is over-fitting the data or the covariance estimate of the input is overestimated, 

or both. 

 

 Summary 

In this chapter, a calibration method is defined in full detail. The popular non-

linear regression method is modified as to allow the evaluation of uncertainty 

of the estimated parameters. The non-linear regression used in this thesis to 

obtain the parameter estimates is explicitly defined in Section 7.2, where 

choices have been made to ensure a high-accuracy regression. The results of the 

calibration estimates are given in Section 7.3. It was shown that the two 

weighted methods showed good agreement between estimations. A novel 

method to obtain a resolution metric without the need to obtain any extra data 

was given that may be useful when performing a full uncertainty evaluation of 

a fringe projection measurement. The input data covariance showed the need 

for increased accuracy of the ellipse localisation. The working conditions for 

this calibration method to work are given, and tests are undertaken in Section 

7.4 to test these conditions are true. Apart from the specificity test, the tests 

show the calibration was performing within working conditions. The failure of 

the specificity test indicates that either the covariance matrix of the input 

quantities was invalid or the pinhole camera model with distortion is not 

specific enough for fringe projection. Given the success of tests given in Chapter 

6, it is likely that the model has poor specificity. 

 





 

 – Validation 

This chapter will validate the parameter estimations and uncertainties obtained 

in Chapter 7 using measurement artefacts. For each measurement, the 

parameter uncertainties will be propagated to the final measurement quantity, 

which will be compared with an independently measured result. The 

comparison will be completed using the reduced 𝜒2 test given in Section 4.4. 

The method of propagation form parameter uncertainty to measurement 

uncertainty is described in Section 8.1. A validation testis completed on a 

flatness artefact in Section 8.2 and validation tests completed on sphere-based 

artefacts is completed in Section 8.3. 

 Propagation of uncertainty 

This section will define a method that will allow the propagation of uncertainty 

from the system parameters to the final measurement. Once the uncertainty 

estimation in the parameters has been obtained, the uncertainty can be 

propagated to the final measurement point-cloud. Given that more than a 

million points are being derived from the same set of thirty parameters, the 

resulting covariance matrix of the point-cloud would contain significant off-

diagonal terms. 

A covariance of that size is impractically large. A far more memory-efficient 

solution would be to conduct a Monte-Carlo evaluation of uncertainty based 

on the covariance matrix on the system parameters 𝑽𝜃. The algorithm is defined 

in Algorithm 8, and a graphical representation is given in Figure 8.1. 
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Algorithm 8 Propagation of uncertainty 

 

 

Figure 8.1 Propagation of uncertainty to the final attribute of the 

point-cloud. 

 Flatness artefact 

In this section, a measurement of a flatness artefact is made, that will include 

an uncertainty evaluation using the method provided in Section 8.1 with 

parameter estimates and uncertainties evaluated using the methods given in 

Chapter 7 and Chapter 6. The flatness artefact appears in both ISO 10360-13 and 

VDI/VDE 2634 part 2. A flatness artefact is measured by fitting a plane to the 

measured point-cloud. The perpendicular distance of each point to the fitted 

plane is called the flatness deviation. This value can be compared with an 

Find Cholesky decomposition of 𝑽𝜃 = 𝑪𝜃𝑪𝜃
T 

For 400 repetitions: 

Generate vector of independently and identically distributed random 

variables, sampled from 𝝃ሬԦ~𝒩(0, 1)  

Generate correlations in random parameter perturbation vector, 𝐶𝜃𝝃ሬԦ 

Generate a random parameter vector 𝝑ሬሬԦ = 𝜽ሬሬԦ + 𝝃ሬԦ 

Define a virtual point-cloud 𝜶ሬሬԦ = 𝑓Δ൫𝒖ሬሬԦc, 𝒖ሬሬԦp, 𝝑ሬሬԦ ൯ 

Conduct measurement processing on virtual point-cloud 𝜶ሬሬԦ and store 

output 

End For 

Investigate output for its PDF. 
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independently measured flatness deviation value, provided by a traceable 

instrument. A flatness artefact offers many advantages as a measurement 

artefact for a fringe projection system: 

1. The plane is flat so there is no opportunity for long-range multiple 

reflections. 

2. Specular reflection can be avoided by inclining the plane correctly to 

prevent saturation of CCD pixels. 

3. Sub-surface scattering will have little effect on the measurement results, 

given the lack of high spatial frequencies. 

4. The phase map should include no high spatial-frequency components, 

allowing effective filtering of phase noise from the measurement.  

5. The data analysis is simple. 

The flat plane artefact has a disadvantage compared to some other 

measurement artefacts, such as spheres: the measurement result is directly 

based on the points themselves and not an extracted feature. Any deviation 

from the best-fit flat plane caused by uncertainty in the system parameters will 

be additively combined with a phase error that has a higher magnitude than 

the form error [51, 149]. The correspondence decoding algorithm uses a 

periodic pattern to establish the link between camera and projector points. It is 

assumed, therefore, that the range of spatial frequencies in the point-cloud 

caused by phase error will be limited to approximately the fringe period on the 

measurement surface. i.e., the form error caused by the system parameters will 

have much larger spatial frequencies in the measured points compared to the 

phase error. By averaging over points larger than the fringe period, any phase 

error should be significantly reduced. 

Section 8.2.1 provides information on the flatness artefact itself as well as 

information on the measurements of the artefact. Section 8.2.2 explicitly defines 

the evaluation method used to obtain the flatness deviation values. In Section 

8.2.3 the accuracy of the parameter estimates is tested. In Section 8.2.4 the 

validity of the uncertainty of the parameter estimates is tested. Finally, the 

results of the tests using the flatness artefact are discussed in Section 8.2.5. 

 Measurement information 

The flatness artefact was provided by Trapet. The flat was an aluminium plate 

with a matte white coating, measured area 308 × 108 mm, and the deviation 

from the fitted plane was given as ±2.6 μm. The area was certified using a total 

of 121 equally spaced points. The flat plane was measured once in each of the 

three positions given in Figure 8.2. The relative positions of the flat plane 

measurements used in the GOM system is shown in Figure 8.3. 
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(a) 

 
(b) 

 

 
(c) 

 
(d) 

Figure 8.2 Information of the measurements of the flat plane used 

in the flatness measurements. Measurements are coloured red, 

green and blue for measurement 1,2 and 3 respectively. (a) The flat 

plane and its dimensions, (b) the location of each measurement in 

3D space, (c-d) the location of each measurement in 2D image 

space of the camera and projector respectively. 

 

 

Figure 8.3 Relative locations of the flat plane in the GOM 

measurements. 
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 Flatness deviation evaluation method 

This section will define the method by which the flatness deviation values will 

obtained when measuring the flatness artefact. Prior to obtaining flatness 

deviation values, a filtering method is applied that removes high spatial-

frequency information and lowers the bandwidth of the measurement. The flat 

plane is measured within a particular bandwidth of spatial frequencies on a 

tactile CMS. Fringe projection measurements have higher point density and 

typically measure a wider bandwidth of spatial frequencies. The flat plane 

analysis must remove higher spatial frequencies of the measurement to 

compare with the known measurement of lower bandwidth.  

During the measurement, approximately 2 × 106 points were measured of the 

flatness artefact surface. The clustering method defined here splits the point-

cloud into 𝑘 clusters of points. Each cluster will then be averaged of to produce 

𝑘 pseudo-points that represent the flat plane. In this case, 𝑘 was chosen to be 

1024, which was a compromise between reducing the measurement bandwidth 

to be comparable with the tactile CMS measurement, and retaining some scale 

of the form measurement. 

For validity, each cluster should be approximately the same size and contain 

the similar numbers of points. In the measurement of the flatness artefact, the 

point-cloud points are almost equally spaced. The point-cloud is clustered by 

repeatedly splitting the point-cloud in half along the two largest principle 

components to produce successively smaller quarters of the point-cloud. The 

largest principle component of the point-cloud is found using singular value 

decomposition (SVD). If the point-cloud is written as 

 𝑿𝑁×3 = ൤𝒙ሬሬԦ1
T

⋮
൨ − 𝒙ഥ (8.1) 

given 𝒙ഥ = E(𝒙ሬሬԦ) =
1

𝑁
∑ 𝒙ሬሬԦ𝑖. Then 𝑿 could be decomposed into the form 

 𝑼𝚺𝑽T = 𝑿 (8.2) 

where both 𝑼 and 𝑽 are orthogonal matrices 𝑼T𝑼 = 𝑽𝑽T = 𝕀 and are 

orthonormal eigenvectors of 𝑪𝑪T and 𝑪T𝑪 [240]. Since 𝑪T𝑪 is akin to computing 

the covariance, the largest eigenvector of 𝑪T𝑪 is the vector describing the 

direction of greatest change – the largest dimension. Given the point-cloud is 

split using the line 𝒍Ԧ = 𝜆𝜶ሬሬԦ, where 𝜶ሬሬԦ is the eigenvector of 𝑪T𝑪 corresponding to 

the largest eigenvalue, each point must be discerned as to which side of the line 

it lies on, which is found using  
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 sign ൬
𝑥1 − 𝛼1

𝛼2
−

𝑥2 − 𝛼2

𝛼1
൰, (8.3) 

where the sign operator returns +1 if the argument is positive, and −1 if the 

argument is negative. The SVD clustering algorithm is given in Algorithm 9, 

and a graphical representation is given in Figure 8.4. 

Algorithm 9 SVD-based clustering algorithm used to cluster the flat 

plane. 

 

Set one cluster to be the full point-cloud 𝑿0 = 𝑿 

For each iteration: 

 For each cluster 𝑿𝑗: 

  If number of points in cluster 𝑿𝑗 are less than minimum number: 

   Skip this cluster 

  End If  

  SVD: 𝑼𝚺 ൤
𝜶ሬሬԦ1

𝜶ሬሬԦ2
൨ = 𝑿𝑗 

  Split 𝑿𝑗 into four quadrants using eq. (8.3) and the line  

   equations given by 𝜶ሬሬԦ1, 𝜶ሬሬԦ2 and the mean of cluster 𝑿𝑗,  

   creating four new clusters. 

 End For 

End For 
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Figure 8.4 Flatness clustering algorithm used to remove phase error 

noise and lower the bandwidth of the measurement. 

 Accuracy test 

This section will compare the accuracy of a measurement made using 

parameters obtained from serial, weighted serial, parallel and weighted 

parallel methods. Additionally, measurements will be compared with a 

measurement made using parameters obtained using the method 

stereoCalibrate from OpenCV 4.5.5 [241], and measurements made using the 

GOM ATOS Core 300. To distinguish between measurements, measurements 

will be named after the calibration method the system parameters are obtained 

using. Accuracy will be compared by directly comparing the spread of flatness 

deviation values obtained. The spread of flatness deviations of each position of 

the flatness artefact will be shown independently to compare the 

reproducibility of each measurement. The flatness deviations are shown in 

Figure 8.5 and Figure 8.6. 
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Figure 8.5 Box and whisker plot of the spread of deviations from the 

fitted plane. The whiskers cover the full range of deviations, while 

the box shows the interquartile range. 

 

Figure 8.6 Bar plot of the range of deviations from the from the 

fitted plane. 

The weighting matrix has a non-significant effect on the accuracy of the serial 

calibration method, improving the flatness by two thirds in one case. The 

weighting brings the serial method to close to the GOM’s accuracy. The 

weighting matrix has a weaker effect on the parallel method, but does improve 

the flatness deviation by approximately 10 μm in two out of three positions. 

The accuracy of the weighed parallel method is improved over the GOM in two 
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instances, but is far less reproducible than the GOM measurements. It is worth 

noting that unlike the comparison between the serial, weighted serial, parallel, 

weighted parallel and OpenCV methods, the GOM positions are not the same.  

 Uncertainty test 

This section will test the validity of the estimated parameter values and 

uncertainties. The propagation of uncertainty will be conducted using 1000 

repetitions, which has been chosen as number at which the standard deviation 

has suitably converged, see Appendix D. 
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A box and whisker plot of the mean flatness deviation is given in Figure 8.7. 

The flatness deviations across the flatness artefact are averaged across all 

repetitions using the two weighted methods and is shown in Figure 8.8. In 

Figure 8.7, the weighting matrix improves the mean deviation across the 

measurement volume, reducing the spread of values from the flat plane by 

approximately a third for two of the positions in both the serial method and the 

parallel method. Both the serial and weighted serial methods measure the flat 

plane to a high degree of flatness in one of the three positions. 

 

Figure 8.7 Box and whisker of the spread of the mean flatness 

deviations across all trials. 
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Figure 8.8 Mean deviation of each data point from the substitute 

best-fit plane across the flat plane from the Monte-Carlo trials. 
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This next part of this section will display the variability of each pseudo-point 

across the plane. The distribution of the collective standard distributions of the 

distance of the pseudo-points from the substitute best-fit plane is given in 

Figure 8.9. The standard deviation of the distance of each pseudo-point from 

the substitute best-fit plane is given in Figure 8.10. The uncertainty of the flat 

plane deviation is unique in each position – given each flat plane measurement 

covers a unique set of camera-projector coordinates, ൫𝑢𝑐 , 𝑣𝑐, 𝑢𝑝, 𝑣𝑝൯. The 

standard deviation of the distance from the best-fit plane is dependent on the 

plane position, with no weighted methods sharing a similar uncertainty across 

the flat plane artefact. Both weighted and unweighted methods share a similar 

magnitude of uncertainty, but the weighting matrix changes where in the 

measurement volume the uncertainty is concentrated.  

 

Figure 8.9 Distribution of the standard deviations of the distances of 

the pseudo-points from the substitute best-fit plane. 
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Figure 8.10 Standard deviation of distance of each pseudo-point 

from the substitute best-fit plane. 
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The next section tests the validity of the calibration method to provide 

parameter estimates with uncertainties using the reduced 𝜒2 test, see Section 

4.4. The reduced 𝜒2 values across the plane are given in Figure 8.12. The 

collective reduced 𝜒2 values are given in Figure 8.11. In Figure 8.11, the 

collective 𝜒2 results are given for each position and for every position together 

under “all”. The weighted serial method offers the best uncertainty evaluation, 

given the 𝜒2 test scores closest to one, or under. The weighting matrix has again 

improved the uncertainty estimation for both the serial and parallel methods. 

However, the uncertainty does not satisfactorily cover all positions for any one 

method.  

 

Figure 8.11 Collective reduced 𝜒2 test results of all pseudo-points. 
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Figure 8.12 Reduced 𝜒2 test results of each pseudo-point across the 

plane. 
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 Discussion 

The flat plane artefact has failed to validate the parameter estimations and 

uncertainties obtained using the method of calibration defined in Chapter 7. In 

Figure 8.6, the accuracy of the parameter estimations are shown to be high: they 

rival the accuracy of a commercial system, the GOM ATOS Core 300. However, 

in Figure 8.11 the standard deviation estimated with the calibration method 

was unable to explain all discrepancies of the measured deviation from flat. 

Unless the camera and projector are perfectly modelled using the pinhole and 

distortion models, the models will not be equally applicable across the 

corresponding image planes. As series of tests were given in Section 7.4 to 

check the validity of the calibration conditions. Validate conditions included 

the linearity of local parameter space, stability of parameters and convergence 

of the problem. However, Section 7.4.5 showed that the weighting matrix 

overestimated the reprojection errors and in Section 7.4.1 the calibration failed 

to pass the specificity test given by White [237]. The results of these tests 

indicate that the pinhole and distortion model is inadequate in modelling a 

fringe projection system. Therefore, the applicability of the estimated system 

parameters 𝜽ሬሬԦ will be dependent on the location of the object in the camera and 

projector image space, and therefore the position in the measurement volume. 

In certain portions of the measurement volume, the estimated system 

parameters correspond well with that location. The weighting matrix has 

improved the applicability of system parameters across the measurement 

volume for both methods, but has failed to make the model applicable across 

the entire measurement volume. 

Considering the applicability of the system parameters will differ across the 

measurement volume (if both the camera and projector is not perfectly 

described using the pinhole with distortion model), it is possible that many 

more measurements of the flat plane are necessary to obtain enough statistical 

significance, and the reduced 𝜒2 value of every measurement may converge to 

one. However, if this is true, then this will be in conflict with a basic principle 

of fringe projection – that a high-density data measurement can be made 

quickly. In this case, there are fewer reasons to use a fringe projection system 

over a conventional tactile CMS. 

Given the parameter estimates are treated as normally distributed, virtual 

parameters are sampled symmetrically about the parameter estimate mean 

value. The differences between the flatness deviation obtained using the mean 

parameter estimate values (Figure 8.5) and the flatness deviation obtained 

using the mean of a set of virtual parameter estimate values (Figure 8.7) 

highlights an asymmetry of the uncertainty problem in fringe projection. The 
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expected value, i.e., the mean, of flatness deviations is not equal to performing 

the measurement using the expected values of the parameter estimates. In other 

words, for measurement outcome 𝒚ሬሬԦ and measurement indication 𝒙ሬሬԦ with 

parameters 𝜽ሬሬԦ, the problem is non-linear: 

 𝔼(𝒚ሬሬԦ) ≠ 𝑓 ቀ𝒙ሬሬԦ, 𝔼൫𝜽ሬሬԦ൯ቁ. (8.4) 

 Sphere-based artefacts 

Sphere-to-sphere lengths and sphere radii measurements are included in ISO 

10360-13 and VDI/VDE 2634 part 2. Unlike flatness artefacts, where the 

measurement, flatness deviation, is measured from each point to a fitted 

geometrical shape, sphere measurements are based solely on the fitted 

geometry. Theoretically, this should provide measurements that are insensitive 

to phase noise. In this section, two different sphere artefacts will be used. A 

sphere plate and a sphere dumbbell. The sphere plate consists of 25 spheres 

fixed to a plate – providing much more information over the sphere dumbbell 

that consists of only two spheres. However, the sphere plate provides a more 

difficult measurement scenario and analysis method given the extra 

information. 

Section 8.3.1 and 8.3.2 provide information on the sphere plate and sphere 

dumbbell artefacts as well as information on the measurements of the artefacts. 

Section 8.3.3 explicitly defines the evaluation method used to obtain the sphere 

radii and sphere-to-sphere length values. In Section 8.3.4, the sphere fitting 

algorithm is tested for bias. In Section 8.3.5 the accuracy of the parameter 

estimates is tested. In Section 8.3.6 the validity of the uncertainty of the 

parameter estimates is tested. Finally, the results of the tests using the flatness 

artefact are discussed in Section 8.3.7. 

 Sphere plate information 

The sphere plate was provided by Taraz metrology and measured in-house. 

The spheres themselves are polyoxymethylene spheres, each of radius 

12.5 mm. The spheres lie in a grid comprised of 40 mm × 40 mm cells. The 

sphere positions are indicated in Figure 8.13(d). Given there are many spheres 

and so many possible lengths, a total of twelve sphere-to-sphere distances is 

given in Figure 8.14, so as not to provide duplicate information.  
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(a) 

 
 

(b) 

 
(c) 

 
(d) 

Figure 8.13 Information on the sphere plate used in the sphere-

based measurements. (a) An image of the sphere plate, the value 

within each sphere is its height above the 𝑥𝑦 plane. (b) The location 

of the measurements in 3D space. (c-d) The locations of the 

measurements in the 2D image planes of the camera and projector 

respectively. Spheres are coloured red, green and blue correspond 

to the measurements 1,2 and 3 respectively. 
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(e) 

Figure 8.14 The spheres used for the sphere-to-sphere distances. 

All sphere radii are 12.5 mm. 

 

 Sphere dumbbell information 

The dumbbell was provided by Trapet. The sphere-to-sphere distance is 

199.946 mm ± 1 μm and the sphere radii are 10.001 mm and 10.001 mm 

respectively. The minimum and maximum deviation from the Gaussian 

substitute sphere is 0.9 μm and 1 μm for the first sphere and 0.6 μm and 0.6 μm 

for the second sphere. The dumbbell was measured once in each of the six 

positions shown in Figure 8.15. The relative positions of the dumbbell in the 

GOM measurements is given in Figure 8.16. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 8.15 Information on the dumbbell measurements. Spheres 

are coloured red, green, blue, cyan, magenta and yellow 

correspond to match measurements across the different views. (b) 

The location of the measurements in 3D space. (c-d) The locations 

of the measurements in the 2D image planes of the camera and 

projector respectively.  

 

Figure 8.16 Relative positions of the dumbbell in the GOM 

measurements, with each position given a random colour to show 

pairs of spheres. 
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 Sphere feature measurement method 

This section will detail the sphere feature measurement method completed for 

sphere-based artefacts. The difference in analysis between the sphere plate and 

sphere dumbbell is only in the detection and labelling of spheres, which 

requires more work for the sphere plate given there are many more spheres.  

First spheres are identified in the camera image. Sphere identification is based 

on the contrast difference of the spheres: the spheres themselves are white and 

the background is dark. The sphere identification is entirely performed on a 

single globally illuminated image of the spheres. Each sphere will show as a 

white circle on a black background, and image blob analysis can be used to find 

all connected pixels within the bright region. The image blob analysis in this 

thesis is carried out using OpenCV. First, the globally illuminated image is 

binarized using Otsu’s thresholding method [242]. An operator then manually 

selects an approximate location for each sphere which is used to identify blobs 

as spheres. All other pixels not belonging to a sphere are removed. 

Additionally, an operator then labels spheres based on a fiducial that is in the 

camera image.  

Next, using the labelled and cropped sphere pixels, the three-dimensional (3D) 

points are triangulated. Each sphere is treated as a separate point-cloud and a 

density-based filtering method [28] is used to select the largest connected group 

of points – which will define all the points belonging to a specific sphere. Given 

each point is derived from a single pixel in the camera image, each pixel can be 

labelled according to what sphere the pixel is viewing, and therefore each 

virtual point-cloud generated when propagating uncertainty only needs to 

generate labelled pixels. The graphical representation of the algorithm is in 

Algorithm 10. 
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Algorithm 10 Sphere identification, labelling and cleaning. 

 

Once cleaned and labelled, sphere geometries are fit to the individual sets of 

point-clouds containing each sphere only. There is a well-known bias in the 

least-square fitting of spheres. Therefore, the sphere-fitting algorithm given in 

Al-Sharadqah and Chernov [243] that gives a hyper-accurate fitting will be 

used. This algorithm is tested in Section 8.3.4. 

Threshold the image using Otsu’s thresholding method 

Arrange all the bright pixels into groups of connected bright pixels using 

blob analysis 

Manually select which blobs belong to a sphere 

Remove all pixels not belonging to a sphere 

For each sphere: 

 Triangulate into the corresponding 3D points 

 Use density-based filtering to find the largest body of connected 

points 

 Remove all other points 

End For 
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 Figure 8.17 Sphere identification and cleaning algorithm 

used to prepare the sphere for the sphere fitting. 

 

 Sphere fitting test 

In this section, a test is performed on the sphere-fitting algorithm provided in 

Al-Sharadqah and Chernov [243] to test for validity. An issue with fringe 

projection systems is that mapping the entire surface of the sphere in one go is 

not possible, only the portion of the sphere that is in the line of sight to both the 

camera and the projector can be measured. Even then, high slope angles must 

be removed due to the unacceptable noise levels, so practically only 

approximately 40% of the sphere surface can be mapped. 

Additionally, in fringe projection the dominant error is the phase error. The 

phase error acts along direction of the ray vector of the camera since the phase 
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error is the error in the correspondence of the projector image. The sphere is 

particularly ill-defined in the depth axis because there are little points in this 

axis and therefore the uncertainty is the highest here.  

To test the algorithm, a virtual sphere will be generated, where a virtual sphere 

is just a point-cloud generated from a sphere geometry. The point-cloud is then 

used in the sphere-fitting algorithm, and the parameters sphere location and 

radius are compared with known values to test the validity of the sphere fitting 

method. To simulate a fringe projection measurement, only a portion of the 

sphere will be generated, which will be referred to as the “sphere cap”. For each 

trial of the test, 𝑁 points of random sphere cap are created, where the sphere is 

defined with radius 𝑟, sphere cap angle 𝜃 and the points are perturbed by some 

additive Gaussian error defined with a standard deviation 𝜎, shown in Figure 

8.18. 

 

Figure 8.18 Random sphere cap made of 𝑁 points. Each sphere is 

defined by its sphere radius 𝑟, the measurement area angle 𝜃, and an 

additive Gaussian error of mean 0 and standard deviation 𝜎. 

The values for 𝑟, 𝜃, 𝜎, 𝑁 are drawn from the uniform distributions, given in 

Table 8.1. 

Table 8.1 Distribution of the input values used for the Monte-Carlo 

testing of the sphere-fitting algorithm. 

Value Distribution 

𝑟 𝒰(9.5,12.5) 
𝜃 𝒰(0.6,1.4) 
𝜎 𝒰(3 × 105, 7 × 105) 
𝑁 𝒰(0.03,0.07) 

 

The results of the Monte-Carlo trials of the sphere fitting is shown in Figure 

8.19.  
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Figure 8.19 Histogram of the errors of the sphere fitting test (blue), 

with an overlaid fitted Student’s t distribution (red). 

The sphere fitting test shows significant uncertainty in the position and radius 

parameters when considering a noisy measurement of a limited portion of a 

sphere. When considering future measurements of a sphere, the uncertainty in 

the sphere location caused by the uncertainty in the sphere fitting must be 

considered. The covariance matrix that will be used within future sphere fitting 

processes will be  

൦

0.5 0 0.041 −0.003
0 0.5 0.007 −0.007

0.041 0.007 5 −4.4
−0.003 −0.007 −4.4 4

൪ 

Furthermore, the mean of the errors are −0.002 ± 0.004 μm, −0.001 ±

0.004 μm, 0.001 ± 0.014 μm and −0.36 ± 0.012 μm for the (𝑥, 𝑦, 𝑧, 𝑟), with 

uncertainties given as the 95% confidence interval found using  

 𝑢(𝑥) =
𝜎

ξ𝑛
. (8.5) 

There is some statistically significant systematic error in the sphere-fitting 

algorithm given in Al-Sharadqah and Chernov [243] that must be accounted for 

in any future uncertainty estimations. 
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 Accuracy test 

In this section, the accuracy of the estimated parameters will be tested by 

performing a single measurement using the mean parameter estimate. The 

sphere radii measurements of the sphere plate are given in Figure 8.20, and the 

sphere radii measurements of the sphere dumbbell are given in Figure 8.21. 

Unlike the flatness measurements where every position was treated 

individually, here the repeated measurements of the sphere radii are treated as 

a single reproduced measurement. The error bars on Figure 8.20 and Figure 

8.21 are a 2𝜎 uncertainty obtained from the spread of values of the reproduced 

measurements. 

 

Figure 8.20 Error of the sphere radii measurements for the sphere 

plate. Each datapoint gives the mean value along with a 95% 

confidence interval. 
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Figure 8.21 Error of the sphere radii measurements for the sphere 

dumbbells. Each datapoint gives the mean value along with a 95% 

confidence interval. 

The weighting matrix has had very little effect on the measurement of the 

sphere radii. All methods seem to behave equally poorly when measuring the 

dumbbells, although the OpenCV parameters have made poor measurements 

of the sphere plate radii of the sphere plate only.  

The sphere-to-sphere lengths of sphere plate and the sphere dumbbell is given 

in Figure 8.22 and Figure 8.23. The measurements are again treated as 

reproduced measurements, and the error bars included here are 2𝜎 uncertainty 

obtained from the reproduced measurement. 
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Figure 8.22 Errors in the sphere-to-sphere length measurements of 

the sphere plate according to the configuration specified in Figure 

8.14. The GOM system was unable to measure the sphere plate and 

so is not included. Each datapoint gives the mean value along with a 

95% confidence interval. 
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Figure 8.23 Errors in the sphere-to-sphere length measurements of 

the sphere dumbbell artefact. Each datapoint gives the mean value 

along with a 95% confidence interval. 

The weighting matrix produces no conclusive effect on the measurement result. 

Concerning the sphere plate, the weighting matrix improves the mean result of 

the serial method, but reproducing the measurement does not account for the 

discrepancy in the measurement. The weighting matrix does not improve the 

parallel method results. The weighting matrix has no discernible impact on the 

length error for any method. The OpenCV parameters performs very poorly on 

the sphere plate, but outperforms the parallel method and GOM ATOS Core 

300 results – in direct conflict with the results of the sphere plate results and the 

flat plate results. 

 Uncertainty test 

In this section, the validity of the parameter estimates, and uncertainty will be 

tested using the sphere-based artefacts. Both the sphere plate and the sphere 

dumbbells will be used. The test using the sphere plate artefact was completed 

using 2000 repetitions, and the test using the sphere dumbbell was completed 

using 1000 repetitions. The sphere plate typically too more repetitions to 

converge, see Appendix D. Each sphere is treated as a unique sphere if in a 

unique position. The confidence intervals and mean values shown here are 

found by propagating uncertainty from the estimated system parameters, see 

Section 8.1. First the sphere radii error will be shown for both artefacts. Figure 

8.24 shows the sphere radii error for the sphere plate artefact, and Figure 8.25 

shows the sphere radii error for the sphere dumbbell artefact. In both Figure 

8.24 and Figure 8.25, the sphere radii error is shown along with a 95% 
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confidence interval for each sphere. In Figure 8.24, the mean dot is removed for 

clarity to see the exact height of the confidence intervals. 

 

 

Figure 8.24 Sphere radii error of each unique sphere using the sphere 

plate artefact along with a 95% confidence interval. 

 

Figure 8.25 Sphere radii error of each unique sphere using the sphere 

dumbbell artefact along with a 95% confidence interval. 
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Both tests fail to validate the parameter estimates and their uncertainties. All 

parameters are consistently underestimating the sphere radii of the sphere 

plates by a considerable margin, while tending to overestimate the sphere radii 

or the spheres on the sphere dumbbell artefact. The weighting matrix only 

seems to change the confidence interval of the serial method. To discern any 

dependency of sphere radii error to measurement volume position, Figure 8.26 

shows the sphere radii error graphically at the position of the sphere in the 

measurement volume. Figure 8.26 does not show any correlation between 

sphere radii error and position in the measurement volume. 

 

 
(a) 

 
(b) 

Figure 8.26 The mean sphere radii error obtained from the set of 

virtual point-clouds shown at its measurement location.(a) The 

sphere radii error of the sphere dumbbell artefact. (b) The sphere 

radii error of the sphere plate artefact. 

 

The error in the sphere-to-sphere length along with the positions is given in 

Figure 8.28(a-b), and the sphere radii error mean with a 95% confidence 

interval, calculated from the Monte-Carlo trials, is given in Figure 8.28(c-d). 

Instead of using the prescribed lengths to test the sphere plate measurement, 

the sphere plate positions will be tested by estimating the position and 

orientation of the sphere plate. 
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Figure 8.27 The mean sphere-to-sphere lengths of the sphere plate 

artefact using the configuration given in Figure 8.14. All 

measurements are given with a 95% confidence interval. 

 

Figure 8.28 The mean sphere-to-sphere lengths of the sphere 

dumbbell artefact. All measurements are given with a 95% 

confidence interval. 

The variability of the length measurement errors is very high across all 

measurements. The confidence interval of the weighted serial method covers 
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the discrepancy in both the sphere plate and sphere dumbbell artefact, but the 

uncertainty is overestimated. The confidence interval of the parallel methods 

does not consistently cover the measurement discrepancy. The weighting 

matrix does improve the serial method measurements for the sphere plate, but 

this does not agree with measurements of the sphere dumbbell artefact. The 

weighting matrix has no discernible effect on the measurements of the sphere 

dumbbell artefact. To identify any dependency on an individual sphere, the 

mean errors of the position of each sphere in the sphere plate is shown for each 

measurement in Figure 8.29. Each sphere is shown as distance from nominal, 

magnified 100× times. A 95% confidence interval is shown in blue. The mean 

sphere-to-sphere length error of each sphere dumbbell measurement along its 

position in the measurement volume is shown in Figure 8.30. 

 

Figure 8.29 The mean position of each sphere (red) in the sphere plate 

compared to the actual value (black) All measurements are given 

with a 95% confidence ellipse (blue).  
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Figure 8.30 The mean sphere-to-sphere length errors shown at the 

position of measurement. 

 

Figure 8.29 shows there may be some dependency of sphere-to-sphere length 

error to the sphere itself, given the similar results across methods and positions 

of the sphere plate. Figure 8.30 shows no indication of dependency on position. 

 Discussion 

Due to the conflicting results of the sphere-based artefacts, it is difficult to 

obtain a conclusive result on the validity of the parameter estimates. Evidence 

from the sphere-based measurement indicate that there is some dominating 

error that is not caused by errors in the system parameters. 

The single sphere radii measurement and the mean sphere radii measurement 

of the sphere plate artefact given in Figure 8.20 and Figure 8.24 show a 

consistent underestimation. However, the single radii measurement and the 

mean sphere radii measurements on the sphere dumbbell artefact (Figure 8.21 

and Figure 8.25 respectively) show a consistent overestimation. Unlike the flat 

plane artefact, there is no consistent effect of the weighting matrix. Despite the 

differences in parameters, that had a measurable effect when measuring the flat 

plane, there was often little difference when comparing results from weighted 

methods to results from the same unweighted methods.  

The inconsistency in the sphere-based measurements is reflected in the GOM 

and OpenCV measurements. The GOM measurement of the flat is in good 

agreement with the weighted methods in Figure 8.6, yet the GOM system was 

unable to measure the sphere plate artefact and only had good agreement with 

the parallel methods when measuring the sphere dumbbell artefact. The 

OpenCV parameters performed poorly in all cases except when measuring the 

sphere dumbbell artefact. 

The dumbbells and sphere plate measurements differ drastically from each 

other, despite using the same analysis and the spheres being of similar size. It 
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is well-known that the surface material of measurement artefacts will greatly 

affect their measurement results [115, 244]. The two spheres are made of 

different material – which may be the cause of some measurement discrepancy 

between the two artefacts. 

Given the sphere radii is measured across a small portion of the measurement 

volume, the sphere radii should only be sensitive to changes in system 

parameters that affect scale. It should be expected therefore that the sphere 

radii measurements should remain unchanged when measuring it different 

places across the measurement volume. However, this was shown not to be the 

case for both the sphere plate and the sphere dumbbell artefact in Figure 8.20 

and Figure 8.21. This gives evidence to the fact that a factor other than 

parameter error is strongly influencing the measurement result. 

Furthermore, the length-based measurements are expected to change on 

similar order to the flatness deviations. The flatness deviation in Figure 8.6 

shows approximately a 70 μm change across the flat for the serial method, and 

approximately 30 μm for other methods and the GOM system. The sphere-to-

sphere length measurements showed a change of greater than 100 μm in Figure 

8.22 and Figure 8.23, regardless of the choice of parameters. This gives further 

evidence that parameter error is not the most significant factor influencing 

measurements of the sphere-based artefacts. 

Sphere-based artefacts were chosen for this test because of their use in ISO 

10360-13 and VDI/VDE 2634 part 2 and given a measurement result is 

dependent on tens of thousands of points, it is expected that a sphere would be 

theoretically insensitive to phase noise. However, unlike the flat, the spheres 

are small and are not filtered. The spheres are covered by only a few fringes, 

unlike the flat that is covered by many fringes. A sphere therefore is sensitive 

to phase errors that span a similar length. Spheres also provide a range of 

surface normals, a set of which are guaranteed to be produce very erroneous 

measurements (when surface angle is very high or allows specular reflection). 

The sphere fitting test in Section 8.3.4 indicated a small systematic error when 

measuring radii, and a smaller systematic error along the depth coordinate. 

However, the measured systematic error is considerably larger than the 

systematic error revealed in Section 8.3.4. The test only included Gaussian noise 

distribution – however phase noise is not entirely Gaussian and this can be seen 

in Figure 6.23. Given the limited surface of the sphere that is well measured, it 

is possible that with the addition of non-Gaussian errors, the systematic error 

may be larger. While the hyper-renormalisation algorithm used in this thesis is 
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considered extremely accurate [243], it is possible a weighted non-linear 

geometric fitting would have been more accurate. 

 {Summary 

In this chapter, three artefacts, a flatness artefact and two sphere-based artefacts 

were used to validate the parameter estimates and uncertainties provided by 

the calibration method given in Chapter 7. The accuracy of the flatness 

deviation measurements made with the parameter estimates obtained using 

the weighted methods were comparable to measurements made on a 

commercial system. The weighting matrix improved the measurements of the 

flatness artefact. The measurement of the sphere-based artefacts did not show 

the same effect. Measurements of the two artefacts did not exhibit the same 

behaviour – despite similar size of the sphere and almost identical 

measurement processes. Differences in measurements of the two artefacts was 

attributed to different material composition of the spheres. Additionally, the 

errors of the sphere measurements showed no positional dependency. The 

sphere fitting test showed only very minor bias to be expected in the 

measurements, but evidence showed that the accuracy of the measurements of 

the spheres was limited by the measurement noise – and not the system 

parameters. Results from the sphere-based measurements were unable to 

conclusively validate the system parameter uncertainties. 

Results from the flatness measurement showed that the uncertainty obtained 

using the calibration method defined in Chapter 7 were invalid and unable to 

explain discrepancies between fringe projection and independent 

measurements. Tests performed on methods throughout the measurement 

pipeline indicate that the cause of the invalid uncertainty evaluations is the 

specificity of the measurement model used for fringe projection. The pinhole 

and distortion model currently used is not universally applicable – at some 

scale the terms in the distortion correction are unable to correct the pinhole 

model. A more comprehensive distortion model is required to measure flatness 

deviation values beyond 30 μm across the 320 × 120 mm surface of the flatness 

artefact. 

 

 



 

 – Conclusion 

This chapter will conclude the thesis. A summary of the thesis is given in 

Section 9.1. Section 9.2 summarises the problem of uncertainty in fringe 

projection investigated in this thesis. Section 9.3 describes the novel 

contributions made in this thesis. Section 9.4 summarises the results found in 

this thesis. In Section 9.5, future work based on the findings of this thesis are 

suggested. 

 Thesis summary 

The aim of this thesis was to improve the calibration process of fringe 

projection. Calibration is the process that estimates the quantities (defined 

system parameters here) that define the functional relationship between a 

fringe projection indication (a camera image) and the measurement result (a 

point-cloud). Specifically, this thesis estimated the uncertainty of the system 

parameters obtained using a popular calibration method. The end goal of this 

work was to improve understanding of measurement uncertainty in fringe 

projection and inform future work.  

 Problem summary 

Currently, a gage R&R study is required to evaluate the uncertainty in a fringe 

projection measurement. Each study is only applicable to the specific 

measurement that has been investigated and takes time and resources to 

complete. Ideally, the uncertainty of a fringe projection system would be found 

using just one study, and the results would be universally applicable to future 

measurements made using the system.  

The uncertainty problem in fringe projection systems is highlighted in Chapter 

3 and Chapter 4. The magnitude of the uncertainty problem was made clear in 

Chapter 3 – many influence quantities are missing from the measurement 

model and produce an effect on the measurement result that cannot be 

analytically derived. It is uncertain whether the effect on the measurement 

results can be obtained without extensive knowledge of the measurement 

surface itself, including the surface geometry. The current methods to estimate 

uncertainty in a fringe projection measurement were explored in Chapter 5. 
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There exists no unifying measurement model for which to begin a full 

evaluation of uncertainty of a fringe projection measurement. 

 Thesis contributions 

The approach to uncertainty used in this thesis, where uncertainty in the 

measurement results were derived solely from the system parameters, was 

chosen because it would apply universally to all measurements, it would not 

require any additional data to be taken and it allows for the separation of 

uncertainty measurement-specific uncertainty and system-specific uncertainty. 

An uncertainty evaluation that included surface quantities was considered 

beyond the scope of this thesis.  

This thesis presents several novel contributions to realise this approach to 

uncertainty. A novel triangulation method derived from the pinhole camera 

model is defined in Chapter 2. The triangulation method provides similar 

accuracy over the entire measurement volume as popular methods but 

achieves the same calculation in far fewer operations. The speed of calculation 

of the triangulation is useful in propagating uncertainty from the system 

parameters in Chapter 8, where the triangulation must be completed thousands 

of times for each measurement. In Chapter 6, a dot localisation algorithm is 

modified to produce an uncertainty on the centre locations of the dots in camera 

images. This novel dot localisation algorithm enabled the calculation of an 

appropriate weighting matrix for the calibration, which in turn led to a novel 

estimation of the uncertainty of parameter estimations. Chapter 7 explicitly 

defines the calibration method to estimate both parameters and their 

uncertainties. Chapter 7 provides two alternative methods to achieve this, the 

parallel method where all parameters are estimated within one regression, and 

a serial method were the camera parameters are estimated first followed by the 

projector parameters. The parallel method was expected to be more accurate, 

given the reduced degrees of freedom of the problem, the serial method was 

included as the method is far less computationally intensive. 

Many methods proposed in this thesis were tested for validity, notably 

including the working conditions of the non-linear regression used in the 

calibration. In a first, both the specificity and non-linearity of the model used 

in the non-linear regression that estimated the parameters of fringe projection 

were tested. Additionally, a novel test was proposed to test for stability of the 

estimated parameters throughout the calibration – which allows operators to 

determine if thermal instability within the fringe projection system is 
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problematic. Previously, some thermal instability problems were undetectable 

when using the reprojection errors as a test metric. 

 Thesis results 

To test the validity of the parameter and associated uncertainty estimations 

obtained in this thesis, a flatness artefact, a sphere dumbbell artefact, and a 

sphere plate artefact were measured in Chapter 8. First, the accuracy of the 

estimated parameters was compared using the mean system parameters only. 

The measurements were compared with measurements made using a 

commercial system and measurements made with parameters obtained using 

the method stereoCalibrate from OpenCV. The goal was to understand 

whether the weighting matrix improved the accuracy of the fringe projection 

system. Then, the uncertainty derived from the system parameters was tested 

as to whether it could adequately explain the discrepancy between the fringe 

projection measurements and the independent measurements. If the 

propagated uncertainty was able to explain all measurement discrepancies, the 

uncertainty in the system parameters would be found to be valid. 

In the flatness measurements made using the mean system parameters, it was 

found that both the weighted serial and weighted parallel parameters 

produced measurements that rivalled measurements made by a commercial 

system, the GOM ATOS Core 300, and far outperformed the measurements 

made using OpenCV parameters. The sphere-based measurements however 

were very poor, with no consistent errors found across the two artefacts. The 

propagated uncertainty of the system parameters was unable to explain all 

measurement discrepancies in all three of the artefacts used – but was 

considerably worse for the sphere-based measurements. 

All fringe projection systems, GOM included, performed poorly on the sphere-

based measurements. Given measurements made with different parameters 

from the different calibration methods gave very similar measurements (unlike 

the flat plane measurements), it was concluded that the uncertainty in the 

sphere parameter estimates were dominated by phase error, and not error in 

the system parameters. The uncertainty in the sphere fitting process found in 

Section 8.3.4 was ~15 μm lower than the unexplained discrepancy in the 

parallel calibration method, and ~170 μm lower than the discrepancy in the 

GOM measurements. It was determined that the sphere fitting test in Section 

8.3.4 did not fully eliminate the phase error which led to unaccounted effects 

on the sphere fit. The sphere plate artefact produced very different results to 

the dumbbell artefact, despite near identical measurements and analysis. It was 
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established that the material of the spheres in the sphere plate artefact was the 

cause of this issue. The results of the sphere-based measurements in this thesis 

lead to the question of the validity of using sphere-based measurements to 

empirically test the performance of fringe projection systems. While the flatness 

artefact presents a very simple measurement scenario, the sphere-based 

measurements present a challenging measurement scenario. Unlike the flatness 

measurements, the sphere-based measurements provide limited information 

on the nature of system-specific errors as the measurements are dominated by 

measurement-specific errors. 

The flatness measured using system parameters obtained from either the serial 

or parallel calibration methods can obtain a flatness value of ~30 μm. However, 

the uncertainty of the estimated parameters fails to account for the entire range 

of values in the flatness measurement – despite the weighting matrix being 

potentially overestimated. It was concluded that while the weighting matrix 

could be improved, the pinhole with the Brown-Conrady distortion model 

used to define fringe projection systems is inadequate for producing a flatness 

beyond ~30 μm of a 300 mm × 140 mm flatness measurement. The distortion 

model generally defines the distortion found in a camera well, but at a certain 

scale, this model will fail – and this thesis shows the limit to this model has 

been reached. 

 Future work 

This thesis identifies two key areas of improvement that could be made to 

improve the accuracy of a fringe projection measurement as well as the 

uncertainty evaluation of a fringe projection measurement, in relation to the 

system parameters.  

Firstly, the input covariance estimates to the non-linear regression derived in 

this thesis could be improved. It was made clear in this thesis that the 

covariance estimates typically overestimated errors, and in the case that this 

error is not a scalar multiplicative error, will lead to an incorrect regression 

covariance estimate. In the case that this error is a scalar multiplicative error, 

the errors will be overestimated. 

The failure of the sphere-based measurements indicates a better choice of 

artefact could have been chosen. An artefact that presents a lower range of 

surface normal vectors, no surface geometrical or contrast discontinuities, and 

spans a larger volume, would allow for more robust averaging methods to be 

utilised. If these conditions are followed, even material that presented sub-

surface scattering would not be problematic. Unfortunately, it is unlikely a 
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prismatic shape (that is not a flat plane) would fit this description – a freeform 

surface may be the only solution. 

The failure of the distortion model indicates a more sophisticated model is 

required for higher accuracy measurements as those obtained in this thesis. 

Each pixel is considered as a direction sensor, where the direction of each pixel 

is dictated by the pinhole matrix and the distortion parameters. Increasing the 

orders in the distortion model will give diminishing returns on accuracy, not 

all distortion (especially very low-level distortion) is guaranteed to be well-

described the Brown-Conrady model. Alternative distortion models, such as a 

non-parametric distortion model, i.e., a Gaussian process model, may enable a 

more accurate measurement by not relying on specificity of any single 

distortion model. 
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Appendix A – Gaussian fitting 

This appendix will detail the exact method used to fit the Gaussian function to 

the 𝑃 line-spread functions. With 𝑃 line-spread functions per dot there are 1 +

2𝑃 parameters to be estimated. Each line-spread function is normalised so both 

its abscissa and ordinate range is [0,1) to prevent one line-spread function from 

having too much influence on the Gaussian fitting. The method is based on the 

Levenberg-Marquardt algorithm, the basics of which is detailed in Section 6.5. 

The 𝑖th value of the 𝑗th line-spread function is given by 𝑦𝑖𝑗 at location 𝑥𝑖𝑗. The 

Gaussian function therefore is given by  

 
𝑦𝑖𝑗 = 𝐴𝑗𝑒

−
൫𝑥𝑖𝑗−𝜇𝑗൯

2

2𝜎2 . (A.1) 

With each line-spread function containing 𝑀 points each, stacking each line-

function gives 𝒚ሬሬԦ = {𝑦𝑖𝑗}, with each component found using the subscript 

𝑀 × (𝑗 − 1) + 𝑖. The list of parameters is defined as 𝝍ሬሬሬԦ =

[𝜎 𝜇0 𝐴0 … 𝜇𝑃 𝐴𝑃]T. The linear form is then given by 

 𝒚ሬሬԦ = 𝓙𝝍ሬሬሬԦ, (A.2) 

with the Jacobian 𝓙 size 𝑀𝑗 × (1 + 2𝑃) given with 

𝓙𝑀𝑗×(1+2𝑃)

=

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

𝜕𝑦0,0

𝜕𝜎

𝜕𝑦0,0

𝜕𝜇0

𝜕𝑦0,0

𝜕𝐴0
0 0 0 0 ⋯ 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝜕𝑦0,1

𝜕𝜎
0 0

𝜕𝑦0,1

𝜕𝜇1

𝜕𝑦0,1

𝜕𝐴1
0 0 ⋯ 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝜕𝑦𝑀,𝑃

𝜕𝜎
0 0 0 0 0 0 ⋯

𝜕𝑦𝑀,𝑃

𝜕𝜇𝑃

𝜕𝑦𝑀,𝑃

𝜕𝐴𝑃 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

. 
(A.3) 

The components of the Jacobian 𝓙 can be derived from eq.(A.1). The subscripts 

have been dropped from the following equations for generality and clarity. 

 𝜕𝑦

𝜕𝜎
=

𝐴(𝑥 − 𝜇)2

𝜎3
𝑒

−
(𝑥−𝜇)2

2𝜎2  (A.4) 

 𝜕𝑦

𝜕𝜇
=

𝐴(𝑥 − 𝜇)

𝜎2
𝑒

−
(𝑥−𝜇)2

2𝜎2  (A.5) 
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 𝜕𝑦

𝜕𝐴
= 𝑒

−
(𝑥−𝜇)2

2𝜎2  
(A.6) 

This naturally leads to the method of estimating an uncertainty from a least-

squares estimate 

 𝑉fit = 𝜎2(𝓙𝑇𝓙)−1, (A.7) 

 
𝜎2 = (𝒚 − 𝒚̂)T(𝒚 − 𝒚̂)

1

𝑁′ − (1 + 2𝑃)
, (A.8) 

where 𝑁′ gives the number of points that define the Gaussian peak. Since points 

far from the peak centre offer no information when defining the peak, the total 

𝑁′ is made of points that exist only within ± 3𝜎. Eq. (A.2) would require the 

regression follow all the regular assumptions of a least squares regression. 

However, errors will exhibit some autocorrelation due to spatial frequency 

limitations. The line-spread function is also assumed to be a Gaussian function 

and there is no guarantee of this validity. The uncertainty will be estimated 

using a combination of the least-squares estimate and a resolution limit defined 

by the full-width at half-maximum (FWHM) of the Gaussian peak 

 𝑽𝜓 = 𝑽fit + 𝑽res. (A.9) 

The matrix 𝑽fit defines the uncertainty from the fitting procedure given by the 

least squares estimate of eq. (4.60) and eq. (4.61), while the matrix 𝑽res defines 

the uncertainty to defining the ellipse boundary. The least-squares estimate 

defines the goodness-of-fit. For example, an ellipse completely corrupted with 

specular reflections will not fit a Gaussian function well, and this will be 

reflected in 𝑽fit. The FWHM is given by 

 𝐹𝑊𝐻𝑀 = 2ξ2 𝑙𝑛 2 𝜎 ≅ 2.355𝜎, (A.10) 

and determines a uniform confidence interval of ±ξ2 ln 2 𝜎, and can be adjust 

to a “normal” interval, as described in GUM [24], with  

 
𝑽𝑟𝑒𝑠 = 𝕀1+2𝑃 ×

2 𝑙𝑛 2

3
𝜎2. (A.11) 
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Appendix B – Ellipse fitting 

The least squares method used in this work is taken from Fitzgibbon, Pilu [216], 

chosen for its simplicity. The ellipse equation, eq. (6.18), 

 𝒙ሬሬԦT𝑴𝒙ሬሬԦ = 0, (6.18) 

can be rewritten as: 

 

ቂ𝑥2 𝑥𝑦 𝑦2 𝑥 𝑦
⋮ ⋮ ⋮ ⋮ ⋮

ቃ

ۏ
ێ
ێ
ێ
ۍ
𝐴′

𝐵′

𝐶′

𝐷′

𝐸′ے
ۑ
ۑ
ۑ
ې

= 𝟏ሬሬԦ (B.1) 

 𝑿𝒎ሬሬሬԦ′ = 𝟏ሬሬԦ (B.2) 

and the coefficients 𝒎ሬሬሬԦ′ can be found in the least-squares manner 

 𝒎ሬሬሬԦ′ = (𝑿T𝑿)𝑿T𝟏ሬሬԦ (B.3) 

The coefficients 𝒎ሬሬሬԦ′ can be converted to 𝜶ሬሬԦ
′

= {𝑥0, 𝑦0, 𝑎, 𝑏, 𝜙} using 

 𝜙 =
1

2
arctanቆ

−𝐵′

𝐶′ − 𝐴′
ቇ (B.4) 

 

𝐴′′ = 𝐴′ cos2 𝜙 + 𝐵′ cos𝜙 sin𝜙 + 𝐶′ sin2 𝜙 

𝐶′′ = 𝐴′ sin2 𝜙 2 − 𝐵′ cos 𝜙 sin𝜙 + 𝐶′ cos2 𝜙 
𝐷′′ = 𝐷′ cos 𝜙 + 𝐸′ sin𝜙 

𝐸′′ = −𝐷′ sin 𝜙 + 𝐸′ cos𝜙 

𝐹′′ = 1 +
𝐷′2

4𝐴′
+

𝐸′2

4𝐶′
 

(B.5) 

 𝑥0 = −
𝐷′′

2𝐴′′
cos 𝜙 +

𝐸′′

2𝐶′
sin 𝜙 (B.6) 

 𝑦0 = −
𝐷′′

2𝐴′′
sin𝜙 −

𝐸′′

2𝐶′′
cos 𝜙 (B.7) 

 
𝑎 = ඨ

𝐹′′

𝐴′′
 (B.8) 
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𝑏 = ඨ

𝐹′′

𝐶′′
 (B.9) 

The issue with this approach is it does not consider errors in the regressors 𝑿, 

and many of the regressor are correlated, so will be biased in some way. One 

method to deal with this is to estimate the error the regressors have on 𝟏ሬሬԦ and 

iteratively reweight. To relax the assumption homoscedasticity without an a 

priori estimation of errors in the regressors, the coefficients 𝒎ሬሬሬԦ′ can be found by 

weighting each point 

 𝒎ሬሬሬԦ′ = (𝑿T𝑾𝑿)𝑿T𝑾𝟏ሬሬԦ. (B.10) 

The weighting matrix can be estimated from a previous fitting. The full 

algorithm is given in Algorithm 11 . 

Algorithm 11 Iterative least-squares estimation of ellipse parameters. 

 

The variable 𝟏ሬሬԦ is a constant, the error in 𝟏ሬሬԦ does not carry much physical 

meaning. Additionally, the regressor matrix is derived from only two variables, 

𝑥 and 𝑦 – clearly the regressor matrix will be highly correlated. Thanks to the 

square terms in the regressor 𝑿, the errors will be dominated by any significant 

outliers, this method is not particularly robust. A natural extension to this 

method is the weighted total least-squares method. 

 

Set 𝑾 = 𝕀. 

Set 𝛿 = 1 × 10−3. 

For 3 repetitions: 

 Find 𝒎ሬሬሬԦ′ through least squares. 

 Update the weight matrix using  𝑾 = 𝕀 ×
1

max൫𝛿,𝟏ሬሬԦ−𝑿𝒎ሬሬሬԦ′൯
. 

End For 

Find covariance matrix 𝑽𝑚 = (𝑿T𝑾𝑿)−1. 
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Appendix C – Rodrigues operator 

The algorithms for the Rodrigues operator and inverse Rodrigues operator are 

given below. 

Algorithm 12 Rodrigues operator to define rotation matrix from 

Rodrigues vector. 

 

Algorithm 13 Inverse Rodrigues operator to define Rodrigues vector 

from rotation matrix. 

 

 

Find theta 𝜃 = ‖𝒒ሬሬԦ‖ 

Normalise 𝑞Ԧ′ =
𝑞ሬԦ

𝜃
 

Split vector into component parts 𝑞Ԧ′ = ቎

𝑞1
′

𝑞2
′

𝑞3
′
቏ 

Create matrix 𝑄 = ቎

0 −𝑞3
′ 𝑞2

′

𝑞3
′ 0 𝑞1

′

−𝑞2
′ −𝑞1

′ 0

቏ 

Create the rotation matrix 𝑅 = 𝕀3×3 + sin(𝜃) 𝐾 + cos(𝜃) 𝐾𝐾 

Find the rotation angle 𝜃 = arccos ቀ
(𝑅11+𝑅22+𝑅33−1)

2
ቁ 

Find the first component 𝑞1
′ = 𝑅32 − 𝑅23 

Find the second component 𝑞2
′ = 𝑅13 − 𝑅31 

Find the third component 𝑞3
′ = 𝑅21 − 𝑅12 

Assemble 𝒒ሬሬԦ′ = ቎

q1
′

q2
′

q3
′

቏ 

Normalise and incorporate theta 𝒒ሬሬԦ =
𝒒ሬሬԦ′

‖𝒒ሬሬԦ′‖
𝜃 
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Appendix D – Convergence 

In this section, it will be shown that the Monte-Carlo trial results have 

converged enough as to estimate the effectiveness of each calibration method. 

In supplement one to the GUM, an adaptive Monte-Carlo procedure is given 

defined off the numerical tolerance of the standard uncertainty. The purpose of 

this study is to test the system parameters and their associated uncertainties. 

For this purpose, it was decided that a ±5% difference in standard deviation 

was acceptable. For a set of values 𝒙ሬሬԦ = {𝑥𝑖}, the standard deviation, 𝜎, is given 

by 

 
𝜎2 = ෍(𝑥𝑖 − 𝑥ҧ)

𝑛

𝑖=1

, (D.1) 

with 𝑥ҧ being the mean value of 𝒙ሬሬԦ = {𝑥𝑖}. Each addition of a new data point 𝑥𝑖 

will make successively smaller contributions to the computed standard 

deviation. Therefore it can be safely assumed that the standard deviation will 

always converge to a final value, and changes in the standard deviation after 

Monte-Carlo trial 𝑖 will be less than the changes at Monte-Carlo trial 𝑖. 

Therefore, once a standard deviation has stabilised to ±5% for 50 trials, the 

Monte-Carlo trial is considered complete. The convergence plots showing 

stabilisation of the standard deviation to within ±5% are shown for the flat 

plane, sphere plate and dumbbells in Figure 9.1, Figure 9.2 and Figure 9.3. The 

solid lines in each graph show the min-max range of percentage changes of 

every data point of the artefact. The lines becomes red when all points of that 

particular measurement are within ±5% range of the final value. 
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Figure 9.1 Convergence of deviation from flatness values to their final 

value in each Monte-Carlo trial. 
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(a) 

 
(b) 

Figure 9.2 Convergence of error of sphere radii values to their final 

value in each Monte-Carlo trial for (a) dumbbell and (b) sphere 

plate. 
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(a) 

 
(b) 

Figure 9.3 Convergence of error of sphere-to-sphere length values 

to their final value in each Monte-Carlo trial for (a) dumbbell and 

(b) sphere plate. 

While the sphere plate measurements required more trials to stabilise, all the 

trials stabilised within a reasonable rage of values – allowing the comparison 

of the calibration methods. For a real measurement, the number of trails would 

likely have to be higher.s 


