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Abstract
Underwater images are often with biased colours and reduced contrast because of the
absorption and scattering effects when light propagates in water. Such images with
degradation cannot meet the needs of underwater operations. The main problem in classic
underwater image restoration or enhancement methods is that they consume long calcu-
lation time, and often, the colour or contrast of the result images is still unsatisfied. Instead
of using the complicated physical model of underwater imaging degradation, we propose a
new method to deal with underwater images by imitating the colour constancy mechanism
of human vision using double‐opponency. Firstly, the original image is converted to the
LMS space. Then the signals are linearly combined, and Gaussian convolutions are per-
formed to imitate the function of receptive fields (RFs). Next, two RFs with different sizes
work together to constitute the double‐opponency response. Finally, the underwater light is
estimated to correct the colours in the image. Further contrast stretching on the luminance
is optional. Experiments show that the proposed method can obtain clarified underwater
images with higher quality than before, and it spends significantly less time cost compared
to other previously published typical methods.
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1 | INTRODUCTION

Optical detection and sonar detection are two main means of
environment sensing for underwater vehicles. Compared with
sonar image, optical image has higher resolution and richer in-
formation with more direct expression [1, 2]. Therefore, the
optical detection has advantages over the sonar detection in
close range operations for underwater vehicles. However, when
light propagates in water, the water medium and the impurity
particles in it will cause the light absorption and scattering ef-
fects [3]. As a result, the underwater images will be degraded and
often appear as blurred or hazed, contrast declined and colour
biased. Consequently, these will cause great trouble in feature
extraction, target detection and tracking. Therefore, improving
the clarity of underwater images is very important to support the
optical detection techniques in close range operations of un-
derwater vehicles [4].

Most traditional underwater image clarifying methods can
be divided into two categories: the type of image enhancement
methods and the type of image restoration methods [5, 6]. The
idea of image enhancement methods for underwater image
clarifying is to deal with the underwater image through various
image processing methods or image transformations, so as to
eliminate the influence of light absorption and scattering on
the image [7, 8] and get a higher sharpness image than the
original one [9, 10]. The image restoration methods are based
on establishing a mathematical model for the imaging degra-
dation process. By estimating the model parameters and then
inverting the degradation process, a clarified underwater image
is expected to be obtained [11, 12]. Either image enhancement
methods or image restoration methods require large amounts
of calculation, and usually they would take a much longer time
than desired in real‐world applications to get the clarified result
image.
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With the remarkable success of deep learning methods in
solving high‐level and low‐level vision problems, learning‐
based methods for underwater image clarifying are emerging
[13, 14]. The learning‐based methods rely on sufficient and
effective training data with ground truth, and the truth value
should be unique. However, for a real underwater image, it is
difficult to obtain the corresponding clarified ground truth
directly. When using manual annotation, different persons may
give different outcomes, and it is hard to say what kind of
image appearance should be taken as a unique ground truth of
clear image for an underwater image. Therefore, we think that
the learning‐based methods are not suitable to be used for
underwater image clarifying currently. Consequently, we mainly
focus on the traditional non‐learning methods in this paper.

In practical applications, there is a need to clarify the
colour biased and hazed underwater images quickly to help
automatic or manual underwater operations. The purpose of
our work is not only to design a fast underwater image clari-
fying method to be used in real underwater scenes but also to
make the method rely less on training data. In this paper, we
propose a new idea for underwater image clarifying, which
corrects the biased colour by imitating the colour constancy
mechanism of the human eye.

The rest of our paper is arranged as follows: In Section 2,
we give a brief review of the related works. In Section 3, we
begin with an overview of the proposed method followed by
an introduction of the double‐opponency model for colour
perception by the human eye, and then we describe in detail
the process of our method. In Section 4, we show the exper-
iment results with analysis and discussion, on ablation study
and comparison with other methods. Finally, the conclusions
and future work are presented in Section 5.

2 | RELATED WORK

With the development of underwater robots and facilities,
underwater image clarifying has been gradually becoming one
of the hot research topic since the end of the last century [15].
Various image enhancement methods or image restoration
methods, and sometimes their different combinations, have
been applied to deal with the problems emerging in underwater
images, such as low contrast, colour distortion, blurred texture,
uneven illumination, and so on. These methods can be clas-
sified into several types, including: colour correction and
contrast stretching methods, Retinex based methods, domain
transformation methods, dehazing based methods, optical
model based methods, and hybrid methods. In recent years,
since the success of learning‐based methods in many areas, this
type of method has also been brought into the field of un-
derwater image clarifying. Here we give a brief review of these
methods through some examples in the following.

Colour correction and contrast stretching methods: In
2004, Chambah et al. [16] proposed an unsupervised colour
equalisation algorithm, which was inspired by human visual
adaptation mechanism about lightness and colour, to help fish
segmentation and feature extraction. In 2005, Torres‐Méndez

and Dudek [17] used a Markov Random Field to build the
relation between the distorted and undistorted colour, then
recovered the colour of underwater images based on training
data and energy minimisation. In 2007, Iqbal et al. [18] gave a
sliding stretch algorithm that based on the similar distribution
hypothesis on the histograms of the red (R), green (G), and
blue (B) components of an ideal image. It first stretches the
value range of R and G to the same range of B in RGB colour
space, then stretches the range of saturation (S) and intensity
(I) to [0,255] in HSI colour space. In 2015, Singh et al. [19]
presented two recursive algorithms using histogram equal-
isation to enhance the images acquired in low light condition
such as underwater or night. Both the algorithms deal with the
sub‐image histograms, based on their exposure values and
predefined thresholds in different ways. This type of method
usually can improve the contrast of an underwater image
effectively and correct the colours to some extent, but mean-
while, it is easy to blow up the noise and add artefacts to the
image.

Retinex based methods: Retinex is a computational theory
proposed by Edwin. H. Land to model colour and brightness
perception and constancies in human vision. In 2010, Shi et al.
[20] published the “Underwater image enhancement algorithm
based on Contourlet transform and multi‐scale Retinex”. This
algorithm first uses a non‐subsampled Contourlet transform to
decompose the underwater image, and then applies the multi‐
scale Retinex in the low frequency subband to enhance the
global contrast. But it is unsuitable to handle the images with
insufficient or uneven illumination. In 2017, Zhang et al. [21]
extended the multi‐scale Retinex to CIELAB colour space, and
used the combination of bilateral filter and trilateral filter on
different colour channels according to different constraints. It
can suppress the generation of halo artefacts, but its compu-
tational complexity is high due to many parameters involved.

Domain transformation methods: This type of methods
transform the image into other domain by some mapping and
then take advantage of the special properties of the domain to
process the image. The most typical mapping used is the
wavelet transform. In 2010, Lan et al. [22] proposed a wavelet
based method to reduce backscatter noise in underwater im-
ages. After wavelet decomposition, different filters were
applied to filter the low and high frequency coefficients
respectively to trade‐off between eliminating noise and pre-
serving details. In 2015, Singh et al. [23] used wavelet trans-
form to correct the colour of underwater images. In 2017,
Vasamsetti et al. [24] presented a wavelet based framework for
underwater image enhancement. By applying wavelet decom-
position and a set of energy functionals, they first modified the
approximation coefficients of RGB components to adjust the
average intensity of the image, and then modified these co-
efficients at finer scales to correct the colour and improve the
contrast. This type of method usually can well remove the
noise in underwater images, but it is not good for other image
degradation problems.

Dehazing based methods: Many underwater images look
like foggy image, so dehazing algorithms were borrowed to
process underwater images by many researchers. In particular,
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the dehazing algorithm proposed by He et al. [25] basing on
dark channel prior (DCP) is widely adopted. In 2012, Chiang
and Chen [26] used wavelength compensation and dehazing to
reduce the influence of non‐uniform auxiliary illumination and
improve the colour fidelity. In 2015, Galdran et al. [27] applied
DCP mainly to the red channel of underwater images to
recover the lost contrast and colour. In 2017, Ni et al. [28] used
a guided filter and two additional parameters to optimise
adaptively the estimation of transmittance map. They also in-
tegrated colour temperature adjustment in the algorithm to
rectify the colour of image. In 2018, Wang et al. [29] presented
an algorithm that utilised sparse representation on the obtained
dark channel image for deblurring and denoising, and conse-
quently improved the entropy and average gradient of under-
water images. A shortage in this type of method is that they all
need a long time to fulfil the computation.

Optical model based methods: This type of methods builds
the computer model of light propagation or image degradation
in underwater, and clarify underwater images through esti-
mating the model parameters and then inversing the imaging
process. In 2004, Schechner and Karpel [30] proposed a
method based on the characteristics of backscattered light to
improve the visibility of underwater images. In 2006, Trucco
and Olmos‐Antillon [31] gave a self‐tuning underwater image
restoration algorithm based on a simplified Jaffe‐McGlamery
model of underwater imaging. The algorithm worked under
two ideal assumptions that there was uniform illumination and
only forward scattering, which rarely occur in real world. In
2018, Xie et al. [32] restored the image by first estimating the
underwater optical parameters related to natural underwater
light, and then calculating the transmittance of R, G and B
channel respectively according to the relationship between
scattering coefficient and wavelength of light. This type of
method usually made some assumptions and hypotheses that
were not always true in real underwater environment.

Hybrid methods: Due to the complexity of real underwater
environment, a single method often cannot achieve the desired
results. Many researchers applied several different techniques
in combination to deal with different problems in underwater
images, hoping to obtain better outputs. In 2006, Bazeille et al.
[33] presented an automatic pre‐processing algorithm that used
in turn a homomorphic filter to correct uneven lighting and
sharpen the edges, a wavelet filter to suppress the noise, an
anisotropic filter to smooth textures and reduce artefacts, and
then performed a histogram based intensity and colour
adjusting. In 2012, Ancuti et al. [34] proposed a fusion strategy
to enhance underwater images. They first produced a colour
corrected version and a contrast enhanced version of the
original image by white balancing, temporal bilateral filtering
and local adaptive histogram equalising. Then they constructed
four weight maps that aim to global and local contrast, saliency
and exposedness, respectively, for further multiscale fusion. In
2015, Li and Guo [35] gave a hybrid approach that used a
simple dehazing algorithm followed by colour compensation,
histogram equalisation, saturation/intensity stretching and
bilateral filtering to obtain better visibility of underwater
images. In 2022, Gong and Hua [5] proposed a colour

compensation method for underwater images. They first
improved the low‐brightness areas by fusing the polarisation
image with the intensity image. Then they adopted the DCP
principle to enhance and deblur the image. This type of
method often gives better results than one means alone, but
correspondingly takes longer time to process.

Learning based methods: In 2017, Wang et al. [13] presented
a CNN based network called UIE‐Net for colour correction
and haze removal to enhance underwater images; In the same
year, Sun et al. [36] proposed another underwater image
enhancement model based on an Encoding‐Decoding deep
CNN network. This type of method needs image dataset to
train and evaluate the network. Earlier, they used a synthetic
dataset produced in a certain way. For example, literature [36]
simulated water with varying degrees of turbidity by adding
different amount of milk into fixed volume of water, literature
[37] synthesised the underwater images from clean RGB‐D
images captured on the ground. Later, some datasets contain-
ing real underwater images emerged. In 2020, Li et al. [38]
constructed an Underwater Image Enhancement Benchmark
and proposed a gated fusion network called Water‐Net as a
baseline. Underwater Image Enhancement Benchmark includes
950 real‐world underwater images, among which 890 have
corresponding reference images that were selected by volun-
teers from the outputs of 12 existing image enhancement
methods. In 2021, Li et al. [39] presented an underwater image
enhancement network Ucolor, which was composed of a multi‐
colour space encoder with channel‐attention modules and a
medium transmission‐guided decoder. Although in recent years,
the learning‐based method has been taken as a preferred solu-
tion for most applications by many researchers, but its perfor-
mance is heavily influenced by training data. When the actual
underwater scenario is quite different from that in training data,
the outputs of such a method are often far from satisfactory.

In addition to these types of methods mentioned above,
other techniques were also used for underwater image clarifying.
For example, Abunaser et al. [40] utilised particle swarm opti-
misation to reduce the influence of light absorption and scat-
tering on underwater images. Besides, researchers have also been
working on developing new optical imaging techniques, such as
underwater laser scanning imaging and range‐gating imaging,
for acquiring clearer underwater images of more distant targets.
Although the development of such devices in recent years has
improved the range and clarity of underwater imaging, image
processing technology still keeps its position with its advantages
of low cost, low load and easy implementation.

3 | METHOD

3.1 | Overview of proposed method

In an underwater application we involved, it expected to make
quickly the colour biased and hazed underwater images clear.
When we reproduced the existing methods given by other
scholars, we found that either the image restoration methods
or the image enhancement ones would consume much more
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time than desired. We thought that human visual mechanism
might help the quick image clarifying.

Human beings have prior knowledge of the normal colour
expressions of objects in the world. The human visual system
has the abilities of eliminating the influence of most colour‐
changing factors and giving the correct colour perception to
objects. Visual physiologists have found that double‐opponency
colour sensing cells (double‐opponent (DO) cells) in human
primary visual cortex (V1) are the physiological basis of the
stability of colour perception. Gao et al. showed in [41] that the
response distribution of DO cells to the colour biased image is
very consistent with the vector representing the colour of the
light source, and established a computational colour constancy
model that can efficiently estimate the colour of the scene light
source. In the model, most of the calculations are linear. This
inspired us an idea to quickly correct the biased colours in an
image. Different from the traditional image restoration methods
that are based on the physical model, we tried to use the double‐
opponency based colour constancy (DOCC) model of human's
colour perception to deal with underwater images and avoid
modelling the complex light propagation and imaging process in
underwater environment.

In the following, we propose a new method to clarify un-
derwater images by imitating human visual colour constancy
using double‐opponency. This method consists of two main
stages: double‐opponency calculation, which implements the
response from the retina to the V1 area of the brain, and colour
constancy transformation, which corrects the perception of
colours. A further contrast enhancement stage is optional
because the output of the former two stages has an accompa-
nying effect of stretching the illuminance distribution. Figure 1
shows the flow diagram of the proposed method. We describe
the details in the following subsections.

3.2 | Double‐opponency based colour
constancy model

The colour perception in human vision system is a hierarchical
process, which starts from the retina and, through the lateral
geniculate nucleus (LGN) of the thalamus, reaches the V1 area
of the primary and other advanced visual cortex to progress
visual information analysis.

Based on the neural mechanism for colour processing in
the early visual stages, Gao et al. [41] presented a computa-
tional DOCC model.

There are two types of photoreceptors on the retina, that is,
rod cells and cone cells. Among them, cone cells are responsible
for colour vision. They transform light signals entering the eye
into bioelectrical signals that can be transmitted in the neuronal
system. According to the spectral response characteristics of the
three kinds of cone cells, each kind is more sensitive to different
wavelengths of light, that is, the long‐wavelength (L) cone cells,
medium‐wavelength (M) cone cells and short‐wavelength (S)
cone cells respond preferably to the red (R), green (G) and blue
(B) colour respectively. In the visual computing model of
DOCC, this stage is represented as converting the visual signal

from RGB space to LMS space, where L, M, and S denote the
light response to long, medium and short wavelengths
respectively.

Then, the colour information is encoded by colour‐
opponency via the single‐opponent (SO) cells and then the
DO cells. The SO cells exist in the retinal ganglion layer and
LGN. They code the colour information within their receptive
fields (RFs) in the way of red‐green, blue‐yellow, and black‐white
opponency. TheDO cells exist widely in V1. They are capable of
detecting local colour contrast between the centre and surround
of the RF through spatial transformation, thus helpful to colour
constancy. Subsequently, the colour stream originally coded in
colour opponency space (red‐green, blue‐yellow, and black‐
white) in early visual cortex is transformed to trichromatic space
(red, green, and blue) in the higher visual cortexes, where the
visual information processing and analysis is done.

3.3 | Stage 1, double‐opponency calculation

In our method, we use the main part of the DOCC model to
calculate the output of DO cells' responses in LMS space and
call it double‐opponency calculation. The schematic diagram
of the double‐opponency calculation is shown in Figure 2.

3.3.1 | LMS spatial expression of cone cells

Corresponding to the first stage of visual perception that L, M
and S cones of the retina encode the information entering the
eye, we need to convert the image from RGB space to LMS

F I GURE 1 Flow diagram of our method.
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spatial expression of cone cells, with the help of XYZ colour
space.

According to the standard issued by International Tele-
communication Union, the relation between RGB colour space
and XYZ colour space is given in formula (1) [42]:

X
Y
Z

2

4

3

5¼

0:4306 0:3415 0:1784
0:2220 0:7067 0:0713
0:0202 0:1295 0:9394

2

4

3

5
R
G
B

2

4

3

5 ð1Þ

Then, the conversion from XYZ colour space to LMS
space is given in formula (2):

L
M
S

2

4

3

5¼

0:3897 0:6890 −0:0787
−0:2298 1:1834 0:0464

0 0 1:0000

2

4

3

5
X
Y
Z

2

4

3

5 ð2Þ

Combining formula (1) and (2), we can get formula (3) that
gives the spatial transformation between RGB and LMS:

L
M
S

2

4

3

5¼

0:3192 0:6089 0:0447
0:1647 0:7638 0:0870
0:0202 0:1295 0:9391

2

4

3

5
R
G
B

2

4

3

5 ð3Þ

3.3.2 | Single‐opponency response in LGN layer

According to the following formula (4), the spatial information
of LMS is transformed into single‐opponency (denoted as O)
result:

Olm

Oys

Obþ

2

6
4

3

7
5¼

1
ffiffiffi
2
p

−1
ffiffiffi
2
p 0

1
ffiffiffi
6
p

1
ffiffiffi
6
p

−2
ffiffiffi
6
p

1
ffiffiffi
3
p

1
ffiffiffi
3
p

1
ffiffiffi
3
p

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

L
M
S

2

6
4

3

7
5;

Oml

Osy

Ob−

2

6
4

3

7
5¼ −

Olm

Oys

Obþ

2

6
4

3

7
5

ð4Þ

where the subscript characters l, m and s represent the three
components of the input image in LMS space respectively, y is
the synthetic yellow component given by y = m + s, and b is
the luminance component given by b = l + m + s.

Then the response of RFs (denoted as SO) is calculated by
Gaussian convolution. Formula (5) gives an example of the
red‐excitation/green‐inhibition opponency:

SOlþm−ðx; y; σÞ ¼Olmðx; yÞ⊗ RFðx; y; σÞ ð5Þ

where "+" denotes excitation and "‐" denotes inhibition, ⊗
denotes the convolution, σ gives the size of RF, and RF de-
scribes the structure of RF as a Gaussian function:

RFðx; y; σÞ ¼
1

2πσ2 exp −
x2 þ y2

2σ2

� �

ð6Þ

3.3.3 | Double‐opponency in V1 layer

In V1 cortex, two single‐opponency with different sizes of RFs
work together to form a double‐opponency response (denoted
by DO), given by formula (7):

DOlmðx; yÞ ¼ SOlþm−ðx; y; σÞ þ k ⋅ SOmþl−ðx; y; λσÞ
DOysðx; yÞ ¼ SOyþs−ðx; y; σÞ þ k ⋅ SOsþy−ðx; y; λσÞ
DObþðx; yÞ ¼ SObþðx; y; σÞ þ k ⋅ SOb−ðx; y; λσÞ

8
<

:

ð7Þ

where σ defines the size of centre RF, and λσ defines the size
of surrounding RF. Generally, the size of the surrounding RF is
set three times that of the central RF, that is, λ = 3. Parameter
k∈ is the weight of surrounding RF. When k = 0, the effect of
surrounding RF is ignored.

Then in the high‐level visual cortex, the signals are trans-
ferred back to LMS space to obtain colour information ac-
cording to the formula (8):

DTl
DTm
DTs

2

4

3

5¼

1
ffiffiffi
2
p

−1
ffiffiffi
2
p 0

1
ffiffiffi
6
p

1
ffiffiffi
6
p

−2
ffiffiffi
6
p

1
ffiffiffi
3
p

1
ffiffiffi
3
p

1
ffiffiffi
3
p

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

−1

∗
DOlm
DOys
DObþ

2

4

3

5 ð8Þ

3.4 | Stage 2, colour constancy
transformation

Colour bias in underwater images mainly results from light
absorption by water. From the view of perception, it can be
equivalent to a uniformly distributed single light source,
which we call underwater light in this paper, shining on the
scene. In order to eliminate the influence of such underwater
light and obtain a constant perception of colour, we need to

F I GURE 2 Schematic diagram of double‐opponency calculation
(modified based on [41]).
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estimate the light and wipe off its components in underwater
images.

3.4.1 | Light estimation

The components of underwater light (El, Em, Es) is estimated
as follow

Ei ¼ pooling DTið Þ=
X

fl;m;sg

pooling DTið Þ i ∈ fl;m; sg ð9Þ

where pooling (⋅) denotes the canonical neural computation
pooling the DT responses in separate channels over the whole
image [41]. In Section 4.3, we will test the following four
different pooling schemes and decide using which one to es-
timate the underwater light:

1) Max: Use the maximum value of each channel;
2) Avg: Use the average value of each channel;
3) MaxMin: Use the brightest value of all local minimum

pixels of each channel;
4) Top: Take the top 1% brightest pixels in each channel, and

among this set of pixels, choose the one that is brightest in
the original image.

For the subsequently use of Ei, i∈{l,m,s}, it is necessary to
transfer the result from LMS space expression to RGB space
one. The transformation is as follows:

ERGB ¼

ER
EG
EB

2

4

3

5¼ Tran: ∗
El
Em
Es

2

4

3

5 ð10Þ

where

Tran:¼
5:3341 −4:2829 0:1428

−1:1556 2:2581 −0:1542
0:0448 −0:2195 1:0831

2

4

3

5

is the transfer matrix from LMS space to RGB space.

3.4.2 | Colour correction

The model preposed by Von Kries [43] is widely used in colour
constancy after determining the light source. This model
supposes that neurons can achieve colour constancy through a
simple signal correction mechanism. According to this model,
we use following transformation to correct the colour.

JR
JG
JB

2

6
4

3

7
5¼

Er=ER 0 0
0 Eg=EG 0
0 0 Eb=EB

2

6
4

3

7
5 ∗ Tran: ∗

DTl
DTm
DTs

2

6
4

3

7
5

ð11Þ

where (JR, JG, JB) denotes the corrected colour, and (Er = 1/3,
Eg = 1/3, Eb = 1/3) stands for a canonical white illuminant.

3.5 | Stage 3, optional contrast enhancement

Due to the scattering effect of suspended particles in the water,
many underwater images are dim and appear as low contrast.
In previous stages, we dealt with colour bias through the
DOCC mechanism without considering the contrast. In this
stage, we handle the contrast and should not change the col-
ours in the image. So we only adjust the luminance contrast of
the image and then fuse the result with colour components of
the image.

3.5.1 | Adjust luminance

A simple way to enhance the image contrast is to stretch the
distribution range of pixel values through proper mapping, for
example, a linear mapping for uniform stretching. Many al-
gorithms for grayscale contrast enhancement are available, and
anyone could be used to meet our purpose. Here we use the
following simple algorithm:

1) Calculate the histogram of grayscale values of an input
image.

2) Find the minimum value Vmin in the input image.
3) Find the maximum value Vmax in the input image. The

number of pixels with a value greater than Vmax is about
2% of the total number of pixels.

4) Linearly map the pixel values from [Vmin, Vmax] to [0, 255].
Pixels with a value greater than Vmax are set to 255.

3.5.2 | Fuse luminance with colour components

In order to adjust the contrast of an image without changing
the colours in the image, we need to utilise a colour space in
which brightness and chroma are expressed independently. We
chose the HSV colour space because it intuitively represents
the colour and is easy to convert from/to the RGB format.

In the conversion formula from RGB to HSV, the V
component, which expresses brightness, takes the maximum
value of the R, G and B components. In order to better maintain
the relative brightness distribution of pixels in the image, we use
the conventional luminance value (Y = 0.299 � R + 0.587
� G + 0.114 � B) instead of the V component for contrast
enhancement operation and then transform the new HSV back
to RGB.

The process of contrast enhancement is illustrated in
Figure 3, where we denote the output of stage 2 (the colour‐
corrected image) as IC, the enhanced grayscale image as IE
and the output of this stage (the fused contrast‐enhanced
image) as IF. It is executed according to the following
algorithm:

6 - KONG ET AL.
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1) Transform the colour‐corrected image IC from RGB to
HSV and grayscale image respectively.

2) Enhance the grayscale image to get IE using the algorithm
described in subsection 3.5.1.

3) Take the hue component hC and saturation component sC
of IC as the hue component hF and saturation component
sF of the fused image IF respectively. Take the grayscale
value yE of IE as the value component vF of IF. That is:

hF ¼ hC; sF ¼ sC; vF ¼ yE ð12Þ

4) Transform the fused contrast‐enhanced image IF back to
RGB from HSV space.

3.5.3 | Optionality of stage 3

In our initially designing of the underwater image clarifying
method, the process of DOCC is followed by a contrast
enhancing process. The DOCC process aims at correcting the
biased colour caused by the light absorption of water. The
contrast enhancing process deals with dim and low illumina-
tion caused by the light scattering and other factors.

In fact, the DOCC mechanism also has the side effects of
changing the pixel brightness and enlarging the value distri-
bution to some extent. Our experiments show that when the
original image is dim and its grayvalues occupy a narrow span,
the grayvalue distribution range can be significantly enlarged by
the DOCC process. Stage 3 may stretch the range further.
However, when large texture‐free areas with approximately
uniform or graded brightness appear in the original image, our
method might introduce stepped texture or speckle noises in
such areas. And stage 3 could intensify the steps and noises.

As the effect of stage 3 has both positive and negative
sides, we set it to be an optional stage. For the sake of
distinction, in this paper, we will refer to the proposed image
clarifying method that includes only DOCC processing simply
as DO method, while the method that includes all stages 1
through 3 as DO+. Because the computation of stage 3 con-
sumes minimal computing resources, the DO and DO + take
almost the same time to obtain the resulting image. Whether to
use DO or DO+ in a practical application can be decided on a
case‐by‐case basis. We recommend using the DO method if

the acquired underwater images often include areas of
approximately uniform or graded colour (or brightness);
Otherwise, using DO+ would get more distribution of pixel
values. In the experiments Section 4, we will use DO+ unless
otherwise specified.

Figure 4 uses two examples to demonstrate the effect of
the DO and DO+. The images and their corresponding
grayvalue histograms are presented. The left column in the
figure is the original underwater images, the middle the output
of DO and the right is DO+.

4 | EXPERIMENTS AND DISCUSSION

In this section, we show the experimental results on underwater
images from two different sources. One is a dataset we con-
structed ourselves, and the other is two open datasets. We want
to test our method on underwater images with various qualities
in different scenarios. In the early work, considering that most
open underwater image datasets have few scenes and quality
changes, we constructed a dataset containing images with
different qualities and scene styles. As the images in this dataset
were collected from the webpages of various contents and
purposes, we briefly call the dataset UISI (Underwater Images
by Searching the Internet). Later, to verify the effectiveness of
our method, the second source we selected is two open datasets
as additional experimental objects. That is, Real‐world Under-
water Image Enhancement (RUIE) [44] and URPC2019 (the
third Underwater Robot Picking Contest) [45].

In the following, we first describe the UISI dataset in
Section 4.1, then give some evaluation indicators we used to
assess the performance of our method in Section 4.2. In
Section 4.3, we compare the pooling schemes for estimating

F I GURE 3 Flow chart of stage 3: Enhance the contrast of a colour
image without changing its chromatic information.

F I GURE 4 Examples of the effect of our proposed image clarifying
method double‐opponent (DO) and DO+.

KONG ET AL. - 7
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underwater light. In Sections 4.4 and 4.5, we present the
comparison of our method to several other typical methods.

The computer we used to do the experiments is MSI micro
star GP62 2QE‐215XCN, with Intel Core i7 5700HQ CPU,
2.7 GHz frequency, 8G memory, and dual graphics card.

4.1 | UISI dataset

UISI dataset contains 310 underwater images with different
qualities. All the images come from webpages of various
contents and purposes. Some are snapshots of underwater
videos. Their original sizes and aspect ratios were different. We
resized all the images to 640 � 480 pixels. In order to facilitate
analysing the effect of clarifying results, we divided these 310
images into six groups and assigned each image an index
number. See the following description and Table 1 for details:

182 images are from illustrations of webpages. Based on
our observation, we divided these images into four groups
according to the degree of clarity from high to low and
named them Group‐1 to Group‐4, for simplicity.
114 images are snapshots of three different videos on
webpages. We call them Group‐5.
14 images are randomly selected from the URPC2019
dataset. These images belong to Group‐6.

In Figure 5, six example images are shown for an overview
of UISI, each from one group described above.

4.2 | Assessment indicators

Researchers have proposed many indicators for evaluating
image quality. Different indicators are suitable for different
purposes and applications. Peak Signal to Noise Ratio (PSNR)
is a commonly used indicator for measuring image quality,
which came from the engineering of assessing image
compression methods. However, we do not think PSNR is
suitable for evaluating underwater image clarifying methods.
Different from evaluating an image compression method,
where the original image is regarded as a known pure signal, we

cannot know what the noise‐free signal should be in an un-
derwater image, especially in that captured in natural envi-
ronments. Using a colour biased or blurry original underwater
image as the baseline for evaluating and comparing underwater
image clarifying methods is obviously unreasonable. Therefore,
we did not use PSNR as a quality indicator for performance
evaluation in this paper.

Considering the characteristics of underwater images and
the purpose of image clarifying, we adopted five indicators to
assess the performance of our algorithm and the comparison
algorithms. Two are general image evaluation indexes, colour
bias and contrast. The other two are quality evaluation in-
dicators designed for underwater images, Underwater Colour
Image Quality Evaluation (UCIQE) [46] and UIQM (Under-
water Image Quality Measure) [47]. The fifth is the time cost of
an algorithm.

Colour bias: Sometimes, colour affects the outcome that
we recognise and judge objects and their properties. Similarly,
different colours let objects reveal different characteristics in
images and may result in different recognition outputs. Colour
bias often occurs in underwater images mainly because of the
absorption of light energy by water, and it is consistent across
the entire image in this case. Images taken at a depth below
20 m are mostly green‐ or blue‐bias. Therefore, the elimination
of colour bias is one of the essential goals of underwater image
clarifying algorithms, and the degree of colour bias should be

TABLE 1 Description of the composition of UISI dataset.

Group name Number of images Index assigned Image quality Original source

Group‐1 32 1–32 Clear Illustrations on webpages of various contents and purposes

Group‐2 83 33–115 Moderate

Group‐3 54 116–169 Dim

Group‐4 13 170–182 Very dim

Group‐5 53 183–235 ‐ Snapshots of three different videos on webpages

50 236–285 ‐

11 286–296 ‐

Group‐6 14 297–310 ‐ Randomly selected from the URPC2019

F I GURE 5 Example images in UISI dataset.

8 - KONG ET AL.
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taken as one of the assessment indicators to evaluate the
output of the clarifying algorithms.

Based on the formula given by Xu et al. [48], we calculate
the measure of colour bias Bias in CIE Lab colour space as the
following:

Bias¼Dab = Rd ∗ 100 ð13Þ

where Dab is the distance from the average chroma point to the
origin in a‐b plane, Rd is the radius of the equivalent circle of
the chroma distribution. The constant 100 is used to enlarge
the range of Bias values for easy comparison of the results, and
it does not change the essence of the original formula. The
lower the value of Bias, the better.

Contrast: Another widely used indicator of image quality is
contrast. A high‐contrast image reveals more brightness levels
and object details, making objects detected easier than a low‐
contrast image. A commonly used formula to calculate the
contrast value C of an image is as the following [49]:

C ¼
X

δ
δði; jÞ2Pδði; jÞ ð14Þ

where δ(i,j) = |i−j| is the grayscale difference between adja-
cent pixels, Pδ(i,j) is the distribution probability of the differ-
ence. In this paper, we use 4‐neighbour to define adjacent
pixels.

As the formula (14) only considers the intensity of an
image, we use the classic equation Y = 0.299 � R + 0.587
� G + 0.114 � B to transform the underwater image to a grey
one before calculating its contrast value. Generally, the higher
the value of C, the better.

UCIQE: A widely used quantitative indicator for assessing
the quality of no‐reference underwater images is UCIQE, given
by Yang and Sowmya in 2015 [46]. It is calculated in the
CIELab colour space, which is more in line with human visual
perception, using the following formula:

UCIQE ¼ ω1 ∗ σ þ ω2 ∗ δþ ω3 ∗ μ ð15Þ

where σ is the standard variance of chroma of the underwater
image, δ is the contrast of brightness, μ is the average of satu-
ration, and ω1, ω2 and ω3 are the weights of σ, con and μ
respectively. A commonly used setting is ω1 = 0.4680, ω2 =
0.2745 and ω3 = 0.2576. The higher the value of UCIQE, the
better.

UIQM: Another quantitative quality indicator of no‐
reference underwater images was proposed by Panetta et al.
in 2016 [47] and called UIQM. Inspired by the human visual
system and considering the characteristics of different aspects
of underwater images, three metrics compose the visual quality
UIQM according to the following formula:

UIQM ¼ β1 ∗ UICM þ β2 ∗ UISM þ β3 ∗ UIConM ð16Þ

where UICM is the colourfulness measure of the underwater
image,UISM is the sharpness measure,UIConM is the contrast

measure, and β1, β2 and β3 are the weights ofUICM,UISM, and
UIConM respectively. A typical setting is β1 = 0.0282,
β2 = 0.2953 and β3 = 3.5753. The higher the value ofUIQM, the
better.

Time cost: We want to spend as little time as possible
clarifying the underwater images in real‐world applications
whenever there are remote‐controlled or automated opera-
tions. As generally, the less the time cost, the better.

4.3 | Pooling schemes

In subsection 3.4.1, we gave four possible pooling schemes—
Max, Avg,MaxMin and Top—to estimate the underwater light.
Now we use the assessment indicators described in Section 4.2
to help select which scheme will be used in our later
experiments.

We present in Figure 6, the colour bias values of each
original image in the UISI dataset and their corresponding
clarified images derived from using the four pooling schemes
respectively. The abscissa value is the image's index number in
the dataset. The ordinate value is the Bias value. We also give
the group averages of Bias values in Table 2.

The data in Figure 6 and Table 2 show that our image
clarifying method is able to correct the biased colour and
reduce the Bias values in most cases. We inspected the original
and resulting images and found that the increased Bias values
mainly occurred on those images for appreciation, which
usually have the same high picture quality, and the increase was
not statistically significant. Most of those images belong to
Group‐5. The data also show that, among the four pooling
schemes, the Max scheme seems the best and the Top the
worst if Group‐5 is not considered.

Figure 7 shows the contrast values of each original image in
the UISI dataset and their corresponding clarified images
derived from using the four pooling schemes respectively. The
abscissa value is the image's index number in the dataset. The
ordinate value is the C value. We also give the group averages
of C values in Table 3.

F I GURE 6 Using the Bias value to compare different pooling schemes
on each image in the UISI dataset.

KONG ET AL. - 9

 24682322, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12260 by N

H
S E

ducation for Scotland N
E

S, E
dinburgh C

entral O
ffice, W

iley O
nline L

ibrary on [17/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



The data in Figure 7 and Table 3 show that our image
clarifying method can enhance the contrast of dim images in
which the colour values distribute in a limited range. For those
with both the brightest and darkest pixel values, that is, close or
equal to 255 and 0, the C values of the resulting images may
drop. Checking with the images, we found that higher original
C values also occurred on those for appreciation, where there
often were many contrasting spots or edges, and our method
would smooth them. The data also show that the Max scheme

is the best on average and the Top is the worst among the four
pooling schemes.

Figure 8 shows the UCIQE values of each original image
in the UISI dataset and their corresponding clarified images
derived from using the four pooling schemes respectively. The
abscissa value is the image's index number in the dataset. The
ordinate value is the UCIQE value. We also give the group
averages of UCIQE values in Table 4.

We can see from Figure 8 and Table 4 that, except for the
Top scheme and if Group‐5 is not considered, our image
clarifying method can improve the image's UCIQE indicator
by the other three schemes, with values close to each other.
The UCIQE values of clarified images in Group‐5 are not
always better than that of the original images. The reason is
that the images in Group‐5 are snapshots of videos for people
to enjoy, which usually have the same high picture quality
across the whole video.

Figure 9 shows the UIQM values of each original image in
the UISI dataset and their corresponding clarified images
derived from using the four pooling schemes respectively. The
abscissa value is the image's index number in the dataset. The
ordinate value is the UIQM value. We also give the group
averages of UIQM values in Table 5.

TABLE 2 The group averages of Bias values of the images in the
UISI dataset with different pooling schemes.

Original Max Avg Maxmin Top

Group‐1 45.78 37.88 29.60 27.68 49.53

Group‐2 90.91 32.84 31.24 33.04 52.55

Group‐3 193.84 36.22 36.80 38.20 56.14

Group‐4 470.10 38.49 44.28 54.49 46.72

Group‐5 20.39 21.34 24.44 21.49 14.77

Group‐6 170.23 55.48 63.43 92.00 89.33

All average 99.01 31.10 31.67 32.92 40.60

F I GURE 7 Using the constrast C value to compare different pooling
schemes on each image in the UISI dataset.

TABLE 3 The group averages of C values of the images in the UISI
dataset with different pooling schemes.

Original Max Avg Maxmin Top

Group‐1 124.30 35.88 36.24 37.34 30.38

Group‐2 38.30 24.15 23.77 22.02 11.73

Group‐3 14.42 14.94 14.21 12.36 4.55

Group‐4 3.68 20.24 18.39 15.68 4.79

Group‐5 46.86 22.91 21.54 18.87 22.39

Group‐6 43.43 19.07 18.13 17.23 9.33

All average 44.96 22.91 22.09 20.28 15.89

F I GURE 8 The underwater colour image quality evaluation value
comparison on different pooling schemes, for images in the UISI dataset.

TABLE 4 The group averages of underwater colour image quality
evaluation values of the images in the UISI dataset by using different
pooling schemes.

Original Max Avg Maxmin Top

Group‐1 0.5591 0.6112 0.6092 0.6144 0.5912

Group‐2 0.5021 0.5987 0.5974 0.5929 0.5554

Group‐3 0.4454 0.5874 0.5840 0.5763 0.5206

Group‐4 0.3556 0.5748 0.5656 0.5596 0.5210

Group‐5 0.6444 0.6386 0.6346 0.6325 0.6466

Group‐6 0.4776 0.5414 0.5389 0.5408 0.5113

All average 0.5432 0.6091 0.6060 0.6030 0.5831

10 - KONG ET AL.
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Similar to the UCIQE indicator, the UIQM values of
clarified images in Group‐5 are also not always better than that
of the original images, and the Top scheme again reveals un-
stable performance even though it increases the UIQM value
in most cases. By the other three schemes, our image clarifying
method can significantly lift the UIQM values, and the Max
scheme has higher values than the other two on average.

Figure 10 shows the time spent for clarifying each image by
different pooling schemes, and Table 6 gives the group aver-
ages of the time spent. We can see that the Max and Avg
schemes reveal the advantage among the four.

According to the above experiments, it is easy to decide
using the Max pooling scheme in our proposed method.

4.4 | Compare with other methods on UISI

We mentioned in Section 1 that it is difficult to directly obtain
the corresponding clarified ground truth for an actual under-
water image. We could use some technical means to produce a
clear image for any fuzzy one; however, different methods
could be used to yield several images of similar high quality. We
could not say one was the ground truth and the others were
not. In addition, the learning‐based methods tend to be limited

to the content of the training dataset. Therefore, we do not
think it is reasonable to use so‐called ground truth images in
open datasets to determine whether our results are good or
bad, and we do not consider the learning‐based methods
suitable for comparison with our method. Consequently, we
mainly focus on the traditional non‐learning methods in this
paper. Experiments are conducted on our no‐reference un-
derwater image dataset UISI, and the methods used to
compare are traditional non‐learning methods.

We choose three typical methods for comparison, which
represent different types of ideas and algorithm principles. The
first is based on DCP [10], and we call it DCP later for simplicity.
It belongs to the classic underwater image restoration method.
The second is based on colour compensation [3], and we call it
CC. It falls into the classic underwater image enhancement
method. The third involves information fusion [50], and we call
it IF. We reproduced these three methods. Unless otherwise
specified, DO+ is used in the following experiments.

We present in Figure 11 several examples of UISI images
and their corresponding clarified results by different methods.
The column from left to right is the original images, the output
images by DCP, CC, IF, and our DO+ respectively. Table 7
gives the corresponding evaluation data of the images in
Figure 11.

F I GURE 9 The UIQM value comparison on different pooling
schemes, for images in the UISI dataset.

TABLE 5 The group averages of UIQM values of the images in the
UISI dataset by using different pooling schemes.

Original Max Avg Maxmin Top

Group‐1 1.2365 1.7678 2.1037 1.6381 1.9170

Group‐2 0.4874 1.8060 1.8556 1.6288 1.5218

Group‐3 −1.0726 1.6233 1.5401 1.7325 1.5804

Group‐4 −1.1081 1.9947 1.7098 1.7445 1.7338

Group‐5 2.0754 2.0487 1.9551 1.9499 2.0379

Group‐6 1.0686 1.4221 1.3199 2.0010 1.7413

All average 0.8363 1.8500 1.8326 1.7876 1.7814

F I GURE 1 0 The time spent for clarifying each image in the UISI
dataset by different pooling schemes.

TABLE 6 The group averages of time spent for clarifying each image
in the UISI dataset by different pooling schemes (unit: ms).

Max Avg Maxmin Top

Group‐1 71.63 75.03 298.03 199.50

Group‐2 71.04 71.40 294.43 192.86

Group‐3 71.04 70.46 294.48 187.54

Group‐4 68.46 69.69 297.77 181.23

Group‐5 71.15 71.05 291.31 188.97

Group‐6 70.36 71.29 295.86 192.79

All average 70.99 71.41 293.90 190.69

KONG ET AL. - 11
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Figure 11 shows that our method DO + can correct the
biased colours and stretch the contrast, making the result im-
ages clearer than before. Figure 11 also reveals that the effect
of de‐biasing by DO+ is similar to that by CC and better than
that by DCP and IF, and the brightness distribution in the
output image by DO + looks more moderate than that by the
other three methods.

However, sometimes the quality expressed by the in-
dicators Bias and C is inconsistent with the image's observa-
tion quality. For example, in Figure 11, the four output images
by DCP still have a visible colour bias compared to that by DO
+, but three of them have a lower Bias value except the fourth.
Moreover, all four outputs by DCP have a higher C value than
that by DO+. The third image shows better contrast and more

details of seagrass in the DO + output than in the DCP output,
yet its C value is much lower than that of the DCP output.

We analysed such a phenomenon by looking inside the
example images, and found the following explanation:

The DCP method brightens the brighter areas and darkens
the darker areas with no special treatment for colour. As a
result, it tends to increase the difference between the sides of
an edge and enlarge the dark areas. Consequently, its output
image might form a second dark peak near the origin in
addition to the chromatic peak in the a‐b plane. As in
Figure 11, the black wetsuit in the first image with green bias
and the dark fish and seagrass in the third image with blue bias
drag the average chroma to the origin and extend the equiva-
lent circle of the chroma distribution. This means a smaller Dab
and bigger Rd in formula (13) and comes out with a smaller
Bias value. Meanwhile, more sharper edges result in higher C
value. In the third image in Figure 11, the grayscale differences
between seagrass and seabed in DCP output are much greater
than that in DO+ output and the amount of seagrass edges is
large, leading to a much higher C value of DCP output than
that of DO+ output. However, the DO+ output appears
better with more levels than the DCP output. The formula (14)
does not consider the contrast between different colours. A
colour image with a sharp chrominance contrast may have little
change in brightness, resulting in a small contrast value
calculated by the formula (14).

Though the indicators Bias and C cannot always accurately
reflect the quality of an image, they can still provide reference
to some extent. Therefore, we still present the evaluation re-
sults on these two indicators in this paper.

We plot in Figure 12 the improvement of the values of the
four quality indicators after using our method (DO+). The
abscissa value is the index number of an image in the UISI
dataset. The ordinate value is the difference between the
assessed values of a clarified image and its original one. A
negative value means that the assessed value is reduced. A
lower Bias value is usually better, so a lower negative value
would be better. As to the other three indicators, a negative
value means the image quality has fallen after the DO+ process
under the specific indicator. Figure 12 shows that our method
is effective in most cases. Fallen quality values are found mainly
in the video snapshots, consistent with the fact that videos for
enjoyment generally have high quality.

In Figure 13, we give the average quality values of each
group in UISI dataset before and after different clarifying
processes. Here we give both the values of DO and DO+. The
figure shows that all the group average values of DO+ are
greater than that of DO, which indicates that the additional
contrast enhancement stage would get further improvement on
the indicators C, UCIQE and UIQM but lose a small amount
on the indicator Bias. When we look at the individual corre-
sponding value pairs of each image in the UISI dataset, the
values show that 306 out of 310 contrast indicator C values of
DO+ are greater than that of DO, indicating the statistical
advantage of DO+. On the other three indicators, there are
both, more or less, positive and negative values of the pair
difference, and some of the difference values are very small. It

F I GURE 1 1 Examples of the clarifying results by different methods.

TABLE 7 The corresponding quality indicator values of the images in
Figure 11.

Original DCP CC IF DO+

Bias 397.57 11.769 40.765 156.63 51.579

C 4.9699 25.440 8.3487 62.802 5.6191

UCIQE 0.4237 0.6316 0.5932 0.4379 0.5765

UIQM −1.0856 0.1893 1.2002 0.7262 1.0155

Bias 347.73 27.996 23.259 114.49 29.985

C 5.7696 60.392 30.114 72.394 32.171

UCIQE 0.3205 0.5720 0.6175 0.3615 0.5849

UIQM −1.3089 0.8408 3.9121 0.0482 3.2222

Bias 674.28 8.8221 41.380 296.54 21.497

C 17.203 186.87 44.029 110.07 40.432

UCIQE 0.3641 0.6430 0.5809 0.3952 0.5641

UIQM −1.0997 1.6444 2.8651 −0.3970 3.0894

Bias 256.86 39.732 43.506 124.28 31.468

C 7.9404 46.348 8.0367 90.879 5.3104

UCIQE 0.4568 0.6236 0.5831 0.4484 0.5513

UIQM −0.8345 0.0558 1.6462 0.6662 1.4694
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does not tell whether DO+ or DO has a statistical advantage.
Combined with the visual perception of the 310 pairs of
resulting images (two examples are given in Figure 4), we

conclude that DO and DO+ have comparable performance.
Whether to use DO or DO+ in a practical application can be
decided on a case‐by‐case basis. We recommend using the DO

F I GURE 1 2 Improvement of the four quality indicators by our
method DO+: (a) Bias, (b) C, (c) UCIQE, and (d) UIQM.

F I GURE 1 3 The group averages of the four quality indicators in the
UISI dataset before and after different clarifying processes: (a) Bias, (b) C,
(c) UCIQE, and (d) UIQM.

KONG ET AL. - 13
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method if the acquired underwater images often include areas
of approximately uniform or graded colour (or brightness);
Otherwise, using DO+ would get more distribution of pixel
values.

In Figure 14, we give the time cost of clarifying each image
in UISI dataset by different methods. We also counted the
average processing times of each group and listed them in
Table 8.

The figures show that the quality performance of our
method is, on average, at a top or medium level without
considering the video snapshots, and the time cost is far less
than other methods. According to the formulae given in Sec-
tion 3, the time complexity of the main steps of our method
DO+ is O (MN), where M � N is the image size. Our
experiment on the UISI dataset showed that, among the
methods used for comparison, CC is the fastest and IF is the
slowest. We calculated the ratio of the time used by DO+ to
that by CC for each image and got the maximum value of
13.97% and the minimum value of 7.09%. On average,
the proposed method DO+ reduces the time cost to less
than one‐10th of the CC needed when the image size is
640 � 480.

Based on the above evaluations, our proposed underwater
image clarifying method presents significant advantages.

4.5 | Experiment on real‐world underwater
image enhancement and URPC2019 data

To verify our method, we made testing and comparison on
underwater images in RUIE and URPC2019 datasets respec-
tively. Some results are shown in Figures 15 and 16 and
Tables 9 and 10. The quality values in Tables 9 and 10 are
calculated according to formula (13)–(16).

Figures 15 and 16 show that the quality of all images
assessed by visual perception was improved and got consistent
colour correction by our method DO+. Comparing the four
methods, we found that DO+ and CC could correct the biased
colour better than DCP and IF. DO+ and DCP could keep the
colour of the same object in different scenes more similar and
closer to its actual colour than CC and IF (see the object at the
bottom‐right corner of the images in Figure 16). We also
noticed that the colours of the output images by DO+ might
be wrong when the motion blur in an image was noticeable.

F I GURE 1 4 The processing times of different methods on each
image in UISI.

TABLE 8 Average time of each group used by different methods
(unit: ms).

DCP CC IF DO+ DO+/CC

Group‐1 971.59 800.97 15,923.88 66.84 8.35%

Group‐2 932.98 775.10 16,131.31 65.78 8.49%

Group‐3 925.91 768.17 15,978.31 64.70 8.42%

Group‐4 921.62 753.69 15,877.31 64.92 8.61%

Group‐5 927.39 787.66 16,637.87 64.32 8.17%

Group‐6 931.71 781.14 16,220.86 66.79 8.55%

All average 933.14 780.55 16,262.92 65.17 8.35%

F I GURE 1 5 Some examples of the images in the real‐world
underwater image enhancement (RUIE) dataset: (a) original images, and the
corresponding clarified images by (b) DCP, (c) CC, (d) IF, and (e) our
method DO+.

F I GURE 1 6 Some examples of the images in the URPC2019 dataset:
(a) original images, and the corresponding clarified images by (b) DCP,
(c) CC, (d) IF, and (e) our method DO+.

14 - KONG ET AL.
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For areas of dense texture, the objects such as echini, starfish
and holothurians in the clarified images by all methods can be
seen more clearly. In contrast, for large texture‐free areas with

approximately uniform or graded colour and brightness, DO+
and CC may introduce stepped texture.

Tables 9 and 10 show that most of the values of the quality
indicators are improved by our method DO+, and DO+ is in
the middle level compared with other methods.

Generally speaking, the experiment on RUIE and
URPC2019 data can support the validity of our method.

5 | SUMMARY

In this paper, we propose an underwater image clarifying
method based on human visual colour constancy using double‐
opponency. This method consists of twomain stages. In the first
stage, we execute the double‐opponency calculation. First,
convert the original image from RGB space to LMS space. Next,
carry out the single‐opponency response in a single RF through
a linear combination of the signals followed by a Gaussian
convolution. Then, two RFs with different sizes work together
to constitute the double‐opponency response. In the second
stage, we perform the colour constancy transformation. First,
estimate the underwater light through an appropriate pooling
scheme. Then, correct the colours according to the model of
Von Kries. An optional contrast enhancement stage can be
added. This stage only adjusts the luminance contrast of the
image and then fuses the result with colour components of the
colour‐corrected image.

Experiments on the UISI dataset and other images
captured from real underwater scenes show that our proposed
method could reduce the influence of the light absorption of
water, the light scattering and other image degrading factors,
resulting in corrected colour perception and enlarged bright-
ness distribution. Meanwhile, our method presents significant
advantages, with comparable performances on the four quality
indicators and superior performance on time cost to other
typical traditional image restoration or enhancement methods.

Further work is still needed. For example, when large
texture‐free areas with approximately uniform or graded colour
and brightness appear in an original image, our method might
introduce stepped texture or speckle noises in such areas. We
should study on how to eliminate the pseudo texture phenom-
enon. In addition, the realisation of our method made a hy-
pothesis that an underwater image had either a uniformly
distributed single light source or a uniform background light.
However, in the real world, the light is often uneven, and
sometimes there aremultiple light sources. As a result, the colour
bias may not be uniform in the image. Therefore, another future
work would be implementing a region‐adaptive light estimation
to achieve better correction of non‐uniform colour bias.
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TABLE 9 The quality indicator values corresponding to the images in
Figure 14.

Original DCP CC IF DO+

Bias 40.798 7.7204 39.640 20.424 24.142

C 71.759 255.909 41.241 219.26 33.728

UCIQE 0.5112 0.6300 0.5671 0.5179 0.5403

UIQM 3.5711 3.2164 3.5441 4.2884 3.2335

Bias 271.54 10.446 15.716 85.182 21.461

C 6.6187 48.751 39.860 87.225 26.846

UCIQE 0.3887 0.5750 0.6081 0.4576 0.5727

UIQM 0.4875 2.2807 2.6194 1.8046 2.7384

Bias 137.56 21.816 30.530 84.491 43.583

C 45.229 206.22 38.317 148.10 42.230

UCIQE 0.4100 0.6164 0.5982 0.4400 0.5896

UIQM 0.8046 1.5058 3.3439 1.6692 3.1263

Bias 424.37 29.742 13.589 111.35 15.755

C 3.9693 48.618 46.931 71.150 19.813

UCIQE 0.3516 0.4945 0.5811 0.4483 0.4980

UIQM 0.0611 0.4493 2.4301 1.1776 2.6600

TABLE 10 The quality indicator values corresponding to the images
in Figure 15.

Original DCP CC IF DO+

Bias 80.303 14.575 9.9124 59.335 12.086

C 1.4494 18.551 16.599 31.125 2.5715

UCIQE 0.4555 0.5694 0.5951 0.4720 0.5773

UIQM −1.1867 0.8356 0.9134 0.3227 1.3033

Bias 137.14 17.212 7.398 87.917 0.6758

C 3.8653 42.188 26.039 65.360 11.893

UCIQE 0.4054 0.5638 0.5763 0.4764 0.5369

UIQM 0.3140 2.9685 3.2171 1.5566 2.3627

Bias 129.77 21.803 21.498 102.505 25.022

C 2.9092 39.070 31.630 58.609 5.7139

UCIQE 0.4115 0.5427 0.5473 0.4709 0.5277

UIQM −0.5766 2.7096 1.3365 1.1184 1.4759

Bias 136.16 14.820 15.609 111.91 6.0916

C 1.4367 51.483 14.707 32.208 4.6362

UCIQE 0.4118 0.5590 0.5587 0.4693 0.5268

UIQM −0.6964 1.8287 1.4512 0.9407 1.4354
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