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Abstract
HTTP Adaptive Streaming (HAS), the most prominent technology for streaming video 
over the Internet, suffers from high end-to-end latency when compared to conventional 
broadcast methods. This latency is caused by the content being delivered as segments 
rather than as a continuous stream, requiring the client to buffer significant amounts of data 
to provide resilience to variations in network throughput and enable continuous playout of 
content without stalling. The client uses an Adaptive Bitrate (ABR) algorithm to select the 
quality at which to request each segment to trade-off video quality with the avoidance of 
stalling to improve the Quality of Experience (QoE). The speed at which the ABR algo-
rithm responds to changes in network conditions influences the amount of data that needs 
to be buffered, and hence to achieve low latency the ABR needs to respond quickly. Llama 
(Lyko et al. 28) is a new low latency ABR algorithm that we have previously proposed and 
assessed against four on-demand ABR algorithms. In this article, we report an evaluation 
of Llama that demonstrates its suitability for low latency streaming and compares its per-
formance against three state-of-the-art low latency ABR algorithms across multiple QoE 
metrics and in various network scenarios. Additionally, we report an extensive subjective 
test to assess the impact of variations in video quality on QoE, where the variations are 
derived from ABR behaviour observed in the evaluation, using short segments and sce-
narios. We publish our subjective testing results in full and make our throughput traces 
available to the research community.

Keywords CMAF · DASH · ABR algorithm · Live streaming · Low latency · Quality of 
Experience · Video quality assessment · Database

1 Introduction

Video streaming has been dominating the Internet in terms of traffic volume for years and 
it continues to grow, this includes live video streaming, as seen in the Cisco report [14]. 
At the moment, many video streaming services use HTTP Adaptive Streaming (HAS) 
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technologies such as MPEG Dynamic Adaptive Streaming over HTTP (DASH) [1], Apple 
HTTP Live Streaming (HLS) [32], and Microsoft Smooth Streaming [44].

In HAS, content is split into short segments, encoded at multiple bitrates and then 
hosted on a standard HTTP server. A manifest file is created that indicates the encoded 
bitrates and where the content can be obtained. The client requests the manifest file, then 
makes HTTP requests for consecutive segments of content at bitrates selected by an Adap-
tive Bitrate (ABR) algorithm, which takes into account measurements of the network con-
ditions to maximise the Quality of Experience (QoE) of the viewer. When using HAS for 
live content services, the client can only request segments after they become available on 
the server, as indicated by the manifest file.

Compared to traditional broadcast methods, live streaming using HAS suffers from 
high end-to-end latency, that is, there is a long delay between when content is captured by 
a camera and when the content is displayed on the user’s screen. Live content delivered 
using adaptive streaming is typically shown on the user’s screen 30–90s later than the same 
content delivered using terrestrial or satellite transmission. Such high delay can have a sig-
nificant negative impact on the QoE of live streaming over the Internet. For example, while 
watching a football match using HAS, the user might hear their neighbour, who is watch-
ing the same match via traditional broadcast television, cheering for a goal a minute before 
they can see the goal on their own screen, potentially ruining their viewing experience.

The end-to-end latency depends on the entire delivery chain, from content capture, 
encoding, packaging, encryption, and CDN delivery, to buffering and rendering at the cli-
ent â€ “with buffering being the main contributor to end-to-end latency in HAS. The client 
buffer holds the already-fetched segments queued for playback, aiming to absorb changes 
in network conditions to provide a smooth viewing experience where interruption to play-
back is minimal. To ensure smooth playback, an ABR algorithm is employed, typically at 
the client, which measures the network conditions and adjusts the quality at which seg-
ments are requested, aiming to maximise the QoE of the streaming session.

In live streaming, where the content is generated in real-time, the maximum number 
of segments that can be queued in the client buffer depends on the player’s target latency 
setting, as only data that has been captured and encoded but not yet presented to the user 
can be buffered. Therefore, reducing the client’s target latency, and in turn the end-to-
end latency, requires an ABR algorithm capable of operating with a small client buffer. 
Recently, the Common Media Application Format (CMAF) [23] has been standardised, 
enabling segments to be divided into chunks which combined with HTTP/1.1 Chunked 
Transfer Encoding (CTE) can aid low latency live streaming.

Designing an ABR algorithm specifically for low latency live streaming is a challenging 
balancing act. The client buffer level must be kept low to achieve the desired low latency, 
but this severely limits the potential for the ABR algorithm to react. For example, in a sce-
nario where the client is operating only two segments behind live then the potential maxi-
mum buffer level is only two segments. If these segments are 2 s in duration, then the ABR 
algorithm has at most 4 s to detect and respond to changing network conditions. Hence, in 
order for an ABR algorithm to perform well, it needs to be able to react quickly to adverse 
network conditions, while being somewhat cautious when network conditions appear to be 
improving. In our previous work, we have proposed a new ABR algorithm for low latency 
adaptive streaming, Llama, designed to operate with a small client buffer, and evaluated it 
against four prominent on-demand ABR algorithms [28].

In this article we present the results of two extensive evaluations, performed to further 
assess Llama’s suitability for low latency conditions. First, we perform a further quantita-
tive evaluation where we compare the performance of Llama against three state-of-the-art 
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low latency adaptation solutions, in terms of multiple QoE metrics, across multiple cli-
ent settings, and in various network scenarios based on CDN logs from a commercial live 
TV service. Second, we perform a qualitative evaluation by conducting subjective testing 
of video quality variations based on ABR behaviour patterns observed in the quantitative 
evaluation. The study expands on current literature by testing changes in video quality 
using short segments and short scenarios. We publish the results of the subjective test in 
full as a new video quality assessment database. Additionally, we make the 7000 network 
traces used in the quantitative evaluation available to the research community. To summa-
rise, the main contributions of this article are:

• Comprehensive evaluation of state-of-the-art low latency ABR algorithms across vari-
ous network scenarios and multiple QoE metrics

• Dataset consisting of 7000 network traces, based on CDN logs of a commercial sports 
channel which uses HAS to deliver live content online

• Extensive subjective testing of ABR behaviour patterns observed in the first evaluation, 
using short scenarios to determine their impact on QoE, with full results published as a 
new video quality assessment database

2  Background and related work

2.1  ABR Algorithms

Bentaleb et al. [10] published a survey of ABR algorithms used in HTTP Adaptive Stream-
ing. They outlined the main goal of an ABR algorithm is to maximise viewer QoE. This 
involves trying to maximise the average video quality, while trying to minimise the number 
of rebuffering events, the time spent in the rebuffering state, and the frequency of changes 
of video quality. They note that most of these goals are in competition with each other, and 
therefore require a reasonable trade-off. Recently, the following three low latency ABR 
algorithms have been published. Stallion [22] is a bandwidth-based ABR which meas-
ures the moving arithmetic mean and standard deviation of throughput, as well as, latency. 
Learn2Adapt [25] (L2A) is based on Online Convex Optimisation and aims to minimise 
the latency. LoL+ [12] offers both heuristic and learning-based approaches, optimising for 
best QoE. In this article, we have used the learning-based variant of LoL+. These ABR 
algorithms have been designed to operate in low latency scenarios.

2.2  QoE factors

Barman et  al. [9] published the most recent survey on QoE factors in HTTP Adaptive 
Streaming. They concluded that rebuffering events are the most annoying to users, with 
both the duration (as seen in [5, 6, 30, 34, 43]) and frequency (as seen in [5, 6, 15, 42, 45]) 
of rebuffering events being relevant, and hence concluded that an ABR algorithm should 
aim to minimise both. They also noted that some studies suggest that very short rebuffer-
ing events are not noticeable, and therefore, are less annoying to users [39]. The survey 
also mentions switching quality as another important QoE factor, where a high number 
of switches can have a negative impact on the overall QoE, as seen in studies [20, 37, 40, 
and]. They also noted that multi-level quality switches, where the quality changes across 
more than one quality level, can be detrimental to overall QoE [37, 38]. However, the 
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impact of changes in video quality has been investigated in less detail than rebuffering, as 
most studies primarily focus on various forms of rebuffering.

2.3  Latency

Shuai et  al. [36] found, that the main contributor to latency in adaptive streaming over 
HTTP is the client buffer. This buffer holds fetched video segments that are queued for 
playback. Its size is determined by an ABR algorithm’s ability to adapt to changing net-
work conditions in a timely manner. It needs to be large enough to give the ABR algorithm 
enough time to measure network conditions and change video quality before any rebuffer-
ing occurs. Lohmar et  al. [27] outlined four sources of delay that are specific to HTTP 
streaming. The most significant is again the client buffer, and the other three are as follows. 
Asynchronous fetching of media segments, where a client may issue an HTTP GET request 
for a segment some time after it is made available. HTTP download time, where segment 
size and available bandwidth determine how fast a segment can be fetched. Finally, seg-
mentation delay, which is the result of video being divided into segments which introduces 
a delay of at least one segment duration.

2.4  Common Media Application Format

The Common Media Application Format (CMAF) [23] allows a segment to be created 
as a sequence of chunks. Whereas a DASH segment must be completely written to a 
server before it is addressable and can be requested, a segment with CMAF chunks can 
be requested as soon as the first chunk is written to the server. This reduces the minimum 
latency in live streaming from one segment to one chunk duration, although it is still only 
possible to change the video bitrate at segment boundaries. HTTP/1.1 Chunked Transfer 
(CTE) enables subsequent chunks of a segment to be delivered as soon as they become 
available without additional requests from the player. Essaili et al. [18] and Viola et al. [41] 
demonstrated the reduction in latency due to CMAF chunks combined with CTE. In our 
previous work [29], we found that CMAF can improve ABR performance in low latency 
scenarios, enabling rebuffering to be reduced by 43%–71%. However, we also found that 
not all of the ABR algorithms we tested performed better with CMAF.

As chunk delivery at the live edge is restricted by the encoder, estimation of network 
throughput is difficult for applications that have no direct visibility of any idle periods 
between chunks. Bentaleb et al. [11] attempted to solve this problem by ignoring throughput 
measurements for chunks that contain idle time in their download times. As our simulation 
model calculates the delivery time of chunks correctly, we do not consider this issue further.

3  Llama

In this section, we present a brief summary of our low latency ABR algorithm, Llama, 
which we have previously proposed in [28].

Llama is based on two design principles. The first design principle is to prioritise the 
avoidance of rebuffering, as rebuffering is the most detrimental factor to overall QoE. 
Additionally, rebuffering events in live streaming scenarios can cause the end-to-end 
latency to increase further, especially if there is no catch-up mechanism employed by 
the player. To achieve this in low latency live streaming, the ABR algorithm needs to act 
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on the first signs of deteriorating network conditions and reduce the quality at which 
segments are requested before the client buffer is depleted. Hence, to satisfy this design 
principle a short-term throughput estimation method which tracks the available bandwidth 
closely is required. The second design principle is to stabilise the video quality. 
While low video quality will significantly reduce the QoE, a high variance in video 
quality can also be detrimental to overall QoE. This requires the ABR algorithm to 
take a longer-term view of throughput and not respond instantly to apparent increases 
in throughput, and hence avoid temporary increases in quality when the throughput 
increases for only a short time. This design principle requires a long-term throughput 
estimation method, which will provide a smoothed bandwidth estimate.

Llama was consequently designed to use two throughput metrics, where each metric 
is independent and optimised for a different purpose: one for decisions about reduc-
ing video quality and one for decisions about increasing video quality. This results in 
Llama being quick to react to worsening network conditions to avoid rebuffering, but 
also being careful about increasing video quality to improve video quality stability.

Algorithm  1 demonstrates how Llama works. Llama calculates a first throughput 
metric as the bitrate at which the most recent segment was fetched, and uses this to 
decide whether to switch to a lower quality representation, switching down to the next 
lower quality representation if the bitrate of the current representation is higher than the 
calculated first metric. This allows Llama to satisfy the first design principle by quickly 
reacting to worsening network conditions and hence reduce rebuffering. Llama calcu-
lates a second throughput metric as the harmonic mean of the bitrate at which each of 
the past twenty segments had been fetched. This smoothed estimate is used to determine 
whether to request the next segment at a higher quality, doing so when the calculated 
second metric is higher than the encoded bitrate of the higher quality segment. This 
results in stable video quality, satisfying the second design principle. Llama has one 
parameter, harmonicMeanSize, which specifies the number of segments that are used 
for the harmonic mean calculation, by default set to twenty segments, for both DASH 
and CMAF - where chunks are aggregated into segments. When there are fewer than 
harmonicMeanSize segments available, all available segments are used for the harmonic 
mean calculation. The more segments that are used, the more smoothing is applied to 
the throughput measurement, which provides more conservative decisions of when to 
switch to a higher quality. The use of fewer segments in this calculation would lead to 
higher mean video quality at the cost of more variation of quality.

Algorithm 1  Llama
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Llama operates differently from the other three recently proposed low latency ABR 
algorithms. It uses two throughput metrics, each serving a different purpose, instead of 
just one as found in Stallion. LoL+ calculates future QoE by using a linear equation which 
takes into account multiple QoE factors, making its performance dependent on the accu-
racy of the QoE estimation. Llama avoids this issue by focusing on the main two QoE 
factors, prioritising one over the other, enabling the ABR to effectively avoid rebuffer-
ing while trying to provide high and stable quality when the network conditions improve. 
L2A optimises for latency by calculating the response time, future buffer level, and poten-
tial rebuffering for each bitrate selection, making its performance dependent on accurate 
latency prediction. Llama mitigates this issue by prioritising the avoidance of rebuffering 
in order to minimise the latency.

4  Quantitative evaluation

In this section, we present a further quantitative evaluation of Llama. In our previous work 
[28], we proposed Llama and reported an evaluation of it and four prominent on-demand 
ABR algorithms. Recently, three new low latency ABR algorithms have been proposed: 
Stallion, Learn2Adapt, and LoL+. In this section, we report on the performance of Llama 
compared to these new low latency solutions and confirm the suitability of Llama for low 
latency adaptive streaming. We have published the throughput traces and the encoded con-
tent [4, 17] used in this evaluation. These can be used along with the already published 
simulation model [3] to reproduce our results.

4.1  Methodology

In order to perform an extensive evaluation of all four ABR algorithms in reasonable 
time, we have used a simulation model which allows for faster than real-time evaluation 
of streaming sessions. A single run of a four-minute video clip takes only 2–3 seconds in 
the simulation model compared to taking the whole duration of the video clip when using 
a real DASH player. In this section we describe our simulation model and its configuration 
parameters, as well as the selected video encoding parameters and QoE metrics used for 
performance comparison.

4.1.1  Simulation Model

Our simulation model was developed in the discrete-event network simulator NS-31 and 
is available on GitHub [3]. The implementation is based on an existing model which sup-
ports on-demand DASH [31]. We have extended the model to support live DASH, CMAF 
chunks transmitted using HTTP Chunked Transfer Encoding (CTE), latency configuration, 
additional ABR algorithms, and accurate traffic shaping between the client and the server. 
We have confirmed the accuracy of our simulation model by comparing it against a real 
DASH player in our previous work [29]. It has five parameters: Mode, ABR Algorithm, 
Throughput Profile, Live Delay, and Join Offset.

1 NS-3 - https:// www. nsnam. org/

https://www.nsnam.org/
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Mode sets the client into DASH or CMAF mode. When in DASH mode, the client 
requests segments after they have been fully written to the server; and the server then deliv-
ers them as whole segments. When in CMAF mode, the client requests segments as soon 
as the first chunk of the segment has been written to the server; and the server responds 
by delivering CMAF chunks as soon as they become available, emulating the delivery of 
CMAF chunks when transmitted using HTTP Chunked Transfer Encoding (CTE). The 
ABR Algorithm parameter determines which of the four ABR algorithms, Llama, Stal-
lion, L2A, and LoL+, is to be used by the client for segment selection. Llama operates as 
described above, while the parameters of each of the other three ABR algorithms are set to 
the default values presented in their respective papers. The ABR algorithm simply provides 
the player with the quality at which to request the next segment. The Throughput Trace 
specifies the file that contains timestamps and bandwidth values in kbps, which are used to 
adapt the bandwidth of the link between the client and the server over time.

The Live Delay parameter specifies which segment the client requests first: a value of 
one indicates that the most recent segment available on the server is requested first, two 
indicates the second most recent available segment is the first to be requested, and so on. 
The Join Offset parameter determines the time at which the client first requests a segment 
relative to the time at which segments are made available on the server. When set to 0 s, 
the client requests a first segment as soon as a segment becomes available on the server, 
although which segment is requested is determined by the Live Delay parameter. When 
the segment duration is 2 s and the Join Offset is set to 1 s, the client requests its first seg-
ment mid-way between consecutive segments being made available on the server. After the 
first segment has been delivered, the client requests subsequent segments as soon as the 
previous one has been delivered, or when they become available on the server, whichever 
is later. The Live Delay and Join Offset parameters affect the end-to-end latency, that is, 
the time between a segment being encoded and the segment being played out by the client. 
Live Delay also affects the potential maximum buffer level of the client, as does Join Off-
set, but only with CMAF and a chunk duration less than Join Offset.

4.1.2  Video encoding

We selected the first four minutes of the BigBuckBunny2 movie and encoded it using 
×2643 at bitrates of {400, 800, 1200, 2400, 4800} (kbps) with resolutions {426 × 240, 
640 × 360, 854 × 480, 1280 × 720, 1920 × 1080}. The encoded video was then segmented 
using MP4Box4 into 2 s segments for DASH, and into 2 s segments with 0.5 s chunks for 
CMAF. The sizes of the resulting segments/chunks were used in the simulation model, and 
are available here [17].

4.1.3  Throughput traces

We used CDN logs from the live BT Sport 1 service to set the bandwidth of the link 
between the client and server as a function of time. The CDN logs contained the request 
time, segment size and download time of each segment for every streaming session over 

2 BigBuckBunny - https:// peach. blend er. org/
3 ×264 - https:// www. video lan. org/ devel opers/ x264. html
4 MP4Box - https:// gpac. wp. imt. fr/ mp4box/

https://peach.blender.org/
https://www.videolan.org/developers/x264.html
https://gpac.wp.imt.fr/mp4box/
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a whole day. The streaming sessions included a variety of client devices and connections. 
From these we produced a throughput trace file for each streaming session in the CDN 
logs, where each trace file contained pairs of timestamp, equal to the segment request time, 
and throughput, calculated as the size of the segment divided by its download time.

We discarded trace files shorter than our four-minute video clip and cropped the others 
to the first four minutes. We discarded trace files that had mean throughput higher than our 
highest encoding bitrate of 4800 kbps. Additionally, since we wanted to study ABR perfor-
mance, we discarded trace files where all of the throughput measurements were between 
the same two encoding bitrates. This left 7000 throughput traces to use in the experiments. 
The distribution of throughput in these traces is shown as a histogram in Fig.  1, which 
shows the relative frequencies of throughput measurements below 5 Mbps. About 89% of 
the measurements are below the highest encoding bitrate of 4.8 Mbps. We have published 
the 7000 throughput traces on GitHub [4].

4.1.4  QoE metrics

We used the following metrics to evaluate the performance of the four ABR algorithms. 
Video Quality is the arithmetic mean of the indices, in the range 0 to 4, of the quality 
at which the segments are requested. Quality Variability is the standard deviation of the 
encoded bitrates of the requested segments. Rebuffer Ratio is the ratio of the total rebuff-
ering time to playback time. P.1203 MOS is the overall Mean Opinion Score (MOS) com-
puted using the ITU-T Recommendation P.1203 objective QoE model5 which combines 
bitrate, resolution, frame rate and stall duration into a single value between 1 and 5, esti-
mating the subjective quality of a video without the use of participants [35]. Average Live 
Latency, which is the average time between a segment being generated and the segment 
being played out by the client. In our simulation model, as the client does not use a catch-
up mechanism, rebuffering events increase the Live Latency by the rebuffering duration.

Fig. 1  Histogram showing the 
distribution of throughput meas-
urements below 5 Mbps in the 
7000 throughput traces

5 https:// github. com/ itu- p1203/ itu- p1203

https://github.com/itu-p1203/itu-p1203
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4.2  Results

In this section, we present the results of our evaluation. We compare the performance of 
Llama against low latency ABR algorithms: Stallion, L2A, and LoL+ in both DASH and 
CMAF modes. We have used the following parameters. The Live Delay was set to values 
ranging from 1 to 3 segments with the Join Offset set to 0 s, 0.5 s, 1 s, and 1.5 s for each 
Live Delay setting. All 7000 throughput traces were used for each combination of Live 
Delay and Join Offset resulting in 84,000 runs per ABR algorithm for one mode of client. 
In total, the content was delivered to the client 672,000 times. In both modes the segment 
duration was 2 s. In CMAF mode the chunk duration was 0.5 s, resulting in four chunks per 
segment.

We report the performance of all ABR algorithms using the QoE metrics previously 
described, averaged over the 7000 runs with different throughput profiles. We combined 
Live Delay and Join Offset into a single value termed Join Delay, being equal to the time 
between the first segment being created and it being requested, measured in segment peri-
ods, and calculated as Live Delay added to Join Offset divided by two seconds. Figure 2 
shows the performance of all four low latency ABR algorithms when used in DASH and 
CMAF clients, in terms of average Video Quality, Quality Variability, and Rebuffer Ratio, 
P.1203 MOS, Live Latency, as well as, the percentage of sessions experiencing rebuffering 
for each value of Join Delay.

Fig. 2  The performance of the four low latency ABRs when used in DASH and CMAF clients, in terms of 
average Video Quality, Quality Variability, Rebuffer Ratio, P.1203 MOS, Live Latency, and the percentage 
of sessions experiencing rebuffering
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4.2.1  DASH

Buffering performance Llama achieved the lowest average Rebuffer Ratio for all values 
of Join Delay. At the lowest Join Delay, Llama reduced the average Rebuffer Ratio by 0.45, 
0.12, and 0.65 when compared to Stallion, L2A, and LoL+ respectively. As Join Delay 
increased, Llama’s improvement in terms of average Rebuffer Ratio over the other ABRs 
decreased. At the highest Join Delay, Llama reduced the average Rebuffer Ratio by 0.13, 
0.01, and 0.44 when compared to Stallion, L2A, and LoL+ respectively.

Llama outperformed the other ABRs in terms of the percentage of sessions experienc-
ing rebuffering at Join Delay of 1.25 and higher, where on average it had 14.58, 5.03, and 
23.93 lower percentage of sessions with rebuffering than Stallion, L2A, and LoL+ respec-
tively. At the lowest Join Delay, LoL+ had the lowest number of sessions experiencing 
rebuffering at 89%, compared to 100% for the other three ABRs. However, the average 
Rebuffer Ratio achieved by LoL+ at this setting was significantly higher than for the other 
three ABRs, suggesting that even though fewer sessions were affected by rebuffering, it 
was significantly more severe.

Video quality performance Llama, Stallion, and L2A achieved average Video Quality of 
1.67, 1.77, and 1.66 respectively across all values of Join Delay. LoL+ achieved average 
Video Quality of 0.96 at the lowest Join Delay, and 1.68–1.75 for the remaining values of 
Join Delay. LoL+ was the only ABR for which the average Video Quality varied across 
different values of Join Delay. Llama and L2A achieved 0.10 and 0.11 respectively lower 
average Video Quality than Stallion for all values of Join Delay, as well as, on average 0.07 
and 0.08 respectively lower average Video Quality than LoL+ for Join Delay values of 1.25 
and higher.

Llama, Stallion, L2A, and LoL+ achieved average Quality Variability of 521–522, 705–
706, 612, and 706–740 respectively for all values of Join Delay. Llama achieved on aver-
age 184, 91, and 201 lower Quality Variability than Stallion, L2A, and LoL+ respectively 
across all values of Join Delay. Llama did not achieve the highest average Video Quality 
across all values of Join Delay, however, it did achieve the lowest Quality Variability across 
all values of Join Delay. This suggests that Llama offered the most stable Video Quality out 
of all four low latency ABRs at the cost of the reduced average Video Quality.

Overall performance Llama achieved a slightly higher average P.1203 MOS than the 
other ABRs for Join Delay values of 1.25 and higher, where on average it improved the 
P.1203 MOS by 0.09, 0.06, and 0.21 over Stallion, L2A, and LoL+ respectively. At the 
lowest Join Delay, Stallion achieved 0.09, 0.22, and 0.5 better P.1203 MOS than Llama, 
L2A, and LoL+ respectively. However, it also had 0.73 s, 0.54 s, and 0.27 s higher average 
Live Latency than Llama, L2A, and LoL+ respectively.

Llama achieved the lowest average Live Latency for Join Delay values of 1–2.75, the 
joint lowest with L2A for Join Delay values of 3–3.25, and the second lowest average Live 
Latency, 0.01 s higher than L2A, for Join Delay values of 3.5 and 3.75. Overall, when used 
in a DASH client at most settings, Llama achieved moderately lower Live Latency, which 
is crucial in low latency live streaming, and slightly improved P.1203 MOS, which reflects 
the Quality of Experience.
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4.2.2  CMAF

Rebuffering performance Llama achieved the lowest average Rebuffer Ratio for Join 
Delay values of 1–3.25, and the joint lowest with L2A for Join Delay values of 3.5–3.75. 
At the lowest Join Delay, Llama achieved average Rebuffer Ratio 0.34, 0.08, and 0.35 
lower than Stallion, L2A, and LoL+ respectively. As the Join Delay increased, these dif-
ferences decreased and L2A achieved the same average Rebuffer Ratio as Llama. At the 
highest Join Delay, Llama and L2A both achieved 0.08 and 0.21 lower Rebuffer Ratio than 
Stallion and LoL+ respectively.

In terms of the percentage of sessions experiencing rebuffering, Llama outperformed 
the other three low latency ABRs at Join Delay values of 1–3, where on average it achieved 
10.04, 2.14, and 15.36 lower percentage of sessions experiencing rebuffering than Stallion, 
L2A, and LoL+ respectively. At Join Delay values of 3.25–3.75, Llama had the second 
lowest percentage of sessions experiencing rebuffering, 0.03–0.17 higher than L2A.

Video quality performance Llama, Stallion, and L2A achieved average Video Quality of 
1.73, 1.9, and 1.74 respectively across all values of Join Delay. LoL+ achieved an average 
Video Quality of 1.81–1.91 across all values of Join Delay, and was the only low latency 
ABR with average Video Quality that varied across different values of Join Delay. Llama, 
on average achieved 0.17, 0.01, and 0.16 lower average Video Quality than Stallion, L2A, 
and LoL+ respectively across all values of Join Delay.

Llama, Stallion, L2A, and LoL+ achieved average Quality Variability of 469–471, 665, 
565–566, and 657–677 respectively for all values of Join Delay. On average, Llama achieved 
195, 96, and 200 lower Quality Variability than Stallion, L2A, and LoL+ respectively for all 
values of Join Delay. Llama did not achieve the highest average Video Quality for all values 
of Join Delay, however, it did achieve the lowest Quality Variability across all values of Join 
Delay. Again, just as in the DASH client, Llama offered the most stable Video Quality out 
of all four low latency ABRs at the cost of the reduced average Video Quality.

Overall performance Llama achieved marginally higher P.1203 MOS than the other 
ABRs across all values of Join Delay. At the lowest Join Delay, the average P.1203 MOS 
for Llama, Stallion, L2A, and LoL+ was 4.12, 4.06, 4.07, and 3.97 respectively. As Join 
Delay increased, Llama’s improvement over other ABRs in terms of average P.1203 MOS 
decreased. At the highest Join Delay, the average P.1203 MOS achieved by Llama, Stallion, 
L2A, and LoL+ equalled to 4.16, 4.15, 4.13, and 4.12 respectively.

Llama achieved the lowest average Live Latency for Join Delay values of 1–1.75, 
the joint lowest with L2A for Join Delay value of 2, and the second lowest average Live 
Latency, only 0.01 s higher than L2A, for Join Delay values of 2.25–3.75. Across all values 
of Join Delay, Llama achieved on average 0.21  s, 0.01  s, and 0.35  s lower average Live 
Latency, while achieving 0.03, 0.04, and 0.07 better average P.1203 MOS than Stallion, 
L2A, and LoL+ respectively. Overall, when used in a CMAF client, Llama moderately 
outperformed the other low latency ABRs in terms of minimising the Live Latency and 
maximising the P.1203 MOS.
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4.2.3  Single scenario

Figure 3 shows the performance of the four ABR algorithms in a single scenario consisting 
of a CMAF client configured with a Live Delay of 1 segment and Join Offset of 0 s. The 
top chart shows the available bandwidth and the throughput estimated by each ABR. There 
are two lines for Llama, the dashed line shows the throughput of the most recent segment 
and the solid line shows the harmonic mean of 20. The next two charts show the quality 
and live latency. Since no catch-up mechanism is employed at the client, an increase in live 
latency indicates a rebuffering event of the same duration.

In this throughput trace, at 33 s the bandwidth increased from 2.3 to 6.2mbps, then 3 s 
later increased further to 8.8mbps and 2 s later further still to 9.3mbps, and then after only 
a further 2 s it dropped to 3.3mbps. Stallion overestimated the available bandwidth after 
this temporary increase occurred and selected the highest quality, causing rebuffering of 
1.6 s. L2A increased the quality to the highest, but only briefly, and quickly switched down 
by two quality indexes to avoid rebuffering. LoL+ chose the highest quality briefly twice, 
and gradually switched down by two quality indexes to avoid rebuffering. Llama did not 
increase the quality when the bandwidth improved briefly, and hence did not need to switch 
down to avoid rebuffering, resulting in constant video quality.

At 123s, the bandwidth dropped from 7.1 to 1.6mbps, after 4 s it briefly increased to 
6.5mbps for 1s and then dropped to 2.4mbps. Stallion, operating at higher buffer level 
due to increased live latency by the previous rebuffering event, gradually reduced quality 
by two indexes to avoid rebuffering. L2A was too slow to switch down from the highest 
quality resulting in rebuffering of 1.9  s, after which it reduced the quality by 3 indexes 
instantly, and slowly increased the quality ignoring the spike in bandwidth. LoL+ was also 
too slow to reduce the quality resulting in rebuffering of 2 s, after which, it reduced the 
quality by only one index and when the bandwidth spiked, it again increased the quality 

Fig. 3  Performance of the four ABR algorithms in a single scenario in terms of throughput estimation, 
video quality and live latency
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to the highest leading to further rebuffering of 2.1s. Llama avoided rebuffering by quickly 
reducing the quality by one index, then when the bandwidth spiked, it increased the quality 
by one index, and avoided the second potential rebuffering event by decreasing the quality 
by one index again.

At 225 s, the bandwidth dropped from 2.4 to 0.7mbps. Llama decreased the quality by 
one index but suffered rebuffering anyway. Stallion and L2A did exactly the same, how-
ever, but avoided rebuffering as they were already operating at higher buffer level due to 
previous rebuffering which increased their live latency. LoL+ increased the quality and 
avoided rebuffering as it was operating at much higher buffer level, with 2.2–4.1 s higher 
live latency than other ABRs.

Throughout the entire trace, Llama never switched to the highest quality while the 
three other ABRs frequently tried to reach the highest quality leading to frequent quality 
switches. In some cases, such as at around 40s, the other three ABRs had to over-correct 
their decision by reducing the quality to below the pre-increase level to avoid rebuffering, 
leading to even higher video quality instability. Llama achieved 0.2, 0.3, and 0.4 better 
P.1203 MOS while having 1.2s, 0.9 s, and 1.9 s lower average Live Latency than Stallion, 
L2A, and LoL+ respectively.

4.3  Discussion

In our quantitative evaluation we have compared the performance of Llama against three 
low latency ABR algorithms: Stallion, L2A, and LoL+. In DASH, at Join Delay of 1, 
Llama achieved 0.19–0.73  s lower average Live Latency than other ABR algorithms. 
Llama achieved 0.13 and 0.41 better P.1203 MOS than L2A and LoL+, while reducing 
rebuffering by 11% and 39% respectively. Stallion achieved 0.09 better average P.1203 
MOS than Llama, at the cost of 0.73 s higher average Live Latency and 31% more rebuffer-
ing. At Join Delay of 2, Llama reduced the average Live Latency by 0.09–1 s, while hav-
ing 0.08–0.32 better average P.1203 MOS and 21–72% less rebuffering than other ABR 
algorithms. At Join Delay of 3, Llama reduced the average Live Latency by 0–0.68 s and 
improved the average P.1203 MOS by 0.04–0.19 while reducing rebuffering by 12–79% 
when compared to other ABR algorithms.

In CMAF, at the Join Delay of 1, Llama achieved 0.09–0.46  s lower average Live 
Latency, while having 0.05–0.15 better average P.1203 MOS and 20–52% less rebuffer-
ing than other low latency ABR algorithms. At Join Delay of 2, Llama reduced the aver-
age Live Latency by 0–0.38s, while improving the average P.1203 MOS by 0.03–0.07 and 
reducing rebuffering by 6–64% when compared to other ABR algorithms. At Join Delay 
of 3, Llama achieved 0.13s and 0.31s lower average Live Latency, while also improv-
ing the average P.1203 MOS by 0.02 and 0.05 and reducing rebuffering by 50% and 70% 
when compared to Stallion and LoL+ respectively. L2A achieved 0.01s lower average 
Live Latency than Llama, at the cost of 0.04 lower average P.1203 MOS and 8% more 
rebuffering.

In summary, for all values of Join Delay, Llama moderately outperformed the other low 
latency ABR algorithms, in terms of maximising P.1203 MOS and minimising the Live 
Latency, in both DASH and CMAF clients. On average across all values of Join Delay, 
Llama achieved 0.08 better P.1203 MOS and 0.31s lower Live Latency than the three other 
low latency ABR algorithms. These results indicate that Llama is a suitable ABR algo-
rithm for low latency conditions, as its performance is on a par with the other three low 
latency solutions.
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4.3.1  Behaviour patterns

In our results, and especially in the single scenario analysis, we observed that the tested 
ABR algorithms exhibited a number of behaviour patterns, five of which we highlight 
below.

• When the bandwidth improved temporarily, most of the ABR algorithms increased the 
video quality quickly but only for a very short time. Llama avoided such temporary up-
switches as it was slow to increase the video quality.

• When the bandwidth decreased temporarily, in some instances the ABR algorithms 
would unnecessarily reduce the quality level to avoid rebuffering. As Llama decreases 
the video quality on the first signs of bandwidth deterioration, it displayed this behav-
iour more often than the other ABR algorithms.

• In some cases frequent quality switches were observed, causing a higher average 
bitrate. This was especially apparent in cases where the bandwidth improved for a short 
period of time. Llama performed fewer quality switches, and achieved the lowest aver-
age Quality Variability, but at the cost of a lower average bitrate.

• Multi-level quality switches in some cases were performed instantly, that is, the video 
quality was changed by more than one level between two consecutive segments. Llama 
changes the video quality gradually regardless of the direction or magnitude, meaning, 
the video quality is changed by at most one level every segment duration.

• When the bandwidth reduces, an ABR algorithm may reduce the quality, increase it too 
soon and then reduce it again, whereas another ABR algorithm may reduce the quality 
only once, but with the same total duration at the lower quality.

5  Qualitative evaluation

In this section, we present a qualitative evaluation of Llama. We have performed exten-
sive subjective testing to investigate how users perceive various variations in video quality. 
We have published our results in full [26]. Firstly, we describe the impairment scenarios 
we constructed from the ABR behaviour patterns presented in the last section. Secondly, 
we describe the methodology used in the subjective test. Then we present and discuss the 
results of the subjective test. Finally, we summarise this section and describe how our 
study fits into the relevant literature.

5.1  Impairment scenarios

We have created 28 quality impairment scenarios based on ABR behaviour highlighted in 
the last section. Figure 4 shows all 28 quality impairment scenarios used in the subjective 
testing. Each graph shows a single scenario, with the video quality index of each segment 
plotted and the resulting average bitrate shown in the yellow box. The video quality index 
corresponds to bitrates of {400, 800, 1200, 2400, 4800} (kbps) with encoding resolutions 
{426 × 240, 640 × 360, 854 × 480, 1280 × 720, 1920 × 1080}. The duration of each scenario 
was 14s, comprising seven 2s segments.

We divided the scenarios into seven groups, each labelled according to the ABR 
behaviour pattern tested. Group ‘Spike’ includes scenarios with different magnitudes of 
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temporary increase in video quality. Group ‘Drop’ includes different magnitudes of tempo-
rary decrease in video quality. Groups ‘UnstableHigh’ and ‘UnstableLow’, for two levels of 
average video quality, include constant video quality and quality variations with two mag-
nitudes. Groups ‘GradualHigh’ and ‘GradualLow’ include sudden and gradual changes in 
video quality, with the former having a greater magnitude of change. Group ‘DoubleDrop’ 
includes a single quality drop and two shorter quality drops with the same total duration of 
quality drop.

5.2  Methodology

Testing procedure We have performed the subjective test using an Absolute Category 
Rating (ACR) method described in ITU-T Recommendation P.910 [33]. In ACR, also 
called the single stimulus method, participants are presented with one test clip at a time. 
The participants are asked to rate each test clip, immediately after it has been presented, on 
the following five-level scale: {Bad, Poor, Fair, Good, Excellent}. We have processed the 
responses using the methodology described in ITU-R Recommendation BT.500–13 [24], 
by firstly mapping each response to the integer scale 1–5 with bad being mapped to 1, then 
calculating, for each test clip: a Mean Opinion Score (MOS) as the arithmetic mean of all 
scores for the clip, and a (95%) Confidence Interval.

Experiment set‑up The subjective test was performed remotely due to the social restric-
tions introduced in response to the global COVID-19 pandemic. We developed an online 

Fig. 4  The quality impairment scenarios used in the subjective test. Each graph shows, for a single scenario, 
the video quality index for each segment, and, in the yellow box, the resulting average bitrate
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survey in which the participant was presented with one question per page, with each ques-
tion containing a test clip and the five-level scale to record the participant’s response. The 
test clip was fully downloaded before the participant could begin playback to ensure that 
no unintended rebuffering occurred during playback. Once the test clip was fetched, the 
participant needed to click on the playback button to begin watching the clip in full-screen 
mode. After the playback finished, full-screen mode was exited and the scoring scale was 
displayed. The participant could watch the test clip again, or rate it and proceed to the next 
test clip, after which the participant could not go back. All responses were anonymous and 
each participant was restricted to only one response per test clip.

Content selection We selected a range of source clips for our subjective testing. All clips 
were captured from the live BT Sport service which offers a variety of live sports content. 
The following set of 14 source clips was selected: {Tennis_1, Tennis_2, FormulaOne_1, 
FormulaOne_2, Rugby_1, Rugby_2, Football_1, Football_2, Squash_1, Squash_2, 
Rally_1, Basketball_1, Basketball_2, Basketball_3}. We have selected sports content as it 
is the most common type of content transmitted using live streaming. Each source clip was 
14  s long and encoded at 25 FPS. Figure 5 shows Temporal and Spatial Information of 
each source clip calculated as specified in ITU-T Recommendation P.910.

Test clips For each impairment scenario, test clips were created by concatenating DASH 
segments of appropriate video quality, without re-encoding, using FFmpeg.6 Source clips 
were encoded and segmented into DASH 2s segments using the same methodology as in 
Section 4.1.2, with video quality levels corresponding to the following bitrates {400, 800, 
1200, 2400, 4800} (kbps) and resolutions {426 × 240, 640 × 360, 854 × 480, 1280 × 720, 
1920 × 1080}, using VBR encoding with maxBitrate and vbvBuffer parameters set to the 
bitrates. Additionally, each segment was scaled back to the highest resolution to avoid play-
back issues in some web browsers.

Test sequences We created 6 test sequences by using 3 sets of test clips, each with 2 
orders of presentation. Each participant observed only one test sequence. We created 3 
sets of impaired content, A, B, and C, each including scenarios from every impairment 

Fig. 5  Spatial and Temporal 
Information of each source clip, 
calculated as specified in ITU-T 
Rec. P.910

6 FFmpeg - https:// ffmpeg. org/

https://ffmpeg.org/
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group. We randomly created 2 different orders of presentation for these sets, with the single 
constraint that clips from the same impairment group were not shown consecutively, and 
hence that the participant never saw the same source clip consecutively. Table 1 shows the 
source clips assigned to each impairment group and set. To allow comparisons to be made 
between scenarios within each impairment group, two unique source clips were assigned 
to each of the seven groups and presented with each scenario in that group. In each group, 
one of these source clips was allocated to a first set of impaired content (A), and the other 
to a second set (B). A viewer therefore observed all of the scenarios of one group with the 
same source clip.

To allow some comparison between scenarios of different impairment groups, we 
defined one more set of impaired content (C) by creating two super groups, first based on 
impairment groups {Spike, Drop_5, UnstableHigh, and UnstableLow}, and the second on 
groups {GradualHigh, GradualLow, DoubleDrop}. Within each super group, each impair-
ment group was assigned an additional source clip, which corresponds to a source clip 
from impairment set A or B of another impairment group within the same super group. 
For example, group DoubleDrop was assigned source clip Squash_1 which belongs to the 
impairment set A of group GradualLow, allowing for comparison of MOS between all 8 

Table 1  Table showing the source clips assigned to each impairment group within each impairment set. 
Each participant will watch test clips from only one impairment set, where all scenarios within each group 
are based on a single source clip

Scenario Impairment Set A Impairment Set B Impairment Set C

Spike_1–5 FormulaOne_1 Squash_2 Tennis_1
Drop_1–4 Basketball_1 FormulaOne_2
Drop_5 Basketball_1 FormulaOne_2 Tennis_1, For-

mulaOne_1, 
Basketball_2

UnstableHigh_1–3 Rugby_1 Basketball_2 FormulaOne_1
UnstableLow_1–3 Tennis_1 Rugby_2 Basketball_2
GradualHigh_1–4 Football_1 Tennis_2 Rally_1
GradualLow_1–4 Squash_1 Football_2 Football_1
DoubleDrop_1–4 Rally_1 Basketball_3 Squash_1

Fig. 6  Age distribution of the 
recruited participants
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scenarios from the two groups. Preliminary testing suggested that there was little benefit in 
more extensive comparisons of scenarios Drop_1–4, and hence we decided to include only 
scenario Drop_5 within the first super group. Drop_5 was assigned 3 additional source 
clips, each corresponding to source clips assigned to impairment groups {Spike, Unstable-
High, and UnstableLow}.

Participant recruitment We recruited 63 participants, with the median age group of 
35–44, mean age of 39.6, and standard deviation of 14.7. The age distribution of partici-
pants is shown in Fig. 6. 42 participants were male, 20 were female, and 1 preferred not 
to say. Additionally, we asked the participants how often they watch live content online, 
with 35 reporting daily consumption, 16 once a week, 9 once a month, 2 once a year and 
1 never. Participation in the study was voluntary. We did not offer rewards for complet-
ing the survey to try to maximise the reliability of the responses given. 14% of responses 
were completed on a mobile device, and 86% on desktop or laptop. We have screened the 
responses using the method described in ITU-R Recommendation BT.500–13 [24] which 
resulted in one response being rejected.

5.3  Results and Discussion

In this section we present and discuss the results of our extensive subjective testing. First, 
we compare the MOS of the impairment scenarios within each impairment group. Later, 
we compare the MOS of the impairment scenarios within each super group.

5.3.1  Comparison of impairment scenarios within groups

Figure  7 shows the MOS of clips for each impairment scenario, divided by impairment 
group. The error bars show the Confidence Interval of 95%, used to determine the statisti-
cal significance of differences in MOS, where overlapping confidence intervals are per-
ceived as statistically insignificant. As shown in Table 1, the same three source clips were 
used for each scenario within an impairment group, except for group ‘Drop’ for which only 
two source clips were used. A further three source clips were used with scenario ‘Drop_5’, 
but these results are excluded from Fig. 7.

Group Spike contains impairment scenarios which experience a temporary increase in 
video quality of varying magnitude halfway through the clip. In scenario 1, the video qual-
ity is constantly at the lowest level, while in scenarios 2–5, the video quality is at the lowest 
level except for the middle segment which has different higher levels of video quality. From 
the Spike chart in Fig. 7 we can observe that the differences in MOS were insignificant, 

Fig. 7  Mean Opinion Score of common test clips within each impairment group with Confidence Interval 
of 95% plotted in the error bars
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with the range equal to only 0.2 - lower than the Confidence Interval of each scenario. 
Scenario 5 had an average bitrate of 1028 kbps, more than twice as high as scenario 1 with 
400 kbps. This suggests that a temporary increase in video quality, which can significantly 
increase the average bitrate, does not improve QoE.

Group Drop focuses on impairment scenarios with a temporary decrease in video qual-
ity of varying magnitude halfway through the clip. In scenario 1, the video quality remains 
constantly at the highest level throughout the clip, while in scenarios 2–5 the video quality 
of the middle segment is at different lower levels. We can observe that were was no sig-
nificant difference between scenarios 1–4, with the range in MOS of 0.2 being lower than 
the Confidence Interval for scenarios 1–4. However, we can observe a significant differ-
ence between scenarios 1 and 5, with the MOS of scenario 5 being 0.82 lower than that of 
scenario 1. These results suggest that a temporary decrease in video quality does not have 
a significant negative impact on QoE, unless that temporary drop is to the lowest quality.

Group UnstableHigh contains impairment scenarios which compare stable and unstable 
video quality. Scenario 1 offers constantly the second highest video quality. In scenario 
2, the video quality oscillates between the highest and the lowest quality every segment 
duration, while in scenario 3 it oscillates between the highest and the second lowest qual-
ity. The average bitrate of the latter two scenarios is within 5% of that of scenario 1. We 
can observe that the MOS for scenarios 1, 2, and 3, was 3.7, 1.7, and 2.7 respectively. This 
suggests that stable video quality, presented in scenario 1, is much preferred over unstable 
video quality, presented in scenarios 2 and 3; additionally, the smaller amplitude of oscilla-
tions in scenario 3 is preferred to the larger oscillations of scenario 2.

Group UnstableLow also contains impairment scenarios that compare stable and unsta-
ble video quality. Scenario 1 offers constantly the second lowest video quality, while in 
scenarios 2 and 3, the video quality oscillates every segment duration between the middle 
and the lowest quality. However, scenario 2 begins and ends at the lowest quality, whereas 
scenario 3 begins and ends at the middle quality. The MOS for scenarios 1, 2, and 3 was 
2.7, 1.7, and 2.1 respectively. This suggests again that stable video quality is better. Sce-
nario 3 was scored 0.4 higher than scenario 2, however, the difference was statistically 
insignificant.

Group GradualHigh focuses on impairment scenarios which compare gradual and 
instant multi-level quality switches. In scenario 1, the video quality gradually switches 
from the highest to the lowest level, while in scenario 2 it switches instantly. In scenario 3, 
the video quality switches gradually from the lowest to the highest level, while in scenario 
4 it switches instantly. The gradual quality switches of scenarios 1 and 3 (MOS 2.5 and 
2.9) were preferred to the instant quality switches of scenarios 2 and 4 (MOS 2.2 and 2.4). 
However, the difference between MOS of scenarios 1 and 2 was statistically insignificant.

Group GradualLow also contains impairment scenarios which compare gradual and 
instant multi-level quality switches, but with a lower magnitude of switches in video quality. 
In scenario 1, the video quality gradually switches from second highest to second lowest, 
while in scenario 2 this quality change is instant. In scenario 3, the video quality gradu-
ally switches from the second lowest to the second highest, while in scenario 4 this quality 
change is instant. There was no significant difference in MOS between these scenarios. This 
suggests that when there are small changes in quality, the rate of change, whether instant or 
gradual, has little impact on QoE.

Group DoubleDrop focuses on impairment scenarios which compare two quality drops 
with a single quality drop of the same duration. In scenarios 1 and 2, the quality drops from 
the second highest quality to the third highest, twice and once respectively. In scenarios 3 
and 4, the quality drops from the second highest quality to the fourth highest, twice and 



 Multimedia Tools and Applications

1 3

once respectively. There was no statistically significant difference in MOS between one or 
two quality drops in either of these pairs of scenarios.

5.3.2  Comparison of impairment scenarios within super groups

In order to compare the scores between scenarios in different groups we created two super 
groups: {Spike, Drop_5, UnstableHigh, and UnstableLow}, and {GradualHigh, Gradual-
Low, DoubleDrop}. Within each super group, every group has a source clip in common 
with another group allowing for comparison of scenarios in different groups.

Figure 8 shows the MOS of clips for all scenarios within the first super group with the 
95% Confidence Interval plotted in the error bars, which is used to determine the statistical 
significance of differences in MOS, where overlapping confidence intervals are perceived 
as statistically insignificant. Each column illustrates the MOS for a single source clip. MOS 
can only be fairly compared between scenarios using the same source clip.

Comparison of scenario Drop_5 with the other scenarios using common clips Scenario 
Drop_5, with an average bitrate of 4171 kbps, and with six segments at the highest quality 
level and one at the lowest quality, has two clips in common with each of the other scenar-
ios in the first super group. Considering Drop_5 has a much higher average bitrate than the 
other scenarios, it is not surprising that it achieves higher MOS in many cases. The excep-
tions are of most interest. There is no significant difference with UnstableHigh_1, where 
all segments are at the second highest quality and the average bitrate equals 2400 kbps. 
UnstableHigh_3 with FormulaOne_1 has similar MOS, but much lower MOS for Basket-
ball_2, while UnstableLow_1 with an average bitrate of only 800 kbps and all segments at 
the second lowest quality achieves only slightly lower MOS. This suggests that the benefit 
in Drop_5 of having six segments at the highest quality, is lost by having one segment at 
the lowest quality, and that more effective use of bandwidth could be made by having all 
segments at the same quality, even if it would result in lower average bitrate.

Comparison of scenarios Spike_1–5 and UnstableHigh_1–3 using the common 
clip FormulaOne_1 Each scenario in group UnstableHigh had an average bitrate of 
about 2400  kbps, while those in group Spike had average bitrates in the range of 400 
to 1028  kbps. Compared to the scenarios in group Spike, UnstableHigh_1 with all seg-
ments at the second highest quality, used the higher bitrate to achieve higher MOS, 

Fig. 8  Mean Opinion Score of all test clips for scenarios within the first super group with the 95% Confi-
dence Interval plotted in the error bars. Each source clip is plotted in a different colour
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UnstableHigh_2, with quality varying every segment between the lowest and highest qual-
ity, achieved lower MOS than all of the scenarios of group Spike despite having a much 
higher bitrate, although the difference in MOS was statistically significant in only three of 
the five scenarios. This suggests that delivering large variations of quality is an inefficient 
use of bandwidth.

Comparison of scenarios Spike_1–5 and UnstableLow_1–3 using the common clip 
Tennis_1 Each of the scenarios in group UnstableLow had an average bitrate of about 
800 kbps, while those in group Spike had average bitrates in the range of 400 to 1028 kbps. 
From group UnstableLow, only UnstableLow_1 with constant quality at the second lowest 
level achieved consistent statistically significant improvements over the scenarios of group 
Spike with all segments at the lowest quality except the middle one at higher quality. This 
suggests that consistent quality, even at the second lowest level, is preferred to variable 
quality. UnstableLow_2–3 suggested some benefit from having fewer segments at the low-
est quality level.

Comparison of scenarios UnstableHigh_1–3 and UnstableLow_1–3 using the common 
clip Basketball_2 The average bitrate of clips in group UnstableHigh is about 2400 kbps, 
and in group UnstableLow about 800 kbps. The first scenario in each group has constant 
quality, and statistically significantly higher MOS than the other scenarios in the same 
group, again suggesting that consistent quality is an efficient use of bandwidth. The other 
scenarios in group UnstableHigh, with high magnitude variations in quality, show little 
benefit in terms of MOS over the other scenarios in group UnstableLow, with variations 
of lower magnitude, despite having about three times the average bitrate. This suggests 
that large variations in quality cause lower MOS, even when the average bitrate is higher. 
And UnstableLow_1 with consistent quality encoded at 800 kbps significantly outperforms 
UnstableHigh_2 with large variations in quality requiring three times the bandwidth.

Figure  9 shows the Mean Opinion Score of all clips for scenarios within the second 
super group with the 95% Confidence Interval plotted in the error bars, which is used to 
determine the statistical significance of differences in MOS, where overlapping confidence 
intervals are perceived as statistically insignificant. As with Fig. 8, MOS can only be fairly 
compared between scenarios using the same source clip.

Fig. 9  Mean Opinion Score of all test clips for scenarios within the second super group with the 95% Confi-
dence Interval plotted in the error bars. Each source clip is plotted in different colour
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Comparison of scenarios GradualHigh_1–4 and GradualLow_1–4 using the common 
clip Football_1 Group GradualHigh has scenarios with either a rapid or a slow transition 
from either the highest quality or the lowest quality to the other, with each scenario having 
an encoded bitrate of about 2200 kbps. Group GradualLow has corresponding scenarios 
between the second highest and second lowest quality levels, with average bitrates of about 
1500 kbps. Each scenario in group GradualLow has higher MOS than the corresponding 
scenario in group GradualHigh despite having approximately 32% lower bitrate, although 
none of the differences are statistically significant. This suggests that quality variations of 
small magnitude can make more effective use of bandwidth than larger variations.

Comparison of scenarios GradualHigh_1–4 and DoubleDrop_1–4 using the common 
clip Rally_1 Group DoubleDrop has scenarios with one or two quality drops from the sec-
ond highest level to either the middle level (scenarios 1 and 2) or the second lowest level 
(scenarios 3 and 4), with average encoded bitrates about 10% lower than the scenarios of 
group GradualHigh which have a single transition between the highest and lowest qual-
ity levels. All the scenarios in DoubleDrop had higher MOS than all of the scenarios of 
GradualHigh. All pairwise comparisons were statistically significant except for Gradu-
alHigh_3 which had overlapping confidence intervals with scenarios DoubleDrop_3 and 
DoubleDrop_4. This again suggests that the more stable quality of DoubleDrop scenarios 
with only small quality variations around a mid-level are preferred to a quality change over 
the whole range of quality levels, even though the average bitrate is 10% lower.

Comparison of scenarios GradualLow_1–4 and DoubleDrop_1–4 using the common 
clip Squash_1 Both of these groups contain scenarios with small variations in quality 
around the mid-level. Although the scenarios in GradualLow have approximately 25% 
lower average bitrate than the scenarios in DoubleDrop, there are no statistically significant 
differences between any of the scenarios in these groups.

5.4  Summary

We have performed a subjective study to investigate how users perceive changes in video 
quality in adaptive streaming, using impairment scenarios based on ABR behaviours 
observed in our quantitative evaluation. Considering the predominant use case of low 
latency streaming is live sport [2], we limited the content used in our experiment to sports 
content, and hence do not claim our findings would necessarily apply to all types of con-
tent. We highlight the following findings.

• Spike and Drop Scenarios: short temporary changes in quality level, whether an 
increase or a decrease, have no significant impact on QoE. Llama is quick to switch 
down to avoid rebuffering and hence may at times switch down unnecessarily causing 
a temporary drop in quality, but this has no significant impact on QoE. Furthermore, 
other ABR algorithms may at times increase video quality temporarily, but again, with-
out any gain in QoE.

• Unstable High and Low Scenarios: stable quality was preferred even when the average 
bitrate was 42% lower. We found that the use of the lowest quality level had a signifi-
cant negative impact on QoE. Llama reduces video quality on the first signs of network 
deterioration, but does so gradually which can minimise the time spent at lowest video 
quality.
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• Gradual High and Low Scenarios: gradual quality variation was preferred to instant 
changes when the magnitude of change was high and the quality increased, but there 
was no significant difference when the magnitude of change was lower or when the 
quality decreased. Llama always changes the video quality gradually, regardless of the 
magnitude or direction of the planned change. Based on this finding, it may be possible 
to improve Llama by allowing the quality to increase by two levels instantly, and to 
decrease by any number of levels instantly.

• Double Drop Scenario: no significant difference in QoE between two quality drops sep-
arated by a return to higher quality and a single quality drop of the same total duration. 
Llama is slow to increase video quality which might result in less frequent but longer 
temporary drops in quality, but without significant impact on QoE.

5.4.1  Related work

We have conducted a subjective study consisting of short segments and video clips, using 
the ACR method to test a variety of quality bitrate patterns. Additionally, we made our 
results database available to the research community. In the relevant literature, there are 
only 7 publicly available video quality assessment databases. The study presented in [21] 
only tested various forms of rebuffering. Long videos (25–300s) were used to evaluate 
quality switches, alone in [13], as well as alongside rebuffering in [7, 8, 19], by employ-
ing a continuous testing procedure. Various quality patterns were presented in the evalu-
ated videos, however, scores for partial patterns cannot be isolated due to the primacy and 
recency effects. [15, 16] evaluated quality switches, with and without rebuffering respec-
tively, using short videos (4–10s). Our study expands on the relevant literature by testing a 
wide range of short video quality variations, which were isolated and evaluated using short 
video clips.

The study presented in [37] evaluated a subset of the impairment scenarios tested in 
our study using the continuous evaluation method. The authors found that, when compared 
to gradual quality changes, instant changes of small magnitude had no impact on QoE, 
whereas instant switches of large magnitude had a significant negative impact on QoE. In 
our results, instant decreases in video quality, regardless of magnitude, did not have a sig-
nificant negative impact on QoE when compared to gradual decreases. They also observed 
that fluctuation between medium and high qualities had no significant impact on QoE. 
From our results we can observe that quality fluctuations between lower-than-medium and 
high qualities have a significant negative impact on QoE.

6  Conclusion

In this article, we have presented a comprehensive evaluation of state-of-the-art low latency 
ABR algorithms as well as the results of extensive subjective testing of observed ABR 
behaviour patterns. Both experiments were designed to further assess the suitability of 
Llama for low latency conditions, building on our earlier work in which we both proposed 
Llama, an ABR algorithm we designed specifically for low latency live adaptive streaming, 
and evaluated its performance against four prominent on-demand ABR algorithms.

First, in a quantitative manner, we evaluated Llama by comparing it against three low 
latency ABR algorithms, Stallion, L2A, and LoL+, with multiple client settings and 
7000 throughput traces. Their performance was presented using a range of QoE metrics, 
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including average Live Latency, the average time between a segment being generated and 
played by the client, and the ITU-T Recommendation P.1203 QoE model which combines 
multiple QoE factors into a single metric. When compared to the other low latency ABR 
algorithms, for most settings, Llama achieved the lowest Live Latency by a moderate mar-
gin, which is crucial in low latency live streaming, and achieved slightly improved P.1203 
MOS, which reflects the Quality of Experience.

Secondly, we have presented the results of a subjective experiment designed to investi-
gate how users perceive changes of video quality in adaptive streaming, using impairment 
scenarios based on observations from our quantitative evaluation. We concluded the fol-
lowing from the subjective test. Consistent quality was preferred over variable quality, even 
when the average bitrate was 42% lower. A short temporary change in quality level had no 
significant impact on QoE. The lowest quality level had a significant negative impact on 
QoE. Gradual quality variation was preferred to instant changes when the magnitude of 
quality change was high, but only when increasing the video quality.

We have published the simulation model along with the throughput traces and the 
encoded content used in this quantitative evaluation to allow the research community to 
verify our results and perform further studies. We have also published the subjective test 
results in full.
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