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Developing fast, robust, and accurate methods for optimal control of quan-
tum systems comprising interacting particles is one of the most active areas
of current science. Although a valuable repository of algorithms is available
for numerical applications in quantum control, the high computational cost is
somewhat overlooked. Here we present a fast and accurate optimal control al-
gorithm for systems of interacting qubits, QOALA (Quantum Optimal control
by Adaptive Low-cost Algorithm), that is predicted to offer O(M2) speedup
for an M -qubit system, compared to the state-of-the-art exact methods, with-
out compromising overall accuracy of the optimal solution. The method is
general and compatible with diverse Hamiltonian structures. The proposed
approach uses inexpensive low-accuracy approximations of propagators far
from the optimum, adaptively switching to higher accuracy, higher-cost prop-
agators when approaching the optimum. Additionally, the utilisation of ana-
lytical Lie algebraic derivatives that do not require computationally expensive
matrix exponential brings even better performance.

1 Introduction
Driving quantum spins systems to a desired target state via optimal control theory (1) has been
widely applied to a range of areas form high-resolution magnetic resonance spectroscopy and
imaging (2–5), and electron paramagnetic resonance (6–8), quantum error-correction and quan-
tum information registers (9–11), cold atoms (12–14), terahertz technologies (15,16), control of
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trapped ions (17), and NV-centres in diamond (18,19). Along with applications in measurement
science, algorithmic and numerical developments of optimal control methods remain active
and challenging, with examples including geometric optimal control (20,21), adiabatic optimal
control (22, 23), GRAPE (GRadient Ascent Pulse Engineering) (24, 25) and Krotov (26, 27) al-
gorithms, tensor product approach for large quantum systems (28), and optimal control over
approximate control landscapes (29).

A crucial ingredient in these optimal control applications is a numerical method for comput-
ing the dynamics of spins systems, which is utilised for computing the objective function at each
iteration of an optimisation algorithm. A common feature in most numerical methods is that
a uniformly and highly-accurate method is utilised throughout the optimisation process when,
for the significant part, the optimisation can not benefit from the provided accuracy, and hence
suffers from the computational burden without much gain. This problem becomes more evident
and cumbersome, especially, in the context of large, multi-particle systems and therefore more
important to address.

In this manuscript we present a general and highly flexible approach for solving optimal
control problems for systems of entangled qubits in a computationally efficient manner with-
out sacrificing the desired accuracy. In an optimisation process, computationally inexpensive
methods for computing spin dynamics can be used far from the optimum, where loss of accu-
racy is less crucial and where the most iterations in a numerical optimisation routine are often
spent. Conversely, high accuracy methods should only be used for computing the dynamics
of quantum systems close to the optimum when high fidelity is achievable and desired. This
adaptive optimal control method, QOALA (Quantum Optimal control by Adaptive Low-cost
Algorithm), uses a set of approximant propagators that are designed to allow variable degrees
of trade-off between accuracy and computational expense, and achieves significant speedup in
practice. We elucidate the potential speedup of QOALA with the concrete example of a class of
numerical methods called propagator splittings. However, the overall framework developed in
this manuscript is flexible enough to incorporate any combination of numerical methods with
different cost and accuracy trade-offs.

This paper is structured as follows: In Sections 2.1 to 2.3 a brief and general theory of opti-
mal control is presented, and the concept of adaptive approach is introduced. In Section 2.4 the
ingredients of the QOALA method including the Hamiltonian structure, propagator splitting, and
computation of derivatives is presented, along with potential benchmarking strategies. Finally
in Section 2.5 demonstrations of the the proposed method are presented in the context of nuclear
magnetic resonance (NMR) using a range of examples including state transfers and swap gates
on 2-, 3-, and 4-spin systems. In each case, the convergence and wall-clock time of the method
are compared to methods (30–32) available via the versatile software package Spinach (33). It
is demonstrated that the proposed adaptive framework consistently outperforms available meth-
ods. Relative speedup of QOALA compared to an exact method is shown in Figure 1.
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Figure 1: Speedup of QOALA state-transfer optimal control problems. Speedup in wall-
clock time achieved by utilising the QOALA method when compared to an exact method for
state-transfer optimal control problems. Smooth, thick lines are a polynomial fit to the thin
lines. The inset plot shows the expected speedup, per qubit, for different fidelities from 90%
(top line) to 99.9999% (bottom line).

2 Results

2.1 Formulation of optimal control problem
The state of a system with M spins at time t is described by a density matrix ρ(t), and its
dynamics are governed by the Liouville–von Neumann equation,

∂ρ(t)

∂t
= −iH(t)ρ(t), ρ(t0) = ρ0, (1)

where ρ0 is the initial state of the system at time t0, and H = 1 ⊗ H − H> ⊗ 1 is the time-
dependent Hamiltonian super-operator of the system. The solution of eq. (1) can be expressed
as

ρ(t) = U(t)ρ(0). (2)

Formally, the propagator U(t) is a time-ordered exponential of −iH, denoted

U(t) = T e−i
∫ t
0 H(t′)dt′ . (3)
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In optimal control applications the Hamiltonian,H(t), depends on some control parameters,
θ, and optimal choices of these parameters are sought which can either (i) drive the state of the
system ρ(T ) at a specified time T to a desirable target %, or (ii) ensure that the propagator
U(T ) implements a desirable propagator Utarget. To highlight the dependence on θ, we often
write H(t; θ), U(t; θ) and ρ(t; θ) instead of H(t), U(t) and ρ(t), respectively, where normally
t ∈ [0, T ]. Further, we assume thatH(t; θ) and U(t; θ) are represented by N ×N matrices.

The optimal control problem is expressed in terms of maximising an objective function

F(θ) = f(U(T ; θ)) (4)

where f is a continuously differentiable real-valued functional of propagator matrices, i.e.

f ∈ C(CN×N ;R). (5)

In this manuscript we are particularly concerned with cases where the value of the objective at
the optimal parameters,

θ∗ = argmax
θ

F(θ), (6)

is known a-priori. Without loss of generality, we assume that after suitable scaling of f , the
objective F is able to achieve the maximum possible value of 1,

F(θ∗) = 1, (7)

A large class of objective functions F of this form that appear in the context of optimal
control of spins and gate design are fidelity functions. For instance,

f(X) = Re
[
Tr
(
%†Xρ0

)]
(8)

leads to the fidelity functional

F(θ) = Re
[
Tr
(
%†U(T ; θ)ρ0

)]
= Re

[
Tr
(
%†ρ(T ; θ)

)]
∈ [0, 1], (9)

which measures the overlap of the quantum state ρ(T ; θ) at a specified time t = T , with a
target state %. Here, both ρ0 and % are assumed to be improper (i.e. trace-free, Tr(ρ) = 0),
normalised (‖ρ‖2 = 1), Hermitian (ρ† = ρ) density matrices. Functionals such as eq. (8) where
an initial state ρ0 appears, lead to fidelity functions that are utilised in the context of state-to-
state transfers, i.e. case (i).

Here normalisation is only assumed so that value at the optima is 1, i.e. to satisfy eq. (7).
Note that the requirement of trace-free density matrices only applies to the fidelity functional
described in eq. (9), and the overall approach applies equally to fidelity functions of proper
density matrices (i.e. non trace-free density matrices).

The functional
f(X) = Re

[
Tr
(
U†targetX

)]
, (10)
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leads to the fidelity
F(θ) = Re[Tr(U†targetU(T ; θ))], (11)

which does not depend on initial state ρ0, and can be utilised where an effective design of a
specified propagator Utarget (a desired unitary gate, for instance) is required, i.e. case (ii). Note
that, instead of working with the real-value of the trace in eqs. (8) and (10), i.e. applying the
function Re(·), we can also apply any other continuously differentiable function, e.g. absolute
value squared, | · |2.

Fidelity functions measure the similarity between mixed quantum states. A very wide range
of fidelity functions exist, among them notably the Uhlmann–Jozsa fidelity (34), which satisfy
the fidelity axioms to different extents. We refer the reader to (35) for a more detailed discus-
sion of the appropriateness of various fidelity measures. For the purposes of this manuscript,
however, all objective functions F satisfying eqs. (4) to (7), will be considered valid fidelity
functions that can be maximised using the proposed approach.

The fidelity functions can be maximised using gradient-based optimisation schemes, where
one needs the gradient of the fidelity function F . We compute the gradient using the chain rule,

∂F(θ)

∂θ
= Df(U(T ; θ))

∂U(T ; θ)

∂θ
, (12)

which further requires computation of the gradient of the propagator U(T ; θ). Here Df(X) is
the Fréchet derivative of f at X , which acts linearly on Y , and Df(X)Y quantifies the rate of
change in the direction Y. Equation (12) can be generalised further to use Gateuax derivatives (or
directional derivatives) (36, 37), where instead of Df(X)Y we write Df(X;Y ) or DY f(X).

For instance, the action of the Fréchet derivative of the functional eq. (8) is

Df(X)Y = Re
[
Tr
(
%†Y ρ0

)]
,

so that the gradient of the fidelity eq. (9) is

∂F(θ)

∂θ
= Re

[
Tr

(
%†
∂U(T ; θ)

∂θ
ρ0

)]
= f

(
∂U(T ; θ)

∂θ

)
. (13)

The exact propagator U(T ; θ) (and hence its derivatives) are not available since an analytical
solution of eq. (3) is not available except in very specialised and restrictive circumstances.
Instead, in practice, we rely on numerical methods for solving eq. (3).

We assume that a family of numerical solvers S(1),S(2), . . . ,S(L) to approximate the prop-
agator U(T ; θ) is available and arranged in increasing accuracy and cost, i.e. we assume that
the solver S(`+1) is more accurate and computationally more expensive than S(`). Here S(`) is a
(θ-dependent) linear map from the initial state ρ0 to the state at time T ,

ρ(`)(T ; θ) = S(`)(θ)ρ0

and it produces an approximation ρ(`)(T ; θ) to ρ(T ; θ), the true solution of eq. (1).
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The use of a particular propagator S(`) naturally leads to the computation of an approximate
value of the fidelity function

F(`)(θ) := f(S(`)(θ)) ≈ f(U(T ; θ)) = F(θ).

When a range of numerical solvers with different cost and accuracy trade-offs are available,
a natural question to ask is: What is the best choice of solver? On the one hand, the most
inexpensive solver S(1) makes the optimisation fast. However, it also leads to a less accurate
approximation to the fidelity,F(1)(θ). This becomes particularly important in applications where
high fidelities (approaching 1) are feasible and desired, and using low accuracy approximations
limits the fidelity achievable. In such cases, the most accurate solver S(L) seems appealing.
However, such a solver typically comes with a high computational cost. The use of such an
accurate but costly solver seems less justified in the initial stages of optimisation where the
objective is very far from the optimal value.

In this paper we propose an adaptive procedure where inexpensive solvers with low accuracy
are used far from the optimum, and high accuracy solvers with large computational costs are
utilised only closer to the optimum θ∗. The framework requires the following ingredients. (i)
A set of numerical solvers S(1),S(2), . . . ,S(L) with different cost and accuracy trade-offs, (ii)
Method for computing gradients of these solvers with respect to θ for approximation of the
fidelity gradient eq. (12),and (iii) a low-cost, adaptive strategy to switch from a solver S(`) to a
more accurate solver S(`+1), that includes an error estimation of the computed fidelity F(`) and
a measure of proximity to the optimum θ∗.

2.2 Termination criteria
In theory, a nonlinear optimisation process is terminated when the distance of the j th iterate θ(j)

from the optimum θ∗ becomes sufficiently small. In practice, however, since θ∗ is not available
a-priori, we estimate ‖θ∗ − θ(j−1)‖ by ‖θ(j) − θ(j−1)‖ and terminate iterations when

‖θ(j) − θ(j−1)‖ ≤ tolθ, (14)

for some user defined tolerance tolθ.
Another criterion is motivated by the fact that at critical points (including, but not limited

to, the optimum), the gradient vanishes, e.g. ∇θF(θ∗) = 0. Again, some user defined tolerance
tolg is used to asses this criterion as

‖∇θF(θ(j))‖ ≤ tolg. (15)

The last criterion to consider is the difference of the value of the objective F at the previous
iterate θ(j−1) from the optimal value F(θ∗),

|F(θ∗)−F(θ(j))|. (16)
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However, we know that when a system is fully controllable, given a set of parameters, a fidelity
of 1 can be achieved, i.e. F(θ∗) = 1, and therefore, for some user-defined tolerance tolF ,

|1−F(θ(j))| ≤ tolF (17)

can be used alongside eq. (14) and eq. (15) as a termination criterion. Note that even if we do
not know whether a fidelity of 1 is achievable in a particular application, in quantum optimal
control we are guaranteed thatF ≤ 1 (38) for suitably normalised initial and target states. Thus,
eq. (17) does not lead to unnecessarily early termination and should be used alongside eq. (14)
and eq. (15).

2.3 The adaptive procedure
An additional and important aspect in an adaptive process is the numerical error in the approx-
imation of the objective F . We can, at best, rely on F(L), generated using the most accurate
numerical solver S(L) available to us, but we would like to use the least expensive solvers S(1),
wherever possible. Here we consider the true fidelity F(θ(j)), a fidelity measure that would
results from exact calculation methods, and F(`)(θ(j)), a fidelity when the numerical solver S(`)
is being used in the j th iteration. For ease of notation, we have suppressed the dependence on
the parameters θ in this section. Using eqs. (16) and (17) we can construct a general system of
inequalities for the adaptive procedure.

|1−F| ≤ |1−F(`)| + |F(`) −F| ≤ (1 + κF)|1−F(`)| ≤ tolF , (18)

where κF ∈ (0, 1) is a user-defined parameter. This system of inequalities enforces the termi-
nation criteria such that

|1−F(`)| ≤ tolF
1 + κF

, (19)

and ensures that
|F(`) −F| ≤ κF |1−F(`)|. (20)

The true fidelity F also satisfies the termination criterion eq. (17). Note that κF in eq. (20)
guarantees that at all times during the optimisation procedure we keep the numerical error sev-
eral times smaller than |1−F(`)|, which measures the distance from optimal value (assuming
F(θ∗) = 1).

As we approach the optimal value, we need to use more accurate solvers. When eq. (20) is
violated, the optimiser switches to a more accurate solver S(`+1). From the left side of eq. (20)
the error of the fidelity approximation F(`) using the solver S(`) should be computed

ε(`) := |F(`) −F|,

As the true fidelity F is not available, we use a more accurate scheme for approximating F ,

ε(`1,`2) := |F(`1) −F(`2)| = 1− Tr
(
(ρ(`1))†ρ(`2)

)
, `2 > `1.
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where ρ(`) = ρ(`)(tf ; θ) = S(`)(ρ0; θ). The most inexpensive estimate is given by

ε(`,`+1) := |F(`) −F(`+1)|. (21)

The computation of ε(`,`+1) as in eq. (21) involves both S(`) and S(`+1), and therefore is more
than twice as expensive as using S(`) alone. A simple way to mitigate this problem is to only
make the decision to switch from S(`) to S(`+1) once every 5 to 10 iterations, which reduces the
overall burden of computing ε(`,`+1). However, the gap between tests should not be too large,
to avoid the fidelity deviating from the true fidelity. Although other methods like defect-based
error estimators (39) can provide a highly accurate estimate of the error in S(`1) without the use
of a more accurate scheme S(`2) (`2 > `1), and can be easily incorporated in our framework, as
our current application does not require a very high accuracy of error estimation, we restrict the
present implementation to the estimator presented in eq. (21).

2.4 QOALA
We start with presenting the total Hamiltonian in terms of interaction (Hin) and single spin (Hss)
sub-Hamiltonians,

H = Hss +Hin. (22)

Therefore −iδtH = A+ B such that

A = −iδtHin, B = −iδtHss. (23)

where δt is a small change in t, derived from the differential in eq. (3).
The Hamiltonian for an isolated (non-interacting) spin can be written as

h = aσx + bσy + cσz, (24)

where σα, α ∈ {x, y, z} are Pauli matrices for spin−1
2
, (or Pauli matrices equivalent for spins

> 1
2

). For M spins a general form ofHss can expressed as

Hss =
M∑
k=1

1⊗ · · · ⊗ 1︸ ︷︷ ︸
M−k times

⊗hk ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
k−1 times

=

[
M⊕
k=1

hk

]
.

(25)

Any other parts of the Hamiltonian, e.g interactions, can also be included in Hin. Thanks to
utilisation of super-operator formalism (Liouville space) in eq. (1), Hin can contain additional
terms such as decoherence via Lindblad or Redfield equations. While exp(A) can be computed
once prior to the optimisation, due to properties of the Kronecker sum, exp(B) can be expressed
as

exp(B) = exp (−iδth1)⊗ exp (−iδth2)⊗ · · · ⊗ exp (−iδthM) . (26)
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As it will become clear in the next section these decomposition and separation play a key role
in the mechanism of the proposed method. Although the theoretical basis of this work can be
extended to any quantum systems, it is formulated and demonstrated in the context of nuclear
magnetic resonance (NMR) in Section 4.

In principle, one can employ any set of solvers for the approximation of the propagator,
ordered in ascending accuracy and cost. In this work we restrict our attention to a range of
splitting methods, which are numerical solvers that approximate eA+B in terms of products of
eA and eB. The idea of approximating a propagator using splitting techniques is well-explored
in the literature (40–48). Propagator splittings of arbitrarily high order accuracy can be derived
using techniques such as Baker–Campbell–Hausdorff formula (49), Zassenhaus splitting (50),
Magnus expansion (51), and their combinations. In what follows, a specified solver using a
splitting method of order p, having an accuracy O(δtp), will be denoted with a subscript Sp.

Moreover, any splitting method Sp can be combined with with Trotterisation (40), which
divides a small time slice of duration δt into q equal, smaller, time slices of durations δt

q
for

improved numerical accuracy, to generate a larger group of solvers.

Sp,q(δt) =

[
Sp

(
δt

q

)]q
+O

(
δtp+1

qp+1

)
. (27)

where the Trotter number q is now also included as a subscript in the solver, Sp,q. Splitting
methods utilised as solvers in the present work are summarised in Table 1, with a schematic
diagram outlining 2nd order splitting, p = 2, with Trotter number q = 3 shown in Figure 2.

Table 1: Summary of Trotterised splitting methods as solvers to approximate eA+B. A pictorial
representation of S2,3 is shown in Figure 2. The computational cost, Ocost, is of a forward
time-propagation to obtain U(T ; θ) for a fidelity calculation in eq. (4).
S Formula Oacc. Ocost Ref.
S1,q

(
e

1
q
Ae

1
q
B
)q

δt
q

2q (40)

S2,q

(
e

1
2q
Ae

1
q
Be

1
2q
A
)q

δt2

q2 2q + 1 (41, 42)

S3,q

(
e
ā1
q
Ae

b1
q
Be

ā2
q
Ae

b2
q
Be

a2
q
Ae

b1
q
Be

a1
q
A
)q

δt3

q3 6q + 1 (48)a

S4,q

(
e
a1
q
Ae

b1
q
Be

a2
q
Ae

b2
q
Be

a3
q
Ae

b3
q
Be

a4
q
Ae

b3
q
Be

a3
q
Ae

b2
q
Be

a2
q
Ae

b1
q
Be

a1
q
A
)q

δt4

q4 12q + 1 (43, 47)b

a
a1 = 13

126 − i

√
59/2

63 , a2 = 25
63 + i

5
√

59/2

126 , b1 = 3
10 , b2 = 2

5

b

a1 = 0.0792036964311957, b1 = 0.209515106613362
a2 = 0.353172906049774, b2 = −0.143851773179818
a3 = −0.0420650803577195, b3 = 1/2− b1 − b2
a4 = 1− 2 (a1 + a2 + a3) ,

Let us recall the definition of fidelity in eq. (4)

F(θ) = f(U(T ; θ)) ∈ [0, 1],
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Qu1 Qu2

Qu1 Qu2( )( )( )⊗

Coupled Qubit System:
◦ Bloch sphere subsystems

◦ Coupled
with interactions

Single-Qubit Propagators:
◦ Remove interactions

◦ Rotations from controls
◦ Matrix-free calculation

from ESCALADE

Split Interaction Propagators:
◦ Reintroduce interactions

◦ Precalculated

Trotterisation of Time Increment:

[( )( )( )]⊗Qu1 Qu2 [( )( )( )]⊗Qu1 Qu2 [( )( )( )]⊗Qu1 Qu2

◦ Trotterised time-propagation over δt/q

◦ time-propagation over δt

( )( )( )⊗Qu1 Qu2 ( )( )⊗Qu1 Qu2 ( )( )⊗Qu1 Qu2⇒

Figure 2: Pictorial schematics of time-propagator splitting and Trotterisation. A schematic
diagram of a coupled 2-qubit system, an angle-axis representation of ESCALADE (52), a picto-
rial representation of 2nd order operator splitting, and Trotterisation of time-slices with q = 3.
This corresponds to S2,3 in Table 1. The final image shows a Trotterised, split operator, time-
propagation with the left-most and right-most split coupling of the operator splitting method,
allowable for S2,q, S3,q, and S4,q in Table 1, combined into one exponential.

which is the objective function to be minimised in the optimisation.
Although the scope of the QOALA method is not limited to the GRAPE algorithm (24), in

this paper it is presented in the context of the GRAPE method, where the time-dependent control
pulses are generally presented as piecewise-constant over a small time interval δt

θa,k(t)→
[
θa,k,1 θa,k,2 · · · θa,k,N

]
,

with a ∈ {x, y} controlling the kth spin. For notational convenience, the explicit time interval
dependence of θa,k,n(δt) has been dropped. In this context, the effective propagator over the
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total pulsing time duration, T = Nδt is given by

U(T ; θ) = Utot := UNUN−1 · · ·U2U1, with Un = e−i(δt)H(θn), (28)

where θn is a general control parameter solely affecting the nth propagator, Un, and the short-
hand θn = θa,k,n is valid for any a ∈ {x, y} and k ∈ {1, . . . ,M}. Note that for pulses that
are not piecewise constant, the decomposition eq. (28) does not hold exactly. However, simi-
lar decompositions can be obtained for arbitrary pulses using the Magnus expansion (51), for
instance.

The gradient of the true fidelity, i.e. the derivative of the fidelity at every time point n with
respect to a discrete control, θn, can be written as

∂F(θ)

∂θn
= Df(Utot)

∂Utot

∂θn
, (29)

with
∂Utot

∂θn
= UN · · ·Un+1

∂Un

∂θn
Un−1 · · ·U1. (30)

However, due to computational costs, we never compute the true fidelity eq. (4) or its gra-
dient eq. (29). The central idea presented here relies on the approximation of Un = e−i(δt)H(θn)

using a solver S(`),n, and of the propagator U(T ; θ) = Utot by S(`),

S(`) := S(`),N S(`),N−1 · · · S(`),2 S(`),1, with S(`),n ≈ Un, (31)

Thus, instead of eq. (4), we compute the approximate fidelity,

F(`)(θ) = f(S(`)(θ)), (32)

and the exact gradient of the approximate fidelity eq. (32),

∂F(`)(θ)

∂θn
= Df(S(`)(θ))

∂S(`)(θ)
∂θn

, (33)

where
∂S(`)(θ)
∂θn

= S(`),N · · · S(`),n+1

∂S(`),n
∂θn

S(`),n−1 · · · S(`),1. (34)

As a concrete example of approximate solvers, S(`), we consider the use of the splitting
propagators introduced in Table 1. The nth propagator Un is approximated by a split propagator,
Sp,q(θn) = (Sp(θn))q. For ease of notation, we drop the dependency on θn. Assuming an
odd number of multiplications, 2P + 1, in a general solver, Sp = S2P+1S2P · · ·S2S1 (making
a distinction between the solver, Sp, and one of its constituent matrix exponentials, S), and
by considering that A and B appear in odd and even S terms respectively (without loss of
generality, as presented in Table 1), i.e.

S2j = eb2jB, S2j+1 = ea2j+1A, (35)
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and given the fact that ∂A
∂θn

= 0, ∂B
∂θn
6= 0 and

[
∂B
∂θn
,B
]
6= 0, for a general solver, Sp,q, with

Trotter number q we have
∂Sp,q
∂θn

=

q∑
i=1

(Sp)i−1
∂Sp
∂θn

(Sp)q−i, (36)

where, using Sp = S2P+1S2P · · ·S2S1,

∂Sp
∂θn

=
P∑
j=1

[(
2j+1∏

i=2P+1

Si

)
∂S2j

∂θn

(
1∏

i=2j−1
Si

)]
. (37)

∂S2j

∂θn
can be computed using finite difference (53) or exact (32) methods. While finite dif-

ference approximations of the gradient are easy to programme, they can also be inaccurate, ex-
pensive and, most importantly, in the present context, unstable when the underlying numerical
propagator has low accuracy (52, 54). Here, taking advantage of the decomposition presented
in eq. (26) we use analytical Lie algebraic derivatives using the recent ESCALADE (Efficient
Spin Control using Analytical Lie Algebraic Derivatives) method (52), which, in contrast to
the auxiliary matrix method (31, 32, 55–58), does not require the computation of an expensive
matrix exponential, resulting in an additional significant speedup.

An alternative approach to error estimation presented in Section 2.3 is benchmarking of the
solvers prior to the optimisation. For any solver in the set of solvers, the achievable accuracy
is known, and since the dimensions of the Hamiltonian do not change in the course of the
optimisation, we can consider the number of matrix-vector multiplications as a measure for
cost. Pre-computed benchmarking consists of identifying switch points on a cost vs. accuracy
plot that minimises the overall cost while maximising the accuracy.

If we want to apply this benchmarking strategy to the set of solvers in Table 1 it can
be seen that with efficient matrix caching, the minimum cost of the computation of Sp =
S2P+1S2P · · ·S2S1 and its derivative in the presence of qth order Trotterisation is (4+K)Pq+2,
where K is the number of controls. Using these known attributed accuracy and cost, we can
obtain a generic benchmarking graph for our set of solvers (Figure 3). This plot, calculated for
δt = 0.1 ms and 4 controls, shows that there is no benefit in using 2nd and 3rd order solvers with
Trotter numbers larger than 2 and 1 respectively.

2.5 Numerical examples
The state-transfer problem is investigated for two different spin systems: a 2-spin system, la-
belled system-1 in table 2 and inset in Figure 4(D); a 3-spin system, labelled system-2 in table 2
and inset in Figure 4(E). The 2-spin and 3-spin systems are both heteronuclear with 2M controls
(x and y controls on each spin) and pulse B1 amplitude limited to 1 kHz.

Heteronuclear 2-spin and 3-spin systems are tasked with transferring an initial z-magnetisation
from the first spin, to a desired z-magnetisation at the final spin. The 2-spin system is optimised
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Figure 3: Benchmarking graph showing the computational cost of different Trotterised
time-propagator splitting methods. The plot shows the number of multiplications per time-
slice required of a fidelity and gradient calculation for a desired accuracy, for δt = 0.1 ms and
4 controls, as a measure of the computational cost of the set of solvers presented in Table 1;
arrows and Sp,q terms represent switching points between members of the solver set.

over a pulse duration of T = 10 ms and the 3-spin system is optimised over T = 22 ms, both
systems are allowed a time-slice of δt = 0.2 ms.

The optimal control task of a 4-spin system is purposefully made more difficult: the initial
state is set as the entangled multi-spin state defined in eq. (45); a relaxation term is included
in the uncontrollable part of the Hamiltonian. The relaxation term is calculated using Spinach
(31, 33, 59, 60) Bloch-Redfield-Wangsness relaxation theory with isotropic rotational diffusion
(correlation time τc = 50 ps). The system, labelled system-3 in table 2 and inset in Figure 4(F),
is a mixture of heteronuclear and homonuclear systems and is controlled with 4 controls (x and
y controls on each type of spin), limited to 10 kHz pulses, optimised over a pulse duration of
T = 100 ms with a time-slice width of δt = 0.02 ms.

Essentially, there is the requirement that there are enough controls (enough time-slices) to
control the system to its desired target. This is a requirement for both an exact method and
the solver based methods, Sp,q, presented in this work. Accordingly, the control problems are
designed to have enough time-slices to attain good convergence, but no more.

The convergence of the 2-spin system follows a typical quadratic convergence, which can
be seen from the average convergence of the exact method (dashed black lines) and in Figure 4
(A). The interquartile range is also shown (solid grey area bounded by thin dashed lines), with
small deviations from the average indicating a predictable/robust optimisation. This can be
considered an easy optimal control problem. However, at the time-slice width of δt = 0.2 ms,
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Figure 4: Computation time of state-transfer optimal control problems. Comparison of the
convergence of the 2-spin, (A), 3-spin, (B), and 4-spin, (C), state transfers with solvers S2,1,
S3,1, S4,1 (solid coloured) and QOALA with solver S{2,3,4},1 (solid black) to an exact method
(dashed black). The lower plots, (D-F), are the corresponding wall-clock time of computation.
The 2-spin system in (A and D) is given a pulse duration of T = 10 ms and a time-slice width
of δt = 0.2 ms. The 3-spin system in (B and E) is given a pulse duration of T = 22 ms and
a time-slice width of δt = 0.2 ms. The 4-spin system in (C and F) is given a pulse duration
of T = 100 ms and a time-slice width of δt = 0.02 ms. In all plots a central thick line
is an average over 28 optimisations, and the surrounding shaded area is bound by the first
and third quartiles. Adaptive splitting order selection (solid black) allows the optimisation to
follow a computationally inexpensive route through a convergence trajectory, while achieving
an eventual high fidelity.

the second order splitting solver S2,1 fails to reach a fidelity above 99%. A similar behaviour
is observed for the 3-spin and 4-spin problems, when using the S2,1 solver, but with a fidelity
limited to approximately 90%. The difficulty of these two optimal control problems is evident
from the less-than quadratic convergence of the exact method which, after the initial damped
stage of convergence, has a lower acceleration of convergence when compared to Figure 4 (A).
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Higher order solvers, S3,1 and S4,1, increase the limit on achievable fidelity for all spin
systems in Figure 4 with an additional increase in computation time. Taking advantage of the
short computation time of low accuracy solvers when allowable, the QOALA algorithm switches
to higher accuracy solvers only when needed. Given a switching threshold tolerance of κF =
0.5 in eq. (20) and a switching decision every 10 iterations, the convergence of QOALA in
Figure 4 does indeed converge to the high fidelities of the high accuracy solver S4,1 while
benefiting from the time savings of the low accuracy solvers at the beginning of the optimisation.
Furthermore, the average convergence trajectory of the 2-spin system in Figure 4(A) follows the
average convergence trajectory of the exact method very closely. The first and third quartiles
are also closely aligned, showing both the exact and adaptive methods converge in a predictably
quadratic fashion from different, random, initial guesses. From Figure 4(B and C), the switch
to S3,1 looks to have happened a little too late, following S2,1 for too many iterations, and losing
a small amount of convergence acceleration in the process. Even considering this small loss in
potential time saving, all spin systems achieve an appreciable time saving compared to the exact
method. Emphasising this point further, for a 4-spin system, depicted in Figure 4(F), the exact
method takes over 1.5 hours to achieve a fidelity of 99.99% whereas QOALA takes less than 7
minutes to achieve the same fidelity.

It should be noted that the speedup achieved with the QOALA approach compared to the
exact method depends on the type of optimal control problems and the system under study, but
we predict that an ∼ O(M2) speedup is expected for a system consisting of M qubits, as sum-
marised in Figure 1. High order splitting methods are required at the highest fidelities and the
computation time of these high order splitting methods dominate the overall computation time.
The speedup tends to O(M) at these high fidelities because of this domination and because
there is a splitting order/Trotter number pair that gives the same accuracy as the exact method
with a matrix exponential.

The universal swap-gate problem, with the fidelity defined in eq. (46), is investigated for
two different heteronuclear spin systems: a 2-spin system, labelled system-1 in table 2 and inset
in Figure 5(C); a 3-spin system swapping the first and third spin, labelled system-2 in table 2
and inset in Figure 5(D). The potential time-saving should be more for this type of optimisation
because the efficient Krylov propagation of the exact method in state-transfer problems is not
appropriate here, and an explicit matrix exponential must be made in gradient calculations.
In this case the exponential of a matrix is evaluated using a Taylor series, with scaling and
squaring (37), and truncated with a predefined tolerance of 1 × 10−12. Both problems have
2M controls (x and y controls on each spin) with pulse B1 amplitudes limited to 1 kHz. The
adaptivity of the QOALA is set with a switching threshold tolerance of κF = 0.5 (eq. (20)) and
a switching decision every 10 iterations. In the context of our set of examples, we observed that
universal swap-gate problems require slightly longer pulses than the state-transfer problems.
The 2- and 3-spin systems are optimised with T = 12 ms and T = 26.4 ms, respectively. An
example of the effect of a 3-spin swap-gate is shown in Figure 6, showing the first and thirds
spins swap states, and the state of the second spin is left unchanged.

In comparison to the state-transfer problems in Figure 4, the inclusion of Trotterisation (S2,2)
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Figure 5: Computation time of universal swap-gate optimal control problems. Compari-
son of the convergence of the 2-spin and 3-spin swap-gate with solvers S2,1, S2,2, S3,1 (solid
coloured) and QOALA using those same solvers adaptively (solid black) to an exact method
(black dashed) (A and B) and the corresponding wall-clock time of computation (C and D).
The 2-spin system in (A and C) is given a pulse duration of T = 12 ms and the 3-spin system,
swapping the first and third spin, in (B and D) is given a pulse duration of T = 26.4 ms. Both
have a time-slice width of δt = 0.1 ms. In all plots a central thick line is an average over 28 op-
timisations, and the surrounding shaded area is bound by the first and third quartiles. Adaptive
splitting order and Trotter number selection (solid black) allows the optimisation to follow an
inexpensive route through a convergence trajectory: Using approximate methods far from the
optimum, and accurate methods close to the optimum.

in Figure 5 makes the convergence trajectory more stable by avoiding utilising the solver S2,1 for
too many iterations, following the average convergence trajectory of the exact method closely
in the case of the 3-spin system in Figure 5(B), and even finding a short-cut to convergence for
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the 2-spin system in Figure 5(A). Again, both methods converge in a predictable fashion from
initial random guesses, shown by the first and third quartiles.

Figure 7 shows the speedup achieved with the QOALA method for these two universal swap-
gate optimisations. It shows an even greater (an additional twofold) speedup than for state-
transfer problems in Figure 1. This is because the efficiency of Krylov propagation cannot
be used for propagator derivative calculations in the exact method. The slowdown from us-
ing matrix-matrix products, as opposed to efficient matrix-vector products of the state-transfer
problems, is inherited by both QOALA and the exact method.

3 Discussion
We presented a fast, accurate, general, and highly flexible optimal control algorithm, QOALA

(Quantum Optimal control by Adaptive Low-cost Algorithm), for solving optimal control prob-
lems involving systems of entangled qubits in a computationally efficient manner without sac-
rificing the desired accuracy of the optimal solution. The QOALA method starts with low-cost,
low-accuracy approximations of propagators far from the optimum and adaptively switches to
high-cost, high-accuracy approximations as it approaches the optimum. With a set of approxi-
mant propagators, the QOALA method offers a versatile trade-off mechanism between accuracy
and computational cost. Using a GRAPE-based implementation of the QOALA algorithm and
through a diverse set of examples, we demonstrated that it consistently outperforms the state-
of-the-art exact methods and we predict O(M2) speedup for an M -qubit system, while main-
taining the accuracy of the optimal solution. The results of this manuscript can be generalised
in a straightforward manner to functionals that involve the values of the density matrix ρ at
multiple points, as well as functionals that involve regularisation and penalty terms.

4 Materials and Methods

4.1 Liouville space
In this work, we use the spherical-tensor basis (61) in a Liouville space, allowing a general im-
plementation to include effects such as relaxation or decoherence. Using the Liouville-Hilbert
dual relationship,

ρ(T ; θ) = Utotρ0U
†
tot ⇐⇒ vec (ρ(T ; θ)) = U∗tot ⊗Utot vec (ρ0) , (38)

The method is formulated in super-operator formalism

H 7→ 1⊗H−H> ⊗ 1.
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4.2 Hamiltonians
Here we present the formulation of our proposed method in the context on NMR for a spin
system consisting of M spin-1

2
particles interacting with each other via scalar coupling J and

under a radio-frequency pulse. The non-interacting, single-spin part of the Hamiltonian can be
written as

Hss =
M∑
k=1

θx,kIx,k +
M∑
k=1

θy,kIy,k +
M∑
k=1

ΩkIz,k, (39)

where
Ia,k = 1⊗ · · · ⊗ 1︸ ︷︷ ︸

M−k times

⊗σa ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
k−1 times

, a ∈ {x, y, z}. (40)

Therefore, we can prepare this Hamiltonian for our adaptive approach by

Hss =

[
M⊕
k=1

(θx,kσx + θy,kσy + Ωkσz)

]
, (41)

where θx and θy are the x and y components of the time-dependent pulse amplitudes. In the
special case of M homonuclei there are only two controls affecting those M spins, i.e. in
eq. (39)

∑
k θa,kIa,k → θa

∑
k Ia,k. The interaction Hamiltonian can be written as

Hin =
M∑
j>k

2πJjk

(
Ix,jIx,k + Iy,jIy,k + Iz,jIz,k

)
. (42)

In the case of heteronuclear coupling, the spin system can be considered weakly coupled, re-
ducing the interaction Hamiltonian to

Hin =
M∑
j>k

2πJjkIz,jIz,k. (43)

4.3 Auxiliary matrix method
One method to find the time-propagators and analytical propagator derivatives is to use an aux-
iliary matrix method (31, 32, 55–58) for computing the matrix exponential of a block triangular
matrix:

exp

{[
A+ Bn Ca,k

0 A+ Bn

]}
=

Un
∂Un

∂θa,k,n
0 Un

 , (44)

where Ca,k = −iδtIa,k for a control pulse amplitude θa,k,n of duration δt. The propagators can be
recovered from one of the diagonal blocks, and the propagator derivatives with respect to θa,k,n,
in the direction of the control operator Ia,k (eq. (40)) can be extracted from the upper right block.
For state-transfer problems, this method should also use efficient Krylov propagation, avoiding
the need to explicitly compute the matrix exponential (62, 63).
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4.4 Examples
Three types of optimal control problem are compared in this work:

z to z transfer: The goal is to transfer an initial z-magnetisation on a spin j, to z-magnetisation
on a spin k: Iz,j → Iz,k. Magnetisation on each spin can be depicted in a simple way through
Cartesian coordinates on each spin’s Bloch sphere, as in Figure 2. Here we use the state-to-state
transfer fidelity eq. (9), i.e. F = Re[Tr(%†Utotρ0)].

Entangled to z state transfer: An initial 2-spin entangled state between two spins j and k
asks the optimisation to collapse the entanglement to a desired localised z-magnetisation on a
further spin l: E(j,k) → Iz,l. The normalised, entangled, 2-spin state between spins j and k is
defined as

E(j,k) =
1

2
1−

(
2Iz,jIz,k + I+,jI−,k + I−,jI+,k

)
, (45)

where 1 is a unit state, a trivial but complete addition to the basis set, and I± = Ix ± iIy. Once
again, the fidelity used is eq. (9), F = Re[Tr(%†Utotρ0)].

Universal swap-gate: A universal multi-spin operation designed to swap the arbitrary ini-
tial magnetisation between two spins, j and k, is termed a swap-gate: I(j) 
 I(k). The swap-
gate can be found by optimising to a desired effective propagator, with a fidelity defined through
only the effective propagator of the target:

F = Re[Tr(U†swapUtot)], (46)

where Uswap is the effective propagator of the swap operation (64). This fidelity function is of
the form eq. (11), and the overlap is now defined in a more general way by the Hilbert-Schmidt
inner product (65). The real part disregards a trivial global phase which does not affect the
swap-gate operation.

A number of different spin systems are set out in table 2 which are used to investigate
convergence and benchmark wall-clock time of QOALA in comparison to exact calculations of
propagators and propagator derivatives using the auxiliary matrix method (31, 58) of eq. (44).
As outlined in the main text, state-to-state simulations for the exact method were performed
using the efficient Spinach implementation (33) of Krylov propagation within MATLAB.

4.5 Optimisation strategy
All results were obtained using a workstation running CentOS 7 with a 14-core Intel Xeon
W-2175 CPU @ 2.50GHz and 64GB of RAM. All optimisations were run 28 times, from 28
different random initial pulse guesses, with their convergence trajectories and time of com-
putation (the wall-clock time), averaged to show typical convergence and computation be-
haviour. The `-BFGS gradient-following optimisation method is used in all cases, with the
25 most recent gradients forming a Hessian approximation (30). A bracketing and sectioning
line-search method (with cubic interpolation) calculates an appropriate step-length using strong
Wolfe conditions (54). When an adaptive method switches between solver, a step-length of 1 is
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System k Isotope Offset, Ωk Coupling, Jjk B0 B1 Controls

0
1 1H Ω1 = +2000Hz

J12 = +20Hz 9.4T 1kHz 2
2 1H Ω2 = −1200Hz

1
1 1H Ω1 = 0

J12 = +140Hz 9.4T 1kHz 4
2 13C Ω2 = 0

2
1 1H Ω1 = 0

J12 = +140Hz
J23 = −160Hz

9.4T 1kHz 62 13C Ω2 = 0
3 19F Ω3 = 0

3

1 1H Ω1 = −900Hz J12 = 150Hz
J23 = 50Hz
J34 = 150Hz
J14 = 7Hz

14.1T 10kHz 42 13C Ω2 = −4530Hz
3 13C Ω3 = −1200Hz
4 1H Ω4 = −6040Hz

Table 2: Spin system parameters for 4 different spin systems, labelled system-0 to system-3 in
the first column. The second column refers to a numeric label, k, for each spin in the system,
with the isotope of that spin in the third column. The resonance offset (chemical shift), Ωk, is
shown for each spin in Hz in the fourth column. Coupling, Jjk, between different spins, labelled
j and k, is shown as a list in the fifth column in Hz. The static magnetic field, B0, is shown
in the sixth column, and the nominal power-level of the control pulses, B1, is shown in kHz in
the seventh column. The final column shows the number of control channels. Simulations use
a penalty function to ensure control pulses do not exceed to nominal power-level, ±B1, of the
control pulses.

selected, with no further line-search at that iteration. Termination conditions of optimisation are
tolθ = 1× 10−12 in eq. (14) and tolg = 1× 10−12 in eq. (15). All optimal control problems are
given sufficient pulse duration to achieve high fidelity (20), enforce a pulse amplitude spill-out
penalty beyond 1 kHz (or 10 kHz for 4-spin examples) (32,58), and fidelities are normalised so
the globally optimal fidelity is unity.
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coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. J.
Magn. Reson. 172, 296–305 (2005).

25. D. Lu, K. Li, J. Li, H. Katiyar, A. J. Park, G. Feng, T. Xin, H. Li, G. Long, A. Brodutch,
J. Baugh, B. Zeng, R. Laflamme, Enhancing quantum control by bootstrapping a quantum
processor of 12 qubits. npj Quantum Inf. 3, 1–7 (2017).

26. S. G. Schirmer, P. de Fouquieres, Efficient algorithms for optimal control of quantum dy-
namics: the krotov method unencumbered. New J. Phys. 13, 073029 (2011).

27. D. M. Reich, M. Ndong, C. P. Koch, Monotonically convergent optimization in quantum
control using krotov’s method. J. Chem. Phys. 136, 104103 (2012).
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