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Highlights

• Internet of Things (IoT) with resource limitations is vulnerable to cyberattacks.
• Deep Neural Networks (DNNs) are able to detect security threats.
• Security solutions based on DNNs are computationally demanding.
• Efficiently robust DNNs can offer protection against cyber threats for IoT devices.
• Implementing DNNs in federated learning can enhance security measures.
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A B S T R A C T

The application of Deep Neural Networks (DNNs) for monitoring cyberattacks in Internet of Things
(IoT) systems has gained significant attention in recent years. However, achieving optimal detection
performance through DNN training has posed challenges due to computational intensity and vulner-
ability to adversarial samples. To address these issues, this paper introduces an optimization method
that combines regularization and simulated micro-batching. This approach enables the training of
DNNs in a robust, efficient, and resource-friendly manner for IoT security monitoring. Experimental
results demonstrate that the proposed DNN model, including its performance in Federated Learning
(FL) settings, exhibits improved attack detection and resistance to adversarial perturbations compared
to benchmark baseline models and conventional Machine Learning (ML) methods typically employed
in IoT security monitoring. Notably, the proposed method achieves significant reductions of 79.54%
and 21.91% in memory and time usage, respectively, when compared to the benchmark baseline in
simulated virtual worker environments. Moreover, in realistic testbed scenarios, the proposed method
reduces memory footprint by 6.05% and execution time by 15.84%, while maintaining accuracy levels
that are superior or comparable to state-of-the-art methods. These findings validate the feasibility and
effectiveness of the proposed optimization method for enhancing the efficiency and robustness of
DNN-based IoT security monitoring.

1. Introduction
The Internet of Things (IoT) has witnessed significant

growth, connecting physical devices through diverse pro-
tocols to perform specific tasks. These devices utilize em-
bedded systems such as processors, sensors, and communi-
cation hardware to collect and exchange data. Projections
indicate that the global data collected by IoT devices will
reach 73.1 zettabytes by 2025 (Bojan, 2022). Advancements
in affordable computer chips and wireless networks have
enabled the realization of IoT technology, fostering unprece-
dented connectivity among devices. This technology has
facilitated the development of smart homes, smart cities, and
various intelligent automation systems. It is estimated that
approximately 125 billion devices will be interconnected by
2030 (Jenalea, 2017).

However, the proliferation of IoT devices has exposed
them to cyberattacks, as attackers exploit vulnerabilities to
execute various attacks when devices connect to the external
world. The Mirai botnet, a well-known example, demon-
strates the consequences of such attacks (Antonakakis,
April, Bailey, Bernhard, Bursztein, Cochran, Durumeric,
Halderman, Invernizzi, Kallitsis et al., 2017). To counter
these threats, integrating Artificial Intelligence (AI) with
IoT systems has emerged as a solution. By leveraging AI,
whether in a centralized or decentralized approach, mali-
cious activities can be detected and thwarted effectively.
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However, resource-constrained IoT devices typically have
limited hardware capabilities, including 32KB to 128KB
units of Random Access Memory (RAM) and a 256KB
to 512KB embedded flash memory footprint (Zandberg,
Schleiser, Acosta, Tschofenig and Baccelli, 2019). These
constraints pose challenges for deploying resource-intensive
AI models. Consequently, it is crucial to address security
challenges in IoT networks through effective and efficient
detection techniques.

Recent research has demonstrated the potential of AI-
based technologies, specifically Machine Learning (ML)
and Deep Neural Network (DNN) approaches, for cyberse-
curity monitoring (Merenda, Porcaro and Iero, 2020; HB,
Poornachandran, KP et al., 2018). DNN-based methods have
garnered particular interest due to their ability to detect
attacks on various targets, including IoT devices, endpoint
devices, and the cloud (Kshetri, 2021). However, a signifi-
cant limitation of DNN-based approaches is their substantial
computational resource requirements for constructing mod-
els capable of providing an improved threat detection system
with a multi-dimensional network security feature set (Ag-
garwal et al., 2018). Consequently, deploying such resource-
intensive models in environments with limited computing
resources, such as IoT, becomes challenging. This issue is
further exacerbated in Federated Learning (FL) contexts,
where on-device model learning facilitates collaborative
learning among edge devices without exposing their data to
the cloud or fog (Yang, Liu, Cheng, Kang, Chen and Yu,
2019). Additionally, DNN-based detection methods can be
vulnerable to adversarial samples, which pose a significant
security threat.
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To address these limitations and enhance the efficiency
and robustness of DNN-based IoT security monitoring, this
paper investigates the challenges associated with employ-
ing DNN methods in this context. The main aim of this
research is to create a Resource-Efficient Deep Neural Net-
work (REDNN) model that can effectively detect attacks on
IoT networks. The objective is to achieve a comparable or
improved level of accuracy compared to existing models
while maintaining a desired level of resource efficiency.
The study also focuses on evaluating the resilience of the
proposed REDNN method against adversarial attacks. Ad-
ditionally, the research aims to showcase the efficiency and
accuracy of REDNN in real-time attack detection within a
decentralized federated scenario. Specifically, we address
the following research questions:

RQ1: How can an existing DNN be trained to create a
REDNN model capable of detecting attacks on IoT networks
with comparable or improved accuracy compared to baseline
models, while also achieving a desired level of resource
efficiency? (sections 3.2 and 5.1).

RQ2: Is the proposed REDNN method robust against
adversarial attacks compared to baseline and other conven-
tional ML models? (sections 5.2 and 5.2.3).

RQ3: Does the resulting REDNN exhibit both efficiency
and accuracy in real-time detection of attacks on IoT net-
works within a decentralized federated scenario, showcasing
better or state-of-the-art performance? (section 5.3).

To address these research questions, this study intro-
duces the REDNN methodology, which optimizes DNN
models for resource efficiency while maintaining or im-
proving accuracy performance. Additionally, we explore the
resilience of REDNN against adversarial attacks and eval-
uate its performance in a decentralized federated scenario.
We conduct experiments using a Fully Connected Neural
Network (FCNN) and eleven benchmark datasets specific to
IoT environments. The experimental results demonstrate the
effectiveness of REDNN in terms of attack detection and
resource efficiency. Consequently, this paper presents the
following contributions:

1. Introducing the REDNN methodology as a solution
to the challenges associated with deploying DNN
technologies efficiently in IoT environments.

2. Evaluating the resilience of REDNN against adversar-
ial attacks, offering robust security measures for IoT
devices.

3. Introducing the Resource Efficient Federated Deep
Neural Network (REFDNN) methodology for training
DNN models in a federated IoT security monitoring
environment, providing accurate security monitoring
while ensuring data privacy and reducing memory
footprint and execution time.

To the best of our knowledge, this is the first attempt
to examine the capabilities of DNN models for resource
efficiency, robust detection, and on-device learning in the

context of IoT security, utilizing a large number of bench-
mark datasets generated by hostile attacks on commercial
IoT devices.

Throughout the paper, the term "resource-efficient" is
employed to describe models that exhibit reduced memory
consumption and require less time in comparison to their
baseline benchmarks. Hence the term is defined in relative
terms rather than absolute measurements.

The remaining sections of this paper are structured as
follows. Section 2 provides a thorough review of the related
literature. Section 3 outlines the proposed methodology and
describes the FL technique utilized, while Section 4 elabo-
rates on the evaluation process. The findings and analysis are
presented in Section 5. Finally, Section 6 provides conclud-
ing remarks and identifies avenues for future research. The
acronyms used throughout the paper are listed in Table 1.

2. Related Work
The following section presents a comprehensive review

of relevant studies that delve into the exploration of AI-based
detection algorithms employed for IoT security monitoring
with the aim of resolving security and privacy issues that
arise during the deployment of AI-based solutions in envi-
ronments with limited resources. Additionally, it investigates
contemporary FL approaches utilized in IoT environments
with the primary objective of addressing data privacy, secu-
rity, and resource efficiency concerns in realistic decentral-
ized IoT network environments.

2.1. AI Techniques for IoT Security Monitoring
The literature provides ample evidence of the widespread

use of AI techniques to address security challenges within
the IoT (Sánchez, Valero, Celdrán, Bovet, Pérez and Pérez,
2021). Elrawy, Awad and Hamed (2018) recommended the
development of ML and DNN-based intrusion detection
systems for IoT, which have shown significant potential in
the field of IoT security monitoring research. Hsu, Jong,
Chen and Jhe (2019) proposed a framework that utilizes
support vector machines (SVM) to monitor IoT network se-
curity by detecting anomalous behavior. The SVM approach
achieved a detection accuracy of 92.30% using simulated
IoT smart homes data. Similarly, (Lopez-Martin, Carro and
Sanchez-Esguevillas, 2020) proposed an IoT network traffic
forecasting technique using the stochastic Gradient Boosting
(GB) classifier, which exhibited superior performance in
detecting active connections compared to inactive traffic
flow. In addition, (Tang, Tang, Dai, Chen, Li and Rodrigues,
2020) enhanced the Adaboost algorithm to detect low-rate
Distributed Denial-of-Service (DDoS) attacks in an IoT
environment, achieving a detection rate of 97.06% using
Network Simulator Version 2 (NS2) for model performance
assessment. Furthermore, (Zhang, Krishnan, Pi, Kaur, Sri-
vastava, Hahn and Suresh, 2019) developed a DNN-based
framework to detect cyber-attacks in various Cyber-physical
Systems (CPSs). Finally, (Li, Liu, Wang, Zheng, Lv and Lv,
2022) explored the use of DNN for accurate classification
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Table 1
List of Acronyms.

Acronym Meaning
AI Artificial Intelligence

AIoT Artificial Intelligence of Things
BFDNN Baseline Federated Deep Neural Network
CPSs Cyber-physical Systems
CNN Convolutional Neural Network
DNN Deep Neural Network
DDoS Distributed Denial-of-Service
FCNN Fully Connected Neural Network
FedAvg Federated Averaging
FGSM Fast Gradient Sign Method

FL Federated Learning
GB Gradient Boosting
IoT Internet of Things

LSTM Long Short Term Memory
ML Machine Learning
NS2 Network Simulator Version 2
PGD Projected Gradient Descent
RAM Random Access Memory

REDNN Resource Efficient Deep Neural Network
REFDNN Resource Efficient Federated Deep Neural Network

SVM Support Vector Machine
TFLite TensorFlow Lite

WS Websocket

and analysis of IoT smart cities data, achieving a prediction
accuracy of 97.80%.

Several studies have investigated the use of DNN on
resource-constrained mobile devices for device-level appli-
cations. For instance, (Tang, Sun, Liu and Gaudiot, 2017)
conducted an investigation into the suitability of a compiler-
based platform for benchmarking DNN inference on mobile
devices. Meanwhile, (Iandola and Keutzer, 2017) focused on
minimizing the computational resources required for deploy-
ing DNN in such environments by proposing various pro-
cedures for creating a smaller DNN architecture. However,
their work lacked empirical evaluations. In contrast, (Shen,
Li, Zhao, Liu, Liang and Zhang, 2020) proposed a technique
for compressing CNN to enable structure learning in IoT
resource-constrained environments. Their approach demon-
strated promise on benchmark datasets such as CIFAR-
10 and Imagenet, but failed to consider memory usage
and lacked evaluation on IoT benchmark datasets. Simi-
larly, (Kodali, Hansen, Mulholland, Whatmough, Brooks
and Wei, 2017) utilized FCNN for classification tasks on
resource-limited devices. However, their approach may not
be scalable for constrained IoT devices due to the lack of con-
sideration for model complexity during FCNN architecture
selection.

Our paper proposes a novel approach that targets effec-
tive attack detection with resource minimization by reduc-
ing FCNN computational complexity. The method employs
pruning, simulated micro-batching, and parameter optimiza-
tion to regularize the resulting DNN model and reduce

memory and time requirements while increasing accuracy
performance. This approach distinguishes itself from ex-
isting proposals in the literature, which typically compress
DNN by quantizing weights and bias parameters. Overall,
this study aims to reduce computational complexity while
enhancing the accuracy of FCNN-based models for effective
attack detection in resource-constrained environments.

2.2. Adversarial Attacks Against AI
Adversarial attacks can significantly degrade the perfor-

mance of AI-based models used in IoT security monitoring
by exploiting vulnerabilities in the model. One such attack
is the data poisoning attack, where an attacker modifies the
training data by injecting poisonous instances to manipulate
the model’s learning process (Shafahi, Huang, Najibi, Su-
ciu, Studer, Dumitras and Goldstein, 2018). This can cause
the model to misclassify legitimate instances, resulting in
compromised security (Pitropakis, Panaousis, Giannetsos,
Anastasiadis and Loukas, 2019). In addition to poisoning at-
tacks, perturbation-based attacks such as Fast Gradient Sign
Method (FGSM), and Projected Gradient Descent (PGD)
(Kurakin, Goodfellow and Bengio, 2016), semantic (Hos-
seini, Xiao, Jaiswal and Poovendran, 2017), and random
noise (Athalye, Carlini and Wagner, 2018) attacks can be
used to generate new adversarial samples during the testing
phase.

The aforementioned perturbation methods employ a
white-box approach, assuming the adversary has full knowl-
edge of the cybersecurity monitoring model. Therefore, they
are commonly used in IoT security monitoring (Aloraini,
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Javed, Rana and Burnap, 2022). Pujari, Pacheco, Cherukuri
and Sun (2022) investigates the effectiveness of conventional
ML-based models against adversarial attacks crafted with
IoT network security datasets, while (Abou Khamis and
Matrawy, 2020) examine the robustness of DNN in similar
scenarios, but only considering adversarial attacks generated
using IP-based datasets. However, a robust and efficient
classification model can withstand a wide range of adver-
sarial perturbations achieved by training the model with
perturbed samples to enhance regularization for resilience
testing (Tramèr, Kurakin, Papernot, Goodfellow, Boneh
and McDaniel, 2017). This paper proposes an approach
to counter IoT security attacks without using perturbed
samples during training. The goal is to leverage the opti-
mized REDNN model’s ability to combat adversarial attacks
effectively and efficiently. Furthermore, we investigate the
impact of implementing 16 bit Full Precision (FP16) on
the FCNN and REDNN model’s robustness to evaluate the
feasibility of using a lightweight and robust DNN model in
a resource-constrained IoT environment.

2.3. Federated Learning (FL) in IoT Environment
In the domain of IoT security monitoring, FL is gaining

popularity. Preuveneers, Rimmer, Tsingenopoulos, Spooren,
Joosen and Ilie-Zudor (2018) investigated FL applications
for intrusion detection in IoT networks, while (Lim, Luong,
Hoang, Jiao, Liang, Yang, Niyato and Miao, 2020) and
(Imteaj, Thakker, Wang, Li and Amini, 2021) identified
open research problems on FL for resource-constrained IoT
devices. Additionally, (Nguyen, Marchal, Miettinen, Ferei-
dooni, Asokan and Sadeghi, 2019) proposed a signature-
based FL approach to detect attacks on IoT devices, and (Liu,
Kumar, Xiong, Lim, Kang and Niyato, 2020) leveraged FL
capabilities to detect attacks on Industrial IoT (IIoT) devices
by training a DNN model in a federated manner using
a labeled dataset. The authors integrated CNN and Long
Short-Term Memory (LSTM) for better model convergence.
However, the MNIST and CIFAR-10 datasets utilized for
estimating the model parameter gradients are non-IoT data.
In contrast, (Jiang, Wang, Valls, Ko, Lee, Leung and Tassiu-
las, 2019) employed model pruning for efficient FL training
on edge devices, utilizing an image dataset. Meanwhile,
(Bonawitz, Eichner, Grieskamp, Huba, Ingerman, Ivanov,
Kiddon, Konečnỳ, Mazzocchi, McMahan et al., 2019) pro-
posed a TensorFlow-based FL framework for mobile de-
vices, utilizing Android mobile devices for evaluation. Ad-
ditionally, (Popoola, Ande, Adebisi, Gui, Hammoudeh and
Jogunola, 2021) utilized FL to detect a zero-day attack in
an IoT network environment, taking advantage of FL data
privacy without considering resource limitations. In their
investigations, they used the N-BaIoT (Meidan, Bohadana,
Mathov, Mirsky, Shabtai, Breitenbacher and Elovici, 2018)
device-centric dataset.

However, existing proposals in the literature do not take
into account the optimization of FL training specifically for
reducing memory consumption on IoT networks. This paper
addresses this limitation in Section 3.4 by optimizing the

federated training process using techniques such as pruning,
micro-batching, and parameter regularization, which are
specifically tailored to enhance resource efficiency in the
context of FL training on IoT networks.

3. Methodology
To validate the viability of the proposed approach, an

evaluation was conducted using a Fully Connected Neural
Network (FCNN) on multiple IoT benchmark datasets. The
optimization algorithm of the FCNN was leveraged to gen-
erate the REDNN.

3.1. Fully Connected Neural Network (FCNN)
A FCNN is a type of neural network consisting of

multiple layers of neurons that process input data. Each
neuron computes an output based on its activation function
and input values, and these neurons are connected in a non-
linear pattern of layers using weights and bias parameters.
The weights and biases serve as information storage units
and control the flow of operations within the network. In
this study, we used Algorithm 1 to obtain the optimized
FCNN model (𝑏) as a baseline for comparison. The BASE
function in line 1 of Algorithm 1 corresponds to mini-
batch training with the gradient descent algorithm, which
minimizes the objective loss function (𝐿) in Equation 1,
specifically the negative log-likelihood (cross-entropy), to
learn from the training set (𝑑) and map unseen samples.
The resulting FCNN approach is a supervised neural net-
work classifier, 𝑛, which takes an input 𝑑 and outputs a
probability class vector 𝑌 . The desired output 𝑌 is rounded
to the closest integer using a specified threshold value 𝑡 as in
Equation 2, representing either a benign (1) or an attack (0)
traffic instance.

Algorithm 1 FCNN training
Input: Labelled data 𝑑 , Number of iteration  , Batch size 
Output: Baseline model 𝑏

1: function BASE(𝑑[ ]) ⊳ Training baseline model
2: for 𝑖 = 1 to  ; do
3: Mini-batch 𝐵 = {(𝑥1, 𝑦1), ..., (𝑥𝑚, 𝑦𝑚} ⊂ 𝑑 ⊳ Size 
4: 𝐹𝑝(𝐵) ⊳ Forward propagation
5: 𝑖 ← 𝐿 ⊳ 𝐿 = Base loss
6: 𝐵𝑝(B) ⊳ Backward propagation
7: Compute gradients for parameters update
8: Estimate 𝑚𝑖 ⊳ Execution memory at epoch 𝑖
9: Estimate 𝑡𝑖 ⊳ Execution time at epoch 𝑖

10: 𝑏 = Trained model that estimate 𝑖, 𝑡𝑖, 𝑚𝑖
11: end for
12: return (𝑏, 𝑡𝑖, 𝑚𝑖, 𝑖)
13: end function

𝐿 = 1
𝑚

𝑚
∑

𝑖=1
−(𝑌𝑖 ∗ log(𝑌𝑖)+ (1−𝑌𝑖) ∗ log (1 − (𝑌𝑖)) (1)

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 =
{

0 if 𝑌 ≤ 𝑡
1 if 𝑌 > 𝑡

(2)

First Author et al.: Preprint submitted to Elsevier Page 4 of 18



Short Title of the Article

3.2. Robust Effective and Resource Efficient DNN
(REDNN)

As highlighted in section 3.1, training a resource-efficient
DNN model can be an intricate task, particularly in the con-
text of IoT security monitoring (Abiodun, Jantan, Omolara,
Dada, Mohamed and Arshad, 2018). The intricacy of this
task is due to the numerous rounds of training iterations
and the requisite DNN model parameters needed to design
and build an optimal network architecture. This complexity
is compounded when building an efficient threat detection
system with supervised DNN for cybersecurity monitoring,
especially when dealing with multidimensional datasets. To
address this issue, the baseline model 𝑏 in Algorithm 1 is
used to obtain its resource-efficient counterpart (REDNN).
The training procedure, in Algorithm 2, optimizes a function
using 𝑑 to obtain the efficient 𝑀𝑒 equivalent to the REDNN
model. To achieve this, the optimization procedure utilizes
micro-batching (Oyama, Ben-Nun, Hoefler and Matsuoka,
2018; Huang, Cheng, Bapna, Firat, Chen, Chen, Lee, Ngiam,
Le, Wu et al., 2019) for efficient model training that is
suitable for on-device learning as well.

The function procedure requires 𝑑 in mini-batch and
micro-batch forms and iterates  times repeatedly to return
the efficient 𝑀𝑒 representing the REDNN model. The op-
timization process utilizes a penalty function (weight elim-
ination) (Han, Pool, Tran and Dally, 2015) represented by
𝐸 in Equation 3 with a weight threshold parameter 𝑤0. The
expression in line 7 of Algorithm 2 is responsible for pruning
the network model weights to reduce its architectural com-
plexity. This procedure is useful in distinguishing the sets
of relevant weights that can enable efficient model learning
from the irrelevant ones, particularly the insignificant large
weights of the baseline 𝑛 model.

In the process, weight values 𝑊 greater than 𝑤0 can
yield a complexity cost closer to 1 and require regularization
using the penalty parameter 𝜆. This is important to reduce
the complexity of the model to enable faster training. As
we are more concerned with a less complex, efficient, and
effective model building that can retain its performance, we
consider the set of parameters that can give a training error
𝑗 lower than 𝑡. The most important parameters are the 𝑤0
and 𝜆, which are the threshold that controls the learning of
the model while reducing its architecture.

In line 10 of Algorithm 2, the regularization error 𝑗 is
compared with the initialized error 𝑡 before regularization.
This is to examine the convergence rate of the model during
each epoch iteration. Based on the outcomes of line 10,
relaxation of the 𝜆 value using the △𝜆 occurs in line 11.
After these steps, the memory footprint and execution time
are estimated in lines 12 and 13 and compared with the
initialized values from line 6 in line 14. This process aims
to find a model architecture with a faster convergence rate
and minimal memory and time requirements for training
and testing. Due to the regularization in lines 10 and 11 of
Algorithm 2, the returned REDNN model is less complex.

Algorithm 2 Proposed algorithm to obtain REDNN
Input: Penalty term 𝜆, (𝑑 ,  and 𝐵 in Alg. 1)
Output: Efficient model 𝑒

1: function EFFICIENT(𝑑[ ])
2: for 𝑗 = 1 to  ; do
3: Micro-batch 𝑀 = {(𝑥1, 𝑦1), ..., (𝑥𝑚, 𝑦𝑚)} ⊂ 𝐵
4: 𝐹𝑝(𝑀) ⊳ Forward propagation
5: 𝑡 = 𝐿 ⊳ L = Initial loss
6: 𝑚𝑡, 𝑡𝑡 ⊳ 𝑚𝑡, 𝑡𝑡 estimated memory and time using 𝑡

7: 𝑗 ← 𝑡 + 𝜆
∑𝑊

𝑗=1
(𝑤2

𝑗 ∕𝑤
2
0)

(1+𝑤2
𝑗 ∕𝑤

2
0)

8: 𝐵𝑝(M) ⊳ Backward propagation
9: Compute gradients for parameters update

10: if (𝑗 ≤ 𝑡) then
11: 𝜆 = 𝜆 +△𝜆
12: Estimate 𝑚𝑗 ⊳ Execution memory at epoch 𝑗
13: Estimate 𝑡𝑗 ⊳ Execution time at epoch 𝑗
14: if ((𝑚𝑗 < 𝑚𝑡) ∧ (𝑡𝑗 < 𝑡𝑡)) then
15: 𝑚𝑡 = 𝑚𝑗 ⊳ 𝑚𝑡 = Efficient memory
16: 𝑡𝑡 = 𝑡𝑗 ⊳ 𝑡𝑡 = Efficient time
17: 𝑒 = Trained model that estimate 𝑗 , 𝑚𝑡, 𝑡𝑡
18: end if
19: end if
20: end for
21: return (𝑒, 𝑗 , 𝑚𝑡, 𝑡𝑡)
22: end function

𝐸 = 𝜆
𝑊
∑

𝑗=1

(𝑤2
𝑗∕𝑤

2
0)

(1 +𝑤2
𝑗∕𝑤

2
0)

(3)

3.3. Federated Deep Neural Network (BFDNN)
Given the widespread adoption of FL, particularly in

cybersecurity monitoring, its exploration in the context of
IoT security monitoring can be beneficial. FL’s ability to
preserve on-device training data can be useful in proposing
AI-based security mechanisms for resource-constrained IoT
devices. To this end, the baseline Federated Deep Neural
Network (BFDNN) training procedure is illustrated in Figure
1, which utilizes the function BASE to train a baseline model
using stochastic gradient descent in FL settings. Algorithm
3 describes the details of this procedure, where each client
performs iterative rounds of gradient descent weights for
model aggregation, and Device UPDATE distributes a mas-
ter model to each client’s subset at each communication
round. Using the proposed method in algorithm 4, resource
efficient version of this standard FL approach was obtained.

3.4. Resource Efficient Federated Deep Neural
Network (REFDNN)

Training a resource-efficient DNN model for FL tasks
can be a challenging task, especially in an IoT network
environment. This is due to the FL communication rounds
and DNN model parameters requirements in building the
desirable network architecture (He, Mushtaq, Ding and
Avestimehr, 2022). The complexity of such an approach
increases with multidimensional datasets. A FedAvg core
model (BFDNN) was examined with FCNN and CNN model
variations against some IoT and non-IoT benchmark datasets
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Figure 1: Baseline federated learning procedure.

Algorithm 3 BFDNN training on each distributed node
Input: Labelled data 𝑡𝑟, Iteration number  , Batch size 
Output: Baseline model 𝑛

1: function BASE(𝑡𝑟[ ]) ⊳ Training baseline model
2: for 𝑖 = 1 to  do ⊳ for each local epoch iterations
3: Mini-batch 𝐵 = {(𝑥1, 𝑦1), ..., (𝑥𝑚, 𝑦𝑚 )} ⊂ 𝐷𝑡𝑟 ⊳

Mini-batch size 𝑆𝑚 ← |𝐷𝑡𝑟|∕∕
4: 𝐹𝑝(𝐵) ⊳ Forward propagation with 𝐵
5: 𝑖 ← 𝐿 ⊳ 𝐿 = Base loss
6: 𝐵𝑝(B) ⊳ Backward propagation
7: function DEVICE UPDATE((𝑑,𝑤)) ⊳ Run on device 𝑑
8: 𝐵𝑠 ← (Split data 𝐵 into batches of size 𝑆𝑚) ⊳ 𝑆𝑚

is a local Mini-batch size
9: for batch 𝑏 ∈ 𝐵𝑠 do

10: 𝑤 ← local weights update ⊳ device local
weights update computation

11: Estimate 𝑚𝑖 ⊳ Execution memory at epoch 𝑖
12: Estimate 𝑡𝑖 ⊳ Execution time at epoch 𝑖
13: 𝑛 = Trained model that estimate 𝑖, 𝑚𝑖, 𝑡𝑖
14: end for
15: end function
16: end for
17: return 𝑤 to server in Alg. 5 ⊳ Calls to coordinating

server in Alg. 5 for weights averaging
18: return (𝑛, 𝑖, 𝑚𝑖, 𝑡𝑖)
19: end function

and its optimization algorithm was exploited to obtain
REFDNN. This optimized training procedure is illustrated
in Algorithm 4. For better performance, the set of model
parameters that can produce a lower error based on line
7 of Algorithm 4 was utilized. The function procedure in
Algorithm 4 is responsible for computing and updating client
device weights at each local epoch iteration before sending
them to the coordinating server. In line 13 of Algorithm
4, the device model error is compared with the initialized
error before model regularization in line 14. Following this
stage, computational memory footprints and execution time
were estimated in lines 15 and 16. Subsequently, in line
17, these estimates were compared to the initialized values
mentioned in line 6 in order to determine the minimal mem-
ory constraint generated by the client device model. Device
models with minimal resource consumption are returned to
the coordinating server in Algorithm 5 together with their
weights for model averaging. Then, the coordinating server
can update the client model weights in a federated setting
and perform weight averaging while returning the updated
averaged weights for model aggregation. This process can
reduce the client’s communication time and computational
complexity while building the resource-efficient aggregate
model of REFDNN. The memory and execution time sav-
ings for each client device at each federated round and
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Algorithm 4 Proposed REFDNN training on each dis-
tributed node

Input: Penalty term 𝜆, (𝑡𝑟,  , 𝐵, 𝐿 and 𝑆𝑚 in Alg. 3)
Output: Efficient model 𝑒

1: function EFFICIENT(𝑡𝑟[ ])
2: for 𝑗 = 1 to  ; do
3: Micro-batch 𝑀 = {(𝑥1, 𝑦1), ..., (𝑥𝑚, 𝑦𝑚)} ⊂ 𝐵 ⊳

𝐵 ⊂ 𝑡𝑟
4: 𝐹𝑝(𝑀) ⊳ Forward propagation with 𝑀
5: 𝑡 = 𝐿 ⊳ Initialized loss
6: Estimate 𝑚𝑡, 𝑡𝑡 Initialized memory and time based on

𝑡

7: 𝑗 ← 𝑡 + 𝜆
∑𝑊

𝑗=1
(𝑤2

𝑗 ∕𝑤
2
0)

(1+𝑤2
𝑗 ∕𝑤

2
0)

8: 𝐵𝑝(M) ⊳ Backward propagation with 𝑀
9: function DEVICE UPDATE((𝑑)) ⊳ Run on device 𝑑

10: 𝑀𝑠 ← (Split data 𝑀 into batches of size 𝑆𝑚)
11: for batch 𝑏 ∈ 𝑀𝑠 do
12: 𝑤 ← local weights update ⊳ device local

weights update computation
13: if (𝑗 ≤ 𝑡) then
14: 𝜆 = 𝜆 +△𝜆
15: Estimate 𝑚𝑗 ⊳ Execution memory at epoch

𝑗
16: Estimate 𝑡𝑗 ⊳ Execution time at epoch 𝑗
17: if ((𝑚𝑗 < 𝑚𝑡) ∧ (𝑡𝑗 < 𝑡𝑡)) then
18: 𝑚𝑡 = 𝑚𝑗 ⊳ 𝑚𝑡 = Efficient memory
19: 𝑡𝑡 = 𝑡𝑗 ⊳ 𝑡𝑡 = Efficient time
20: 𝑒 = Trained model that estimate

𝑗 , 𝑚𝑡, 𝑡𝑡
21: end if
22: end if
23: end for
24: end function
25: end for
26: return 𝑤 to server in Alg. 5 ⊳ Calls to Alg. 5 for model

weights averaging
27: return (𝑒, 𝑗 , 𝑚𝑡, 𝑡𝑡)
28: end function

accumulating all these savings can lead to significant savings
when the model is converged.

4. Evaluation
This section outlines the evaluation criteria for the

FCNN and REDNN models and provides information on the
datasets used to create them. The datasets used in this study
include N-BaIoT (Meidan et al., 2018), Kitsune (Mirsky,
Doitshman, Elovici and Shabtai, 2018), and WUSTL (Teix-
eira, Salman, Zolanvari, Jain, Meskin and Samaka, 2018),
each of which is briefly described.

4.1. Utilized Datasets
The N-BaIoT dataset comprises authentic data samples

obtained from nine commercial IoT devices that demonstrate
various botnet and benign network traffic flows (Meidan
et al., 2018). These devices include (i) Danmini Doorbell,
(ii) Ecoobee Thermostat, (iii) Ennio Doorbell, (iv) Philips
B120N10, (v) Provision PT-737E, (vi) Provision PT-838,

Algorithm 5 Coordination Procedure for Alg. 3 and 4
Server Executes:

1: function SERVER WEIGHTS UPDATE
2: initialize weight 𝑤0;
3: initialized 𝑗 = 1
4: while 𝑗 ≤ 𝑓 do ⊳ 𝑓 is the number of federated round
5: 𝑚 ← 𝑚𝑎𝑥(𝐶.𝐾, 1) ⊳ 𝐶.𝐾 fraction of clients 𝐾
6: 𝑅← random set of 𝑆𝑗 ⊳ 𝑆𝑗 ← random set of 𝑓 clients
7: for 𝑘 ∈ 𝑅 in parallel do ⊳ 𝑘 client index, a selected

clients from 𝑅
8: Weight update for each client 𝑘 ⊳ Federated model

weight update for Alg. 3 or 4
9: end for

10: Averaged weights update ⊳ Average weights update
based on client 𝐾 weights

11: 𝑤𝑗+1 ←
∑𝐾

𝑘=1
𝑓𝑘
𝑓
𝑤𝑘

𝑗+1 ⊳ 𝑓𝐾 = client 𝑘 sample size, 𝑓
total sample size

12: 𝑗 = 𝑗 + 1
13: end while
14: return Averaged updated weights
15: end function

(vii) Samsung SNH-1011-N, (viii) SimpleHome XCS-1002-
WHT, and (ix) SimpleHome XCS-1003-WHT. These de-
vices have either been affected by BASHLITE or Mirai
attacks, or have been operating normally. Each device has
extensive records of attacks and regular instances that com-
prise 115 feature vectors. Consequently, the N-BaIoT dataset
is an ideal benchmark for developing IoT network intrusion
detection systems. The FCNN and REDNN models were
trained and tested utilizing device data from N-BaIoT.

The Kitsune dataset contains various network traffic
captured in an IoT setting (Mirsky et al., 2018). The dataset
comprises attacks that breach confidentiality, integrity, and
authenticity, and these attacks are categorized into (i) recon-
naissance attacks, (ii) DoS attacks, and (iii) Mirai attacks.
The subset of the dataset used to evaluate our models com-
prises 764,137 instances of Mirai and normal traffic. The
dataset has 115 features and a normal distribution of 121,621
raw traffic data.

WUSTL dataset consists of multiple reconnaissance at-
tacks with normal traffic that emulate real-world industrial
IoT systems for CPSs security research (Teixeira et al.,
2018). This dataset is useful for investigating the feasibility
of ML algorithms for detecting various real-world attacks.
The raw data consists of 7,037,983 data samples with seven
(7) features. It comprised 93.30% benign records with 6.7%
attacks data records.

4.2. Data Preprocessing
The datasets were carefully selected for frequent model

training and thorough evaluation. These datasets provide
numerical traffic flow information, which we utilized in
our investigations. Each dataset was split into training and
testing samples, with 80% allocated for training and 20% for
testing purposes. The data input vectors underwent normal-
ization using unity-based normalization and feature scaling.
In a dataset comprising 𝑛 data features, namely 𝑥1, 𝑥2, ..., 𝑥𝑛,
normalization was performed using the formula specified
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in Equation 4. The normalized value of the 𝑖𝑡ℎ feature
is denoted by 𝑥𝑖′, while 𝑥𝑖 represents its original value.
Additionally, 𝑚𝑖𝑛𝑥𝑖 and 𝑚𝑎𝑥𝑥𝑖 represent the minimum and
maximum values of the 𝑖𝑡ℎ feature across the entire dataset,
respectively.

𝑥𝑖
′ =

𝑥𝑖 − 𝑚𝑖𝑛𝑥𝑖
𝑚𝑎𝑥𝑥𝑖 − 𝑚𝑖𝑛𝑥𝑖

(4)

Furthermore, in addition to the datasets employed in
section 4.1 and the preprocessing procedures outlined in
section 4.2 for technique implementation, we incorporated
the MNIST dataset into our study. The MNIST dataset is an
appropriate benchmark for evaluating the model’s learning
capacity over non-IoT cybersecurity datasets. This evalua-
tion is crucial to investigate whether the proposed model
can efficiently detect complex patterns in other datasets. The
MNIST handwritten digits dataset is a subset of the dataset
from the National Institute of Standards and Technology
(Baldominos, Saez and Isasi, 2019). It comprises 60,000
training digit samples and 10,000 testing digits, which are
size-normalized and consist of 28*28 images with 256 grey
levels.

4.3. Experimental Setup
We employed Python version 3.76 to construct each

model on a desktop computer with Intel Xeon E5-2695
CPUs, containing 4 cores and running at 2.10 GHz, with
16.0 GB of installed memory. We utilized the integrated
memory usage to profile the model’s memory consump-
tion (Pedregosa and Gervais, 2019). During training, the
parameters remain constant to ensure a fair comparison.
This practice is applied to the baseline FCNN model, the
optimized REDNN model, and the adversarial process.

4.4. Implementation Details
4.4.1. FCNN and REDNN Models Design

To build the generic sequential (dense) FCNN and
REDNN models for each dataset, we employed the scientific
NumPy Python module (Johansson, 2018). This module
enables the creation of a comprehensive DNN model without
any library, providing insights into the underlying concepts
and internal operations within the network. Each model con-
sists of an input layer, four hidden layers, and an output layer,
as shown in Table 2. To determine the topology selection
for each dataset, we utilized the best-run Hyperas modules
(Komer, Bergstra and Eliasmith, 2019). This allowed us
to choose the most optimal topology configurations for
each dataset, which minimizes operations while maximizing
performance metrics. These requirements are essential for
binary classification tasks. The architectural settings remain
consistent for evaluating both the baseline FCNN and the
proposed REDNN model. Table 2 provides a detailed de-
scription of the model topology for each tested dataset.

During training, a mini-batch gradient descent optimizer
with momentum was utilized. The weight and bias param-
eters were randomly initialized within the range of [0,1].

For both the baseline and optimized training procedures, a
learning rate of 𝑙𝑟 = 0.001 was used across each dataset,
except for the Ecobee and Ennio devices data, which had
a different topology and used a learning rate of 𝑙𝑟 = 0.0001.
Both FCNN and REDNN models used a momentum value
of 0.001. The REDNN model was built using 4 micro-
batches, with values of 0.01 for 𝜆, △𝜆, and threshold 𝑤0
(Bosman, Engelbrecht and Helbig, 2018). The models were
trained with 128 batches within 100 epochs for accuracy
to converge. The loss function was calculated using binary
cross-entropy, with ReLu (Ide and Kurita, 2017) used as
the activation function in the input layer and Sigmoid for
the output layer. To efficiently select hyperparameters, an
automatic optimizer search module (Pumperla, 2018) was
employed. This technique required a range of values for each
hyperparameter to be tuned to return an efficient combi-
nation. The Numpy.float16 module was used to implement
FP16 for the baseline and optimized models.

We employed TensorFlow Core version (v2.8.0) David,
Duke, Jain, Janapa Reddi, Jeffries, Li, Kreeger, Nappier,
Natraj, Wang et al. (2021) to build Keras and TensorFlow
DNN models. The TensorFlow Lite (TFLite) converter mod-
ule is used to create the TFLite DNN model. To ensure
a fair comparison, Numpy (FCNN and REDNN) is also
used, and both the Keras and TFLite models are trained
in 128 mini-batches using stochastic gradient descent, at
100 epochs iterations. Scikit-learn (Pedregosa, Varoquaux,
Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer,
Weiss, Dubourg et al., 2011) ML python framework is used
for the linear SVM, Adaboost, and GB models. The study
codes are publicly available at (Zakariyya, 2021) for explo-
ration and reproduction purposes. The GitHub repository
(Zakariyya, 2021) includes both the Jupyter notebook file
and the Python script for the TFLite experimentation.

4.4.2. Adversarial Attacks Implementation
To generate adversarial samples of FGSM and PGD

(Kurakin et al., 2016), we utilized Equation 6 along with
the cleverhans documentation (Papernot, Faghri, Carlini,
Goodfellow, Feinman, Kurakin, Xie, Sharma, Brown, Roy
et al., 2020). The FGSM involves a one-step gradient update
towards the direction of the gradient sign (see Equation 5).
The notation 𝑋𝑜 represents the original data, 𝜖 represents
the adjustment step of the original data, 𝑌 is the label,
𝜃 represents the model parameters, ∇𝑋𝑜 is the backward
propagation step for gradient update, and 𝐽 (𝑙, 𝑋𝑜, 𝑌 )) is the
loss function used to train the network.

In the PGD attacking method, an initialized noise (−𝜖, 𝜖)
based on the uniform distribution of 𝜖 is added to the original
data sample before generating and clipping the adversarial
samples repeatedly. Then, Equation 6 is iterated 𝑡 times to
generate the perturbed samples, where Π𝑋𝑜 + 𝑆 represents
the projection of the perturbation set 𝑋𝑜 + 𝑆 using the
projection operator Π, 𝛼 is the gradient step size, and 𝐽 is
the loss function.

𝑋𝑓𝑔𝑠𝑚 = 𝑋𝑜 + 𝜖 ∗ 𝑠𝑖𝑔𝑛(∇𝑋𝑜𝐽 (𝜃,𝑋𝑜, 𝑌 )) (5)
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Table 2
Topology and distribution of normal and attack for each device data.

Device Normal Attack Inputs Output Topology
Danmini Doorbell 49,548 968,750 115 1 128-128-128-128

Ecobee Thermostat 13,113 822,763 115 1 32-64-64-16
Ennio Doorbell 39,100 316,400 115 1 64-128-128-64

Philips B120N10 175,240 923,437 115 1 128-128-128-128
Provision PT-737E 62,154 766,106 115 1 128-128-128-128
Provision PT-838 98,514 729,862 115 1 128-128-128-128

Samsung SNH-1011-N 52,150 323,072 115 1 128-128-128-128
SH XCS-1002-WHT 46,585 816,471 115 1 128-128-128-128
SH XCS-1003-WHT 19,528 831,298 115 1 128-128-128-128

Kitsune 121,621 642,516 115 1 128-128-128-128
Wustl 6,566,438 471,545 6 1 128-128-128-128

𝑋𝑝 = 𝑋𝑡+1 = Π𝑋𝑜+𝑆 (𝑋𝑡+𝛼 ∗ 𝑠𝑖𝑔𝑛((∇𝑋𝑜𝐽 (𝜃,𝑋𝑜, 𝑌 ))) (6)

The semantic attack (Hosseini et al., 2017) method was
generated by inverting the normalized data 𝑋 = 𝑥𝑖, 𝑖 =
1, 2, ...𝑛 within [0,1]. For random noise, the noise data are
generated based on the uniform distribution of the original
data. For normalized data within [0,1], the introduced noise
will be in the form of  (0, 1).

Another perturbation procedure considered in this paper
is data poisoning attacks described in Algorithm 6. In this
scenario, the data is poisoned by randomly flipping the
labels (based on a random split of data features). The flip-
ping procedure considers label modification for attack (0s)
and benign (1s) samples. This is the all-label modification
technique that changes 1s to 0s and 0s to 1s, respectively.
It is a non-targeted form of adversarial attack method that
concentrates on both the benign and attack traffic classes.
The rationale is to mislead the model by lowering its ac-
curacy value to make it a weaker model. It achieved this
by injecting modified labels for each data feature while
training the model. The trained model used testing data with
correctly assigned labels for validation. We generate this
form of attack by considering the training dataset. During
implementation, the data samples are randomized before
splitting to have a fair proportion of attack and benign
samples. All labels of the randomized samples are flipped
based on the specified poisoning proportion, and to increase
the chance of the success rate, we consider the rate to be
from 0% - 50% by 5% increment. Each tested perturbation
method used the preprocessed datasets described in section
4.1. These datasets are used to examine the success rate of
each perturbation method to investigate REDNN resilience.

4.4.3. Virtual Workers FL Setup
The virtual on-device training utilized PyTorch version

1.4.0 (Paszke, Gross, Massa, Lerer, Bradbury, Chanan,
Killeen, Lin, Gimelshein, Antiga et al., 2019) and PySyft
version 0.2.9 (Ryffel, Trask, Dahl, Wagner, Mancuso, Rueck-
ert and Passerat-Palmbach, 2018) frameworks. The PySyft
framework simplified the creation of virtual workers, which
were used to simulate the FL scenario for the BFDNN and
the proposed REFDNN. These workers emulate real virtual

Algorithm 6 Label modification perturbation procedure
Input:  , , 𝑛, 𝑝 = data, labels, data length, percent
Output: Poisoned data { ′, ′}

1: for 𝑡 = 1 𝑡𝑜 𝑛; do
2: if 𝑡 ∈ (1, 𝑝 ∗ 𝑛) then ⊳ Random samples selection as the

dataset was randomized
3: 𝑦𝑡 = 1 − 𝑦𝑡 ⊳ Labels 0 and 1 modification
4:  ′ = {(𝑥𝑡, 𝑦𝑡)}, 𝑡 = 1… 𝑛 ⊳ Integrating labels
5: end if
6: end for
7: return { ′, ′}

machines and can run as a separate process within the same
Python program with their dataset. The federation training
procedure considered four clients virtual workers and a
coordinating server worker receiving computational updates
from each virtual client worker model. Each federated client
model comprised an input layer, four hidden layers, and an
output layer. The topology selection against each dataset
utilized the method proposed by (Komer et al., 2019) to
minimize operations and improve performance metrics. The
experimental settings were appropriate for binary classi-
fication, as indicated by the parameter tuning technique
employed by (Komer et al., 2019). The overall architectural
settings remained identical for evaluating the BFDNN and
the proposed REFDNN technique.

4.4.4. Testbed FL Setup
In order to assess the efficient federated communication

of the REFDNN against BFDNN in a testbed setting, we
utilized the PySyft version 0.2.9 (Ryffel et al., 2018) python
framework over a network (see Figure 2 with a client and
server-class connected via a WebSocket (WS). As PyTorch is
a compatible library for PySyft, we employed it to develop an
edge computing FL training scenario suitable for resource-
constrained devices. The environmental settings replicated
the client-server communication scenario in a distributed
manner, thereby enabling the creation of realistic testbed
settings. To build this network, we employ 4 Gigabyte Brix(
GB-BXBT-2807) mini PCs and a laptop as shown in Figure
2. The personal laptop served as the coordinating server in
a wireless network, emulating low-frequency connections.
The server was responsible for aggregating and distributing
model weights to clients. The client devices in Algorithms 3
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Figure 2: BFDNN and REFDNN model training testbed with gigabyte devices.

and 4 were responsible for locally training the model using
the server model weights on the client’s dataset and returning
client weights to the server. Therefore, the communication
workload was higher at the client-side containing the edge
devices than the server machine. The installed Operating
System (OS) on GB-BXBT-2807 clients was Ubuntu version
20.04.4 LTS. Each client contained an installation of the
PySyft framework and its dependencies. The Federated net-
work testbed implementation codes are publicly accessible
(Zakariyya, 2022).

To assess the simulated runtime and real execution time
of both BFDNN and REFDNN, we conducted experiments
involving four workers (Alice, Bob, Charlie, and Jane, as
illustrated in Figure 2), each with their distributed training
data. To ensure optimal model convergence, we employed a
federated communication round consisting of 50 iterations
with two epochs, using a mini-batch size of 64. We selected
a test batch sample size of 1000 with a learning rate of 0.01
to facilitate effective FedAvg SGD training. The real-time
models used for each federated client in Algorithm 3 and
4 featured an input layer and four identical hidden layers
(128-128-128-128), along with an output layer, as appropri-
ate. This architecture was chosen to promote efficient and
effective model convergence.

To evaluate the effectiveness and generalizability of
REFDNN, we also implemented a CNN DNN variant in re-
alistic settings, with clients using the MNIST image dataset
(Deng, 2012). This CNN architecture comprised two convo-
lutional layers (Conv-2D). The first 2D convolutional layer
required one input to output 20 convolutional features, using
a 5 square kernel (1, 20, 5, 1). The second 2D convolutional
layer required 20 input layers to output 50 convolutional fea-
tures, using a 3 square kernel (20, 50, 5, 1). The architecture
in the first real-time layer was (800 (4*4*50), 128), with
(128, 10) in the second real-time layer. Max-Pool in 2D was
run over the input image without dropout utilization. The
fully connected hidden layers in the convolutional architec-
ture were similar to the version described in Table 2.

5. Results and Discussion
This section presents an overview of the experimental

results. It provides an in-depth evaluation comparison be-
tween the REDNN and optimized FCNN models, with a
focus on resource efficiency, effectiveness, and adversarial
robustness across datasets. Furthermore, it elaborates on
the evaluation comparison between REFDNN and BFDNN
federated models in an IoT environment.

5.1. REDNN Model Effectiveness and Resource
Efficiency

To assess the effectiveness and resource efficiency of
the models, Table 3 presents the measured testing results of
eleven IoT datasets run with both the FCNN and REDNN
models. In each case, the models’ testing memory foot-
print is profiled in megabytes (MB). As anticipated, the
REDNN model demonstrated a non-accuracy degradation
performance while consuming a minimal memory footprint.
Specifically, it can process the Wustl and Ennio Doorbell
datasets with 98.84% and 77.63% memory savings, respec-
tively, compared to the baseline FCNN model. These re-
source optimizations position the REDNN model as a pre-
ferred option for IoT security monitoring, as they suggest the
potential to reduce computational resources without com-
promising accuracy. Additionally, the findings indicate that
deploying the model in a resource-constrained environment
is feasible.

Table 4 provides a detailed comparison of REDNN’s
performance evaluation as implemented in various state-of-
the-art technology frameworks (libraries). This comparison
highlights the potential of REDNN in saving resources
across different experimental platforms. During training,
REDNN demonstrates efficient performance with better
memory footprint and time savings for each data record.
Specifically, it saves 99.86% and 99.99% of training time and
memory footprint, respectively, compared to the baseline
model trained with Keras, as computed based on the reported
values in columns Train time (((0.0196∕13.189) ∗ 100) −
100) and Train mem (((0.1388∕3127.5) ∗ 100) − 100)
from Table 4. In comparison with the converted FCNN
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Table 3
Testing memory footprint (cumulative).

Dataset Model Mem Mem Test
(MB) save (%) acc (%)

Danmini Doorbell FCNN 3.742 N/A 95.11
REDNN 1.555 58.44 95.11

Ecobee Thermostat FCNN 2.804 N/A 93.36
REDNN 1.277 54.46 93.36

Ennio Doorbell FCNN 2.410 N/A 88.94
REDNN 0.539 77.63 88.94

Philips B120N10 FCNN 3.738 N/A 84.08
REDNN 1.731 53.71 84.08

Provision PT-838 FCNN 3.031 N/A 88.07
REDNN 1.266 58.23 88.07

Provision PT-737E FCNN 3.008 N/A 92.52
REDNN 1.285 57.28 92.52

Samsung SNH-1011-N FCNN 2.598 N/A 86.07
REDNN 0.582 77.60 86.07

SH XCS-1002 FCNN 3.004 N/A 94.65
REDNN 1.320 56.06 94.65

SH XCS-1003 FCNN 3.145 N/A 97.72
REDNN 1.305 58.51 97.72

Kitsune FCNN 2.726 N/A 84.09
REDNN 1.168 57.15 84.09

Wustl FCNN 491.6 N/A 94.26
REDNN 5.711 98.84 94.26

Table 4
Training performance evaluation across frameworks with Pro-
vision PT-737E dataset (per record).

Procedure Train time Train mem Test set
(ms) (B) acc (%)

FCNN-Keras 13.189 3127.5 92.52
FCNN-TFLite 0.1605 372.29 92.52
FCNN-Numpy 0.0571 16.933 92.52

REDNN-Numpy 0.0196 0.1388 92.52

TFLite model, REDNN exhibits better memory usage. This
could be attributed to the fact that the TFLite model inherits
the default Keras parameters during model conversion,
resulting in a lighter version of the Keras model. However,
the quantized optimized TFLite model consumes fewer
resources, requiring 0.010 ms of training execution time
and 0.0060 B of training memory footprint. It is worth
noting that the use of low precision in some cases can
lead to numerical issues, causing a degradation in accuracy
performance with certain datasets. Therefore, we implement
each framework in 32 bits and compare their performance in
Table 4 to investigate resource savings without low precision
integration. The significant training resource-saving of the
optimized REDNN model could be beneficial for on-device
learning. These compelling results provide a strong basis
for utilizing the optimized REDNN model to evaluate the
hypothesis stated in RQ1.

Table 5 presents the testing resources consumed by each
model using different technology frameworks. The table
shows that the NumPy implementation is the fastest among

Table 5
Testing resource consumption across frameworks with Provi-
sion PT-737E dataset (per record).

Procedure Test time Test mem Test set
(ms) (B) acc (%)

FCNN-Keras 2.3522 512.64 92.52
FCNN-TFLite 1.5155 38.533 92.52
FCNN-Numpy 0.4781 36.317 92.52

REDNN-Numpy 0.4575 7.6606 92.52

the tested frameworks. Additionally, REDNN demonstrates
more efficient processing of IoT data than the baseline FCNN
model when run in the same framework. The TFLite model
is more efficient than the Keras model but slower than
the Numpy (FCNN and REDNN) models. Interestingly,
REDNN outperforms the other models in terms of process-
ing time savings, achieving savings of 4.31%, 69.81%, and
80.55% compared to the FCNN, TFLite, and Keras mod-
els, respectively. These results demonstrate the resource-
efficient nature of our training procedure using Numpy and
suggest that it can be an appropriate method for training and
building effective models in a resource-constrained environ-
ment, outperforming the currently available state-of-the-art
methods.

Regarding memory consumption in column (Test mem),
REDNN demonstrates better savings with each data record.
For FCNN-Numpy, FCNN-TFLite, and FCNN-Keras mod-
els, the memory footprint was reduced by 78.91%, 80.12%,
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and 98.51%, respectively. The TFLite’s higher resource con-
sumption is due to the data type conversion during predic-
tion (TensorFlow, 2022). The conversion can increase the
execution time and memory (intel, 2020) as demonstrated
in Table 5. The higher resource (memory and time) con-
sumption of the TFLite at the testing stage is a limitation
for effective IoT attack detection. The REDNN algorithm’s
minimal resource consumption suggests its potential efficacy
as a mechanism for IoT security monitoring, as well as
for the security monitoring of other cyber-physical devices.
Notably, resource-efficient ML plays a crucial role in IoT
security monitoring for a variety of reasons. For example,
as mentioned above, IoT devices often operate with limited
resources, such as memory, processing power, and battery
life, and, thus, optimized algorithms such as REDNN can
be deployed on such devices without an undue expenditure
of power or resources. Also, due to the significant vol-
ume of data generated by IoT devices in real-time, rapid
analysis is necessary to detect security threats. Algorithms
like REDNN can perform real-time data analysis without
consuming excessive computational power.

Table 6 presents empirical findings comparing the per-
formance of the REDNN model against state-of-the-art tech-
niques utilizing the PT-737E dataset. The results indicate the
computational resources required by each model to process
each record in the dataset. The REDNN model outperforms
other methods by achieving better memory and time re-
source savings. Specifically, during training, the REDNN
model saves more than 99.99% and 99.80% of execution
time and memory footprint compared to the SVM model.
This is due to the fact that SVM is known to be a computa-
tionally expensive ML algorithm, particularly when dealing
with large datasets (Catak and Balaban, 2012). Thus, SVM
requires more resources than Adaboost and GB decision
tree models. As expected, DNN models such as FCNN and
REDNN outperform traditional ML models, and this is con-
firmed by our findings. The results suggest that optimizing
DNN models can create an efficient approach with more
resource savings than conventional ML methods. This is
particularly valuable for building models in an environment
with a multi-dimensional and extensive training dataset that
requires significant resource savings.

5.2. REDNN Model Robustness
5.2.1. Robustness against number of epoch

Table 7 illustrates the impact of epoch variation on
model robustness against the SH XCS-1003 dataset. The
robustness measure is calculated by subtracting the adversar-
ial test accuracy from the clean test accuracy. Our findings
indicate that the REDNN model is more robust against each
adversarial attack at ten epochs. Specifically, the adversarial
accuracy loss of the baseline FCNN is 28.08%, while that of
the REDNN is 20.30% against PGD attacks. Although the
resilience of both models improves with each epoch incre-
ment, the REDNN model exhibits slightly better robustness
than the FCNN model during each epoch iteration. This
is particularly valuable, as the optimized model can save

more resources while thwarting adversarial attacks with both
lower and higher epoch iterations. Our results demonstrate
that the REDNN model is marginally more robust against
adversarial samples than its FCNN counterparts. Therefore,
it may be a better option for IoT security due to its enhanced
robustness.

5.2.2. Robustness with clipped perturbation samples
Table 8 presents a comparison of models’ performance

with clipped and non-clipped adversarial samples against
randomly chosen datasets. Our findings indicate that in all
cases, the performance of detecting FGSM and random
noise attacks is better with the clipped procedure compared
to the non-clip setting. REDNN outperforms its baseline
benchmark in detecting PGD and FGSM, particularly with
the Kitsune dataset. The adversarial accuracy losses for
both REDNN and FCNN in thwarting non-clipped FGSM
adversarial samples of XCS-1003 device data were 0.41%
and 0.45%, respectively, with REDNN showing slight im-
provement. With the same procedure to detect random noise
attacks against the Kitsune data, the adversarial accuracy
losses of FCNN and REDNN were 4.86% and 0.93%, re-
spectively. These results highlight the robustness of REDNN
with clipped and non-clipped adversarial samples, particu-
larly with the Kitsune dataset. Based on these findings, we
can suggest REDNN as a model capable of crafting adver-
sarial attacks that are generated using various techniques.

5.2.3. Robustness against model variation
Table 9 presents the performance of REDNN and FCNN

using three different hidden layer models architectures. Our
results indicate that, across each tested dataset, REDNN
resists adversarial attacks better than its baseline. For ex-
ample, when tested against the Danmini Doorbell dataset,
the adversarial accuracy losses of FCNN and REDNN with
PGD attacks are 9.18% and 7.23%, respectively. With the
optimized four hidden layer model architecture, the adversar-
ial accuracy losses are 1.12% and 0.54% for the FCNN and
REDNN models, respectively. These results demonstrate
that neural network models with four hidden layers can
better detect adversarial attacks. Conversely, models with
fewer hidden layers may not stand robust against adversarial
attacks. Our findings suggest that REDNN can detect adver-
sarial perturbations regardless of the hidden layers utilized in
building the network architecture. As such, REDNN has the
potential to be advantageous in an IoT network environment
that can be dynamic in terms of architectural settings and
security mechanism requirements.

Figure 3(a) and 3(b) depict the impact of reducing the
second hidden layer neuron of each model by 50% and
25% against resilience using the Kitsune dataset. In each
setting, REDNN provides better detection accuracy against
adversarial samples. As depicted in Figure 3(a), reducing
hidden neuron values affects accuracy, reducing FCNN and
REDNN accuracy by 14.66% and 0.42%, respectively. For
detecting PGD attacks using the 25% reduced neurons shown
in Figure 3(b), FCNN and REDNN accuracy is reduced
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Table 6
Performance evaluation comparison on Provision PT-737E dataset (per record).

Model Train time Test time Train mem Test mem Test set
(ms) (ms) (B) (B) acc (%)

SVM 909.64 500.87 378.96 923.48 92.52
GB 32.621 0.2242 22.230 20.018 92.58

AdaBoost 31.212 2.6126 4.1910 13.842 92.47
FCNN 0.0571 0.4781 4.2333 7.9685 92.52

REDNN 0.0196 0.4575 0.0347 7.6606 92.52

Table 7
Effect of number of epoch against models performance with SH XCS-1003 dataset.

Epoch Model Clean FGSM PGD Noise
acc (%) acc (%) acc (%) acc (%)

10 FCNN 97.73 79.51 69.65 89.52
REDNN 97.73 86.70 77.43 89.79

20 FCNN 97.73 86.35 77.07 93.86
REDNN 97.73 86.70 77.43 94.08

40 FCNN 97.73 93.74 86.66 97.08
REDNN 97.73 94.19 87.10 97.17

60 FCNN 97.73 96.48 90.72 97.63
REDNN 97.73 96.84 92.09 97.69

80 FCNN 97.73 97.48 94.82 97.72
REDNN 97.73 97.53 95.34 97.73

100 FCNN 97.73 97.69 97.24 97.73
REDNN 97.73 97.70 97.29 97.73

by 24.52% and 5.26%, respectively. These results suggest
that a significant reduction in hidden neurons affects model
resilience to adversarial samples. In each scenario, REDNN
is more robust to topology variation than its baseline bench-
mark. As a result, proper architecture selection can influence
the efficient and effective identification of adversarial sam-
ples.

Label flipping attacks can be detrimental to the perfor-
mance of a ML model as they can result in misclassification
of data points. Figure 4 shows the impact of a label flipping
attack on the accuracy of the FCNN and REDNN models.
Both models were tested against the Kitsune and PT-737E
datasets with varying levels of label flipping rates.

The results show that both models can detect and resist
label flipping attacks up to a certain rate. In the case of the
Kitsune dataset, both models can resist up to a 30% flipping
rate, with REDNN outperforming FCNN at a 40% rate. On
the other hand, for the PT-737E dataset, FCNN’s accuracy
reduces significantly at a 50% flipping rate, while REDNN
maintains its performance up to the same rate.

These results demonstrate the robustness of REDNN
against label flipping attacks, especially in the PT-737E
dataset. The regularization properties of the REDNN model
can make it less susceptible to slight changes in the training
data, making it more resilient against poisoning attacks.

In addition to its significant resource savings capabil-
ity, REDNN demonstrates greater resilience against random

Table 8
Effect of clipping samples against perturbations method.

Dataset Procedure Model Clean FGSM PGD Noise
acc (%) acc (%) acc (%) acc (%)

SH XCS-1003-WHT
Clipped FCNN 97.73 97.69 97.24 97.73

REDNN 97.73 97.70 97.29 97.73

Non-clip FCNN 97.73 97.24 97.24 97.56
REDNN 97.73 97.29 97.29 97.58

Danmini Doorbell
Clipped FCNN 95.11 95.05 93.99 95.11

REDNN 95.11 95.10 94.57 95.10

Non-clip FCNN 95.11 93.99 93.99 94.79
REDNN 95.11 94.57 94.57 94.98

Kitsune
Clip FCNN 84.09 78.27 70.45 80.67

REDNN 84.09 83.52 80.18 83.84

Non clip FCNN 84.09 70.45 70.45 75.81
REDNN 84.09 80.18 80.18 82.91
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Table 9
Variational models perturbations evaluations across datasets.

Dataset Model Clean FGSM PGD Noise
acc (%) acc (%) acc (%) acc (%)

Danmini Doorbell
FCNN 95.11 91.43 85.93 93.78

REDNN 95.11 92.93 87.88 94.45

Provsision PT-737E
FCNN 92.52 90.31 86.31 91.61

REDNN 92.52 90.81 87.20 91.91

SH XCS-1002-WHT
FCNN 94.65 92.48 87.87 93.54

REDNN 94.65 93.21 89.02 93.99

SH XCS-1003-WHT
FCNN 97.73 96.51 92.20 96.98

REDNN 97.73 96.62 92.33 97.03

Kitsune FCNN 84.09 75.73 70.02 81.72
REDNN 84.09 81.56 77.65 83.88

(a) (b)

Figure 3: REDNN vs FCNN accuracy changes with reduce hidden neurons by (a) 50% and (b) 25% against the Kitsune dataset.

noise attacks when compared to each of the models ana-
lyzed as shown in Table 10. Subsequently, we examined
the impact of poisoning 50% of the training data through
label modification (refer to the Poisoned label column). This

resulted in a reduction in the robustness of the SVM, GB,
Adaboost, and FCNN models, with adversarial accuracy
losses of 85.04%, 82.57%, 81.42%, and 82.97%, respectively.
The results reveal that REDNN exhibits better resistance

(a) (b)

Figure 4: REDNN vs FCNN accuracy changes with label flip against (a) Kitsune and (b) PT-737E dataset.
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(a)

Figure 5: Federated model training execution time of REFDNN and BFDNN against (a) IoT and (b) MNIST datasets.

Table 10
Performance evaluation comparison with Provision PT-737E
dataset.

Model Clean Noise Poisoned label
acc (%) acc (%) acc (%)

SVM 92.52 70.89 7.48
GB 92.58 61.91 10.01

Adaboost 92.47 53.31 11.05
FCNN 92.52 91.57 9.55

REDNN 92.52 91.87 92.52

to label poisoning attacks, without any loss in adversarial
accuracy. This finding implies that a stable and less complex
model may be able to overcome label poisoning attacks,
which are a significant threat in a detection system since
attackers can easily manipulate the data. Furthermore, these
results demonstrate the superior robustness of the REDNN
model compared to conventional ML models and answers
RQ2. As such, REDNN may be a suitable solution for IoT
security monitoring or efficient ML-based security systems.

Table 11 illustrates the performance of the models
evaluated in terms of test set accuracy, precision, recall,
and harmonic score (F1) while exploring the impact of
FP16 integration on model resilience. The implementation
of FP16 has a significant impact on the robustness of the
FCNN model, particularly in its ability to withstand random
noise attacks, resulting in adversarial accuracy and F1-score
losses of 7.06% and 4.61%, respectively, when compared
to REDNN. As previously mentioned in this paper, ML
engineers frequently choose low-precision implementations
to reduce computation time and memory usage during
model training and testing, but this comes at the cost of
sacrificing overall accuracy. The results demonstrate that
REDNN exhibits better resilience in countering each adver-
sarial attack. Furthermore, the findings suggest that FP16
implementation has only a minor impact on the robustness of
the REDNN model, making it a more effective and resilient

IoT security monitoring technique compared to its FCNN
counterparts. The results indicate that REDNN possesses
attack resilience capabilities, even when integrated with
FP16, which can potentially degrade model performance.
Overall, resource-efficient ML algorithms like REDNN can
effectively address the unique challenges of IoT security
monitoring by providing scalable, real-time, and efficient
analysis of data derived from multiple IoT devices. IoT
security monitoring requires analyzing data from a large
number of devices simultaneously. Resource-efficient ML
algorithms like REDNN can be easily scaled to handle large
volumes of data from multiple devices in federated settings
to accomplish this.

5.3. REFDNN Model Training Performance
(Decentralized Manner)

5.3.1. Simulated Workers FL Scenario
Table 12 shows the memory footprint and time usage

for each dataset in a FL setting. REFDNN exhibits lower
runtime and memory footprints across all datasets. Notably,
the accuracy of both REFDNN and BFDNN remained con-
stant across each benchmark dataset. In terms of client pro-
cessing runtime, REFDNN is more efficient, indicating less
complexity, faster learning capability, and superior resource
savings performance compared to BFDNN. Due to these
resource savings, REFDNN may be a better option for IoT
security monitoring, especially for on-device learning on a
diverse range of resource-constrained edge devices.

As a generic solution for on-device learning, it is im-
portant to assess the method’s performance on non-IoT
datasets (MNIST) (see Table 13). This can also allow us to
leverage REFDNN’s resource-saving capability with CNN,
which provides accurate performance in image classifica-
tion. PySyft WS simulated workers were used to examine
the performance of the BFDNN and REFDNN techniques in
each federated training. This was done to assess REFDNN’s
performance using a simulated network with a client and
server scenario running on the same machine, unlike PySft
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Table 11
Model resilience evaluation with Kitsune dataset.

Attacks Model Accuracy (%) Precision Recall F1 score

FGSM FCNN 83.60 0.8408 0.9744 0.9027
REDNN 84.09 0.8409 1.0000 0.9136

PGD FCNN 82.34 0.8408 0.9744 0.9027
REDNN 84.09 0.8409 1.0000 0.9136

Noise FCNN 76.67 0.8412 0.8906 0.8652
REDNN 83.73 0.8411 0.9944 0.9113

Table 12
Federated model training memory consumption between REFDNN and BFDNN (cumulative).

Dataset Model Memory Time Test set
MB mins acc %

Danmini Doorbell BFDNN 3.783 0.099 95.11
REFDNN 0.857 0.081 95.11

Ecobee Thermostat BFDNN 3.732 0.091 93.36
REFDNN 0.815 0.071 93.36

Ennio Doorbell BFDNN 4.147 0.090 88.94
REFDNN 0.805 0.074 88.94

Provision PT-737E BFDNN 3.463 0.092 92.52
REFDNN 0.853 0.077 92.52

Provision PT-838 BFDNN 3.423 0.085 88.07
REFDNN 0.814 0.074 88.07

Samsung SNH-1011-N BFDNN 3.783 0.099 86.06
REFDNN 0.858 0.081 86.06

SimpleHome XCS-1002 BFDNN 3.494 0.090 94.65
REFDNN 0.816 0.072 94.65

SimpleHome XCS-1003 BFDNN 3.914 0.085 97.73
REFDNN 0.801 0.071 97.73

Wustl BFDNN 3.002 0.095 94.26
REFDNN 0.816 0.076 94.26

Table 13
Simulated federated training performance comparison between
BFDNN and REFDNN with MNIST dataset.

Procedure Model Time Time Test set
mins save (%) acc %

FCNN-MNIST BFDNN 1.393 N/A 34.64
REFDNN 1.346 3.374 91.03

CNN-MNIST BFDNN 1.583 N/A 90.59
REFDNN 1.457 7.960 98.28

virtual workers counterparts that run as constructs within the
same python program. As expected, with each DNN (CNN
and FCNN) variant, REFDNN demonstrates better accuracy
than its BFDNN counterparts. The better performance on the
MNIST dataset is due to the regularization and optimiza-
tion of REFDNN. Furthermore, it produces lower training
execution time. These results demonstrate the importance of
regularization (Krueger and Memisevic, 2015) and (Lever,
Krzywinski and Altman, 2016) on accuracy against DNN
variants and warrant further investigation in realistic set-
tings.

Table 14
Federated model accuracy: REFDNN vs BFDNN against CNN-
MNIST training procedure.

Federated rounds Model Test set acc (%)

50 - 1 epoch REFDNN 97.00
BFDNN 89.00

50 - 2 epoch REFDNN 99.00
BFDNN 93.00

100 - 1 epoch REFDNN 97.00
BFDNN 89.00

100 - 2 epoch REFDNN 99.00
BFDNN 93.00

5.3.2. Network Workers FL Testbed Results
Figure 5(a) shows that REFDNN has a faster estimated

convergence time than BFDNN when training on the Ennio
Doorbell and Samsung SNH IoT datasets on the GB-BXBT-
2807 testbed. This indicates that REFDNN is more efficient
in detecting IoT attacks in real-time, which is beneficial in
resource-constrained environments. Similarly, Figure 5(b)
shows that REFDNN is more computationally efficient than
BFDNN when training on the MNIST dataset, with the
FCNN variant of REFDNN being particularly appropriate
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for on-device learning in resource-constrained IoT environ-
ments. These results suggest that REFDNN is a more suit-
able method for deployment in IoT resource environments,
where resource savings are a priority.

Table 14 presents a performance comparison between
REFDNN and BFDNN with the federated training procedure
CNN-MNIST over 100 and 50 communication rounds. The
reported results pertain to the use of one and two local
epoch iterations. Across each epoch of every communica-
tion round, REFDNN exhibited superior accuracy compared
to its baseline counterparts. These outcomes imply that
REFDNN is proficient in the classification of both IoT and
non-IoT datasets in real-time, exhibiting greater accuracy
than its alternatives.

6. Conclusion
This research introduces REDNN, a deep neural network-

based approach specifically designed to detect cyberattacks
on IoT devices while prioritizing resource efficiency. The
effectiveness of this approach is evaluated through exper-
imentation using eleven benchmark datasets. The results
demonstrate that REDNN exhibits robustness against ad-
versarial attacks, accurately detects cyberattacks on IoT net-
works, and significantly conserves resources. Furthermore,
this study presents a resource-efficient federated learning
model called REFDNN, tailored for IoT security monitoring.
The effectiveness of REFDNN is assessed using eight IoT
datasets and one MNIST image dataset, both in virtual
and real-world testbed setups. Future research endeavors
will focus on investigating the detection capabilities of the
proposed algorithms against real-time attacks and evaluating
the resilience of REFDNN in practical IoT and cyber-
physical network environments that involve a large number
of edge devices.
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