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3D Harmonic Loss: Towards Task-consistent and
Time-friendly 3D Object Detection on Edge for

V2X Orchestration
Haolin Zhang, M S Mekala, Dongfang Yang, John Isaacs, Zulkar Nain, Ju H. Park, Ho-Youl Jung

Abstract—The use of edge computing for 3D perception has
garnered interest in intelligent transportation systems (ITS)
due to its potential to enhance Vehicle-to-Everything (V2X)
orchestration through real-time traffic monitoring. The ability
to accurately measure depth information in the environment
using LiDAR has led to a growing emphasis on 3D detection
based on this technology, which has significantly advanced the
field of 3D perception. However, the computationally-intensive
nature of these operations has made it challenging to meet the
real-time deployment requirements using existing methods. The
object detection task in the pointcloud domain is hindered by
a substantial inconsistency problem caused by its high sparsity,
which remains unaddressed. This paper conducts an in-depth
analysis of the issue, which has been brought to light by
recent research on detecting inconsistency problems in image
specialization. To address this problem, we propose a solution
in the form of a 3D harmonic loss function, which aims to
alleviate the inconsistent predictions based on pointcloud data. In
addition, we showcase the viability of optimizing 3D harmonic loss
mathematically. Our simulations employ the KITTI dataset and
DAIR-V2X-I dataset, and our proposed approach significantly
surpasses the performance of benchmark models. Additionally,
we validate the efficiency of our proposed model through its
deployment on an edge device (Jetson Xavier TX) in a simulated
environment.

Index Terms—Vehicle technology, Edge computing, Vehicle-to-
Everything (V2X) orchestration, 3D harmonic loss.

I. INTRODUCTION

BACKGROUND: Edge computing-based computer vision
technology has received global attention for strength-

ening V2X orchestration and autonomous driving systems
(ADS). In the interdisciplinary research areas of V2X and
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ADS, data is collected and analyzed by vehicles and in-
frastructures to enable intelligent decision-making for vehicle
movement [1]. The decision-making system relies on data
captured from surrounding areas, including road structure
and traffic information. Through the use of effective object
detection methods cloned via Road Side Units (RSU) and
On Board Units (OBU), the data is analyzed to identify and
localize traffic candidates, enabling necessary decisions for
vehicle movement.

Motivation: Let’s consider the movement of a vehicle using
event-trigger analysis based on traffic information. Traffic
data is collected through surveillance devices or on-vehicle
sensors such as LiDAR and cameras. Edge devices analyze
the important LiDAR data (pointcloud) to achieve the target
with low latency. However, computation-intensive services are
offloaded to servers to meet application deadlines. The af-
fordability, increased perception of distant objects, and robust
characteristics of LiDAR 3D object detection technology have
made it prominent. To facilitate pinpoint communication from
vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I),
the recognized and localized vehicle is vital in measuring the
surroundings and infrastructure through RSU-LiDAR deploy-
ment. Therefore, developing and deploying an efficient and
robust 3D detector based on LiDAR data is a crucial research
direction to enhance V2X efficiency.

Problem of task inconsistency and time delay:
Object detection tasks in modern times have branched out

into various sub-tasks like object localization, classification,
and direction estimation. In the 2D image domain, most 2D
detections consider sub-tasks independently, leading to incon-
sistent and unexpected predictions with high classification con-
fidence but inadequate localization after post-processing (e.g.
Non-Maximum Suppression), as shown in Fig.1(a). Recently,
researchers have addressed and partially solved this inconsis-
tency problem in 2D object detection in [2]–[5]. However,
despite advancements in the field, 3D detection accuracy in the
point cloud domain continues to be impacted by guesswork
and similar inconsistency issues, as illustrated in Fig.1(b),
and further validated by real-data experiments displayed in
Fig.1(c).

While recent lidar-based 3D object detection methods [6]–
[18] focus on achieving the best mAP and consider it as
a benchmark for model accuracy, they fail to address other
critical factors like time consumption, quality of experience
(QoE), and service reliability. For real-time applications like
V2X, a cost-effective, task-friendly, and task-consistent detec-
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Fig. 1. Illustration of the inconsistency problem in object detection. (a) Example of inconsistency problem in image domain: inconsistent bounding boxes
with high classification score but low IoU (compared to groundtruth (red box)) in 2D detection, which leads to the suboptimal output (green box) after post
processing (NMS). (b) Guesswork of the similar inconsistency problem in pointcloud-based 3D detection. (c) Real example of inconsistency problem from
the PointPillar [21]. (d) Expectation of consistent prediction: a better 3D detector is expected to harmonize the localization and classification of predicted
objects, resulting in the reasonable output (blue box). Our work focuses on how to alleviate the inconsistent predictions in pointcloud domain, to achieve the
expected predictions in real-world applications.

tion solution with fast run-time and low error rate is required.
Some researchers [19], [20] have noticed the problem of task
inconsistency, but their solutions rely on additional modules
that increase inference time, which contradicts our goal of
reducing computational burden.

Other recent works like [21]–[26] have attempted to improve
deployment metrics like computational burden and execution
latency, but they have not achieved a sufficient trade-off
between detection accuracy and time consumption for edge
device-based simulations in real-time applications.

Our solutions: We derived solutions from the learning
optimization perspective to solve the above drawbacks for bet-
ter edge-computing object detection performance. Firstly, by
drawing the lessons from the inconsistent prediction problem
in camera-based 2D detection, we indicate a similar incon-
sistency problem in lidar-based 3D detection. This problem
gradually leads to the inaccuracy of the prediction in actual
applications and is worth being discovered and resolving. To
alleviate inconsistent predictions of 3D detectors, we analyze
the cause of the inconsistency problem through the respective
characteristics of the image and point cloud. Inspired by the
solution in image domain [4], we extend the 2D solution to
3D detection and propose 3D harmonic loss, a task-consistent
learning strategy for optimizing pointcloud-based 3D detec-
tors. It is worth mentioning that our solution, 3D harmonic
loss, not like previous solutions [19], [20], only works for
model training and does not bring any extra time-cost to
model inference. Secondly, a thorough mathematical analysis
is conducted to explain and demonstrate the effectiveness of
3D harmonic loss. Experiments on KITTI 3D/BEV detection
dataset [27] further validate that the proposed strategy can
achieve a noticeable performance improvement. Third, our
proposed model is deployed on the edge device (Jetson Xavier
TX) for simulation, and it achieves an ideal trade-off between
time efficiency and detection accuracy.

We deploy the proposed detector on edge devices (Jetson
Xavier TX) for realistic simulations to meet the lightweight
design and edge-computing benchmark metrics.

Our contributions are as follows.

1) Develop a 3D harmonic loss method for alleviating
inconsistent predictions inspired by related ideas from
2D detection. Thus, we level up the 2D solution to lidar-
based 3D detection to map both two-stage and one-stage
3D detection models’ learning accuracy without extra
time-cost on inference.

2) Experiments on KITTI Dataset [27] and DAIR-V2X-
I Dataset [28] demonstrate our proposed work’s effec-
tiveness for both on-vehicle and on-infrastructure object
detection. Especially for industrial-popular lidar-based
detectors such as SECOND [6], and PointPillar [21] are
considered to showcase the significant margin of mean
average precision (mAP) improvement concerning the
proposed 3D harmonic loss.

3) Realistic simulations by deploying our proposed
lightweight detector on the Jetson Xavier device further
verify and realise that our solutions are time-friendly
and task-consistent towards 3D detection for real appli-
cations.

The paper continues as Section II that briefs the extant
approaches research gaps. Section III represents the proposed
work in detail. Section IV represents the proposed method’s
effectiveness using qualitative and quantitative analysis. Sec-
tion V concludes the manuscript.

II. RELATED WORK

A. LiDAR-based 3D object detection

The popularity of 3D object detection has increased with
the use of pointcloud-based deep learning models via various
frameworks. Typically, two types of frameworks exist, namely
one-stage and two-stage. One-stage methods enable instanta-
neous prediction of object 3D bounding boxes (bboxes). Some
of these methods are points-based, like 3DSSD [9], which
utilizes the PointNet [29] architecture, and PointGNN [7]
network that employs a graph neural network. These methods
use raw lidar pointclouds to make 3D shape predictions. Alter-
natively, voxel-based methods, such as VoxelNet, first convert
the lidar pointcloud into 3D voxels to decrease input memory
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usage. Then, voxel features are fed into a region proposal
network using 3D convolutions for 3D detection. SECOND
[6] is a more time-efficient approach based on VoxelNet [10]
that proposes sparse 3D convolutions. However, the time per-
formance of one-stage 3D detection is still unsatisfactory. VoTr
[30] and VoxSeT [14] utilize a voxel-based one-stage method
and introduce transformer architecture for improved accuracy.
However, their heavy parameters and complicated operations
significantly reduce the time performance of 3D detection.
PointPillar [21], on the other hand, transforms 3D pointclouds
into 2D voxels, followed by highly efficient 2D convolutions
to achieve real-time performance and easy deployment of 3D
detection [26].

In contrast, the first stage of two-stage detectors [8], [11]–
[13], [17], [18] involves predicting the Region-of-Interests
(ROIs), while the second stage utilizes a refinement network to
detect objects with greater precision. Despite the advantages of
some two-stage methods, such as CenterPoint [17], which in-
corporates a fast feature encoding and a lightweight refinement
head in its network design, they often fail to meet the speed
requirements of real-time applications. As a result, the time-
cost comparison gap between such two-stage detectors and
certain one-stage detectors, such as PointPillar [21], remains
relatively similar.

Combining image and point cloud data [31]–[35] is a
suitable approach for enhancing 3D detection accuracy and
surrounding perception. Nonetheless, the fusion techniques are
more intricate and time-consuming for real-time applications
compared to pure lidar-based detection. Thus, while we did
consider some fusion methods in our experiment to demon-
strate their accuracy benefits, they are not the primary focus
of our discussion.

B. Inconsistency problem in object detection

The issue of inconsistency was first observed in 2D object
detection methods within the image domain, as demonstrated
in Fig.1(a). In the initial approaches, object classification and
localization were treated independently during model train-
ing, leading to incongruous predictions during inference. To
address this problem, recent studies [2]–[5] have attempted to
bridge the gap between these sub-tasks of 2D detection in the
image domain. For example, [2], [3] proposed a Generalized
Focal Loss approach that did not achieve the desired accuracy,
while an improved version of the Focal Loss method was
introduced in [36] to ensure consistent 2D detection. [4]
introduces a balanced loss function to reconcile prediction con-
sistency. Moreover, [5] proposed a PAA method that included
an additional module for predicting IoU, which was useful for
selecting positive training samples. Similarly, inconsistency in
3D point cloud object detection systems can lead to lower
object detection reliability and quality of experience. Some 3D
detection methods [19], [20] may slightly alleviate this issue,
even though they are not fundamentally aware of the inconsis-
tency problem. However, these methods modify the structure
of the 3D models, requiring additional time and operations for
predicting IoU and post-processing, which may not be feasible
for real-time environments. Our work is relatively independent

to above works, mainly reflected in two aspects: our work
first indicates the need to address the inconsistency problem
of 3D detection in the point cloud domain. Most importantly,
our proposed solution, as a common optimization method for
3D detectors’ training, effectively addresses the inconsistency
problem without introducing any extra burden during model
inference and deployment.

III. PROPOSED WORK

This section presents the formulation of the proposed
method 3D harmonic loss, from both a theoretical and math-
ematical optimization standpoint.

In Fig. 1(d), we aim to attain uniform predictions in
3D detection. The reason behind the inconsistency issue is
explored by analyzing the learning loss function (Eq1) for
a positive training sample i in several existing methods [6],
[8], [12], [21]. It is revealed that the three sub-tasks of 3D
object detection (classification, localization (regression), and
direction estimation) are handled and monitored separately,
resulting in the inconsistency problem.

Li
3D = Lcls

(
pi, p

gt
i

)
+ Lreg

(
d

′

i, d
gt
i

)
+ Ldir

(
p

′

i, p
′gt

i

)
(1)

Where pi is softmax classification score, p
′

i is softmax
direction score. Also pgti and p

′gt

i are the ground truths
for classification and direction estimation respectively. Con-
sequently, the classification loss (Lcls(pi, p

gt
i )) for positive

training samples (pgti =1) uses focal loss [37], which is derived
as follows

Lcls

(
pi, p

gt
i

)
= −α(1− pi)

γ
log (pi) (2)

In continuation, the regression loss Lreg uses SmoothL1 [38]
as follows

Lreg

(
d

′

i, d
gt
i

)
=

∑
d
′
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′
i,y

′
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′
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′
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′
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′
i)
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) (3)

SmoothL1 (∆di) =

{
0.5∆di

if |∆di
| < 1

|∆di | − 0.5 others (4)

Where ∆di is the difference between the set of attributes
(x

′

i, y
′

i, z
′

i, l
′

i, w
′

i, h
′

i, θ
′

i) of predicted offsets d
′

i and ground
truth offsets dgti , which is determined by the parameters
(Xgt

i , Y gt
i , Zgt

i , Lgt
i ,W gt

i , Hgt
i , αgt

i ) of ground truth boxes and
the parameters (Xi, Yi, Zi, Li,Wi, Hi, αi) of anchor boxes as
follows

xi
gt =

Xgt
i −Xi√

(Wi)
2+(Li)

2
, yi

gt =
Y gt
i −Yi√

(Wi)
2+(Li)

2

zi
gt =

Zgt
i −Zi

Hi
, wi

gt =
W gt

i

Wi
, li

gt = log
Lgt

i

Li

hi
gt = log

Hgt
i

Hi
, θi

gt = sin
(
αgt
i − αi

) (5)

The inconsistent handling of various sub-tasks can result in
inconsistent inference outcomes, which was addressed in prior
research [4]. However, that research was limited to 2D detec-
tion using image sources and only focused on generalizing
critical loss functions such as cross-entropy, L1, and IoU. Our
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Fig. 2. Visualization of the gradients from 3D detection loss related to different sub-tasks (object classification and object localization (regression)). (a) is
drawn with gradients from classification part in common 3d detection loss. (b) is drawn with gradients from classification part in our proposed 3d harmonic
loss. (c) is drawn with gradients from regression part in common 3d detection loss. (d) is drawn with gradients from regression part in our proposed 3d
harmonic loss. For better view, (e), (f), (g) and (h) show their vertical forms. The color intensity indicates the value of gradients (see colorbar). MATLAB
was utilized to analyze the data and plot the diagram.

proposed 3D harmonic loss, detailed in Theorem, is specif-
ically designed for lidar-based 3D detection, which involves
different data modalities (pointcloud) and multiple prediction
dimensions (including direction estimation, height, and depth).
To maintain consistency during model learning, three dynamic
factors are employed: 1+βr, 1+βc, and 1− βr+βc

βdir
. The factors

1 + βr and 1 + βc work in conjunction to ensure mutual-
consistency, while 1− βr+βc

βdir
guarantees intrinsic-consistency.

Our approach ensures both mutual and intrinsic consistency
among the sub-tasks. In cases where classification optimization
falls short, the factor obtained from the classification part
supervises the regression part, and vice versa. Additionally,
our method guarantees that the classification and regression
parts consistently supervise the direction estimation part. This
is exemplified by the fact that an accurate direction estimation
should align with distinct class recognition and unambiguous
boundary regression. Our learning mechanism is well-suited
to commonly used loss functions in 3D detection training,
including focal loss for object classification, Smooth L1

for object localization, and binary cross-entropy for object
direction estimation. In essence, our approach harmoniously
addresses all sub-tasks.

Theorem: 3D harmonic loss

Li
3D−Har = (1 + βr)× Lcls

(
pi, p

gt
i

)
+ (1 + βc)

×Lreg

(
d

′

i, d
gt
i

)
+
(
1− βr+βc

βdir

)
× Ldir

(
p

′

i, p
′gt

i

)
Where

βr = e
−Lreg

(
d
′
i,d

gt
i

)
, βc = e−Lcls(pi,p

gt
i ) (6)

The maximum value of βr (or βc) cannot exceed 1 unless
the regression part (or classification part) of the model has

fully converged (Lreg = 0 (or Lcls = 0)). Consequently, we
set βdir to 2 in our 3D harmonic loss function. Once the model
has completely converged, the expression 1 − βr(=1)+βc(=1)

βdir(=2)
evaluates to 0, indicating that further weighting is unnecessary.
When the model is in training, setting βdir = 2 in the expres-
sion 1− βr+βc

βdir
ensures that the feedback for optimization from

the regression part and the classification part to the orientation
estimation part is given equal importance.

The effectiveness of 3D harmonic loss is mathematically
proven and briefly explained when the training sample is
positively supervised by classification loss Lcls

(
pi, p

gt
i

)
, re-

gression loss Lreg

(
d

′

i, d
gt
i

)
, and direction loss Ldir

(
p

′

i, p
′gt
i

)
.

Proof-1: Assuming that the ith training sample is positive,
we can assign pgti = 1, and use the values α = 0.25 and γ = 2
for the focal loss. This helps to analyze how effective the 3D
harmonic loss is in reducing the classification loss which is
derived as follows

∂Lcls(pi,p
gt
i )

∂pi
=

∂[−αpgt
i (1−pi)

r log(pi)]
∂pi

= −
(1−pi)

(
1
pi

−1−2 log(pi)
)

4

suppose
= J (pi)

(7)

βc = e−Lcls(pi,p
gt
i ) = e−

1
4 (1−pi)

2 log(pi)
suppose

= K (pi) (8)

with the point derivation

∂βc

∂pi
= − (1− pi)

2

4
pi

−(1−pi)
2

4 −1 = ∇K (pi) (9)
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Based on Eq.7, Eq.8 and 9 the gradient backpropagation from
the classification part is represented as Eq.10.

∂Hi
3D−Har

∂pi
=

(
1 + e−Lreg

)
J (pi)+

Lreg.∇K (pi)− Ldir

(
p

′

i, p
′gt

i

)
.∇K(pi)

βdir

(10)

Note that, in our experiment βdir = 2, the gradient backprop-
agation from the classification result is highly associated to

Lreg

↑
regression

,
pi
↑

classification
,

Ldir

↑
direction estimation

Analysis-1: As a result, Fig.2(b) depicts the outcomes
of Eq.10 obtained by sampling ten thousand data on aver-
age. The intensity of the color corresponds to the value of
∂Hi

3D−Har/∂pi for the corresponding [pi, Lreg, Ldir], with
the three axes representing the values of Lreg , pi, and Ldir.
Similarly, Fig.2(a) represents ∂Hi

3D/∂pi using the same axis
representation. Note: the backpropagation gradient from the
classification section is independent of the regression and
direction estimation parts, as can be observed in Fig.2(a) (with
a better view in its vertical representation, Fig.2(e)). When
using the 3D harmonic loss (best viewed in Fig.2(f)), the high
regression loss suppresses the gradient from the classification
loss (due to poor localization), resulting in relatively low
confidence, which establishes mutual consistency between
classification and localization. Furthermore, the Ldir gradually
influences the gradient propagation to achieve a globally
unique optimization, where ∂Hi

3D/∂pi = 0 occurs only when
pi = 1, Ldir = 0, and Lreg = 0.

Proof-2: The effectiveness analysis of 3D harmonic loss
on regression part is derived as follows

∂Li
3D−Har

∂∆di
= −e−Lreg(∆di)Lcls

(
∂Lreg(∆di)

∆di

)
+
(
1 + e−Lcls

) (∂Lreg(∆di)
∂∆di

)
+

e−Lreg(∆di)
(

∂Lreg(∆di)
∆di

)
2 · Ldir

(11)

The gradient back propagation from regression result is highly
associated to

∆di
↑

regression
,

Lcls

↑
classification

,
Ldir

↑
direction estimation

Analysis-2: Fig.2(d) depicts the results of Eq.11 using ten
thousand data samples. The intensity of color on the graph
reflects the value of ∂Hi

3D−Har/∂∆di for corresponding
[∆di, Lcls, Ldir], with the three axes representing the values
of ∆di, Lreg , and Ldir, respectively. Fig.2(c) shows the cor-
responding ∂Hi

3D/∂∆di with the same axis representation. In
traditional 3D detection learning, the regression part’s gradient
backpropagation is independent of classification and direction
estimation. Even though our proposed method achieved the
same regression result (i.e., the same ∆di), increasing classi-
fication loss will consistently restrict the gradient from main-
taining synchronous learning of classification and regression
(as shown in Fig.2(h)). The global unique optimization of
∂Hi

3D/∂∆di = 0 is achieved only when ∆di = 0, Lcls = 0,
and Ldir = 0.

Proof-3: The effectiveness analysis of 3D harmonic loss
on the direction part is derived as follows.

Ldir

(
p

′

i

)
=

(
1− p

′gt

i

)
log

(
1− p

′

i

)
− p

′gt

i log
(
p

′

i

)
(12)

Such that

∂Ldir

(
p

′

i

)
∂p

′
i

= − p
′gt

i − p
′

i(
1− p

′
i

)
p

′
i

= µ (i)

Based on the p
′gt

i status, the binary cross entropy loss is
updated as follows

µ (i) =

 − 1
p
′
i

, if p
′gt

i = 1

− 1
1−p

′
i

, if p
′gt

i = 0
(13)

The gradient from the updated direction loss is as follows.
∂Li

3D−Har

∂p
′
i

=
(
1− βr+βc

2

)
· ∂Li

3D−Har

∂p
′
i

=
(
1− βr+βc

2

)
·

[
−p

′gt
i

p
′
i

−
(
1−p

′gt
i

)
1−p

′
i

]
(14)

The type of direction loss estimation is dependent on the p
′gt

i

status, and it is derived as follows.

∂Li
3D−Har

∂p
′
i

=


(
1− e−Lcls+e−Lreg

2

)(
− 1

p
′
i

)
, if p

′gt

i = 1(
1− e−Lcls+e−Lreg

2

)(
− 1

1−p
′
i

)
, if p

′gt

i = 0

(15)
The gradient backpropagation from the direction result is
highly associated to

Lreg

↑
regression

,
Lcls

↑
classification

,
p

′

i

↑
direction estimation

Analysis-3: Fig.3 depicts the outcomes of Eq.15 based on
ten thousand data samples. The color intensity in the figure
indicates the value of ∂Hi

3D−Har/∂p
′

i for the corresponding
[p

′

i, Lcls, Lreg]. The three axes in the figure represent the
values of p

′

i, Lreg, and Lcls, respectively. For example, in
Fig.3(a), the global unique optimization is ∂Hi

3D/∂p
′

i = 0

when p
′gt

i = 0 because Lcls = 0 and Lreg = 0 when p
′

i = 0.
Similarly, Fig.3(b) illustrates the same intrinsic-consistency
paradigm for p

′gt

i = 1.

.

Fig. 3. Visualization of the gradients from direction estimation part in our
proposed 3D harmonic loss. (a) when p

′gt
i = 0. (b) when p

′gt
i = 1.

MATLAB was utilized to analysis the data and plot the diagram.

The standard approach for 3D detection based on point
clouds involves the utilization of three distinct loss functions,
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Fig. 4. Qualitative analysis of overall 3D detection performance. Predicted bboxes from Pointpillar (baseline) (green bboxes) [21] and predicted bboxes
from Harmonic Pointpillar (Ours) (blue bboxes) are visualized in same frames. Ground Truths (red bboxes) are also drawn for qualitative check. Harmonic
PointPillar (Ours) shows better recall rate and localization accuracy with less false positive than PointPillar (baseline).

namely Lcls, Lreg , and Ldir, which aim to optimize the
model’s ability to predict the object’s category, object 3D
position, and object orientation. The three losses have a
relatively independent relationship since the model training
employs a direct sum of losses. This independence can result
in inconsistent predictions. Nonetheless, the 3D harmonic loss,
a suggested solution, presents a unified formula that reconciles
the three losses. To explain the harmonization mechanism,
Proof-1, 2 and 3, as well as Analysis-1, 2 and 3, are pro-
vided. By implementing 3D harmonic loss, the three losses
become synchronized to enhance the training of the model,
leading to simultaneous convergence and reducing prediction
inconsistency.

IV. EXPERIMENTS AND ANALYSIS

A. Dataset and evaluation metrics

The performance of the proposed 3D harmonic loss method
is assessed using the KITTI dataset [27] and the DAIR-V2X-I
dataset [28], both of which contain LiDAR pointcloud data
and 3D object annotations. The KITTI dataset includes 7481
training frames and 7518 test frames, which were split into
training (3712 frames) and validation (3769 frames) datasets
following the approach of previous works [6], [8], [12], [21].
Detection accuracy is evaluated using mean average precision
(mAP) with 40 recall positions and Average Orientation Sim-
ilarity (AOS) as metrics.

The DAIR-V2X dataset, as described in [28], facilitates
infrastructure-based 3D object detection experiments by pro-
viding a sub dataset called DAIR-V2X-I. This sub dataset
consists of 10,000 lidar pointcloud frames obtained from the
infrastructure side, containing annotated 3D objects (493k in
total) belonging to three categories: car, pedestrian, and cyclist.

To conduct our experiments in alignment with those in [28],
we utilize the DAIR official toolkit to convert the DAIR-
V2X-I dataset to the KITTI data format and employ the same
evaluation metrics as those used in the KITTI dataset.

B. Implementation

The experiments in this study were performed on a server
equipped with a single NVIDIA GeForce RTX 2080Ti GPU.
The KITTI dataset was used to evaluate the effectiveness
of the proposed model, and five widely used models (one-
stage detectors: PointPillar [21] and SECOND [6], two-stage
detectors: PointRCNN [8], Part-A2 [12]) and PV-RCNN [13])
were adopted as baselines. These models were re-implemented
and trained using the mmdetection3D platform [39], while
also applying the proposed 3D harmonic loss. Additionally,
the models were trained using their original training settings
and parameters.

We have named our models Harmonic PointPillar, Harmonic
SECOND, Harmonic PointRCNN, Harmonic Part-A2, and
Harmonic PV-RCNN. During the evaluation stage, we kept the
post-processing the same as the baselines. We submitted the
results of Harmonic PointPillar to the KITTI official bench-
mark for testing on the KITTI test dataset. In our assessment,
we compared the performance of our models to PointPillar
(baseline) and other models [7], [9], [11], [14], [31], [33]–[35],
[40]–[42], including two-stage lidar-based, one-stage lidar-
based, and fusion-based methods. To assess the performance
of the proposed model using the DAIR-V2X-I dataset, we
used PointPillar [21] and SECOND [6], two widely used one-
stage detectors, as baselines. We implemented our models and
baselines on the DAIR-V2X official benchmark [28] using
the original training parameters and evaluation settings. The
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TABLE I
mAP evaluation of BEV object detection on car class of KITTI validation dataset

Method Type / Modality IoU threshold: 0.7 IoU threshold: 0.5 AverageEasy Mod. Hard Easy Mod. Hard
PointPillar [21] ⋆ one-stage / LiDAR N/A 87.70 N/A N/A N/A N/A N/A
PointPillar [21] † one-stage / LiDAR 92.09 87.85 83.35 95.72 94.72 90.08 90.64

Harmonic PointPillar (Ours) † one-stage / LiDAR 94.07 88.41 85.42 95.98 94.87 92.09 91.81
∆ N/A +1.98 +0.56 +2.07 +0.26 +0.15 +2.01 +1.17

SECOND [6] ⋆ one-stage / LiDAR 89.96 87.07 79.66 N/A N/A N/A N/A
SECOND [6] † one-stage / LiDAR 93.47 88.96 86.23 96.60 95.27 92.60 92.18

Harmonic Second (Ours) † one-stage / LiDAR 95.41 89.23 86.25 98.96 95.63 94.63 93.35
∆ N/A +1.94 +0.27 +0.02 +2.36 +0.36 +2.03 +1.17

Point RCNN [8] ⋆ two-stage / LiDAR N/A N/A N/A N/A N/A N/A N/A
Point RCNN [8] † two-stage / LiDAR 94.69 88.53 88.14 97.85 94.31 94.15 92.94

Harmonic Point RCNN (Ours) † two-stage / LiDAR 94.97 88.27 88.02 98.45 94.30 94.01 93.00
∆ N/A +0.28 -0.26 -0.12 +0.60 -0.01 -0.14 +0.06

Part-A2 [12] ⋆ two-stage / LiDAR 90.42 88.61 87.31 N/A N/A N/A N/A
Part-A2 [12] † two-stage / LiDAR 92.78 89.47 88.34 96.95 94.17 94.14 92.64

Harmonic Part-A2 (Ours) † two-stage / LiDAR 95.00 90.14 88.38 97.93 95.41 94.02 93.48
∆ N/A +2.22 +0.67 +0.04 +0.98 +1.24 -0.12 +0.84

PV-RCNN [13] ⋆ two-stage / LiDAR 95.76 91.11 88.93 N/A N/A N/A N/A
PV-RCNN [13] † two-stage / LiDAR 94.53 90.69 88.62 98.05 96.23 94.38 93.75

Harmonic PV-RCNN (Ours) † two-stage / LiDAR 94.54 90.72 88.63 98.27 96.36 94.51 93.84
∆ N/A +0.01 +0.03 +0.01 +0.22 +0.13 +0.13 +0.09

⋆: reported results in paper, †: our implementation on mmdetection3D [39]. N/A: not available or not applicable. Emphases are highlighted in bold.

TABLE II
mAP evaluation of 3D object detection on car class of KITTI validation dataset

Method Type / Modality IoU threshold: 0.7 IoU threshold: 0.5 AverageEasy Mod. Hard Easy Mod. Hard
PointPillar [21] ⋆ one-stage / LiDAR N/A 77.40 N/A N/A N/A N/A N/A
PointPillar [21] † one-stage / LiDAR 87.67 76.44 73.27 95.67 94.41 89.88 86.22

Harmonic PointPillar (Ours) † one-stage / LiDAR 87.66 77.76 73.44 95.95 94.72 90.12 86.61
∆ N/A -0.01 +1.32 +0.17 +0.28 +0.31 +0.24 +0.39

SECOND [6] ⋆ one-stage / LiDAR 87.43 76.48 69.10 N/A N/A N/A N/A
SECOND [6] † one-stage / LiDAR 89.58 79.78 76.49 96.56 95.01 92.45 88.31

Harmonic Second (Ours) † one-stage / LiDAR 91.16 79.68 76.06 98.88 95.36 92.56 88.95
∆ N/A +1.58 -0.10 -0.43 +2.32 +0.35 +0.11 +0.64

Point RCNN [8] ⋆ two-stage / LiDAR 88.88 78.63 77.38 N/A N/A N/A N/A
Point RCNN [8] † two-stage / LiDAR 90.99 80.20 77.93 97.81 94.20 93.83 89.16

Harmonic Point RCNN (Ours) † two-stage / LiDAR 91.77 80.07 77.26 98.41 94.17 93.88 89.26
∆ N/A +0.78 -0.13 -0.67 +0.60 -0.03 +0.05 +0.10

Part-A2 [12] ⋆ two-stage / LiDAR 89.47 79.47 78.54 N/A N/A N/A N/A
Part-A2 [12] † two-stage / LiDAR 91.81 82.35 80.16 96.91 94.09 93.95 89.88

Harmonic Part-A2 (Ours) † two-stage / LiDAR 91.92 82.43 80.07 97.92 94.01 93.85 90.03
∆ N/A +0.11 +0.08 -0.09 +1.01 -0.08 -0.10 +0.15

PV-RCNN [13] ⋆ two-stage / LiDAR 92.57 84.83 82.69 N/A N/A N/A N/A
PV-RCNN [13] † two-stage / LiDAR 92.09 84.52 82.56 98.05 94.51 94.29 91.00

Harmonic PV-RCNN (Ours) † two-stage / LiDAR 91.91 84.54 82.44 98.21 94.66 94.41 91.01
∆ N/A -0.18 +0.02 -0.22 +0.16 +0.15 +0.12 +0.01

⋆: reported results in paper, †: our implementation on mmdetection3D [39]. N/A: not available or not applicable. Emphases are highlighted in bold.

only difference between our models and the baselines is the
adoption of the proposed 3D harmonic loss, to ensure a fair
comparison.

C. Quantitative analysis

Experimental results with thorough quantitative analysis are
reported below.

Detecting cars is a crucial aspect of Intelligent Transporta-
tion Systems (ITS) such as V2V and V2X. Our method’s
ability to detect cars was evaluated in both on-vehicle and

roadside settings, with the resulting mAP values shown in
Tab.I and Tab.II. Our proposed method outperformed the
baseline models in terms of average mAP values, particularly
in BEV detection where our models achieved significant mAP
rates (at least 0.02% and up to 2.36% better than SECOND,
and at least 0.15% and up to 2.07% better than PointPillar).
We have also submitted our Harmonic PointPillar model to the
official KITTI test benchmark (refer to Tab.III), and its high
time efficiency (as indicated in Tab.VIII) makes it a popular
choice for industrial applications. Our method has optimized
the baseline PointPillar model with an improvement of 0.82%
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TABLE III
mAP evaluation of BEV object detection on car class of KITTI test benchmark

Method Source Type / Modality Car (IoU threshold:0.7)
Easy Mod. Hard

F-PointNet [31] CVPR 2018 fusion / LiDAR+camera 91.17 84.67 74.77
PointPainting [35] CVPR 2020 fusion / LiDAR+camera 92.45 88.11 83.36

CLOCs [33] IROS 2020 fusion / LiDAR+camera 91.16 88.23 82.63
StructuralIF [34] CVIU 2021 fusion / LiDAR+camera 91.78 88.38 85.67
Point-RCNN [8] CVPR 2019 two-stage / LiDAR 92.13 87.39 82.72
PI-RCNN [40] AAAI 2020 two-stage / LiDAR 91.44 85.81 81.00
Part-A2 [12] TPAMI 2021 two-stage / LiDAR 91.70 87.79 84.61

Voxel-RCNN [11] AAAI 2021 two-stage / LiDAR 94.85 88.83 86.13
EQ-PVRCNN [41] CVPR 2022 two-stage / LiDAR 94.55 89.09 86.42

3DSSD [9] CVPR 2020 one-stage / LiDAR 92.66 89.02 85.86
Point-GNN [7] CVPR 2020 one-stage / LiDAR 93.11 89.17 83.90

TANet [42] AAAI 2020 one-stage / LiDAR 91.58 86.54 81.19
VoxSet [14] CVPR 2022 one-stage / LiDAR 92.70 89.07 86.29

PointPillar [21] CVPR 2019 one-stage / LiDAR 90.07 86.56 82.81
Harmonic PointPillar Ours one-stage / LiDAR 90.89 87.28 82.54

∆ N/A N/A +0.82 +0.72 -0.27
Results of listed works were extracted from KITTI BEV test benchmark [27] (Date: 14 August 2022). N/A: not applicable. ∆average = +0.42. Results worse
than Harmonic PointPillar (Ours) are colored in orange. Check our submitted result at https://www.cvlibs.net/datasets/kitti/eval object detail.php?&result=
cf021462bb1955480c0c5ebe6c1756545bf98566.

TABLE IV
mAP evaluation of BEV object detection on car class of DAIR-V2X-I dataset

Method Type / Modality IoU threshold: 0.7 IoU threshold: 0.5 AverageEasy Mod. Hard Easy Mod. Hard
PointPillar [21] † one-stage / LiDAR 72.01 54.39 54.40 72.40 54.50 54.50 60.36

Harmonic PointPillar (Ours) † one-stage / LiDAR 71.95 54.42 54.42 72.60 54.51 54.51 60.40
∆ N/A -0.06 +0.03 +0.03 +0.20 +0.01 +0.01 +0.04

SECOND [6] † one-stage / LiDAR 72.32 61.97 62.01 72.64 62.36 62.38 65.61
Harmonic Second (Ours) † one-stage / LiDAR 72.44 63.09 63.08 72.65 63.27 63.28 66.30

∆ N/A +0.12 +1.12 +1.07 +0.01 +0.91 +0.90 +0.69
DAIR-V2X benchmark [28] does not offer the evaluation results of BEV object detection. All models † are from our implementation on DAIR-V2X dataset
[28]. Emphases are highlighted in bold.

TABLE V
mAP evaluation of 3D object detection on car class of DAIR-V2X-I dataset

Method Type / Modality IoU threshold: 0.7 IoU threshold: 0.5 AverageEasy Mod. Hard Easy Mod. Hard
PointPillar [21] ⋆ one-stage / LiDAR N/A N/A N/A 63.07 54.00 54.01 N/A
PointPillar [21] † one-stage / LiDAR 71.33 54.07 54.08 72.30 54.50 54.50 60.13

Harmonic PointPillar (Ours) † one-stage / LiDAR 71.30 54.15 54.15 72.57 54.51 54.51 60.20
∆ N/A -0.03 +0.08 +0.08 +0.27 +0.01 +0.01 +0.07

SECOND [6] ⋆ one-stage / LiDAR N/A N/A N/A 71.47 53.99 54.00 N/A
SECOND [6] † one-stage / LiDAR 71.14 53.92 53.93 72.61 62.29 62.31 62.70

Harmonic Second (Ours) † one-stage / LiDAR 71.57 54.12 54.13 72.63 63.28 63.28 63.17
∆ N/A +0.43 +0.20 +0.20 +0.02 +0.99 +0.97 +0.47

⋆: reported results on DAIR-V2X benchmark [28]. †: our implementation on DAIR-V2X dataset [28]. N/A: not available or not applicable. Emphases are
highlighted in bold.

on Easy samples and 0.72% on Moderate samples, with only
a 0.27% decrease on Hard samples. However, due to our
method’s focus on balancing and harmonizing the gradient
from different parts, the classification confidence for hard
samples is usually low, as they typically consist of very sparse
points scanned from objects, leading to a drop in mAP due
to suppression of the regression part. Furthermore, extremely
hard samples, such as outliers, can adversely affect the model’s
stability due to their large gradient variance.

The evaluation results for the DAIR-V2X-I dataset are
presented in Table IV and Table V. Our model has achieved
the average improvement of at least 0.04% and at most 0.69%.
As the majority of current 3D car detection models based on
LiDAR were developed and tested from an on-vehicle LiDAR
perspective, our future work will focus on developing more
effective 3D detection techniques specifically tailored for on-
infrastructure LiDAR.

Direction estimation: The performance of 3D direction
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Fig. 5. Qualitative analysis of inconsistent/consistent 3D detection. For better view, the results are in BEV visualization (zoom in for detail check). PointPillar
(baseline) [21] suffers from inconsistency problem in 3D detection, while Harmonic PointPillar (Ours) shows a great robustness on keeping predictions
consistent.

is evaluated using the average orientation similarity (AOS)
index. Tab.VI presents the AOS evaluation results for different
IoU thresholds (0.7 and 0.5). A higher AOS value indicates
better direction estimation for 3D objects. Our proposed model
achieved an average improvement of 0.14% from PV-RCNN
to Harmonic PV-RCNN, 0.26% from PointPillar to Harmonic
PointPillar, and 0.76% from SECOND to Harmonic SECOND.
Specifically, our proposed strategy significantly improved the
performance of vanilla models on easy-level objects (improve-
ment ranging from at least 0.23% to up to 1.99% under 0.7
IoU threshold, and at least 0.22% to up to 1.76% under 0.5
IoU threshold) and hard-level objects (improvement ranging
from at least 0.16% to up to 1.52% under 0.5 IoU threshold).
These results demonstrate that our proposed method can more
accurately estimate the direction of objects.

Vulnerable road users detection: In addition to car de-
tection, detecting vulnerable road users such as pedestrians
and cyclists is essential for enhancing the security monitoring
capabilities of V2X applications. Based on our observations
and analysis, the scanned pointcloud shapes of pedestrians and
cyclists are more irregular with varying postures, which poses
a significant challenge for optimizing the detection models.
Tab.VII presents a comparison of mAP scores for detecting
pedestrians and cyclists using the official 0.5 IoU threshold.
Our proposed method achieved better synchronous learning
rates for classification, localization, and direction estimation
(related to object shape). Compared to the base models, our
method significantly improved the accuracy of pedestrian and
cyclist detection, with maximum mAP improvements of 1.39%
and 0.49%, respectively. These results demonstrate that our
proposed method is highly reliable in promoting the 3D

TABLE VI
Average Orientation Similarity (AOS) evaluation of one-stage 3D/BEV

object detection on car class of KITTI validation dataset and KITTI test
benchmark

Method IoU threshold: 0.7 IoU threshold: 0.5
Easy Mod. Hard Easy Mod. Hard

PV-RCNN [13]⋄ 97.96 94.32 93.82 98.17 96.62 94.42
Harmonic PV-RCNN (Ours)⋄ 98.19 94.34 93.86 98.41 96.78 94.58

∆ +0.23 +0.02 +0.04 +0.24 +0.16 +0.16
SECOND [6]⋄ 96.27 92.13 88.94 96.50 94.95 91.84

Harmonic SECOND (Ours)⋄ 98.26 92.00 88.56 98.69 94.77 93.36
∆ +1.99 -0.13 -0.38 +1.76 -0.18 +1.52

PointPillar [21]⋄ 95.31 91.42 86.51 95.71 94.38 89.33
Harmonic PointPillar (Ours)⋄ 95.66 91.33 86.21 95.93 94.28 90.83

∆ +0.35 -0.09 -0.30 +0.22 -0.10 +1.50
PointPillar [21]∗ 93.84 90.70 87.47 N/A N/A N/A

Harmonic PointPillar (Ours)∗ 94.23 90.78 87.42 N/A N/A N/A
∆ +0.39 +0.08 -0.05 N/A N/A N/A

⋄: results on KITTI validation dataset. ∗: results on KITTI test benchmark.
N/A: not applicable. Emphases are highlighted in bold.

detection of vulnerable traffic objects.

TABLE VII
mAP evaluation of 3D object detection on pedestrian/cyclist class of KITTI

validation dataset

Method 3D Pedestrian 3D Cyclist
Easy Mod. Hard Easy Mod. Hard

SECOND [6] 61.59 54.27 48.03 83.52 65.04 60.98
Harmonic SECOND (Ours) 62.41 55.46 48.93 83.78 64.90 61.07

∆ +0.82 +1.19 +0.90 +0.26 -0.14 +0.09
PointPillar [21] 52.49 46.47 41.52 75.94 59.19 55.89

Harmonic PointPillar (Ours) 52.31 46.31 41.33 77.33 60.49 56.48
∆ -0.18 -0.16 -0.21 +1.39 +1.30 +0.59

Results are from our implementation on mmdetection3D [39]. IoU threshold:
0.5. ∆average = +0.49. Emphases are highlighted in bold.

Time efficiency of 3D detection matters in V2X applica-
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tions. Fast 3D detection models are necessary for roadside
units (RSUs) to capture vehicle signals in real-time. Tab.VIII
presents a runtime comparison of various state-of-the-art 3D
detectors. On average, our proposed method, like PointPillar
[21], is at least 1.5 times faster than other methods since
it works as a training optimizer and does not cause delays
in detection inference. This measurement confirms that our
method is highly time-friendly. Time efficiency of 3D detec-
tion matters in V2X applications.

TABLE VIII
Average runtime comparison of 3D/BEV object detection

Method Source Type / Modality Speed (Hz)
Point-RCNN [8] CVPR 2019 two-stage / LiDAR 2.7

Part-A2 [12] TPAMI 2021 two-stage / LiDAR 9.5
CenterPoint [17] CVPR 2021 two-stage / LiDAR 39.2

SECOND [6] Sensors 2018 one-stage / LiDAR 18.0
3DSSD [9] CVPR 2020 one-stage / LiDAR 10.9

Point-GNN [7] CVPR 2020 one-stage / LiDAR 3.3
TANet [42] AAAI 2020 one-stage / LiDAR 29.4
VoxSet [14] CVPR 2022 one-stage / LiDAR 24.2

PointPillar [21] CVPR 2019 one-stage / LiDAR 43.1
Harmonic PointPillar Ours one-stage / LiDAR 43.1

Inference speed was tested on Pytorch with single GPU 2080Ti.

D. Qualitative analysis

Visualized results along with detailed qualitative analysis
are presented below, depicting the overall performance of 3D
detection.

Overall performance: A comparison of the overall per-
formance is illustrated in Fig.4. In Fig.4(a) and Fig.4(d), the
Harmonic PointPillar model outperforms the baseline model
(PointPillar) in terms of localization accuracy. On the other
hand, in Fig.4(b) and Fig.4(c), our model detects more valid
objects, which were missed by the baseline models. Addition-
ally, our model has a lower false positive (FP) ratio than the
baseline model in all example frames.

Dealing with inconsistency problem: To further confirm
the effectiveness of the proposed method in resolving inconsis-
tency issues in 3D detection, we present a more detailed qual-
itative visualization in Fig.5, where viewers can zoom in for
a closer inspection. The baseline model (PointPillar) failed to
predict the targets in all example frames due to inconsistency
between classification and localization. In contrast, our model
demonstrated remarkable robustness in maintaining consistent
3D detection, resulting in the most accurate predictions in all
example frames. This confirms that our method can construct
a task-consistent 3D detector.

E. Simulations on realistic deployment

We utilized our previous experience with PyTorch-style
Harmonic PointPillar [26] to convert it into TensorRT-format
for deployment. The converted model was deployed on Jetson
Xavier TX using float16 quantization techniques, and the same
experiments as on PC were conducted. The results show a
notable 2x-speed improvement (75.4Hz on Jetson Xavier TX
vs 43.1Hz on PC Single 2080Ti) with at most a 1% mAP drop.

The Jetson results demonstrate that our proposed method is
feasible for edge orchestration due to its consistent, continuous
trade-off between time efficiency and model accuracy with low
energy consumption. Fig.6 presents a qualitative example of
on-infrastructure detection using TensorRT-format Harmonic
PointPillar on Jetson Xavier TX.

Fig. 6. Qualitative example of on-infrastructure LiDAR-based 3D object
detection (detection results (blue bboxes) are made by our proposed method:
Harmonic PointPillar).

V. CONCLUSION

In this paper, we propose a method to address the incon-
sistency problem in 3D object detection and achieve better
results compared to state-of-the-art methods. Our simula-
tions demonstrate that our proposed method is effective in
strengthening V2X frameworks. We first analyze the causes of
inconsistency among classification, localization, and direction
estimation and derive theoretical and mathematical solutions.
Second, we introduce the 3D harmonic loss function, which
effectively resolves the inconsistency problem in the point
cloud domain and achieves higher mAP with a deployment
speed of 75.4 Hz, surpassing baseline models. Mathematical
derivatives are provided to support the effectiveness of our
proposed loss mechanism. Our comprehensive experiments
demonstrate that our proposed method significantly improves
detection accuracy without incurring extra inference time cost.
In the future, we plan to focus on improving on-infrastructure
detection.
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