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Abstract

Due to low cost and high mobility, drones are considered important in emergency

communications. In this thesis, we consider a unique drone assisted emergency

communication system used in disaster scenarios, where the drone with limited

power acts as a relay to improve the downlink sum rate through rational resource

allocation. The wireless channel model between drones and ground users in emer-

gency communications is different from conventional relay networks, while drones

have their coverage area and data rate limits. Considering these specific character-

istics, we formulate a joint power and subcarrier allocation problem to maximize

data rate of users, which is limited by the transmit power budget per drone and

the number of users on each subcarrier in emergency communications.

However, resource allocation in a unique drone assisted emergency communi-

cation system is a nondeterministic polynomial time (NP)-hard problem requiring

brute force search, which has prohibitive computational complexity. Instead, ef-

ficient algorithms that provide a good trade-off between system performance and

implementation practicality are needed.

The contributions of this thesis are proposing two different resource alloca-

tion schemes. Both schemes divide users into high-priority(HP) users and low-

priority(LP) users and both guarantee minimum guaranteed rate for HP users.
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The first scheme is an adaptive algorithm with low complexity. In this scheme,

a suboptimal solution is proposed by dividing users into two priority groups: HP

users (rescuers) and LP users (affected people). This procedure achieves quasi-

linear complexity in terms of the number of users. Finally, the data of the brute

force search method and this method were collected through simulation experi-

ments. The data shows that the data rate of the proposed scheme was very close

to the optimal data rate when there was a lack of resources.

The second scheme is an adaptive algorithm. In the proposed scheme, we for-

mulate a joint power and subcarrier allocation problem to maximize data rate of

users, which is limited by the transmit power budget per drone and the number of

users on each subcarrier in emergency communications. Due to the intractability

of the formulated problem, it is decomposed into two sub-problems: power allo-

cation optimisation and subcarrier allocation optimization. Then a joint resource

allocation algorithm is proposed. The simulation results show that the perfor-

mance of the proposed method is close to that of the optimal solution but with

much lower complexity.
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Chapter 1

Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Low-Complexity Subcarrier Allocation of Drone-Aided . 9

1.3.2 Resource Allocation in Drone-Aided Emergency Com-

munications . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . 11

1.1 Motivation

Large-scale natural disasters cause massive and often unpredictable loss of lives

and property. Various types of natural disasters have resulted in the loss of many

lives, such as geophysical (earthquakes, tsunamis, volcanic eruptions, landslides

and avalanches), hydrological such asflash floods, debris flows and floods, clima-
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tological (extreme temperatures, droughts and forest fires) and meteorological

(tropical storms, hurricanes, sandstorms and heavy rains).

The number of deaths from natural disasters can vary greatly from year to year.

In some years, there are very few fatalities from a large disaster event that may

claims many lives. Looking at the average over the last ten years, approximately

60,000 people worldwide died each year from natural disasters. This is equivalent

to 0.1% of global deaths[1]. In the visualizations shown here, we can see the annual

fluctuations in the number and proportion of deaths from natural disasters over

the past decades.

In many years, the number of deaths can be very low - often less than 10,000

and accounting for only 0.01% of total deaths. But we also see the devastating

impact of shocking events: the famine and drought in Ethiopia in 1983-85, the In-

dian Ocean earthquake and tsunami in 2004, Cyclone Nargis that struck Myanmar

in 2008, and the Port-au-Prince earthquake in Haiti in 2010, all of which pushed

the number of deaths from disasters worldwide to over 200,000[3].

When disaster strikes, the survival rate is 90% within 24 hours, 50%-60%

between 25 and 48 hours and 20%-30% between 49 and 72 hours. The most

important thing is to save lives after a disaster. In this context, the first 72 hours

after a disaster are the most critical time to find survivors [3][4]. This means that

search and rescue operations (SAR) must be carried out quickly and efficiently.

With the increase in the number of natural disasters, material losses caused by

such disasters have also increased in the order of 100%-150% between 1980 and

2015 [1]. Figure 1.1 shows that the total number of disasters increased by almost

100 percent between 1980 and 2010 in the world.

2
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Figure 1.1: Number of natural catastrophes worldwide [2]

In the golden period of rescue, a good communication system is a great help for

the search and rescue operations of the rescue team. However, natural disasters

such as earthquakes and tsunamis often lead to a complete paralysis of the existing

communication infrastructure, resulting in the loss of contact between rescue teams

on the ground. When rescue teams lose contact with each other, their effectiveness

drops drastically. To ensure communication between the search and rescue team

and survivors so that they know in time in which areas survivors are waiting for

rescue. Therefore, the quick deployment of an adaptable and efficient emergency

communication network is essential. In emergency communications, it is also

important to ensure the communication sustainability of rescue teams, so that the

survivors can be rescued in time. In this regard, drones can be rapidly deployed

to fulfill the vital needs of emergency communications [5]−[7].
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In the nineteenth century, drones were originally developed for military tasks

that were too ”tedious, dirty or dangerous” [3] for humans. In the twenty-first cen-

tury, unmanned aerial vehicles or drone communications are new areas of research

that can be used in both military and civilian applications. Drone communication

maintains links between drones and a ground station at an appropriate data rate

to amplify real-time transmissions. The infrastructure for drone communications

must ensure high throughput, long range and enhanced coverage. Drones can be

configured to provide cooperative services and extend the coverage network by act-

ing as relays in traditional networks. The degree of mobility of a drone depends

on the application and its flight configurations. The maneuverability of drones

offers incipient opportunities for performance enhancement through dynamic ad-

justment of its states to best suit the communication environment.

Communication networks and strategies for cooperative drone swarms have

received significant attention in recent years. Currently, the main emergency re-

sponse mechanisms of Unmanned Aerial Vehicles (UAV) are classified as follows:

A. Aeronautical Remote Sensing Based on remote sensing technology, teleme-

try and remote control technology, wireless communication technology and dif-

ferential GPS positioning technology, UAVs can realize automatic, intelligent and

specialized acquisition and processing in real time, which meets the emergency

decision-making requirements for mission command. Depending on the operating

principle of the payloads, airborne remote sensors can be divided into those with

visible light, tilt-photography, infrared, laser pan-tilt-zoom (PTZ), dual-light, lidar

and miniature synthetic aperture radar [3].

B. Other Perceptive Sensors General purpose sensors, such as gas detection

4
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sensors, particulate matter concentration sensors, temperature and humidity de-

tection sensors, are used to monitor the composition of gas pollutants, particulate

matter concentration and other values of the airspace in emergency response sce-

narios. Meteorological payloads can be mounted to monitor wind speed, wind

direction, temperature, humidity, precipitation and air pressure in emergency

scenarios to meet the technical requirements for multi-dimensional information

perception and application [8].

C. Supply Delivery The payload delivery thrower can help perform tasks such

as supply delivery and rescue assistance. With the aiming function, it can accu-

rately deliver supplies. In addition, by using the multi-time throwing function, the

payload delivery thrower can deliver supplies separately within one flight, thereby

further improving the rescue efficiency [8].

D. Emergency Rescue Support Payloads customized for on-site rescue needs

and with equipment for communication relay, emergency lighting, drug spraying

and other rescue support can be used to acquire on-site information and enable

communication relay, night lighting and large-scale full-coverage spray in emer-

gency response scenarios [5].

Due to advances in communication, embedded systems, sensor and energy

storage technologies as well as carbon fiber-reinforced plastic materials, small scale

UAVs became a feasible sensor platform. With a diameter below 1 m and less

than 1 kg weight, those platforms are also known as Micro UAVs (MAV, MUAV).

MUAVs can be equipped with a variety of sensors and steered to a region of interest

for remote sensing without risking health and life of first responders in dangerous

environments.

5
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On the other hand, the mobility of drones enables the construction of highly

efficient network topologies. Therefore, self-organisation capabilities such as node

and relay placement, connectivity restoration, RF signal failure protection and

compensation can be exploited to operate UAV teams in highly dynamic and

complex environments [9].

For these reasons, drones play an important role in distributing critical infor-

mation at the edge of the network and are also an aid in establishing long-term

evolution networks in remote locations. In recent years, many researchers have

focused on the various aspects of drone communication. In fact, drones are fast

becoming the tool of choice for disaster relief around the world. Not only is drone

technology more affordable and accessible than it used to be, it is often more

effective in dealing with disasters than other methods currently in use.

1.2 Challenges

For the reasons mentioned in section 1.1, the use of unmanned aerial vehicles

(drones) for various civil and military applications has experienced tremendous

growth in recent years. Applications of drones include industrial inspection, re-

mote sensing, precision agriculture, structural analysis, aerial photography and

earth monitoring, to name a few [3], [4]. In addition, drones are expected to be

an integral part of future wireless networks by expanding network coverage and

data rate through the use of drones as mobile base stations. However, drones

usually have limited computing and power resources due to their size and weight.

Therefore, such systems should be equipped with highly efficient communication

designs to meet these stringent requirements. To achieve this goal, it is necessary

6
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to address some further research challenges so that drones can be better applied

to emergency communication networks.

In previous work, such as [10], the authors proposed a trajectory planning and

resource allocation method for multiple drone cells based on hierarchical deep rein-

forcement learning to maximize the cumulative network throughput while ensuring

fairness or satisfaction among users. fairness requirements of users. However, it

does not take into account that in a post-disaster scenario, there are rescuers as

well as normal users. In this scenario, the minimum guaranteed rate of the res-

cuers must be guaranteed. In practice, for example, the minimum guaranteed rate

is needed for each rescuer. Therefore, in this thesis, users are divided into different

priorities to deal with the different user groups in real scenarios.

Moreover, in [11], exploiting the Rician fading of the AG channel model, the

problem is formulated as a joint optimization of power and subcarrier allocation

to maximize the uplink throughput. At the same time, the thesis also satisfies

the users’ fairness requirements. However, the power and subcarriers that can be

provided by UAVs in emergency communications affect the minimum guaranteed

rate that drones can provide to emergency responders in emergency communica-

tions networks. Therefore, this thesis does not consider satisfying the minimum

guaranteed rate of rescuers while ensuring fairness between users.

However, none of the above researches considered that in disaster scenarios it

is necessary to guarantee the minimum guaranteed rate, e.g. the minimum guar-

anteed rate, for a specific group of users, i.e. rescuers. It would also be important

to reveal how the communication performance of other non-rescuer users would

be affected when the minimum guaranteed rate is provided to the rescuers. In

7
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summary, there is a need for novel resource allocation schemes in emergency com-

munications that are capable of achieving near-optimal performance in a practical

and simplified manner. In this thesis, a novel resource allocation scheme is pre-

sented that provides near-optimal performance considering various priority users.

Resource allocation in multicarrier systems requires joint optimization of sub-

carrier allocation and power allocation. However, many formulations of the re-

source allocation problem lead to a mixed-integer, non-deterministic NP-hard

problem. Therefore, the optimal solution can only be found by exhaustive search,

which is a combinatorial optimization problem. One approach to selecting the

best set of users is brute force search, i.e. search over all possible combinations of

users. Then select the one that provides the maximum data rate on each subcar-

rier. However, this causes prohibitive computational complexity. Therefore, it is

necessary to investigate how to reduce the computational complexity of resource

allocation in multicarrier systems, while achieving a performance close to optimal.

To solve the high complexity problem, subcarrier allocation and power allocation

are solved separately. This leads to a practical and efficient suboptimal solution.

In summary, this thesis proposes a new resource allocation method that provides

near-optimal performance with lower computational complexity.

1.3 Contributions

Despite the many possibilities that drones offer for emergency communications,

much work is still needed to promote specific emergency scenarios. Other re-

search programmes are mostly inadequate and focus mainly focus on two aspects.

Firstly, the complexity of the system is too high, so that it cannot be realized

8
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in reality. Secondly, research into emergency communication systems does not

take into account the differences between aid rescuers and disaster victims. Fur-

thermore, it has not yet been proposed to improve the performance of emergency

communication and reduce the complexity of implementation in specific scenarios.

The contributions presented in this thesis are two new resource allocation

schemes. First, the subcarrier allocation algorithm is a very low-complexity sub-

carrier allocation and the algorithm achieves a user data rate close to the result of

the brute force search algorithm under drone transmit power and subcarrier con-

ditions. Second, a novel resource allocation scheme is presented that can achieve

near-optimal performance with low computational complexity. These are summa-

rized below.

1.3.1 Low-Complexity Subcarrier Allocation of Drone-Aided

In this work, an adaptive resource allocation algorithm is proposed. Besiding tar-

geting to maximize the system data rate, a minimum data rate threshold for the

rescuers in the system is introduced as a constraint to be satisfied by the resource

allocation. Then, along with the consideration of limited transmit power of a

drone, an optimization problem is formulated. Due to the non-convex property of

the optimization problem, the brute force algorithm is a straightforward solution.

However, its complexity is very high, which increases exponentially with the num-

ber of subcarriers in the system. Therefore, a sub-optimal solution is proposed in

this chapter, by dividing the users in the system into two categories, high priority

(rescuers) and low priority (normal) users. Then, subcarrier and power allocation

are carried out for the high priority (HP) and low priority (LP) users, separately.

9
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It has been shown that the complexity of the proposed scheme is much less than

the optimal brute force solution. Simulation results demonstrated that the per-

formance of the proposed resource allocation scheme is close to the optimal one

when the total transmit power of a drone is not very high.

1.3.2 Resource Allocation in Drone-Aided Emergency Com-

munications

So far, no research has been focused on disaster scenarios, which must guarantee

the minimum guaranteed rate, e.g. the minimum guaranteed rate requirement of

each rescuer. Meanwhile it is important to reveal how the rate performance of

other non-rescuer users would be affected, when the minimum guaranteed rate is

provided to the rescuers. Therefore, in this chapter, the users in the drone-assited

OFDMA based emergency network include both HP users representing rescuers,

and LP users representing non-rescuers. The drone-assisted resource allocation

problem is then formulated with the objective of maximizing the system data rate

while ensuring the minimum guaranteed rate for HP users with limited trans-

mit power of the drone. Due to the non-convex property introduced by multiple

priorities and integer constraints, the complexity of solving the formulated opti-

misation problem is extremely high. For example, the complexity of the optimal

brute force search solution increases exponentially with the number of subcarriers

and the number of users in the system.

Therefore, in this work, an adaptive and low complexity algorithm is proposed,

which divides the resource allocation into two stages: subcarrier allocation and

power allocation by dividing the user priorities. At the first step, with fixed

10
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power allocation, subcarrier allocation is carried out by guaranteeing the data

rate constraints of HP users. Then, power allocation is performed by iteratively

applying waterfilling algorithm for some individual HP users and globally among

other users.

1.4 Structure of the Thesis

The rest of this thesis is organized as follows.

• Chapter 2 offers an overview of the basic principles of OFDMA technique

and waterfilling algorithm.

• Chapter 3 presents research on resource allocation in drone-based emergency

communication systems. An improved subcarrier allocation algorithm is

developed that maintains the minimum guaranteed rate for HP users, and

then optimization is used to try to maximize the total user data rate of

drones with limited power.

• Chapter 4 proposes a low-complexity adaptive algorithm that divides re-

source allocation into two stages: Subcarrier allocation and power allocation

considering user priorities. In the first stage, with fixed power allocation,

subcarrier allocation is performed guaranteeing the data rate constraints of

HP users. Then, power allocation is performed by iteratively applying the

waterfilling algorithm for some individual HP users and globally for all other

users. The simulation results have shown that the performance of the pro-

posed method approaches the optimal solution with much lower complexity.

• Finally, in chapter 5, a summary of the work done in this thesis is given and

11
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the main conclusions are highlighted. In addition, possible future research

directions are discussed.

12



Chapter 2

Literature Review

Contents

2.1 Resource Allocation of Drone in Emergency Commu-

nication Networks . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 The Impact of Other Factors on Drone. . . . . . . . . . 17

The joint optimization of subcarrier assignment and power allocation in multi-

carrier systems normally leads to a mixed-integer problem, which was NP-hard

[12] and it is, therefore, intractable. Hence, the optimal solution can only be found

through brute force search method, which is a combinatorial optimization prob-

lem. One approach to select the best signal-to-noise ratio (SNR) user set on each

subcarrier is to search over all possible combinations of users, then select the pair

that optimizes a given system optimization parameter, such as the minimize the

transmit power or maximize the system throughput. However, exhaustive search

procedures require a computational complexity that is too large for implementa-

tion in practical systems. A more practical approach to solving the joint problem

of user pairing and power allocation in multicarrier is to separate the problems of
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subcarrier allocation and power allocation, fix one of them and optimize the other

[13]. This leads to suboptimal but practical and efficient solutions that provide a

better trade-off between implementation complexity and system performance.

The main focus of this literature review is the study of existing works related

to, first, resource allocation of drone in emergency communication networks, and

second, the impact of other factors on drone.

2.1 Resource Allocation of Drone in Emergency

Communication Networks

Existing researches have been carried out to investigate drone based orthogonal

frequency division multiple access (OFDMA)[14][15] systems with the focus on im-

proving the coverage area and system data rate for communication recovery from

disasters [12][16]−[19]. In drone-based emergency communications using OFDMA

[12], users on the ground are scattered over a large area, so a drone cannot cover

the entire area. Due to the large distance between users, one channel is bad for

one user but may be good for others. Therefore, there are a novel resource allo-

cation scheme that considers the bit error rate (BER) requirements for different

types of packets in a data stream and increases the spectral efficiency of wireless

communication devices [11, 12]. Thus, the performance of drone-based emergency

communications can be significantly improved by resource allocation. In [16], the

relationship between drone’s coverage and reliability of all communication links

was analyzed in a disaster-resilient communication network. In [17], the drone is

studied the optimal height for maximizing its effective coverage area. Consider-
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ing high-mobility users, it is proposed a multi-drone cell trajectory planning and

resource allocation scheme based on hierarchical deep reinforcement learning to

maximize the accumulative network throughput while providing fairness among

users or satisfying users’ fairness requirement[18]. In [19], the number of users

are maximized for downlink channel allocation in communication networks. In

[20] authors propose a new balanced resource scheduling scheme with adaptive

priority threshold to strike an excellent balance between quality of service (QoS)

guarantee and system throughput for downlink transmission in OFDMA systems.

The authors in [21] focus on a cellular network where the drone is used as a

relay by all users to improve their individual uplink rates. The problem of power

allocation and scheduling in the uplink is studied, and optimal solutions for both

AF and decode-and-forward (DF) protocols are derived to optimize the uplink

sum rate. The authors in [22] study the problem of throughput maximization

in mobile relaying systems using drones by optimizing the transmit power of the

source/relay along with the trajectory of the drone considering practical mobility

constraints. In [11], exploiting the Rician fading of the AG channel model, a joint

subcarrier and power allocation algorithm is presented to solve the resource allo-

cation problem of OFDMA uplinks in UAV-assisted emergency communications.

The subcarriers can be allocated to the users according to the optimal solutions

to maximize the uplink throughput.

Moreover, other related work focus on the relationship between throughput

and drone positioning. For example, in [23], compared to the use of conventional

terrestrial infrastructures, such as ground relays, aerial relay-assisted communica-

tions provides an effective way to extend the mm-wave transmission range, provide
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better signal quality and increase the data rate between two or more terrestrial

nodes in the mm-wave bands. This is simply because placing UAVs at high al-

titude could effectively bypass the obstacles on the ground and they are more

likely to have LoS links and thus better channel gain. Another work in the field

of drone-based scenarios is [24], which studied the problem of maximizing end-to-

end cooperative throughput for a network of UAV-enabled simultaneous wireless

information and power transfer, in order to analyze drone position/height and

throughput.

In [25], UAVs are assumed to be distributed in a 3D space below a certain

altitude. The authors investigate spectrum sharing and analyze the success prob-

ability and total network throughput of a UAV-enabled network modeled by a 3D

PPP. In [26], the authors proposed to optimize the trajectory of multiple UAVs.

They formulated a mixed-integer non-convex optimization problem in which multi-

user communication scheduling and association are jointly optimized with drone

cell trajectory and power control to maximize the minimum downlink throughput

for users on the ground. The work in [27] investigated the optimal deployment

of UAVs and the association of UAV users for static ground users with the aim

of meeting user requirements for data rate. In [28], take a UAV as a flying base

station for serving ground users in order to achieving maximum throughput per

user, by jointly optimizing the transmit power and the UAV path.

In [29], take a UAV as a flying base station for serving ground users in order

to achieving maximum throughput per user, by jointly optimizing the transmit

power and the UAV path. In [30], authors have focused on sum power minimiza-

tion by optimal user allocation, power control, location planning, and computation
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capacity allocation. Their proposed bandwidth allocation strategy allocates avail-

able bandwidth to each user for data transmission. In [31] authors have proposed

joint optimization of transmit power of UAV, location of UAV, and bandwidth

allocation problem to maximize the rate of D2D pair for a downlink UAV aided

communication system.

2.2 The Impact of Other Factors on Drone.

Systems based on the instantaneous position of the user assume that the locations

of users on the ground are known. Based on such advance information, many

drone deployment and association schemes have been investigated. For instance,

from the point of view of reducing the power consumption of drones, the authors

in [32] propose a mathematical solution to find the optimal position of a single

drone to maximize its coverage area considering energy constraints.

Previous work assumed wireless links between a drone cell and a ground node,

such as mmWave communications and Free Space Optics (FSO). However, insta-

bilities in the air can degrade the communication quality of wireless links. The

authors in [33] consider a set of drones with FSO transceivers, while an FSO

backhaul is provided to each drone via FSO air-to-air links. The results show

that higher backhaul data rates can be achieved compared to a terrestrial-only

infrastructure solution.

In addition, other related work focus on the problem of drone positioning in

mobile networks. For instance, because drone positioning has negatively affected

network performance in terms of throughput, coverage, connectivity and revenue.

In [33], the authors have presented a multi-tier drone cellular network that appre-
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hends the terrestrial heterogeneous network. The authors attempt to find the best

position of multiple drones analytically. The UAV-assisted wireless networks pose

a particular design challenge due to the altitude dimension and the mobility of

the aerial base stations. In particular, the 3D deployment of the UAVs is arguably

the most influential design consideration as it directly affects the coverage, QoS

and energy consumption of the network. Therefore, the authors in [34] attempt

to find the optimal height of the drone for maximum coverage.

In addition, the work in [35] surveys network architectures for different scenar-

ios, using DSCs for disaster management. In [36], the author proposed a framework

for drone-assisted emergency communication networks with or without a terres-

trial base station and also optimized the trajectory of the DSC in both scenarios.

In [37], an air-to-ground (A2G) pathloss model is developed for low altitude

platforms including drone cells. A closed-form expression of the A2G pathloss

model is proposed, in which the probabilities of both LoS and non-line-of-sight

(NLoS) A2G connections are considered in different scenarios. The mathematical

model was able to predict the optimal height of Low Altitude Platforms based on

the statistical parameters of the underlying urban environment. In their exten-

sion work, the authors presented a model in [38] describing the path loss function

associated with depression angle and the coverage area under the UAV based on

extensive experimental measurements with vehicles and UAVs in suburban envi-

ronments. The model indicates a trade-off in channel performance as the vertical

angle between the drone cell and the BS increases. Using the Pathloss model in

[37], some researchers focus on exploring the optimal drone-cell deployment that

maximizes specific performance metrics.
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In [39], a novel approach is proposed for deploying multiple mobile drones

for energy-efficient uplink data collection from mobile ground-based Internet-of-

Things (IoT) devices and placing drone cells to maximize information gain from

ground-based IoT devices. The authors propose a holistic framework that deploys

drone cells to assist 5G networks in high-traffic scenarios and develop a ”first-selfish

and second-share” approach for deploying drone cells [40]. The 3D placement

problem is formulated in [41] for a single drone cell as a mixed-integer nonlinear

programming (MINLP) problem and solve it using a bisection search algorithm.

In [42], the use of multiple drone cells is further investigated and the minimum

number of drone cells for a given coverage constraint by using the particle swarm

optimisation (PSO) algorithm. An algorithm for optimal placement of drone cells

that maximises the number of users served with minimum power consumptions

was designed. In this way, the drone-cell deployment problem is decoupled in the

vertical and horizontal dimensions and solved respectively.

In summary, current research in emergency communications system focuses

mainly on the following three aspects.

1. Serving more users or maximizing cumulative network throughput by study-

ing the location and trajectory of drones.

2. Proposing a new resource allocation scheme to allocate resources to users

to maximize user throughput.

3. Power minimization is achieved through optimal user allocation, power

control and computational capacity allocation.

The research direction of this paper is to maximize user data rate by proposing

a new resource allocation scheme. The studies presented in the previous litera-
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ture had two unavoidable shortcomings. First, although the performance of these

research schemes is excellent, their complexity is very high, so their resource al-

location schemes cannot achieve real-time resource allocation under emergency

communication conditions. Second, these research programmes do not take into

account the different resource allocation priorities resulting from different person-

nel in a disaster-affected environment.

Therefore, the improvements in this thesis are about the following three points.

1. Different categories of users will be prioritised to reflect the actual personnel

and environment.

2. The proposed scheme will consider the situation of insufficient power and

resources of drones.

3. To implement the scheme in the emergency communication environment, a

low complexity scheme is proposed.
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Due to their low cost, high mobility and flexibility, drones are expected to

make an important contribution to mobile wireless communications as relays.

They have evolved dramatically in cellular networks, mobile relaying systems and

emergency communications where infrastructure has been damaged by natural dis-
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asters or, worse, is non-existent [3]. In drone-based emergency communications,

using OFDMA, users on the ground are scattered over a large area, so a single

drone cannot cover the entire area of interest. Due to the long distance between

users, one channel may be bad for one user but good for others. Therefore, the

performance of drone-based emergency communications can be greatly improved

by allocating resources [16].

For power allocation, most previous work assumes equal sharing between sub-

carriers. For multiple-access channels, the information-theoretic foundations were

laid by Cheng and Verdú [43], who studied the data rate ranges for multiple-access

channels and found a generalisation of the waterfilling theorem for single users. In

a waterfilling power spectrum, more power is allocated to better subcarriers with

higher SNR so that the sum of data rates in all subchannels is maximised, where

the data rate in each subchannel is related to the power allocation by Shannon’s

Gaussian data rate formula below [44]:

γ = Blog(1 +
S

N
) (3.1)

where γ denotes channel data rate. S is represents the received signal power over

the bandwidth B and N is the power of background noise.

However, since data rate is a logarithmic function of power, the data rate is

usually insensitive to the exact power allocation unless the SNR is low. This

motivates the search for simpler power allocation schemes that operate close to

the optimum [5]. For this reason, system performance is expected to improve by

applying the waterfilling principle for subcarrier and user power allocation. Below

is a brief overview of Shannon’s theorem, OFDMA and waterfilling technologies.
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The rest of this chapter is structured as follows. The related Shannon’s theorem

is summarised in section2.1 and the basic principles of OFDMA are summarised

in section 2.2. Section 2.3 presents the theoretical foundations of waterfilling with

multicarrier systems.

3.1 Shannon’s theorem

In information theory, Shannon’s theorem states the maximum rate at which infor-

mation can be transmitted over a communication channel with a given bandwidth

in the presence of noise. It is an application of the noisy channel coding theorem to

the archetypal case of a continuous-time analogue communication channel subject

to Gaussian noise. The theorem establishes Shannon’s channel capacity for such

a communication link, a limit on the maximum amount of error-free information

per unit time that can be transmitted with a given bandwidth in the presence

of the noise interference, assuming that the signal power is limited and that the

Gaussian white noise process is characterized by a known power or power spectral

density [44].

The noise targeted by Shannon’s theorem is Gaussian white noise, and Shan-

non’s theorem must be modified for other noises [44]. The physical characteristics

of the wireless channel are constantly changing, which is called a parametric vari-

ation channel. Fading phenomena are among the properties of wireless channels.

For example, small-scale fading due to multipath effects and large-scale fading

such as path loss due to range attenuation or shadow by obstacles. The size scale

is divided by the wavelength. Large-scale fading protection includes pathloss and

shadow.
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In the next subsections, mainly small-scale fading and path loss are presented.

3.1.1 Basic Principles of Small-scale fading

Small-scale fading refers to the rapid changes of the amplitude and phase of a

radio signal over a short period of time or a short distance. In small-scale fading,

the instantaneous received signal power may vary as much as 30 to 40 dB when

the receiver is moved by only a fraction of a wavelength. In a mobile-radio envi-

ronment, each path has its own Doppler shift, time delay, and path attenuation,

and multipath propagation results in a time-varying signal as the mobile moves

position. Such a channel is linear, but time-varying [46].

Small-scale fading depends on the nature of the transmitted signal with respect

to the characteristics of the channel. Depending on the relation between the signal

parameters, such as the bandwidth and the symbol period, on the one hand, and

the channel parameters, such as the coherence time, Doppler spread, coherence

bandwidth and delay spread, on the other hand, different transmitted signals will

experience different types of fading [44]. Delay spread leads to time dispersion

and frequency-selective fading. Doppler spread leads to frequency dispersion and

time-selective fading. Time dispersion and frequency dispersion are caused by

independent propagation mechanisms.

Rayleigh fading

Rayleigh fading is also called Small-scale fading because when the number of ver-

sions of the transmitted signal which arrive at slightly different times is large, the

envelope of the received signal is statistically described by a Rayleigh distribution
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if there is no line-of-sight component [45].

Rayleigh fading is a model that can be used to describe the form of fading that

occurs in multipath propagation. In any terrestrial environment, a radio signal is

transmitted from the transmitter to the receiver via a number of different paths

[46]. The most obvious path is the direct path or line of sight. However, there are

a great many objects in the vicinity of the direct path. These objects can serve to

reflect, refract, etc. the signal. Therefore, there are many other paths by which

the signal can reach the receiver.

When the signals reach the receiver, the total signal is a combination of all

the signals that have reached the receiver through the multitude of different paths

available. These signals are all added together, and the phase of the signal is

important. Depending on how these signals add up, the strength of the signal

varies. If they were all in phase, they would all add up. However, this is usually

not the case, as some are in phase and some are out of phase, depending on the

different path lengths, and therefore some will add to the total signal while others

will subtract[45].

As the transmitter or receiver often moves, the path lengths may change and

the signal level will vary accordingly. In addition, if any of the objects used to

reflect or refract part of the signal move, this will also cause variations. This

happens because some of the path lengths change and this in turn means that

their relative phases change, resulting in a change in the sum of all the signals

received.

The Rayleigh fading model can be used to analyze the propagation of radio

signals on a statistical basis. It works best under conditions where there is no
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dominant signal, and in many cases mobile phones used in a dense urban environ-

ment fall into this category. Other examples where there is usually no dominant

path include ionospheric propagation, where the signal reaches the receiver via a

large number of individual paths. Propagation via tropospheric channels also ex-

hibits the same patterns. Accordingly, The Rayleigh fading model is particularly

useful in scenarios where the signal between the transmitter and receiver can be

considered scattered.

3.1.2 Path loss

Radio signal path loss is a particularly important element in the design of a ra-

dio communication system or wireless system. The path loss of the radio signal

determines many elements of the radio communication system, in particular the

transmit power and the antennas, especially their gain, height and general location

[44]. The radio path loss also affects other elements such as the required receiver

sensitivity, the type of transmission and various other factors.

Therefore, it is necessary to understand the reasons for radio path loss and to

be able to determine the amount of signal loss for a particular radio path.

Path loss is the power loss of a RF signal propagating through space. Path

loss can be due to many effects, such as loss in free space, refraction, diffraction,

reflection, coupling loss between aperture and medium, and absorption. Path

loss is also affected by terrain contours, environment (urban or rural, vegetation

and foliage), propagation medium (dry or moist air), the distance between the

transmitter and the receiver, and antenna height and location [44].

Path loss usually include propagation losses caused by the natural expansion
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of the radio wave front in free space (which usually takes the form of an ever-

increasing sphere), absorption loss (sometimes called penetration loss) when the

signal passes through media that are not transparent to electromagnetic waves,

diffraction loss when part of the radio wave front is obstructed by an opaque

obstacle, and loss due to other phenomena.

The free-space path loss is the attenuation of radio energy between the feed

points of transmitter and receiver, resulting from the combination of the receiving

area of the receiver and the obstacle-free line-of-sight path through free space

(usually air) [47]. the free- space loss is defined as the loss between two isotropic

radiators in free space, expressed as a power ratio. It does not include power loss

in the antennas themselves due to imperfections such as resistance. The free space

loss increases with the square of the distance between transmitter and receiver,

since radio waves propagate according to the inverse square law, and decreases

with the square of the wavelength of the radio waves.

3.2 Basic Principles of OFDMA

The 4G wireless systems adopted OFDMA, in which a channel is divided into

subcarriers by a mathematical function called the inverse fast Fourier transform.

These subcarriers are divided into groups of subcarriers, each group being called

a resource block. The grouping of subcarriers into groups of resource blocks is

called subchannelisation. The spacing between subcarriers is orthogonal so that

they do not interfere with each other, although there are no guard bands between

them. This creates signal zeros in the adjacent subcarrier frequencies, preventing

intercarrier interference and allowing multi-user detection with low complexity
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receivers.

OFDMA can be seen as an alternative to combining Orthogonal Frequency Di-

vision Multiplexing (OFDM) with Time-Division Multiple Access or Time-Domain

Statistical Multiplexing. Low data rate users can transmit continuously with low

transmit power. Constant delay and shorter delay can be achieved. OFDMA can

also be described as a combination of frequency-domain and time-domain multi-

ple access, where resources are partitioned in time-frequency space and slots are

allocated along the OFDM symbol index as well as the OFDM subcarrier index.

In downlink OFDMA, the base station transmits data to a set of users whose

channel conditions are time and frequency dependent. Due to the scarcity of

spectrum and power resources, these must be allocated as effectively as possible

at the transmitter to optimise a given system performance metric. To achieve

a given goal, resource allocation in OFDMA systems involves three basic tasks:

subcarrier allocation, bit allocation and power allocation[49]:

• Subcarrier allocation, which consists of allocating subcarriers to users in an

efficient manner, depending on factors such as users’ channel conditions.

• Bit allocation, which consists of varying the number of transmitted bits per

symbol on each subcarrier according to the objective performance metric

and the instantaneous subcarrier channel quality.

• Power allocation, which consists of effectively distributing the transmitted

power among different subcarriers to maintain link quality and optimize the

objective power function.

In [50], it was shown that in OFDMA systems with independent subchannels
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between users, the best performance was achieved when each subcarrier was al-

located to the user with the best channel conditions on that subcarrier and the

transmit power was allocated to the subcarriers according to the waterfilling prin-

ciple [44].

3.3 Waterfilling

Waterfilling plays an important role in resource allocation. In any (general) wa-

terfilling problem, powers are allocated to the resources of the transmitting user

in order to maximize the transmitting user’s data rate(or mutual information)

while satisfying the constraint on the total power budget. The user’s resources

can be the subcarriers in OFDM or the normal frequency bands or the use of the

same subcarriers in different time slots [51]. This means that the allocated power

of the resource is inversely proportional to the noise level of the resource in the

waterfilling problem to maximize data rate [52].

The solution to this class of problems can be viewed as ”pouring a finite volume

of water into a tank whose bottom has steps whose height is determined by the

noise levels in each resource. The allocated power for the resource is the difference

between the constant water level and the noise level of the resource.” Just as

water finds its level even when filled into part of a vessel with multiple openings,

the amplification systems in repeaters or receivers of communication networks

amplify each channel to the required power level as a consequence of Pascal’s law,

compensating for channel impairments. The Fig.3.1 is waterfilling illustration of

optimal transmit power allocation.
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Figure 3.1: Waterfilling illustration of optimal transmit power allocation

Where µ is the water level. According to [51], we can state that the basic

principle of the waterfilling algorithm is a convex function formed by the La-

grange multiplier method according to the Shannon formula and the restriction

conditions. The classical result of waterfilling is the solution of the following con-

strained optimisation problem:

maxC =
K∑
k=1

log2

(
1 +

pk
σ2

λk

)
(3.2)

where number of users in the system is K and σ2
k is the AWGN variance at user k.

The λk is channel gain at the user k. The optimization problem (3.1) belongs to

the class of convex optimization problems in which the convex objective function

must be minimized under a convex constraint. The above problem is a constraint

problem that can be solved using the Lagrangian multiplier method. We define

the Lagrange dual function Z:
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Z(λ, pn) =
N∑

n=1

log2

(
1 +

Pn

σ2
λn

)
+ L

(
pt −

N∑
n=1

pn

)
(3.3)

Taking the partial derivative of pi. At the infimum, the partial derivative of

the Lagrangian multiplier must be zero, and we obtain [51]:

∂Z

∂pt
=

λn

σ2

1 + pn
λn

σ2

· 1

ln 2
− L (3.4)

Waterfilling power attempts to share the transmit power between the subcar-

riers and the user. Subcarriers with good SNR receive more power and subcarriers

with poor CSI receive less power. The waterfilling power control policy can be

formulated as follows [53 ,54]:

pn = µ− σ2

λn

(3.5)

Since the constraints are that 1) the allocated power cannot be negative and 2)

the sum of the power is equal to p, the problem is called waterfilling with a sum

power constraint. The dashed horizontal line, which is the water level µ, must

first be determined, and then the power allocated ( water volume ) above the step

is solved.
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4.1 Introduction

4.1.1 Motivation

Due to the advantages that drone deployment is fast, adaptable and efficient, as

presented in Section 1.1, drone-related content has been extensively researched

in the past few years. Many of these works addressed research problems based

on the perspective of the channel data rate and the system data rate, based on

the Shannon formula [17, 18, 59]. In order for drones to fulfill the challenges of

practical scenarios in emergency communication systems, it is necessary to address

some further research challenges.

[8] proposed a 4G-based communication model to find the optimal height of

the drone to be used, which is limited by the link reliability. In a catastrophic

area where the drone cannot be directly deployed, a multi-hop D2D link can be

established to relay signals to enlarge its coverage area [9]. Despite encouraging re-

sults, there are still many technical challenges, including interference management,

power constraints, and coverage limitations. The authors in [11] proposed power

allocation scheme under user interruption constraints in non-orthogonal multiple

access (NOMA) systems. However, the previous work does not take into account

that there are two different groups of people on the ground: Rescuers and disas-

ter victims. Therefore, how to ensure the communication performance of on-site
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rescuers/teams is very important in the emergency communication network.

Earlier work such as [12] also assumes different priority users. However, the

application of this theoretical result might prove unrealistic in scenarios with a

large number of users and subcarriers. This is because the complexity of the

method is close to the brute force search algorithm. Therefore, given the power

and coverage limitations of the drone, it is of paramount importance to understand

how to reduce the complexity of the emergency communication network.

4.1.2 Contribution

In this chapter, an adaptive resource allocation algorithm is proposed. Besiding

targeting to maximize the system data rate, a minimum data rate threshold for the

rescuers in the system is introduced as a constraint to be satisfied by the resource

allocation. Then, along with the consideration of the limited transmit power of a

drone, an optimization problem is formulated. Due to the non-convex property of

the optimization problem, the brute force algorithm is a straightforward solution.

However, its complexity is very high, which increases exponentially with the num-

ber of subcarriers in the system. Thus, if the number of users and the number

of subcarriers increase, the emergency communication network cannot obtain re-

sults through search. Like the brute force search algorithm, many other resource

allocation methods cannot be implemented because of the high complexity.

Therefore, a sub-optimal solution is proposed in this chapter, this method

focuses on reducing the complexity while satisfying the constraints. All users have

been divided into two categories, HP users and LP users, in the system. Then,

subcarrier and power allocation are carried out for the HP users and LP users,
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separately. It has been showing that the solution achieves quasi-linear complexity

with respect to the number of users. Simulation results demonstrated that the

performance of the proposed resource allocation scheme is close to the optimal

one when the total transmit power of a drone is not very high. The rest of this

chapter is organized as follows.

• Section 4.2 shows system model and the problem formulation.

• Section 4.3 presents the resource allocation problem formulation. Among

them, the brute force search method is introduced in Section 4.31 and Sub-

optimal resource allocation with low complexity is presented in Section 4.32

• Numerical results on the effect of transmitted power, coverage radius, num-

ber of users and number of subcarriers are provided in Section 4.4.

• Finally, Section 4.5 concludes the chapter
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4.2 System Model

Consider a downlink drone-assisted OFDMA based emergency communication sys-

tem with K users served by one drone, as shown in Fig. 4.1. All users are randomly
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distributed in the coverage area of the drone. The height and radius of the cov-

erage area of the drone are denoted by H and r, respectively. It is assumed that

there are Kh users in the rescue team, denoted as HP users, and Kl other users,

denoted as LP users in an OFDMA based emergency communication system with

Kl+Kh = K. The number of subcarriers in the system is N and each subcarrier is

assigned to one user based on the instantaneous channel state information (CSI).

Let us introduce a subcarrier assignment indicator ck,n.

Figure 4.1: System model

If subcarrier n is allocated to user k, ck,n = 1; otherwise, ck,n = 0, where

k ∈ K = {1, · · · , K} and n ∈ N = {1, · · · , N}. The sets of HP users and LP users

are denoted by Kh and Kl, respectively. The small scale fading of channel between

any user k and the drone on subcarrier n is denoted as hk,n, which is assumed to

be Rayleigh distributed and independent for all the users and subcarriers. With

the assumption that additive white Gaussian noise (AWGN) is introduced at each
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user’s receiver, the received SNR of user k on subcarrier n is given by

γk,n =
ck,npk,nh

2
k,nd

−λ
k

σ2
k,n

(4.1)

where pk,n denotes the transmit power on subcarrier n if it is allocated to user k.

σ2
k,n is the AWGN power at user k on subcarrier n, which is assumed to be the same

for all the users on all the subcarriers, i.e. σ2
k,n = σ2, ∀k, ∀n. dk =

√
H2 +D2

k is

the distance between user k and the drone. Dk represents the horizontal distance

between user k and the projected point of the drone on the terrestrial ground. λ

is the path-loss exponent.

Given the transmit power pk,n and the subcarrier allocation indicator ck,n, the

data rate of subcarrier n for user k is then given by

rk,n = B log2

(
1 +

ck,npk,nh
2
k,nd

−λ
k

σ2

)
(4.2)

where B is bandwidth of subcarrier. Furthermore, the total achievable data rate

is given by

rsys =
K∑
k=1

N∑
n=1

B log2

(
1 +

ck,npk,nh
2
k,nd

−λ
k

σ2

)
(4.3)

Consider that the total transmit power of the drone would be limited, which is

denoted by pmax, Therefore, the following constraint will be set in the system:

pmax ≥
K∑
k=1

N∑
n=1

ck,npk,n (4.4)

4.3 Resource Allocation Problem Formulation

This chapter aims to provide adaptive resource allocation to achieve the optimal

data rate for the emergency communication provided by a drone to serve all K
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users, while guaranteeing the data rate constraint of the Kh users in the rescue

team. This problem could be formulated as the following optimization problem:

OP1 : max
{ck,n,pk,n}

rsys =
K∑
k=1

N∑
n=1

log2

(
1 +

ck,npk,nh
2
k,nd

−λ
k

σ2

)
(4.5)

s.t. ck,n ∈ {0, 1}, ∀ k ∈ {1, ..., K} and ∀n ∈ {1, ..., N} (4.5a)
K∑
k=1

ck,n ≤ 1, ∀n ∈ {1, ..., N} (4.5b)

pk,n ≥ 0, ∀ k ∈ {1, ..., K} and ∀n ∈ {1, ..., N} (4.5c)
K∑
k=1

N∑
n=1

ck,npk,n ≤ pmax (4.5d)

rkh ≥ rth, ∀ kh ∈ Kh (4.5e)

The constraint (4.5b) guarantees that one subcarrier is only allocated to one user.

(4.5d) indicates the transmit power constraint pmax. (4.5e) is used to ensure that

the minimum data rate requirement of each HP user is satisfied, where rkh denotes

the achievable data rate of HP user kh and rth is the required minimum data rate.

Due to the mixture of integer and continuous constraints, optimisation problem

(4.5) is an NP-hard problem to solve [18]. It can be seen from (4.5) that in a

multiuser OFDMA system, the resource allocation problem can be considered as

a joint subcarrier and power allocation with an objective of maximizing data rate.

A straight-forward solution is the brute force search algorithm, which is of high

complexity.

4.3.1 Brute force search based resource allocation

In a multiuser OFDMA system, the joint resource allocation problem can be decou-

pled into subcarrier allocation and power allocation. Given subcarrier allocation,
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it is further proved in a multiuser OFDMA system that waterfilling algorithm

can maximize data rate. Therefore, in the first step, we propose to allocate the

power to each subcarrier equally. In the second step to allocate subcarriers, the

brute force search carried out through all the possible subcarrier allocation com-

binations is a straightforward solution. Last step, the brute force search carried

out through all the possible power level of subcarrier allocation combinations is a

straightforward solution. Specifically, among all the subcarrrier allocation combi-

nations that satisfy the constraints, the one achieving the highest data rate will be

the optimal allocation result. The brute force method achieves the best result, its

complexity increases exponentially with the number of users K number of power

level L and the number of subcarriers N . Even if the brute force method achieves

the best result, its complexity is KN , which increases exponentially as the number

of users and subcarriers increases. The complexity could be extremely high when

the number of subcarriers is large. For example, there could be more than 1000

subcarriers in 5G wireless systems.

4.3.2 Sub-optimal resource allocation with low complexity

The target of the resource allocation in the emergency communication system is

to maximize the total downlink data rate while ensuring data rate constraints for

each HP user. In the downlink multiuser OFDMA system, for resource allocation

without data rate constraints and user priorities, it has been proved that the

maximum data rate can be achieved by allocating each subcarrier to the user with

the best channel condition over the corresponding subchannel [12]-[15]. And then,

the resource allocation could be divided into two steps, subcarrier allocation which
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allocates subcarriers to users first, and power allocation which then allocates power

among all the subcarriers. In this chapter, the resource allocation is also divided

into subcarrier allocation and power allocation for the priority based multiuser

OFDMA system.

In order to guarantee the data rate constraints of the Kh HP users, the sub-

carrier and power allocation is first carried out for the HP users. Then, with the

unallocated subcarriers and remaining power, subcarrier and power allocation are

performed for the Kl LP users. Then, the optimization problem in (4.6) is divided

into two optimization problems, described in (4.6) and (4.7).

Considering that after dividing the resource allocation to resource allocation

for HP users and LP users, it is critical for the HP users to use minimum number of

subcarriers to achieve their data rate constraints, so that LP users have maximum

number of subcarrier (or bandwidth) to achieve high data rate. Define Nh =∑
kh∈Kh

∑N
n=1 ckh,n as the number of subcarriers used by the HP users. Minimizing

Nh means minimizing the total bandwidth allocated to the HP users. Then, the

optimization problem formed in (4.6) is to maximize total achievable data rate

for HP users, while minimizing the total bandwidth allocated. This target is

equivalent to maximize the bandwidth efficiency of the system to serve the HP

users, which is given by

OP2 : max
{ckh,n,pkh,n,Nh}

1

Nh

∑
kh∈Kh

N∑
n=1

log2

(
1 +

ckh,npkh,nh
2
kh,n

d−λ
kh

σ2

)
(4.6)
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s.t. ckh,n ∈ {0, 1}, ∀ kh ∈ Kh, ∀n ∈ {1, ..., N} (4.6a)

pkh,n ≥ 0, ∀ kh ∈ Kh, ∀n ∈ {1, ..., N} (4.6b)

∑
kh∈Kh

N∑
n=1

ckh,npkh,n ≤ pmax (4.6c)

rkh ≥ rth, ∀ kh ∈ Kh (4.6d)

After ensuring the minimum data rate constraint of each HP user is satisfied

with highest energy efficiency being achieved, the optimization problem in (4.7) is

formed to maximize the total achievable data rate of the Kl LP users over all the

unallocated subcarriers with remaining power, which is given by

OP2 : max
{ckl,n,pkl,n}

∑
kl∈Kl

∑
n∈N/Nh

log2

(
1 +

ckl,npkl,nh
2
kl,n

d−λ
kl

σ2

)
(4.7)

s.t. ckl,n ∈ {0, 1}, ∀ kl ∈ {1, ..., Kl}, ∀n ∈ {1, ..., Nl} (4.7a)

pkl,n ≥ 0, ∀ kl ∈ Kl, ∀n ∈ {1, ..., Nl} (4.7b)∑
kl∈Kl

∑
n∈N/Nh

ckl,npkl,n ≤ pmax − ph (4.7c)

where Nh is the set of subcarriers allocated to the HP users. N/Nh is the set of

unallocated subcarriers which will be allocated to the LP users. (4.7b) shows the

power constraint of the resource allocation, after allocating subcarriers and power

to the HP users, Based on the new optimization problem (4.6) and (4.7), the total

achievable data rate is given by
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rsys =
∑

kh∈Kh

∑
n∈Nh

log2

(
1 +

ckh,npkh,nh
2
kh,n

d−λ
kh

σ2

)

+
∑
kl∈Kl

∑
n∈N/Nh

log2

(
1 +

ckl,npkl,nh
2
kl,n

d−λ
kl

σ2

)
(4.8)

Resource Allocation for the HP Users

As explained above, the resource allocation for the HP users is formed as an opti-

mization problem in (4.6), which is neither a non-concave nor a non-convex prob-

lem, due to integer constraint ckl,n and the integer characteristic of Nh. Therefore,

a sub-optimal solution is proposed by introducing two steps: subcarrier allocation

and power allocation.

1 Subcarrier Allocation:In a multiuser OFDMA system without data rate con-

straints, it has been proved that the maximum data rate can be achieved by

allocating each subcarrier to the user with the best channel condition on the

subcarrier. Then, given the subcarrier allocation result, it has been proved

that waterfilling algorithm can achieve the maximum data rate in OFDMA

systems [12]–[14]. It has also been shown in [12], [15], [17] and [22] that

when the difference in channel condition is small over all the subcarriers,

the performance of equal power allocation is almost the same as the perfor-

mance of the waterfilling algorithm. Therefore, in the first step, equal power

allocation is first assumed for all the subcarriers when allocating resources

to the HP users. That is, the power allocated to each subcarrier is the same

and fixed as pmax/N , for all the Kh users over the N subcarriers. Then, for

the subcarrier allocation, each subcarrier is first allocated to the user with
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the best channel condition on it. Then, for user k, among all the subcarri-

ers allocated to it, assume all the subcarriers are ordered according to their

channel condition. The best Nk subcarriers will be chosen as subcarriers

allocated to user k, if the data rate constraint can be satisfied with equal

power allocation over the Nk subcarrerier, but cannot be satisfied over the

best Nk−1 subcarriers.

2 Power Allocation: After subcarrier allocation, for each user, e.g. user k,

among the subcarriers allocated to it, waterfilling algorithm will be carried

out under the power constraint of Nk × pmax/N .

The resource allocation iterations for HP users procedure is described as Algo-

rithm 1. The corresponding flowcharts for Algorithm 1 are represented in Fig.4.2.

43



page 44 of 117 4.3. RESOURCE ALLOCATION PROBLEM FORMULATION

Algorithm 1 Resource allocation iterations for HP users.
Input: rth, Pmax,;

1: Initialization pk,n = Pmax

N

Output: {ck,n}k∈K,∀n∈N

2: Find the assignable subcarrier set N∗

3: Find the set k∗h of HP users with achieved rate smaller than rth

4: Find the set subcarrier Nk that the data rate constraint can be satisfied with equal power

allocation

5: ck,n = 0, k ∈ K, ∀n ∈ N

6: for data rate of each user rk < rth ∀k ∈ k∗h do

7: for n = 1 to N∗ do

8: {k, n} = argmaxk∈k∗
h
|hk,n|2 d−λ

k

9: ck,n = 1

10: N∗ = N∗ − n

11: end for

12: Calculate data rate rk =
∑N

n=1 B log2

(
1 +

ckh,npkh,nh
2
kh,nd

−λ
kh

σ2

)
∀kh ∈ k∗h

13: end for

14: Calculate data rate rk which waterfilling algorithm is carried out under the power constraint

of NkPmax/N .
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Figure 4.2: Resource allocation iterations for HP users flowcharts
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Resource Allocation for the LP Users

After allocating resources to the HP users, over the unallocated subcarriers in

the set of N/Nh, each subcarrier is allocated to the user with the best channel

condition on the subcarrier. Then, the waterfilling algorithm is applied over all

the subcarriers under the power constraint of pmax−ph to achieve the maximum

data rate in OFDMA systems.

The resource allocation iterations for all users procedure is described as Algo-

rithm 2. The corresponding flowcharts for Algorithm 2 are represented in Fig.4.3.

Complexity of the Proposed Resource Allocation Scheme

The complexity of the proposed resource allocation scheme mainly depends on

the subcarrier allocation over N subcarriers and procedure of the waterfilling al-

gorithm. Therefore, its complexity is O(2N + Klog(N)), which is much smaller

than the complexity of the brute force search.
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Algorithm 2 Resource allocation iterations for all users.
Input: rth, Pmax, Nk, {ck,n}k∈K,∀n∈N ;

1: Initialization pk,n = Pmax

N

Output: {rk}k∈K

2: Find the assignable subcarrier set N∗ that contains the subcarriers not allocated to the HP

users.

3: for N∗ ∈ N do

4: for n = 1 to N∗ do

5: {k, n} = argmaxk∈K |hk,n|2 d−λ
k

6: ck,n = 1

7: N∗ = N∗ − n

8: end for

9: Calculate data rate rk =
∑N

n=1 B log2

(
1 +

ckh,npkh,nh
2
kh,nd

−λ
kh

σ2

)
∀k ∈ K

10: end for

11: Calculate data rate rk which waterfilling algorithm is carried out under the power constraint

of (N −Nk)Pmax/N .
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Figure 4.3: Resource allocation iterations for all users flowcharts
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4.4 Simulation Results and Performance Analy-

sis

In this section, we focus on evaluating the data rate achieved by the proposed

resource allocation scheme in a drone aided emergency communication system.

The drone is placed at a point with a height of 100 meters from the ground. Its

serving radius covers from 500 to 1000 meters. In the system, the channel gain

follows Rayleigh distribution. The path-loss exponent is set to 3. All users are

randomly distributed in the drone service area. The simulations are done based

on the parameters listed in TABLE 4.1.

Parameter Detail Value

H Height of Drone 100 m

B Bandwidth 3 kHz per subcarrier

σ The AWGN variance 1x10−10 Watt

rth Minimum data rate requirement of HP user 6k bit/s

N Number of subcarriers 8

Kh Number of HP users 2

Kl Number of LP users 2

pmax Total transmit power 0.08, 0.5 dBm

r Radius of coverage area 500, 1000 m

Number of simulations 104

Table 4.1: Simulation parameters
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4.4.1 Impact of coverage radius of the drone on the data

rate

Below, numerical results show the impact of varying the coverage radius of the

drone on the data rate. Transmit power in Fig4.4(a) is pmax = 0.08 watt and

transmit power in Fig4.4(b) is set topmax = 0.5 watt.

Fig.4.4(a) and Fig.4.4(b) show the performance comparison between the pro-

posed method and optimal brute force algorithm when the radius of the drone

coverage area varies from 500 meters to 1000 meters.
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Figure 4.4: Total data rate vs. radius of the drone coverage

As the coverage radius of the drone increases, both graphs show a decrease in

the user’s data rate. The gap between the data rate of the proposed scheme and the

brute force method decreases with increasing radius, which means the performance

of the proposed scheme approaches the optimal performance. A comparison of

Fig.4.4(a) and Fig.4.4(b) shows that the data rate gap of the proposed scheme

does increase with the brute force search method when the power increases. But

the increased power does not affect the tendency for the data rate to decrease as

the radius increases. The main reason is explained as follows.

As the radius increases, the average SNR per user decreases. In order to satisfy

the data rate constraint of the HP users, more subcarriers need to be allocated
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to the HP users. Then, the smaller the number of subcarriers allocated to the

LP users, the smaller the performance gap between the two schemes. When the

drone covers more than 1000 meters, the proposed method has almost the same

performance as the best solution.

4.4.2 Impact of transmit power on the data rate

In this section, the data rate of users is studied in terms of the transmit power.

Further, their effect on the overall system performance is studied. The coverage

radius of the UAV in Fig.4.5 and Fig.4.6(a) is set to r = 500 meters, and the

coverage radius of the UAV in Figure 4.6(b) is set to r = 1000 meters.
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Figure 4.5: Total data rate vs. transmit power for HP users and LP users

Fig.4.5(a) and Fig.4.5(b) show the relationship between the proposed method

and the brute force search method for HP users and LP users. In Fig.4.5(a), the

data rate of HP users in the proposed method is greater than that of the HP users

in the brute force search method. When the transmit power provided by the drone

increases, the rate of increase of the data rate of HP users in the proposed method

is also greater than that of the HP in the brute force search method. In Fig.4.5(b),

both the LP users data rate of the proposed method and the growth rate of the

data rate are smaller than that of the LP users in the brute force search method.

A comparison of Fig.4.5(a) and Fig.4.5(b) shows that as the transmit power

increases, the gap between the data rate of the HP users and the LP users of the
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proposed method increases. This means that the proposed method sacrifices the

data rate of more LP users to preferentially meet the data rate requirements of

HP users. And the more sufficient the transmit power, the greater the data rate

loss for the LP users.

Fig.4.6(a) and Fig.4.6(b) show the relationship between the total data rate of

all users and the transmit power when the coverage radius of the drone is 500 m

and 1000 m respectively. As can be seen in both Fig.4.6(a) and Fig.4.6(b), the

optimal solution for LP users has a larger rate of increase in the maximum rate at

the beginning of the increase in transmit power than the proposed method. The

increase in the percentage of HP users means that the proposed plan is larger.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Power(Watt)

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

D
at

a 
ra

te
(b

its
/s

)

104

The brute force search scheme
The proposed method

(a) All users with coverage radius 500 m

54



page 55 of 117 4.4. SIMULATION RESULTS AND PERFORMANCE ANALYSIS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Power(Watt)

1.5

2

2.5

3

3.5

4

4.5

5

D
at

a 
ra

te
(b

its
/s

)

104

The brute force search scheme
The proposed method

(b) All users with coverage radius 1000 m

Figure 4.6: Total data rate vs. transmit power for all users

Overall, the total data rate of the proposed resource allocation scheme is close to

that of the optimal solution when the transmit power is relatively low, e.g. less

than 0.5 Watt. When the transmit power is high, e.g. greater than 0.5 Watt, the

difference in performance increases.

The reason is that, in the brute force search method, as long as the data

rate constraint of the HP user can be satisfied, HP users may not need to be

allocated to its best channels if there is LP users whose channel condition is

much better. However, in the proposed scheme, in order to satisfy HP users data

rate requirement, the data rate of LP user will be sacrificed by allocating some

subcarriers to HP users which may not have the best channel condition on it or
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even has poor channel condition.

When the transmit power of each subcarrier is low, the sacrificed LP user data

rate is lower to reach the minimum data rate of HP users, and when the transmit

power of each subcarrier increases, the sacrificed LP user data rate also increases.

Therefore, the difference in performance between the brute force search method

and the proposed method becomes greater.

Comparing Figures Fig.4.5(a) and Fig.4.5(b) with Fig.4.6(a) and Fig.4.6(b), it

is clear that when the transmit power of the drone is limited and a large area is

covered, the average SNR of all users is relatively low, and the total user data rate

obtained by the method proposed here is very close to the result of the brute force

search method. This means that in case of emergency rescue, the coverage area

of the drone can be maximized. This can greatly reduce the loss of user data rate

when subcarriers are assigned, while ensuring the minimum data rate of disaster

responders.

4.4.3 Impact of number of HP users on the data rate

In this section, the performance of the emergency system is presented in terms of

number of users variation and sum rate. In Fig.4.7, the total number of users is

set to Kh +Kl = 10, with a minimum data rate for HP users of rth = 10 kbit/s.

The total transmit power is set to pt = 0.375 watts and the number of subcarriers

to N = 30. Since the complexity of the brute force search method is too high,

all possible combinations in this section are too numerous and the optimal result

cannot be searched. Therefore, only the simulation results of the proposed method

are presented in this section.
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Figure 4.7: Total data rate of all users vs. number of HP users

Fig.4.7(a), Fig.4.7(b) and Fig.4.7(c) show the relationship between the user

data rate and the number of HP users. As can be seen from Fig.4.7(c), the

reduction in the total data rate decreases as the proportion of HP users increases.

In Fig.4.7(a) and Fig.4.7(b), we can see that the data rate of HP increases as the

number of HP users increases, and the data rate of LP decreases as the number

of HP users increases. And at the beginning, the reduction of data rate is higher

for LP users than for HP users. And from Fig.4.7(c), the decrease in data rate

of LP with increasing number of HP users is reduced but always higher than the

increase of HP users.

The reason for this is that when there are more HP users, more subcarriers
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have to be allocated to meet the minimum rate of all HP users. This also means

that more and more subcarriers cannot be assigned to the users with the highest

SNR. Therefore, the sacrificed data rate also increases with the number of HP

users. The closer the proportion of HP users is to 100%, the lower the average

SNR of the subcarriers assigned to HP users.

In summary, although the data rate of LP decreases significantly with the

increase in users of HP, the actual average data rate of LP decreases from a maxi-

mum of 4 · 104 bits/s to 2.2 · 104 bits/s. Therefore, although the proposed method

favours the minimum data rate requirement of HP users, it can still guarantee

some of the data rate demand of LP users.

4.5 Conclusions

This chapter deals with resource allocation in emergency communication systems.

Due to the complexity of the problem, it is divided into the subproblems of sub-

carrier allocation and power allocation. The two sub-problems are optimized re-

spectively.

The algorithms in other literatures allocate resources equally to all users as

they consider different users in an emergency environment. Compared to these

literatures, the algorithm in this chapter prioritizes different types of users in an

emergency environment. This also leads to the difference between the methods in

this thesis and those in other publications that do not consider the fairness of all

users.

Users are divided into HP users and LP users, and an algorithm for assigning

seed carriers is proposed. For HP users, the minimum data rate is observed. For
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LP users, sub-carriers are assigned based on the policy. The optimization objective

is to maximize data rates for all users while ensuring minimum guaranteed rate

for HP users.

In the subcarrier assignment problem, the complexity is greatly reduced as

subcarriers are assigned preferentially to HP users. In this paper, a suboptimal

subcarrier allocation method is proposed. The computational complexity of this

method is linear with the number of users, while the computational complexity of

the brute force search method is much higher.

In the power allocation problem, for each user, e.g. user k, on the subcarrier

assigned to it, the water-filling algorithm is performed under the power constraint

Nk · pmax/N with the objective of maximizing the data rate.

To verify the proposed method, we collected data on the force search method

in UAV-assisted emergency communication and verified the proposed method

through simulation experiments. The numerical simulation results show that the

performance of this algorithm decreases when the power is reduced or the coverage

area of the drone is increased, but the performance gap between this algorithm

and the optimal algorithm becomes smaller when the power is reduced. This also

means that the algorithm is efficient in resource utilization in the emergency com-

munication environment when resources are scarce, and the performance of this

algorithm is very close to the optimal algorithm.
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5.1 Introduction

5.1.1 Motivation

The first 72 hours after the disaster, also known as the Golden Rescue Period,

are the most critical time to find survivors [4]. However, natural disasters such

as earthquakes and tsunamis often lead to a complete paralysis of the existing

communication infrastructure, which hinders the work of field staff. Therefore,

deploying a fast, adaptable and efficient emergency communication network is

essential [5]. The emergency communication network must also ensure the com-

munication capability of search and rescue teams so that they know in time in

which areas survivors are waiting for rescue. In addition, it should also ensure the

ability of survivors to communicate with the outside world. To solve this problem,

the drone can act as a flying BS and provide an emergency network in the disaster

area [7]. For the above reasons, the drone as an emergency network technology

has received much attention in recent years.

The key to improving emergency network of drone performance is resource

allocation, which carries out the assignment of radio resources with the objective

of optimizing a certain performance metric. Appropriate resource allocation com-

prises the joint optimization of subcarrier allocation and power allocation [11, 12],
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which quite often yields an intractable problem, for which finding the optimal so-

lution requires of prohibitively complex algorithms such as brute force search and

[58]. Therefore, in order to reduce the implementation cost of the drone-assited

OFDMA-based emergency network, it is critical to investigate how to reduce the

computational complexity of resource allocation, while achieving a performance

close to optimal.

5.1.2 Contribution

In this chapter, several contributions are made in terms of resource allocation

in the drone-assited OFDMA based emergency network. Due to the non-convex

property introduced by users of multiple priorities and integer constraints, the

complexity of solving the formulated optimization problem is extremely high.

Since the method in chapter 4 sacrifices the user’s excessive data rate in order

to reduce the complexity of the algorithm. Therefore, the focus of this chapter is

to bring the data rate of the method as close as possible to that of the brute force

search method and to reduce the complexity of the system to a realistically achiev-

able level. Thus, this is divided into the sub-problems of subcarrier allocation, and

power allocation. These two sub-problems are separately optimized.

First, for the subcarrier allocation problem, knowledge of Shannon’s theorem

and fading in emergency communication that maximize the achievable data rate

in minimum data rate of HP user constrained scenarios is used to propose a subop-

timal subcarrier allocation algorithm that has low complexity. This is achieved by

implementing a comparison of the optimal data rate differences between different

users. In contrast, the complexity of exhaustive search procedures is of the order
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of the squared number of users. Other suboptimal subcarrier allocation schemes

in the literature [12] achieve much greater computational complexity than the

algorithm presented in the thesis.

Second, the power allocation in an emergency communication system is solved

by the waterfilling algorithm, with the objective of maximizing the HP user data

rate. The waterfilling algorithm is applied to propose a novel power allocation

algorithm for an emergency communication system with minimum HP user data

rate constrained. Unlike existing works, different priorities of users are consid-

ered and power allocation is performed by iteratively applying the waterfilling

algorithm for some individual HP users and globally for all other users.

Through numerical simulations, it is demonstrated that the performance of the

proposed resource allocation scheme is close to the optimum and its complexity

is less than that of other schemes such as [12] and the optimal brute force search

method. The remaining of this chapter is organized as follows.

• Section 5.2 shows system model and the problem formulation.

• Section 5.3 presents the resource allocation problem formulation. Among

them, the brute force search method is introduced in Section 5.31 and sub-

optimal resource allocation presented in Section 5.32.

• Numerical results on the effect of transmitted power, coverage radius, num-

ber of users and number of subcarriers are provided in Section 5.4.

• Finally, in section 5.5, a summary of the work done in this chapter is given

and the main conclusions are highlighted.
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List of Related Publication

T. Chen, J. Wang, H. Zhu, P. Yue, X. Yi, W. Cheng, H. Zhang, J. Wang, ”Resource

Allocation in Emergency Communication system with different of user prioritys”,

Submitting to Science China Information Sciences.

5.2 System Model

The system model in this chapter is the same as the system model in chapter 4,

therefore the system model is not discussed in this chapter.

5.3 Resource Allocation Problem Formulation

The aim of this chapter is the same as in Chapter 4, aims to allocate resources to

maximize the total system data rate for an emergency communications assisted by

a drone, while guaranteeing the rate requirement of HP users in the rescue team.

Therefore, the expression of this problem can directly refer to the optimization

problem in Chapter 4

5.3.1 Brute force search based resource allocation

Chapter 5 is different from chapter 4, chapter 5 with brute force search, the pro-

cedure searches through all the possible subcarrier allocation combinations and

power allocation combinations. Since the power in this paper is a continuous set

of real values, deep reinforcement learning will be used to find the optimal power

allocation method in order to discover the theoretical maximum of the data rate.

The optimal joint subcarrier and power allocation result is then the combination of
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subcarrier allocation and power level allocation that achieves the highest data rate

while satisfying the data rate constraint of HP users. However, its complexity is

O(KN), which increases exponentially with the number of users K and the num-

ber of subcarriers N . The complexity could be extremely high when the number

of subcarriers is large, e.g., fifth generation (5G) mobile systems has more than

512 subcarriers.

5.3.2 Sub-optimal resource allocation

In a downlink multiuser OFDM system, to maximize the system data rate without

data rate constraints, the resource allocation can be decoupled into subcarrier

allocation and power allocation[6][7] by firstly assigning each subcarrier to the user

with the best instantaneous channel condition over the corresponding subcarrier,

and then using waterfiling method for power allocation. For the optimisation

problem in (5.6), in order to obtain the near-optimal system data rate and reduce

the complexity at the same time, the resource allocation problem is also divided

into two stages, subcarrier allocation and power allocation.

Stage 1 - Subcarrier Allocation

Subcarrier allocation will be an iterative process. Initially, following the case

without data rate constraints, each subcarrier is assigned to the user with the

best channel condition on it.

As the subcarrier allocation method mentioned above aims to maximize the

data rate of the system, after the initial subcarrier allocation, the minimum data

rate constraint may not be satisfied for all HP users. Therefore, the HP users

66



page 67 of 117 5.3. RESOURCE ALLOCATION PROBLEM FORMULATION

whose data rate is smaller than the rate threshold in (5.5e) will be re-allocated with

subcarriers from other users. In order to ensure that the rate loss is minimized,

subcarrier re-allocation will be carried out subcarrier by subcarrier iteratively

under equal power allocation. In the ith iteration of subcarrier re-allocation, once

a subcarrier n is reallocated to user k, the sum data rate difference ∆rsys(i) is

determined by the data rate change on subcarrier n, ∆rn(i), given by

∆rsys(i) = ∆rn(i) = ∆rk′,n(i)−∆rk,n(i) (5.1)

where k∗ is the user allocated with subcarrier n before re-allocation. Here, a

subcarrier is called a reassignable subcarrier if it belongs to an LP user or an HP

user whose data rate is higher than the threshold. Among all the reassignable

subcarriers, if the reallocation of a subcarrier belonging to an HP user makes the

rate requirement of this user unsatisfied, this subcarrier will not be allowed for re-

allocation. The iterative subcarrier re-allocation will be carried out until the data

rate constraint is satisfied for all HP users. Assuming the number of iterations

is I, the total reduction of system data rate is given by
∑I

i=1 ∆rsys(i). It can be

seen that in each iteration, if the subcarrier n∗ satisfies

n∗(i) = arg min
n∈N∗(i)

∆rn(i) (5.2)

where N∗ is all subcarriers that are reassignable. The reduction of the system data

rate in (5.8) is minimized. Equivalently, under equal power allocation, the system

data rate can be maximized, while the data rate constraint is satisfied for all HP

users. In summary, the subcarrier allocation procedure for the subcarrier of the

user n is described as Algorithm 3. The corresponding flowcharts for Algorithm 3

are represented in Fig.5.1.
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Algorithm 3 Subcarrier allocation iterations.
Input: rth, Pmax;

1: Initialization pk,n = Pmax

N

Output: {ck,n}k∈K,∀n∈N

2: for n = 1 to N do

3: k = argmaxk∈K |hk,n|2 d−λ
k

4: ck,n = 1

5: ck,n = 0,∈ k∗ ̸= k

6: end for

7: Calculate rk =
∑N

n=1 B log2

(
1 +

ck,npk,n|hk,n|2d−λ
k

σ2

)
∀k ∈ Kh

8: Find the reassignable subcarrier set N∗ that contains the subcarriers allocated to the LP

users and the HP users with achievied rate higher than rth

9: Find the set k∗h of HP users with achieved rate smaller than rth

10: while data rate of each user rk < rth ∀k ∈ Kh do

11: for n ∈ N∗ do

12: for kh ∈ k∗h do

13: Calculate the data rate change ∆rk according to (7)

14: end for

15: end for

16: {k∗, n∗} = argminn∈N∗,k∈Kh
∆rk,n

17: if rk < rth then

18: n∗ = N∗ − n∗, ck∗,n∗ = 1, ck′,n∗ = 0, ∀k′ ̸= k∗;

19: end if

20: Calculate rk =
∑N

n=1 B log2

(
1 +

ck,npk,n|hk,n|2d−λ
k

σ2

)
∀k ∈ Kh

21: end while
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Figure 5.1: Subcarrier allocation iterations flowcharts70
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Stage 2 - Power Allocation

In a multiuser OFDMA system, waterfilling is the optimal power allocation algo-

rithm to achieve the maximum data rate after allocating each subcarrier to the user

with the best channel condition on it [16][17]. Therefore, in drone-assisted emer-

gency communications, after subcarrier allocation, a modified waterfilling method

is proposed to allocate the transmit power of the drone to the subcarriers. At

first, all the subcarriers are put into the set of subcarriers for power allocation.

Based on the subcarrier allocation result, under the total transmit power limit

of the drone, Pmax, waterfilling is applied to allocate power on each subcarrier.

For an HP user k, if its minimum guaranteed rate constraint is not satisfied, by

applying waterfilling method among the subcarriers allocated to this HP user kh,

a least transmit power allocated to HP user k, pmin,k, will be derived based on the

minimum guaranteed rate constraint. Specifically, the transmit power required

by HP user k ∈ Kh, pmin,k, satisfies
pk,n = µk − σ2

|hk,n|2d−λ
k,n∑N

n=1 pk,n = pmin,k

(5.3)

where µkh is the water level of the HP user kh. We then have

µkh =
pmin,k +

∑K
k=1

∑N
n=1 ck,n |hk,n|2 d−λ

k,n

N
(5.4)

pk,n =
pmin,k +

∑K
k=1

∑N
n=1 ck,n |hk,n|2 d−λ

k,n

N
− σ2

|hk,n|2 d−λ
k,n

(5.5)

As is shown in (5.6), given the data rate constraint rth, the data rate
∑N

n=1 rk,n

needs to be equal to rth. pmin,kh can be then obtained from (5.6) as
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pmin,k =
N∑

n=1

1 +
ck,n2

rth

|hk,n|2d−λ
k

σ2

 (5.6)

When the received SNR is much greater than 1, it can be approximated as

pmin,k ≈
N∑

n=1

 ck,n2
rth

|hk,n|2d−λ
k

σ2

 (5.7)

Once the least transmit power pmin,k is determined and allocated to the HP

user k, the allocation algorithm removes the subcarriers allocated to user k from

the set of subcarriers for power allocation and subtract its transmit power pmin,k

from the residual power. The next round of power allocation will be performed

with the following three steps, until all the HP users’ data rate constraint is sat-

isfied: 1) applying waterfilling among the set of subcarriers for power allocation;

and 2) based on (5.13), calculating the least transmit power for the HP user whose

unsatisfied data rate is the highest among all unsatisfied HP users; 3) removing

the subcarriers allocated to the HP user from the set of subcarriers for power

allocation and subtracting its transmit power from total transmit power. In sum-

mary, the power allocation procedure for the subcarrier of the user k is described

as Algorithm 4. The corresponding flowcharts for Algorithm 4 are represented in

Fig.5.2.
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Algorithm 4 Power allocation iterations.
Input: rth, Pmax, rk, {ck,n}k∈K,∀n∈N ;

1: Initialization pk,n = Pmax

N

Output: {rk}k∈K

2: Calculate µk =
pmin,k+

∑K
k=1

∑N
n=1 ck,n|hk,n|2d−λ

k,n

N

3: Calculate pk,n = µk − σ2

|hk,n|2d−λ
k,n

4: Calculate rk =
∑N

n=1 ck,nrk,n ∀k ∈ Kh

5: while rk < rth ∀k ∈ Kh do

6: Find the set k∗h of HP users with achieved rate smaller than rth

7: Calculate the least transmit power pmin,k∗
h
≈
∑N

n=1

 ck,n2
rth

|hk,n|2d
−λ
k

σ2


8: Calculate µk =

pmin,k+
∑K

k=1

∑N
n=1 ck,n|hk,n|2d−λ

k,n

N

9: Calculate pk,n = µk − σ2

|hk,n|2d−λ
k,n

10: K∗
h = K∗

h − k∗h

11: Calculate rk =
∑N

n=1 ck,nrk,n ∀k ∈ Kh

12: end while
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Figure 5.2: Power allocation iterations flowcharts
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5.4 Simulation Result

In this section, the performance of the proposed resource allocation method is

evaluated through simulations by comparing with the optimal brute force search

and a benchmark algorithm [19]. In [19], the benchmark algorithm was proposed

to handle the similar problem by assuming the modulation level (or transmit power

per subcarrier) is the same for subcarriers within one chunk. In [19], to satisfy the

data rate constraint for HP users, the first step is to assign each user a set of chunks

over which users can transmit their data streams. After assigning chunks to users,

the last two steps are performed individually for each user, which is the same as

the method of chunk assignment and bit assignment for a data stream. The second

step, block allocation, consists of assigning blocks to two queues, HQ queues and

LQ queues, which correspond to HQ packets and LQ packets respectively. The

final step, bit allocation, consists of assigning the corresponding bit (or modulation

level) to each block combination assigned in the first step.

The simulated system model is formed by a single drone(BS) and a varying

number of users. The simulations are done based on the parameters listed in

TABLE 4.1. The normalized channel fading factor of all users on each subcarrier

follows a Rayleigh distribution with mean square of one. The path-loss exponent

is set to 3. The number of cycle simulation is 104 times, and the average of these

104 times is taken as the result.

In the simulations, users are uniformly distributed within the coverage of the

drone. In order to show the impact of optimizing the power allocation, a method

that only addresses subcarrier allocation by using step 1 in the proposed method
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will be adopted for performance comparison.

5.4.1 Impact of the transmitted power on the data rate

In this section, the performance of the emergency system is presented in terms of

total transmit power variation and sum rate.
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Figure 5.3: Data rate vs. total transmit power

Fig.5.3 presents the sum rate with the proposed scheme, the optimal brute

force search, and the benchmark method. Due to the high complexity of the brute

force search, 1 HP user, 1 LP user and 8 subcarriers are chosen in the scenario.

The minimum data rate requirement of HP user rth = 30 kbit/s. It can be seen

from the figure that when the total power pt increases, the data rate increases.

Also, the data rate gap between the proposed method and the optimal solution

decreases. The main reason is that in the brute force algorithm, as long as the
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data rate constraints can be satisfied, the HP user may not need to be allocated to

its best channels if there is another user whose channel condition is much better.

With the proposed scheme, when the power increases, the SNR per user in-

creases, and the data rate increases. In order to satisfy the data rate constraint

of the HP users, fewer subcarriers need to be allocated to the HP users. There-

fore, more subcarriers are allocated to users with best SNR. When the average

SNR is lower, in order to satisfy the HP user threshold, the method proposed

in this chapter additionally allocates more subcarriers and power to them, while

the allocation result obtained by the brute force search algorithm requires fewer

additional subcarriers and less power. By increasing the transmit power, more

and more subcarriers are allocated to the users with the best SNR with the pro-

posed scheme. The data rate obtained by the proposed scheme is getting closer

and closer to the optimal brute force search. Therefore the proposed method can

actually make better use of subcarriers and power to approach the data rate of

the optimal brute force search.

5.4.2 Impact of coverage radius of the drone on the data

rate

In this section, the performance of the emergency system is presented in terms

of drone’s coverage radius variation and sum rate. Due to the complexity of the

brute force search method, the proposed method is mainly compared with the

benchmark scheme.
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(a) HP Users
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(b) LP Users
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Figure 5.4: Data rate vs. radius of the drone coverage

Fig.5.4(a) and Fig.5.4(b) show the relationship between the data rate and the

drone coverage area for HP users and LP users respectively. In this figure, the

number of HP users and LP users is Kh = Kl = 2, where the minimum data rate

for HP users is rth = 6 kbit/s. The total transmitted power is set to pt = 0.5 watt

and the number of subcarriers is set to N = 64. A comparison of Fig.5.4(a) and

Fig.5.4(b) shows that in the proposed method without power allocation, the rate

of HP users decreases by about 1.4 × 105 and the rate of LP users decreases by

2.1× 105 as the radius increases. The reduction in data rate for HP users is much

less than that for LP users. This means that more subcarriers are allocated to HP
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users to reach the minimum rate of the HP users in the subcarrier allocation. It

can be seen from the figures that with sufficient power and subcarriers, subcarriers

are indeed allocated with few reallocation steps. This means that real-time results

can be achieved more quickly. When subcarriers and power are insufficient, the

proposed scheme maximizes the data rate and also considers the overall balance

of data rate of LP users as much as possible.

Fig.5.4(c) further presents the total data rate achieved with the proposed

method with only equal power allocation, i.e. proposed method without power

allocation, and the benchmark scheme when the radius of the drone coverage

area varies from 500 meters to 1000 meters. It can be seen from Fig.5.4(c) that

the performance of chunk-based resource allocation outperforms the subcarrier-

based resource allocation when the number of subcarriers per chunk is properly

chosen. But, the number of possible combinations in the benchmark method is

(2K)N [Q
(H)
0 +Q

(L)
0 ]/(2N ′), where N ′ is the number of subcarriers per chunk and

the data per symbol for the kth user to transmit in an allocation period are Q
(H)
0

and Q
(L)
0 bits for the two types, respectively. The number of possible combina-

tions in the proposed method is (Kh −K ′
h)

(N−N ′
h), where K ′

h is the HP user who

has already fulfilled the data rate and N ′
h is the subcarrier assigned to the HP user

under the condition that the minimum guaranteed rate of the HP user is satisfied.

In comparison, the complexity of the proposed method is much less than that of

the benchmark method. This is because the rapid establishment of an adaptable

and efficient emergency communication network is essential. The lower the com-

plexity of the system, the more efficient the emergency communication network

will be.
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With the increase of the coverage radius, the total data rate and gap between

the proposed method and the benchmark method decreases. The main reason for

the increase in data rate is affected by the combined user subcarrier allocation

and power allocation, but is not determined by the separate subcarrier allocation

or power allocations.

5.4.3 Impact of number of users on the data rate

In this section, the performance of the emergency system is presented in terms of

number of users variation and sum rate.
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Figure 5.5: Total data rate of all users vs. number of HP users

Fig.5.5 shows the data rate versus the number of HP users when the total

number of users is constant. The total number of users is set to Kh + Kl = 10,

where the minimum data rate for HP users is rth = 6 kbit/s. The total transmitted
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power is set to pt = 0.375 watt and the number of subcarriers is set to N = 30.

It can be seen that when the number of subcarriers and the total number of users

remain the same, the total data rate decreases when the proportion of HP users

increases. Comparing the proposed method and the proposed method with equal

power, the gap in total data rate increases. However, the decrease of the total data

rate with the power allocation has slowed down. The reason for this result is that

when HP users increase, in the subcarrier allocation stage, more subcarriers are

allocated to suboptimal users to meet the minimum data rate of more HP users.

This means that the average SNR of the subcarriers decreases, which increases the

proportion of the increase in the power allocation of the waterfilling algorithm.

This means that the average SNR of the subcarriers decreases and thus the share

of the increased data rate due to the power allocation increases.

This is because as the proportion of HP users increases, the number of subcar-

riers allocated to users with the best SNR decreases. Therefore, the average SNR

for each subcarrier decreases, which increases the performance gap between the

two schemes. When the number of HP users increases, the method proposed in

this chapter can effectively reduce the wastage of subcarriers and power, thereby

increasing the overall data rate of users, as shown in the result in Fig.5.5.

Fig.5.6(a) to Fig.5.8(a) show the relationship between the data rate and the

number of users when the ratio of HP users to LP users is constant. Fig.5.6(b)

to Fig.5.8(b) show the average data rate of users versus the number of users. The

minimum data rate for HP users is rth = 6 kbit/s The total transmitted power is

set to pt = 0.5 watt and the number of subcarriers is set to N = 64.
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Figure 5.6: Data rate of LP users vs. number of users

Fig.5.6(a) shows the variation between the number of LP users and the data

rate. Fig.5.6 (c) shows the variation between the number of users and the average

subcarrier data rate belonging to LP users. The data rate of the proposed method

with equal power reaches the maximum value when the number of users is equal

to 4, and then the data rate and the average subcarrier data rate decrease when

the number of users increases. The proposed method shows that when the total

number of users is less than 8, the data rate increases as the number of users

increases. When the number of users is equal to 8, the data rate of the proposed

method reaches the maximum data rate and the gap between the data rate of the

proposed method and the data rate of the proposed method with equal power also

reaches the maximum value. After that, the data rate decreases as the number of
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users increases.

Fig.5.6(b) shows that the user data rate decreases as the number of users

increases. When the number of users reaches 8, the gap between the data rate of

the proposed method and that of the proposed method with equal power reaches

the maximum value. When the number of users is greater than 8, the gap between

the two decreases as the number of users increases.
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Figure 5.7: Data rate of HP users vs. number of users
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Fig.5.7(a) shows the change between the number of HP users and the data

rate. Fig.5.7(c) shows the change between the number of users and the average

subcarrier data rate of HP. When the total number of users increases, the total

data rate and the average subcarrier data rate for HP users also increase, and the

data rate increases as the power allocation increases. However, the magnitude of

the increase decreases as the total number of users increases. The reason for this

decrease is that as the number of HP users increases, more and more subcarriers

are allocated to HP users with suboptimal SNR so that all HP users can meet the

minimum rate requirement.

Fig.5.7(b) shows the change between the number of HP users and the average

data rate. As the total number of users increases, the average data rate for HP

users decreases and the trend is downward. The difference between the data rate of

the proposed method and the proposed method with equal power is greater when

the number of users is equal to two than when the number of users is between

4 and 8. The difference increases with the number of users when the number of

users is greater than 8.

The relationship between the total data rate and the number of users can be

seen in Fig.5.8(a). Fig. 5.8 (c) shows the variation between the number of users

and the average subcarrier data rate for all users. The data rate of the proposed

method increases with the number of users until the number of users reaches 16.

The total data rate peaks when the number of users is 16.
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Figure 5.8: Data rate of total users vs. number of users

89



page 90 of 117 5.4. SIMULATION RESULT

After that, the data rate decreases as the number of users increases. And the

data rate of the proposed method with equal power continues to increase until

the number of users reaches 10. When the number of users exceeds 10, the data

rate of the proposed method with equal power decreases as the number of users

increases, but the decrease is very small. This means that the power allocation

method in the proposed method can effectively delay the drop in user data rate

caused by too many users.

Fig.5.8(b) shows the change between the total number of users and the average

data rate. As the total number of users increases, the average data rate of the

total users decreases and the downward trend also decreases. It can be seen that

the proposed method can effectively slow down the decrease in average data rate

caused by the increase in the number of HP users.

Fig.5.8 (d) shows the variation between the number of users and the aver-

age number of subcarriers for different priority users. As the total number of

users increases, the average number of subcarriers owned by users of HP increases

steadily. The average number of subcarriers belonging to LP users steadily de-

creases. When the number of users is less than two, the number of subcarriers

belonging to HP users is close to the number of subcarriers belonging to LP users.

From Fig. 5.6 to Fig. 5.8, it can be seen that if the number of users is very

small, there are no other better users to assign subcarriers to, even if the SNR

of a particular subcarrier for a particular user is relatively low. Thus, in Fig.

5.6(a) and (c), if the power and subcarriers are sufficient, as the number of users

increases, the data rate of LP users also increases. However, as the number of

users increases, the number of HP users also increases. Therefore, more and more
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subcarriers must be allocated to HP users so that all HP users have a data rate

that is higher than the minimum required data rate. Fig. 5.7(b) also shows why

the difference between the two values is greater for a number of 2 users than for

a number of 2 to 8 users.

From this section, it can be seen that whether the number of users or the

proportion of HP users to the total number of users increases, the proposed method

can effectively reduce the loss of data rate while meeting the minimum data rate

requirements of HP users. In summary, the more HP users, the greater the role

the proposed method can play. This shows that the proposed algorithm is very

suitable for the situation where the rescue team enters the disaster area and the

rescue starts at the end of the disaster.

5.4.4 Impact of number of subcarriers on the data rate

In this section, presents the performance of the emergency system is presented

in terms of variation in the number of subcarriers and the sum rate. For Fig.5.9

and Fig.5.10, the number of LP users is set to Kl = 10. The number of HP

users is set to Kh = 10, where the minimum data rate for HP users is rth = 6

kbit/s. The transmit power per subcarrier is set to pn = 0.0625 watts. The

abscissa representation of Fig.5.9 and Fig.5.10 is log2 ∗ (N), where N is number

of subcarriers.
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Figure 5.9: Data rate vs. number of subcarriers

It can be found from Fig.5.9 that when the number of users remains unchanged,

as the sub-carriers increase, the total data rate increases. The gap between the

data rate of the proposed method and the proposed method with equal power

increases.

Fig.5.10 shows more intuitively that as the number of subcarriers increases,

the data rate growth rate due to increased power allocation decreases.
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Figure 5.10: Growth rate vs. number of subcarriers

The data rate growth rate brought about by power allocation finally approaches

ten percent.

Therefore, it can be seen from Fig.5.9 and Fig.5.10 that for a constant number

of users and a constant ratio of HP users to LP users, as the average SNR of

the subcarriers increases, the proportion of the user data rate increased by power

allocation decreases.

In Fig.5.9 and Fig.5.10, the transmit power of each subcarrier remains un-

changed. In contrast to Fig.5.9 and Fig.5.10, in Fig.5.11 to Fig.5.12 the total

transmit power remains the same. The total transmit power is set to pt = 0.5

watt. The rest of the factors remain unchanged.
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Figure 5.11: Data rate for HP users and LP users vs. number of subcarriers with

constant power

Fig.5.11 shows the relationship between the data rate and the number of sub-

carriers for HP users and LP users. From this, it can be seen that the gap between

the data rate of HP users and that LP users decreases as the number of subcarriers

increases, regardless of the proposed scheme or the proposed scheme with equal

power. The reason for this is as follows.

As the number of subcarriers increases, the average power allocated to the

subcarriers decreases, but each HP user has more eligible subcarriers. This means

that the proportion of additional subcarriers occupied by the minimum data rate

requirements of HP users is also reduced. The gap between the data rates of HP

users and LP users is thus reduced.
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Figure 5.12: Data rate for all users vs. number of subcarriers with constant power

Fig.5.12 shows the relationship between the data rate and the number of sub-

carriers for all users.

Fig.5.12 shows that as the number of subcarriers increases, the gap between

the user data rate of the proposed method and that of the proposed method with

equal power increases. In contrast to Fig.5.9, with the increase in subcarriers, in

Fig.5.12 the trend of increasing the user’s data rate is much lower. The reasons

for this are as follows.

Since the total transmit power is unchanged, as the subcarriers increase, the

average power of each subcarrier decreases, which means that the average SNR

of the subcarriers decreases. The reduction in the average SNR of the subcarriers

allows the user data rate to increase more through power allocation. Thus, the
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gap between the two methods is increased.

As the total transmit power remains unchanged, the proportion of subcarriers

allocated to the optimal user increases with the increase in subcarriers, which

means that the data rate of the proposed method becomes closer and closer to

the optimal solution. As a result, the upward trend in data rates has also slowed

down.
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Figure 5.13: Growth rate vs. number of subcarriers with constant power

Fig.5.13 shows growth rates of data rates for the proposed method and the

proposed method with equal power. This figure shows in a more intuitive way

that the user data rate increases with the power allocation method. In Fig.5.13,

the growth rate decreases as the number of subcarriers increases. In Fig.5.9, the

lowest growth rate is closer to 10%. The lowest growth rate in this graph is 17%.

Fig.5.13 shows a smaller decrease than Fig.5.9. This is because the average SNR
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of the subcarriers in Fig.5.13 also decreases, and the data rate increases more by

power allocation.

5.5 Conclusions

To maximize the complexity of the algorithm proposed in Chapter 4, the per-

formance difference between the algorithm and the brute force search method is

somewhat large in the case of sufficient resources. Therefore, in Chapter 5, we

propose a new algorithm to improve the shortcomings of the method in Chapter

4. Although the complexity of the algorithm in Chapter 5 is higher than that in

Chapter 4, it is much lower than that of the reference method and methods in the

literature. At the same time, Chapter 5 also takes into account user types in an

emergency situation that do not appear in the rest of the literature.

In the subcarrier assignment problem, subcarriers are preferentially assigned

to the best users of the channel, and then subcarriers are reassigned to the HP

users who do not meet the rate by calculating the minimum rate differences, so

that the complexity of the algorithm is greatly reduced. According to the above

analysis, the computational complexity of this method is much lower than the

brute force search method.

As for the power allocation, for each user, e.g. user k, on its assigned subcarrier,

the water-filling algorithm is performed under the power constraint Nk · pmax/N ,

and the power allocation is done by calculating the water level µkh to achieve the

maximum data rate.

In summary, compared to other schemes that cannot be realized due to high

complexity, this chapter proposes an algorithm whose complexity maximizes the
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user’s data rate within the range that can be realized in the emergency communi-

cation environment to maximize the use of communication resources.

Numerical simulation results show that the performance of the proposed method

is close to that of the brute force cracking method regardless of the number of re-

sources and users. When the number of users increases or the average user resource

decreases, this method can effectively use the limited subcarriers and limited power

to increase the total user data rate and bring the rate closer to the data rate of

the brute force cracking method. Due to its low complexity, the algorithm can

also be used in real-world applications.
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Chapter 6

Conclusion and Future Research
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6.1 Summary and Conclusions

With the application of flying BS drone technologies in emergency network sys-

tems, the drone can enable deploying a rapid, adaptable and efficient. Emergency

network systems can ensure the communication capability of rescue teams and

the ability of survivors to communicate with the outside world. In addition, the

rescue teams can learn in good time in which areas survivors were waiting to

be rescued through an emergency communication combination. However, some

research challenges remain unresolved. For example, many previous works have
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investigated the joint optimization of subcarrier allocation and power allocation

[11, 12]. The complexity of implementing this remains a major research challenge.

Another major research challenge was to consider users with different priorities.

Specifically, efficient resource allocation algorithms were needed that provide a

good trade-off between system performance and implementation practicality.

The contributions in this thesis were proposed two different resource alloca-

tion schemes. Both schemes divide users into HP users and LP users and both

guarantee minimum guaranteed rate for HP users.

The first scheme was an adaptive algorithm with low complexity. In this

scheme, subcarriers were assigned to users according to the policy that they were

first assigned to HP users. This procedure achieves quasi-linear complexity in

terms of the number of users. Finally, the data of the brute force search method

and this method were collected through simulation experiments. The data shows

that the data rate of the proposed scheme was very close to the optimal data rate

when there was a lack of resources.

The second scheme was an adaptive algorithm. In the proposed scheme, the

two sub-problems of subcarrier allocation and power allocation were optimized

separately. For the subcarrier allocation problem, a suboptimal low-complexity

subcarrier allocation algorithm was proposed that uses Shannon’s theorem and

fading in emergency communication to maximize the achievable data rate with

guaranteed minimum data rate for HP users in constrained scenarios. This was

achieved by comparing the differences in optimal data rates between different

users. For the power allocation problem, unlike in existing works, the different

priorities of users were taken into account and power allocation was performed
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by iteratively applying a waterfilling algorithm to some individual HP users and

globally to all other users. Numerical simulations prove that the performance

of the proposed resource allocation scheme was close to the optimum and its

complexity was much lower than that of the brute force search method.

6.2 Future Research Directions

Despite the many potential advantages that drones bring to emergency communi-

cations, such as rapid connectivity, flexibility and adaptability, etc., there are still

many disadvantages, and some disadvantages cannot be overlooked, for example,

the limited power of the drone. To make drones more suitable for use in future

wireless networks, it is imperative to improve their efficiency and practicality in

implementation. In terms of practicality, we need to think about the wireless

communication environment of the wireless network. How to compensate for the

imperfect channel state information caused by its rapid changes is an interesting

research direction. As mentioned in this thesis, many systems cannot be applied in

practise due to the complexity of implementation. Therefore, reducing complexity

is also a research direction. Below are some interesting future research directions

related to implementation complexity and the study of the effects of imperfect

channel state information.

6.2.1 Implementation Complexity

Due to the low processing power of drones, complexity is an issue that needs to be

considered. Another problem brought by the complexity of the multi-carrier drone

assignment scheme is the huge resource consumption. Some future directions of
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study are proposed below to address these issues.

In order to maximize the data rate of transmission in the multi UAV OFDM

system, a promising future direction of study is to apply the minimum mean

squared error (MMSE) and evaluate the performance loss when the system opti-

mization parameter update is delayed based on the channel correlation. A major

source of MMSE complexity is the calculation of demodulation weights, which

involves matrix inversion operations. In scenarios with high correlation between

channel coefficients across adjacent symbols, the weight vector of the MMSE may

not need to be calculated and updated for each modulation symbol, which drasti-

cally reduces the computational complexity. The computational complexity of the

MMSE could also be reduced by applying chunk-based resource allocation [14,15]

in multi-carrier systems. The key idea behind this solution is to transform the

non-trivial allocation problem into an MMSE problem. In this way, the allocation

problem can be solved by the alternating optimization method.

Since wireless communication environments can change rapidly and optimal

resource allocation requires real-time computations, the application of machine

learning techniques can achieve rapid adaptation of system parameters to the time-

changing environments, thus significantly reducing the computational complexity

of resource allocation. Therefore, a possible future direction of study is to apply

machine learning techniques to develop low complexity resource allocation systems

in multi-carrier systems. In addition, machine learning techniques can be used to

adaptively calculate how often the parameters of the weight vector of the MMSE

need to be updated according to the variability of the channel conditions in time,

frequency and space.
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6.2.2 Imperfect Channel State Information

If the channel state information is imperfect, it may lead to errors in subcarrier

allocation and power allocation, thus affecting system performance. Therefore,

understanding the channel state information of drones and users in real-world

scenarios is critical to improving the performance of UAVs in emergency commu-

nication networks.

In this sense, an interesting research direction is to predict fading channels in

wireless communication systems using machine learning. Then use different fading

channels for different environments, such as the Rayleigh fading channel and the

Rice fading channel. This could be applied to emergency communication systems

with imperfect channel state information to develop techniques to improve system

performance.

Another important line of research is the study of drones in more challenging

channels of communication conditions, such as improving the realism of the envi-

ronment by simulating the uncertain activities of the crowd. While the complexity

of the environment increases, the performance of the drone can be improved by

understanding the performance limits of the system in such scenarios.
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