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Abstract
Recurrent event data are frequently encountered in many longitudinal studies where 
each individual may experience more than one event. Wang and Chen (Biometrics 
56(3):789–794, 2000) proposed a comparability constraint to estimate the time trend 
for the gap times, where the gap time pairs that satisfy the constraint have the same 
conditional distribution. However, the comparable paired gap times are also inde-
pendent. Therefore, the comparable gap time pairs will be subject to a stronger con-
straint than needed for the estimation. Thus their procedure is subject to information 
loss. Under the accelerated failure time model, we propose a new comparability con-
straint that can overcome the drawback mentioned above. The gap time pairs being 
selected by the proposed comparability constraint will still have the same distribu-
tion, but they do not need to be independent of each other. We showed that the pro-
posed comparability constraint will utilize more gap time data pairs than the strong 
comparability. And we showed via various simulation studies that the variance will 
be smaller than Wang and Chen’s (2000) estimator. We apply the proposed method 
to the HIV Prevention Trial Network 052 study.

Keywords  Accelerated failure time model · Comparability · Gap time · Rank 
regression · Recurrent event data

1  Introduction

Recurrent event data are frequently encountered in many longitudinal studies 
when a particular event of interest repeatedly occurs for a subject. Examples 
include the cancer recurrence, women’s menstrual cycles, and machinery break-
down. Assume there are n subjects in a study who have experienced an initial 
event (e.g. cancer occurrence). Let i = 1,… , n index the subjects and j = 0, 1,… 
index the recurrent events for a given subject, where j = 0 denotes the initial 
event. For subject i, let Tij be the gap time, which is the time between (j − 1) th and 
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jth events, let Ci be the time between the beginning of the study and the end of 
follow-up, then:

where mi is the number of observed gap times. When mi = 1 , Ti1 is being censored at 
Ci , then we define 

∑mi−1

j=1
Tij = 0 . Otherwise, if mi > 1 , then the first mi − 1 gap times 

are complete and the last one is being censored at T+
i,mi

= Ci −
∑mi−1

j=1
Tij . The 

observed gap times consists of {Ti1,… , Ti,mi−1
, T+

i,mi
} for subject i. We assume the 

observed data are i.i.d. across the n subjects.
One particular research interest in studying the recurrent event data is the time 

trend analysis for the gap times [2–4]. The trend analysis is of scientific impor-
tance due to its application in measuring disease progression. For example, 
researchers are often interested in whether a treatment for a psychiatric patient 
will prolong the time for readmission of hospitalization, since frequently read-
mission means the treatment is not effective [5]. An explicit idea to study the time 
trend is to compare the length of different gap times according to chronological 
order. However, it is impossible to conduct a naive comparison, since the recur-
rent event data are subject to induced censoring [6], which means Tijs (j ≥ 2) are 
subject to dependent censoring by Ci − Ti1 −⋯ − Ti,j−1 . [1] tackled the induced 
censoring issue by comparing the marginal distributions of different gap times, 
and proposed to study the time trend by conducting a hypothesis testing proce-
dure. The null hypothesis states that there is no time trend, i.e., all the Tij s have 
the same marginal distribution within each subject i. The standard K-sample 
trend test can be applied if there is no censoring. However, in the presence of 
induced censoring, this approach will not work. One way to circumvent this issue 
is to introduce the comparability concept, where comparability means a further 
constraint to the different combinations of pairwise gap times within a subject, 
so that the gap time pairs that satisfy the comparability constraint can still be 
comparable (e.g. have the same conditional marginal distribution). Given sub-
ject i, for gap time pairs (Tij, Tik) ( j < k ), 

∑k

l=1
Til ≤ Ci ensures that both Tij and 

Tik will not be censored. Denote Si,jk =
∑k

l=1
Til − (Tij + Tik) , given Ti1,… , Tik and 

Ci , in order to avoid Tij and Tik being censored, Tij + Tik must not be greater than 
Ci − Si,jk . According to [1]’s definition, Tij and Tik are comparable if Tij can be fit-
ted into Tik ’s observation interval and vice versa. Here the observation intervals 
for Tij and Tik are Ci − Si,jk − Tij and Ci − Si,jk − Tik , respectively. For further details 
of the rationale, please see Sect. 2 in [1]. In the absence of covariates, the compa-
rability constraint in [1] is defined as:

(1)
mi−1
∑

j=1

Tij ≤ Ci,

mi
∑

j=1

Tij > Ci,

(2)
Tij ≤ Ci − Si,jk − Tij,

Tik ≤ Ci − Si,jk − Tik.
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If Tij and Tik satisfy the constraint (2), then they will be a comparable pair. It is worth 
mentioning that the comparability concept also appears in regression problems 
based on independent truncated observations, see for example [7–9], among others.

In the presence of censoring, [1] proposed the comparability constraint and con-
struct a test statistic for the trend analysis

where Zij is a given trend measure for jth gap time of subject i, and �i,jk is the compa-
rability constraint. One practical example of the trend measure is the dose level [?]. 
An assigned measure such that Zij is increasing with j can also be used, such as 
Zij = j [10]. Here �i,jk stands for the comparability constraint that is imposed on dif-
ferent gap time pairs Tij and Tik for subject i, if Tij and Tik is comparable, then we 
have �i,jk = 1 , otherwise, define �i,jk = 0 . Thus one can see that only comparable 
pairs are being selected and used in the hypothesis testing. Since the last observation 
T+
i,mi

 is always biased due to intercept sampling problem [6], T+
i,mi

 will be excluded 
from (3) as well as the following statistical analysis.

In the presence of covariates, [1] adapted the comparability constraint to the 
accelerated failure time model, and included the trend measure Zij as one compo-
nent of the covariates, thus the sign of the coefficient of the trend measure covari-
ate can be used to determine the trend. As a result, one only need to estimate the 
trend via a parameter estimation procedure. However, as can be shown in Sect. 2.1 
of this paper, under the comparability constraint proposed by [1], the comparable 
gap time pairs will not only have the same distribution, but also are independent. 
Therefore, [1]’s estimation procedure under the accelerated failure time model will 
be subject to information loss. We also conduct simulation studies and the results 
show that the comparability constraint in [1]’s paper only use a half of the data 
under moderate censoring, when the censoring is heavy, the information loss will 
become even worse (Tables 1 and 2 in Sect. 3).

In this paper, we propose an alternative comparability constraint under the 
same model as in [1]. We want to mention that compared with [1]’s estima-
tion procedure, our estimation procedure employs the same assumptions as in 
their paper. More importantly, we proved that the comparable pairs under the 
new comparability constraint will have the same conditional distribution, but 
they are not conditional independent. Thus our method will be superior to [1]’s. 
Since our constraint is weaker, we name our method and [1]’s as the weak com-
parability and strong comparability, respectively. Our simulation results also 
show that the weak comparability can recruit more comparable gap time pairs, 
and the variance for our estimator will be smaller than the estimator under the 
strong comparability.

This paper is organized as follows: In Sect. 2, we introduce the concept of weak 
comparability, and show the asymptotic results. Section 3 presents the simulation 
results. The proposed method is applied to the HIV Prevention Trial Network 052 
data in Sect. 4. The paper is finalized by discussion in Sect. 5.

(3)U =

n
∑

i=1

∑

j<k≤mi−1

𝛿i,jksgn{(Tik − Tij)(Zik − Zij)},
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2 � Main Results

2.1 � The Strong Comparability Under the Accelerated Failure Time Model

Given subject i, for jth gap time ( j = 1,… ,mi − 1 ), consider the following accelerated 
failure time model:

where �i is a random intercept, Zij is a p × 1 vector of covariates whose values vary 
within subject i with respect to different gap times, and one component of Zij is the 
trend measure, � is a p × 1 vector of parameters. For subject i, conditioning on �i and 
Zij , the error terms eij, j = 1,… ,mi − 1 are independent from each other and have a 
common distribution Gi with mean zero. If p = 1 and Zij is the trend measure, then 
model (4) provides a direct interpretation of time trend for gap times: � = 0 means 
no trend, 𝛽 > 0/𝛽 < 0 means that Tij, j = 1,… ,mi − 1 tend to be longer/shorter in 
chronological order, respectively.

Let eij(𝛽) = logTij − 𝛼i − Z⊤
ij
𝛽 denote the residual of jth gap time for subject i. [1] 

stated that if eij(�) lies in the observation interval of eik(�) and, symmetrically, eik(�) 
lies in the observation interval of eij(�) . Then eij(�) and eik(�) are comparable, and the 
comparability constraint is given below (pp. 792):

Thus eij(�) and eik(�) constitute a strong comparable pair if they satisfy (5). Here we 
want to mention that (5) is a direct extension of (2) in the presence of model (4). We 
will use the first inequality as an example, the first inequality is equivalent to

In the absence of model (4), the first inequality of the comparability is

which is the same as

Here Ci − Si,jk − Tij is the observation interval of Tik , if Tij is larger than Tik , then 
there is no way that Tij and Tik is comparable (since the support of Tij must be shorter 
than the support of Tik ). However, under model (4), Tij and Tik cannot be compared 
directly. Therefore, one needs to adjust for their corresponding covariates, as a 
result, we need to subtract �i + Zij� on the left-hand side (since it’s related to Tij , and 
subtract �i + Zik� on the right-hand side (since it’s related to Tik.

(4)logTij = 𝛼i + Z⊤

ij
𝛽 + eij,

(5)
eij(𝛽) ≤ log(Ci − Si,jk − Tij) − (𝛼i + Z⊤

ik
𝛽),

eik(𝛽) ≤ log(Ci − Si,jk − Tik) − (𝛼i + Z⊤
ij
𝛽).

log Tij − 𝛼i − Z⊤

ij
𝛽 ≤ log(Ci − Si,jk − Tij) − (𝛼i + Z⊤

ik
𝛽),

Tij ≤ Ci − Si,jk − Tij,

log Tij ≤ log(Ci − Si,jk − Tij),
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2.2 � The Weak Comparability Under the Accelerated Failure Time Model

It is easy to see that (5) is equivalent to:

In the following, we will use (6) to represent the strong comparability constraint, 
since the nuisance parameter �i is eliminated. Based on (6), we propose the weak 
comparability constraint as follows:

Constraint (7) is obtained by tweaking Tij and Tik exp{(Zij − Zik)
⊤𝛽} on the left hand 

side of corresponding inequalities in (6). Our intuition can be found in the geometri-
cal shape of the constraint, which will be illustrated shortly via Fig. 1. In the follow-
ing, we will first show that if eij(�) and eik(�) satisfy constraint (7), then they will 
follow the same distribution.

The assumptions that we require are as follows:

Assumption 1  Within each subject i, the transformed gap times 
exp(eij(𝛽)) = Tij exp(−𝛼i − Z⊤

ij
𝛽) are independently distributed given �i and Zij.

(6)
Tij + Tij exp{(Zik − Zij)

⊤𝛽} ≤ Ci − Si,jk,

Tik + Tik exp{(Zij − Zik)
⊤𝛽} ≤ Ci − Si,jk.

(7)
Tij + Tik ≤ Ci − Si,jk,

Tij exp{(Zik − Zij)
⊤𝛽} + Tik exp{(Zij − Zik)

⊤𝛽} ≤ Ci − Si,jk.

0 c/d c

c

dc

dx+y/d=c

x+y=c

(c/(1+d),cd/(1+d))

Fig. 1   Illustration of comparability
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Assumption 2  Within each subject i, Ci is conditionally independent of random 
intercept �i and the random errors {ei1, ei2,…} given Zi1, Zi2,…

Assumption 1 takes the covariate effect Zij and random intercept �i into consider-
ation, similar assumptions can also be found in [11] and [12]. Assumption 2 means 
that Ci is conditionally independent of {Ti1, Ti2,…} given {Zi1, Zi2,…}.

Lemma 1  Under assumptions 1 and 2, given a fixed real value e, if eij(�) and eik(�) 
satisfy the strong comparability constraint (6), then we have

if eij(�) and eik(�) satisfy the weak comparability constraint (7), then we will also 
have

Lemma 1 shows that the constraint (7) can be used to find comparable pairs. 
When eij(�) and eik(�) satisfy the strong comparability constraint, assume the joint 
probability density function for eij(�) and eik(�) as f S

i,jk
 , and marginal probability 

density functions for eij(�) and eik(�) as f S
ij

 and f S
ik

 , respectively. When eij(�) and 
eik(�) satisfy the weak comparability constraint, then we denote the joint probability 
density functions and the marginal probability density functions for eij(�) and eik(�) 
as f W

i,jk
 , f W

ij
 and f W

ik
 . It is easy to see that f S

i,jk
= f S

ij
× f S

ik
 , which means if eij(�) and 

eik(�) satisfy strong comparability constraint, then they are independent of each 
other. [1] has shown the independence of Tij and Tik in the absence of covariates, for 
further details, please see Sect.  2, subsection ‘Comparable (tj, tk) ’ in their paper. 
However, the same results do not hold under weak comparability. That is to say, if 
the comparable pairs satisfy the weak comparability constraint, we do not have 
f W
i,jk

= f W
ij

× f W
ik

 , which means the weak comparable pairs will only have the same 
distribution but not independent. As a result, if the comparable pairs satisfy the 
strong comparability constraint, then they will have the same distribution and they 
are also independent of each other, which means the strong comparability automati-
cally impose an additional constraint that is not needed in estimation. However, the 
weak comparability constraint will not suffer from this issue. All the above results 
show that constraint (6) is stronger than (7).

Denote �S
i,jk
(�) and �W

i,jk
(�) as the indicator functions for pair (Tij, Tik) under the 

strong and weak comparability, respectively. If Tij and Tik satisfies (6), then 
�S
i,jk
(�) = 1 , and �S

i,jk
(�) = 0 otherwise. Similarly, if Tij and Tik satisfies (7), then 

�W
i,jk
(�) = 1 , and �W

i,jk
(�) = 0 otherwise. Then we can derive the unbiased estimates of 

parameter � by minimizing either of the following objective functions:

(8)Pr{eij(�) ≤ e} = Pr{eik(�) ≤ e},

(9)Pr{eij(�) ≤ e} = Pr{eik(�) ≤ e}.

(10)MS(𝛽) =

n
∑

i=1

∑

1≤j<k≤mi−1

𝛿S
i,jk
(𝛽) ∣ eik(𝛽) − eij(𝛽) ∣,
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In the following, we show that �W
i,jk
(�) will always be larger than �S

i,jk
(�) for any � . To 

see this, let d = exp{(Zik − Zij)
⊤𝛽} , x = Tij , y = Tik , c = Ci − Si,jk , then (6) becomes

Meanwhile, (7) is equivalent to

In Fig. 1, the shaded area represents the strong comparability constraint, while the 
hatched area represents the weak comparability constraint. It is easy to see that the 
hatched area is bigger, which indicates �W

i,jk
(�) ≥ �S

i,jk
(�) . As a result, (11) will utilize 

more gap time pairs and thus produce an estimate that has a smaller variance than 
the estimate obtained from (10). In addition, through simple calculation, the hatched 
area is c2∕(1 + d) while the shadowed area is c2d∕(1 + d)2 , which shows that the 
hatched area is 1 + 1∕d times larger than the shadowed area, where the d depends on 
Zij , Zik and �.

2.3 � Asymptotic Results

Suppose (10) and (11) achieve the minimum at 𝛽S
n
 and 𝛽W

n
.

According to the suggestion of one of the referees, we also add some additional 
assumptions that are needed to establish the following theorem:

Assumption 3  There exists a matrix Σ0(�) such that 
limn→∞

1

n

∑n

i=1
cov(

∑

j<k 𝛿
W
i,jk
(𝛽)sgn[(Zik − Zij){eik(𝛽) − eij(𝛽)}]) = Σ0(𝛽).

Assumption 4  There exists a vector �(�) such that 
limn→∞

1

n

∑n

i=1

∑

j<k 𝛿
W
i,jk
(𝛽)sgn[(Zik − Zij){eik(𝛽) − eij(𝛽)}] = 𝜇(𝛽) = E

�

∑

j<k 𝛿
W
i,jk
(𝛽)sgn[(Zik − Zij){eik(𝛽) − eij(𝛽)}]

�

.

Assumption 5  The probability density functions for eij are continuous and bounded.

Since the two objective functions MS(�) and MW (�) have a similar form, in the 
following we will only present the asymptotic result for 𝛽W

n
 . Denote �0 as the true 

value of � , then we have:

Theorem  1  Under Assumptions 1 to 5, the estimator 𝛽W
n

 is consistent, and 
n1∕2(𝛽W

n
− 𝛽0) converges in distribution to N(0, {𝜇�(𝛽0)

⊤}−1Σ(𝛽0){𝜇
�(𝛽0)}

−1) , where 

(11)MW (𝛽) =

n
∑

i=1

∑

1≤j<k≤mi−1

𝛿W
i,jk
(𝛽) ∣ eik(𝛽) − eij(𝛽) ∣ .

(12)
x(1 + d) ≤ c,

y(1 + 1∕d) ≤ c.

(13)
x + y ≤ c,

dx + y∕d ≤ c.
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Σ(�0) is the covariance matrix of 
∑

j<k 𝛿
W
i,jk
(𝛽0)sgn[(Zik − Zij){eik(𝛽0) − eij(𝛽0)}] , 

��(�0) is the partial derivative of

at �0.

Thus n1∕2(𝛽W
n
− 𝛽0) is asymptotic normally distributed. We need to mention that 

it is hard to quantify the efficiency gain for our estimator and the strong comparabil-
ity due to the sandwich structure of the variance, however, as we can see from the 
comments in Sect.  2.1, for subject i, each �W

i,jk
(�) can potentially recruit more gap 

time pairs than �S
i,jk
(�) , thus the variance for weak comparability will be smaller than 

the variance for strong comparability.
The estimation of the asymptotic covariance matrix maybe difficult since the 

numerical computations of ��(�0) and Σ(�0) are nontrivial. Bootstrap methods can 
be applied in practice.

3 � Simulation Study

In this section, we evaluate the finite sample properties of the methods developed in 
Sect. 2.1 via extensive simulation studies. We use the resampling approach proposed 
by [13] to approximate the distributions of 𝛽W

n
 and 𝛽S

n
 . First we generate wi indepen-

dently from the binomial distribution Bi(n, 1∕n) , then we minimize the perturbed 
objective function

and repeat the procedure B = 200 times.
We use model (4) to generate the gap times, where we set p = 1, �i = 1 , and 

assume eij follows a normal distribution with mean 0 and variance 1/4. Let the true 
value of � equals 0 and 0.2, respectively. 500 simulated data sets were generated. We 
denote the number of subjects in each simulated data set as n, where we choose 
n = 30, 60, 100 . For ith subject in lth data set (i = 1,… , n, l = 1,… , 500) , first we 
generate 10 successive times, then we use a constant Ci as the censoring time to 
select the first mi,l gap times {Ti1,… , Ti,mi,l

} , where 
∑mi,l−1

j=1
Tij ≤ Ci and 

∑mi,l

j=1
Tij > Ci . 

We consider two trend measures in the simulation study, Zij = j and Zij = j1∕2 , the 
results for Zij = j are shown in Tables 1 and 2, and the results for Zij = j1∕2 are shown 
in Tables 3 and 4.

For ith subject in the lth simulated data set, the observed gap times are 
{Ti1,… , T+

imi,l
} , denote the weak and strong comparability indicator for episodes j 

𝜇(𝛽) = E

{

∑

j<k

𝛿W
i,jk
(𝛽)sgn[(Zik − Zij){eik(𝛽) − eij(𝛽)}]

}

M̃W (𝛽) =

n
∑

i=1

wi

∑

j<k

𝛿W
i,jk
(𝛽) ∣ eik(𝛽) − eij(𝛽) ∣,
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and k ( j < k ≤ mi − 1 ) in subject i as �l,W
i,jk

(�) and �l,S
i,jk
(�) , respectively. we compute 

the following quantities to compare the efficiency between weak and strong 
comparabilities:

•	 Mean Total Pairs: It is defined as 

1

500

500
∑

l=1

n
∑

i=1

(

mi,l − 1

2

)

.

Table 1   Simulation results for �
0
= 0 , Zij = j

W weak comparability constraint, S strong comparability constraint, n number of subjects, Ci censoring 
time for subject i, Bias estimate - �

0
 , SE standard error, SD standard deviation, Coverage the empirical 

coverage of approximate 95% confidence intervals, MCP mean comparable pairs, MTP mean total pairs

n C
i Bias×103 SE×103 SD×103 Coverage MCP MTP

W 30 9 2 35 36 93.6 75.94 75.96
S 30 9 1 48 51 93.8 66.81 75.96
W 30 8 − 3 51 56 96.0 53.44 53.58
S 30 8 − 3 103 97 94.0 33.64 53.58
W 60 9 2 29 29 93.0 152.41 152.44
S 60 9 2 38 41 94.4 136.05 152.44
W 60 8 − 2 36 38 92.8 106.90 107.00
S 60 8 0 72 76 94.6 62.12 107.00
W 100 9 0 23 22 93.0 254.65 254.68
S 100 9 0 29 30 93.8 230.54 254.68
W 100 8 0 28 29 94.6 178.35 178.46
S 100 8 − 2 54 59 95.4 89.27 178.46

Table 2   Simulation results for �
0
= 0.2 , Zij = j

W weak comparability constraint, S strong comparability constraint, n number of subjects, Ci censoring 
time for subject i, Bias estimate - �

0
 , SE standard error, SD standard deviation, Coverage the empirical 

coverage of approximate 95% confidence intervals, MCP mean comparable pairs, MTP mean total pairs

n C
i Bias×103 SE×103 SD×103 Coverage MCP MTP

W 100 10 2 55 61 94.5 99.65 106.58
S 100 10 60 177 144 88.4 37.09 106.58
W 100 12 − 16 28 32 93.8 174.65 174.76
S 100 12 2 61 70 95.2 83.99 174.76
W 100 15 − 10 20 25 96.8 288.24 288.25
S 100 15 − 8 222 29 97.2 248.93 288.25
W 100 20 − 9 13 19 97.4 508.32 508.32
S 100 20 − 9 13 19 97.4 506.88 508.32
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 The mean total pairs calculates the average total number of pairs and measures 
the maximum capacity allowed in estimation. Under this scenario, we assume 
that every pair is comparable, which means that for i = 1,… , n , j = 1,… ,mi , 
j < k ≤ mi − 1 , we have �l,W

i,jk
(�0) = 1 and �l,S

i,jk
(�0) = 1.

•	 Mean Comparable Pairs: For the weak comparability, it is defined as 

 while for the strong comparability, it is defined as 

1

500

500
∑

l=1

n
∑

i=1

∑

j<k≤mi−1

𝛿
l,W

i,jk
(𝛽0),

Table 3   Simulation results for �
0
= 0 , Zij = j1∕2

W weak comparability constraint, S strong comparability constraint, n number of subjects, Ci censoring 
time for subject i, Bias estimate - �

0
 , SE standard error, SD standard deviation, Coverage the empirical 

coverage of approximate 95% confidence intervals, MCP mean comparable pairs, MTP mean total pairs

n C
i Bias×103 SE×103 SD×103 Coverage MCP MTP

W 30 9 − 7 109 111 92.1 76.35 76.36
S 30 9 − 7 113 110 91.2 74.28 76.36
W 30 8 − 2 133 138 92.4 53.21 53.31
S 30 8 − 6 146 134 89.6 48.99 53.31
W 60 9 − 3 77 77 93.0 151.78 151.80
S 60 9 − 3 78 77 91.8 148.53 151.80
W 60 8 2 94 97 94.4 107.03 107.15
S 60 8 0 102 95 90.6 99.86 107.15
W 100 9 1 63 60 92.1 254.06 254.08
S 100 9 1 65 60 92.1 248.97 254.08
W 100 8 3 73 75 93.2 178.11 178.23
S 100 8 3 79 73 91.8 166.39 178.23

Table 4   Simulation results for �
0
= 0.2 , Zij = j1∕2

W weak comparability constraint, S strong comparability constraint, n number of subjects, Ci censoring 
time for subject i, Bias estimate - �

0
 , SE standard error, SD standard deviation, Coverage the empirical 

coverage of approximate 95% confidence intervals, MCP mean comparable pairs, MTP mean total pairs

n C
i Bias×103 SE×103 SD×103 Coverage MCP MTP

W 100 10 − 16 75 83 94.2 148.88 149.18
S 100 10 − 16 84 81 91.8 135.62 149.18
W 100 12 − 13 60 62 93.6 254.46 254.48
S 100 12 − 13 61 61 93.0 250.59 254.48
W 100 15 − 9 46 44 93.2 440.19 440.19
S 100 15 − 9 46 44 93.2 439.57 440.19
W 100 20 − 7 31 31 92.6 845.22 845.22
S 100 20 − 7 31 31 92.6 845.21 845.22
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 The mean comparable pairs measures how much information the strong and 
weak comparability will utilize. The difference in mean comparable pairs for the 
weak and strong comparability reflects the relative efficiency of the two compa-
rability constraints. If the mean total pairs equals to the mean comparable pairs, 
then every pair will be a comparable pair.

From Table 1, we can see that standard deviation for the estimates under the 
weak comparability constraint are smaller than the standard deviation for the esti-
mates under the strong version. From the table, we can also see that the mean 
comparable pairs under weak comparability are larger than the mean compara-
ble pairs under the strong version as well, which is already verified in a graphi-
cal way in Sect. 2.1. When the censoring time is shorter ( Ci = 8 ), the difference 
between the standard deviations will be larger. When the censoring time is longer 
(i.e. Ci = 9 ), for each subject i ( i = 1,… , n ), mi will be larger, thus the mean total 

1

500

500
∑

l=1

n
∑

i=1

∑

j<k≤mi−1

𝛿
l,S

i,jk
(𝛽0).

Table 5   Simulation results for 
�
0
= 0 , Zij = j1∕2 under larger 

sample sizes, compared with 
Table 3

W weak comparability constraint, S strong comparability constraint, 
n number of subjects, Ci censoring time for subject i, Bias estimate - 
�
0
 , SE standard error, SD standard deviation, Coverage the empirical 

coverage of approximate 95% confidence intervals

n C
i Bias×103 SE×103 SD×103 Coverage

W 200 9 1.7 43 43 93.5
S 200 9 0.9 46 43 95.2
W 200 8 − 4 49 53 96.8
S 200 8 − 4 51 51 94.5
W 300 9 2 33 34 94.5
S 300 9 2 35 34 94.0
W 300 8 − 2 42 42 95.0
S 300 8 − 2 45 43 93.5

Table 6   Simulation results for 
�
0
= 0.2 , Zij = j1∕2 under larger 

sample sizes, compared with 
Tables 4

W weak comparability constraint, S strong comparability constraint, 
n number of subjects, Ci censoring time for subject i, Bias estimate - 
�
0
 , SE standard error, SD standard deviation, Coverage the empirical 

coverage of approximate 95% confidence intervals

n C
i Bias×103 SE×103 SD×103 Coverage

W 200 20 − 7 21 22 94.2
S 200 20 − 7 21 22 94.2
W 300 20 − 5 17 19 94.8
S 300 20 − 5 17 19 94.8
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pairs will also increase. Table 2 show similar results for �0 = 0.2 . The simulation 
results for Zij = j1∕2 are shown in Tables  3 and 4, and the results are similar to 
Tables 1 and 2. As mentioned by one of the referees, the empirical coverage prob-
abilities in Tables 3 and 4 seem a bit low compared to the nominal level. We also 
conducted further simulations with larger sample sizes, and the results are shown 
in Tables 5 and 6. As we can see, the empirical coverage probabilities are closer 
to the nominal level as the sample size increases. In addition, for trend measure 
Zij = j1∕2 , the coverage probability for strong comparability tend to be lower than 
the weak version under moderate or heavy censoring.

One referee comment that whether the proposed estimator performs well under 
other censoring mechanisms. We would like to mention that the censoring mech-
anisms will not affect the performance, since we only utilize the uncensored gap 
times and select comparable pairs (either in strong comparability or weak com-
parability). Based on our intuitive observation in Sect. 2.1, the comparable pairs 
for strong comparability will be nested within the weak comparability. So for any 
censoring mechanisms, the standard deviation for weak comparability will be less 
than the standard deviation for strong comparability. To illustrate this, we con-
ducted a simulation study under type II censoring, where the number of gap times 
for each subject is the same, the results are shown in Table  7. The results also 
coincide with our previous findings. When the number of gap times are larger, the 
number of the building blocks of U statistics with subject i (i.e. ∣ eik(�) − eij(�) ∣ )  
will also become bigger, therefore, the standard deviation will decrease and the 
difference between two comparabilities will become smaller. As a further illus-
tration, we also conducted a simulation under random censoring, the censoring 
time Ci is assumed to follow an exponential distribution with mean equal to 6, the 
results are shown in Table 8.

Furthermore, we also conducted a simulation when the trend measure is mis-
specified, here the censoring mechanism are type I and type II censoring. For type 
I censoring, the Ci are set to be 8, in type II censoring, the number of gap times 

Table 7   Simulation results for 
�
0
= 0 , Zij = j under type II 

censoring

W weak comparability constraint, S strong comparability constraint, 
n number of subjects, Ci censoring time for subject i, Bias estimate - 
�
0
 , SE standard error, SD standard deviation, Coverage the empirical 

coverage of approximate 95% confidence intervals

n Number of 
gap times in 
subject i

Bias×103 SE×103 SD×103 Coverage

W 30 3 − 20 167.48 192.12 93.5
S 30 3 − 21 186.27 195.12 92.5
W 30 4 15 96.57 102.28 95.0
S 30 4 15 96.63 102.27 94.5
W 30 5 − 1 69.08 72.61 95.2
S 30 5 − 1 69.08 72.61 95.2
W 30 6 − 5 51.41 53.01 94.8
S 30 6 − 5 51.41 53.01 94.8
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Table 8   Simulation results for 
�
0
= 0 , Zij = j under random 

censoring

W weak comparability constraint, S strong comparability constraint, 
n number of subjects, Ci censoring time for subject i, Bias estimate - 
�
0
 , SE standard error, SD standard deviation, Coverage the empirical 

coverage of approximate 95% confidence intervals

n Bias×103 SE×103 SD×103 Coverage

W 30 − 3 63 66 94.8
S 30 5 70 72 94.5
W 60 − 2 45 46 95.0
S 60 − 2 50 52 94.5
W 100 − 1 35 35 95.2
S 100 − 1 35 35 95.2

Table 9   Simulation results under misspecification, true �
0
= 0 , true Zij = j1∕2

In estimation Zij = j . Type II censoring
W weak comparability constraint, S strong comparability constraint, n number of subjects, Ci censoring 
time for subject i, Bias estimate - �

0
 , SE standard error, SD standard deviation, Coverage the empirical 

coverage of approximate 95% confidence intervals

n Number of gap times 
in subject i

Bias×103 SE×103 SD×103 Coverage

W 30 4 − 2 35 38 93.5
S 30 4 − 2 35 38 93.5
W 60 4 0 28 27 90.5
S 60 4 0 28 27 90.5
W 100 4 1 20 21 92.5
S 100 4 2 20 21 92.5
W 200 4 0 14 15 94.5
S 200 4 0 14 15 94.5

Table 10   Simulation results 
under misspecification, true 
�
0
= 0 , true Zij = j1∕2

In estimation Zij = j . Type I censoring
W weak comparability constraint, S strong comparability constraint, 
n number of subjects, Ci censoring time for subject i, Bias estimate - 
�
0
 , SE standard error, SD standard deviation, Coverage the empirical 

coverage of approximate 95% confidence intervals

n C
i Bias×103 SE×103 SD×103 Coverage

W 30 8 − 11 130 133 91.5
S 30 8 − 12 143 140 90.5
W 60 8 4 87 93 93.5
S 60 8 3 92 94 92.5
W 100 8 − 1 67 68 94.5
S 100 8 − 4 74 74 92.5
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for each subject equals to 4, and the true trend measure is set to be Zij = j1∕2 , 
while in the model, we assume the trend measure is Zij = j , the results are shown 
in Tables 9 and 10. From this table, we can see that both estimators perform well.

In summary, all the results indicate that the weak comparability can utilize 
more data, and provide a more efficient estimate than the strong comparability.

4 � Real Data

We apply the proposed method to the HIV Prevention Trial Network 052 data [14, 
15]. 1763 HIV-1-serodiscordant couples were enrolled into this study since April 
2005. The study randomly assigned 1763 HIV type 1 serodiscordant couples to 
receive either early or delayed antiretroviral therapy treatment. 886 participants were 
received early therapy during enrollment, the rest 877 participants started therapy 
after two consecutive CD4+ counts fell below 250 cells per cubic millimeter or if 
an illness indicative of the acquired immunodeficiency syndrome developed. All 
the couples were followed up until 2015. On May 11, 2011, all the patients in both 
cohorts had been provided early antiretroviral therapy treatment due to an independ-
ent data and safety monitoring board of the NIH/NIAID’s recommendation. They 
showed a dramatically 96% risk reduction for the early antiretroviral therapy treat-
ment arm in HIV-1 transmissions.

In this study, it is essential to remain high levels of medication adherence to rec-
ommended treatment regimes to achieve effective antiretroviral therapy treatment. 
Here the adherence means patients’ ability to take medications as prescribed. It is 
known that at least 95% of adherence is needed to achieve an effective HIV treat-
ment [16]. In this study, the adherence was measured by pill counts, self count as 
well as the measurement of viral load [15]. Doctor’s counselling is recognized as 
one of the critical aspects that could affect adherence [17], thus all the participants 
in the study had received adherence counselling during each visit [14].

During the time interval between two consecutive visits, we calculate the ratio of 
the number of total pills that a participant has eaten versus the number of total pills that 
has been dispensed to this participant. We use this ratio as the measurement of adher-
ence, and the adherence varies across different time intervals. For each participant’s 
visit history, we construct the recurrent event data as follows: (1) If the adherence of a 
participant’s first visit interval is larger than 95%, then we count the total consecutive 
visit days that has adherence larger than 95%, and denote the total consecutive visit 
episode as the high adherence episode. (2) If the adherence of a participant’s first visit 

Table 11   A sample patient visit data

Visit time interval was measured in days; adherence indicator: 1 stands for adherence larger than 95% 
and 0 otherwise

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Visit time interval 14 28 58 60 90 70 80 180 60 60
Adherence indicator 0 1 1 0 0 1 0 0 0 1
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interval is smaller than 95%, then we count the total consecutive visit days that has 
adherence smaller than 95%, and denote the consecutive visit episode as the low adher-
ence episode. (3) Follow (1) and (2) alternatively to construct the remaining episodes, 
each episode serves as the gap time. (4) Define an indicator function for each episode. 
It equals 1 if the adherence during that episode is larger than 95%, and equals 0 oth-
erwise. For instance, if a patient’s data is as in Table 11, then the gap times for this 
patient are: 14, 86 (= 28 + 58), 150 (= 60 + 90), 70, 320 (= 80 + 180 + 60), 60, with 
indicators equal to 0, 1, 0, 1, 0, 1. In order to maintain a high efficacy of the antiretro-
viral therapy treatment, an ideal pattern will be that the high adherence episodes tend 
to be longer, and the low adherence episodes tend to be shorter. Here we will use the 
proposed trend analysis method to assess the pattern of the adherence alternation. The 
model we consider is

where Tij is the ith gap time for ith participant. Let Z(1)

ij
 denote the trend measure, 

here we set Z(1)

ij
= j or j1∕2 . Let Z(2)

ij
 be an indicator function, it equals to 1 if jth epi-

sode has high adherence, and equals to 0 otherwise. �3 is the interaction term for the 
trend measure and the adherence indicator. We only focus on the 886 participants in 
the early antiretroviral therapy treatment arm, since the pattern of the treatment for 
this group is consistent from enrollment to the end of follow-up. The gap times were 
measured in months. Since some participants’ data were missing, we delete these 
participants’ data, and finally lead to 829 individuals in the analysis. The data set is 
analyzed under both full follow up time (without censoring) as well as an artificial 
censoring time (May 11, 2011). The results are shown in Table 12. All the estimates 
are significant in the table. From the table, we can see that 𝛽1 is positive, which 
indicates that the length of the higher and lower adherence episodes become longer. 

(14)logTij = �i + Z
(1)

ij
�1 + Z

(2)

ij
�2 + Z

(1)

ij
× Z

(2)

ij
�3 + eij,

Table 12   HIV Prevention Trial Network 052 data results

For Z(1)

ij
= j , under the full data, the weak comparability utilizes 646 patients’ data, for the strong com-

parability, the number is 621, under censored data, the numbers are 513 and 507, respectively. For 
Z
(1)

ij
= j1∕2 , under the full data, the weak comparability utilizes 647 patients’ data, for the strong compara-

bility, the number is 620, under censored data, the numbers are 513 and 505, respectively
W weak comparability constraint, S strong comparability constraint, F full data, C censored data, SD 
standard deviation, MCP mean comparable pairs, MTP mean total pairs

𝛽
1
(SD) × 10

3 𝛽
2
(SD) × 10

3 𝛽
3
(SD) × 10

3 MCP MTP

Z
(1)

ij
= j W F 116(9) 1214(59) − 45(5) 14844 14985

S F 118(9) 1032(74) − 32(3) 14554 14985
W C 168(30) 905(69) − 53(20) 4684 4711
S C 168(38) 981(79) − 68(16) 4629 4711

Z
(1)

ij
= j1∕2 W F 632(37) 1128(31) − 36(5) 14942 14985

S F 627(45) 969(40) − 40(3) 14521 14985
W C 795(131) 967(84) − 63(18) 4658 4711
S C 823(139) 899(86) − 51(14) 4625 4711
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Positive 𝛽2 shows that the average length of the higher adherence episodes is longer 
than the average length of the lower adherence episodes. And negative 𝛽3 means the 
length of the higher adherence episodes and the lower adherence episodes change on 
the opposite direction – when the length of the higher adherence episodes gets 
longer, the length of the lower adherence episodes gets shorter, and vice versa. The 
results under the full follow up data and the censored data are similar. For both data, 
the standard deviations for 𝛽1 and 𝛽2 under weak comparability will be smaller than 
the standard deviations for 𝛽1 and 𝛽2 under strong comparability. Though they do not 
differ too much, which is due to the number of gap times is large. This is also con-
firmed by simulation study as well, where we can see that as the censoring time Ci 
becomes longer, the difference between weak comparability and strong comparabil-
ity becomes smaller.

5 � Discussion

In this paper, we propose a new version of comparability constraint for stratified gap 
time under the accelerated failure time model. This constraint can be used to iden-
tify the time trend for the gap times. Compared with [1]’s comparability constraint, 
the proposed constraint can recruit more data pairs in estimation procedure, thus 
the proposed weak comparability is more efficient. The theoretical and simulation 
results show that our method is better than [1]’s method. We use the accelerated fail-
ure time model due to its simple interpretation. However, we also plan to extend this 
idea to more complicated survival models (e.g., the Cox model) in the future. While 
in this paper we have considered the pairwise comparison for two gap times, we will 
also extend the idea to compare more than two gap times.

Appendix

Proof of Lemma 1

Proof  Since (8) has been proved in [1], here we will only provide a proof for (9). 
Assume that eij(�) and eik(�) satisfy constaint (7). First we consider the left part of 
(9):

For the first inequality of (7), notice that Tij + Tik ≤ Ci − Si,jk is equivalent to 
Tij ≤ Ci − Tik − Si,jk , substitute Tij with exp(𝛼i + Z⊤

ij
𝛽 + e):

The second inequality of (7) is equivalent to:

exp(eij) ≤ (Ci − Si,jk − Tik) exp(−𝛼i − Z⊤

ij
𝛽)

= {Ci − Si,jk − exp(𝛼i + Z⊤

ik
𝛽 + e)} exp(−𝛼i − Z⊤

ij
𝛽).
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Substitute Tik with exp(𝛼i + Z⊤
ik
𝛽 + e) , we have

Thus

Then we consider the right part of (9). Notice that Tij + Tik ≤ Ci − Si,jk is equivalent 
to Tik ≤ Ci − Tij − Si,jk , thus:

And Tij exp{(Zik − Zij)
⊤𝛽} + Tik exp{(Zij − Zik)

⊤𝛽} ≤ Ci − Si,jk is equivalent to

Substitute Tij with exp(𝛼i + Z⊤
ij
𝛽 + e) , we have

Thus

Compare equation (15) and (16), we conclude that

Thus (9) is proved. 	�  ◻

Tij exp(−𝛼 − Z⊤

ij
𝛽) ≤ (Ci − Si,jk) exp(−𝛼i − Z⊤

ik
𝛽) − Tik exp(−𝛼i + Z⊤

ij
𝛽 − 2Z⊤

ik
𝛽).

exp(eij) ≤ (Ci − Si,jk − Tij) exp(−𝛼i − Z⊤

ik
𝛽)

= {Ci − Si,jk − exp(𝛼i + Z⊤
ij
𝛽 + e)} exp(−𝛼i − Z⊤

ik
𝛽).

(15)

Pr{eij(𝛽) ≤ e}

= Pr
{

min
[

log{Ci − Si,jk − exp(𝛼i + Z⊤

ik
𝛽 + e)} − 𝛼i − Z⊤

ij
𝛽,

log{Ci − Si,jk − exp(𝛼i + Z⊤

ij
𝛽 + e)} − 𝛼i − Z⊤

ik
𝛽

]}

.

exp(eik) ≤ (Ci − Si,jk − Tij) exp(−𝛼i − Z⊤

ik
𝛽)

= {Ci − Si,jk − exp(𝛼i + Z⊤
ij
𝛽 + e)} exp(−𝛼i − Z⊤

ik
𝛽).

Tik exp(−𝛼i − Z⊤

ik
𝛽) ≤ (Ci − Si,jk) exp(−𝛼i − Z⊤

ij
𝛽) − Tij exp(−𝛼i + Z⊤

ik
𝛽 − 2Z⊤

ij
𝛽).

exp(eik) ≤ (Ci − Si,jk − Tik) exp(−𝛼i − Z⊤

ij
𝛽)

= {Ci − Si,jk − exp(𝛼i + Z⊤

ik
𝛽 + e)} exp(−𝛼i − Z⊤

ij
𝛽).

(16)

Pr{eik(𝛽) ≤ e}

= Pr
{

min
[

log{Ci − Si,jk − exp(𝛼i + Z⊤

ij
𝛽 + e)} − 𝛼i − Z⊤

ik
𝛽,

log{Ci − Si,jk − exp(𝛼i + Z⊤
ik
𝛽 + e)} − 𝛼i − Z⊤

ij
𝛽

]}

.

Pr{eij(�) ≤ e} = Pr{eik(�) ≤ e}.
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Proof Sketch of Theorem 1

Proof  To prove the asymptotic normality of the estimate 𝛽W
n

 , notice that �W
i,jk
(�) in 

(11) is only a constraint aimed to select comparable pairs, then the derivative of (11) 
is:

Thus minimization of (11) is equivalent to solve M�
W
(�) = 0 . For simplicity, we also 

denote

Then M�
W
(�0) =

∑n

i=1
M�

i,W
(�0) is the sum of i.i.d. random vectors and 

E{M�
W
(�0)} = 0 . Thus under the regularity conditions, n−1∕2M�

W
(�0) converges to a 

normal distribution. However, when consider the covariance matrix, delta method 
cannot being directly used since M�

W
(�) is not differentiable with respect to unknown 

parameter � . To overcome this difficulty, we first use a smooth approximation of 
M�

W
(�) , which is �(�) = M�

W
(�0) + n�(�) , where �(�) = E[M�

i,W
(�)] , we here assume 

that �(�) is positive definite. As � → �0 , �(�) is a local approximation of M�
W
(�) . 

Denote D(�) = �(�) −M�
W
(�) , then M�

W
(�) = �(�) − D(�) . By using techniques of 

Lemma 5 and 6 of [7], we can prove that D(�) holds a stochastic equicontinuity con-
dition which is D(�) − D(�0) = {�(�) −M�

W
(�)} − {�(�0) −M�

W
(�0)} = op(n

−1∕2) 
for � − �0 = Op(n

−1∕2) . Then we have

This completes the proof by using the functional delta method and central limit the-
orem, after substitute � with 𝛽W

n
 . 	�  ◻

Code

The code for this paper is available at https://​bit.​ly/​3hI9C​iq.
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∑
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