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A Cerri, che è con me ancora ogni giorno.

i



ii



Contents

Abstract 1

1 Introduction 3

1.1 Motivation and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Statement of Originality and Publications . . . . . . . . . . . . . . . . . . . . . 8

2 Background theory 9

2.1 Chaotic dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Different frameworks to describe chaotic behaviour . . . . . . . . . . . . 12

2.1.3 Chaotic attractors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.4 Defining a physical measure . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.5 Evolution of densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.6 Characterising the chaoticity of a system: Lyapunov analysis . . . . . . . 27

2.2 Periodic orbit theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.1 Averages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

iii



iv CONTENTS

2.2.2 Applications of UPOs theory . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.1 Numerical methods for finding Lyapunov spectra . . . . . . . . . . . . . 38

2.3.2 Numerical methods for finding UPOs . . . . . . . . . . . . . . . . . . . . 41

3 Averages, transitions and quasi-invariant sets 46

3.1 Shadowing of the Model Trajectory by Unstable Periodic Orbits . . . . . . . . . 48

3.1.1 Mathematical Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.3 The Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.4 Shadowing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1.5 Ranked Shadowing of the Chaotic Trajectory . . . . . . . . . . . . . . . 54

3.1.6 Longer Period UPOs Shadow the Trajectory for a Longer Time . . . . . 58

3.2 Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.1 Extracting a Markov Chain from the Dynamics . . . . . . . . . . . . . . 61

3.2.2 Quasi invariant sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2.3 Relaxation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2.4 Robustness of quasi-invariant sets . . . . . . . . . . . . . . . . . . . . . . 66

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Explaining the heterogeneity of the attractor in terms of UPOs 71

4.1 The Lorenz ’96 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



4.2 Unstable Periodic Orbits Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.1 Database of Unstable Periodic Orbits . . . . . . . . . . . . . . . . . . . . 76

4.2.2 Ranked shadowing of the chaotic trajectory . . . . . . . . . . . . . . . . 78

4.3 Local Properties of the Tangent Space . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.1 Lyapunov analysis to detect UDV . . . . . . . . . . . . . . . . . . . . . . 83

4.3.2 UDV explained in terms of UPOs . . . . . . . . . . . . . . . . . . . . . . 84

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Conclusion 92

5.1 Summary of Thesis Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A Numerical Algorithms 95

A.1 Lorenz-63 model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.2 Lorenz-96 model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

B Robustness of the UPO decomposition for the Lorenz-63 model 97

Bibliography 97

v



vi



CONTENTS 1

Abstract

Unstable periodic orbits (UPOs), exact periodic solutions of the evolution equation, offer a very

powerful framework for studying chaotic dynamical systems, as they allow one to dissect their

dynamical structure. UPOs can be considered the skeleton of chaotic dynamics, its essential

building blocks. In fact, it is possible to prove that in a chaotic system, UPOs are dense in

the attractor, meaning that it is always possible to find a UPO arbitrarily near any chaotic

trajectory. We can thus think of the chaotic trajectory as being approximated by different

UPOs as it evolves in time, jumping from one UPO to another as a result of their instability.

In this thesis we provide a contribution towards the use of UPOs as a tool to understand and

distill the dynamical structure of chaotic dynamical systems. We will focus on two models,

characterised by different properties, the Lorenz-63 and Lorenz-96 model.

The process of approximation of a chaotic trajectory in terms of UPOs will play a central role

in our investigation. In fact, we will use this tool to explore the properties of the attractor of

the system under the lens of its UPOs.

In the first part of the thesis we consider the Lorenz-63 model with the classic parameters’ value.

We investigate how a chaotic trajectory can be approximated using a complete set of UPOs

up to symbolic dynamics’ period 14. At each instant in time, we rank the UPOs according to

their proximity to the position of the orbit in the phase space. We study this process from

two different perspectives. First, we find that longer period UPOs overwhelmingly provide the

best local approximation to the trajectory. Second, we construct a finite-state Markov chain

by studying the scattering of the trajectory between the neighbourhood of the various UPOs.

Each UPO and its neighbourhood are taken as a possible state of the system. Through the

analysis of the subdominant eigenvectors of the corresponding stochastic matrix we provide a

different interpretation of the mixing processes occurring in the system by taking advantage of

the concept of quasi-invariant sets.

In the second part of the thesis we provide an extensive numerical investigation of the variability

of the dynamical properties across the attractor of the much studied Lorenz ’96 dynamical

system. By combining the Lyapunov analysis of the tangent space with the study of the

shadowing of the chaotic trajectory performed by a very large set of unstable periodic orbits,

we show that the observed variability in the number of unstable dimensions, which shows a
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serious breakdown of hyperbolicity, is associated with the presence of a substantial number of

finite-time Lyapunov exponents that fluctuate about zero also when very long averaging times

are considered.



Chapter 1

Introduction

1.1 Motivation and Objectives

Until the 19th century it was commonly believed that an unpredictable behaviour could not

arise from deterministic systems. Instead, even deterministic systems, as simple as a double

pendulum, can exhibit a sensitive dependence on the initial condition, meaning that trajectories

associated with imperceptibly different starting points can end up with extremely different out-

comes. From a practical level, this observation implies that every prediction based on a chaotic

model will turn to be exponentially wrong in time, since any measurement of the current state

is intrinsically associated to some uncertainty.

It seems that, within this context, the quest for an accurate prediction would represent an

almost impossible challenge. A statistical approach comes to the rescue: if, instead of focusing

on single trajectories, one moves the attention to the evolution of densities, it is possible to

gain the sought predictive power. A breakthrough in the understanding of chaotic dynamics

was represented by a shift of perspective in the way of looking at complex chaotic systems.

From this perspective, dynamics can be interpreted as a walk through repeating shapes. More

formally, this repeating patterns are exact periodic solutions of the evolution equations, the

unstable periodic orbits of the system (UPOs), islets of order in the sea of chaos, and can

3
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be used to reconstruct the statistical features of a dynamical system [1, 2, 3]. In fact, under

particular assumptions that will be later discussed (see chapter 2), UPOs can be proved to be

dense in the attractor of the system, which, roughly speaking, is the set of states toward which

a system tends to evolve. Such topological property implies that it is always possible to find a

UPO arbitrarily near the chaotic trajectory up to any arbitrary accuracy. We can thus think of

the chaotic trajectory as being approximated by different UPOs as it evolves in time, jumping

from one UPO to another as a result of their instability.

Figure 1.1: Example of UPOs in the attractor of the Lorenz-63 system (see chapter 3 for more
details on the model). A typical chaotic trajectory (dotted in gray) can be approximated by
UPOs (we represented three different UPOs in solid purple, orange and yellow) in different
points of its evolution. The property of density of the UPOs in the attractor allows to choose
a UPO arbitrarly close to the chaotic trajectory.

For a specific class of ”well behaved” chaotic systems characterised by the presence of expanding

and contracting direction of the derivative, the Uniformly Hyperbolic and Axiom A systems

(see chapter 2 for more details), there exists a rigorous theory where UPOs are used as a

mean to calculate the statistical properties of the system. Namely, through the so-called trace

formulas, it is possible to write ergodic averages of observables as weighted sums over the full

set of UPOs. In this sense, UPOs can be seen as a rigid skeleton hidden in the chaos of the

dynamics [4, 5, 6].

A formal extension of a UPO based analysis of spatio-temporal chaos and high dimensional

systems is still a far-reaching goal, but promising steps have been made in this direction, al-

lowing to successfully understand and characterise macroscopic features in turbulent flows in

terms of UPOs [7, 8, 9, 10].
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(a)

Figure 1.2: Shadowing of a segment of chaotic trajectory in the Lorenz-63 model. The chaotic
trajectory is approximated in different instant of times by two different UPOs, chosen so that
they would minimise the distance with the chaotic trajectory among all orbits of the database.

The aim of this thesis is to use the language of UPOs to provide a description of the geometrical

(quasi-invariant set, tangent space) and statistical (ergodic averages of observables) properties

of the system. Through the use of this language it is in fact possible to develop a duality be-

tween the local, topological, short time dynamically invariant compact sets (equilibria, UPOs)

and the global long-time evolution of densities of trajectories. Specifically, we will look at the

Lorenz-63 model and, building up in complexity, at the Lorenz-96 model.

Central in the investigation of both model will be the process of approximation of a chaotic

trajectory in terms of UPOs (ranked shadowing). It is in fact our chosen way to explore the

geometry of the attractor under the lens of its UPOs. At each instant of time the trajectory

can be best approximated by a UPO of the database, and as it evolves in time it jumps from

one UPO to the other because of their instability. In this sense the rank shadowing can be seen

as a scattering process where the scatterers are the UPOs (Fig 1.2 and 1.3).

The Lorenz-63 model with classical parameters’ value is an example of an almost everywhere

uniformly hyperbolic system in a three dimensional phase space. In the first part of the thesis

we show that UPOs can be used to distill the dynamical and statistical properties of the sys-
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Figure 1.3: Panel (a): Ranked shadowing of a segment of chaotic trajectory shadowed by two
different UPOs (here UPO1 and UPO2) in the Lorenz-96 model (See chapter 4 for an extensive
discussion). We represent the segment of trajectory with a space-time diagram, where the value
assumed by each component over time is represented with different colours. UPO1 (UPO2)
have period T1 = 10.8748 (T2 = 10.7626) and possesses 5 (4) positive LEs. Their space-time
diagram over the full period showed in the first row. The chaotic trajectory (second row, right
side) is shadowed by UPO1 (bright red) for a time duration t1 = 1.78 and then by UPO2 (dark
red) for a time duration t2 = 0.87. It is possible to see how the pattern of the shadowing UPOs
within the shadowing window resembles the space pattern of the chaotic trajectory. Panel (b):
distance between the chaotic trajectory and the two UPOs.

tem. By assuming this perspective on the problem, we show that, on the one side, longer UPOs

have the lion’s share in reproducing the invariant measure on the system. On the other side,

we construct a finite-state Markov chain where each UPO and its immediate neighborhood are

considered as a possible state of the system and the scattering represents transitions between

states. Through the study of the spectral properties of the discretised transfer operator, we

obtain a partition of the phase space in different bundle of UPOs, each one identifying a quasi-

invariant set, showing that UPOs can represent a valid tool to investigate diffusion properties

of the system.

In the second part of the project we extend this analysis to the more complex Lorenz-96

system, characterised by higher dimension and variability in the number of unstable dimensions

(characteristic that because of the constraint imposed by dimensionality and chaoticity was

not present in the Lorenz-63 model). The fact that different regions of the phase space might
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be characterised by different dimensions of the unstable manifold represents a breakdown of

the hyperbolicity condition through the so called mechanism of unstable dimension variability

(UDV) [11, 12, 13]. We first show that, as expected, UDV manifests itself through the presence

of certain Finite Time Lyapunov exponents that exhibit large fluctuations between positive

and negative values. We successively provide an interpretation of such variability in terms of

UPOs, bridging the gap between local and global properties of the system. Namely, we found

that anomalously unstable UPOs preferentially populates regions of the attractor which are

detected to be anomalously unstable through Lyapunov analysis.

Our motivation stems from climate studies. We believe that periodic orbit theory represents a

valid investigation tool in the realm of climate systems. Lucarini and Gritsun already showed

that different regimes of motion in a baroclinic model of the atmosphere, blocking vs zonal,

can be characterised by UPOs having different stability properties. Specifically, they found

that blocked states are associated with conditions of higher instability of the atmosphere, in

agreement with a separate line of evidence [14]. In further studies, we would like to address

the techniques developed in this thesis to more realistic and complex atmospheric models and

analyse the connection between UPOs and linear response of the system to external perturba-

tions.

1.2 Outline of the thesis

This thesis is structured as follow. Chapter 2 is devoted to the introduction of the mathematical

framework necessary to describe the main results of this work. We describe general features

of chaotic dynamics and introduce relevant dynamical tools. We discuss the evolution and

applications of periodic orbit theory and present numerical methods that were instrumental in

the development of the results presented in this thesis. In chapter 3 we consider the model

Lorenz-63 and investigate how a long forward chaotic trajectory can be approximated using a

complete set of UPOs up to symbolic dynamics’ period 14. We will show that such process

helps elucidate how a generic ensamble of initial conditions converges to the invariant measure
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through diffusion and provides a new interpretation of quasi-invariant sets of the systems in

terms of UPOs. In chapter 4 we investigate the heterogeneity of the attractor of the Lorenz-

96 model. We present evidence of unstable dimension variability through the extraction of a

database of UPO that exhibits very different stability properties. Such variability is reflected

in the behaviour of some Finite Time Lyapunov exponents, that oscillates between positive and

negative values. We will explain this variability in terms of UPOs. In chapter 5 we summarise

the main results and outline perspectives for future research.

1.3 Statement of Originality and Publications

I declare that this thesis is my own work and that work by others has been properly referenced.

The thesis is based on the following publications:

• Chiara Cecilia Maiocchi, Valerio Lucarini, and Andrey Gritsun. Decomposing the dy-

namics of the lorenz 1963 model using unstable periodic orbits: Averages, transitions,

and quasi-invariant sets. Chaos: An Interdisciplinary Journal of Nonlinear Science,

32(3):033129, 2022.

• Chiara Cecilia Maiocchi, Valerio Lucarini, Andrey Gritsun, and Yuzuru Sato. Hetero-

geneity of the attractor of the Lorenz’96 model. In preparation, 2022



Chapter 2

Background theory

2.1 Chaotic dynamics

A deterministic system is defined as a system whose present state is in principle fully determined

by its initial conditions. This is in contrast to stochastic systems, where the initial condition

only partially determines the future state: the present state is in fact obtained as image of the

past initial condition plus a particular realisation of the noise encountered along the way. With

the discovery of deterministic chaos, it appeared clear that the behaviour of a deterministic

system could resemble the unpredictable behaviour typical of stochastic systems. So how do

we define chaos exactly? The attribute chaotic refers to the fact that the system obeys a

deterministic law of evolution, but at the same time exhibits sensitive dependence to initial

conditions, meaning that given two imperceptibly close points in phase space, their relative

trajectory will separate exponentially fast in time. Such property has dramatic consequences

over the predictability of the system. In fact, during a finite time, the separation of the

trajectories attains a distance which is comparable to the ”size” of the attractor, resulting in

the impossibility of making prediction over a finite time horizon.

The other essential condition that characterises deterministic chaos is mixing. In a mixing sys-

tem, any open set of initial conditions will overlap with any other finite region in a finite time,

spreading entirely over the phase space. In a chaotic system the trajectories separate locally,

9
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but the asymptotic dynamics remains confined in a finite region of the space, constraining the

separated trajectories to be folded and to get back again, infinitely many times. We can think

of this process as the one necessary to prepare puff pastry: a block of butter needs to be finely

layered inside a dough ball and to do so, the dough is stretched and folded back many times.

The butter uniformly diffuses inside the dough and initially close sections of butter and dough

separates exponentially. From this perspective, the quest of predicting the future state of in-

dividual trajectories is out of reach, but a new, statistical, view on the problem is developed,

shifting our attention from trajectories to evolution of densities. Namely, with periodic orbit

theory [1], the precise prediction of individual trajectories - doomed to fail due to the chaoticity

of the system - is replaced by the study of the evolution of densities, intended as averages over

the space of all possible outcomes. The dynamics of densities of trajectories is then described

in terms of evolution operators. In the evolution operator formalism, such averages are given

by exact formulas, the so called trace formulas (see later discussion).

In this section we introduce the essential concepts of nonlinear and chaotic dynamics, necessary

to develop the language in which the results of this thesis are described. We review different

mathematical frameworks that have been designed to contain and describe chaotic behaviour

that provide different degrees of stringency on the chaotic behaviour of the system. We will be

interested in the long term dynamics after chaotic transients, that happens on a closed subset

such that for ”many” choices of initial points, the system will evolve towards to. Such set

is the so-called attractor. We formally introduce the notion of chaotic attractor and present

different methods to quantify its size. Since we will be interested in averages, we define the

weights used for the averaging, introducing the concept of invariant measure. In particular

we will describe the properties of a special class of measures, which is particularly relevant for

the study of systems of practical physical interest. We then introduce the transfer operator,

instrumental for describing how densities evolves in the phase space. Finally, we define the

Lyapunov exponents and their finite time counterpart, dynamical indicators that quantify the

sensitive dependence on the initial conditions of the system.
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2.1.1 Dynamical Systems

Dynamical systems describe the evolution of a physical system in time. The goal of dynam-

ics, broadly speaking, is to describe the asymptotic evolution of a system for which only an

”infinitesimal” evolution rule is known. With asymptotic evolution we refer to the long-term be-

haviour of the system as time goes to infinity, it is the behaviour that the system approaches as

it settles into a steady state. More precisely, a dynamical system is defined by the pair (M, ϕ),

where M is a manifold describing all the admissible states of the system and ϕt : M → M is

an evolution rule, that indicates where a point x ∈ M lands in M after a time interval t. In

this thesis we will consider continuous autonomous dynamical systems that can be described

by a set of ordinary differential equations (ODE):

ẋ =
dx

dt
= f(x). (2.1)

The time parameter is a real variable t ∈ R, and f depends only implicitly on the time t.

The evolution in time of an initial condition x0 = x(0) at time t0 = 0 is traced out in phase space

by the solution of the ODEs system. It can be conveniently expressed through the evolution

operator St as

St : x0 → x(x0, t) (2.2)

that describes the evolution of the point x0 at time t. We call orbit of x0 the totality of

states that can be reached from x0. An orbit can be stationary, if St(x) = x ∀t, periodic, if

St(x) = St+Tp(x) for a given minimum period Tp, or aperiodic if St(x) ̸= St′(x) ∀t ̸= t′. An

orbit is an example of dynamically invariant notion, in fact its points are only shifted as we

move through time, but the set remains unchanged.

In general, the concept of invariant set is very relevant in dynamical systems, as they provide a

way to understand its long-term behaviour. An invariant set is a subset of the state space of the

system that is preserved under its evolution. This implies that if a point in the set is initially

in the set, it will remain in the set for all future times. Examples of invariant sets include

fixed points, periodic orbits and strange attractors. The study of the existence, stability and
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location of such sets can be instrumental in gaining an insight into the long-term dynamics

of the system: for instance, the stability of a fixed point can determine whether the system

converges to a particular state or oscillates around it.

2.1.2 Different frameworks to describe chaotic behaviour

In Chapter 4 of his book Science and Méthode [15], Poincaré proposed for the first time the

concept of sensitive dependence of the evolution of a system on its initial conditions, making

also explicit reference to the relevance of this issue in the context of Meteorology [16]. Poincaré

in fact understood that the local instability of trajectories is closely related to the statistical

properties of the system. A ”typical” trajectory of chaotic systems distributes over the phase

space in a very ravelled and complex way, so that trajectories are forced to mix (but never

cross). Successively, Hadamard returned onto these ideas by investigating the properties of

geodesic flows on surfaces of negative curvature [17]. Historically, the idea of hyperbolicity

was given by associating the behaviour nearby any fixed trajectory to the one characteristic

of trajectories nearby a saddle point [18]. Throughout the thirties of last century Hedlund

[19], Hopf [20] and others continued the study on geodesic flows on some types of compact

Riemannian manifolds with negative curvature, this time having ergodicity properties as their

main focus, and confirming the relevant role played by the instability of trajectories in the

characterisation of the system. The condition of hyperbolicity was finally formulated for the

first time by Anosov [21] and used as basic assumption for further results: hyperbolic behaviour

was specified by providing infinitesimal conditions on the differential of the dynamical system,

according to which in an uniformly hyperbolic system the tangent space can be decomposed

at every point x ∈ M in two subspaces E1x and E2x (if the system is a flow an additional

subspace corresponding to the direction of the direction of the motion should be added) so that

the differential maps of the flow restricted to the subspaces E1x and E2x are a contraction and

an expansion with coefficients that are uniform with respect to the phase space. In particular,

Anosov proved the ergodicity of such flows, which were later named after him as ”Anosov flows”.

Uniform hyperbolicity, as defined by Anosov, was conjectured to be the default condition for
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systems featuring sensitive dependence on initial conditions [22, 23, 21]. This idea stems from

the fact that hyperbolic dynamics is robust with respect to perturbations [24]. More precisely,

Smale and others, conjectured that any chaotic dynamical systems could be transformed into

an hyperbolic system by applying an appropriate perturbation. As a result of this conjecture,

it would be possible to identify any chaotic behaviour emerging in a mathematical model of

a physical process with a uniformly hyperbolic system. The study of uniformly hyperbolic

dynamics that stemmed after the seminal results of Pesin and Anosov was incredibly useful for

the development of the theoretical structure and toolset needed to describe and study chaotic

dynamics. However, the definition of Anosov diffeomorfism was way too stringent for it to

realistically capture the variety of ”chaotic” behaviour present in the applications. In fact, from

the point of view of the applications, the theoretical and practical relevance of the phenomenon

of sensitive dependence on initial conditions and its compatibility with the presence of orbits

contained in a compact set became apparent arguably through the seminal contributions by

Lorenz [25], Ruelle and Takens [26], and Li and Yorke [27]. Since then, there has been a great

effort in creating sophisticated mathematical frameworks for chaotic systems able to include,

at the same time, phenomenology of practical relevance in science and engineering. One of the

first generalisations of the concept of uniformly hyperbolic dynamics is to consider systems that

present exponential contraction and expansion without necessary admitting a uniform bounds

in the rates of growth and decay.

Such systems are known as nonuniform hyperbolic systems and they are subject of the study

of the so-called Pesin’s theory [18]. Pesin’s theory had a huge impact in the applications, since

it provides a characterisation of nonuniformly hyperbolic system in terms of their Lyapunov

exponents ([18], Def. 1.5), which became later accessible thanks to the contribution of Benettin

et al. [28] Many of the properties of uniformly hyperbolic systems are retained by nonuniformly

hyperbolic systems, such as positive entropy and strong ergodic properties.

Another way to generalise the notion of uniform hyperbolicity entails introducing a nontrivial

centre manifold in the tangent space where expansion or contraction are extremely slow, thus

removing hyperbolicity. The so-defined partial hyperbolic systems can be further generalized

by allowing for nonuniformity outside the centre manifold: the continuous-time nonuniform
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partially hyperbolic systems feature more than one zero Lyapunov exponents [29].

Figure 2.1: Conjectural map of Diff(M). Figure and caption are from [30].

Yet another revolution took place in the last decades, with the ambitious goal of building a the-

ory for ”most” dynamical systems. A very influential attempt at creating a powerful paradigm

of chaos beyond uniform hyperbolicity has been presented by Bonatti et al. [31]. According

to such a paradigm, chaos can originate from very different mechanisms, such as heterodimen-

sional cycles or homoclinic tangencies, originating different types of ”non-hyperbolicity”. As

compared to uniformly hyperbolic systems, these more general systems are less understood and

advances have been mainly made on discrete dynamical systems, because of the simpler struc-

ture of the phase space [22], hence numerical approaches play an important role in shedding

light on the global organisation of phase space [32]. Generalli speaking, Bonatti [30] conjectures

that the space of universal dynamics (Diff(M)) can be divided into 8 disjoint regions (C1-

open subsets) whose union is C1-dense (Fig. 2.1).

Uniformly hyperbolic dynamics

Uniformly hyperbolic dynamics exhibits the characteristic behaviour of stretching and folding

of trajectories described in the introduction. In fact, as we mentioned earlier, the derivative

is characterised by the presence of both contracting and expanding directions that, together

with the instability of trajectories, have the effect of creating chaotic motions in a deterministic

dynamical systems.

Let [33] ϕ : M → M be a diffeomorphism. We say that ϕ is uniformly hyperbolic if for every
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x ∈ M there is a splitting of the tangent space TxM = Es(x)⊕Eu(x) and there are constants

C > 0 and λ ∈ (0, 1) such that for every n ∈ N one has

• ||Dϕn(v) ≤ Cλn||v||, for v ∈ Es(x)

• ||Dϕ−n(v)|| ≤ Cλn||v||, for v ∈ Eu(x).

where D is the differential of ϕ. The subspaces Es(x) and Eu(x) are called the stable and

unstable subspaces at x. It is worth noticing that as a consequence on this definition the stable

and unstable subspaces depends continuously on the point x and are invariant with respect to

the flow.

Uniformly hyperbolic diffeomorphism belong to the larger class of Axiom A diffeomorphism.

Namely, we say that the diffeomorphism ϕ : M → M is an axiom A diffeomorphism [34] if the

following two holds:

• the nonwandering set of ϕ, Γ(f) is a hyperbolic compact set,

• The set of periodic points of ϕ is dense in Γ(f).

Axiom A systems are well understood, both from a statistical and geometrical standpoint [31],

and a remarkable successful theory has been developed since Smale’s first results in the early

’60s. We will see in later chapters more example of the relevance of such types of system.

2.1.3 Chaotic attractors

In this thesis we will focus on the study of long term dynamics of chaotic dissipative systems

(∇ · f < 0) in a finite dimensional phase space. In such systems, the phase space volumes are

contracted by time evolution and the dynamics happens on an invariant set called attractor.

In particular we assume that there is an open set U ∈ M which is asymptotically contracted

by the time evolution of the system to a compact set Ω. We say that Ω is an attracting set

(alternatively an attractor) with fundamental neighbourhood U if
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• there exist a t0 so that for t > t0, ∀ open set V ⊃ Ω we have that StU ⊂ Ω;

• StΩ = Ω.

The attractor of a system could also be defined operationally as the set on which experimental

points Stx accumulate for large values of t. When the system is chaotic, the contraction

only happens to some directions, while others are stretched at the same time. An attractor

characterised by such separation of trajectories (sensitive dependence on the initial conditions)

is called strange attractor.

One of the most important characterisation of the attractor is its dimension. While in the

case of a point, line, area, etc., the definition of dimension is intuitive and straightforward,

chaotic attractors are often characterised by a complex geometry, with structures on an arbi-

trarily fine scale. It is therefore important to define a dimension able to provide a quantitative

characterisation of such complicated objects.

Box Counting Dimension

Let us consider a set M in an N -dimensional Cartesian space [35]. We cover the space by a

grid of N -dimensional cubes of size length ε. Let Ñ(ε) be the number of cubes needed to cover

M . The box-counting dimension is given by

D0 = lim
ε→0

ln Ñ(ε)

ln(1/ε)
. (2.3)

2.3 reproduces the common intuition of dimension. In fact, it attributes dimension 0 to a point

(it is covered by one cube independently on the size length ε), dimension 1 to a segment (it

can be covered by Ñ(ε) ≈ l/ε with l being the length of the curve), dimension 2 to an area A

(Ñ(ε) ≈ A/ε2), etc... A fractal set is instead characterised by a dimension D0 ranging between

0 and 1 (see for example the case of the middle third Cantor set, for which D0 = ln 2/ ln 3 [36]).
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Reny Dimension

A fundamental problem with the box-counting dimension is that it consider all cubes to have

the same weight, without taking into account the fact that the system might spend more time

in some rather than others. While the box-counting dimension describes the geometry of the

set, we would like to introduce a notion of dimension that also takes into account the dynamics

of the system.

The concept outlined above can be captured by the definition of natural measure. If one looks

at the frequencies with which the trajectories visit the different cubes covering the attractor

when the length of the trajectory goes to infinity, in the assumption that such frequency do not

change when considering a different initial condition for the trajectory except that for a set of

measure zero, then, given x0 in the basin of attraction of Ω, it is possible to define the natural

measure of the cube Ci as

µi = lim
T→∞

ν(Ci, x0, T )

T
, (2.4)

where ν(Ci, x0, T ) is the fraction of time that the trajectory originating from x0 spends in the

cube Ci in the time interval 0 < t < T .

We now wish to introduce a notion of dimension that takes into account the frequency at which

cubes are visited in the limit of an infinite trajectory. Such concept was first introduced by

Grassberger [37, 38] and Henstshel and Procaccia [39].

We define [35] the Reny dimension Dq as

Dq =
1

1− q
lim
ε→0

log I(q, ε)

ln(1/ε)
, (2.5)

where

I(q, ε) =

Ñ(ε)∑
i=1

µq
i , (2.6)

q is continuous index, and the sum is over all the Ñ(ε) cubes in a grid of unit size ε that covers
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the attractor. We can see that for positive values of q, cubes with bigger µi weights more in

the determination of the dimension Dq. It is interesting to note that when we consider either

q = 0 or when all the cubes have equal natural measure (independently on q) we retreive 2.3.

Another interesting property is that

Dq1 ≤ Dq2 if q1 > q2. (2.7)

A special meaning has been attributed to D1, called the information dimension, that can be

obatined considering the limit q → 1 and applying L’Hopital’s rule [35, 40]

D1 = lim
ε→0

∑Ñ(ε)
i µi log µi

ln ε
(2.8)

We will see later in section 2.1.6 an important conjecture regarding this quantity.

2.1.4 Defining a physical measure

It appeared clear from previous discussions that one of the possible approaches to overcome the

difficulties in the study of chaotic systems is obtained by assuming a statistical perspective on

the properties of the system. In particular, from a physical standpoint, we are specifically inter-

ested in time averages. In fact, when we look at physical phenomena, we are usually interested

in the behaviour of the system over a certain period of time, which can be described through

time averages. Ergodic theory offers the appropriate mathematical framework to assume the

necessary statistical perspective on chaotic systems, providing practical tools to measure dy-

namical quantities of interest. Roughly speaking, ergodic theory states that in a certain class

of systems, phase space averages equal time averages, and the weights used for such space aver-

ages are invariant measures. Selecting the appropriate invariant measure is thus a fundamental

matter. A few criteria guide the selection process.

• the chosen measure should be ergodic, in order to reproduce well defined time averages;
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• the chosen measure should be physically relevant, in order to be able to represent experi-

mental time averages (which are affected by a certain level of noise).

In this section we will show that for a certain class of systems, this measure exists and can be

defined uniquely.

Invariant Measure If ρ(A) represents the proportion of mass contained in the set A, the

invariant measure ρ can be thought as a measure that conserves mass, that is preserved under

the action of f . More precisely, we say that ρ is an invariant measure [34] if it satisfies the

equation

ρ(S−t(A)) = ρ(A) (2.9)

where A ∈ Rm. In general, a system might admit more than one invariant measure, but not

all of them are physically relevant. If we consider for instance an unstable fixed point of the

system x̄, then the δ-measure at x̄ is invariant, but it cannot be observed.

If the system admits an ergodic measure ρ, ρ can be uniquely specified in terms of time averages,

which turns to be the natural measure introduced earlier in a general case. In fact, by a

corollary of Birkhoff theorem applicable to natural measures [41, 42, 43, 34] a set of randomly

chosen initial conditions will generate trajectories that would distribute according to the natural

measure for ρ-almost all initial conditions. Namely, we have that ρ is defined for ρ-almost all

initial conditions x0 by

ρ = lim
T→∞

1

T

∫ T

0

dtδ(Stx0), (2.10)

where δ(x) is the Dirac delta at the point x or, similarly, given φ : M → R, by

⟨φ⟩ =
∫

ρ(dx)φ(x) = lim
T→∞

1

T

∫ T

0

φ(Stx0)dt. (2.11)

Physical Measure

Usually an attractor contains uncountably many ergodic measures. Among this set of invariant

ergodic measures, one would like to select a measure which is of physical relevance. A physical
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system usually produces well defined time averages, so it is reasonable to pose this question. A

possible option, firstly presented by Kolmogorov, is based on the idea that if a system admits a

certain level of noise, then it is possible to define uniquely a physical measure that the system

selects in the weak limit of zero noise. More precisely, if we add to the deterministic system

2.1 a noise term ω modulated by ε > 0 parameter as follows:

ẋ(t) = f(x(t)) + εω(t), (2.12)

according to this idea the physical measure can be obtained

ρ = lim
ε→0

ρε. (2.13)

Such definition of physical measure is however problematic for at least two reasons:

• in a chaotic system, even a small level of noise could have a large impact, and it might

be difficult to study under which condition and for which type of noise (2.13) holds;

• if the system in exam presents multiple attractors, the noise could force the system to

travel around the different attractor basins.

There exist another possibility to select a physical measure, by requiring that condition (2.11)

holds for almost all initial conditions x(0) ∈ S, with S ⊂ M subset with positive Lebsesgue

measure. This definition is more natural than (2.11), since it corresponds to a more natural

notion of sampling (ρ could often be singular and concentrated on a fractal set.).

We will see that for a special class of measures, the SRB measures, the above two definition

coincides.

SRB measures

The ergodic theory of Axiom A attractor was developed by Sinai, Ruelle and Bowen in the ’70s

[34, 33]. One of the most important results was the construction of the so-called Sinai-Ruelle-
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Bowen (SRB) measures. We will leave the technical definition of the SRB measures to the

interested reader who could refer to [34] for more details, but roughly speaking, SRB measures

are defined as measures which are smooth along the unstable directions of the system.

SRB measures are particularly relevant since in the case of Axiom A systems it is possible to

show that they coincides with the physical measure, ergodic and invariant, satisfying (2.13).

Morover, in the case of Axiom A system we have that the ergodic average

lim
T→∞

1

T

∫ T

0

dtδ(Stx0) (2.14)

tend to the SRB measure ρ for x(0) in a set of positive Lebesgue measure, and not just for

ρ-almost x.

In the next chapters we will assume that a physical measure, ergodic and able to represent

experimental time averages, exists and it can be defined as in (2.11).

2.1.5 Evolution of densities

In the previous section we saw that the behaviour of individual trajectories in nonlinear dy-

namical systems is very hard to characterise and predict. The solution is offered by focusing on

the characterisation of the evolution of densities of sets instead. When the interest shifts from

individual trajectories to densities, one no longer seeks a description in terms of the evolution

operator St presented in equation (2.2) describing the future position in time of an initial point.

Instead, one defines the Perron-Frobenius or transfer operator, that describes the time evolu-

tion (push forward) of densities. In this paragraph we introduce the Perron-Frobenius operator.

This tool is wildly used in the applications, where a numerical discretisation is needed. The

discretisation of the transfer operator is an example of extraction of a Markov chain process

from the dynamics of a continuous system. We will review this and other examples. In order

for this section to be self contained we will also introduce background information on Markov

chain process.
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Transfer Operator

The transfer operator is a global linear propagator for the flow that describes how densities and

measures globally evolve with time.

Let us consider a dynamical system (M, ϕ). We define [44] the Perron-Frobenius operator or

transfer operator as the linear operator Pϕ : L1(m) :→ L1(M) given by

∫
E

Pϕ(h)dm =

∫
ϕ−1(E)

hdm, (2.15)

for any integrable function h and measurable set E, where m is the Lebesgue measure. Pϕ is

the pull-back of ϕ on h ·m. This definition can be rewritten for the special case of smooth flows

with an attractor Ω as:

P tρ(x) =

∫
Ω

ρ(y)δ(x− St(y))dy = ρ(S−t(x))|det(DS−t(x))|, (2.16)

where D indicates the Jacobian of the flow.

P t evolves probabilities densities ρ under the dynamics of the system, meaning that if ρ is

the density of an absolutely continuous probability measure ν, then P tρ is the density of the

probability measure ν ◦ S−t.

From its spectral properties we can gather information about the statistical features of the

system, such as ergodicity and mixing properties [45] and rates of decay of correlations and

invariant densities [44, 46].

Extracting Dynamical Behaviour through Markov chains: discretised transfer op-

erator

The transfer operator machinery has been applied to investigate problems in the most diverse

fields, among which geoscience [47, 48, 49]. For such applications, particularly those that

require a high-dimensional model, it is necessary to consider a discretisation of the phase space

in order to set up a numerical approach. A classical technique is to divide the phase space
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into a finite collection of regions and mass moves from one region to the other as prescribed

by an appropriate numerical estimate of the transfer operator that provides the probability of

transition between different regions. As a result, a coarse grained dynamics is obtained, and

one is interested only in transitions between regions. It is worth noticing that the numerical

effort of such approach is mainly due to the complexity of the underlying dynamics rather than

the dimensionality of the system itself.

It is thus necessary to specify what it is meant exactly with appropriate numerical estimate of

P t. One of the most common framework to define such estimate is known as Ulam’s method

[50]. This process yields a discretisation of the dynamics in terms of a finite state Markov

chain. Even though this reduced setting contains less information than the original system, it

is possible to retain its essential properties [51].

Let us consider a partition of the phase space M into N connected sets {Bi}Ni=1 (usually a grid

of boxes). We define the projection πN : L1 → span{χBi
}Ni=1 as

πNρ =
N∑
i=1

χBi

υ(Bi)

∫
Bi

ρχBi
υ(dx), (2.17)

where χBi
is the characteristic function of the set Bi and υ can be chosen depending on the

nature of the problem to express some notion of volume. The so called discretised transfer

operator πNP t : span{χBi
}Ni=1 → span{χBi

}Ni=1 admits a matrix representation

Mn,t,ij :=
(
πNP t

)
i,j

=
1

υ(Bi)

∫
Bi

P tχBj
υ(dx). (2.18)

We can see from (2.18) that the practical construction of Mn,t,ij depends on the measure υ.

In general, if the interest is on the asymptotic properties of the system, υ will be chosen as

the invariant measure of the system. If instead one wants to look at the effect of the flow on

the entire phase space and the correlation properties, the most appropriate choice for υ is the

Lebesgue measure m. In this latter case we have

Mn,t,ij =
m(Bi ∩ S−t(Bj))

m(Bi)
. (2.19)
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The matrix Mn,t is stochastic, thus having a spectral radius of one. Each Bi can in fact be

considered as a state of the system and the entry Mn,t,ij corresponds to the probability that a

typical point in Bi moves into Bj after time t. See [52, 46] for classical results on the use of the

Ulam’s method for approximating the properties of chaotic dynamical systems.

Correlation properties

From the spectrum of the transfer operator it is possible to extract significant information

about the mixing properties of the system.

As we mentioned earlier, mixing is a necessary condition for deterministic chaos that indicates

that if we consider two events x ∈ A and SN(x) ∈ B for any pair of measurable subsets

A,B ∈ Ω for large N the two events become statistically indipendent. We can further quantify

their loss of correlation through the formula

Cf,g(N) :=

∣∣∣∣∣
∫

(f ◦ SNx)g(x)ρ(dx)−
∫

f(x)ρ(dx)

∫
g(x)ρ(dx)

∣∣∣∣∣ (2.20)

where f and g are smooth observables. Specifically, Cf,g(N) quantifies the correlations between

observing g at time t and f at time t+N , measuring how quickly physical observables become

uncorrelated. Within this context the physical measure can be thought as a reference measure

for the ”equilibrium” of the system.

The transfer operator is strongly connected with the decorrelation properties of the system.

In particular, it is possible to prove that the eigenfunctions of P t corresponding to the largest

eigenvalues indicates the mass distributions that approach the equilibrium distribution given

by the physical measure at the slowest possible rates [46].

Stochastic Matrix

In section 2.1.5 we mentioned the concept of stochastic matrix. We now wish to discuss some

of its properties that will be useful in later sections.
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We consider a stochastic variable x(t) that takes values at each instant of time t over a set of

N states S = s1, ..., sN . We call pi(t) := p(x(t) = si) the probability that at time t the variable

is in state si. When the state of the process at time t only depends on the state at time t− 1,

we say that x(t) defines a Markov process. We will consider stationary processes, meaning that

the transition probability from the state si to the state sj

Wji = Ω(x(t) = sj|x(t− 1) = si) (2.21)

does not depend on time.

We require that the aformentioned quantities satisfy the followings [53]:

pi(t) ≥ 0, ∀i, t,∑
i

pi(t) = 1, ∀t,

Wij ≥ 0, ∀i, j,∑
i

Wij = 1 ∀j.

If we call p(t) = (p1(t), ..., pN(t)) the column vector containing the probabilities and W the

N × N matrix with entries Wji, called stochastic matrix, then we can define the stochastic

dynamical rule as

p(t+ 1) = Wp(t). (2.22)

It is easy to prove by induction that

p(t+ n) = W np(t), (2.23)

and W n is also a stochastic matrix.

Another important relation is the Chapman-Kolmogorov equation, according to which

p(t+ n) = W np(t) = W nW tp(0) = W t+n, (2.24)
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that represent the analogous for stochastic processes of the semigoup property of the evolution

operator St of deterministic dynamical systems.

Properties of the stochastic Matrix It is possible to prove interesting properties from the

spectrum of the stochastic matrix W . Let us consider the right eigenvectors wλ, so that

Ww(λ) = λw(λ). (2.25)

Its leading eigenvalue is λ = 1, and its corresponding eigenvector w(1). The other eigenvalues,

which can be proven to be inside the unit circle, fulfill the condition
∑

j w
(λ)
j = 0, where w

(λ)
j

indicates the jth component of the eigenvector w(λ) [53].

Ergodic Markov chains We now introduce a special case of stochastic matrix. Let us first

introduce some definitions and some particular cases of Markov chain. We say that a state sj

is

• accessible from state si if there is a finite value of time t such that (W t)ji > 0;

• persistent if the probability of returning to sj after some finite time t is 1;

• transient if there is a finite probability of never returning to sj for any finite time t.

We say that a Markov chain is

• irreducible if all the states are accessible from any other state;

• periodic if the return times Tj on a state sj are all integer multiples of a period T .

A Markov chain with a finite phase space is ergodic, if it is irreducible, nonperiodic and all

states are persistent.

Ergodic Markov chains determine a unique invariant measure, which can be calculated as the

eigenvector w(1) associated to the maximal eigenvalue λ = 1 and it is attained exponentially
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fast on a timescale τ independently on the initial condition as

p(t) = w(1) + Ae−t/τ . (2.26)

The subdominant eigenvalues of a stochastic ergodic Markov chain, ordered accordingly to

1 > ℜ(λ2) ≥ ℜ(λ3) ≥ ... ≥ ℜ(λM) (where ℜ indicates the real part) can be thought of as modes

of decay, as they determine the time scale of convergence to the stationary probability measure.

We can quantify these time scales by defining the corresponding decay rate as τk = − 1
log(ℜ(λk))

.

In particular, τ2 identifies the mixing time scale [54].

2.1.6 Characterising the chaoticity of a system: Lyapunov analysis

A chaotic system is characterised by sensitive dependence on the initial conditions on the at-

tractor. Following Pesin’s theory [18], such characterisation can be most easily accomplished by

using Lyapunov analysis [54], that provides very powerful tools for studying rates of expansion

or decay (and corresponding modes) of perturbations with respect to a background chaotic

trajectory by analysing the properties of the tangent linear operator.

Let’s start by considering any two chaotic trajectories x(t) = St(x0) and x(t)+ δx(t) = St(x0+

δx0). If the system in exam is chaotic, they will separate exponentially with time and in a finite

time their separation will grow to the size of the attractor.

Figure 2.2: Exponential separation of trajectories
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Such exponential separation in time of neighbouring trajectories can be quantified as

||δx(t)|| ≈ eλt||δx0||, (2.27)

where λ is called leading Lyapunov exponent and it is a global measure of the rate at which

nearby trajectories diverge, averaged over the attractor of the system.

We can formalise these observations in the following manner. Let us consider the dynamical

system given in (2.1), with x(t) being the state of the system at time t. In systems of practical

applications, this initial state cannot be specified with infinite accuracy, since its measurement

is affected by noise. We can describe the evolution of such infinitesimal perturbation δx(t) in

the tangent space by linearising the dynamics around the trajectory as:

δẋ(t) = J(x, t)δx(t), (2.28)

where

J(x, t) =
∂f(x(t))

∂x(t)
(2.29)

is the Jacobian matrix of the flow.

We can write the solution of this equation as:

δx(t) = M(t, x(t0))δx(t0), (2.30)

where M is the fundamental matrix [55]. Oseledec multiplicative ergodic theorem [56] states

that, for an appropriate type of systems, there exists a matrix Λx(t0) such that

Λx(t0) = lim
t0→∞

(MT (t, x(t0))M(t, x(t0)))
1/2(t−t0) (2.31)

It is also possible to prove that its eigenvalues Λi are constant almost everywhere with re-

spect to the invariant measure of the system. Roughly speaking, the theorem states that for a

measure-preserving dynamical system, there exists a splitting of the tangent bundle into invari-

ant subspaces, such that the Lyapunov exponents associated with each subspace are well-defined
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and have certain asymptotic properties. The Oseledec assumption is fundamental because it

ensures that the splitting of the tangent bundle into invariant subspaces is well-defined.

We call Lyapunov exponents (LE) of the systems the objects defined as λi = log(Λi). Usually

they are ordered by size in descending order λ1 ≥ λ2 ≥ ... ≥ λN and they are dynamically

invariant, since they are independent on both metric and choice of variables. The Lyapunov

exponents provide an exhaustive description of the behaviour of all possible perturbations,

meaning that reproducing a perturbation such that its exponential growth rate differs from any

of the Lyapunov exponents of the systems has probability zero with respect to the measure.

In particular, the largest LE is responsible of the description of the asymptotic linear stability

of a given trajectory. A positive first LE indicates that the system is chaotic (exponential

instability), whereas a negative first LE implies that the system is linearly stable.

It is also interesting to note that in a chaotic system the largest LE λ1 provides a way to

measure the predictability time (or characteristic time) of the system as the inverse of λ1. More

precisely, if a point in the phase space undergoes a perturbation of size δ, such perturbation

grows exponentially in time as exp(λ1t). The time that it takes for the perturbation to reach

to a size ∆ can be calculated as:

TPR ≈ 1

λ1

log

(
∆

δ

)
(2.32)

Since λ1 quantifies the average growth rate it is not necessary valid in all the different regions

of the attractor, but it can be rather interpreted as an average quantity (see later discussion in

the following section).

Finite Time Lyapunov Exponents

Lyapunov exponents are asymptotic quantities and refer to average properties over the attrac-

tor. This notion can be extended via their local correspondents, constructed by considering

finite time horizon (finite-time LEs - FTLEs) [57], and by considering finite scale, rather than

infinitesimal perturbations with respect to the background trajectory (finite size LEs - FSLEs)
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[5].

In this thesis we will in particular take into account FTLEs. These quantify the amount of

stretching about the trajectory with initial condition x(t) over a finite time interval [t, t + t0].

They are local objects since their value depends on x and t0. They can be computed as the

logarithm of the eigenvalues of the matrix

Lx(t0) = (MT (t, x(t0))M(t, x(t0)))
1/2(t−t0). (2.33)

The long time average along the trajectory of each λj(x, t) corresponds to the global Lyapunov

exponent λj.
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Figure 2.3: First finite-time Lyapunov exponent for the Lorenz-96 model with parameters
N = 20, F = 5 [58]. Each dot represents the first FTLE computed over time with a time step
of τ = 0.1. The solid line is the asymptotic average value of the first global Lyapunov exponent.

In fig. 2.3 we can observe the dependence of the first FTLE of the Lorenz-96 model [58] from

the initial condition x(t0) (the reader can refer to chapter 4 for a more detailed discussion).

We can see that, even though the average value λ1 is positive for the considered parameters of

the model, negative contributions are not rare. In fact, since FTLEs are computed as averages

over a finite time they can be subject to large fluctuations. We will discuss later in chapter 4

that for a certain type of systems, these fluctuations can be observed even for large values of τ

(even though their are less likely to be observed) and are a symptom of a strong violation of

hyperbolicity.

Roughly speaking, if a FTLE fluctuates between positive and negative values along the trajec-
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tory, there exist a direction whose behaviour is oscillating between contractive and expansive,

thus ruling out hyperbolicity. This behaviour originates from the the so-called Unstable Dimen-

sion Variability [11], namely the presence of unstable periodic orbit embedded in the attractor

that present a different number of unstable dimension.

Applications of Lyapunov analysis Lyapunov analysis plays a pivotal role in modern dy-

namical system theory, as a result of new mathematical theory being developed and growing

progress in computer capabilities [59]. Lyapunov vectors and exponents have found applica-

tions in the most different research communities, from mathematics, to physics to atmospheric

sciences [54].

A prominent application of such theory is the investigation of the predictability properties

of the atmosphere and the climate. In fact, as we previously mentioned, atmospheric and

climate systems exhibit sensitive dependence on the initial conditions [60]. Such sensitivity not

only affects the propagation of errors on the initial conditions, but also emerges in the model

parametrisation and boundary conditions [61, 62]. Quantifying such sensitivity is thus of the

most relevant importance in order to improve forecasts at short, medium and long term [63].

Initially Lyapunov exponents have been computed in low dimensional systems, but the scope

was soon expanded to spatially distributed system with a high number of degrees of freedom.

Lyapunov exponents have been computed in intermediate order atmospheric quasi-geostrophic

models [64, 65, 66], showing that when considering realistic boundary conditions and forcing,

the number of positive LE is high, resulting in an high-dimensional attractor and indicating

the impossibility of reducing such models to a lower order system. Another important issue is

quantifying the prediction horizon of weather forecast.

Dynamical indicators

Kaplan-Yorke dimension The full Lyapunov spectrum allows to define the Kaplan-Yorke

dimension of the system [67] as:
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DKY = m+

∑m
i=1 λi

|λm+1| ≤ N
(2.34)

with m being the highest index for which the sum of the largest m Lyapunov exponents is

strictly positive.

The Kaplan-Yorke conjecture states that

D1 = DKY (2.35)

where D1 is defined as in 2.8.

This quantity provides an estimate for the fractal dimension of the attractor and it can be

thought as an approximate value of the number of excited degrees of freedom acting in the

system [68].

Kolmogorov-Sinai entropy The degree of chaoticity of a dynamical system can also be

quantified via the Kolmogorov-Sinai entropy (approximated via Pesin’s theorem in the case the

invariant measure is of the Sinai-Ruelle-Bowen type) [34] as:

hKS =
N∑
i=1

λi (2.36)

that describes the production of information due to the chaoticity of the system.

2.2 Periodic orbit theory

Since the birth of calculus, differential equations were used with the scope of modelling natural

phenomena. However, the approach to such problems was very different than the current one.

The default method involved extracting individual solutions, either approximated with a time

series or using a transformation to reduce the equation to a known function. A breakthrough

in the understanding of nonlinear and in particular chaotic dynamics was offered by a shift in
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the perspective in the way of looking at the problem. From this perspective, as noticed early on

by Poincaré [69], the dynamics can seen as a walk through repeating patterns. More precisely,

these repeating patterns are unstable periodic orbits (UPOs), true nonlinear modes of the flow,

that provide a rigid structure hidden in the chaos of the dynamics [70]. When dense in the

attractor [34], they can approximate any chaotic trajectory with an arbitrary accuracy [71, 72].

We can think of the chaotic trajectory as being continuously scattered from one neighbourhood

of an UPO to another, because of their instability. Within this context, for lower dimensional

systems that present strong chaoticity, it is possible to develop a theory that allows dynamical

averages to be written as weighted sums over the full set of UPOs. For higher dimensional sys-

tems a direct extension of this theory is not yet formalised, but promising results are present

in the literature [2].

In this section I will review the main results of periodic orbits theory for Axiom A systems

and their applications. I will present some extensions for higher dimensional systems and

applications in the geophysical context.

2.2.1 Averages

One of the main results of periodic orbit theory is the development of a ”cycle expansion

formula” [1] that allows to express averages over chaotic phase space regions in terms of unstable

periodic orbits. This result could be achieved starting from the observation that the motion in

dynamical system with a low number of degrees of freedom can be organised around some of its

”relevant” periodic orbits [73]. Such orbits are skeletal for the dynamics in the sense that even

though they are determined in a finite period of time, they remain there forever. The phase

space is tiled by periodic orbits that can provide an approximation of the chaotic trajectory

at any instant of time, since these are closures of the set of the UPOs [34]. UPO theory

has fast developed into a consolidated dynamical tool for the calculation of ergodic averages,

providing a machinery that allows to use the knowledge coming from individual solutions to

make predictions about statistics.
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Historically, Gutzwiller [74] was the first to demonstrate that UPOs are the essential building

blocks of chaotic dynamics. Cvitanović [3] argued that UPOs are the optimal practical tool for

measuring the invariant properties of a dynamical system. Ruelle later derived the dynamical

ζ function [75], that allows one to write averages over the invariant measure of the system as a

weighted sum over the infinite set of UPOs. Trace formulas [1] became a standard instrument

in the toolkit of the dynamicist, allowing to reconstruct the invariant measure of the system by

considering the following expression for the average of any measurable observable φ:

⟨φ⟩ = lim
t→∞

∑
Up,p≤tw

Up
φ̄Up∑

Up,p≤t w
Up (2.37)

where Up is a UPO of prime period p, wUp
is its weight and φ̄Up

is the average in time of the

observable along the orbit. For the particular case of uniformly hyperbolic dynamical systems

(2.37) is exact and the weight can be obtained, to a first approximation, by wUp ∝ exp(−phUp

ks )

[71] , with hks being the Kolmogorov-Sinai entropy of the system.

More generally, these results are proven to be valid for dynamical systems exhibiting strong

chaoticity [76, 77], such as uniformly hyperbolic and Axiom A systems [23, 78].

2.2.2 Applications of UPOs theory

The significance of periodic orbits for the experimental study of chaotic dynamical systems has

been demonstrated in a broad range of applications.

A first application of periodic orbit expansion was performed by Auerbach et al. [79] where

they proved that UPOs are experimentally accessible and capable of unfolding the structure

of chaotic trajectories. In fact, by extracting the complete set of UPOs of symbolic length

up to period n and calculating their instability, they approximated the fractal dimension and

topological entropy of the strange attractor of the paradigmadic Hénon map with very high

accuracy. Cvitanović [3] argued that UPOs are the optimal practical tool for measuring the

invariant properties of a dynamical system and provided a solid ground for the applications of

periodic orbit theory (POT). Artuso et al. tested this procedure through a series of applications

[80, 73] and demonstrated that cycle expansion of the dynamical ζ function is instrumental for
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the analysis of deterministic chaos, even in more generic settings than the ones required by [3],

i.e. when the system is not uniformly hyperbolic nor the results depend on the assumption

of the existence of invariant measures or structural stability of the dynamics. Eckhardt and

Ott [81] presented one of the first numerical applications of the periodic orbit formalism for

studying the statistical and the dynamical properties of the Lorenz 1963 (L63) system [25]. A

subsequent analysis of the linear and nonlinear response of the L63 to perturbations show that

specific UPOs are responsible for resonance mechanisms leading to an amplified response [82].

Applications to (geophysical) fluid dynamics

Later on, periodic orbit theory found fruitful applications also within the context of higher

dimensional NESSs, and specifically in the case of (geophysical) fluid dynamics. UPOs can

be considered as a mean to simplify and interpret qualitative behaviour of a complex system

[14], allowing to extract information and distill its dynamical structure. This observation,

together with the study of the stability and thus predictability properties of the tangent space,

allows to associate relevant dynamical features of the flow to specific UPOs or classes of UPOs.

UPOs, true nonlinear modes of flow, can be interpreted as a generalisation of the normal modes

observed in a network of coupled linear oscillators, that allow for a study of the system in its

complexity, without the necessity of considering a heavily truncated model. Even though a

complete UPOs-based analysis of turbulent flows is still a far reaching goal, many steps have

been made in this direction [2]. Kawahara and Kida [7], who found a UPO embedded in

the attractor of a numerical simulation of plane Couette flow, showed that one UPO only

manages to capture in a surprisingly accurate way the turbulence statistics. At a moderate

Reynolds number, Chandler and Kerswell [10] identified 50 UPOs of a turbulent fluid and used

them to reproduce the energy and dissipation probability density functions of the system as

dynamical averages over the orbit. These encouraging results suggested that periodic orbit

theory could represent a valid investigation tool also in the realm of climate systems. In the

geophysical context, Gritsun [83, 84] proposed using an expansion over UPOs to reconstruct

the statistics of a simple atmospheric model based on the barotropic vorticity equation of the
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sphere. Gritsun and Lucarini [85] used the UPOs for interpreting non trivial resonant responses

to forcing that underlined the violation of the standard fluctuation-dissipation relation for

NESS for deterministic chaotic systems. Lucarini and Gritsun [14] used UPOs for clarifying

the nature of blocking events in a baroclinic model of the atmosphere. Specifically, they found

that blocked states are associated with conditions of higher instability of the atmosphere, in

agreement with a separate line of evidence [86].In fig. 2.4 we can in fact see that the statistical

distributions describing the stability properties of blocked states (first finite-time Lyapunov

exponent, local estimate of the Kolmogorov-Sinai entropy and number of unstable dimensions)

are biased substantially high compared to the distribution of all UPOs. This results in a

bimodal distribution of the stability indicators of the UPOs of the system, where more the

more unstable peak (right peak) corresponds to the UPOs associated to blockings, and the

more stable peak (left peak) is associated to the UPOs in a non-blocked state. Additionally,

the analysis of UPOs was instrumental in proving that the atmospheric model was characterised

by variability in the number of unstable dimensions, hence being not uniformly hyperbolic [12].

The analysis by Lucarini and Gristun [14] proposed the idea that the observed blocked states

of the atmospheric flow should be interpreted as conditions where there is not only proximity

of the trajectory to special classes of UPOs, but also co-evolution, at least locally in time (the

so-called shadowing). This implies that blocking can be associated with actual nonlinear modes

of the atmosphere. This calls for looking at both the proximity and the co-evolution of chaotic

trajectories with approximating UPOs. Recent investigations have been carried out exactly in

this direction, yet in a different context. Both Yalnız and Budanur [8] and Krygier et al. [87]

investigated the process of shadowing of time-periodic solutions in three-dimensional fluids,

although using different shadowing metrics, providing a numerical evidence of the shadowing

of a trajectory in terms of UPOs. (A more complete review of the shadowing process can be

found in section 3.1.4).
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(a) (b)

(c)

Figure 2.4: Statistics of UPOs: first finite-time Lyapunov exponent (panel (a)); local estimate
of the Kolmogorov-Sinai entropy (panel (b)); number of local unstable dimensions (panel (c).
Black lines: all UPOs. Red dashed lines: UPO with Atlantic blocking patterns with duration
longer than 3 days. Red dash-dotted line: UPO with perpetual Atlantic blocking. Blue dashed
lines: UPO with Pacific blocking patterns with duration longer than 3 days. Blue dash-dotted
line: UPO with perpetual Pacific blocking. Orbits including short-lived blocking events (dura-
tion equal or less than 2 days) are barely distinguishable from the statistics of all UPOs. When
looking at UPOs featuring blockings whose lifetime is equal to or longer than 3 days, we find
confirmation that blocked states are anomalously unstable, and that the lifetime of a blocking
event correlates positively with its average instability. The estimates of their KS entropy are
biased substantially high compared to the statistics of all UPOs. The special nature of insta-
bility during blocking events is better understood when looking at the properties of UPOs that
are in perennially blocked state. For these UPOs the mean and the standard deviation of the
first FTLE, of the local values of the KS entropy, of the KY dimension, and of the number of
unstable dimensions are much higher than for the other UPOs. Figures and caption are (with
permission) from [14].
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2.3 Numerical Methods

In this section we introduce the numerical methods used to reproduce the results of this thesis.

The numerical choices and parameters in the case of the Lorenz-63 and Lorenz-96 are presented

in a separate section of the Appendix.

2.3.1 Numerical methods for finding Lyapunov spectra

Lyapunov exponents play a crucial role as diagnostic tool of chaotic dynamics. In fact, as we

mentioned in the previous section, any system that presents at least one positive Lyapunov

exponent is deemed as chaotic, with an horizon of predictability specified in terms of the value

of the largest Lyapunov exponent. A major breakthrough in the study of chaotic dynamical

system happened in the ’80s when Benettin and collaborators [28] and separately Shimada

and Nagashima [88] developed an algorithm for the numerical extraction of the full Lyapunov

spectrum, motivated by the interest in numerically computing the metric entropy of nonlinear

dynamical systems [89]. Before that time, only a technique for computing the maximal exponent

was known [90, 91, 57]. This had great impact from the perspective of the applications since

it enabled to extend the study of chaotic dynamics to systems that were inaccessible from

a theoretical perspective. Wolf at al. successively developed an algorithm that allowed to

determine Lyapunov exponents from an experimental time series without necessarily knowing

the the equation of motion, tested first on models with both a known Lyapunov spectrum and

then applied to experimental data for chemical [92] and hydrodynamical data [93].

We review here the algorithm for the extraction of the Lyapunov spectrum presented in [54].

Lyapunov exponents and evolution of volumes

From the knowledge of the full Lyapunov spectrum it is possible to measure the contraction

rate of volumes in the phase space as CN =
∑N

k=1 λk where N is the dimension of the system

[54]. In particular, if we consider a finite volume spanned by two generic inital vectors u(0)
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and v(0), that typically has components along all directions Ek(0) with k = 1, ..., N . We now

let the system evolve forward in time. After a certain time t, the area spanned by their iterates

is given by u(t) × v(t). If we assume Oseledets splitting [56], meaning that the Lyapunov

exponents associated with each subspace are well-defined, each of the components will expand

or contract multiplied by a factor exp(tλk). This expansion has an effect over the volume: if

we denote with V2 the area spanned by the two generic initial vectors the rate of growth can

be calculated as

λ1 + λ2 = lim
n→∞

1

t

V2(t)

V2(0)
(2.38)

in fact, the leading component is given by the cross term E1(t)×E2(t) since the term E1(t)×

E1(t) vanishes in the cross product. In a similar manner we can deduce that the volume spanned

by M generic different inital vectors VM can be obtained as

M∑
k=1

λk = lim
n→∞

1

t

VM(t)

VM(0)
. (2.39)

Algorithm

The idea behind the algorithm is to take advantage of the relationship between the evolution

of a volume in phase space and the Lyapunov exponents (2.38). Namely, we consider a set of

m vectors in the phase space, denoted with a N × m orthogonal matrix Q0. At time t, the

matrix Q0 evolves into a volume P = M(t)Q0, where M is the matrix describing the tangent

linear evolution operator. The matrix P , as an effect of the time evolution, will not necessary

be orthogonal, and most likely some of the vectors that represent its columns will align along

the most expanding direction. However, there exist a unique decomposition [94] that allows to

write P as

P (t) = QR, (2.40)

where Q is an orthogonal N × m matrix and R is an upper triangular m × m matrix with

positive diagonal elements. The crucial information is that since Q only involves rotations and

reflections without affecting the volume, the determinant of R is equal to the volume Vm of a
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generic m-dimensional parallelepiped as

Vm =
m∏
i=1

Ri,i. (2.41)

We recall that the rate of growth of such volume can be estimate as

lim
t→∞

lnVm

t
=

m∑
i=1

λi. (2.42)

If we now substitute (2.41) in (2.42) and apply such relation consecutively for m = 1, 2, ... we

finally find an expression for the Lyapunov exponents as

λj = lim
t→∞

lnRjj

t
. (2.43)

A great advantage of such procedure is that it possible to decompose the matrix R as a product

of different subterms, allowing to periodically re-normalise the matrix, in order to avoid the

different directions (represented by the columns of the matrix) to align along the greatest as

time evolves, and preventing from a corrected estimation of the full spectrum.

We consider L intervals of equal size τ in [0, t]. We have that

P =
L∏

k=1

MkQ0 (2.44)

where Mk is the operator considered between time (k − 1)τ and kτ . We define PK = MkQk−1

and apply the QR decomposition on each Pk as Pk = QkRk. We have that

P = Qk

L∏
k=1

Rk (2.45)

by recursive iteration. The computation of the jth Lyapunov exponent can be obtained as a

sum of the L Rj,j contributions over the interval [0, t]. In fact, the product of upper triangular

matrices is still upper triangular and the same holds true for orthogonal matrices.

The interested reader can find different implementation of the algorithm in [95, 96, 97].
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Numerical Errors

Different type of errors arise in the computation of the Lyapunov spectrum. The main source is

linked to the integration of the evolution equation in the tangent space. In fact, the time-scale

on the tangent space might be very different than the time-scale of the nonlinear equation, and

in the case of the calculations of very negative Lyapunov exponents this problem might be even

more accentuated due to the fact that such timescale is typically smaller. In order to account

for this type of error it is crucial to choose an appropriate numerical integration scheme. See

for instance (Arnes 1992, Quarteroni and Valli 1994, Morton and Mayers 2005).

When considering numerical errors purely specific to Lyapunov exponents, the two major

sources are imputable to the finite orthogonalisation time and statistical fluctuations.

The first is due to the non-normality of the matrix R. In fact, some directions might be very

close one to the other, making difficult to estimate the diagonal terms of the matrix. Such

problem grows with the orthogonalisation time τ , as the directions tend to align towards the

direction given by λ1. Choosing a sufficiently small τ will limit this source of errors.

The most important source of error is due to statistical errors. In fact, different regions of the

phase space might present very different stability properties, that generates unavoidable source

of fluctuations. A possible way to determine the effect of such fluctuations on the estimates of

the LEs is by introducing appropriate observables as a tool to estimate the error on the LW,

such as a diffusion coefficient quantifying the time evolution of the expansion factor, which can

be seen as a diffusive process with a drift (see [54] for more details).

2.3.2 Numerical methods for finding UPOs

Detecting UPOs from chaotic system still represents open challenge [10]. In fact, the compu-

tational cost of the extraction is extremely high, and the difficulty grows with the period T of

the orbit [98]. In a limited number of cases, the special structure of the system allows to apply
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efficient methods that lead to a complete knowledge of the full set of orbits up period T . This is

the case for instance of lower dimensional systems that admits a symbolic dynamics [99], where

it is possible to develop a technique that allows to extract UPOs given that the their symbolic

value is known. An example is offered by Biham and Wenzel in [100, 101], where the authors

present the case of the Hénon map, developing a method that, given the symbolic dynamics

description of a UPO, converges to that orbit. Such techniques are not directly extendable to

generic systems, for which iterative algorithms represent the favorable choice. One of the most

popular is the Newton-Raphson method [102] applied on the periodicity condition. Another

possibility takes advantage of the technology of chaos control [103] to stabilise the periodic or-

bit. Kazantsev instead, proposed a method requiring techniques similar to the one used in data

assimilation [104], whereas Land and Cvitanovic presented an algorithm based on a variational

method [105].

The algorithms introduced above have been successfully used to detect UPOs in chaotic systems

in very different fields. Kazantsev [104, 106] extracted UPOs in a barotropic ocean model and

used those UPOs to analyse the sensitivity of the attractor to external perturbations. Gritsun

[83] compared the performance of different methods of extractions of UPOs for a barotropic

model of the atmosphere and subsequently used those UPOs to provide an estimate for the

system PDF [84]. Kawahara and Kida [7], Kato and Yamada [107], Van Veen et al. [108]

and Crowley at all [109], detected UPOs in fluidynamics model and used them to characterise

dynamical properties of the system.

We will review here the classic Newton algorithm [102] for detecting UPOs of the ordinary

differential equation

ẋ = f(x), x ∈ M, (2.46)

where M ⊂ Rn is a compact manifold. This method is particularly appropriate for finding

periodic solutions even in high-dimensional systems.

The problem of numerically finding UPOs can be reduced to the solution of the periodicity
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condition, which corresponds to a system of nonlinear equations with respect to the initial

condition of the UPO and its period:

ST (xin) = xin. (2.47)

where xin is the initial condition and T is the period of the UPO. Even for simple nonlinear

systems this represents a difficult numerical problem. Hence, the choice of the algorithm and

initial guess represent an important aspect to be considered.

There exist several techniques of choosing initial conditions. The first one is represented by a

random choice, where the seed of initial conditions is chosen randomly on the attractor and

the initial guess for the period is extracted from a given range of values. Another method

consists in choosing as initial guess quasi-recurrent orbits. Namely, we integrate the system

for a long time Tmax starting from a random initial state; the result is a numerical trajectory

consisting of the set of ordered points {x}Tmax
j=1 . We then calculate the quantity dij = |xj − xi|

∀i, j ∈ {1, ...Tmax} and take the minimum, obtained at say xm, xn. We have a pair of points for

which the trajectory starting from xm passes again near the starting point xm in time n−m.

We can then consider the pairs (xm,m− n) as initial condition for determining the UPO with

the Newton method. At last, another option would be to consider as initial conditions the data

obtained from already detected periodic orbit, with the purpose of constructing longer orbits.

In [83] the author compares the efficiency of these different methods for a barotropic model of

the atmosphere, concluding that by using a random selection of initial condition one might find

a greater number of periodic solution. Choosing quasi-recurrences would instead lead to finding

more stable orbits with higher probability, but with the drawback of struggling to obtain highly

unstable orbits. It is important to stress that the choice of initial guesses reflects on the rate

of convergence and efficiency of the iterative method.

We now present the standard implementation of Newton algorithm for periodic search. Let us
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rewrite the periodicity condition 2.47 as follows:

ST (xin)− xin = 0 (2.48)

This is a system of n nonlinear equations (n is the dimension of the phase space) in n + 1

unknowns (the vector xin and the orbit period T). We start with an initial condition (x0, T).

As we mentioned before, a way to choose it is by calculating a long trajectory and selecting

a quasi-recurrence occurring over a period T such that |ST (xin) − xin| < ε with ε decided a

priori. Let then be xi and T i the ith approximations for initial condition and period. The aim

of the algorithm is to calculate a correction (∆xi,∆Ti) so that we can improve the initial guess

in such a way that

||ST i+∆Ti(xi +∆xi)− (xi +∆xi)|| < ||ST i

(xi)− xi||, (2.49)

We obtain the approximate corrections (∆xi,∆Ti) by expanding

STi+1(xi+1)− xi+1 = STi+∆Ti(xi +∆xi)− (xi +∆xi) = 0 (2.50)

into a Taylor series with respect to ∆xi and ∆Ti

ST i+∆Ti(xi+∆xi)− (xi+∆xi) ≈ ST i

(xi)−xi+
(∂ST i

(y)

∂y

∣∣∣
y=xi

−I
)
∆xi+

∂ST (xi)

∂T

∣∣∣
T=T i

∆Ti = 0

(2.51)

where I is the identity matrix of order n, ∂STi (y)
∂y

is the tangent linear operator and it is an

approximation Mi of the monodromy matrix M [1]. ∂ST (xi)
∂T

∣∣∣
T=T i

is the derivative of the solution

with respect to time ẋ = f(x) evaluated at the final condition f(STi(xi)). In order to remove

the excess in degrees of freedom, we impose the phase condition by requiring the orthogonality

of the correction vector to the orbit

(f(STi(xi))) ·∆xi = 0. (2.52)
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We thus reduced the problem of finding the corrections at step i to the solution of a linear

system of n+ 1 equations in n+ 1 unknowns

 Mi − I f(STi(xi))

(f(STi(xi)))
T 0


∆xi

∆Ti

 =

xi − STi(xi)

0

 (2.53)

We define two errors associated to the numerical algorithm, them being at iteration i:

errini := |STi(xi)− xi| (2.54)

errcorri := |(∆xi,∆Ti)| (2.55)

We consider the UPO to be numerically detected when both (2.54) and (2.55) are sufficiently

small.

The solution of (2.53) gives the next approximations for the UPO initial condition and period.

It is important to notice that in some cases the standard Newton method may not give con-

vergence (or the convergence could be very slow). This happens for instance when the initial

guess is far from the solution, so that the linear Taylor expansion is not valid or the linear

system is degenerate. In this case, one can use a nonlinear expansion in Eq. 2.51 as well as

other techniques known as step relaxation together with line search procedure (see [83] for more

details). Another drawback is represented by computational difficulties for large systems, since

the implementation of this method requires the integration of n linearised systems. This can

be improved by considering an approximation [110, 111] for the inverse of the matrix of the

system (2.53).
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Averages, transitions and

quasi-invariant sets

In Chapter 2 we saw that the attractor of a chaotic system is densely populated by an infinite

number of unstable periodic orbits, which are exact periodic solutions of the evolution equations.

In section 2.2 we explained that UPOs can be used to decompose the complex phenomenology of

a chaotic flow into elementary components and have shown great potential for the understanding

of macroscopic features in turbulent fluid flows.

In this chapter we aim at contributing to the understanding of how UPOs can be used for

distilling the dynamical and statistical properties of chaotic systems of a three-dimensional

model. In particular, we will investigate how a long forward trajectory of the celebrated Lorenz

1963 model featuring the classical parameters’ value can be seen as a scattering process where

the scatterers are the UPOs (ranked shadowing process).

Namely, at each point in time we rank in different ranks the UPOs of our database based on

their distance with respect to the trajectory (the first rank containing the closest orbits, the

Kth rank containing the K closest orbits, etc. See fig. 3.1) and we study the persistence of

the ranking. Our goal is twofold. On the one hand, we aim to numerically understand how

chaotic trajectories are approximated in terms of UPOs. We anticipate that it emerges that

longer period UPOs play a major role in reproducing the invariant measure of the system,

46
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Figure 3.1: Ranked shadowing process. The UPOs of the database are ranked in terms of
distance from at each point in time t along the discretised chaotic trajectory (in black).

meaning that they are the most representative of the chaotic trajectory. On the other hand,

we study the statistics of the scattering of the orbit between the various UPOs. This study

of scattering uses a partition of the phase space of the L63 model that is different than the

classical Ulam’s partition [50],according to which the phase space is discretised in a regular grid

of cubes of equal side. Each UPO (and its immediate neighbourhood) is instead interpreted

as a building block of the system, a spatially extended state, and the scattering can be seen

as subsequent transitions between different states (see also the recent study of a turbulent

flow performed along these lines [112]). In such approximation process, the chaotic trajectory

jumps from a UPO to another, as a result of their instability. We will show that this viewpoint

allows for a different interpretation of quasi-invariant sets [113]. Namely, by studying the

spectral properties of the discretised transfer operator, we obtain a partition of the phase

space in different bundles of UPOs, namely UPOs grouped together accordingly to a common

behaviour (see later discussion), each one identifying a quasi-invariant region. We prove that

UPOs represent a valid tool to investigate diffusion properties of the system, in fact, being

exact solutions, they retain a memory of the geometrical structure of the attractor and the

dynamics.

The structure of the rest of the chapter is as follows. In section 3.1.4 we present the UPOs

database we consider and describe our analysis of the shadowing and discuss its statistical

properties. We prove the robustness of the results independent of the shadowing criteria. In

section 3.2 we construct the discretised transfer operator in terms of a finite-state stochastic
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matrix and use it to describe the scattering of the chaotic trajectory by the various UPOs.

We identify quasi-invariant sets through the study of the spectrum of the transition matrix

and investigate the decay of correlations associated with the relaxation process of arbitrary

ensemble to the invariant measure. In section 3.3 we outline our conclusions and perspectives

for future works.

3.1 Shadowing of the Model Trajectory by Unstable Pe-

riodic Orbits

3.1.1 Mathematical Framework

With reference to the notation introduced in Section 2, we consider a continuous-time au-

tonomous dynamical system ẋ = f(x) on a compact manifold M ⊂ Rn. We have that

x(t) = Stx0, where x0 = x(0) is the initial condition and St is the evolution operator de-

fined for t ∈ Rt>0. We define Ω ⊂ M as the compact attracting invariant set of the dynamical

system that supports a unique invariant physical measure ρ. Hence, for any sufficiently regular

function (observable) φ : M → R, we have that:

⟨φ⟩ =
∫

ρ(dx)φ(x) = lim
T→∞

1

T

∫ T

0

φ(Stx0)dt (3.1)

for almost all initial conditions x0 belonging to the basin of attraction of Ω. Another key

concept we already mentioned is the one of periodic orbit. A periodic orbit of period T is

defined as

ST (x) = x. (3.2)

This representation is not unique. In fact, if equation 3.2 is satisfied, SnT (x) = x is verified as

well ∀n ∈ N . By the semigroup property of the evolution operator, we also have that ST (y) = y

if y = Ss(x) for any choice of s. From now onward we will considered a periodic orbit to be

identified by its prime period T > 0 (we do not consider equilibria) and an initial condition
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x0. As discussed above, the attractor of a chaotic system is densely populated by UPOs, which

provide key information on the system despite being non-chaotic themselves. Indeed, a forward

trajectory on the attractor can alternatively be seen as undergoing a process of scattering

between the neighbourhood of the various UPOs. For a while, the trajectory shadows with

a certain persistence - see later discussion - a nearby UPO before being repelled. The UPOs

act as scattering centers exactly as a result of their instability. An interesting alternative tool

to measure persistence is provided by the extremal index [114], a concept first introduced in

extreme value theory [115] that measures the presence of clusters of exceedances. Within the

dynamical systems framework, such quantity can provide information on the local and global

properties of the attractor of the system and in particular it can be used to estimate the average

cluster size of the trajectories within the neighbourood of a given point [116, 117].

3.1.2 The Model

Our analysis is performed on the L63 model, which arguably is the most paradigmatic continuous-

time chaotic systems. The evolution equations of the L63 model are:

ẋ = −σ(x+ y)

ẏ = Rx− y − zx

ż = −βz + xy

where the three parameters σ,R, β are positive numbers respectively proportional to the Prandtl

number, Rayleigh number and geometry of the considered region. For specific choices of the

parameters’ value the attractor is a strange set, the dynamics is characterised by sensitive

dependence on initial conditions [118] and the system is dissipative (∇ · f < 0). Additionally,

the attractor is densely populated by an infinite number of UPOs [119].

We consider the standard parameters value σ = 10, R = 28 and β = 8/3. For such values,

the dynamics of the system is characterised by a chaotic behaviour on a singularly hyperbolic

attractor (see fig 3.2a) that supports an SRB measure [120]. In particular, the maximal Lya-
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(a) (b)

Figure 3.2: Panel (a): Lorenz attractor. Panel (b): four periodic orbits of the L-63 system

punov exponent of the system is λ1 ≈ 0.91, corresponding to a characteristic time of the system

τ1 ≈ 1.1.

Many studies on UPOs of the Lorenz system have been carried out. Eckhardt and Ott [81]

presented one of the first numerical applications of the periodic orbit formalism by considering

an approximate symbolic coding [3] (UPOs with period up to 9) to calculate Hausdorff dimen-

sions and Lyapunov exponents. Franceschini, Giberti and Zheng [121] calculated a number of

UPOs of the Lorenz attractor at both standard and non standard parameter values and used

them to approximate the topological entropy and Hausdorff dimension. Zoldi [6] investigated

to what extent trace formulas can can predict the structure of the histogram of chaotic time

series data extracted from the run of the L63 model with different parameter values. The use

of a correct weighting in the trace formula has been extensively investigated[122, 123, 4].

3.1.3 The Database

In this section we describe some general characteristics of the collected set of UPOs. Many

numerical algorithms for the extraction of UPOs in the Lorenz-63 model have been proposed so

far. Saiki [124] reviewed the Newton-Raphson-Mees method, proposing a value for the damping

coefficient related to the stability exponent of the orbit, while Barrio et al. [125] carried out

an extensive high-precision numerical simulation in order to gather a benchmark database of
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UPOs for L63.

Figure 3.3: Lorenz attractor and its symbolic notation. The phase space is divided into the
two region R and L that originates the symbolic dynamics. Figure from [125].

It is possible to construct a symbolic dynamics that characterises uniquely the UPOs of the

L63 model [126]. Namely, we can attribute symbol sequences to trajectories of the Lorenz

attractor by following them in time. Every time a trajectory passes through the right lobe of

the attractor we attribute the symbol R, and we attribute the symbol L when it passes through

the left lobe. In this manner every trajectory is assigned a bi-infinite label, and periodic orbits

repeat indefinitely the finite sequence of symbols of its period, thus being characterised by their

finite period sequence only. For example, if a trajectory does one loop on the left and one of

the right, it will be defined by the sequence LR. If a trajectory does a loop on the left and three

on the right and another one on the left, it will be characterised by the sequence LRRRL.

Motivated by the work of Galias and Tucker [127], who computed all M = 2536 UPOs of

symbolic sequence period up to 14, we decide to use this set of UPOs as a benchmark for the

rest of our analysis. In particular, A. Gristun and myself computed the UPOs using Newton’s

method (see section 2.3.2) and as a sanity check compared the obtained period and stability

properties of the UPOs with the results presented in [127]. The database can be found as

supplemental material of [128] and it contains all initial conditions, periods and first Lyapunov

exponents of the computed UPOs. More details on the numerical calculations are presented

in the appendix. The statistics of prime periods is shown in Fig. 3.4. The periods span

from Tmin = 1.5587 to Tmax = 10.8701, and our sample presents the characteristic exponential

growth with the period [129]. The values of Λ1 ranges from 0.756 to 0.994 and agree within an

error of 1% with the values of Λ1 obtained in [126] (See fig. 3.5). No UPO has a vanishing or
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negative value of Λ1 (which would go against the chaotic nature of the flow).

Note that, as well known, the local instability of the L63 model varies wildly within its attractor,

where regions with very high instability alternate with regions where one observes return-of-

skill for finite-time forecast [130]. Hence in this case, as opposed to what observed in [14], the

heterogeneity of the attractor in terms of instability cannot be explained using the properties

of the individual UPOs, possibly because we are considering here a very low-dimensional flow,

whereas a higher level of detail at spatial level would be needed.
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Figure 3.4: Number of UPOs in our database vs their prime period. We have considered
symbolic sequences of period up to 14.

Figure 3.5: Distribution of the maximal Lyapunov exponent
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3.1.4 Shadowing

A very appropriate tool to explore the geometry of the attractor under the lens of its UPOs is

called ”shadowing”, namely the process of approximation of a chaotic trajectory in terms of un-

stable periodic orbits. For uniformly hyperbolic systems without continuous symmetries, UPOs

are dense in the attractor [131]. This implies that it is always possible to find a periodic orbit

arbitrarily near to a chaotic trajectory, allowing for a reconstruction of the trajectory up to any

arbitrary accuracy. In general, even though the shadowing property has not yet been formalised

for more general system, it is widely assumed to be valid. Evidence of turbulent trajectories

being shadowed by unstable equilibria and UPOs are present in forced two-dimensional flows

[104, 10, 132], isotropic turbulence [108], plane Couette flow ([133, 134, 135]), Kolmogorov flow

in two [9] and three dimensions [8]. We say that a UPO is shadowing a chaotic trajectory if

the UPO is ”close” to the chaotic trajectory and co-evolve with the trajectory for ”some period

of time”. It is important to note that when considering non-hyperbolic systems, closeness to

a periodic solution is not a sufficient condition for shadowing, even though the two terms are

often used as synonym in the literature. For infinitesimally small distances the two require-

ments becomes equivalent, but if the distance is not negligible it is important to verify one as

well as the other. Both ”closeness” and ”period of time” required for the shadowing are not

universal and will be determined based on the situation, assessing respectively both distance

and co-evolution time (see later discussion). As one could expect, the length of the co-evolution

period depends on the instability of the solution that is being shadowed.

In our numerical investigation we choose to consider the so-called ”rank shadowing” [128].

Given a chaotic trajectory, at each point in time we rank in different ranks the UPOs of our

database according to their distance to the chaotic trajectory, and we study the persistence of

the ranking. By having a ranking we have the possibility to control both distance and per-

sistence of the shadowing simultaneously, in order to assess the quality of the shadowing. As

we mentioned before, we are not only interested in the distance with the trajectory, but in the

combination of distance and co-evolution, since closeness only implies that the distance is small
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regardless of having the two trajectories co-evolving. In fact, even though an orbit might not

be the closest to the trajectory, it could persist in the shadowing in further ranks. It is also

possible that multiple UPOs might be shadowing the trajectory at the same time (simultaneous

shadowing) [87, 136]. Finally, the existence of a ranking allows us to test the robustness of our

results when relaxing the shadowing condition.

3.1.5 Ranked Shadowing of the Chaotic Trajectory

We present here our results on how the UPOs rank shadow a long chaotic trajectory. The

data reported below refer to a chaotic trajectory Xchaotic of duration Tmax = 105 where the

output is given every dt = 0.01. This leads to considering the set of points Xchaotic = {xt}Nmax
t=1

where Nmax is Tmax/dt = 107. Since the system is ergodic and we consider a long trajectory

compared to the timescale of the system, the statistics presented here are extremely insensitive

to the chosen initial condition. In fact, we have repeated the same procedure for a total of five

different chaotic trajectories of duration Tmax = 105 and all the numbers reported below change

of at most 1%, while in most cases the difference is only of order 0.1%.

Let us denote the set of UPOs of the database as U = {Uk}Mk=1 where the UPO Uk is intended

as a set of points in the system phase space Uk = {uk(s)}dt∗Tk
s=1 , with Tk being its period and dt

the time step. the number of points of the chaotic trajectory. We define a metric of proximity

that allows us to select and rank the closest UPOs to the trajectory at each point in time.

More precisely, we say that the UPO Uk̄ has the closest pass to the chaotic trajectory Xchaotic

at time t if

min
s

|uk̄(s)− x(t)| = min
k

(min
s

|uk(s)− x(t)|) (3.3)

It is important to notice that closeness and shadowing become equivalent when (3.3) becomes
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infinitesimal. The minimal distance between a UPO and the chaotic trajectory decreases as we

consider complete sets of UPOs with larger and larger maximum symbolic length. The statistics

of such distance for the case studied here is shown in Fig. 3.7a and discussed below. We can

then define the ranked shadowing, where for each point xt along the chaotic trajectory Xt we

rank the UPOs according to their distance from xt. Note that after a time step the distance

between a given UPO and the chaotic trajectory will change, while its rank UPO might stay

the same or also change.

This calculation was carried out using all available periodic orbits, using an output time-step

dt = 0.01 (In particular, the trajectories were calculated using the mid-point scheme with

an integration time-step of 10−3 ). Such choice of output time-step allows to observe both

persistence and co-evolution of the trajectory with the shadowing UPOs. Had we chosen a larger

time-step we would not have observed the right time-scale of the process, and had we chosen a

finer time-step the computation of the rank shadowing would have been computationally too

expensive. Clearly, it is important to test whether all the UPOs of our database rank shadow

at least once the chaotic trajectory.
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Figure 3.6: Percentage of shadowing UPOs over the full database as a function of the length
of the shadowed chaotic trajectory

We can see in fact from Fig. 3.6 that the number of UPOs NU(t) that perform rank shadowing

at least once grows very rapidly with the length of the trajectory t. We find an approximate

power law NU(t) ∝ tα with α ≈ 0.78 for moderate values of t up to ≈ 100. A chaotic trajectory

having a duration of 103 time units already saturates the database, so that when considering
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Figure 3.7: Panel (a): Probability distribution function for the log10-distance distribution of
the first rank orbits (solid black line; mean distance 0.0189), rank K = 10 orbits (dashed red
line; mean distance 0.0649 dashed red), rank K = 30 orbits (dashed and dotted orange line;
mean distance 0.1130), and rank K = 100 orbits (dotted yellow line; mean distance 0.2106).
Panel (b): Probability distribution function of log10-persistence of the rank 1 orbits (solid black
line; mean persistence 0.0880), and of the shadowing orbits with modified definition allowing
for fluctuations withing the first K = 10 ranks (dashed red line; mean persistence 0.2218),
K = 30 ranks (dashed and dotted orange line; mean persistence 0.3846), and K = 100 ranks
(dotted yellow line; mean persistence 0.7371). See the main text for further details.

a trajectory of duration Tmax = 105 all UPOs in the dataset shadow the trajectory multiple

times.

The reader might think that the definition of shadowing proposed in Equation 3.3 could be

unreasonably strict. In fact, at each time step we are only selecting the nearest UPO, thus

possibly discarding many other UPOs that are also extremely close to the trajectory. Hence,

we also propose a looser definition of shadowing that allows to take into account the fact that a

UPO might still be nearby the trajectory even if it is not anymore the nearest one. In particular,

if Ut is the closest UPOs to the trajectory at time t, we say that Ut persists in shadowing at

time t + 1 if by then Ut is one of the K closest UPOs, or, in other terms, it belongs to one

of first K ranks. In this fashion we are rewarding the quality of the shadowing of the UPOs

within the first K ranks. When the UPOs exits the first K ranks of shadowing, the closest

UPO to the trajectory is selected as shadowing UPO. In this chapter we will consider various

values of K (K = 1 corresponding to the original, strictest definition of shadowing) in order to



3.1. Shadowing of the Model Trajectory by Unstable Periodic Orbits 57

P (d > 1) P (d > 10−1) P (d > 10−2)

rank 1 0.0001 0.0096 0.6891
rank 10 0.0026 0.0816 1
rank 30 0.0076 0.2997 1
rank 100 0.0230 0.9551 1

Table 3.1: Probability that the distance between the chaotic trajectory and the shadowing
UPO exceeds the indicated thresholds.

assess the robustness of our results.

In general, the shadowing UPOs are characterised by two properties. First, by definition, they

have a close proximity with the chaotic trajectory. Additionally, since the flow is smooth, we

expect a certain degree of persistence in the shadowing: if a UPO is near the chaotic trajectory,

the velocity fields will also be similar, and one expects that the UPO will persist its shadowing

property for a certain time. The persistence, namely the mean time duration of the shadowing

process, quantifies the temporal co-evolution of the chaotic trajectory with the approximating

UPOs. In the present discrete numerical implementation of the ranked shadowing process

it is possible that the closest UPO might not be the orbits that has the higher persistence.

However, even in the case of existence of another orbit with higher persistence, the bounds on

the velocity field and, more importantly, on the norm of the Jacobian of such field, guarantee

that the selected orbit, chosen solely based on the proximity criteria, would stays close to the

trajectory for a certain period of time. We could quantify this information by noticing that the

mean speed over the attractor is about 26 with stdev 9. This results on an average displacement

of about 0.26 for the considered numerical discretisation dt = 0.01.

Fig. 3.7a presents the probability distribution functions (pdfs) of the distance of the shadowing

UPOs for ranks K ∈ {1, 10, 30, 100}. By definition, as we look at successive ranks, the average

distance of the shadowing UPOs with the chaotic trajectory increases, going from O(10−2) for

K = 1 up to O(10−1) for K = 100. More precisely, the mean distance is respectively 0.0189,

0.0649, 0.1130 and 0.2106 for the orbits in rank 1, 10, 30 an 100. One should keep in mind

that the rank K = 100 includes the top 4% of the UPOs. Note that substantial overlaps exist

between the various pdfs, thus indicating that, in absolute terms, the quality of the shadowing
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varies throughout the attractor. As we could further quantify in Table 3.1, the quality of

the shadowing is in general very high: even considering the weakest definition of shadowing,

only about 2% of the recorded distances are above 1. Choosing the strictest definition of

shadowing, only 0.1% of the recorded distances are above 0.1. This can be better appreciated

also by considering that the attractor of the L63 model is contained in the Cartesian product

P = [−20, 20]× [−27.5, 27, 5]× [1, 48] [137]. One can cover this region with 103400×103l cubes

of equal size 10−l. We will use such a partition (for l = 0) later in this chapter.

Figure 3.7b shows the distribution of the mean persistence of the shadowing UPOs when we

consider the strict as well as looser definitions of shadowing, with K ∈ {1, 10, 30, 100}. By

construction, the mean persistence increases with K as we are using looser and looser criteria

for defining it. Note that in all cases the time persistence is strictly larger than four time steps,

meaning that our procedure captures in all cases at least some co-evolution of the chaotic

trajectory and of the approximating UPOs. This also suggests that the adopted temporal

resolution for our chaotic trajectory and UPOs is sufficient: had we chosen a longer time step,

we would have lost the property of co-evolution. Specifically, the mean persistence is 0.0880,

0.2218, 0.3846, 0.7371 (corresponding to approximately 9, 22, 38, and 74 time steps) when

allowing for fluctuations respectively in the first and first 10, 30, and 100 ranks. In the latter,

case, persistence is of the same order as the Lyapunov time (Λ−1
1 ). These average temporal

durations translate into average rectified distances of co-evolution of about 2, 5, 10 and 19.

These figures are larger by a factor O(102) than the corresponding average distances between

the chaotic trajectory and the shadowing UPOs, thus reinforcing our claim that the shadowing

is accurate and persistent.

3.1.6 Longer Period UPOs Shadow the Trajectory for a Longer

Time

We define the shadowing time of a UPO as the total amount of time that the UPO spends

shadowing the chaotic trajectory. More precisely, if the UPO Uk is selected as shadowing

orbit tk times, its shadowing time will be rk = tk ∗ dt . This quantity is a good indicator
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for the absolute shadowing time, but it does not take into account the length of the UPO.

Longer period UPOs correspond to a longer trajectory in phase space. We then introduce the

occupancy ratio for the UPO Uk, defined as ok =
tk

Tk/dt
with Tk being the period of the UPO. In

this way we are able to measure the shadowing time normalised over the period of the UPO.

An occupancy ratio much larger than one indicates that it is likely that a large portion of the

UPO has shadowed the trajectory at least once.

One could interpret the trace formula given in Eq. (2.37) as suggesting that on the average

low period orbits should dominate in terms of shadowing a chaotic trajectory, because the

statistical weight of long period orbits is exponentially suppressed. Instead, as shown in Fig.

3.8, the shadowing time increases with the period of the UPOs, while the occupancy ratio

remains the same. This means that, by and large, all the UPOs are selected to shadow the

chaotic trajectory with the same weighting, independently of their period. We thus found

evidence that the occupancy is approximately independent of the UPO period and, since the

number of periodic orbits grows exponentially with the period (see Fig. 3.4), longer orbits

overall dominate, as shown in Fig. 3.9. In order to assess the robustness of our results, we

have studied the shadowing orbits in the first K ranks, with the goal of testing whether even

allowing for a looser definition of shadowing UPOs, the role of longer orbits remains consistently

dominant. In this context, we are interested in average quantities over all ranks. Namely, we

define the average occupancy ratio at time t as

ōt =
1

K

K∑
k=1

ok (3.4)

where ok is the occupancy ratio of the UPO that shadows the trajectory at time t in rank k.

Similarly we define the average period and average shadowing time at time t. As mentioned

above, a given UPO might appear in different ranks at different times.

The robustness of the analysis is confirmed when reproducing the statistics presented in Fig. 3.8

with K shadowing UPOs. Allowing for more shadowing UPOs does not affect the correlation
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Figure 3.8: Average shadowing time (panel (a)) and occupancy ratio (panel (b)) of the first
rank (dashed black line) and averaged over first 10 (dashed red), 30 (dashed and dotted orange
line) and 100 (dotted yellow line) ranks for UPOs of period T. The bars indicate the range
between the percentiles 2.5 and 97.5 for each value of T.
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Figure 3.9: Cumulative fraction of the shadowing time performed by UPOs having larger and
larger period.

found in the previous section when considering average quantities. Note that the numbers

reported in Figs. 3.8a,b scale proportionally to Tmax.

These findings, which seem at odds with what the trace formula seems to indicate, support the

idea that long period orbits play an important role for computing ensemble averages [138, 139,

140].
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3.2 Transitions

In this section we use UPOs as a tool to investigate the mixing properties of the system. The

ranked shadowing will be used to define the Markov process that describes the sequence of

transitions between neighbourhoods of UPOs that defines the time evolution of the chaotic

trajectory.

3.2.1 Extracting a Markov Chain from the Dynamics

In section 2.1.5 we defined the transfer operator and presented a classical method to consider

a discretised version. (See [141, ?] for recent applications on the L63 model.)

We propose here a different way to discretise the dynamics of the system. Similarly to what

done in [112], we select M numerical UPOs U1, ..., UM and we associate the states A1, ..., AM

obtained by considering the UPOs together with their neighbourhoods. Each Ai represents one

of the possible discrete states of the system. We implement the shadowing algorithm: at each

time step t the UPO Uk that minimises the distance with the chaotic trajectory is selected

(See section 3.1.5 for more details on the algorithm). Hence we say that the system is in the

state Ak at time t. The stochastic variable s : {1, ..., Nmax} ⊂ N → A describes the shadowing

process just outlined as follows:

s(t) = Ak (3.5)

with Ak being the shadowing UPO at time t and corresponding neighbourhood. We then

construct the stochastic matrix as

P dt
i,j ≈

#{k : (s(k) = Aj) ∧ (s(k + dt) = Ai)}
Nchaotic

(3.6)
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where # defines the cardinality of the set and ∧ is logical and. The element P dt
i,j so defined

represents the probability of transitioning from state j to state i, calculated by counting the

number of transitions happening from state j to state i and normalising over the total number

of transitions (in this case such number is given by number of points of the discretised chaotic

trajectory).

We now numerically derive the matrix P dt following the procedure outlined above, by con-

sidering the shadowing of a chaotic trajectory with length Tmax = 105 with the full set of

M = 2536 UPOs. We use the spectrum of the stochastic matrix P dt to study the mixing

properties of the system. P dt is a stochastic matrix by construction, its first eigenvalues

are λ1 = 1, λ2 = 0.9841, λ3 = 0.9806, λ4 = 0.9706 and the corresponding decay rates are

τ2 = 0.6239, τ3 = 0.5104, τ4 = 0.3351. We also verified that there exists a value N̂ so that

P N̂
i,j ̸= 0 ∀ i, j, implying that the process is ergodic. Additionally, we tested the markovianity

of the process by verifying that the stocastic matrix P ndt defining the scattering sampled every

n > 1 time steps of the chaotic trajectory between the neighbourhoods of the various UPOs has

very similar dominant eigenvectors as those of P dt, while the corresponding eigenvalues scale,

with a good approximation, with the nth power, as expected.

3.2.2 Quasi invariant sets

We here introduce some key ideas regarding the macroscopic structures and large scale dynamics

of the system. When the behaviour of individual trajectory is hard to predict, as it is the case in

chaotic systems, the study of the global evolution of densities represents a powerful tool to gain

insight into the dynamics. In fact, even if it is not possible to characterise the evolution of a

single initial condition, it often happens that we can group the phase space in sets characterised

by predictable behaviour. Despite chaotic systems are often transitive, this property can be

very weak and it is often the case that the phase space can be decomposed in macroscopic

dynamical structure such that the probability of individual trajectories beginning in the subset

would leave it in short time is very little. Trajectories tend to stay for a very long time in
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one of those regions before entering another region. We call these subsets quasi-invariant sets.

More precisely, [142] let F : Ω ∈ Rd :→ Rd be a smooth vector field, generating the dynamical

system or flow {Φt}t∈R, Φt : Ω → Ω be the flow of the autonomous system, µ preserved by Φ.

We say that a subset A ⊂ Ω is almost-invariant over the interval [0, τ ] if

ρµ,τ :=
µ(A ∩ Φ−τ (A))

µ(A)
≈ 1 (3.7)

in fact ρµ,τ measures the percentage of mass that does not escape the set A within the time

interval [0, τ ] (µ(A ∩ Φ−τ (A)) is the amount of mass still in A after having considered a time

evolution within [0, τ ]).

Quasi-invariant sets can also be regarded as a valuable tool to study transport and mixing

properties of the flow [143], by evolving with minimal dispersion.

Quasi-Invariant Sets and UPOs

We wish to attempt an interpretation of the eigenvectors of P dt corresponding to the subdom-

inant eigenvalues. Let w(k) be the eigenvector associated with λk, k ≥ 2. This allows us to

define two sets B1 and B2:

B1 =
⋃
i∈I1

Ai where I1 = {i : ς(w(k)
i ) = 1} (3.8)

B2 =
⋃
i∈I2

Ai where I2 = {i : ς(w(k)
i ) = −1} (3.9)

where ς(w
(k)
i ) = sign(w

(k)
i ). The sets B1 and B2 corresponding to the eigenvectors w(k), k =

2, 3, 4 are presented in Figure 3.10. We propose that regions characterised by the same colour

(red and blue in our figures) are associated with separate groups, bundles of UPOs. As we

will see below, for each eigenvector, the red (blue) regions describe parts of the attractors
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with positive (negative) anomalies of the density with respect to the invariant one. Such

regions correspond to the distributions that will converge onto the invariant one at a time-

scale given by τk. We can think of the forward trajectory undergoing transitions between the

neighbourhood of the UPOs belonging to a bundle, and being repelled with low probability

towards the neighbourhood of an UPO belong to the other bundle. The closer to one the real

part of an eigenvalue, the less efficient is the exchange between regions of different colours in the

corresponding mode. More precisely, the subdominant eigenvectors w(k) provide an ordering of

the quasi-invariant structures in terms of ”leakiness”.

Keeping in mind that each individual UPO is an actual invariant set and provides an exact

solution of the evolution equations, we propose that our method defines structures that are

closely related to the so-called quasi-invariant sets [144, 145, 113, 146, 51]. In particular, the

red and blue regions in Figs. 3.10a, 3.10b, and 3.10c closely resemble the structures defined

by the first three Fiedler vectors defining the connectivity of the graph describing the mass

transport of the L63 model (Figs. 5a,b and 6 in [46]).

3.2.3 Relaxation Modes

The red-and-blue representation of the subdominant modes given in Figs. 3.10a-3.10c is essen-

tially qualitative because we distinguish the various UPOs only in terms of the sign of their

projection on the eigenvectors. We want now to portray the eigenmodes in R3, in such a way

that it is possible to retain quantitative information associated to the evolution of ensembles

of trajectories. We proceed as follows. We partition the compact subset of R3 given by the

Cartesian product P = [−20, 20]× [−27.5, 27, 5]× [1, 48]. As mentioned before, this set includes

the attractor of the L63 model. We cover this region with 103400 cubes D = {Di}103400i=1 with

sides having unitary length. The cubes are built having adjacent sides, so that D constitutes

a partition of P . Each UPO and corresponding neighbourhood intersects a certain number of

cubes and each cube might contain contributions from different orbits. We now define a quan-

tity (mass) that weights the contribution given by UPOs of different types within each cube.

We set a fixed number of points N̄ to be represented in the phase space a priori and assign
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(a) (b)

(c)

Figure 3.10: Quasi-invariant bundles of UPOs obtained with the method outlined in Section
3.2.2. (a): λ2 = 0.9841, τ2 = 0.6239; (b): λ3 = 0.9806, τ3 = 0.5104; (c): λ4 = 0.9706,
τ4 = 0.3351.
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the points to the different UPOs and relative neighbourhood depending on the weight given

by the corresponding component of the eigenvector w(k). These points are chosen along the

orbits equally spaced in time. We also distinguish between negative and positive contributions,

depending on the sign of the component w
(k)
i . We finally quantify the mass contained in each

cube Di of the partition by calculating the algebric sum of the points contained in it.

Correspondingly, Fig. 3.11a describes the invariant measure, while Figs. 3.11b, 3.11c, and 3.11d

describe the eigenvectors corresponding to the subdominant eigenvalues λ2, λ3, and λ4, respec-

tively. The eigenvectors w(2), w(3), and w(4) are the three slowest modes responsible for the

relaxation of an initial probability measure towards the invariant one, the rate of convergence

being given by the corresponding eigenvalues. By construction, one can see a good correspon-

dence between the red and blue regions in the panels of Figs. 3.10 and 3.11 associated with the

same eigenvalue. Indeed, the physical process responsible for the slow decay of anomalies of an

ensemble with respect to the invariant measure described in Fig. 3.11 is indeed the slow mixing

occurring in phase space between the regions described by the quasi-invariant sets associated

with different bundles of UPOs depicted in Fig. 3.10.

3.2.4 Robustness of quasi-invariant sets

The reader might wonder how robust the results presented in Figs. 3.10a-3.10c and Figs. 3.11a-

3.11d with respect to the shadowing criteria defined in Eq. 3.3, which takes into consideration

only rank 1 shadowing UPOs. To assess the robustness of the method, we have repeated our

analysis using the looser definition of shadowing described in Sect. 3.1.5 that leads to increased

persistence of the co-evolution of the chaotic trajectory and of the shadowing UPOs described

in Fig. 3.7b. The results are presented in the appendix. The subdominant eigenvectors

change very little as larger values of K are considered, whereas, as expected the value of the

corresponding eigenvalues get closer and closer to 1, so that slower decay of correlation is found.

Clearly, this is the probabilistic counterpart of the results shown in Fig. 3.7b and supports the

idea expected, since allowing for more persistence in the shadowing of the chaotic trajectory

results in less frequent transitions and thus slower decay rates.
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(a) (b)

(c) (d)

Figure 3.11: Invariant Measure of the system obtained by projection of w(1) (a). Projection in
the phase space of (b): w(2) (λ2 = 0.9841), (c): w(3) (λ3 = 0.9806), (d): w(4) (λ4 = 0.9706).



68 Chapter 3. Averages, transitions and quasi-invariant sets

3.3 Summary

The theory of UPOs has found extensive applications in the study of low-dimensional chaotic

systems, in particular as a mean to calculate dynamical averages through the use of trace

formulas [81, 121, 6]. In recent times promising developments have been made regarding its use

for understanding the behaviour of higher dimension dynamical systems [7, 83, 84, 14, 2, 10].

Very recently, efforts has been dedicated to better understanding the similarity of chaotic

trajectory segments and of locally approximating UPOs in fluid flows [8, 87]. It usually assumed

that the low-period UPOs are the most relevant ones for achieving an accurate representation

of statistical properties of the system [81, 147, 80, 148, 149]. Nonetheless, even if the trace

formulas [3] seem to suggest the opposite, it is sometimes found that long-period UPOs can

be of great importance for computing statistical averages [138, 139, 140]. Additionally, UPOs

have been used as a way to perform coarse-graining: it has been shown that it is possible to

approximate accurately the evolution of a fluid flow using a finite-state Markov chain where

each state corresponds to the neighborhood of a UPOs [112]. Finally, specific UPOs have been

shown to key to separating quasi-invariant sets for the L63 model [142].

In this chapter we have attempted to bring together these research lines by performing an

accurate analysis of how a long chaotic trajectory of the L63 model with the standard parameter

values can be approximated using the complete set of UPOs having symbolic dynamics with

period up to 14, numbering 2536 UPOs. The chaotic trajectory can be seen as a continuous

process of scattering between the neighbourhood of the various UPOs. At each time step, we

rank the UPOs in terms of their distance to reference point, and investigate how the distances

and the ranking changes in time. The shadowing of the trajectory involves both proximity and

the fact that, as a result of the smoothness of the flow, the reference point of the trajectory

and of the considered UPOs co-evolve; indeed we can say that the rectified distance of the

co-evolving UPO with the trajectory is of order of magnitude larger than the initial distance

between the two. We find that longer UPOs, as a result of their higher number and longer

spatial extent, are the most effective in shadowing the orbit of the system. This holds true if

we consider a relaxed version of our algorithm, which allow for the rank of the shadowing UPO
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to fluctuate up to a certain threshold (very good vs. optimal shadowing).

We then investigated a finite-state representation of the dynamics where each state is given

by an UPO and its neighbourhood, and the stochastic matrix is defined in a frequentist way

by studying the transitions defining the time-dependent shadowing of the chaotic trajectory.

Since we are implementing a discretized representation of the transfer operator, the eigenvectors

corresponding to the subdominant eigenvalues describe the process of relaxation of ensembles

towards the invariant measure. In particular, they are instrumental in defining sets correspond-

ing to positive and negative anomalies with respect to the invariant measure that describe how

mass decays to the invariant measure at different decay rates. While a similar UPOs-based

Markov chain model has been recently proposed by [112] with the goal of computing averages,

to the best of our knowledge, this is the first time this specific discretization is performed with

the purpose of analysing the mixing properties of the system. In addiction, building on the

fact that UPOs are invariant sets that transport mass across the attractor, the regions of the

eigenvectors having the same sign can be thought as approximately defining quasi-invariant

sets. Indeed, the patterns defined in this way exhibit qualitative agreement with the structures

found in the L63 model by Froyland and Froyland and Padberg in [46] and [142] using the

discretization of the transfer operator based on the classical Ulam’s partition. We interpret our

findings as follows. The forward trajectory typically undergoes scattering between UPOs be-

longing to a bundle of UPOs associated with a quasi-invariant set, while, rarely, the scattering

process bring the trajectory with close proximity of an UPO belonging to the other bundle,

associated with a competing quasi-invariant set. Such process is qualitatively depicted in fig.

3.12: the forward trajectory (not represented) jumps with a high frequency between UPOs

of the red type (each segment in red is the shadowing segment of a different UPO) and it is

repelled with a very low probability to UPOs belonging to the competing blue bundle.

Clearly, further research is needed in this direction in order to assess differences and similarities

between these approaches. Our procedure seems to have a good degree of robustness. It is

encouraging to see that if we construct the stochastic matrix using the relaxed definition of the

shadowing mentioned above, the eigenvectors corresponding to the subdominant eigenvalues

are virtually unchanged, whereas the decay rates become slower, as persistence is enhanced by
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Figure 3.12: Qualitative figure representing the interpretation of our results: regions with the
same colours are associated with separate bundles of UPO, each one identifying a quasi-invariant
set (light red and blue region). The forward trajectory (not represented) scatters with a high
frequency between UPOs of the same bundles and it is repelled with very low probability to
UPOs belonging to the other bundle (solid blue and red lines are different segments of UPOs).

slowing down the transitions between the competing neighbourhoods.



Chapter 4

Explaining the heterogeneity of the

attractor in terms of UPOs

In chapter 3 we have studied the classical version of the 3-dimensional (3D) Lorenz 1963 model

[25] using a rather extensive set of UPOs, following [125], and covering up to period 14 in

symbolic dynamics. We have been able to accurately investigate the process of shadowing and

elucidate how the statistics of occupation of individual UPOs and of their respective neigh-

bourhood and the transitions between them can be used to construct a finite-state Markov

chain representing the statistical and dynamical properties of the system, including its almost-

invariant sets [143]. The attractor of the L63 model is extremely heterogeneous in terms of

predictability, and features specific regions where return of skill is observed [150]. We have seen

that the detected UPOs do differ in terms of their dynamical characteristics, and specifically in

the value of the first LE (see Fig. 3.5), thus providing a global counterpart of the heterogeneity

of the properties of the tangent space. Nonetheless, considering a 3D chaotic flow imposes that

all UPOs feature one positive, one negative, and one vanishing LE. Hence, if we want to inves-

tigate the heterogeneity of the attractor of a chaotic flow and possibly relate it to the presence

of variability in the number of unstable directions, one needs to consider a higher dimensional

system.

In this chapter we would like to characterise and explain the heterogeneity of the attractor of

71
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the Lorenz ’96 (L96) [58] model by combining the information derived from the analysis of an

extensive set of UPOs and from Lyapunov analysis. As we will discuss below, the L96 model

exhibits a rather rich dynamics: depending on the level of forcing, the model features regular,

quasi-periodic, or chaotic dynamics, up to the case for extensive chaos. Our goal is to:

• explore whether we can detect the property of variability in the number of unstable

dimensions, which, in turn, allows us to rule out hyperbolicity. In fact, very interestingly,

the investigation of the UPOs of a chaotic system allows one also to identify violations

of hyperbolicity in a relatively simple manner. Indeed, if one detects e.g. two UPOs

immersed in the attractor of the system that feature a different number of positive LEs,

hyperbolicity is broken through the mechanism of so-called unstable dimensions variability

(UDV), which establishes the presence of a fundamental heterogeneity in the attractor of

the system and hinders the shadowing property, i.e. the existence of an actual trajectory

of the systems that stays uniformly close to a numerical one for long time intervals [12].

UDV is typically associated with the presence of large fluctuations of certain FTLEs

between positive and negative values [13, 151, 11] and more will be discussed in later

sections.

• bridge the gap between global and local properties of the system. We will investigate

whether anomalously unstable UPOs preferentially populate regions of the attractor

where, applying Lyapunov analysis to the tangent space, one gets, anomalously high

instability indicators.

Heterogeneity of the Attractor in Geophysical Fluids The study of the tangent space

is a key aspect of the science and technology related to geophysical fluids [152, 153]. In this

context, it is well known that the predictability of a system, far from being in any sense uniform,

is dramatically state-dependent: certain regions of the attractor feature larger instability than

others [154, 155], and this has great impact on data assimilation strategies [156, 157], since it

is very hard to define an estimate for the growth of the error along the unstable manifold. In

turn, the skill of data assimilation exercises can be used to infer the instability of the underlying
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system [158]. The state-dependent predictability results into substantial fluctuations in the

value of the FTLEs and in the number of positive FTLEs [159], which is clearly indicative of a

violation of the condition hyperbolicity and is associated with the UDV mentioned above [14].

The UDV can be particularly problematic for the efficiency of otherwise very powerful data

assimilation schemes [158]. A separate yet extremely important issue that hinders framing the

dynamics of geophysical flows in the context of uniform hyperbolicty emerges when one takes

into account the whole coupled atmosphere-ocean system. In this case, the large time scale

separation between the two geophysical fluids leads to the presence of a non-trivial central

manifold, so that the previously mentioned notion of nonuniform partial hyperbolicity becomes

relevant [160]. The presence of multiple near-neutral directions, has important consequences for

the production of reliable forecasts [161] and for the construction of data assimilation systems

for the whole climate [162, 163].

The chapter is structured as follows. Section 4.1 provides a description of the L96 model and

of some of its basic properties in the configuration chosen for this study. In Section 4.2 we

present the database of detected UPOs and discuss their accuracy in reproducing the dynamics

of the system. In Section 4.3 we supplement the UPOs-based analysis with the Lyapunov

analysis. In Section 4.4 we discuss the main results of our study and present perspectives of

future investigations.

4.1 The Lorenz ’96 Model

The L96 model, while not corresponding to a truncated version of any known fluid dynami-

cal system, was developed as a prototype for the midlatitude atmosphere, with the scope of

investigating problems of predictability in weather forecasting [58, 164].

Each variable of the model corresponds to an atmospheric quantity of interest at a discrete

location on a periodic lattice (Fig. 4.1), representing a latitude circle on the sphere. The vari-

ables are spatially coupled, and their equation of motion include nonlinear (quadratic) terms to

simulate advection, linear terms representing dissipation and constant terms representing ex-
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Figure 4.1: Variables of the Lorenz-96 model distributed on a periodic lattice.

ternal forcing. While the model only shares only such basic characteristics with more complete

geophysical fluid dynamical models, it has emerged as an important testbed for different ap-

plications, including the study of bifurcations [165, 166], of parametrizations [167, 168, 169], of

data-driven and machine learning techniques, [170, 171, 172], of extreme events [173, 174, 175],

of data assimilation schemes [176, 177], and of ensemble forecasting techniques [178, 179], to

develop new tools for investigating predictability [180, 181], and for addressing basic issues in

mechanics and statistical mechanics [182, 183, 184, 185, 186]. The evolution equations of the

model are:

Ẋj = (Xj+1 −Xj−2)Xj−1 −Xj + F, (4.1)

where

X−1 = XM−1, X0 = XM , XM+1 = X1. (4.2)

impose the periodicity conditions and F ∈ R+ is a constant forcing. The two free parameters

of the model are M and F . For large values of F and M the model exhibits extensive chaos

[185]. We have considered M = 20 and F = 5 (More details on this choice can be found

in the Appendix). In all the simulations the model is integrated with a Runge-Kutta second

order scheme with fixed time step dt = 0.01. The choice of this (suboptimal but sufficiently

accurate) integrator is motivated by the UPOs detecting algorithm used. For such choice of

the parameters the model is well within the chaotic regime. It features four positive LEs with

the leading one being λ1 ≈ 0.54 (Fig. 4.2). The characteristic Lyapunov time of the system is
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then τ1 = 1/λ1 ≈ 1.85, the Kolmogorov-Sinai entropy can be approximated as
∑

i≥0 λi ≈ 1.23

and the Kaplan-Yorke dimension of the attractor is 9.25. The diameter of the attractor is
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Figure 4.2: Global Lyapunov exponents of the system. The red dot indicates the LE with value
zero corresponding to the direction of the flow. There are 4 positive LE and 15 negative LE.

approximately 25, with point-to-point distances distributed as shown in Fig 4.3. The relatively

high dimensionality of the attractor is apparent from the very low prevalence of nearby points

[187]. The mean speed over the attractor is ≈ 38, meaning that on average the trajectory spans

a distance of 0.38 for a time-step of dt = 0.01.
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Figure 4.3: Distribution of the typical distances over the attractor
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4.2 Unstable Periodic Orbits Analysis

4.2.1 Database of Unstable Periodic Orbits

We mentioned in Section 2.3.2 that the numerical extraction of UPOs from a chaotic model

represents one of the greatest challenges in the application of periodic orbit theory [124, 188, 83].

For the Lorenz 96 model it is worth noticing that the equations are symmetric with respect to

a cyclic permutation of the variables, so that each time an orbit is detected, the other 19 can be

automatically obtained by simply considering all the possible cyclic permutations of variables.

Andrey Gritsun constructed a database of 15019 fundamental UPOs (i.e. none of these orbits

can be obtained from another orbit of the database through cyclic symmetry) immersed in the

attractor with period ranging from a minimum of ≈ 1.5 (≈ 0.8/λ1) to a maximum of ≈ 22.8

(≈ 12.3/λ1), and lengths ranging from ≈ 2 to ≈ 35 diameters of the attractor (Fig. 4.4).
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Figure 4.4: Distribution of the periods of the UPOs of the complete database.

In a chaotic system one expects to find that the number of UPOs with prime period smaller or

equal than T grows as ∝ exp(htopT ), where htop is the topological entropy [1]. As opposed to

the study presented in chapter 3, it is clear that our set of UPOs is far from being complete,

as longer-period orbits are clearly underrepresented. The difficulty in computing long-period

UPOs has been widely discussed in the literature [98, 1, 83]. Nonetheless, we will see that such

a set can still provide valuable information on the properties on the L96 model.

Figure 4.5 shows that the UPOs of the database are characterised by vastly different instabilities
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Figure 4.5: Heterogeneity of the instability properties of the UPOs of the database. Panel
(a): Distribution of the number of positive Lyapunov exponents of the UPOs. Panel (b):
Distribution of the KS entropy of the UPOs. Panel (c): Distribution of λ1 across the UPOs of
the database.
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properties, which provide a clear evidence of the heterogeneity of the attractor of the L96 model.

The number of unstable dimensions, given by the number of positive LEs of each UPOs, varies

from 2 to 9 across all the UPOs: this indicates a very serious violation of hyperbolicity via

UDV [12, 13, 151, 11, 14]. The Kolmogorov-Sinai entropy varies between ≈ 0.5 and ≈ 10.0

and the first LE varies between ≈ 0.3 and ≈ 1.8. In the following sections we will provide an

interpretation of such behaviour in terms of the behaviour of specific FTLEs of the system.

4.2.2 Ranked shadowing of the chaotic trajectory

In section 3.1.4 we introduced the mechanism of shadowing and discussed its relevance as a

tool to explore the geometry of the attractor in terms of UPOs. We mentioned the importance

of testing both co-evolution and proximity and verified for the L63 model that our database

of UPOs did a very good job in shadowing the trajectory. In this numerical investigation we

again consider the so-called ”rank shadowing” as defined in 3.1.5. We will refer to both the

stricter definition of ranked shadowing given in (3.3), and the looser definition, that prioritises

persistence over distance, by allowing for fluctuations in the first K = 10, 100, 1000 ranks, in

the selection process (See 3.1.4 for more details).

We present here the results on how the UPOs of the database rank shadow a long chaotic

trajectory. The data refers to a chaotic trajectory of length Tmax = 104 and an output time-

step dt = 0.01, motivated by the fact that such time-scale is the maximal that allows to observe

persistence in the shadowing, realising a trade-off between computational cost and necessity of

observing the phenomena. In the implementation of the algorithm we considered all available

periodic orbits, but only around 26% was selected in the shadowing of the chaotic trajectory for

the first rank, with many instances of orbits shadowing in more than one point the trajectory.

When we instead considered the UPOs that shadows the trajectory at least once in the first

M = 10, 100, 1000 ranks, the cardinality of such set naturally increased to 79%, 99.6% and 99.9%

respectively of the complete database. The distribution of periods and stability properties of the

shadowing orbits are presented in Fig. 4.6 and Fig. 4.7 respectively. In the following paragraph

we will show that the quality of the shadowing is almost indistinguishable with respect to the
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choice of M , proving the robustness of the shadowing process with the chosen time-step and

database of UPOs.
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Figure 4.6: Distribution of the periods of the shadowing UPOs that shadows the trajectory at
least once in the first M = 1, 10, 100, 1000 ranks.

Distances In order to assess the quality of the shadowing, we first look at the distribution

of the distances of the shadowing UPOs from the chaotic trajectory. We can see that when

selecting further ranks, by definition, the support of the distribution shifts to the right (Fig.

4.8a), since we are considering UPOs increasingly far from the chaotic trajectory. However, if we

use the looser definition of ranked shadowing, all the orbits are significantly close to the chaotic

trajectory (Fig. 4.8b), with distances ranging from 0.27 to 7.97. Regardless of the choice of K,

the quality of the shadowing is rather good, see Table 4.1; One notices that the quality of the

shadowing is extremely similar for K = 1 and K = 10: the 95% quantile of shadowing distances

is approximately 2.99 and 3.21, which is well within the 0.5% quantile of the typical distances

distribution over the attractor (See Fig. 4.3). The fact that such distances can be achieved with

a very small probability means that if we consider the evolution of a generic chaotic trajectory

we will have to wait a very long time before being able to observe the trajectory achieving such

distances at time t with the initial condition.

Co-evolution We now investigate the co-evolution criteria. In fact, in order to assess the

significance of the shadowing it is crucial to check whether the trajectory and the shadowing

orbit co-evolve for a satisfactory period of time. Assessing co-evolution is instrumental for
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Figure 4.7: Heterogeneity of the instability properties of the shadowing UPOs. Each distribu-
tion represent the properties of the UPOs that shadows the trajectory at least once in the first
M = 1, 10, 100, 1000 ranks and the complete database. Panel (a): Distribution of the number
of positive Lyapunov exponents of the orbits. Panel (b): Distribution of the KS entropy of the
UPOs. Panel (c): Distribution of λ1 across the UPOs of the database.

K 1 10 100 1000
95th percentile 2.99 3.21 3.76 4.64
meandist 1.81 1.96 2.26 2.70
P%(d < meandist) 0.09 0.10 0.12 0.14
5th percentile 0.87 0.95 1.05 1.17

Table 4.1: Distances of the shadowing orbits from the chaotic trajectory. We present data for
both shadowing orbits of the first rank and for K = 10, 100, 1000.
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Figure 4.8: Panel (a): Probability distribution function for the distance of the first rank orbits
(black solid line, mean distance 1.81), rank 10 orbits (red dashed line, mean distance 2.42), rank
100 orbits (dashed and dotted orange line, mean distance 3.20), rank 1000 orbits (dotted yellow
line, mean distance 4.30). Panel (b): Distribution of the distances from the chaotic trajectory
when considering the looser definition of shadowing orbits that allows for fluctuations within
the first K=10 ranks (red dashed line, mean distance 1.96), rank 100 orbits (dashed and dotted
orange line, mean distance 2.26), rank 1000 orbits (dotted yellow line, mean distance 2.7) and
again first rank orbits (black solid line, mean distance 1.81).
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constructing a framework that allows an accurate statistical and dynamical description of the

chaotic flow [87]. In general, as one might expect, shadowing persistence is negatively correlated

with the stability of the orbit. More unstable UPOs will shadow the chaotic trajectory for a

shorter time (In particular the correlation between shadowing time and KS entropy of the

shadowing UPO is −0.3 for K = 1000, −0.23 for K = 100, −0.26 for K = 10 and −0.13 for

K = 1).

Figure 4.9 shows the distribution of the mean persistence of the shadowing UPOs when consider-

ing the strict (rank 1, in black) and the looser definition of shadowing, withK ∈ {10, 100, 1000}.

The mean persistence, by definition, increases with K as we are using looser and looser criteria

for defining it. In particular, the mean persistence is 0.22, 0.54, 1.04 and 1.69 (22, 54, 100 and

170 time steps), that corresponds to an average rectified distance of about 8, 20, 38 and 63

which, compared to both the size and typical distances over the attractor (Fig. 4.3) and the

average distance between the chaotic trajectory and the shadowing UPOs (Fig. 4.8) confirms

that the shadowing is persistent and there is evidence of co-evolution.
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Figure 4.9: Probability distribution function of the log-persistence of the rank 1 orbits (solid
black line; mean persistence = 0.22), and the shadowing orbits with the looser definition with
K = 10 orbits (dashed red line, mean persistence 0.54), K = 100 (dashed and dotted orange
line, mean persistence 1.04) and K = 1000 (dotted yellow line, mean persistence 1.69).



4.3. Local Properties of the Tangent Space 83

4.3 Local Properties of the Tangent Space

4.3.1 Lyapunov analysis to detect UDV

In [13, 151, 11] it was shown how the UDV could be explained in terms of the presence of

fluctuations of one specific FTLE (the one corresponding to the LEs with smallest absolute

value) computed over a time scale τ between positive and negative values also when considering

very large values of τ . The presence of changeovers between the sign of the FTLE over such

long time scales was proposed as evidence of the trajectory following closely UPOs having

different number of unstable dimensions. As mentioned earlier, in the system of interest here

the UDV involves fluctuations between 2 and 9 of the number of unstable dimensions, hence

one could expect to find that several FTLEs feature large fluctuations between positive and

negative values, because the UDV manifest itself as a large change in the number of unstable

dimensions. This is indeed confirmed by our data.

Figure 4.10a portrays the dependence of the ratio between the value of the jth LE and the

the standard deviation of the distribution of the jth FTLEs computed over a time-scale τ as a

function of τ . We show results for the first 10 LEs, ordered from the largest to the smallest.

Note that the 5th LE is the vanishing one and corresponds to the direction of the flow. The

presence of a vanishing LE is generally true for every continuous dynamical system with a

bounded non-fixed point dynamics since the separations in the direction of time neither shrink

nor grow on average, as a result of the flow being bounded. It is apparent that such ratio is

smaller than 3 for all the 10 considered LEs for τ up to 5. Note that for sufficiently large values

of τ , the distribution of all the FTLEs corresponding to nonzero LEs converges to a Gaussian

with variance ∝ 1/τ , in agreement with previous studies [189, 190, 159]. A different scaling

is found for the FTLE corresponding to the vanishing LE. Nonetheless, even considering very

long averaging times, the support of the pdf of more than one FTLEs includes zero. Excluding

the vanishing LE, this applies to 5 FTLEs for τ = 10τ1, which is already much longer than the

period of the longest detected UPO), see Fig. 4.10b. Clearly, the number of FTLEs fluctuating

about zero decreases as one consider larger values for τ . Nonetheless one finds four of such
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FTLEs when τ = 30τ1 (Fig. 4.10c), and still two for the ultralong averaging time τ = 100τ1

(Fig. 4.10d). The fluctuations about zero of the 6th FTLE persist even for much longer aver-

aging times.

Figure 4.11 provides further support regarding how heterogeneous the attractor is in terms of

instability. Panel 4.11b shows that the sum of the FTLEs corresponding to the four largest

LE - this provides the finite-time estimate of the Kolmogorov-Sinai entropy - have very large

fluctuations, and the distribution has support extending to negative values up to averaging

times of about τ = 3τ1. We also see - Panel 4.11c - that the largest (ordered) FTLEs can

have negative values for averaging times up to τ = 3τ1. This implies that the system features

(temporary) return of skill for a substantial amount of time, during which the largest singular

value of the tangent linear operator is smaller than one. Note that the distribution of the largest

FTLE differs from the one of the first FTLE - see Panel 4.11a. Finally, Panel 4.11d shows the

distribution of the number of positive FTLEs. Note that we have removed from the count the

direction of the flow, whose corresponding FTLE obviously fluctuates between small positive

and small negative values. We observe that the number of positive FTLEs, in agreement with

what shown in Fig.4.10 has very large fluctuations even for very long averaging times τ .

4.3.2 UDV explained in terms of UPOs

In this section we wish to provide an interpretation of the variability observed in the previous

paragraph in terms of UPOs. Our intuition is that the local stability properties of the tangent

space, measured in terms of the values of the FTLEs, are somehow encoded in neighbouring

UPOs populating that same region of the attractor. In order to explore this correlation we will

use the tool offered by the rank shadowing process, that provides an effective instrument to

relate local properties of the chaotic trajectory with the shadowing UPOs. It is important to

keep in mind that UPOs are large-scale structures in the phase space of the system and have a

very long period compared to the typical shadowing times. Hence, we are comparing local and

global properties of the system.
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Figure 4.10: Evidence of large fluctuations about zero of several FTLEs. Panel (a): Ratio
between the LEs and the standard deviation of the corresponding FTLEs computed over τ .
The color level are separated in units of two. The red line indicates the isoline with value
3. Panel (b): Distribution of the first 10 FTLEs with averaging time τ = 10τ1. Thick lines
correspond to pdfs whose support include zero. Panel (c): Same as (b), with τ = 30τ1. Panel
(d): Same as (b), with τ = 100τ1. The 5th LE is the vanishing one and corresponds to the
direction of the flow.
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(a) (b)

(c) (d)

Figure 4.11: Evidence of heterogeneity of the tangent space. Panel (a): Distribution of the
first FTLEs for different averaging times τ . Panel (b): Distribution of the sum of the first four
FTLEs for different averaging times τ . Panel (c): Same as (a), for the largest FTLE. Panel
(d): Distribution of the number of positive FTLEs for different averaging times τ .
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K 1 10 100 1000
λτ
max 22 26 32 38

λτ
1 13 16 20 25

KSτ
+ 33 38 45 53

KSτ 24 27 35 42

Table 4.2: Temporal correlation between the local properties of the chaotic trajectory and
relative shadowing UPOs (expressed in %). We calculated such correlations for different values
ofK, between the local maximal Lyapunov exponent (and first lyapunov exponent respectively)
and first Lyapunov exponent of the shadowing, local KS entropy (and sum of the positive local
FTLE respectively) and KS entropy of the UPO.

We proceed as follows. With reference to the notation and framework defined in section 4.8,

let’s suppose that at time tk the chaotic trajectory is being shadowed by the UPO Uk for a

period of time τk, before being approximated by another UPO Uh at time th = tk + τk. We

then have a sequence of shadowing orbits Uk, each one associated to a specify persistence

time τk. For each Uk we calculate the spectrum of the FTLEs of the chaotic trajectory at

time tk for the shadowing interval τk, and investigate the correlation with the relative LEs

and instability properties of the shadowing UPO UK . Please note that each orbit might be

considered more than once when looking at the correlations. Note also that the values of the

time intervals τk can change substantially along the trajectory, hence the various considered

FTLEs are fundamentally non homogeneous.

The results are presented in table 4.2. We can see that the correlation between the first LE

λ1 of the shadowing UPOs and the corresponding first FTLE λτ
1 is already satisfactory at the

value of 14% when considering the orbits shadowing the trajectory in the first tier. We in fact

compare such values to a baseline value of correlations between the same dynamical quantities

when considering no particular ordering and find that they settle at around 0.5%.

We need to remember that we are comparing two very different objects: a local property

with a global structure. The correlation becomes even stronger when we look at the value

of the Kolmogorov-Sinai KSτ entropy and its local correspondent KSτ
+, that assume values

25% and 34% respectively for the orbits of the first tier. If we consider larger values of K

this increases even more, arriving at 27% for λτ
1 and 44% and 53% for KSτ and KSτ

+ in

the case K = 1000. Such increase derives from the fact that higher values of K result in a
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higher shadowing persistence of the UPOs (Fig. ??), while maintaining good proximity to the

trajectory (Fig. 4.8b). More details on the confidence level around the correlations values are

presented in Fig. 4.12.

It is important to bear in mind that our database of UPOs is not exhaustive, since it does not

cover all regions of the attractor in equal measure. We thus reproduce the correlation statistics

of table 4.2 by selecting only those orbits with a persistence higher than a certain time G in

order to assess how such correlation could change in correspondence of an ideal shadowing

scenario.

By definition, the number of orbits considered for the statistics decreases as we demand more

persistence (Fig. 4.13). We filtered up to around G = 1.5 in order to still have a satisfactory

number of UPOs able to reproduce reliable statistics. Fig. 4.12 shows that the correlation

between the local properties of the trajectory and the UPOs steadily increases as we consider

more persistent orbits, arriving from 14% to around 35% for the first LE of the UPO λ1 and

the first FTLE λτ
1 of the chaotic trajectory, and from 25% to around 50% for the correlation

between KSτ and the Kolmogorov-Sinai entropy of the corresponding shadowing UPO. This

seems to confirm our guess that the local stability properties could indeed be explained in terms

of UPOs.

4.4 Conclusions

The study of non-hyperbolic dynamics is very relevant for the understanding of high-dimensional

dynamical systems of physical and biological interest. While it used to be believed that uni-

formly hyperbolic dynamics could represent a paradigma for chaos (see discussion in 2.1.2), it

became later clear that many system of practical interest, while still featuring characteristics

typical of chaotic motion, such as sensitive dependence on the initial condition, could not be

bounded within the constraint imposed by the definition of uniform hyperbolicity. An example

of generally non-hyperbolic system is offered by geophysical fluids, which are usually described

by systems that are far from being uniformly hyperbolic and present very heterogenous prop-
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Figure 4.12: Correlation between the local stability properties of the trajectory and the relative
shadowing orbits. Panel (a): correlation between the first FTLE λtau

1 and the first LE of the
corresponding shadowing UPO. Panel (b): correlation between KSτ (sum of the first four
FTLE) and the KS entropy of the corresponding shadowing UPO. Panel (c): Same than (a),
for the largest FTLE λt

maxau. Panel (b): Same than (b), for the Local Kolmogorov-Sinai
entropy KSτ (sum of the positive LE). The bars indicates the 95% confidence interval for each
value of the persistence level.
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Figure 4.13: Number of orbits considered in the statistic as a function of the minimum persis-
tence level required.

erties of their tangent space [154, 155]. Characterising the heterogeneity of the attractor is

fundamental, since this can for instance impact negatively the performance of data assimila-

tion techniques [156, 158, 157]. Within this context, understanding the global organisation of

the phase space and interpreting the variability in the structure of its tangent space represent

a very relevant problem. A very strong form of non-hyperbolicity is the so-called Unstable

Dimension Variability (UDV), characterised by the presence of UPOs in the chaotic set with

different number of unstable dimensions. While this phenomena was first described in [191], its

evidence in chaotic systems of physical interest was only later found and studied [192, 193, 194].

Such form of non-hyperbolicity appears to be common in high dimensional dynamical systems.

A ”numerical fingerprint” [11] of this phenomenon, can be detected in the behaviour of the

FTLEs of the system, whose value oscillates between positive and negative even for long aver-

aging time. In fact, a FTLE that changes its sign along a chaotic trajectory, represents a signal

that there is a direction which is oscillating between contraction and expansion, hindering the

existence of an hyperbolic structure.

In this chapter we considered the Lorenz-96 model and we attempted to provide an interpre-

tation of the heterogeneity of its attractor by combining the information provided by both

Lyapunov and UPO analysis, bridging the gap between global and local properties of the sys-

tems. We first extracted a large database of UPOs from the system, which, although incomplete,

allowed us to deduce that the hyperbolicity is not satisfied through the existence of UPOs with
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different number of unstable dimensions, precisely ranging from 2 to 9 (see fig. 4.5). We found

that the heterogeneity in the tangent space is indeed expresses at a local level by the existence

of some FTLEs that fluctuates largely between negative and positive values and in section 4.3

we provided evidence of such behaviour; for instance, even for very large values of τ the sixth

FTLEs present a distribution whose support is not strictly positive (See fig. 2.3). We then

provided an interpretation of such local variability in terms of UPOs. Through the use of the

mechanism of rank shadowing, we created a 1-1 correspondence between local properties of the

attractor (FTLE) and global structure (UPOs). We found that the local instability properties

of the chaotic trajectory are positively correlated with the ones of the shadowing UPOs, and

such correlation is even stronger when looking at UPOs characterised by higher persistence

(See fig. 4.12). Further research is needed. In particular we would like to study structural

transitions between UPOs with the same dimension of the phase space and possibly investigate

connections with quasi-invariant set using the method developed in [128].



Chapter 5

Conclusion

5.1 Summary of Thesis Achievements

In this thesis we provided a description of the geometrical and statistical properties of selected

chaotic systems in terms of unstable periodic orbits. This work provides further support to

the potential of developing a duality between the local and short time dynamically invariant

compact sets (UPOs) and the global long-time evolution of densities of trajectories, in order to

characterise and extend macroscopic features even for those systems for which periodic orbit

theory has not been extended yet [7, 2, 8].

We considered two systems characterised by very different properties. We first looked at the

Lorenz-63 model with standard parameters values, a three dimensional model that supports an

SRB measure on a singularly hyperbolic attractor [120]. The UPO structure of this model is

very well understood, in fact it is possible to prove that it admits a symbolic dynamics that

allows to extract the complete set of UPO up to any given period T [120]. We then extended

our analysis to the Lorenz-96 model in a 20-dimensional space with a forcing parameter for

which the model exhibit extensive chaotic behaviour. This is a very interesting model to study,

since it exhibits a very heterogenous structure of its tangent space.

The numerical implementation of the shadowing of a chaotic trajectory in terms of UPOs was
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instrumental in our analysis and allowed us to understand and explore the geometry of the

attractor under the lens of UPOs. Namely, at each point of time we ranked the UPOs of

our database accordingly to their distance with the chaotic trajectory. Since the shadowing

property is not proven to be valid for systems which are not Axiom-A, in both cases we had to

assess both distance and co-evolution of the trajectory with the UPOs.

In the case of the Lorenz-63 model we extracted the full set of UPOs with symbolic dynamic

period T < 14. We showed that the rectified distance of the UPO with the co-evolving trajectory

is order of magnitudes larger than the initial distance between the two. We found that longer

period orbits provide the best approximation of the chaotic trajectory, in virtue of both their

quantity and spatial extent. This result, in agreement with other lines of research [139, 140, 6],

seems at odd with what the trace formula suggest according to which short period UPOs should

have more weight in the calculation of ergodic averages. We then extracted a finite state Markov

chain process from the dynamics based on the process of scattering of the chaotic trajectory

between the various UPOs. This study of scattering uses a partition where each UPO and

its neighbourhood represent a state of the system and the stochastic matrix is defined in a

frequentist way by studying the transitions defining the shadowing of the chaotic trajectory. It

is known that eigenvectors corresponding to the subdominant eigenvalues determine the time

scale of convergence to the invariant measure. Through this UPO based analysis, we find

that eigenvectors associated to faster decay rates create finer structures in the phase space, in

agreement with the intuition on how diffusion works. We then showed that each one of these

resulting structures can be thought of as approximately defining a quasi-invariant set organised

in bundle of orbits of the same type: the forward trajectory is scattered with high probability

between orbits belonging to the same bundle, while with low probability it is scattered to orbits

belonging to a different bundle that represent another quasi-invariant set.

In chapter 4 we consider the higher dimensional model Lorenz-96 that allowed us to extend

the UPO-based investigation to the heterogeneity of the attractor of a chaotic flow. In fact,

the dimensionality of the Lorenz-63 model does not allow for the presence of a region of the

attractor presenting a different number of unstable dimension. We extracted a large database

of UPOs with period ranging from a minimum of 1.5 to a maximum of 22.8.
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We showed that the model is characterised by a strong violation of the hyperbolicity condition,

called unstable dimension variability. Namely, we found UPOs with very different number of

unstable dimensions, precisely ranging from 2 to 9. We analysed that the heterogeneity of the

attractor is also manifested at a local level by large fluctuations between negative and positive

values of some FTLEs, even for large averaging time. We proposed an explanation of such

heterogeineity by providing evidence of correlation between local properties and UPOs, finding

that anomalously unstable UPOs populate regions of the atrtactor characterised by analogous

anomalous instability, bridging the gap between global and local properties of the system.

This thesis provides further support to the potential of using UPOs for reaching a comprehensive

understanding of the properties - averages, correlations and tangent space - of chaotic dynamical

systems. We would like to extend this analysis to higher dimensional system of practical

relevance. In particular we would like to extend the work of Lucarini and Gritsun [14] on

blocking events, investigating transitions between zonal flow and blocking by applying the

methodology developed in this thesis. The investigation of this model is of interest both in

terms of the physical process of interest - the low-frequency variability of the atmosphere is far

from being a settled problem - and in terms of its mathematical properties, as it is characterised

by high variability in the number of unstable dimension, thus featuring a serious violation of

hyperbolicity.



Appendix A

Numerical Algorithms

A.1 Lorenz-63 model

The orbits have been calculated with Newton’s iterative method by considering an integration

time-step dt = 0.001. Such choice is a compromise between reaching enough accuracy to detect

UPOs and achieving an acceptable computation time. An orbit was considered to be detected

when errini := |STi(xi) − xi| < 10−10 and such condition remains satisfied for at least two

periods. Quasi-recurrences where considered as started condition for the algorithm. Namely,

given a random initial condition xc, we calculated a chaotic trajectory of length T = 100 and

check whether the trajectory comes back very close to xc (|xc − xtc | < 10−3) at any point in

time tc < T . If that happens we use the pair (xc, tc) as starting guesses for Newton’s method.

Newton’s method is then iterated until either the orbit is detected or we reach a maximum

number of allowed iterations (Imax = 1000). We also exit the algorithm in case the correction

at step i errcorri := |(∆xi,∆Ti)| is greater than the correction at step i− 1, indicating that the

algorithm is not converging. We verified that around 50% of such initial conditions resulted in

UPOs being detected.
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A.2 Lorenz-96 model

The choice of the parameters M = 20 and F = 5 rather than the standard parameters’ values

was motivated by the necessity of observing a sufficiently chaotic behaviour with evidence of

UDV and numerical cost in the extraction of the orbits and shadowing ranking computations.

We shortlisted the choices to M = 20 and F = 8, M = 40 and F = 8, M = 20 and F = 6,

M = 20 and F = 5. For each of these model we run the rank shadowing algorithm and we found

that in the latter case we could see that all the orbits of the extracted database resulted involved

in the shadowing of a chaotic trajectory (shadowing and co-evolution), while in the other cases

we either did not have a sufficient number of orbits or the computation was computationally

too expensive.



Appendix B

Robustness of the UPO decomposition

for the Lorenz-63 model

We present in this section the results of the UPO decomposition obtained in Section 3.2 when

considering the looser definition of shadowing.

Fig. B.1 is the analogous of fig. 3.11 and represents the projection in the phase space of w(2),

w(3), w(4) and invariant measure of the system obtained as a projection of w(1) 10 (respectively

30 - Fig. B.2) tiers persistence.

Fig. B.3 is the analogous of fig. 3.10 and represents the quasi-invariant bundles of UPOs

obtained with the method outlined in section 3.2.2 considering the looser definition of shadowing

with K = 10 (resp. K = 30 in Fig. B.4 ) tiers persistence.
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(a) (b)

(c) (d)

Figure B.1: Invariant Measure of the system obtained by projection of w(1) (a) considering a
10-states reduction of the dynamics. Projection in the phase space of (b): w(2) (λ2 = 0.99368),
(c): w(3) (λ3 = 0.99223), (d): w(4) (λ4 = 0.99058).
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(a) (b)

(c) (d)

Figure B.2: Invariant Measure of the system obtained by projection of w(1) (a) considering a
30-states reduction of the dynamics. Projection in the phase space of (b): w(2) (λ2 = 0.99661),
(c): w(3) (λ3 = 0.99556), (d): w(4) (λ4 = 0.99459).
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(a) (b)

(c)

Figure B.3: Quasi-invariant bundles of UPOs obtained with the method outlined in Section
3.2.2 considering a 10-states reduction of the dynamics. (a): λ2 = 0.99368, τ2 = 1.5772; (b):
λ3 = 0.99223, τ3 = 1.2814; (c): λ4 = 0.99058, τ4 = 1.0571.
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(a) (b)

(c)

Figure B.4: Quasi-invariant bundles of UPOs obtained with the method outlined in Section
3.2.2 considering a 30-states reduction of the dynamics. (a): λ2 = 0.99661, τ2 = 2.9441; (b):
λ3 = 0.99556, τ3 = 2.2463; (c): λ4 = 0.99459, τ4 = 1.8436.
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[2] P. Cvitanović, “Recurrent flows: the clockwork behind turbulence,” Journal of Fluid

Mechanics, vol. 726, pp. 1–4, 2013.
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