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The upcoming deployment of 5/6G networks, online services like 4k/8k HDTV (streamers

and online games), the development of the Internet of Things concept, connecting billions of

active devices, as well as the high-speed optical access networks, impose progressively higher

and higher requirements on the underlying optical networks infrastructure. With current

network infrastructures approaching almost unsustainable levels of bandwidth utilization/

data traffic rates, and the electrical power consumption of communications systems becoming

a serious concern in view of our achieving the global carbon footprint targets, network

operators and system suppliers are now looking for ways to respond to these demands while

also maximizing the returns of their investments.

The search for a solution to this predicted ªcapacity crunchº led to a renewed interest in

alternative approaches to system design, including the usage of high-order modulation formats

and high symbol rates, enabled by coherent detection, development of wideband transmission

tools, new fiber types (such as multi-mode and ±core), and finally, the implementation of

advanced digital signal processing (DSP) elements to mitigate optical channel nonlinearities

and improve the received SNR. All aforementioned options are intended to boost the available

optical systems’ capacity to fulfill the new traffic demands.

This thesis focuses on the last of these possible solutions to the ªcapacity crunch," an-

swering the question: ªHow can machine learning improve existing optical communications

by minimizing quality penalties introduced by transceiver components and fiber media non-

linearity?". Ultimately, by identifying a proper machine learning solution (or a bevy of

solutions) to act as a nonlinear channel equalizer for optical transmissions, we can improve

the system’s throughput and even reduce the signal processing complexity, which means we

can transmit more using the already built optical infrastructure.

This problem was broken into four parts in this thesis: i) the development of new machine

learning architectures to achieve appealing levels of performance; ii) the correct assessment

of computational complexity and hardware realization; iii) the application of AI techniques

to achieve fast reconfigurable solutions; iv) the creation of a theoretical foundation with

studies demonstrating the caveats and pitfalls of machine learning methods used for optical



channel equalization. Common measures such as bit error rate, quality factor, and mutual

information are considered in scrutinizing the systems studied in this thesis. Based on

simulation and experimental results, we conclude that neural network-based equalization can,

in fact, improve the channel quality of transmission and at the same time have computational

complexity close to other classic DSP algorithms.

Keywords: Coherent Optical communications, Nonlinear Equalization, Machine Learn-

ing, Computational Complexity
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Chapter 1

Introduction

1.1 Fiber-optic communication

In today’s world, there is always a pressing need for improved, more reliable methods of

information transmission. Our ability to send a huge amount of information over long

distances is the basis for many things in modern life, from big data and cloud computing to

the Internet of Things and Industry 4.0, as well as high-quality streaming services and video

calls. Since the start of the COVID-19 pandemic in 2020, internet usage has skyrocketed

as working from home and doing schoolwork online have become the norm, entailing high-

quality conference calls, cloud storage, and entertainment streaming. Most of this enormous

traffic was carried by the fiber-optic communication network, widely regarded as the internet’s

"backbone." Across cities, countries, and continents, optical fiber links are the only method

that can reliably and affordably transport a massive amount of data. However, there will be

a significant challenge for future generations of optical fiber networks to accommodate the

ever-increasing volume of global internet traffic. Although huge efforts are being made to

develop and create new forms of fiber to support higher capacity transmission, specifically to

allow many transmission paths on the same fiber (Space Division Multiplexing [10]), many

of these novel technologies require complete replacement of the current infrastructure [11].

In the early days of fiber-optic communication, the data rate and distance were severely

hampered by fiber loss. Transpacific optical lines were formerly unaffordable, but the devel-

opment of the erbium-doped fiber amplifier (EDFA) [12] to compensate for the loss changed

all of that. In the 1990s, new systems evolved with a steadily increasing information rate by

taking advantage of the five possible dimensions to multiplex data: time, space, wavelength,

polarization, and quadrature. With the right combination of novel codes, dispersion-managed

links, and polarization-division multiplexing (PDM) [13], a wavelength-division multiplexed

(WDM) system with intensity-modulated/direct detection (IM/DD) configuration could
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achieve communication rates of up to 1 Tb/s in a laboratory demonstration [14±16]. In

1989, the market saw the release of the first commercial WDM system with two wavelengths

running at 1.7 Gb/s each. A dispersion-controlled link, implemented in place of regular

SMF, allowed for a data transfer rate of up to 20 Gb/s [17]. At the beginning of the 2000s,

commercial systems could transport 40 wavelengths at 10 Gb/s, for a total data throughput

of 400 Gb/s [18].

Optical communications took another huge step forward with the development of coherent

receivers [19]. Even though an IM/DD communication system can provide a high data rate,

the coherent technology allowed for new approaches to handling light at the receiver and

paved the way for other ideas to fix problems in fiber communication that emerged from

other fields of linear communications. Benefiting from both the low bandwidth requirements

of homodyne receivers and the ease of use of analogue heterodyne receivers, digital coherent

receivers are the best of both worlds. Coherent communication makes use of the signal’s

amplitude and phase to decode the message. To eliminate noise, the signal is sent through an

optical 90-degree hybrid and combined with a local oscillator (LO). Two sets of balanced

photodetectors then read out the hybrid’s four optical outputs. Electrical outputs from the

square-law detector are then utilized to identify the in-phase and quadrature parts of the

received signal, together with their respective labels and relationships. The term "noise"

primarily refers to the amplified spontaneous emission (ASE) noise that the optical amplifier

introduces, the strength of which varies depending on the particular amplifier in question.

Coherent receivers made it possible to use quadrature amplitude modulation and pulse-

division multiplexing. Digital signal processing (DSP) also allows for the compensation

of some types of chromatic dispersion, PMD, and nonlinear effects that were not possible

when using IM/DD systems. Thanks to this breakthrough, the first commercial transponder

was developed, boasting a 100 Gb/s [16] data throughput on a single wavelength and later

reporting speeds of 800 Gb/s [20] using a real-time DSP ASIC based on probabilistic shaping

and digital sub-carrier multiplexing.

It is now clear that the goal of optical communications has always been to increase

throughput in order to increase spectral efficiency. This requires more advanced DSP to deal

with problems like chromatic dispersion and other nonlinear distortions that occur in fibers.

Most of the digital signal processing methods currently used in fiber-optic communication

were originally developed for linear channels, such as wireless and twisted-copper, and

are therefore not well-suited to the additive white Gaussian noise that is characteristic of

linear channels (AWGN). Unlike with these linear media, an increase in signal strength in

an optical fiber connection does not result in a higher bit rate that is immune to errors. At

high signal powers, the system’s performance is dominated by the interference introduced
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by nonlinearities, which increases in proportion to the signal power [21, 22]. This nonlinear

interference appears to be the major barrier to fiber-optic communication. There are two

basic types of nonlinear interference in fiber: signal-noise and signal-signal. Most proposed

techniques aim to counteract signal-signal nonlinear interference, which is more significant

than signal-noise interference. So, it is useful to categorize different nonlinear signal-

signal interferences as in-band interference and out-of-band interference [23]. Self-phase

modulation (SPM) is an example of in-band signal-signal interference, whereas cross-phase

modulation (XPM) and four-wave mixing (FWM) are examples of out-of-band signal-signal

interference that cause significant difficulties for WDM systems [24].

To understand where this nonlinear interference originates and how to mitigate it, it is

necessary to review how light travels through optical fibers. The optical fiber channel is a

nonlinear medium due to the dependence of its refractive index (ne f f ) on the square of the

electric field of the optical signal (E(t,z)), as follows:

ne f f = n0 +n2|E(t,z)|2, (1.1)

where n0 and n2 indicate the linear and nonlinear parts of the fiber refractive index,

respectively. This is known as the "nonlinear optical Kerr effect." After a propagation

distance of L, light experiences two kinds of phase shifts. One of them is a result of the linear

part of the refractive index, and the other one is because of the n2 term. Given is the total

phase shift:

φ = k0n0L+φNL (1.2)

where k0 is a free-space wave number and φNL can be expressed by:

φNL(t,z) = jγ

∫ z

0
|E(t,z′)|2dz′ = jγ|E(t,0)|2Le f f (1.3)

Le f f is defined as effective length, and it is equal to 1−eαz

α , where α is the fiber loss

coefficient. Also, γ = k0n2

Ae f f
is the fiber nonlinearity coefficient, and Ae f f is the fiber effective

area. The nonlinear Schrödinger equation (for single polarization) and the Manakov equation

(for dual polarization) can be used to estimate how light travels through the fiber [25].

Consider a single polarization transmission case whose propagation is defined by:

∂E(t,z)

∂ z
=− j

β2

2

∂ 2E(t,z)

∂ t2
− α

2
E(t,z)+ jγ|E(t,z)|2E(t,z) (1.4)

where β2 is the dispersion coefficient of the fiber. As can be seen from the similarities

with φNL, the last term of this equation is responsible for nonlinear distortion. In WDM

systems, the ªnonlinear challengeº is even worse because different channels affect each
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other even though they are at different frequencies. An important remark here is the fact

that real-world systems are notoriously difficult to analyze in their entirety due to the sheer

number of variables involved in determining the complex interplay between the signal and

amplifier-generated noise (ASE). However, the amplitude of the primary signal is significantly

greater than that of the noise, so signal-signal interference provides an excellent estimate of

total interference. So now, let us focus only on the signal-to-signal interferences. Consider

three optical signals going through three channels in the same optical fiber (three different

wavelengths). The total electric field can be expressed as:

E(t,z) = E0(t,z)+E1(t,z)+E2(t,z) (1.5)

Replacing Eq. 1.5 in Eq. 1.4 and ignoring α for understandability purposes, the below

equation is found:

∂ (E0 +E1 +E2)

∂ z
=− j

β2

2

∂ 2(E0 +E1 +E2)

∂ t2
+ jγ|E0 +E1 +E2|2(E0 +E1 +E2) (1.6)

Assuming a perturbation approach and E0 as the channel of interest, a decoupled equation

is found as follows:

∂E0

∂ z
=− j

β2

2

∂ 2E0

∂ t2
+2 jγ|E0|2E0 +2 jγ(|E1|2 + |E2|2)E0 + jγE1

2E2
∗ (1.7)

As can be seen from Eq. 1.7, there are three terms that contribute to the nonlinear

distortion. The first term just depends on the power of the assumed channel; the second term

is dependent on the power of two other channels; and the last term is a cross-product of the

two interfering channels. These interferences are the previously mentioned SPM, XPM, and

FWM, respectively.

To elaborate further on each of these signal-signal interferences, the SPM is a nonlinear

phase variation caused by the light’s intensity-dependent refractive index. This causes fre-

quency chirping, which can interact with dispersion in the fiber to result in pulse broadening.

The greater the power input, the greater the chirping [26].

In multi-channel systems, the optical fiber’s refractive index is affected not only by

the intensity of the target channel but also by the intensity of the other channels. This is

referred to as "XPM." XPM, like SPM, results in nonlinear phase shifts [26], but XPM is

also inversely proportional to channel spacing and increases with the number of channels

in the WDM transmission. The other multi-channel interference is FWM, also known as
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crosstalk, which causes energy transfer between channels. Power can thus be transferred

from one channel to another. As a result, FWM decreases as dispersion increases [26].

Over the last decade, these particular aspects of fiber propagation have been widely

investigated, together with mitigation techniques, in both the optical and digital domains e.g.,

digital back-propagation [27], Kalman Equalizer [28], Volterra series nonlinear equalizers

[29], optical phase conjugation (OPC) [30] to name a few. A brief discussion on the

advantages and disadvantages of these conventional signal processing methods is included

in Chapter 2. Although these methods have been shown to be very effective, they have a

number of disadvantages. One of the most advanced nonlinear compensation approaches, for

example, is digital back-propagation, which requires a massive amount of processing power

and is difficult to implement in practice. In this thesis, a new set of solutions will be presented

that use machine learning, specifically deep neural networks, to mitigate component and fiber

nonlinearity and increase channel capacity.

1.2 Contributions of the Thesis

Scientists have been looking into optical communication systems that use equalizers based

on neural networks for a number of years. Although numerical simulations and experimental

demonstrations have yielded some promising results, determining the entire potential of

such solutions and their limitations remains an unanswered subject for their industrial

application in the next DSP generation. In this thesis, for the first time in the coherent fiber-

optic community, a large-scale investigation is proposed, proposing new physical-inspired

neural network architectures, investigating the potential of black box solutions, developing

methods to increase the operational flexibility of such solutions to meet the needs of optical

communications, and evaluating the performance versus complexity trade-off of many neural

network solutions, which pave the way for a full-scale study proposing methods to lower

their computational complexity to industrially-attractive levels.

The contribution of this thesis can be summarized as follows:

• Based on the channel model that treats Kerr nonlinearity as the dominant distortion, it is

introduced a new design for a complex-valued neural network to perform equalization

at the receiver.

• The Bayesian optimizer was first proposed as a means of determining the optimal hyper-

parameters for the NN equalizers, which would simultaneously reduce computational

complexity and improve transmission performance.
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• Here, it is properly explained how the transfer learning technique was applied for the

first time to the problem of signal distortion mitigation in optical coherent commu-

nications. The novel contribution is to propose various forms of transfer learning to

reduce the training time and dataset size for equalizer training by combining a deep

understanding of the channel propagation model (Manakov Equation) with the design

of a neural network equalizer.

• Using both synthetic data generated through numerical simulation and experimental

data from a benchmark transmission system, it is analyzed and compared to a wide

variety of black-box NN-based methods.

• From a software to a hardware perspective, it is presented for the first time the equations

and appropriate computational complexity metrics for a zoo of neural network layers.

• In order to lessen the burden on the computer’s processing power, it is also considered

a detailed description and analysis of various compression techniques that can be used

in NN-based equalizers.

• This is the first time a Recurrent-based equalizer is being implemented on FPGA for

coherent transmission.

• Addressing the NN-based soft-demapping in coherent optical communication, it is

compared the performance and training quirks of the regression and classification

predictive models for the first time, highlighting their statistical and machine learning

drawbacks.

• For the first time, a systematical study is presented about the typical misconceptions

and misinterpretations that arise when using ML techniques for channel equalization

in coherent optical communications.

The following publications are the results of the current research and directly or indirectly

relate to different chapters of this thesis:

1. Freire, P.J., Napoli, A., Spinnler, B., Costa, N., Turitsyn, S.K. and Prilepsky, J.E.,

2021. [Invited] Neural Networks-based Equalizers for Coherent Optical Transmission:

Caveats and Pitfalls. IEEE Journal of Selected Topics in Quantum Electronics, doi:

10.1109/JSTQE. 2022.3174268.

2. Freire, P.J., Neskornuik, V., Napoli, A., Spinnler, B., Costa, N., Khanna, G., Riccardi,

E., Prilepsky, J.E. and Turitsyn, S.K., Complex-valued neural network design for
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mitigation of signal distortions in optical links. Journal of Lightwave Technology, vol.

39, no. 6, pp. 1696-1705, 15 March15, 2021, doi: 10.1109/JLT.2020.3042414.

3. Freire, P.J., Osadchuk, Y., Spinnler, B., Napoli, A., Schairer, W., Costa, N., Prilepsky,

J.E. and Turitsyn, S.K., Performance versus complexity study of neural network equal-

izers in coherent optical systems. Journal of Lightwave Technology, vol. 39, no. 19,

pp. 6085-6096, Oct.1, 2021, doi: 10.1109/JLT.2021.3096286.

4. Freire, P.J., Abode, D., Prilepsky, J.E., Costa, N., Spinnler, B., Napoli, A. and

Turitsyn, S.K., Transfer learning for neural networks-based equalizers in coherent

optical systems. Journal of Lightwave Technology, vol. 39, no. 21, pp. 6733-6745, 1

Nov.1, 2021, doi: 10.1109/JLT.2021.3108006.

5. Freire, P.J., Neskornuik, V., Napoli, A., Spinnler, B., Costa, N., Prilepsky, J.E.,

Riccardi, E. and Turitsyn, S.K., 2020, December. Experimental Verification of Complex-

Valued Artificial Neural Network for Nonlinear Equalization in Coherent Optical

Communication Systems. In 2020 European Conference on Optical Communications

(ECOC) (pp. 1-4). IEEE.

6. Freire, P.J., Osadchuk, Y., Spinnler, B., Schairer, W., Napoli, A., Costa, N., Prilepsky,

J.E. and Turitsyn, S.K., 2021, June. Experimental study of deep neural network

equalizers performance in optical links. In Optical Fiber Communication Conference

(pp. M3H-2). Optical Society of America.

7. Freire, P.J., Abode, D., Prilepsky, J.E. and Turitsyn, S.K., 2021, July. Power and

Modulation Format Transfer Learning for Neural Network Equalizers in Coherent

Optical Transmission Systems. In Signal Processing in Photonic Communications (pp.

SpM5C-6). Optical Society of America.

8. Freire, P.J., Spinnler, B., Abode, D., Prilepsky, J.E., Ali, A., Costa, N., Schairer, W.,

Napoli, A., Ellis, A.D. and Turitsyn, S.K., 2022, March. Domain Adaptation: the Key

Enabler of Neural Network Equalizers in Coherent Optical Systems. In 2022 Optical

Fiber Communications Conference and Exhibition (OFC) (pp. 1-3). IEEE.

9. Freire, P.J., Prilepsky, J.E., Osadchuk, Y., Turitsyn, S.K. and Aref, V., 2022. Deep Neu-

ral Network-aided Soft-Demapping in Optical Coherent Systems: Regression versus

Classification. IEEE Transactions on Communications; doi: 10.1109/TCOMM.2022.3213284.

10. Freire, P.J., Osadchuk, Y., Napoli, A., Spinnler, B., Schairer, W., Costa, N., Prilepsky,

J.E. and Turitsyn, S.K., 2021, October. Experimental Evaluation of Computational
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Complexity for Different Neural Network Equalizers in Optical Communications. In

Asia Communications and Photonics Conference (pp. M5H-5). Optical Society of

America.

11. Freire, P.J., Anderson, M., Spinnler, B., Bex, T., Prilepsky, J. E., Eriksson, T. A.,

Costa, N., Schairer, W., Blott, M., Napoli, A., Turitsyn, S. K., 2022. [Top Score]

Towards FPGA Implementation of Neural Network-Based Nonlinearity Mitigation

Equalizers in Coherent Optical Transmission Systems. In 2022 European Conference

on Optical Communications (ECOC).

12. Freire, P.J., Srivallapanondh, S., Napoli, A., Prilepsky, J.E. and Turitsyn, S.K, Compu-

tational Complexity Evaluation of Neural Network Applications in Signal Processing.

Submitted in May 2022 to IEEE Transactions on Signal Processing, Available in

arXiv:2206.12191.

13. Freire, P.J., Antonio Napoli, Diego Arguello Ron, Bernhard Spinnler, Michael Ander-

son, Wolfgang Schairer, Thomas Bex, Nelson Costa, Sergei K. Turitsyn, Jaroslaw E.

Prilepsky, Reducing Complexity of Neural Networks for Optical Channel Equalization:

From Algorithms to Implementation. Submitted in September 2022 to Journal of

Lightwave Technology, Available in arxiv:2208.12866.

14. Freire, P.J., Sasipim Srivallapanondh, Michael Anderson, Bernhard Spinnler, Thomas

Bex, Tobias A. Eriksson, Antonio Napoli, Wolfgang Schairer, Nelson Costa, Jaroslaw

E. Prilepsky, Sergei K. Turitsyn, [Invited] Implementing Neural Network-Based Equal-

izers in a Coherent Optical Transmission System Using Field-Programmable Gate

Arrays. Submitted in October 2022 to Journal of Lightwave Technology, Available in

arxiv: 2212.04703.

15. Ron, D.A., Freire, P.J., Prilepsky, J.E., Kamalian-Kopae, M., Napoli, A. and Turitsyn,

S.K., 2022. Experimental Implementation of a Neural Network Optical Channel

Equalizer in Restricted Hardware Using Pruning and Quantization. Scientific Reports,

12(1), pp.1-12.

16. Sedov, E.V., Freire, P.J., Seredin, V.V., Kolbasin, V.A., Kamalian-Kopae, M., Chekhovskoy,

I.S., Turitsyn, S.K. and Prilepsky, J.E., 2021. Neural networks for computing and de-

noising the continuous nonlinear Fourier spectrum in focusing nonlinear Schrödinger

equation. Scientific Reports, 11(1), pp.1-15.
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17. Sena, M.R., Freire, P.J., Coelho, L.D., Santos, A.F., Napoli, A. and Almeida Jr, R.C.,

2022. Novel evolutionary planning technique for flexible-grid transmission in optical

networks. Optical Switching and Networking, 43, p.100648.

18. Sedov, E., Freire, P.J., Chekhovskoy, I., Turitsyn, S. and Prilepsky, J., 2021, September.

Neural Networks For Nonlinear Fourier Spectrum Computation. In 2021 European

Conference on Optical Communication (ECOC) (pp. 1-4). IEEE.

19. Neskorniuk, V.,Freire, P.J., Napoli, A., Spinnler, B., Schairer, W., Prilepsky, J.E.,

Costa, N. and Turitsyn, S.K., 2020, December. Simplifying the Supervised Learning of

Kerr Nonlinearity Compensation Algorithms by Data Augmentation. In 2020 European

Conference on Optical Communications (ECOC) (pp. 1-4). IEEE.

20. Liu, Y., Sanchez, V., Freire, P.J., Prilepsky, J.E., Koshkouei, M.J., Higgins, M.D., 2022.

Attention-Aided Partial Bidirectional RNN-Based Nonlinear Equalizer in Coherent

Optical Systems. Optics Express, Optica (former OSA), May 2022.

1.3 Organisation of the thesis

This thesis is organised as follows.

• In Chapter 2, it is presented an introduction to the equalization problem in digital

communications. Then, it discussed the traditional methods used to equalize the

optical channel in an effort to reduce the impact of nonlinearities introduced during

optical transmission. Also, it is discussed the various types of neural network-based

equalizers, categorizing them as either data-driven or model-driven. Finally, it presents

an overview of the most common neural network layers used in machine learning,

categorizing them into feedforward and recurrent types.

• In Chapter 3, it is examined the performance aspect for designing a NN-based equalizer.

First, it is presented a model-driven technique built by creating a new complex-value

neural network architecture inspired by certain physical elements of nonlinear optical

transmission. In addition, it is demonstrated how the Bayesian optimizer can be

utilized to determine the NN-based equalizer architecture that minimizes the BER after

equalization. Simulations and experiments were used to validate the new complex-

value neural network architecture in this instance. In this chapter, it is also discussed

data-driven solutions, presenting for the first time the biLSTM+CNN structure for

optical equalization and comparing it with a zoo of NN topologies for both single-

channel and WDM transmission. In this last investigation, it is confirmed that the

P. Freire de Carvalho Souza, PhD Thesis, Aston University, 2022 9



Introduction

proposed NN-based equalizer can partially recover both the SPM and the XPM during

transmission.

• In Chapter 4, it is examined the computational complexity aspect for designing a NN-

based equalizer. First, it provides a systematic approach for assessing and comparing

the computational complexity of neural network layers in digital signal processing. It

provides and links four software-to-hardware complexity measures, defining how the

different complexity metrics relate to the layers’ hyper-parameters. Second, it presents

the results of the comparative performance-versus-complexity analysis for the several

types of artificial neural networks (NNs) used for nonlinear channel equalization

in coherent optical communication systems. The comparison is carried out using

an experimental set-up with the transmission dominated by the Kerr nonlinearity

and component imperfections. Then, a new methodology is proposed that allows

for the low-complexity development of neural network (NN) based equalizers for

the mitigation of impairments in high-speed coherent optical transmission systems

using cutting-edge strategies such as quantization, weight clustering, and pruning.

Additionally, it evaluates the influence these deep model compression approaches have

on the performance of each NN equalizer. Finally, it is demonstrated the offline FPGA

realization of both recurrent and feedforward neural network (NN)-based equalizers

for nonlinearity compensation in coherent optical transmission systems. In this context,

it presents a realization pipeline showing the conversion of the models from Python

libraries to the FPGA chip synthesis and implementation.

• In Chapter 5, it examined the flexibility aspect of designing a NN-based equalizer. It

demonstrates that by using well-developed techniques based on the concept of transfer

learning, it can efficaciously retrain NN-based equalizers to adapt to the changes in

the transmission system, using just a fraction (down to 1%) of the initial training data

or epochs. It evaluates the capability of transfer learning to adapt the NN to changes

in the launch power, modulation format, symbol rate, or even fiber plants (different

fiber types and lengths). Also, it underlines the specific peculiarities that occur when

transferring the learning in coherent optical communication systems and draws the

limits for the transfer learning efficiency. This chapter also presented the effectiveness

of transfer learning for the fast adaptation of NN architectures to different transmission

regimes and scenarios, paving the way for engineering flexible and universal solutions

for nonlinearity mitigation.

• Chapter 6 offers a deep, multi-faceted investigation of important issues and typical

design pitfalls linked to the construction of efficient neural networks (NN) based
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1.3. Organisation of the thesis

nonlinear channel equalizers in coherent optical communication systems. It starts by

clarifying the metrics used to evaluate the equalizers’ performance, relating them to the

loss functions employed in the training of the NN equalizers. The relationships between

the channel propagation model’s accuracy and the performance of the equalizers are

addressed and quantified. Next, it assesses the impact of the order of the pseudo-

random bit sequence used to generate the ± numerical and experimental ± data as

well as of the DAC memory limitations on the operation of the NN equalizers both

during the training and validation phases. Finally, it examines the critical issues of

overfitting limitations, the difference between using classification instead of regression,

and batch-size-related peculiarities.

• The thesis concludes with some discussions and suggested future works in Chapter 7.
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Chapter 2

Neural Network Algorithms for Optical

Channel Equalization

2.1 The Equalization Problem in Digital Communications

Equalizers play a crucial role in high-bandwidth digital communication systems. Their

purpose is to reduce or eliminate channel interference and distortion so that the transmitted

information, or information at the channel’s input, may be recovered. Because of the rapid

changes in communication technology over the past 70 years, a plethora of methods have

emerged. The three classic linear equalizer algorithms in the communications field are the

Zero Forcing Algorithm, Least Mean Square (LMS) Algorithm, and Recursive Least Square

Algorithm [31, 32].

EqualizerChannel

Noise

Input Output

Training  
Algorithm 

Loss

Delay

Fig. 2.1 Schematic diagram of a digital communication system with a channel equalizer.

To better understand the adaptive equalization task, we can separate it into two steps:

training and inference. For this demonstration, all signals are assumed to have a digital

baseband representation. Fig. 2.1 shows the schematic of a digital communication system
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with an equalizer at the receiver side. Considering a coherent transmission case, the symbol

{tk} denotes a sequence of T -spaced complex symbols of an M-QAM constellation in which

both in-phase component
{

tk,1
}

and quadrature component
{

tk,Q
}

take one of the values

{±1,±2, . . ., ±(
√

M−1)}, where 1/T denotes the symbol rate and k denotes the discrete

time index. The combined effect of the transmitter-side filter and transmission medium is

included in the "channel", which can cause linear and nonlinear interferences in the originally

transmitted signal t. An FIR filter is a commonly used model for a linear dispersive channel,

and its output at the k th instant is as follows:

ak =
Nh−1

∑
i=0

hitk−i,

where hi denotes the FIR filter weights and Nh denotes the filter order. Considering the

channel to be a nonlinear one, the channel block introduces nonlinearity to the filter output.

Given is the discrete output of the nonlinear channel:

bk = ψ
{

ak,ak−1,ak−2, . . . ,ak−Nh+1;h0,h1, . . . ,hNh−1

}
,

where ψ{·} is a nonlinear function generated by the channel block. The channel output

is also assumed to be corrupted by an additive white Gaussian noise qk with a variance of

σ2. After passing through the nonlinear channel and being mixed with additive noise, the

transmitted signal tk arrives at the receiver, which is denoted by rk. The received signal at

the k th time instant is given by rk = rk,l + jrk,Q, where rk,l and rk,Q are the in-phase and

quadrature components, respectively.

The purpose of the equalizer attached at the receiver side is to recover the transmitted

sequence tk or its delayed version tk−τ , where τ is the propagation delay associated with

the physical channel. The inferential step reveals that the equalizer receives the corrupted

sequence rk and its delayed variants as input and generates the resultant equalized sequence

yk. A loss function, often performed by the mean squared error [Loss = MSE(d,y)], can be

computed given the target output (dk = tk − τ) and the equalized symbol yk. At this point,

we enter the training phase, where we can use the loss function obtained from the equalized

symbols in the inference phase to adjust the equalizer’s filter weights and, thus, reduce the

loss using an adaptive algorithm (e.g., LMS algorithm). Once training is complete, the

weights are frozen and used for the last inference to estimate the transmission sequence.
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2.2 Classical Algorithms for Equalization in Optical Com-

munications

In order to boost fiber capacity, the nonlinear equalization field has become a hot topic

due to the fact that, as discussed in Chapter 1, Kerr nonlinearities are the principal source

of channel deterioration in fiber optic channels, especially when employing higher-order

modulation formats. A few of the sophisticated optical signal equalizers created to counteract

signal distortions brought on by fiber nonlinearities include first-order perturbation-based

compensation, digital backpropagation, the Volterra series transfer function, pulse shaping,

machine learning techniques, and others. This section provides a brief overview of some

classic nonlinear compensation techniques used in fiber optic communication systems.

2.2.1 Digital back propagation

Digital backpropagation (DBP) is considered one of the most effective and widely used

methods to combat fiber nonlinearity and equalize signal distortion [33]. After solving the

NLSE with the asymmetric Split-Step Fourier Method (SSMF), Ip et al. showed how to

compensate for distortions brought on by dispersion and nonlinearities [27]. In a nutshell,

the idea of the DBP technique is to digitally model a fictitious fiber with exactly opposite

characteristics when compared to the real fiber used for transmission. DBP is particularly

efficient because, in theory, it can completely undo the deterministic distortion brought on by

signal-to-signal interference. The authors recommended seeing the fiber as the concatenation

of nonlinear and linear sections, based on the fact that the fiber nonlinearities are greatest

when the power is greatest, which is often after lumped amplification. Most of the distortion

in the linear region is due to dispersion, which manifests itself in the frequency domain

as a multiplication of phases. Kerr nonlinearity, which is phase multiplication in the time

domain, is the principal source of distortion in the nonlinear region. The output of the linear

compensation section in mathematical terms using the SSFM algorithm is as follows:

ECD
x/y(z, t) = iFFT

(

FFT (Ex/y(z, t))exp

(

− jh

(
α

2
+

β2

2
ω2

)))

,

where h is the length of each step, ω is the frequency variable, and z is the current transmission

distance. Following that, the nonlinear section is carried out in the time-domain as follows:

Ex/y(z+h, t) = ECD
x/y(z, t)exp

(

− jϕγ ′h
(∣
∣ECD

x

∣
∣
2
+
∣
∣ECD

y

∣
∣
2
))

,
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where 0 < ϕ < 1 is a real-valued optimization parameter. This procedure can theoretically

undo all distortions if the step size is infinitesimally short and there is no noise present in the

algorithm [27].

While DBP is excellent at addressing deterministic distortions, it is not able to make up

for stochastic impairments brought on by the intermixing of signal and ASE noise. Another

drawback of DBP is its complexity. To get a good approximation of the inverse NLSE using

DBP, it is necessary to reduce the step size, which considerably increases the complexity

of the method. Furthermore, multichannel DBP is required to account for inter-channel

distortions in a WDM system (for instance, to mitigate XPM interferences). This adds much

more difficulty to enforcing DBP. Consequently, despite its theoretical efficacy, DBP can only

achieve remarkable performance at the expense of very expensive computational resources.

As a result, single-channel DBP (SC-DBP) has received more attention than its multichannel

counterpart since it is seen as more practical in light of the existing hardware constraints

[33]1. SC-DBP solely corrects intra-channel nonlinearity, such as SPM, because it only

back-propagates a single wavelength channel [37, 38].

2.2.2 Volterra Equalizer

The Volterra series transfer function (VSTF) can be effectively used to model fiber nonlin-

earity effects. The Volterra series is a functional expansion widely used to model nonlinear

dynamics. Peddanarappagari et al. [39] proposed using the series to solve the NLSE and

extract a higher-order nonlinear transfer function inside the SSMF. In this technique, after

modeling the optical channel as a series of VSTFs, the pth order is adopted to design the

inverse VSTF (IVSTF) kernels. In a nutshell, with y(n) and ỹ(n) representing system input

and output, respectively, the p th-order discrete-time Volterra series with Mp memory taps

for order p is given as [40]:

ỹ(n) =
P

∑
p=1

M1

∑
m1=0

· · ·
Mp

∑
mp=0

hp (m1, · · · ,mp)
p

∏
k=1

y(n−mk) (2.1)

This is the most complete model for nonlinearities with memory, as the p th-order Volterra

kernel hp (m1, · · · ,mp) includes all possible combinations of a product of p time shifts of the

input signal up to memory depth mp. These IVSTF kernels may be used to compensate for

1Using a multichannel-DBP (MC-DBP) [34±36] in WDM systems is one technique to combat the inter-

channel nonlinear distortions, such as XPM and FWM, caused by the co-propagating neighbor channels.

All the WDM channels are back-propagated by the MC-DBP. However, the MC-DBP can only be used for

point-to-point connections at the moment due to its computational complexity, which makes it difficult to

implement without access to supercomputers capable of massively parallel processing.
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the Kerr nonlinearity of the fiber and its interaction with CD. The first and third orders of

such Volterra kernels in this scenario serve to exemplify the fiber’s nonlinearities. In addition,

one of the properties of the nonlinear equalizer based on the Volterra series is the ability to

perform the compensatory operation in parallel. Combining the outputs of each nonlinear

stage with the linear portion’s output results in the output-compensated signal. This reduces

the computational complexity compared to DBP.

Another advantage is that nonlinearity equalization with the Volterra series transfer

function also works well with WDM because it can be done in the frequency domain and

thus separates different channels [39]. However, as the channel memory is increased, the

number of Volterra series coefficients grows significantly, and this method does not scale

well [41].

2.2.3 Perturbation-based NLC

In the first-order perturbation theory-based NLC (PB-NLC) method, the time-domain solution

of the NLSE is approximated by considering the nonlinearity distortion as the first-order

perturbation term [42]. The field inside the fiber is considered the sum of the solutions of

linear propagation and perturbed terms caused by nonlinearities: E(t,z) = E0(t,z)+∆E(t,z)

where E0(t,z) is the zeroth-order term (solution of the linear propagation) and ∆E(t,z) is

the first-order perturbation term caused by nonlinearities. The PB-NLC method simplifies

two things in order to express the perturbation expansion coefficients analytically: the full

electrical compensation of CD at the receiver and the Gaussian shape assumption for input

pulses.

According to the first-order theory, three input Gaussian pulses at time indices Tm,Tl,Tn

interact nonlinearly and generate a ghost pulse. Without loss of generality, the nonlinear

distortion field induced at index k = 0, i.e., l = m+n is calculated at t = 0 by considering

the symbol rate operation, and it can be further simplified as:

∆Ex/y(L, t) = j
8

9
γP

3/2
0 ∑

m
∑
n

[

am,x/ya∗m+n,x/yan,x/y

+am,y/xa∗m+n,y/xan,x/y

]

Cm,n

(2.2)

where ∗ represents the complex conjugate operation, am,x/y is the symbol complex

amplitudes at time m for the x and y polarization, P0 is the peak power and Cm,n is the

first-order perturbation coefficient matrix, which is given as:
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Cm,n =







τ2√
3|β2|

∫ L
0 dz 1

√

τ4/(3β 2
2 )+z2

, m = n = 0

τ2√
3|β2|

1
2
E1

(
(n−m)2T 2τ2

3|β2|2L2

)

, m or n = 0

τ2√
3|β2|

E1

(

− j mnT 2

β2L

)

, m ̸= n ̸= 0,

(2.3)

where E1(x) =
∫ ∞

x
e−t

t
dt is the exponential integral function [38].

In the PB-NLC technique, the perturbation coefficients are calculated beforehand and

saved in a look-up table. This perturbed term can be computed and used to compensate for

the nonlinear distortions at the transmitter side or the receiver side [43, 44]. Tao et al demon-

strated perturbation-based pre-distortion compensation in a dual-polarisation system, whose

performance is comparable to that of backpropagation [43]. The nonlinear perturbation

coefficients derived in [43] represent the effects of intra-channel (FWM and XPM) and they

are fairly complex since they entail a 2-D summation of the product of the transmitted symbol

sequence. However, since these coefficients depend on pulse shape, fiber properties, and

fiber lengths, the computation can be done for the link configurations and stored in a lookup

table [43]. Furthermore, the authors showed that with QPSK symbols, the multiplication can

be replaced by a logical operation, thus significantly reducing the complexity [43]. Unfortu-

nately, this method does not apply to higher-order QAM. To reduce the complexity, many

methods have been proposed, including aggressive quantization on perturbation coefficients

[45], symmetric electronic dispersion compensation and root-raised-cosine pulse shaping

[46].

While effective, most classic approaches to compensating for nonlinearities are pro-

hibitively difficult to implement. That is why many cutting-edge approaches cannot be used

in a commercial context. A compelling motivation to find an alternative strategy that can

produce comparable performance results while simultaneously reducing computational com-

plexity underpins the investigation of deep learning. In the next sections, some deep-learning

approaches for nonlinearity compensation will be presented.

2.3 Data-Driven Equalizers using Neural Networks.

This section describes the main neural network (NN) structures used to create a data-driven

neural network (NN) equalizer (black box). This category takes advantage of the vast number

of symbols flowing across the line, which can be employed as a training data source so that

the NN can be used blindly (i.e., without any prior knowledge of physics under investigation).
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2.3.1 Learning Process of Neural Network Models

Before discussing the various neural network architectures used to create NN-based equaliz-

ers, it is essential to first examine the optimization approaches or the learning process for

adjusting the parameters of NNs to the training datasets.

In machine learning, the common practice is to formalize the goals of the training

procedure via a loss function L - a single overall quantitative measure of the quality of

training. The loss function is defined in such a way that the desired solution should minimize

its value.

Now we’ll bring a more mathematically rigorous definition of loss function L . In the

following, we focus on the case of training over a labeled dataset, considered in this thesis.

Let the training data D consist of the set of input vectors xi = [xi,1, . . . ,xi,n], xi, j ∈ R and

the desired output vectors ydata
i = [yi,1, . . . ,yi,n], yi, j ∈ R, corresponding to each input xi,

i.e., D =
[
{x1,y

data
1 }, . . . ,{xN ,y

data
N }

]
. Next, we define the output predicted by the trained

algorithm for every dataset input as ymodel
i = fmodel(xi,θ). Obviously, the model’s predictions

also depend on its parameters θ . For instance, for a neural network, the parameters are model

weights and biases.

In terms of these notations, the loss function L can be defined as

L (θ ,D) =
1

N

N

∑
i=1

l
(

ydata
i , fmodel(xi,θ)

)

(2.4)

where l(ydata
i ,ymodel

i ) is per-example loss function, and N is the training data cardinality. At

the same time, the task of training a deep-learning model can be expressed as

θlearned = argminθL (θ ,D), (2.5)

i.e., finding the set of model parameters θlearned minimizing the loss function L given

the training dataset D .

There are several popular loss functions [47, 48]. The supervised learning task is usually

subdivided into regression and classification tasks, each having its own goals and, therefore,

requiring, its own loss functions.

For the regression task, the model is required to predict the continuous value correspond-

ing to the input. That means that the desired outputs and hence model predictions are defined

as real-valued variables ydata
i ,ymodel

i ∈ R. The most popular loss functions for this case are

mean squared error (MSE).
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The per-example loss function lMSE(y
data
i ,ymodel

i ) of the mean-squared absolute error is

defined as

lMSE(y
data
i ,ymodel

i ) =
(

ydata
i −ymodel

i

)2

(2.6)

In the classification task, the model calculates the probability of the entity represented by

the input data used during training being a member of a particular class or group of classes.

As a result, the desired and predicted output values are defined as vectors of probabilities

of the object belonging to any of the range of classes, i.e. ydata
i, j ,ymodel

i, j ∈ (0,1). Furthermore,

if single-class classification is considered, the output should describe a discrete probability

distribution, and therefore an additional condition is applied to answers that ∑
n
j=1 yi, j = 1, ∀i.

The most popular loss for classification tasks is cross-entropy, also known as log-loss,

with the per-example loss function lCE defined as

lCE(y
data
i ,ymodel

i ) =−
n

∑
j=1

ydata
i, j log

(

ymodel
i, j

)

+
(

1− ydata
i, j

)

log
(

1− ymodel
i, j

)

. (2.7)

After having gained knowledge about certain loss functions employed in machine learning,

it now is crucial to comprehend the learning process of discovering the value of θ that

minimizes the loss function. The famous iterative optimization technique is called Gradient

descent (GD) [49±51]. The GD method is based on utilizing the famous gradient property -

that it points in the direction opposite to the steepest descent of the function. The method

assumes that the optimized function is defined and differentiable in a neighborhood of the

considered point. This condition is commonly satisfied while minimizing the loss, function

as an integral aspect of neural network training.

In general, the gradient descent method proposes making small iterative steps in the

direction opposite to the gradient in order to find the set of variables minimizing the studied

function. For a scalar function f (x) of a vector variable, x ∈R
n the method can be stated as:

xt+1 = xt −η
δ f (xt)

δxt
, (2.8)

where δ f (xt)/δxt is the gradient, η ∈ R is a learning rate - a hyper-parameter of a gradient

descent method. We expect the function value to decrease after every algorithm iteration

f (xt+1)< f (xt), the behavior is referred to as the convergence of gradient descent. Eventually,

the gradient descent is expected to stop at a function minimum, where the gradient is equal to

zero. The selection of appropriate learning rate values significantly impacts the convergence

of the algorithm - excessively large values of η impede the algorithm’s convergence to the
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minimum, while excessively small values of η augment the number of iterations needed to

approach the optimal function.

In the context of deep learning, first, the optimized variable is a set of artificial network

parameters θ . Second, the gradient of a loss function over the ANN parameters δL /δθ is

calculated over all the objects of the training dataset D . As a result, the gradient descent

algorithm for artificial neural network training takes shape:

θt+1 = θt −η
1

|D | ∑
(x,ydata)∈D

δ l(θt ,x,y
data)

δθt
, (2.9)

where |D | is the cardinality of the training dataset, and l(θt ,x,y
data) is the pre-sample loss

function introduced in the loss function definition Eq. (2.4).

A notorious flaw of the gradient descent optimization technique is that it converges to the

local minimum : lim
t→∞

xt → xLM, i.e. the point where the function takes the minimum value

only over some the neighborhood of point, i.e

xLM : f (xLM)≤ f (x) ∀x ∈ O(xLM) ∈ R
n, (2.10)

instead of the desired global minimum point xGM, the smallest possible value reachable by

the optimized function overall.

Furthermore, the gradient descent algorithm might even not reach the local minimum.

The gradient value may reach zero and cause gradient descent to stop at a point where there is

no local minimum, particularly in a saddle point, which is a critical point where the gradient

is zero in one direction but slopes in another direction [49]. In light of the limitations of

gradient descent, notable enhancements to the algorithm have been developed, with the Adam

(Adaptive Moment Estimation) optimization algorithm being the most widely adopted in

the industry and also in the present thesis. It has shown improved performance over other

optimization algorithms in many deep learning tasks [52].

As noted previously, to execute the simple GD iteration Eq. (2.9) gradient has to be

averaged over the whole, typically large, training dataset D . This averaging requires a lot

of numerical resources, thus, making the gradient descent algorithm computationally too

expensive. A popular approach to reducing the complexity of a gradient descent algorithm

is to use a stochastic approximation [53] of a gradient during an optimization algorithm

iteration, Eq. (2.4). The resulting algorithm is known as a stochastic gradient descent

(SGD) [49, 52, 54]. In more detail, for every iteration, SGD calculates the gradient using a

small randomly selected sample of training data points D ′ ⊂ D , |D ′| ≪ |D |. This subset is
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referred to as a mini-batch. The resulting algorithm can be formulated as:

θt+1 = θt −η
1

|D ′
t | ∑

(x,ydata)∈D ′
t

δ l(θt ,x,y
data)

δθt
, D

′
t ⊂ D (2.11)

Notably, since the gradient calculation is approximate in SGD, even the convergence of this

algorithm to a local minimum of a loss function L is not guaranteed, compared to the vanilla

gradient descent Eq. (2.9). Nonetheless, the stochastic gradient descent, typically, finds the

set of ANN parameters θ resulting in a reasonably low value of a loss function [49].

Here, we specifically used the most popular stochastic gradient descent algorithm named

Adam [55] (an acronym for adaptive moment estimation). The Adam algorithm is an

extension of stochastic gradient descent that computes adaptive learning rates for each

parameter by estimating the first and second moments of the gradients. The intuition behind

the Adam optimization algorithm is that it can be visualized as a heavy ball with friction

rolling down a slope, where the ball prefers to settle at a flat minimum in the error surface, as

opposed to steep and narrow ones. This behavior is in contrast to traditional gradient descent,

which behaves more like a light ball that bounces around the surface and may settle in a

narrow and steep minimum [52, 56].

Mathematically speaking, first, Adam introduces the exponentially moving average of

mean µt and variance νt of gradient:

µt+1 = β1 ·µt +(1−β1) ·∇t

νt+1 = β2 ·νt +(1−β1) · (∇t)
2

∇t =
1

|D ′
t | ∑

(x,ydata)∈D ′
t

δ l(θt ,x,y
data)

δθt
, D

′
t ⊂ D

(2.12)

where ∇t is the stochastic estimation of gradient over mini-batch D ′ from Eq. (2.11), and

(·)2 is point-wise squaring. After some bias corrections, µt+1 and νt+1 are used to calculate

an update of the artificial neural network parameters

θt+1 = θt −η · µt+1√
νt+1 + ε

, (2.13)

where ε ≪ 1 is a regularization term added for the numerical stability.

Finally, it is important to notice that the speed of gradient calculation is the bottleneck

defining the overall execution speed of gradient descent optimization. In neural network train-

ing, this problem is addressed by backpropagation - a simple and cost-effective algorithm for

gradient computation [49]. The backpropagation is based on the chain rule of calculating the

P. Freire de Carvalho Souza, PhD Thesis, Aston University, 2022 22



2.3. Data-Driven Equalizers using Neural Networks.

derivatives of a function cascade. The chain rule states that the derivative of the composition

of two differentiable functions h(x) = f (g(x)) can be calculated as:

δh

δx
=

δ f

δg
· δg

δx
. (2.14)

If the considered function can be represented as the recursive repeat of the same function

block h = fN(xN , fN−1(xN−1 . . . f1(x1))), one can utilize the already calculated and stored

gradients over the parameters of the later function iterations δh/δxi, δh/δ fi−1 to calculate

the gradients over the parameters of earlier iterations, e.g. δh/δxi−1, δh/δ fi−2 via chain rule.

In general, the backpropagation algorithm can be formulated for any differentiable function

which can be represented as an unidirectional computational graph [49]. This generalized

backpropagation is implemented in modern deep learning computational packages, e.g., in

PyTorch [57]).

2.3.2 Feed-forward structures for the Neural Network Design

A multi-layer perceptron

The first and, perhaps, simplest and well-studied NN-based equalizer that we consider is the

MLP, proposed for the short-haul coherent system equalization in [40] and the long-haul

systems in [58]. The MLP is a deep feed-forward densely connected NN structure that

handles the I/Q components for each polarization jointly, providing two outputs for each

processed symbol: its real and imaginary parts. Due to the MLP’s ability to process joint

I/Q components, the equalizer can learn the nonlinear phase impairments in addition to the

amplitude-related nonlinearities. When using the MLP, the channel, and device-induced

memory effects are taken into account by incorporating the time-delayed versions of the

input signal, as was carried out in [58].

The general equation, in a matrix form, describing the output vector y given the input x

passing through the 3-layer MLP, is:

y=φ

{

φ
[

φ(x×Wn1
+b1)×Wn2

+b2

]

×Wn3
+b3

}

×Wout , (2.15)

where x is the input vector with ni elements, y is the output vector with no elements, φ is a

nonlinear activation function, Wn1
∈ R

ni×n1 , Wn2
∈ R

n1×n2 , Wn3
∈ R

n2×n3 and Wout ∈ R
n3×no

are the real weight matrices of the respective dimensions participating in each layer of the

MLP, b1,2,3 are the bias vectors, the indexes n1,2,3 stand for the number of neurons in each

hidden layer, and × in (2.15) is the matrix-vector convolution.
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In a simulation environment, the MLP equalizer showed performance metrics similar to

those delivered by the ªtraditionalº digital back-propagation (DBP) with 2 steps-per-span

and 2 samples-per-symbol at 1000 km of standard single-mode fiber [58]. In this thesis, we

use the same 3-layer MLP as in [40].

Convolutional neural networks

Due to their feature extraction propensity [59], the CNNs have become one of the most

commonly used NN structures in such areas as 2D image classification and 3D video

applications [60, 61]. Convolution layers have also been found efficient in the analysis of

temporal 1D sequences with several applications to time series sensors, audio signals, and

natural language processing [62, 63]. For longer sequences, the CNN layer can be used as a

pre-processing step due to its ability to reform the original sequence and extract its high-level

features used for further processing cycles [64].

The convolutional layer is primarily characterized by three key parameters: the number

of filters, the size of its kernel, and the layer activation function. The extracting functionality

is achieved by applying n f filters, sliding over the raw input sequence, and generating

the number of output maps equal to n f , with a fixed kernel size nk. The convolutional

layer is constructed as a squash function, which means that the input is mapped to a lower-

dimensional representation, in which only the main (or desirable) characteristics are retained.

Since the CNNs were mainly developed in the context of image recognition and spatial

feature extraction, other parameters, such as padding, dilation, and stride are also used in the

design of the convolutional layers. Considering that the input shape is (B,M,4), the output

shape, after the CNN layer with all those parameters, is defined as (B,Lout ,n f ), where the

parameter Lout is the function of the CNN hyper-parameters and defined as:

Lout =

[
M+2·padding−dilation·(nk −1)−1

stride
+1

]

. (2.16)

However, this thesis will not focus on the investigation of those additional parameters.

Consequently, the default convolutional layer configuration is fixed with the padding equal

to 0 (which corresponds to ªvalidº in Keras), the dilation equal to 1, and the stride equal

to 1. Then, the input-output mapping of the convolution layer for this configuration can be

described as follows:

y
f
i = φ

(
ni

∑
n=1

nk

∑
j=1

xin
i+ j−1,n ⊙ k

f
j,n +b

f
j,n

)

, (2.17)
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where y
f
i is the output feature map of the i-th input element produced by the filter f in the

CNN layer, xin is the input raw data vector, k
f
j is the j-th trained convolution kernel of the

filter f , and b
f
j is the bias of the filter f . Further, n is the feature index of the kernel and

input data, ranging from 1 to ni, corresponding to the number of features in the data; φ ,

as before, denotes the nonlinear activation function used in the convolutional layer. Note

that (2.17) is true for all i ∈ [1, ...,Lout ]. Moreover, since the pooling layer captures only the

most important features in the data and ignores the less important ones [65], the pooling

discretization process is not used in our equalizers to avoid the downsampling of feature

sequences.

2.3.3 Recurrent Structures for the Neural Network Design

Vanilla Recurrent NNs

Vanilla RNN is different from MLP and CNN in terms of its ability to handle memory, which

is quite beneficial for time series analysis and prediction. Here we note that the feed-forward

models (e.g., those, described above) can be reckoned, according to J. L. Elman [66], as an

ª... attempt to ªparallelize timeº by giving it a spatial representation. However, there are

problems with this approach, and it is ultimately not a good solution. A better approach would

be to represent time implicitly rather than explicitly.º The recurrent structures described

in the following subsections just do that implicit representation: RNNs take into account

the current input and the output that the network has learned from the prior input. The

propagation step for the vanilla RNN at time step t, can be described as follows:

ht = φ(Wxt +Uht−1 +b), (2.18)

where φ is, again, the nonlinear activation function, xt ∈ R
ni is the ni-dimensional input

vector at time t, ht ∈R
nh is a hidden layer vector of the current state with size nh, W ∈R

nh×ni

and U ∈ R
nh×nh represent the trainable weight matrices, and b is the bias vector. For more

explanations on the vanilla RNN operation, see, e.g., Ref. [67]. Even though the RNNs were

tailored for efficient memory handling, it still suffers from the inability to capture long-term

dependencies because of the vanishing gradient issue [68].

Long short-term memory (LSTM) NNs

LSTM is an advanced type of RNNs. Although RNNs suffer from short-term memory issues,

the LSTM network has the ability to learn long-term dependencies between time steps (t),

insofar as it was specifically designed to address the gradient issues encountered in RNNs
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[69, 70]. The LSTM comprises a gateway architecture that includes three gate types: the

input (it) gates, the forget ( ft) gates, and the output (ot) gates, as shown in Fig. 2.2. The

compact form of the forward-pass LSTM cell equations for a time-step t, (i.e., when we

process the input feature sequence xt having the size ni) is [71, 72]:

it = σ(W ixt +U iht−1),

ft = σ(W f xt +U f ht−1),

ot = σ(W oxt +Uoht−1),

Ct = ft ⊙Ct−1 + it ⊙ tanh(W cxt +Ucht−1),

ht = ot ⊙ tanh(Ct),

(2.19)

where Ct is the cell state vector, ht is the current hidden state vector of the cell with size

nh and ht−1 is the previous hidden state vector. Note that ni is equal to the number of

features, and nh is the number of hidden units that will be chosen in the design process.

The trainable parameters of the LSTM network are represented by the matrices W ∈ R
nh×ni

and U ∈ R
nh×nh with the respective upper indices i, f , o, and c, referring to the particular

LSTM gates mentioned previously. More details are given in Fig. 2.2. In (2.19), ⊙ is the

element-wise product, and σ denotes the logistic sigmoid activation function. The aim of the

input i-gate is to store the content to the cell; the forget f -gate defines what information is to

be erased; the output o-gate defines what information has to be passed to the next cell.

𝑡−1𝑡

𝑡−1 𝑡

𝑐 𝑐
𝑡 𝑡 𝑡
x

xx
+

𝑡

Fig. 2.2 The Long Short-Term Memory (LSTM) cell diagram represents graphically the

operations described by (2.19) for one time-step. The arrows represent the ªflowº of re-

spective variables (the blue/green ones refer to the previous state and current input), the

rectangles identify the nonlinear functions, and the symbols in circles identify the respective

mathematical operations.

What makes the usage of the LSTM a dynamical approach is: the time sequence is

processed by the array of LSTM cells ranging over the t-interval of interest, which is

the memory size in our case. Besides the ªdynamicalº LSTM property, the bidirectional

LSTM (biLSTM) provides a more robust solution for time series since with the bidirectional
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structure, we are learning the weights from the past visible values to the future hidden

values, and that corresponds to our learning which features of the past values are useful for

a particular symbol value prediction [73]. In the context of optical channel equalization,

the key advantage of biLSTM is that it can efficiently handle intersymbol interference (ISI)

between the preceding and following symbols.

In the context of channel equalization, the LSTM was suggested in [74, 75] to reduce the

transmission impairments in IM/DD systems with pulse amplitude modulation (PAM). The

LSTM-based approach was further developed in [4], where, for the first time, the biLSTM

was used in an optical coherent system to compensate for fiber nonlinearities, but only in

a simulation environment. Additionally, it was shown that the biLSTM also outperformed

a low-complexity DBP [4]. More recently, a bi-vanilla RNN was applied as well for the

soft-demapping nonlinear ISI [76].

Echo state networks (ESN)

The ESN is a promising type of RNNs due to its relaxed training complexity and its ability

to preserve the temporal features from different signals over time [77±81]. The ESNs are in

the reservoir computing (RC) category because, in the ESNs, only the output weights are

trainable. In Fig. 2.3, the grey-colored area is the reservoir ªmainº structure containing the

randomly connected ªneuronsº that capture the time features of the signal, while the output

weights are trained to define which states are more relevant to describe the desired output.

This thesis uses the concept of leaky-ESN [82] containing no output feedback connections.

The motivation to choose the leaky-ESN architecture is that there was an experimental

observation that the leaky-ESN configuration outperforms the traditional ESN in feature

extraction for noisy time series [78]. The latter is, evidently, an important property in optical

transmission-related tasks. The leaky-ESN is formalized for a certain time-step t, as follows:

at = φ (Wr × st−1 +Win × xt) , (2.20)

st = (1−µ)st−1 +µat , (2.21)

yt =Wo × st , (2.22)

where st ∈ R
Nr is the system state at time-step t, Nr is the number of hidden neurons units

in the dynamic layers, which represents the dimensionality in the reservoir; xt ∈ R
ni and

yt ∈ R
no are the input and the output vector of the ESN, respectively; Wr ∈ R

Nr×Nr is a
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reservoir weight matrix that defines which neuron units are connected (including the self-

connections); this matrix is also characterized by a sparsity parameter sp defining the ratio

of connected neurons to the total possible connections number. Finally, Win ∈ R
Nr×ni is the

input weight matrix, µ is the leaking rate parameter, and Wo ∈ R
no×Nr is the output weight

matrix which is the only one that is trainable using a regression technique. This training

phase in ESN does not affect the dynamics of the system, which makes it possible to operate

with the same reservoir for different tasks [77]. A schematic representation of a leaky-ESN,

including the sequential input, dynamic, static, and output layers, as depicted in Fig. 2.3.

Fig. 2.3 Schematic of a leaky-ESN. A dynamical core called a reservoir is driven by an input

signal x. The states of the reservoir s are combined non-linearly to produce the output y. The

reservoir consists of N interconnected nodes followed by a static (leaking) layer. The circular

dashed lines in the dynamic and static layers represent the past state values, while the solid

lines represent the current time step value. The reservoir and input weights are fixed after

initialization, while the output weights are learned to use a regression technique.

The signal passing through the dynamic layer in Fig. 2.3 is represented by (2.20), and this

layer is the core of the reservoir structure. Then it is followed by a static layer, represented

by (2.21), which incorporates the leaky-ESN behavior through accumulating (integrating) its

inputs, but it is also losing exponentially (leaking) accumulated excitation over time. Finally,

the output layer defines which units are relevant to the description of the current task (for the

equalization, in our case), and it is described by (2.22).

Concerning the previous ESN applications for optical channel equalization [80], the

ESN was implemented in the optical domain for the distortions’ mitigation: a 2 dB gain in

Q2-factor was achieved for 64-QAM 30 GBd signals transmitted through 100 km fiber at

10 dBm input power. In addition, the same as it is in this thesis, the reservoir can be applied in

the digital domain. In [79], the leaky-ESN was successfully applied after the analog-to-digital
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converter to enable 80 km transmission to reach below the KP4-FEC threshold [83] for a 32

GBd on-off keying signal.

2.4 Model-Driven Neural Network Equalizers Inspired by

the Nonlinear Schrödinger Equation.

Now, we move to the designing category of an equalizer when it incorporates elements of

some known equalization techniques and/or recasts that technique as a trainable/learnable

approach. This category is known as "model-driven NN equalizers," and they leverage the

knowledge of some element of a channel model or the NLSE.

2.4.1 Neural Network Design Based on Perturbation Theory

One popular approach is to use the perturbation-based NLC approach described in Sec 2.2.3,

but now allowing the perturbation parameters to be trainable [1, 84±90].

The original idea came from the article [1], based on the definition of Eq.2.2, intra-channel

cross-phase modulation (IXPM) and intra-channel four-wave mixing (IFWM) symbol triplets

are considered NN inputs. Figure 2.4 shows the NN architecture proposed by [1]. This

feed-forward NN is built from a triplet node input layer, two hidden layers consisting of 2 and

10 neurons, respectively, and two output nodes corresponding to the real and imaginary parts

of the nonlinearity estimation. Notice that, before being fed into the NN model, the triplets

are divided into real and imaginary parts. During training, a dropout layer with a probability

of 0.5 is only added after the second hidden layer to prevent overfitting. In addition, the

following activation functions were tested: SELU, RELU, Leak-RELU and Linear. The Leak

Relu has finally been selected because the measured BER of the system has been reduced in

Ref. [1]. To explain how the equalization process works, it is important to show how the loss

function is used. Eq. 2.23 defines the loss function.

MSE =
1

B

B

∑
i=1

|Xi +α∆Yi −Yi)|, (2.23)

where Xi is the transmitted symbol, Yi is the received symbol, ∆Yi is the estimated impact

of nonlinearity over the symbol Xi, and α is a normalization factor to account for changes in

the launch power. The NN is used to estimate this nonlinearity by minimizing the distance

between the transmitted symbol plus the estimated nonlinearity and the received symbol, as

can be seen in the loss function.
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This proposed method has two phases for the compensation process, unlike equalizers in

the other subsections. First, after standard DSP algorithms, the NN is added to the receiver

side in the training process to compute nonlinear disturbances. After the training, on the

transmitter side, the NN model and all its parameters are applied to produce pre-distorted

waveforms to prevent any disturbance to the receiver.

1

2

1

2

9

10

…
Triplets

First order

Nonlinearity

estimation

NN Structure

𝑋𝑘 = 𝑌𝑘 − 𝛼Δ𝑌𝑘
Δ𝑌𝑘

𝑌𝑘 𝑋𝑘Equalized SymbolReceived Symbol

Fig. 2.4 This diagram describes the optimized NN architecture with two hidden layers used

in Ref. [1] to estimate the first-order nonlinearity to equalize the received symbols by having

the triplets as the input of the NN structure.

To evaluate the performance of this NN, an experiment over 2800 km standard single-

mode fiber (SSMF) transmission using a 32 Gbd signal was operated. In this setup, after 5000

epochs of training, this NN algorithm achieved 0.35 dB Q-factor improvement compared to

the single-step filtered DBP algorithm and 0.6 dB Q-factor improvement when compared

with just linear equalization.

2.4.2 Neural Network design based on Digital back propagation

Another famous model-driven approach is named learned digital backpropagation (LDBP) [91±

94]. In this group of solutions, the split-step Fourier method (SSFM) is built as a general

structure of a deep neural network, so its operation resembles the one of the standard DBP,

but this time with the flexibility to learn different linear and nonlinear steps.

A plain DNN can be considered as an alternation matrix multiplication B̂(k)[ Åx] = Åx∗W (k)

with some particular weight vectors W (k) and point-wise applications of nonlinear functions,
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ρ̂(k)[ Åx] =
{

ρ(x j) ∀x j ∈ Åx
}

Åy = DNN[ Åx] = ρ̂(l)[B̂(l)[ ρ̂(l−1)[B̂(l−1)[ ... ρ̂(1)[B̂(1)[ Åx]]], (2.24)

where l is the number of layers. In general, weight vectors b(k) and nonlinear functions ρ(k)

can be different ones for different layers k ∈ [1, ..., l].

Like in DNN, discrete SSFM can be considered as an alternation of the linear transforma-

tions Dδ and memory-less (i.e., pointwise) nonlinear transformations Nδ

Åy = SSFM[ Åx] = Dδ/2[Nδ [Dδ [ ...Dδ [Nδ [Dδ/2[ Åx]]] (2.25)

Due to their similarities, we can use the numerical approaches created for optimizing DNNs

on SSFM. Comparisons along these lines are shown in Fig 2.5. In particular, SGD algorithms

can be employed to facilitate gradient-aware approaches to SSFM parameter optimization.

This concept was used in Ref. [91], where linear distortion vectors W and nonlinear function

coefficients ξ were optimized by SGD to reduce the mean error between the restored signal

Åxres = SSFM−1[ Åy] and the restored signal Åxorig.

The authors of [91] considered Nsp as a multi-span fiber-optic communication system

consisting of the same Lsp ∼ 100km optical fiber spans. In order to compensate for the

signal attenuation α , an optical amplifier is added after each span. The classical SSFM-based

DBP [95] is applied to the signal received and sampled by the receiver to compensate for

channel distortions. This strategy is schematically represented on the top branch in Figure

2.5.

For inverted amplifiers, multiplicative factors G−1 = exp(Lspα/2) are considered. The

approximately transmitted symbol vector x̂DBP ∈Cm is obtained by downsampling the SSFM

result, followed by a rotational constant phase exp(iφrot), φrot = arccos( x·x̂DBP

||x||||x̂DBP
||).

Authors of [91] used TensorFlow to implement the LDBP and optimize its parameters

θ . For the optimization, they used the built-in Adam optimizer, which performed stochastic

gradient descent with 30 input-output pairs (y,x) (i.e., mini-batches) per optimization step.

The results obtained by applying LDBP to [91] show that LDBP with 3 StPS outperformed

a much more complex DBP framework with 50 StPS. This new achievement was explained

by the authors because LDBP was able to take account of the sections of the input signal

spectrum filtered out during signal sampling on the receiver. Finally, LDBP gave a 50%

decrease in complexity over DBP for comparable efficiency, taking the number of StPS as a

rough measure of complexity.
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Fig. 2.5 Correspondence between linear dispersion D and non-linearity N operators, used

within the SSFM to approximate the light evolution down the fiber, and the linear (vector-

matrix convolution) and non-linear (activation) transformation steps in an NN structure.

In conclusion, it is important to note that currently, no general recommendation can be

made regarding which of the two paths (adopting a black-box approach or a trainable version

of an existing method) to pursue, as both directions have their advantages and disadvantages.

P. Freire de Carvalho Souza, PhD Thesis, Aston University, 2022 32



Chapter 3

The Performance Consideration for

Designing Neural Networks-based

Equalizers

3.1 Model-driven design using complex-value neural net-

work

In this section, it is shown a new way to make a neural network with complex values for

signal equalization on the receiver side. This approach is based on the assumption that Kerr

nonlinearity is the leading distortion. The performance of the suggested neural network

is investigated in several fiber systems and compared with the multi-layer neural network

proposed in [3] and standard digital back-propagation. Also, it is presented a Bayesian

optimizer implementation to fine-tune the parameters of the proposed architecture, i.e., its

hyper-parameters, to every considered test case. In this study, the focus was on the metro

networks, which it is considered both standard single-mode fiber and a large effective-

area fiber base. The presented numerical and experimental results demonstrate that the

proposed neural network leads to significant system performance improvements. Moreover,

this approach was also shown to be able to mitigate not only nonlinear fiber transmission

distortions but also impairments arising in the components of both the transmitter and

receiver.
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3.1.1 The Channel Model

The averaged evolution of the slowly varying complex-valued envelopes of the electric field

in an optical fiber is described by the pass-averaged Manakov equation [96]:

∂uH/V (t,z)

∂ z
+

jβ2

2

∂ 2uH/V (t,z)

∂ t2
= j

8γ̃

9

[
|uH(t,z)|2 + |uV (t,z)|2

]
uH/V (t,z), (3.1)

where uH/V (t,z) are the normalized optical fields of horizontal (H) and vertical (V ) polar-

ization, respectively, β2 is the group velocity dispersion, γ̃ = γe−αz is the effective averaged

nonlinearity coefficient, that includes the effective length scale Lef f = (1− e−αL)/α emerg-

ing due to averaging over a periodic loss and gain, γ is the fiber nonlinear coefficient, L is

the span length and α is the fiber loss coefficient. In case β2 = 0, one can show that the

analytical solution of Eq. (3.1), at the end of the transmission link, can be expressed for

H-polarization in terms of the transmitted xHk
and received yHk

soft symbols as [97]:

xHk
= yHk

e−8 j/9γLef f Ns[|yHk
|2+|yVk

|2], (3.2)

where Ns is the number of spans.

Here, it is suggested the application of Eq. (3.2) to recover digitally the transmitted

symbols xk out of the received signal when the chromatic dispersion (CD) was already com-

pensated for. For the Manakov equation (Eq. (3.1)), perturbation methods describing the field

evolution in the highly nonlinear regime [98±101] have been developed under some limiting

assumptions. Conversely, this thesis proposes adding trainable general nonlinearity functions

to the memory-less solution provided by Eq. (3.2): additions Θ1,Θ2 to the exponential power,

responsible for phase distortion, and additions Ξ1,Ξ2, responsible for amplitude distortion.

The additional degrees of freedom introduced by these functions will let the equalizer learn

the features of system behavior that are not covered by the original Eq. (3.2). Particularly, it

is introduced the following model for the dual-polarization case:

x′Hk
= c1YHk

e[−c2|YHk
|2−c3|YVk

|2 +Θ1] +Ξ1, (3.3)

x′Vk
= c4YVk

e[−c5|YHk
|2−c6|YVk

|2 +Θ2] +Ξ2, (3.4)

where x′
Vk/Hk

is the k-th recovered symbol in each polarization, Y(V/H)k
is the vector containing

the sequence of received symbols [y(V/H)k−N
, ...,y(V/H)k

, ...,y(V/H)k+N
], 2N +1, is the size of

the memory in the model, ck with k = 1, ...,6 are complex vectors of size 2N +1 each, and

Θ1/2(YHk
,YVk

) and Ξ1/2(YHk
,YVk

) are the two adaptive nonlinear functions mentioned above,
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which depend on the vectors YHk
and YVk

. It is important to stress that this model is used for

the design of the NN, and not for solving the propagation equations.

The point-wise multiplication of the sequence of received symbols Y(V/H)k
and the

weight coefficients ck define the memory introduced into the nonlinear distortion Eq. (3.2) by

chromatic dispersion (CD) and transceiver impairments. Furthermore, the nonlinear functions

Θ1/2 and Ξ1/2 reflect the residual nonlinear distortion introduced by the optical fiber and the

transmitter components. In other words, the proposed NN is designed to compensate, at the

receiver, for the deterministic intra-channel nonlinear distortion originating in both optical

fiber and transceiver equipment.

The model hyper-parameters depend on the total fiber length and on the relationship

between β2 and γ . Consequently, during the numerical study, it is considered links based on

two different types of optical fibers: large effective area fiber (LEAF) and standard single-

mode fiber (SSMF). The considered link lengths were 6×80km (480 km) and 12×80km

(960 km). The characteristics of the SSMF and LEAF are reported in Table 3.1.

Table 3.1 Considered fiber parameters.

Fiber α [dB/km] β2 [ps/(nm.km)] γ [1/W km]

SSMF 0.21 16.8 1.14

LEAF 0.225 4.2 1.3

For the purpose of describing the applicability of the proposed ML algorithm, it is crucial

to demonstrate qualitatively where the strongly nonlinear regime begins in both fibers. The

definition of the different regimes can be carried out by taking into account the relationship

between chromatic dispersion (LD) and Kerr nonlinearity (LNLI) effective lengths, described

as [97]:

LD =
T 2

0

|β2|
, LNLI =

1

γP
, (3.5)

where T0 is the pulse length and P is the launch optical power. Fig. 3.1 shows the dependency

of those two lengths on the launch power, considering a symbol rate equal to 32 GBd. In

the ªhotº region, the nonlinearity is the dominant signal distortion source whereas, when

we are in the ªcoldº region, the linear distortions are dominant. As expected, LEAF has a

stronger nonlinear dependence on the launch power than SSMF, resulting from its chromatic

dispersion parameter, which is four times smaller than that of SSMF.
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𝐷

Fig. 3.1 Qualitative estimation of the relative strengths of chromatic dispersion and Kerr

nonlinearity [Eq. (3.5)] for LEAF and SSMF at different power levels.

3.1.2 Neural Network Design Based on a Channel Model

Here, it is proposed to build the NN topology based on the loose signal evolution model

Eqs. (3.3), (3.4). Contrary to the conventional real-valued NN architectures [49], in such a

design, it was implemented using complex-valued weights, activation functions, and input

symbols as suggested in [102, 103] to reflect the complex-valued laws describing the signal

propagation. Figure 3.2 shows a schematic representation of the proposed NN topology.

The NN depicted in Fig. 3.2 predicts the k-th symbol transmitted in V polarization xVk
.

The proposed NN can obtain the transmitted symbols from the Horizontal (H) polarization

xHk
by swapping V, yVk

, and H, yHk
, polarization symbol sequences at the NN input. In this

design, we used the classic mathematical representation of a neuron: the linear combination

of inputs followed by a nonlinear function [49]. The following equations describe the

architecture of the suggested NN: Each of the equations defines the exits of the neurons a),

b), c), d), and e), as referred to in Fig. 3.2 (the corresponding exit labels are also marked in

the figure with the sub-index ªaº, ªbº, etc.):

Neurona,out =−
∣
∣
∣
∣
∣

k+N

∑
i=k−N

yVi
ai

∣
∣
∣
∣
∣

2

, (3.6)
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Fig. 3.2 The architecture of the proposed neural network.
Fig. 3.3 Re-

ceiver setup in

the simulator.

Neuronb,out = ln

(
k+N

∑
i=k−N

yVi
bi

)

, (3.7)

Neuronc,out =−
∣
∣
∣
∣
∣

k+N

∑
i=k−N

yHi
ci

∣
∣
∣
∣
∣

2

, (3.8)

Neurond,out = exp

(

Neurona,outd1 +Neuronb,out +Neuronc,outd2 +
n3−1

∑
i=0

Θidi+3

)

, (3.9)

Neurone,out = Neurond,out +
n6−1

∑
i=0

Ξiei+1. (3.10)

Eqs. (3.6)±(3.10) can be combined in a single pipeline connecting NN output x′Vk
to its inputs

yVi
, yHi

. This form is convenient to show the similarities between the NN architecture and
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Eq. (3.4) (the similar expression can be written down for another polarization component):

x′Vk
=

(
k+N

∑
i=k−N

yVi
bi

)

exp



−d1

∣
∣
∣
∣
∣

k+N

∑
i=k−N

yVi
ai

∣
∣
∣
∣
∣

2

−d2

∣
∣
∣
∣
∣

k+N

∑
i=k−N

yHi
ci

∣
∣
∣
∣
∣

2

+
n3−1

∑
i=0

Θidi+3



+
n6−1

∑
i=0

Ξiei+1.

(3.11)

Here ai, bi, ci, di, and ei are complex tensor weights constituting the parameters of the NN.

After a random initialization, these weights are learned from propagated data by means of

stochastic gradient descent optimization performed by Adam optimizer [55]. The optimizer

minimizes the mean-squared error (MSE) loss function L, describing the difference between

the predicted symbols x′i and the actually transmitted ("desired") ones xi:

L =
1

M

M−1

∑
i=0

|x′i − xi|2, (3.12)

where M is the batch size.

We used custom activation functions −|x|2, ln(x), and ex, to reflect in the architecture

our estimation of the distortion form, given by Eqs. (3.3) (3.4). Furthermore, Θ and Ξ, as

mentioned before, are the analytically unknown nonlinear functions taking into account the

deviation of the considered link from the ideal zero-dispersion case provided by Eq. (3.2);

these functions are modeled via the NNs. Particularly, a three-layer perceptron was used

for each function, given the fact that the multi-layer perceptron is a universal function

approximator [49].

The NN that learns Θ has n1 neurons in the first layer, n2 neurons in the second, and n3

neurons in the third one. In the same way, the NN that learns Ξ has n4 neurons in the first

layer, n5 neurons in the second one, and, finally, n6 neurons in the third one. For both NNs,

all neurons have a complex-valued activation function f (x):

f (x = xr + jxi) =
e2xr −1

e2xr +1
+ j

e2xi −1

e2xi +1
. (3.13)

3.1.3 Hyper-parameters optimization in NN-based Equalizers

Since the functions approximated by Θ and Ξ may have different nonlinearity types and

memory sizes at different power levels depending on the leading propagation effect: the Kerr

nonlinearity or the CD (Fig. 3.1), a Bayesian optimization algorithm [2] was implemented

to derive the optimal values for the hyper-parameters of Θ and Ξ NNs for each studied
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communication system: the number of input taps N; neuron numbers ni in each layer of each

NN.

Fig. 3.4 The principal scheme of the Bayesian optimizer [2] used to find hyper-parameters of

NNs approximating nonlinear functions Θ and Ξ, Eqs. (3.3±3.4). A detailed explanation of

the schematic is given in the main text.

Let us briefly specify the BO approach1 that seeks the global optimum x∗ of a black-

box function opt, where opt(x) can be evaluated for any arbitrary x ∈ X . That is, x∗ =

argminx∈X opt(x), where X is a hyperparameter space that can contain categorical, discrete,

and continuous variables [104]. For solving the problem formulated above, the BO assumes

that the function opt was sampled from a Gaussian process. The BO maintains a posterior

distribution for this function when observations are made [105]. For this application, the

observations are the outcomes of performing the NN-based equalization trials with different

hyperparameters. Fig. 3.4 illustrates the complete hyper-parameters optimization process.

During the optimization, it is considered a signal optical launch power 3 dB higher than the

CDC optimal level for every test-case in order to have a stronger response of the system

performance to the hyper-parameters values. The learning rate and the batch size are fixed at

0.001 and 1000, respectively. In the beginning, the number of input taps N and the numbers

of neurons in all layers n1±n6 are initialized as 20 and 100, respectively. The optimization

cycle starts with training the NN via backpropagation with a fixed set of hyper-parameters for

5000 epochs, i.e., full passes through the whole dataset, over the training dataset containing

1The hyperparameter optimization can be done using methods other than the BO, although, as mentioned in

Ref. [104, 105], the BO offers numerous advantages over search algorithms in terms of finding good candidates

with fewer interactions.

P. Freire de Carvalho Souza, PhD Thesis, Aston University, 2022 39



The Performance Consideration for Designing Neural Networks-based Equalizers

218 restored symbols. After each training epoch, we calculate the BER obtained by the

whole NN (Fig. 3.3) on the independently generated testing dataset containing 216 symbols.

The best BER obtained during the training is recorded. After training, the best BER is fed

as the optimization target to the Bayesian optimizer [2]. The optimizer assumes that the

conditional distribution of BERs ± given the particular values of hyper-parameters ± is a

Gaussian process. Having received the new measured BER value, the optimizer updates the

process model and generates a new set of hyper-parameters to be tested. Having carried out

20 Bayesian optimizer cycles, we selected the set of hyper-parameters that produced the

lowest BER.
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Fig. 3.5 Example of the iterative optimization for the Bayesian method in the case of DP-64

QAM single channel LEAF (6×80km) at 3 dBm.

Fig. 3.5 shows an example of the benefits provided by the Bayesian optimizer method.

This figure displays the optimization for the case of transmission of a DP-64QAM single

channel over LEAF (6×80km) at a launch power of 3 dBm (that will be discussed in detail

in the next section). As can be seen, this method reached the best set of hyper-parameters ±

and thus the best Q-factor ± on the 8th optimization cycle. The best configurations obtained

for each considered scenario, in this study, are shown in Table 3.2.

Noticeably, the optimizer suggested several sets with similar performance levels. Among

these, one could select the set with the best balance between performance and numerical

complexity. However, this study maximized optical performance and, hence, always chose

the best-performing point. Seeking the optimal balance between optical performance gain

and cost is beyond the scope of this work. Besides fine-tuning the Bayesian optimization,

other advanced ML techniques such as pruning [106] and efficient scaling [107] can be used

to achieve lower computational complexity levels without reducing the NN performance.
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Table 3.2 Hyper-parameters of neural networks

approximating Θ and Ξ functions from Eq. 3.11

learned by means of Bayesian optimization.

Scenario N (taps)
n1 n2 n3

n4 n5 n6

LEAF (Numerical ± 6×80km) 11
54 46 40

4 38 50

LEAF (Numerical ± 12×80km) 18
62 34 56

55 18 40

SSMF (Numerical ± 6×80km) 20
51 54 53

19 22 56

SSMF (Numerical ± 12×80km) 26
54 47 50

41 38 61

SSMF (Trial data ± 8×76+4km) 20
90 53 88

56 60 64

To eliminate some possible dataset periodicity, which could cause overfitting and overes-

timation [108], the training dataset objects were randomly shuffled at the beginning of every

epoch. The numerically generated training and testing datasets were measured to achieve a

normalized cross-correlation below 0.6%, to ensure their independence. The code developed

to obtain the results depicted in this study is provided online on the platforms Github and

Zenodo [109].

3.1.4 Simulation and experimental setups

The system setup considered in the numerical study is illustrated in Fig. 3.6. First, a random

bit stream is generated for each polarization. Afterward, gray-coded 32 GBd 64QAM

symbols are mapped from the bit sequences. The resulting signals are upsampled with a

sampling rate equal to four times the symbol rate and shaped using an RRC with roll-off =

0.06. Finally, a polarization beam combiner (PBC) is used to combine both polarizations

into a single-channel dual-polarized signal, which is then fed into the optical fiber.

To simulate the (forward) propagation of the signal in the fiber, it was used a symmetrized

split-step Fourier method [97] solving the ordinary Manakov equation [24]. It was con-

sidered 6×80 km and 12×80 km systems consisting of LEAF or SSMF. The considered

fiber parameters are given in Table 3.1. At the end of each span, the fiber losses are fully

compensated by a lumped Erbium-doped fiber amplifier (EDFA). Additive White Gaussian
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Fig. 3.6 The system setup of the transmission loop considered in our numerical simulations

(Single Channel Transmission).

Noise (AWGN) representing the amplified spontaneous emission (ASE) noise is also added.

The EDFA noise figure is NF = 4.5 dB. At the receiver side, both H and V polarizations are

first separated using a polarization beam splitter (PBS) and then fed to a digital coherent

receiver, where the signal passes through a matched filter and is downsampled to the symbol

rate. The resulting signal is processed offline using the DSP outlined in Fig. 3.3 to recover the

transmitted symbols. Since there were no transceiver impairments in numerical simulations,

the receiver DSP consisted of: an ideal CDC compensator followed by a single-tap adaptive

filter performing amplitude and phase normalization of the received symbol stream to the

desired one (CDC + Norm), and, finally, the tested nonlinearity mitigation algorithm.

In the experimental study, the data were obtained by using the setup of the field trial

described in [110] and [111]. The transmission link consisted of 8×76 km G.652 SSMF

spans along with two 2 km long SSMF connectors deployed between Torino and Chivasso in

Italy, leading to a total length of 612 km. The transmitted spectrum consisted of 15×200G

neighbour channels (DP-16QAM) on the right- and left-hand sides of the channel under

test, resulting in a 31-channel WDM transmission system in the 37.5 GHz grid (33.01

GBd). On the receiver side, the WDM signal was first amplified and then converted into the

electrical domain using a coherent front end. An ADC with 18 GHz bandwidth operating

at 80 GSample/s was used to capture sets of 5× 105 samples per tributary. Digital signal

processing is then applied at the receiver. Firstly, bulk accumulated chromatic dispersion

was compensated using a frequency domain equalizer, followed by the removal of carrier

frequency offset. A constant-amplitude-zero-autocorrelation-based training sequence was

then located in the received frames, and the equalizer transfer function was estimated from it.
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After equalization, the two polarizations were de-multiplexed, and time corrected. Carrier

phase estimation was then achieved with the aid of pilot symbols. Finally, DSP processed

two independent downsampled measurements and used them as training and testing data for

offline testing of the nonlinearity mitigation algorithms.

3.1.5 Results and discussions
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Fig. 3.7 Signal equalization performance of the proposed NN, benchmarked against digital

backpropagation (DBP) and the reference neural network (2×192) [3] for various numerically

studied fiber-optic links. In all testcases DP-64QAM 32 GBd single-channel optical signal

was considered.
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The proposed NN was benchmarked against the classic digital backpropagation (DBP) [95]

with 2 samples/symbol and 2 and 3 steps per span (StPS), along with the NN-based equalizer

proposed in [3]. This reference NN was implemented exactly as stated in [3]: it had two

layers with 192 neurons and processed the same number of input taps as the proposed NN.

The sequences of symbols from both polarizations were simultaneously fed as input to the

reference NN from Ref. [3]. In this case, however, real and imaginary parts are fed as

different parts of the input vector [40], since this is a real-value neural network. All the

algorithms used in this study are static. As the performance metric, we used the Q-factor

expressed through BER as follows:

Q = 20log10

[√
2 erfc−1(2BER)

]

, (3.14)

where erfc−1 is the inverse complementary error function. All the main results of this

subsection are summarized in Table 3.3.

Table 3.3 Summary of all results obtained by CDC + Norm, NN 2×192 neurons [3], DBP

and the proposed NN. The optimal launch power, in dBm, and the peak Q-factor, in dB, are

indicated for all considered testcases.

Fiber Q / Best P [CDC + Norm] Q / Best P [NN in [3]] Q / Best P [Proposed] Q / Best P [DBP-2 StPS] Q / Best P [DBP-3 StPS]

LEAF 6×80km 8.94 dB / 0 dBm 9.37 dB / 1 dBm 11.16 dB / 3 dBm 10.4 dB / 2 dBm 12.3 dB / 4 dBm

LEAF 12×80km 6.09 dB / 0 dBm 6.28 dB / 0 dBm 7.34 dB / 2 dBm 6.52 dB / 0 dBm 8.31 dB / 3 dBm

SSMF 6×80km 10.83 dB / 0 dBm 10.81 dB / 0 dBm 11.19 dB / 2 dBm 11.50 dB / 2 dBm 13.7 dB/ 4 dBm

SSMF 12×80km 7.91 dB / 0 dBm 7.98 dB / 0 dBm 8.29 dB / 1 dBm 7.66 dB/ 0 dBm 9.68 dB / 3 dBm

SSMF (Trial data) 6.81 dB / 3 dBm 7.58 dB / 3 dBm 8.85 dB / 4 dBm - -

Fig. 3.7 shows the comparison of Q-factors obtained by employing the considered

algorithms for nonlinearity mitigation in the numerically studied testcases. For LEAF,

Fig. 3.7a illustrates the 6×80 km case and Fig. 3.7b the 12×80 km case. In the first case,

the proposed NN improved the Q-factor by up to ∼2.1 dB when compared with CDC +

Norm and up to ∼1.7 dB when compared with the reference NN from Ref. [3], at their

respective optimal optical launch powers. The proposed NN also outperforms the DBP with

2 StPS performance by 0.7 dB. Evidently, it is expected that the DBP with higher complexity

(with more steps or sampling points) outperforms the proposed NN. Indeed, the DBP with

3 StPS offers better performance. For the second scenario, a similar improvement trend

was observed, see Fig. 3.7b. At the optimal launch powers, the proposed NN increased

the Q-factor by up to ∼1.25 dB when compared to the CDC + Norm and by ∼1 dB when

compared with the reference NN from [3]. Also, the proposed NN outperforms the DBP 2

StPS performance by 0.8 dB.
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For the SSMF system, Fig. 3.7c shows the result for a 6×80 km case, where it was

observed an improvement of the Q-factor of up to ∼0.4 dB when using the proposed NN

with respect to both the CDC + Norm and the reference NN in [3]. In the 12×80 km case,

(Fig. 3.7d) the proposed NN led to a Q-factor improvement of up to ∼0.4 dB with respect

to both the CDC + Norm and the NN from [3]. In this instance, a single-tap adaptive filter

performing amplitude and phase normalization was able to perform better than the DBP with

2 StPS. As predicted, using a fiber with a 4 times higher chromatic dispersion (β2) impacts

the performance of the proposed NN, since the proposed NN shows better performance

when the nonlinearity produces the dominant contribution, as is expected due to the chosen

structure.

In all the numerically considered test cases, the optimal launch power for the proposed

NN was higher than for CDC + Norm and the reference NN in [3]. This shows that the

performance gains of the proposed NN are obtained by improving nonlinearity mitigation.

Contrary to the numerical studies, in the experiment, it was not possible to apply the DBP

technique because the carrier had no appropriate information about the system parameters

installed: they were laid out in the field and were poorly accessible. So only the downsampled

data was available for the tests. Therefore, we will compare the proposed NN with the

traditional CDC + norm and the reference NN from [3].

Fig. 3.8 shows the experimental results obtained in the field trial and processed by the

CDC, the NN from [3], and, eventually, the proposed NN. First, the optimal launch power

obtained using the proposed NN equalizer increased from 3 to 4 dBm, and the Q-factor

improved by up to ∼2 dB and ∼1.2 dB when compared, at the best power level, with the

CDC+Norm and the reference NN from [3], respectively. Moreover, we have highlighted

the different gains in the linear and nonlinear regions, which indicates that the proposed NN

is compensating for nonlinear effects since the performance improvement increases with

the launch power. At the lowest measured launch power (0 dBm), it was observed a gain

of 1.7 dB when compared with the traditional CDC + norm. This gain in the linear regime

comes from the ability of the neural network, by using the specially designed nonlinear

parts Ξ1/2, to mitigate the impact of additional limitations such as, e.g., the impact of low-

resolution digital-to-analog and analog-to-digital converters, the driver amplifier, and the dual

polarization Mach-Zehnder modulator, that was not entirely tackled by the current DSP. The

imperfections of the transmitter ± e.g., the S21( f ) ± and of the DAC low-resolution ± shown

as ENOB versus frequency ± are reported in Fig. 3 of [112]. On top of these linear regime

gains, we found that, at the optimum power levels, (3 dBm for CDC+Norm and 4 dBm for

the proposed algorithm), the proposed NN provides an additional 0.34 dB of Q-factor gain,

with the total gain being 2.04 dB. For the proposed NN, the optimum launch power increases
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in the experiment by ∼1 dB, which is in agreement with the numerical analysis. Notably, the

reference NN from [3] did not improve the optical performance when increasing the optimal

launch power.
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Fig. 3.8 Comparison of the equalization performance obtained by the considered algorithms

in the field trial of 612 km SSMF legacy link (31 Channel WDM transmission).

3.2 Data driven investigation in realistic optical transmis-

sion setups

This section examines the performance of the previously proposed NN equalizers, the MLP,

and biLSTM, using experimental data. Here, it is introduced a novel scheme of the equalizer

based on the convolutional-recurrent NN (CRNN) technique that combines the properties

of convolutional and recurrent layers. The performance of the proposed equalizer is tested

and compared to other NN architectures and DBP [5] in an experimental setup. We analyze

the single-channel (SC) and wavelength-division multiplexing (WDM) transmission of a

dual-polarization (DP) 16 QAM signal with a 34.4 GBd rate along 9×50km TrueWave

Classic (TWC) fiber spans. First, the CRNN is evaluated in an SC case, providing about 1 dB

improvement in Q-factor when compared to a traditional DSP [113]. Next, it is investigated

the performance of the new equalizer in the WDM scenario with 96 channels. In this

experiment, we specifically aim to identify whether the biLSTM is capable of compensating

for any of the cross-phase modulation (XPM) distortions, as it was observed numerically

in [4]. Our results confirm that the NN equalizer architectures that involve a biLSTM

layer are able to partially compensate for the XPM-induced distortions. In the WDM case,
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the proposed CRNN equalizer increases the maximum Q-factor by up to 1.04 dB, with the

optimal launch power increasing by 2 dB. In both scenarios, the CRNN equalizer outperforms

the results delivered by the MLP and biLSTM, also showing better performance than the

traditional DBP with 3 StPS.

3.2.1 The new convolutional-recurrent neural network equalizer

The combination of convolutional and recurrent NNs has proven to work efficiently for

speech enhancement [114] and image classification [115]. In this section, the functionality

of this advanced NN combination for impairment mitigation in optical transmission systems

is analyzed.

First, it is important to describe the input layer of the NN equalizers studied in this section.

For the CRNN and biLSTM equalizers, the input shape is a 3D tensor with dimensions

(B,M,4), where B is the mini-batch size, M is the memory size defined as M = 2N +1, N

being the number of neighboring (past and future) symbols used for the equalization; 4 is the

number of features referring to the real and imaginary parts of two polarization components.

For the MLP, the input layer must have a 2D tensor shape: (B,4M), but the input symbols

are the same as for the CRNN and biLSTM.

Here we consider three NN topologies: i) two densely-connected layers (i.e., the MLP)

equivalent to that used in [3]; ii) a single biLSTM layer as in [4]; and iii) the new CRNN

equalizer, with a 1D convolutional layer (1D-Conv) defined by X filters and kernel size Z,

followed by a biLSTM layer defined by Y hidden units (cells). In the case of CRNN and

biLSTM, a flattening layer is used to reduce the output dimensionality. Finally, the output

layer with two linear neurons is used in the NN’s output to represent the real and imaginary

parts of the recovered symbol in one of the polarizations. The proposed CRNN equalizer

structure is illustrated in Fig. 3.9.

Unlike previous approaches, this work implemented a Bayesian optimizer (BO) step,

following the procedure described in [116], to define the values of N, X , Y , Z, batch size, and

the activation function type considered in the CRNN equalizer. After carrying out 20 BO

cycles, the set of hyper-parameters corresponding to the lowest BER reached is defined. Each

cycle is a full simulation that starts with training the NN with a fixed set of hyperparameters

via back-propagation over the training dataset using the traditional MSE loss function and

the Adam optimizer. This training dataset contains 220 symbols, and the training is carried

out for 500 epochs with a learning rate of 0.001. After every training epoch, we calculate the

BER obtained by the whole NN on an independently generated testing dataset containing

217 symbols and record the lowest BER found. The hyper-parameters found by the BO

were: N = 20 taps, X = 244 filters, the kernel size Z = 3, Y = 226 hidden units in the
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Fig. 3.9 Scheme of the proposed CRNN equalizer.

LSTM layer, and the mini-batch size B = 4331. The activation functions found by the BO

for the 1D-Conv and LSTM cells were Leaky ReLU with α = 0.2 and Tanh, respectively.

The BO optimization was carried out using the data corresponding to the highest launch

power available. For a fair comparison, it was also used the same number of hidden units

(Y = 226) found by the BO to the CRNN in the pure biLSTM equalizer, and all equalizers

used the same number N of taps. For the MLP, it was set 192 neurons in the hidden layers,

since no improvement has been observed when increasing this number further. After having

determined the optimal architecture, each NN equalizer was trained for each individual launch

power using 220 symbols over 200 epochs, employing the traditional MSE loss function and

the Adam optimizer with a learning rate of 0.001. The validation set and evaluation of the

resulting BER were carried out using 217 independent symbols. Finally, it is important to
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𝜆 = 1.55 μm

…
…

Fig. 3.10 Experimental setup used for data generation.

highlight that the NN training data were shuffled using the numpy.random.shuffle function

in Python before feeding them into the NN: such a shuffling eliminates any possible data

periodicity. The independent datasets were created using a pseudo-random binary sequence

(PRBS) of order 32 to avoid overestimation of the Q-factor gain [108].

3.2.2 Simulation and experimental setups

Fig. 3.10 shows the setup used in the experiment. At the transmitter, the DP-16QAM 34.4

GBd symbol sequence was mapped out of data bits generated by an 232 −1 order PRBS. A

digital RRC filter with a roll-off of 0.1 was applied to limit the channel bandwidth to 37.5 GHz.

The filtered digital samples were uploaded to a digital-to-analog converter (DAC) operating at

88 Gsamples/s. The outputs of the DAC were amplified by a four-channel electrical amplifier,

which drove a dual-polarization in-phase/quadrature Mach±Zehnder modulator, modulating

the continuous waveform carrier produced by an external cavity laser at λ = 1.55µm. The

resulting optical signal was then transmitted along 9×50 km spans of TWC optical fiber with

EDFA amplification only, together with up to 95 neighbouring channels (100G QPSK, 50
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GHz ITU grid, for the WDM scenario). The parameters of the TWC fiber span at λ = 1.55µm

are: attenuation coefficient α = 0.23 dB/km, dispersion coefficient D = 2.8 ps/(nm·km), and

effective nonlinear coefficient γ = 2.5 (W·km)−1. On the RX side, the optical signal was

converted into the electrical domain using an integrated coherent receiver. The resulting

signal was sampled at 50 Gsamples/s by a digital sampling oscilloscope and processed by

an offline DSP based on [113] which includes chromatic dispersion compensation, MIMO

equalization, clock recovery, and pilot-aided carrier recovery. The system’s performance is

evaluated in terms of the Q-factor.

3.2.3 Results and discussions
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Fig. 3.11 Performance of the proposed CRNN, benchmarked against biLSTM equalizer [4],

two layers MLP equalizer [3] and DBP 3 StPS [5] for two experimental fiber-optic scenarios.

Fig. 3.11a and Fig. 3.11b display the results obtained by the proposed CRNN for the SC

and WDM systems, respectively, and their comparison with the results for MLP and biLSTM

equalizers. For the SC, the proposed CRNN improved the Q-factor by 1 dB when compared

to using the linear DSP only, by 0.29 dB when compared with the biLSTM equalizer, by

0.63 dB when compared to the results of the MLP equalizer, and by 0.73 dB when compared

to the DBP with 3 StPS. Additionally, for the CRNN, the optimum launch power improved

from -3 dBm to 1 dBm, which highlights the new method’s potential to mitigate nonlinear

effects. This result may be a consequence of using the convolutional layer before the recurrent

layers. By doing so, it is possible to extract middle-level locally invariant features from

the input series, thus creating a pre-enhancement step for the signal fed into the biLSTM

layer. The parameters of the DBP were also optimized to produce the best BER. Importantly,

we notice that the result in Fig. 3.11a agrees with the conclusions of previous simulations:
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the MLP performs slightly better than DBP [3], and the biLSTM Q-factor improvement is

noticeably higher than the DBP one [4].

A 96-channel WDM system was also considered, evaluating the performance of the

considered NN equalizers in the presence of inter-channel crosstalk. In this case, the CRNN

improved the Q-factor by 1 dB when compared to the regular DSP only, by 0.26 dB when

compared to the biLSTM equalizer, by 0.67 dB when compared to the MLP equalizer, and by

0.78 dB when compared to the 3 StPS DBP. The optimum launch power also increased by 2

dB when using the proposed CRNN: from -4 dBm to -2 dBm. Moreover, as can be seen, the

topologies that use the biLSTM layers were able to partially recover the XPM impact insofar

as some higher gain was observed compared to the results of the SC scenario, Fig. 3.11a.

As an example, using the CRNN equalizer at -2 dBm launch power, we observe a Q-factor

improvement of 0.73 dB in the SC case and a 2.14 dB improvement in the WDM case when

compared to the reference Q-factor level (Regular DSP). This effect was also reported by

means of numerical simulations in [4], where it was stated that LSTM layers are able to

ªdeterministicallyº track sufficiently slow XPM effects in scenarios where no information

on neighbor channels is fed into the NN-based equalizer. This demonstrates the efficacy of

NN-based equalizers, which, in contrast to conventional methods, may partially recover such

perturbation by approximating its average behavior in the received sequence.
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Chapter 4

The Complexity Consideration for

Designing Neural Networks-based

Equalizers

This chapter addresses an essential aspect of the computational complexity necessary to

create neural network-based equalizers. First, it will address the central issue of how to assess

the computational complexity from a software level to a hardware level by mathematically

articulating the computational complexity of various types of neural network layers. Next, it

will analyze the crucial trade-off between performance and complexity to determine which

NN structure provides the highest performance given the same degrees of complexity. Then, it

will examine a variety of compression approaches that, when applied to NN-based equalizers,

can dramatically reduce their computational complexity. Finally, it will briefly cover the

development of neural networks in FPGA, demonstrating the experimental implementation

and testing.

4.1 Metrics to estimate computational complexity of neural

networks

4.1.1 Four Metrics of Computational Complexity

Accurate computational complexity evaluation is critical in the design of digital signal

processing (DSP) devices to better understand the implementation feasibility and bottlenecks

for each device’s structure. With this in mind, the four most commonly used different criteria
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Fig. 4.1 Diagram of computational complexity metrics, illustrating the various levels of

complexity measurement from software to hardware.

for assessing computational complexity, from the software level to the hardware level, are

summarized in Fig. 4.1.

The first, most software-oriented, level of estimation traditionally deals only with counting

the number of real multiplications of the algorithm [117, 118] (quite often defined per

one processed element, say a sample or a symbol). This metric is the number of real

multiplications (RM). When comparing computational complexity, the purpose of this high-

level metric is to consider only the multipliers required, ignoring additions, because the

implementation of the latter in hardware or software is initially considered cheap, while the

multiplier is generally the slowest element in the system and consumes the largest chip area

[117, 119]. Ignoring additions can also be easily understood by looking at the Big-O analysis

of multiplier versus adder. When multiplying two integers with n digits, the computational

complexity of the multiplication instance is O(n2), whereas the addition of the same two

numbers has a computational complexity of Θ(n) [120]1. As a result, when you are dealing

with float values with 16 decimal digits, multiplication is by far the most time-consuming

part of the implementation procedure. Therefore, when comparing solutions that use floating-

point arithmetic with the same bitwidth precision, the RM metric provides an acceptable

comparative estimate to qualitatively assess the complexity against some existing benchmarks

(e.g., against the DSP operations for optical channel equalization tasks [118]).

When moving to fixed-point arithmetic, the second metric known as the number of bit-

operations (BOP) must be adopted to understand the impact of changing the bitwidth precision

1The Big-O notation represents the worst case or the upper bound of the time required to perform the

operation, Big Omega (Ω) shows the best case or the lower bound; whereas the Big Theta (Θ) notation defines

the tight bound of the amount of time required; in other words, f (n) is claimed to be Θ(g(n)) if f (n) is O(g(n))
and f (n) is Ω(g(n)).
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on the complexity. The BOP metric provides a good insight into mixed-precision arithmetic

performance since it is possible to forecast the BOP needed for fundamental arithmetic

operations like addition and multiplication given the bitwidth of two operands. In a nutshell,

the BOP metric aims to generalize floating-point operations (FLOPs) to heterogeneously

quantized NNs as far as the FLOPs cannot be efficiently used to evaluate integer arithmetic

operations [121, 122]. For the BOP metric, it has to include the complexity contribution of

both multiplications and additions, since now it evaluates the complexity in terms of the most

common operations in NNs: the multiply-and-accumulate operations (MACs) [121±123].

However, the BOP accounts for the scaling of the number of multipliers with the bitwidth of

two operands and the scaling of the number of adders with the accumulator bitwidth. Note

that most real-world DSP implementations use dedicated logic macros, such as the DSP

slice in Field Programmable Gate Arrays (FPGA) or the MAC in an Application Specific

Integrated Circuit (ASIC). The BOP metric is a good way to estimate the complexity of a

DSP implementation because it also uses the MAC and takes into account the bitwidth of

two operands.

The progress in the development of new advanced NN quantization techniques [124±127]

allowed implementing the fixed point multiplications participating in NNs efficiently, namely

with the use of a few bit-shifters and adders [128±130]. Since the BOP lacks the ability to

properly assess the effect of different quantization strategies on complexity, a new, more

sophisticated metric is required there. Then, a third complexity metric is now introduced

that counts the number of total equivalent additions to represent the multiplication operation,

called the number of additions and bit shifts (NABS). The number of shift operations can

be neglected when calculating the computational complexity because, in the hardware, the

shift can be performed without extra costs in constant time with the O(1) complexity. Even

though the cost of bit shifts can be ignored due to the aforementioned reasons, and only the

total number of adders has to be accounted for to measure the computational complexity, the

metric name is kept as ªnumber of additions and bit shiftsº to highlight that the multiplication

is now represented as shifts and adders.

Finally, the metric that is closest to the hardware level is the number of logic gates (NLG)

that are used for evaluating the method’s hardware (e.g., ASIC or FPGA) implementation. It

is different from the NABS metric, as now the true cost of implementation is to be presented.

In this case, in contrast to the other complexity metrics, the cost of activation functions is also

taken into account because, to achieve better complexity, they are frequently implemented

using look-up tables (LUT) rather than adders and multipliers. Additionally, other metrics

like the number of flip-flops (FFs) or registers, the number of logic blocks used for general

logic and memory blocks, or other special functional macros used in the design, are also
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relevant. This explanation makes it clear that there will not be a simple equation to convert

the NABS to the NLG because the latter depends on the circuit design that the developer

chooses. Tools such as Synopsys Synthesis [131] for ASIC implementation can provide this

kind of information. However, with regard to the FPGA design, it is harder to get a correct

estimate of the gate count from the report of the FPGA tools [132].

This thesis advocates that the NLG metric should be applied to count the number of

logic gates used to implement the hardware piece, similar to the concept of the Maximum

Logic Gates metric for FPGA devices [133]. The Maximum Logic Gates metric is utilized to

approximate the maximum number of gates that can be realized in the FPGA for a design

consisting of only logic functions2. Additionally, this metric is based on an estimate of the

typical number of usable gates per configurable logic block (CLB) or logic cell multiplied by

the total number of such blocks or cells [133]. With regard to the correspondence between

CLB and logic gate numbers, see Table 4.1.

Table 4.1 Capacity ranges for XC4000 Series CLB Resources given in Ref. [133].

CLB Resource Logic Gate Range

Gate range per 4-input LUT (2 per CLB) 1 to 9

Gate range per 3-input LUT 1 to 6

Gate range per flip-flop (2 per CLB) 6 to 12

Total gate range per CLB 15 to 48

Estimated typical number of gates per CLB 28.5

It should be noted that Table 4.1 is based on an older, now obsolete, 4-input LUT archi-

tecture [133]. Newer FPGA families now feature a 6-input LUT architecture, and to address

the resource consumption for the new generation of devices, a reasonable approximation

would be to increase the ‘maximum gate range equivalent per LUT’ figure used in [133] by

50%. Note that the gate equivalence figures for FF’s (registers) still hold true for the 6-input

architecture. It is also worth noting that the CLB architecture has changed substantially since

Ref. [133] was published, such that Table 4.2 linking CLB-gates is presented next with a

more up-to-date 6-input architecture.

Table 4.2 Estimated capacity ranges for 6 input LUT based CLB Resources.

CLB Resource Logic Gate Range

Gate range per 6-input LUT (8 per CLB) 6 to 15

Gate range per flip-flop (16 per CLB) 6 to 12

Total gate range per CLB 144 to 312

To conclude, it is important to comment on the universal metrics between the FPGA and

the ASIC implementations. Calculating an ASIC gate equivalent to an FPGA DSP slice is not

2On-chip memory capabilities are not factored into this metric.
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a straightforward task because not all features are necessarily required when implementing

the specific arithmetic function in an ASIC. However, utilizing the estimation approach laid

out in Ref. [133], a figure can be obtained. Using the Xilinx Ultrascale + DSP48E2 slice

basic multiplier functionality as an example (see Xilinx UG579 Fig. 1-1 in Ref. [134]) and

pipelining it for maximum performance, it is possible to estimate the number of FFs and

adders required for such an ASIC equivalence. Taking into account the structure of the

multiplication of a m-bit number by a n-bit number, implemented using an array multiplier

architecture, it is equivalent to m×n AND gates, n half adders, and (m−2)×n full adders3.

For example, the ASIC equivalence of a 27×18 multiplier in an FPGA would have 486 AND

gates, 18 half adders, 450 full adders, and 90 Flip Flops. Table. 4.3 shows an overview of

what each metric is and when its application is relevant for comparative studies in the signal

processing field.

Table 4.3 Overview of Main Metrics for Evaluating Computational Complexity in NN Models

Metric Description Usage

Number of Real Multiplications (RM)
Number of float point multiplications used in the

NN model.

This metric is recommended as a first estimation when comparing

with reference solutions with the same quantization level and using

float point operations.

Number of Bit Operations (BoP)

Number of multiply-and-accumulate operations where

the number of multiplications is weighted with

the contribution of the quantization used by the input,

activation function, and weights in the NN model.

This metric is recommended when bitwidth precision

is used and needs to be taken into account when comparing

complexity and performance with a reference solution.

Number of Add and Shift Operations (NABS)

Number of fixed-point operations used in the NN

model when multiplications are implemented with

bit shifters and adders.

This metric is recommended when different bitwidth precision

and quantization strategies are used. For example, when the PoT

quantization is used and one wants to show its complexity advantages

against the Uniform quantization. If different quantization

strategies are not used, the BoPs metric should be used.

Number of Hardware Logic Gates (NLG)
Number of logic gates required to implement the

NN model in hardware.

This metric is recommended when the size of hardware needs to

be assessed. It is highly dependent on the selected implementation

approach. As an example, it can be used to compare the size of

the NN model with other traditional blocks in ASIC.

4.1.2 Mathematical Complexity Formulation for Different Neural Net-

work layers

In this section, a brief introduction is provided to various types of NN: dense layer, Convolu-

tional Neural Networks (CNN), Vanilla Recurrent Neural Networks (RNN), Long Short-Term

Memory Neural Networks (LSTM), Gated Recurrent Units (GRU), and Echo State Networks

(ESN). Also, it investigated the computational complexity of each network in terms of RM,

BOP, and NABS. In this study, the computational complexity is formulated per layer, and the

output layer is not taken into account for the complexity calculation to eliminate redundant

computations if multiple layers or multiple NN types are combined. Note that, in the interest

3Note that a half adder is equivalent to 1 AND gate + 1 XOR gate, and a full adder is equal to 2 AND gates

+ 2 XOR gates + 1 OR gate
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of being extremely clear, some equations stated in Sec. 2.3 will be revisited for the purposes

of showing clear derivations for the computational complexity metrics. Table 4.4 summarizes

the formulas for the RM, BOP, and NABS for all NN types studied in this section.

Table 4.4 Summary of the three computational complexity metrics per layer (the number of

real multiplications, the number of bit operations, the number of additions and bit shifts) for

a zoo of neural network layers as a function of their designing hyper-parameters; the number

of neurons (nn), the number of features in the input vector (ni), the number of filters (n f ),

the kernel size (nk), the input time sequence size (ns), the number of hidden units (nh), the

number of internal hidden neuron units of the reservoir (Nr), sparsity parameter (sp), the

number of output neurons (no), weight bitwidth (bw), input bitwidth (bi), activation bitwidth

(ba), and the number of adders required at most to represent the multiplication (Xw). The

expressions for Mult(a, b, c) and Acc(a, b, c) can be found in the main text, and represent the

bitwidth cost of the accumulator.

Network type Real multiplications (RM) Number of bit-operations (BOP) Number of additions and bit shifts(NABS)

MLP nnni nnni

[
bwbi +Acc(ni,bw,bi)

]
nnni(Xw +1)Acc(ni,bw,bi)

1D-CNN n f nink ·Out putSize
Out putSize ·n f Mult(nink,bw,bi)

+n f Acc(nink,bw,bi)

Out putSize ·n f

[
nink(Xw +1)−1

]

·Acc(nink,bw,bi)

+n f Acc(nink,bw,bi)

Vanilla RNN nsnh(ni +nh)

nsnhMult(ni,bw,bi)

+nsnhMult(nh,bw,ba)

+2nsnhAcc(nh,bw,ba)

nsnh

[
ni(Xw +1)−1

]
Acc(ni,bw,bi)

+nsnh

[
nh(Xw +1)+1

]
Acc(nh,bw,ba)

LSTM nsnh(4ni +4nh +3)

4nsnhMult(ni,bw,bi)

+4nsnhMult(nh,bw,ba)

+3nsnhb2
a

+9nsnhAcc(nh,bw,ba)

4nsnh

[
ni(Xw +1)−1

]
Acc(ni,bw,bi)

+4nsnh

[
nh(Xw +1)+1

]
Acc(nh,bw,ba)

+6nsnhba

GRU nsnh(3ni +3nh +3)

3nsnhMult(ni,bw,bi)

+3nsnhMult(nh,bw,ba)

+3nsnhb2
a

+8nsnhAcc(nh,bw,ba)

3nsnh

[
ni(Xw +1)−1

]
Acc(ni,bw,bi)

+nsnh

[
3nh(Xw +1)+5

]
Acc(nh,bw,ba)

+6nsnhba

ESN nsNr(ni +Nrsp +2+no)

nsNrMult(ni,bw,bi)

+nsNrspMult(Nr,bw,ba)

+nsNrMult(no,bw,ba)

+2nsNrb
2
a

+4nsNrAcc(Nr,bw,ba)

nsNr

[
ni(Xw +1)−1

]
Acc(ni,bw,bi)

+nsNr

[
sp(NrXw +Nr −1

]
+4)Acc(Nr,bw,ba)

+nsNr

[
no(Xw +1)−1

]
Acc(no,bw,ba)

+4nsNrba

Dense Layer

A dense layer, also known as a ‘fully connected layer’, is a layer in which each neuron is

connected with all the neurons from the previous layer with a specific weight wi j. Dense

layers can be combined to form a Multi-Layer Perceptron (MLP), which is a class of a

feed-forward deep NN.
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The output vector y of a dense layer, given x as an input vector, is written as:

y = φ(Wx+b), (4.1)

where y is the output vector, φ is a nonlinear activation function, W is the weight matrix, and

b is the bias vector. Writing explicitly the matrix operation inside the activation function:

Wx+b =










w11 w12 . . . w1ni

w21 w22 . . . w2ni

...
... . . .

...

wnn1 wnn2 . . . wnnni



















x1

x2

...

xni










+










b1

b2

...

bnn










, (4.2)

where ni is the number of features in the input vector and nn represents the number of neurons

in the layer, one can readily see that the RM of a dense layer can be computed according to

the simple well-known formula:

RMDense = nnni. (4.3)

Now, the BOP of a dense layer is calculated, taking into account the bitwidth of two

operands, to approximate the computational complexity of NNs when mixed-precision

arithmetic is used. The bitwidth, also known as the precision, is the number of bits used to

represent a certain element; for example, each weight in the weight matrix can be represented

with bw bits. Fig. 4.2 illustrates the data flow of the MAC operations for a neuron of a dense

layer with ni input features and bi as input bitwidth. The multiplication of the input vector

and the weights for one neuron can be mathematically represented as follows:

yMUL, one neuron =
ni

∑
n=1

wnxn. (4.4)

Initially, the ni multiplications of input vector elements and weights for one neuron take

place. When the multiplication of two operands is performed, the resulting bitwidth is the

sum of the bitwidths of the two operands (bw +bi) as it is shown in the first row of Fig. 4.2.

After that, ni − 1 additions need to be made, and the resulting number of bits can be

defined as follows: Considering that the result of the addition of two operands has the

bitwidth of the bigger operand plus one bit, we start adding the multiplication results pairwise

until only one element remains. In this case, the second row of Fig. 4.2 shows the first level

of pairwise additions, with a resulting bitwidth of bw+bi+1, and since this pairwise addition

process is repeated for ⌈log2(ni)⌉ levels (until having just a final single number), the total
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Fig. 4.2 Data path of a neuron in a quantized dense layer where x is the input vector with

size ni, w is the weight matrix, bw is the weight bitwidth and bi is the input bitwidth, ba is the

activation bitwidth and bb is the bias bitwidth.

bitwidth of it is given by bw+bi + ⌈log2(ni)⌉, i.e., it is the bitwidth required to perform the

overall MAC process. Then, the addition of the bias vector is performed. In this work, for all

types of networks, it is assumed that the size of the accumulator, defined by the multiplication

of the weight matrix and the input vector, is dominant; thereby, the assumption for the bias

bitwidth bb is as follows: bb < bw +bi + ⌈log2(ni)⌉, and the addition of bias, in the end, will

not result in the overflow. Finally, the bitwidth of the resulting number is truncated to ba,

where ba is the bitwidth of the activation function [135].

When calculating the BOP for a dense layer, the costs of both multiplications and

additions need to be included. Then, the BOP formula takes the form of the sum of two

constituents, BOPMul and BOPBias, corresponding to vector-matrix multiplication and bias

addition:

BOPMul = nn

[
nibwbi +(ni −1)(bw +bi + ⌈log2(ni)⌉)

]
, (4.5)

BOPBias ≈ nn(bw +bi + ⌈log2(ni)⌉). (4.6)

Eq. (4.5) shows the cost of the number of one-bit full adders calculated from the dot

product of the ni-dimensional input vector and weight matrix, as in Refs. [121, 136]. The cost

takes into account the bitwidths of the weights and input, bw and bi. To compute the product

of the two operands, it uses ninn multiplications and nn(ni −1) additions. The multiplication

cost can be calculated by multiplying the number of multiplications by bwbi, which is related
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to the bit operation, and the number of additions by the accumulator bitwidth required to do

the operation. The final BOP is the contribution of multiplication and the addition of bias

from the dense layer. For the convenience of presentation, let us define the short notations:

Mult(ni,bw,bi) = nibwbi +(ni−1)
(
bw+bi+ ⌈log2(ni)⌉

)
,

and

Acc(ni,bw,bi) = bw +bi + ⌈log2(ni)⌉.

The Acc expression represents the actual bitwidth of the accumulator required for MAC

operation, as shown in Fig. 4.2. Then, the BOP of the dense layer, expressed through the

layer parameters, becomes:

BOPDense = BOPMul +BOPBias

≈ nnni

[
bwbi +(bw +bi + ⌈log2(ni)⌉)

]

≈ nnni

[
bwbi +Acc(ni,bw,bi)

]
.

(4.7)

Now, note that with the advancement in NN quantization techniques, there arises the

opportunity to approximate multiplication by using a few shifts and adding operations

only while still maintaining a good processing accuracy, since the NNs can diminish the

approximation error that the quantized approximation introduces4 [129, 137]. As mentioned

in Sec. 4.1.1, the number of shifts can be neglected compared to the contribution of adders.

The number of adders is different for different types of quantization. To be more specific,

let X represent the number of adders required, at most, to perform the multiplication and let

b be the bitwidth of the quantized matrix. For uniform quantization: X = b−1. And, for

example, when the weight matrix with a bitwidth of bw, is quantized, Xw = bw − 1 as the

number of adders it is needed at most to perform the multiplication of the weights 5. In the

case of Power-of-two (PoT) quantization: X = 0, because each multiplication costs just a

shift [6, 128]. Lastly, for the Additive Powers-of-Two (APoT) quantization: X = n, where n

denotes the number of additive terms. In APoT, the sum of n PoT terms is used to represent

each quantization level [124]. Eventually, the NABS of a dense layer can be derived from its

4Note that using the shifts and adders to perform multiplications can cause some quantization noise/error

since it is converting from a float-point representation to a fixed-point representation with some defined

quantized levels. However, in NNs, this noise can be partially mitigated by including those quantized weights

in the NN training process, as in Refs. [125±127]
5Note that it can be considered other techniques for the representation of such fixed-point multiplication to

reduce its complexity. e.g., the double-base number system, where each multiplication with b bits, at worst,

needs no more than b/log(b) additions [138]. For the Canonical Signed Digit (CSD) representation, in the

worst-case scenario, it is assumed (b+ l)/2 nonzero bits, and on average, it tends asymptotically to (3b+ l)/9

[139, 140]
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BOP equation, Eq. (4.7):

NABSDense ≈ nnni

[
XwAcc(ni,bw,bi)+Acc(ni,bw,bi)

]

≈ nnni(Xw +1)Acc(ni,bw,bi).
(4.8)

In Eq. (4.8), the multiplication term bwbi of Eq. (4.7) is converted into the number

of adders needed to operate the multiplication times the accumulator bitwidth required:

XwAcc(ni,bw,bi).

Convolutional Neural Networks

In CNN, the convolutions are applied with different filters to extract the features and convert

them into a lower-dimensional feature set, while still preserving the original properties. CNNs

can be used in 1D, 2D, or 3D networks, depending on the applications. This thesis focuses

on 1D-CNNs, which are applicable to processing sequential data [141]. For simplicity of

understanding, the 1D-CNN processing with padding equal to 0, dilation equal to 1, and

stride equal to 1, can be summarized as follows:

y
f
i = φ

(
ni

∑
n=1

nk

∑
j=1

xin
i+ j−1,n · k

f
j,n +b f

)

, (4.9)

where y
f
i denotes the output, known as a feature map, of a convolutional layer built by the

filter f in the i-th input element, nk is the kernel size, ni is the size of the input vector, xin

represents the raw input data, k
f
j denotes the j-th trainable convolution kernel of the filter f

and b f is the bias of the filter f .

In the general case, when designing the CNN, parameters like padding, dilation, and

stride also affect the output size of the CNN. It can be formulated as:

Out putSize =

[
ns +2 padding−dilation(nk −1)−1

stride
+1

]

, (4.10)

where ns is the input time sequence size.

The RM of a 1D-convolutional layer can be computed as follows:

RMCNN = n f nink ·Out putSize, (4.11)

where n f is the number of filters, also known as the output dimension. In Eq. (4.11), there

are nink multiplications per sliding window, and the number of times that sliding window
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process needs to be repeated is equal to the output size. Then, the procedure is executed

repeatedly for all n f filters.

The BOP for a 1D-convolutional layer, after taking into consideration the multiplications

and additions, can be represented as:

BOPCNN = Out putSize ·n f Mult(nink,bw,bi)

+n f Acc(nink,bw,bi).
(4.12)

Eq. (4.12) is derived from Eq. (4.9) and Eq. (4.11). The first term is associated with the

convolution operation between the flattened input vector and the sliding windows, and the

latter term corresponds to the addition of the bias.

The procedure to derive the NABS is similar to that described in detail in the case of a

dense layer. Given is the NABS of a 1D-convolutional layer:

NABSCNN = Out putSize ·n f

[
nink(Xw +1)−1

]

·Acc(nink,bw,bi)

+n f Acc(nink,bw,bi).

(4.13)

To obtain the 1D-convolutional layer’s NABS, the multiplication in Eq. (4.12) is represented

by the number of adders required, at most, to perform the multiplication times the accumulator

bitwidth.

Vanilla Recurrent Neural Networks

Vanilla RNNs take into account the current input and the output that the network has learned

from the prior input. The equation for the vanilla RNN given a time step t is as follows:

ht = φ(Wxt +Uht−1 +b), (4.14)

where φ is, again, the nonlinear activation functions, xt ∈ R
ni is the ni-dimensional input

vector at time t, ht ∈R
nh is a hidden layer vector of the current state with size nh, W ∈R

nh×ni

and U ∈ R
nh×nh represent the trainable weight matrices, and b is the bias vector. For more

explanations on the vanilla RNN operation, see Ref. [67]. The RM of a vanilla RNN is:

RMRNN = nsnh(ni +nh), (4.15)

where nh notes the number of hidden units. From Eq. (4.15), the RM for a time step is nh(ni+

nh). It can be separated into two terms; the nhni term corresponds to the multiplication of the
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input vector xt and the weight matrix, and the n2
h term arises because of the multiplication of

the prior cell output ht−1. Finally, ns, which denotes the number of time steps in the layer,

should be taken into account, as the process is repeated ns times.

The BOP for a vanilla RNN is given as:

BOPRNN = nsnhMult(ni,bw,bi)

+nsnhMult(nh,bw,ba)

+2nsnhAcc(nh,bw,ba).

(4.16)

From Eq. (4.16), the first term is associated with the input vector multiplied by the weight

matrix, and the second term corresponds to the multiplications of the recurrent cell outputs.

The final term is the contribution of the addition between Wxt +Uht−1 and the addition of

the bias vector in Eq. (4.14); one can see that the size of the accumulator used in this term,

is Acc(nh,bw,ba). It is due to the assumption that Acc(nh,bw,ba) is dominant because it

should be greater than Acc(ni,bw,bi) as a result of the inequality nh > ni.

As in the case of a dense layer, the NABS of vanilla RNN can be calculated from its

BOP equation by converting the multiplication to the number of adders needed at most (X)

depending on the quantization scheme and the accumulator size:

NABSRNN = nsnh

[
ni(Xw +1)−1

]
Acc(ni,bw,bi)

+nsnh

[
nh(Xw +1)+1

]
Acc(nh,bw,ba).

(4.17)

Long Short-Term Memory Neural Networks

LSTM is an advanced type of RNNs. Although RNNs suffer from short-term memory issues,

the LSTM network has the ability to learn long-term dependencies between time steps (t),

insofar as it was specifically designed to address the gradient issues encountered in RNNs

[69, 70]. There are three types of gates in an LSTM cell: an input gate (it), a forget gate

( ft), and an output gate (ot). More importantly, the cell state vector (Ct) was proposed as

a long-term memory to aggregate the relevant information throughout the time steps. The

equations for the forward pass of the LSTM cell given a time step t are as follows:

it = σ(W ixt +U iht−1 +bi),

ft = σ(W f xt +U f ht−1 +b f ),

ot = σ(W oxt +Uoht−1 +bo),

Ct = ft ⊙Ct−1 + it ⊙φ(W cxt +Ucht−1 +bc),

ht = ot ⊙φ(Ct),

(4.18)
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where φ is usually the ªtanhº activation functions, σ is usually the sigmoid activation function,

the sizes of each variable are xt ∈ R
ni , ft , it ,ot ∈ (0,1)nh , Ct ∈ R

nh and ht ∈ (−1,1)nh . The

⊙ symbol represents the element-wise (Hadamard) multiplication.

The RM of a LSTM layer is:

RMLSTM = nsnh(4ni +4nh +3), (4.19)

where nh is the number of hidden units in the LSTM cell. Similarly to RNNs, the RM can be

calculated from the term associated with the input vector xt and the term corresponding to the

prior cell output ht−1; however, each term occurs four times, as it can be seen in Eq. (4.18).

Therefore, we have 4nhni and 4n2
h, respectively. Moreover, we also need to include the

element-wise product that is operated three times in Eq. (4.18), which costs 3nh. Finally, the

process is repeated ns times, hence, ns is multiplied to the overall number.

The BOP for a LSTM layer is computed based on Eq. (4.19), but also includes the bitwidth

of the operands and the number of additions. As a result, the BOP can be represented as:

BOPLSTM = 4nsnhMult(ni,bw,bi)

+4nsnhMult(nh,bw,ba)

+3nsnhb2
a

+9nsnhAcc(nh,bw,ba).

(4.20)

To give more details on the expression, the first two terms in Eq. (4.20) are the contribution

of the input vector multiplications and the recurrent cell output association, respectively.

The term 3nsnhb2
a refers to three times the element-wise product of two operands with ba

bitwidth; see Eq. (4.18). For each time step, there are nh elements in each vector that need to

be multiplied. The last term is for all the additions, since it is assumed that Acc(nh,bw,ba)

gives the dominant contribution, as described in Sec. 4.1.2. Finally, the process is restarted

ns times.

The NABS of a LSTM layer is derived from the Eq. (4.20) by replacing the multiplications

with the shifts and adders including their cost, as mentioned in Sec. 4.1.1 that the shifts

would not be included. The number of adders depends on the quantization technique. The

NABS would be as follows:

NABSLSTM = 4nsnh

[
ni(Xw +1)−1

]
Acc(ni,bw,bi)

+4nsnh

[
nh(Xw +1)+1

]
Acc(nh,bw,ba)

+6nsnhba.

(4.21)
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The first and second terms are the results of input vector multiplications and the recurrent

cell operation combined with all addition operations, respectively. In this case, the third term

comes from 3nsnh(ba +ba). Due to the element-wise product of two operands with bitwidth

ba, the resulting bitwidth becomes ba +ba as mentioned in Fig. 4.2.

Gated Recurrent Units

Like LSTM, the GRU network was created to overcome the short-term memory issues of

RNNs. However, GRU is less complex, as it has only two types of gates: reset (rt) and

update (zt) gates. The reset gate is used for short-term memory, whereas the update gate is

responsible for long-term memory [142]. In addition, the candidate hidden state (h′t) is also

introduced to state how relevant the previous hidden state is to the candidate state. The GRU

for a time step t can be formalized as:

zt = σ(W zxt +U zht−1 +bz),

rt = σ(W rxt +U rht−1 +br),

h′t = φ(W hxt + rt ⊙Uhht−1 +bh),

ht = zt ⊙ht−1 +(1− zt)⊙h′t ,

(4.22)

where φ is typically the ªtanhº activation function and the rest of designations are the same

as in Eq. (4.18).

The RM of the GRU is calculated in the same way as we did for the LSTM in Eq. (4.19),

but the number of operations with the input vector xt and with the previous cell output ht−1

is reduced from four (LSTM) to three times as shown in Eq. (4.22). Thus, the expression for

the RM becomes:

RMGRU = nsnh(3ni +3nh +3). (4.23)

The BOP for the GRU can be calculated in the same manner as for the LSTM in Eq. (4.20).

However, now the expression is slightly different in the number of matrix multiplications as

the number of gates is now lower. The BOP number can be represented as:

BOPGRU = 3nsnhMult(ni,bw,bi)

+3nsnhMult(nh,bw,ba)

+3nsnhb2
a

+8nsnhAcc(nh,bw,ba).

(4.24)

The explanation for each line here is identical to that in Eq. (4.20).
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The NABS of the GRU is derived similarly to the LSTM case:

NABSGRU = 3nsnh

[
ni(Xw +1)−1

]
Acc(ni,bw,bi)

+nsnh

[
3nh(Xw +1)+5

]
Acc(nh,bw,ba)

+6nsnhba.

(4.25)

Again, the explanation for each term in this expression is identical to Eq. (4.21).

Echo State Networks

ESN belongs to the class of recurrent layers, but more specifically, to the reservoir computing

category. ESN was proposed to relax the training process while being efficient and simple to

implement. The ESN comprises three layers: an input layer, a recurrent layer, known as a

reservoir, and an output layer, which is the only layer that is trainable. The reservoir with

random weight assignment is used to replace back-propagation in traditional NNs to reduce

the computational complexity of training [82]. This work only examined the digital domain

implementation. Moreover, it focuses on the leaky-ESN, as it is believed to often outperform

standard ESNs and is more flexible due to timescale phenomena [78, 143]. The equations of

the leaky-ESN for a certain time step t are given as:

at = φ
(

W rst−1 +W inxt

)

, (4.26)

st = (1−µ)st−1 +µat , (4.27)

yt =W ost +bo, (4.28)

where st represents the state of the reservoir at time t, W r denotes the weight of the reservoir

with the sparsity parameter sp, W in is the weight matrix that shows the connection between

the input layer and the hidden layer, µ is the leaky rate, W o denotes the trained output weight

matrix, and yt is the output vector.

The RM of an ESN is given by:

RMESN = nsNr(ni +Nrsp +2+no), (4.29)

where Nr is the number of internal hidden neuron units of the reservoir and no denotes the

number of output neurons. From Eq. (4.29), the Nrni multiplications occur from the input

vector operations, and the term N2
r sp is included due to the reservoir layer; to be more specific,
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the latter term is multiplied with the sparsity parameter sp which indicates the ratio of zero

values in the matrix. Eq. (4.27) results in 2Nr multiplications. Unlike the other network types,

now it is necessary to explicitly include the contribution of the output layer because it contains

the trainable weight matrix, and this layer contributes Nrno multiplications. Eventually, the

process is repeated for ns times.

The BOP number for an ESN can be represented as:

BOPESN = nsNrMult(ni,bw,bi)

+nsNrspMult(Nr,bw,ba)

+nsNrMult(no,bw,ba)

+2nsNrb
2
a

+4nsNrAcc(Nr,bw,ba).

(4.30)

In Eq. (4.30), the first term is the input vector contribution, the second one is contributed by

the reservoir layer, the third term refers to the output layer multiplications, and the fourth

term stems from the multiplications in Eq. (4.27). Eventually, the final term will account for

all the added operations.

The NABS of an ESN, which can be calculated similarly as in the LSTM case in Sec. 4.1.2,

is:

NABSESN = nsNr

[
ni(Xw +1)−1

]
Acc(ni,bw,bi)

+nsNr

[
sp(NrXw +Nr −1

]
+4)Acc(Nr,bw,ba)

+nsNr

[
no(Xw +1)−1

]
Acc(no,bw,ba)

+4nsNrba.

(4.31)

By changing the multiplication terms in Eq. (4.30) to the number of adders required at most,

we obtain the ESN’s NABS. The input vector multiplication contributes to the first term. The

reservoir layer and all the addition operations result in the second term. The third term comes

from the output layer of the ESN. The last term is the contribution of Eq. (4.27).
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4.2 Computational complexity versus Performance trade-

off of data-driven neural network equalizer in coherent

transmissions

This section initially describes the numerical and experimental scenarios used in this study

to analyze and compare the functioning of the equalizers detailed in Sec. 2.3 and 3.2.

After that, the two types of analysis for the set of NN structures are carried out. First,

it presents the maximum performance improvement (in terms of Q-factor gain compared

to the non-equalized case) that each equalizer can deliver and compares this gain to the

respective computational complexity corresponding to each optimized equalizer. Then, it

decreases the computational complexity of six NN topologies from Sec. 3.2 and presents

the gain improvement provided by each NN-equalizer when all NNs have approximately

the same computational complexity. This enables it to investigate the dependence of optical

performance on computational complexity and identify which equalizer is better for a certain

complexity level.

4.2.1 The computational complexity of the NN-based equalizers

Let the mini-batch size be B, ns be the input time sequence size, with ns = M, where M is

the memory size (see also Sec. 3.2), and ni be the number of features, which in this case is

equal to 4. Since it is recovered the real and imaginary parts of each symbol, the number of

outputs per symbol, no, is equal to 2. For ESN, biLSTM, and CNN layers, as they require

inputs in the form of tensors of rank 3, the input of the NN equalizer can be parametrized

as [B,ns,ni], the three numbers defining the dimensions of the input tensor, as mentioned

above. The parametrization for the MLP equalizer is simpler, with [B,ns ·ni] defining the

dimensions of the 2D tensor input. Flattening layers are used when it is necessary to reduce

the dimensionality of the data.

In this case, considering three dense layers with n1, n2, and n3 neurons, respectively, the

complexity CMLP of the resulting NN is given by:

CMLP = nsnin1
︸ ︷︷ ︸

a1

+n1n2 +n2n3
︸ ︷︷ ︸

b1

+n3no
︸︷︷︸

c1

, (4.32)

where a1 is the contribution of the input layer, b1 is the contribution of the hidden layer, and

c1 is the contribution of the output layer. The subindex ª1º in a, b, and c explicitly associates

these parameters with the MLP architecture.
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The next part presents the computational complexity of an NN-based equalizer composed

of a biLSTM layer. Assuming that the biLSTM layer has nh hidden units, the complexity of

such a NN is given by:

CbiLSTM = 2nsnh(4ni +4nh +3+no)
︸ ︷︷ ︸

a2

,
(4.33)

CbiLSTM = 2ns(4ninh +4n2
h +3nh +nonh)

︸ ︷︷ ︸
a2

,
(4.34)

CbiLSTM = 2ns(A+B+3nh)+C
︸ ︷︷ ︸

a2

,
(4.35)

where a2 is the contribution of the only layer, while the subindex ª2º attributes the number

a to the biLSTM. This expression is easier to understand if you analyze the mathematical

description of the LSTM cell, see (2.19) and Fig. 2.2. It has several contributions to the cell’s

complexity. In the first layer, it has 4ninh multiplications associated with the input vector

xt . Then, 4n2
h multiplications are due to the operations with the previous cell output ht−1.

Afterward, 3nh and nonh multiplications due to the internal multiplications identified with ⊙
and involving the current cell output (ht) going into the output layer, respectively, are added.

Lastly, it multiplies the number of operations by the number of time steps in the layer, ns.

Since the topology is bidirectional, the total contribution is also multiplied by 2.

Following Sec. 2.3, now the computational complexity associated with the ESN equalizer

is addressed. Before presenting the respective expression, it is important to emphasize two

aspects. First, the implementation of the ESN in the digital domain does not benefit from

the fact that only the output layer weights are trainable, since, as mentioned previously, the

training is not a key bottleneck as it is carried out during the offline calibration process.

Second, the complexity of the ESN can potentially drop drastically if it is implemented in

the optical domain as an ESN dynamic layer, as noted in [80]. However, this study analyzes

the ESN implementation in the digital domain, similarly to [79].

Considering the leaky-ESN definition given by (2.20)±(2.22), the computational com-

plexity of this equalizer can be expressed as:

CESN = ns




niNr +N2

r sp
︸ ︷︷ ︸

a3

+ 2Nr
︸︷︷︸

b3

+Nrno
︸︷︷︸

c3




 . (4.36)
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In the expression above, a3 represents the contributions of (2.20), where the input layer adds

niNr multiplications whereas the dynamic layers add N2
r sp. b3 refers to the contributions of

(2.21) describing the static layer, and c3 represents the multiplications in the output layer,

(2.22). This overall process is repeated for all ns time steps. Note that in the case of a

potential optical implementation of the ESN, a3 and b3 would be equal to zero, and only the

final weights would be learned in the digital domain.

Finally, the complexity of the composite structures (CNN+MLP and CNN+biLSTM) is

addressed. The computational complexity of a 1-D convolutional layer is described as:

CCNN = nin f nk

[
ns +2 padding−dilation(nk −1)−1

stride
+1

]

(4.37)

However, (2.17) assumes that the convolutional layer is defined by the number of filters

n f , the kernel size nk, and that the number of time steps ns ≥ nk , according to (2.16) the

output size for each filter of the CNN is (ns −nk +1). Equations (4.38) and (4.39) are the

expressions for the complexity of a convolutional layer combined with two dense layers or

one biLSTM layer, respectively:

CCNN+MLP = nin f nk(ns −nk +1)
︸ ︷︷ ︸

a4

+

(ns −nk +1)n f
︸ ︷︷ ︸

b4

n1 +n1n2 +n2no
︸ ︷︷ ︸

c4

,
(4.38)

CCNN+biLSTM = nin f nk(ns −nk +1)
︸ ︷︷ ︸

a5

+

(ns −nk +1)
︸ ︷︷ ︸

b5

2nh[4n f +4nh +3+no]
︸ ︷︷ ︸

c5

.
(4.39)

In this scenario, the two-layer MLP has n1 and n2 neurons in each layer, and the biLSTM

layer has nh hidden units. In the equations above, a4 and a5 are the contributions of the

convolutional layer, b4 is the correction factor for the transition between layers since the

flattening layer was placed before the dense layers; b5 is the number of time-steps for

the following biLSTM layer; c4 is the contribution of the two-layer MLP; and c5 is the

contribution of the biLSTM layer where, in this case, the number of filters, n f , is equal to the

number of features entering the LSTM cell.

Finally, the computational complexity of the DBP-based receiver is used in this study

for benchmark purposes. A basic implementation of the DBP algorithm [5] is considered,
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where each propagation step comprises a linear part for dispersion compensation followed

by a nonlinear phase cancellation stage. With a zero-forcing equalizer, you change the

signal in the frequency domain and multiply it by the inverse dispersion transfer function of

the propagation section to get the linear part. The complexity of the DBP in terms of real

multiplication per recovered symbol (RMpS) is [58, 118]:

CDBP=4NspanNstep

(
nNFFT[log2(NFFT)+1]

(NFFT −ND +1)
+n

)

, (4.40)

where Nstep is the number of steps per span used, NFFT is the FFT size, n is the oversampling

ratio, and ND = τD/T , where τD corresponds to the dispersive channel impulse response and

T = 1/Rs is the symbol duration. It has been considered that NFFT = 256 and τD defined as:

τD =
1.1Rsc|D|Lspan

f 2
c Nsteps

, (4.41)

where fc is the optical carrier reference frequency that in this case was 193.4 THz, c is the

speed of light, Lspan is the span length and D is the fiber dispersion parameter.

4.2.2 Simulation and experimental setups

The setup used in this experiment is depicted in Fig. 4.36. At the transmitter, a DP-16QAM

34.4 GBd symbol sequence was mapped out of data bits generated by a 232 −1 PRBS. Then,

a digital RRC filter with roll-off 0.1 was applied to limit the channel bandwidth to 37.5 GHz.

The resulting filtered digital samples were resampled and uploaded to a digital-to-analog

converter (DAC) operating at 88 GSamples/s. The outputs of the DAC were amplified

by a four-channel electrical amplifier which drove a dual-polarization in-phase/quadrature

Mach±Zehnder modulator, modulating the continuous waveform carrier produced by an

external cavity laser at λ = 1.55 µm. The resulting optical signal was transmitted over 9×50

km spans of TWC optical fiber with EDFA amplification. The optical amplifier noise figure

was in the 4.5 to 5 dB range. The parameters of the TWC fiber ± at λ = 1.55 µm ± are:

attenuation coefficient α = 0.23 dB/km, dispersion coefficient D = 2.8 ps/(nm·km), and

effective nonlinear coefficient γ = 2.5 (W · km)−1.

On the RX side, the optical signal was converted into the electrical domain using an

integrated coherent receiver. The resulting signal was sampled at 50 Gsamples/s by a

digital sampling oscilloscope and processed by an offline DSP based on the algorithms

6In this section, the transmission case considered was a single-channel transmission, so no neighbor channels

were added.
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𝜆 = 1.55 μm

…
…

Fig. 4.3 Experimental setup used to analyze the performance of different NN equalizers; The

input of the NN (shown as the purple rectangle at the bottom right) is the soft output of the

regular DSP just before the decision unit.

described in [113]. Following the removal of the carrier frequency offset, a frequency domain

equalizer first compensated for the bulk accumulated dispersion. A constant-amplitude,

zero-autocorrelation-based training sequence was then located in the received frame, and the

equalizer transfer function was estimated from it. After the equalization, the two polarizations

were demultiplexed, and the signal was corrected for clock frequency and phase. Carrier

phase estimation was then achieved with the help of pilot symbols. Thereafter, the resulting

soft symbols were used as input for the NN equalizers. Finally, the pre-FEC BER was

evaluated from the signal at the NN output.

With regard to simulation, it mimicked the experimental transmission setup7. The optical

signal propagation along an optical fiber was simulated by solving the Manakov equations via

the split-step Fourier method (with a resolution of 1km per step). Every span was followed

by an optical amplifier with the noise figure NF = 4.5 dB, which fully compensates for fiber

losses and adds amplified spontaneous emission noise. At the receiver, the received symbols

were made the same as the ones that were sent after full electronic chromatic dispersion

compensation (CDC) by the frequency-domain equalizer and downsampling to the symbol

rate. Finally, Gaussian noise was added to the signal, representing an additional transceiver

distortion that the experiment may have, such that the Q-factor level of the simulated data

7It was considered a DP-16QAM, single-channel signal at 34.4 GBd pre-shaped by an RRC filter with 0.1

roll-off transmissions with an upsampling rate of 8 samples per symbol (275.2 GSamples/s) over a system

consisting of 9×50 km TWC-fiber spans.
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matched the experimental one. The system’s performance is evaluated in terms of the

Q-factor.

4.2.3 Results for Optimized NN-based architectures

In this section, the maximum achievable Q-factor for all equalizers is shown without con-

straining the computational complexity. The Bayesian optimization (BO) tool, introduced

in [116] for optical NN-based equalizers, was implemented to identify the optimum values of

hyper-parameters for each NN topology, which provides the best Q-factor in the experimental

test dataset. As it was recently shown, the BO renders superior performance compared to

other types of search algorithms for machine learning hyperparameter tuning [144]. The

same topologies (without further optimization) were tested for the numerical analysis as well.

The search space used in the BO procedure was defined via the allowed hyper-parameters

intervals: N =[1 to 50], n f =[1 to 1000], nk =[1 to 20], nh =[1 to 1000], n1 =[1 to 1000],

n2 =[1 to 1000], n3 =[1 to 1000], Nr =[1 to 1000], sp =[0 to 1], µ =[0 to 1], and spectral

radius=[0 to 1] .

In Table. 4.5, the line marked with the ªBest Topologyº label, summarizes the hyper-

parameters obtained by the BO. These values are used to count the real multiplications per

symbol recovery (complexity), and to assess the equalizers’ performance expressed via the

Q-factor gain, Fig. 4.4. Note that for all equalizers, the same optimal number of taps found

by the BO was N = 20, which means that the memory in all equalizers is M = 41 and the

mini-batch size, B, is equal to 4331. Moreover, for the ESN, the BO found the best value

µ = 0.57, and the optimal spectral radius (0.667). The activation functions found for every

hidden NN layer are summarized as follows: 1D-CNN layer ± ‘linear’ activation function

followed by LeakyReLU (Leaky version of a Rectified Linear Unit) with a negative slope

coefficient alpha = 0.2; biLSTM layer ± hyperbolic tangent (‘tanh’) activation function; ESN

layer ± ‘tanh’ activation function; MLP layer ± ‘tanh’ activation function.

The results obtained by using the numerical synthetic data are presented in Fig. 4.4a.

First, the CNN+biLSTM 8 turned out to be best-performing in terms of the Q-factor gain:

it achieved a 4.38 dB Q-factor improvement when compared to the conventional DSP

algorithms [113], 0.05 dB when compared to the biLSTM equalizer level, 0.47 dB when

compared to the CNN+MLP equalizer level, 1.4 dB when compared to the MLP equalizer

level, and 3.96 dB when compared to the ESN equalizer level. Second, when adding the

convolutional layers to MLP and biLSTM, an improvement was observed in terms of the

number of epochs needed to reach the highest performance: the single-layer biLSTM required

8Note that the CNN+biLSTM belongs to the same category as the CRNN ± convolutional recurrent neural

network.
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Table 4.5 Summary of the complexity attributing to each NN equalizer topology: the topology

type is identified in the leftmost column. The complexity corresponding to each topology

and the NN type is expressed in terms of real multiplications per symbol recovered (RMpS),

highlighted in red. This table also depicted the hyper-parameters distributions found by the

BO: the cell marked as ªBest topologyº and the other 6 topologies (Topologies from 1 to 6,

referring to the increasing complexity threshold number) for the study of complexity versus

performance. In addition, for all topologies, the values of ns, ni, and no were: 41, 4, and 2,

respectively, and these are not reported in the table.

CNN+biLSTM biLSTM ESN

n f nk nh RMpS nh RMpS Nr sp RMpS

244 10 226 2.7E+07 226 1.7E+07 88 0.18 8.6E+04

CNN+MLP MLP

n f nk n1 n2 RMpS n1 n2 n3 RMpS

B
es

t
T

o
p

o
lo

g
y

470 10 456 467 7.7E+06 149 132 596 1.2E+05

CNN+biLSTM biLSTM ESN

n f nk nh RMpS nh RMpS Nr sp RMpS

1 10 1 2.1E+03 1 2.0E+03 6 0.18 2.2E+03

CNN+MLP MLP

n f nk n1 n2 RMpS n1 n2 n3 RMpST
o

p
o
lo

g
y

1

2 5 10 10 2.3E+03 10 10 25 2.0E+03

CNN+biLSTM biLSTM ESN

n f nk nh RMpS nh RMpS Nr sp RMpS

5 10 3 1.3E+04 4 1.2E+04 22 0.18 1.1E+04

CNN+MLP MLP

n f nk n1 n2 RMpS n1 n2 n3 RMpST
o
p

o
lo

g
y

2

9 5 12 30 1.1E+04 40 40 80 1.1E+04

CNN+biLSTM biLSTM ESN

n f nk nh RMpS nh RMpS Nr sp RMpS

20 10 10 1.1E+05 16 1.1E+05 100 0.18 1.1E+05

CNN+MLP MLP

n f nk n1 n2 RMpS n1 n2 n3 RMpST
o
p

o
lo

g
y

3

50 9 30 100 1.1E+05 170 170 300 1.1E+05

CNN+biLSTM biLSTM ESN

n f nk nh RMpS nh RMpS Nr sp RMpS

50 10 41 1.0E+06 53 1.0E+06 350 0.18 1.0E+06

CNN+MLP MLP

n f nk n1 n2 RMpS n1 n2 n3 RMpST
o
p

o
lo

g
y

4

300 10 70 200 1.1E+06 600 600 900 1.0E+06

CNN+biLSTM biLSTM ESN

n f nk nh RMpS nh RMpS Nr sp RMpS

244 10 108 1.0E+07 172 1.0E+07 1150 0.18 1.0E+07

CNN+MLP MLP

n f nk n1 n2 RMpS n1 n2 n3 RMpST
o
p

o
lo

g
y

5

600 12 500 500 1.0E+07 2100 2100 2500 1.0E+07

CNN+biLSTM biLSTM ESN

n f nk nh RMpS nh RMpS Nr sp RMpS

400 10 455 1.0E+08 550 1.0E+08 3660 0.18 1.0E+08

CNN+MLP MLP

n f nk n1 n2 RMpS n1 n2 n3 RMpST
o
p

o
lo

g
y

6

1000 10 2900 2200 1.0E+08 7050 7050 7000 1.0E+08

119 epochs, while the CNN+biLSTM reduced this number to 89 epochs; the MLP itself

needed 214 epochs to reach the best performance level, and the CNN+MLP required just 100

epochs. Thus, one can conclude that the addition of a convolutional layer indeed enhances

the NN structure’s performance and assists in the training stage.
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(b) Experimental results

Fig. 4.4 Comparison of the computational complexity versus performance for the different

NN-based equalizers considered within this study with their optimized architectures and the

DBP with 3 StPS. The C+MLP and C+biLSTM represent the CNN+MLP and CNN+biLSTM

architectures, respectively. The number over each bar gives the 10 logarithm of the number

of multiplications per recovery symbol.

When considering how NN equalizers function with the experimental data, Fig. 4.4b,

two major observations can be highlighted. First, similarly to the numerical results, the

CNN+biLSTM is best-performing among all the considered NN structures in terms of the

Q-factor gain. The CNN+biLSTM demonstrated a 2.91 dB improvement when compared

to the conventional DSP, 0.15 dB when compared to the biLSTM equalizer, 0.61 dB when

compared to the CNN+MLP equalizer, 0.96 dB when compared to the MLP equalizer, and

2.33 dB when compared to the ESN equalizer. Additionally, as was also observed in the

numerical analysis, a lower number of training epochs was necessary to reach the best

performance point when a convolutional layer was added: using the CNN+biLSTM needed

169 epochs, while for the pure biLSTM this number was 232 epochs; the number of epochs

required for the CNN+MLP to reach the best performance was 107, and for the pure MLP

it was 753 epochs. Second, compared to the simulation, the overall gain of all NN-based

equalizers is slightly reduced. This can be explained by the existing ªreality gapº between the

numerical model and the true experimental transmission results. In a real transmission, extra

nonlinearity and the non-ideal behavior of transceivers (signal clipping by the ADC/DAC,

harmonic and intermodulation distortions of the driver amplifier (DA), I/Q skew, etc.) add

noise and complexity to the channel inversion process. With just the split-step method,

the NNs can unroll the synthetic propagation effects more easily than reverting the actual

propagation in the experimental condition. Even though the gain numbers are different in

the numerical and experimental data, the NN structures’ performance followed the same

pattern for both numerical and experimental cases: the best performance was attributed to

the CNN+biLSTM, the next-level performance pertains to the biLSTM, followed by the

CNN+MLP, the MLP and, finally, the ESN.
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Finally, of all equalizer types investigated in this study, the DBP 3 StPS applied with two

samples per symbol was still the least complex method. In all simulation and experiment test

cases, however, the CNN+biLSTM outperformed the 3 StPS DBP, as shown in Fig. 4.4. Even

by optimizing the DBP’s nonlinear coefficient parameter (γ), the DBP approach was able

to enhance the Q-factor only by 1.32 dB, whereas the CNN+biLSTM equalizer improved it

by 2.91 dB, in the experimental case. The boost in performance in the experiment scenario

provided by the CNN+biLSTM relative to the DBP demonstrates the NN-equalizer’s power

in mitigating transmission impairments in a practical application.

4.2.4 Comparative analysis of different NN-based equalizers with fixed

computational complexity

The analysis given above does not address the question of which NN topology would provide

the best gain if the NN structure’s complexity were restricted to a certain level. To answer this

question, the equalizers were retested to constrain the total number of real multiplications per

recovered symbol (RMpS). It was considered that the complexity values were in the range of

103 to 108 RMpS. Note that NN structures with large RMpS (∼ 108) can be prohibitively

complex for efficient hardware implementation. However, Ref. [145] demonstrated an

efficient FPGA implementation of LSTM NN with 256 and 512 hidden units. This result

reveals that the architectures outlined in this research are still feasible for realistic signal

processing when advanced techniques for NN hardware implementation are used.

The hyper-parameters distributions for each NN architecture with the complexity con-

straint are summarized in Table 4.5 in the cells marked from ’‘Topology 1º to ªTopology 6º.

The BO also adjusted the parameters of those topologies; for each case, it was decreased the

allowed BO search range to adhere to each constraint on computational complexity.

As seen in Fig. 4.5, for different allowed computational complexity levels, the perfor-

mance ranking of equalizer types changes. Several conclusions can be drawn by analyzing

the results emerging from the simulated (Fig. 4.5a) and experimental (Fig. 4.5b) data. First,

in the experimental scenario, the best complexities corresponding to the maximum gain coin-

cide with the complexities identified by the BO procedure, which confirms the effectiveness

of the BO in finding the ªrightº NN architecture. Second, in simulations, the maximum per-

formance is already reached at a lower complexity level compared to the experimental results.

As it can be seen from the experimental figure, the CNN+biLSTM, CNN+MLP, and biLSTM

equalizers need ≈ 107 RMpS, while in the simulation ≈ 106 RMpS was already enough to

achieve the best performance. This observation further confirms that the NN can cope with

the reversion of the simulated channel more easily than with the reversion of experimentally
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Fig. 4.5 Q-factor gain dependence on the constrained multiplications number for the equaliz-

ers having different architectures, presented in Sec. 2.3, in the case of DP-16 QAM single

channel TWC-fiber 9×50km. The power level is 2 dBm, which guarantees the high enough

nonlinearity transmission regime.

obtained data. Third, the gain stays essentially constant as we raise the complexity above the

BO-determined level. This is due to overfitting, and it is particularly pronounced in the MLP

scenario. The key concept of the function approximation capability of the MLP belongs to

its number of i) feed-forward hidden layers and ii) hidden neurons; these two parameters

define the NN’s capacity [146]. Changing the MLP’s capacity by adjusting the complexity

levels frequently leads to unpredictable changes in the NN’s performance. Starting at the 105

complexity level for both simulation and experimental layouts, one can see that the MLPs

with oversized capacity suffer from overfitting, as the network memorizes the properties of

the training set in such detail that it can no longer efficiently recover the information from

the inference dataset [146]. The latter blocks the equalizer from providing further Q-factor

improvement. Thus, the architectures found by the BO identify the most appropriate NN

equalizer’s capacity (structure) matching this problem, and a further increase in complexity

cannot render any noticeable performance improvement.

Next, note that for the high level of RMpS (Topologies 4, 5, and 6), the best-performing

equalizer is the CNN+biLSTM. However, once the number of real multiplications from

Topology 3 and below is reduced, the best-performing equalizer turns out to be the traditional

MLP. This is a result of the fact that sophisticated architectures, like CNN and biLSTM,

necessitate more filters and hidden units, respectively, in order to fully understand the

dynamics of the data. Also, the CNN+biLSTM performs similarly to the CNN+MLP at low

complexity levels (orange and yellow curves in Fig. 4.5), and similarly to the biLSTM (blue
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line) at high complexity. Consequently, it can be inferred how the addition of a convolutional

layer works: while for high complexity the blue and orange curves are approximately the

same, at a lower allowed complexity level the CNN+biLSTM performs better.

Also, the hatched blue zone represents the traditional DBP with 3 StPS, in both simula-

tions and experiments to show how well the NN equalizers worked with the same amount of

computation as the DBP. Then, it is evident that reducing the number of neurons, filters, and

hidden units is not the optimal technique to achieve low-complexity architectures, because the

performance fell below the DBP level. As a possible alternative, pruning, and quantization

techniques [147, 148] can be used to minimize the computational complexity of the NN

equalizers without compromising their performance, making the NN equalizers appealing

not only for their good performance but also for their decreased complexity.

Last but not least, the ESN’s performance fell short of expectations; this can be seen

by its lowest achievable gain numbers. However, [149] contains the results explaining the

poor ESN performance for the nonlinear wireless scenario. It was shown that in a channel

with a high level of noise, the ESN-based system indeed performs poorly. Furthermore, in

that reference, it was demonstrated that by increasing the ESNs’ number of neurons (i.e., its

complexity), and, thus, effectively increasing the hidden dimensionality of the representation,

the equalization performance worsens. Moving to the nonlinear optical channel equalization,

both of the aforementioned effects were observed: the performance was relatively poor due to

the high level of noise, and the performance did not improve when increasing the complexity,

as can be seen from the behavior of the green curve in Fig. 4.5.

4.3 Compression Techniques to Reduce the Computational

Complexity of Equalizers

As demonstrated in the previous section, simplifying the structure of the NN equalizer is

insufficient to reduce the amount of work required to operate it while maintaining competitive

performance. This section will present a collection of compression techniques with the aim

of reducing the computational complexity of NN-based equalizers to levels that are suitable

for future industrial applications without sacrificing performance significantly.

4.3.1 Multi-symbol Architecture for NN-based Equalizers

As it was seen in the previous section, one of the most promising black box equalizers in

terms of performance is the bidirectional LSTM equalizer in a configuration of many-to-one

(1D regression task), i.e., when a window of symbols is used to recover just the central one,
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which has a computational complexity in terms of real multiplications per recovered symbol

(RMpS) given by:

CbiLSTM = 2ns

(
4nhni
︸ ︷︷ ︸

a

+ 4n2
h

︸︷︷︸

b

+ 3nh
︸︷︷︸

c

+nonh
︸︷︷︸

d

)
,

(4.42)

where ns is the size of the input sequence in the time-domain, ni is the number of input

features, no is the output dimension (which is equal to 2 - the real and imaginary parts

of the symbol), and nh is the number of hidden units in the LSTM cell. In Eq. (4.42), a

is attributed to matrix multiplication of input and weights; b to matrix multiplication of

hidden states and weights; c to pointwise multiplications occurring internally within the

LSTM cell; and d to matrix multiplication of hidden states and output weights9. During

the investigation of computational complexity reduction, it was found that simply applying

compression techniques would not be enough to reduce the complexity of DBP because such

compression strategies reduce the multiplications between input and weights, as in a, b, and

d, but do not impact internal multiplications as in c. As a result, the multiplication nsnh

would become the bottleneck to achieving a reduction in complexity. To mitigate this effect,

two different strategies can be used. As suggested in [150], it is possible to utilize basic

vanilla recurrent neural networks (RNNs) as the equalizers insofar as they lack an intrinsic

point-wise multiplier and, therefore, do not suffer from this issue. The second possibility,

again indicated in Ref. [150], is to recover several symbols at a time rather than just the

central one, which allows for eliminating some ns multiplications.

XI XQ YI YQ
nht1
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tM

nk
I Q

biLSTM

1D-CNN

Input  
 (Received Symbols)

Output 
 (Recovered Symbols)

Recovered W
indow
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-nk +1

nh

nh

sliding

Fig. 4.6 Schematic of the biLSTM+CNN equalizer: the input consists of M real (I) and

imaginary (Q) parts of the symbols. The LSTM cells are indicated by lozenges containing nh

hidden units. The LSTM output is sequentially processed by the convolutional layer with

two filters to compute the I and Q components of the symbols.

9Here, it is considered that a flatten layer was applied to achieve a many-to-one configuration. Instead, if the

output comes from just one cell, the complexity of the term d instead of 2nsnonh, would read as: 2nhno
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Firstly, it was tested the vanilla RNN and optimizing it using the BO. However, while

comparable performance was shown in Ref. [150] when using the LSTM and vanilla RNNs,

it was observed quite different performances when using these NNs (with both tuned using

the BO). Indeed, using the standard DBP as the reference comparison scenario, as is typically

done in the literature, the vanilla RNN barely outperformed the 1 STpS DBP, while the

LSTM-based architecture showed better performance than a 3 STpS DBP. In this case,

the BO showed substantially low (≈ 5.10−5) learning rates in the vanilla RNN scenario,

in an attempt to reduce the impact of exploding gradients (that such layers are known to

have). Consequently, the training process got stuck in the local minima of the loss function

landscape, which limited the optical performance improvement attainable by the equalizer.

The LSTM cell, an enriched variant of the vanilla RNN cell with several gating units that

help propagate the gradient and govern the flow of information through the NN, solves this

gradient problem. However, at the cost of additional complexity.

The better-performing LSTM equalizer is considered henceforth. However, it was

enhanced by recovering multiple symbols with the same NN structure instead, as proposed

in Ref. [150]. To recover multiple symbols, it is needed to consider that, since chromatic

dispersion plays an important role in fiber perturbation, if the NN equalizer processes a

window of M symbols as input, it will be able to recover M− x symbols only, where M is

the number of input symbols and x depends on the system memory length. Since the initial

and final symbols of the window will lack important information from their neighbours (due

to dispersion-induced memory), they may not be recovered properly. The simplest way to

reduce the dimensionality of the time window tensor without losing information is by using

a 1D convolutional layer. For this purpose, it uses a 1D-CNN with a kernel size nk, the

padding set to zero, the dilation and stride set to 1, and just two filters to represent the real

and imaginary parts of each symbol. In this case, the number of recovered symbols (the

recovery window) is M−nk +1. The BO was used to estimate the appropriate values for M,

nh, nk, learning rate, and mini-batch size, limiting the number of hidden units to at most 150

for complexity constraint reasons. The equalizer scheme is shown in Fig. 4.6.

The computational complexity of the bidirectional LSTM + 1D-CNN equalizer, in terms

of RMpS, can be represented using the formulae in Ref. [151], but this time taking into

consideration the parallel recovery of ns −nk +1 symbols as:

RMpSNN =
2nsnh(4ni +4nh +3)

ns −nk +1
+2nhnonk, (4.43)

The analysis of Eq. (4.43) shows that the number of multiplications has decreased when

compared to that of the initial biLSTM equalizer, but compression techniques are still
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required to further reduce the number of multiplications to a level at least below 1 STpS DBP

without affecting the resulting model’s performance.

4.3.2 Pruning Approaches for Complexity Reduction

Pruning is the process of removing parameters, neurons, or even layers or parts of a NN that

do not significantly impact its performance to reduce its computational complexity. The area

of NN pruning is wide and encompasses several subcategories: (a) static or dynamic; (b) one-

shot or iterative; (c) structured or unstructured; (d) magnitude-based or information-based;

(e) global or layer-wise. Detailed information on the different types of pruning can be found

in, e.g., Refs. [106, 152±156]. In this investigation, we prune the lowest magnitude weights

globally throughout the NN [106]. This low complexity, traditional unstructured global

magnitude pruning has already proven to be quite effective [106, 157±160]. To be more

specific, it was considered, in this thesis, a static, iterative, unstructured, global magnitude-

based pruning. In this case, it is removed weights offline from the network after training

and before inference. Moreover, iterative pruning allows for pruning more weights while

preserving accuracy.

The four (most promising) strategies for the iterative-pruning retraining process that are

applied in this study are schematically depicted in Fig. 4.7. The four approaches are referred

to as fine-tuning, weight rewinding, learning rate rewinding, and Bayesian optimizer-assisted.

Fine-Tuning approach

This method prunes the model once it has been trained. In the second step, it trains the

weights that remain after pruning using a constant learning rate, which is usually the same

as the final learning rate of the original training procedure. The first panel of Fig. 4.7

shows how the fine-tuning scheme is implemented. After determining the fine-tuning period,

the traditional gradual pruning method (a polynomial decay) [161] is used. The pruning

polynomial decay approach quickly prunes the network at the beginning, when there are

many redundant connections, and gradually reduces the number of weights pruned each

time. This procedure results in a smooth loss function during the fine-tuning period, which is

beneficial for the learning process to maintain an accuracy close to the original NN model.

This approach can be used when employing the other ªdeterministicº methods for the

equalization of optical fiber nonlinearities. For example, this pruning technique can be used

(in a simpler way) to eliminate the less relevant coefficients of the Volterra equalizers [29,

162, 163] and to trim the unimportant triplets (making the triplet feature vector more sparse).
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Fig. 4.7 A schematic of the fine-tuning, weight rewinding, learning rate rewinding, and

Bayesian optimizer-assisted pruning strategies is shown. A qualitative representation of the

evaluation loss over the training time process is shown on the right-hand side. Hp is the set

of hyperparameters suggested by the BO for the pruning phase.
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It can also be used when employing perturbation approaches [1, 86, 164]. Several works

investigated the use of fine-tuning, mainly in short-reach intensity-modulated systems [165±

170], to reduce the complexity of the model. So far, the analysis of pruning in optical

channel equalization has been restricted to the case of feed-forward NN models only. This

investigation will also present such an analysis for a recurrent equalizer and deal with the

case of coherent optical transmission.

Weight rewinding approach

This method was introduced in Ref. [157] dealing with the lottery ticket hypothesis. The

main idea supporting it is that a dense NN with random initialization contains a subnetwork

that, when trained in isolation, can match the test precision of the original network after

training. This approach is separated into three parts, as shown in the second line of Fig. 4.7.

First, during the initial training process, the weights of each epoch are saved. Then, at the

end of the initial training, a percentage of the connections are pruned, and the remaining

weights and the learning rate are reset to their prior values (at the k-th epoch of the initial

training); the choice of the particular epoch number k, used in this investigation, is explained

below. Subsequently, the retraining restarts from the k-th epoch and goes up to the last epoch,

followed by a fresh round of pruning using the remaining weights. The cycle of resetting

weights and learning rates is repeated until a specific degree of sparsity is achieved. In this

approach, the loss function oscillates over the pruning time since the loss increases every

time the weights are reset, but the process tends to converge to the reference before pruning.

In the context of channel equalization, the first work that applied this method was the

recent work by Koike-Akino et al. [125], where such a technique has been tested in the

feedforward model called ResMLP. It was shown that this approach can give a sparsity of

99% compared to the initial overparameterized solution with 6 layers and more than 106

parameters. In this investigation, and similarly to Ref. [125], the first epoch was rewound,

meaning that k = 1.

Learning rate rewinding approach

This method was introduced in [159] and combines fine-tuning with weight rewinding. The

third panel of Fig. 4.7 shows how this method operates. While the weight rewinding described

above rewinds both the weights and the learning rate, the learning rate rewinding simply

rewinds the learning rate, leaving the weights to be re-trained after pruning from their values

at the end of the initial training phase (like in the fine-tuning approach described above).

In a nutshell, after initial training, a percentage of connections are pruned and re-trained
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while just the learning rate schedule is rewound. This cycle is repeated until the network

sparsity is at the desired level. This approach has not been evaluated previously for the

optical equalization task.

Bayesian optimizer assisted approach

The weight and learning weight rewinding approaches were proposed because just fine-tuning

the initial hyperparameters of the NN does not guarantee that the performance of the equalizer

remains similar. A possible explanation for this effect is that, once the pruning of the NN

starts, the optimization problem’s target changes. Consequently, the hyperparameters of

the new architecture may also need to be adjusted. Indeed, and as stated in Ref. [171], it

may lose performance if the hyperparameters are set to a default value when tuning the

NN’s hyperparameters. Solutions, as in [172] leverage reinforcement learning to provide

the model compression policy, determining layer-wise pruning rates. Alternatively, the

BO-based approach was used to not only define the pruning policy but also other important

hyperparameters of the model (the number of tuning epochs, learning rate, batch size, and

initial/final sparsity), thus optimizing the trade-off between performance and computational

complexity. We note that this is a completely new approach that has not been tested in any

other applications.

Let us briefly specify the BO approach10 that seeks the global optimum x∗ of a black-

box function opt, where opt(x) can be evaluated for any arbitrary x ∈ X . That is, x∗ =

argminx∈X opt(x), where X is a hyperparameter space that can contain categorical, discrete,

and continuous variables [104]. For solving the problem formulated above, the BO assumes

that the function opt was sampled from a Gaussian process. The BO maintains a posterior

distribution for this function when observations are made [105]. For this application, the

observations are the outcomes of performing the NN-based equalization trials with differ-

ent hyperparameters. To choose the hyperparameters for the next trial, this investigation

optimized the expected improvement over the current best result; see more in Ref. [173].

In this study, the optimization process involves the following procedure. After the initial

training phase, the NN model with hyperparameters Hi ∈ X , has a total computational

complexity (say, expressed in terms of real multiplications) Ci, and a certain performance Pi

(the Pi is evaluated using a testing dataset). Then, we use the BO to minimize the following

10The hyperparameter optimization can be done using methods other than the BO, although, as mentioned

in Ref. [104, 105], the hyperparameter optimization strategy, the BO offers numerous advantages over search

algorithms in finding good candidates with fewer interactions.
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objective function:

opt =







(Pi −Pp)
Cp

Ci
, Pi > Pp

−Ci

Cp
, if Pp ≥ Pi

, (4.44)

where Pp and Cp are the performance and computational complexity observed when using a

set of hyperparameters Hp ∈ X in the pruning and fine-tuning process, respectively. The

two possible scenarios that may occur when pruning is applied are covered by Eq. (4.44): i)

the first one corresponds to the usual case where Pi is better than the pruned performance

Pp. In such a situation, the goal of minimizing opt is equivalent to minimizing the Pi −Pp

gap and, at the same time, reducing the number of multiplications Cp when compared to the

initial ones, Ci. ii) the second case takes place when the pruned NN improves performance,

Pp > Pi. This case occurs when pruning enables escaping a local minimum, thus improving

the NN performance. The focus is then on reducing the computational complexity. According

to Eq. (4.44), this means that the reduction of opt can only be achieved by reducing Cp,

(since Ci is constant). This procedure is a new approach (even in ML science): it aims at

identifying the best balance between the model’s performance and computational complexity,

by selecting a good candidate for the parameter set Hp.

4.3.3 Weight sharing approach for complexity reduction

Weights clustering, also referred to as the "weight-sharing compression approach," is another

method that can be explored to reduce the NN model’s complexity by reducing the number

of effective weights used by the model. This approach takes into account that several

connections may share the same weight value and then fine-tunes those shared weights.

In the case of feedforward structures, this strategy was already successfully employed to

minimize the complexity of NN models [123, 156, 174, 175]. This section uses the same

method as in [156], but modifies it for the recurrent layers as well. Following the selection

of a centroids’ initialization technique, [156], a minimal distance from each weight to such

centroids is used to determine the shared weights for each layer of a trained network so that

all weights in the same cluster share the same weight value. The weights are not shared

between the layers to prevent further performance loss and because sharing weights between

sequential layers does not lower computing complexity. Fig. 4.8 illustrates how this strategy

is applied jointly with the BO. To apply weight clustering, it is needed to define three

parameters: i) the number of clusters, ii) the centroids’ initialization technique, and iii) the

weight fine-tuning process. The BO is used to select these parameters so that performance

degradation is minimized. The objective function depicted in Eq. (4.44) was also used
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Hyperparameters 
in Training 

Bayesian Optimizer

1.1 0.5 0.1 1.1

0.1 0.5 1.1 0.1

0.5 0.1 0.5 1.1

0.1 0.5 1.1 0.1

2.3 0.6

2.3 0.6

2.3 1.2

1.2 2.3

opt

No cluster  
Initializer  

NN w/ Clustering 

2.11 0.31 0.06 1.01

0.12 0.65 0.89 0.08

0.61 0.05 0.55 1.52

0.19 0.59 1.23 0.22

3.12 0.79

2.5 0.41

1.9 1.3

1.1 2.1

NN pre-Trained 

Fig. 4.8 Scheme of weight clustering over dense layers using the BO of its design. Once the

NN weights are trained, a selection of weights per layer is forced to be in the closest centroid

learned using stochastic gradient descent.

for the BO. Four possible centroid initializers to choose from were provided to the BO:

linear-, random-, density-, and K-means-based. Using the weight clustering approach has

the advantage of reducing the number of distinct multipliers in matrix multiplication to at

least the number of clusters per input element. Then, the results of the multipliers are sent to

the different adders. To illustrate the weighted clustering operation, consider the first matrix

in Fig. 4.8. Suppose that the input vector I, the output vector O, and the weight matrix W

before clustering are linked as follows:

O=W × I=










w11 w12 w13 w14

w21 w22 w23 w24

w31 w32 w33 w34

w41 w42 w43 w44










[

i1 i2 i3 i4

]

. (4.45)
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In Fig. 4.8, we cluster this matrix with 3 centroids, c1, c2, and c3, so the new equation

connecting input and output, becomes:










o1

o2

o3

o4










=










c1 c3 c2 c1

c2 c3 c1 c2

c3 c2 c3 c1

c2 c3 c1 c2










[

i1 i2 i3 i4

]

. (4.46)

This result shows that, in the worst case scenario, the new number of multiplications would

decrease from 16 (input size × output size = 4×4) to (input size × number of clusters =

4×3), because in this case we can carry out all possible unique multiplications (i1c1, i1c2,

... ,i4c3), and the rest of the operations are additions. However, by properly designing such

a matrix multiplication, the number of multiplications can even be further reduced. In the

same example, the output O can be defined as follows:










o1

o2

o3

o4










=










i1c1 +(i2 + i4)c2 + i3c3

(i1 + i2 + i4)c3 + i3c2

i1c2 +(i2 + i4)c1 + i3c3

(i1 + i3)c1 +(i2 + i4)c2










. (4.47)

Notice that the number of multiplications is reduced to 8 unique multiplications in Eg. (4.47),

which is half of its original value (the number of additions remains the same). It is important

to note that the benefit resulting from using this technique depends on the lengths of the input

vector and the weight matrix, as well as on how the learned weight pattern is spread over

the weight matrix. In addition, weight clustering is also used as a form of heterogeneous

quantization. In this sense, when assuming a quantization of, for instance, 3 bits, the weight

clustering approach will try to identify the 8 unique weights that can best describe the original

weight distribution of the NN model. In this case, this type of nonuniform quantization

is implemented by maintaining a codebook structure that stores the shared weights, and

the weights are grouped by index after calculating the gradient of each layer [156, 176].

Importantly, the weight clustering contributes the most to the NN-based equalizer complexity

reduction. Moreover, note that clustering has never been used in the NN-based optical

channel equalization.

Finally, it is worth clarifying how the learning process occurs, when backpropagation is

used to update the clusters of centroids and the original weights. The TensorFlow implemen-

tation used in this section works with a lookup table to hold the centroid values during the
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model training, as described in Ref. [177]. The weights array is populated with a ªgatherº

operation so that, during the backpropagation, the gradients can be calculated in the usual

way. The lookup table is then adjusted using the cumulative gradient values for the weights

that correspond to the same centroid. The original weights are also updated by using a

straight-through estimator to overwrite the non-differential structure of clustering with an

identity function, which allows all upstream gradients to be used in the updated original

non-clustered weights of the layer [177, 178].

4.3.4 Different Quantization Techniques for Complexity Reduction

Quantization is used to lower the bitwidth of the numbers participating in arithmetic oper-

ations along the signal processing path, which typically helps to significantly reduce the

computation complexity of the processing. This means that a quantized model can use, for

example, integers, instead of floating-point numbers for some or all operations. Therefore,

quantization allows the model to use less memory while doing high-performance vectorized

operations on a variety of hardware platforms [179].

Quantization has demonstrated excellent and consistent results when used during training

and inference using different NN models [147, 152, 179, 180]. Particularly, it is effective

during inference because it saves computing resources without significantly decreasing

accuracy. NNs benefit from quantization because NNs are remarkably robust to aggressive

quantization and extreme discretization. This robustness emerges from the large number

of parameters involved in the NN, meaning that they are typically working with over-

parameterized models. This subsection presents the categories of quantization addressed

in this study in terms of their mode (post-training quantization [181] or quantization-aware

training [182]) and quantization approach (homogeneous [183] or heterogeneous [184]).

Homogeneous or Heterogeneous Quantization

Homogeneous is the most common quantization approach. The homogeneous quantization

consists of reducing the precision of all NN weights to the same number of bits. In this

case, we use the same type of quantization and number of bits across the entire NN model.

However, because the layered structure of multilayered NN models offers high quantization

flexibility, it is natural to assume that different layers may impact the loss function differently,

which favors a mixed-precision quantization approach. The process of quantizing the layers

differently across the NN is known as heterogeneous quantization, and it can be a critical

step toward improving the complexity-performance trade-off. In this case, distinct layers

with varying bitwidth are quantized into their fixed-point representation, as in Ref. [184].
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Pre-Trained 
Weights Quantization Quantized

Weights

Fine-
Tuning

Quantized
Weights

Bayesian
Optimizer

Q
uantization- Aw

are Training

Post-Training Quantization

Training Hyperparameters

Quantizations per Layer

opt

Fig. 4.9 Schematic of the NN quantizer. BO can help with the post-training quantization

by finding the best bitwidth precision per layer, and with the quantization-aware training by

finding the best hyperparameters for the fine-tuning training after quantization.

There are several types of quantization that may be used. This work focuses on the

uniform quantization [185], the power of two quantization (PoT) [186], and the additive

power of two quantization (APoT) [124] since they have a wide range of applications and

usually deliver quite good results. Regarding those types of quantization, they usually

convert the floating-point representation to a fixed-point representation, thus using integer

mathematics instead of a floating-point one. This approach reduces both the memory and

computing requirements for the realization of a particular solution.

Uniform quantization is the most common and simplest quantization approach. The

uniform quantization applied to the NN elements can be expressed as [185]:

Q(x)BW = R(x,αLuni(BW )), (4.48)

Luni(BW ) =







−1,0,± 1

2BW−1
, ...,±2BW−1 −1

2BW−1
︸ ︷︷ ︸

2BW−1−1 amplitudes







, (4.49)

where Q(. . .)··· is the quantization operator, x is a real-valued input (it can be weights or

an activation function), BW is the quantized bitwidth value, R(x,αLuni) is the function that

rounds x to the nearest element on the list Luni that contains all quantization levels, and α

is a scaling level that guarantees that the largest weight in the NN will not be clipped. The

quantization error is introduced by the rounding functions, depending on the BW precision.

Note that, in this section, we use a representation format that, besides the ª-1º and ª0º values
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involves 2BW−1 −1 additional amplitudes, defining a total of 2BW −2 positive or negative

levels. The int8 quantization (BW = 8) is one of the most widely used uniform quantization

schemes, not only for the ML frameworks such as TensorFlow and PyTorch, but also for the

hardware toolchains such as NVIDIA TensorRT [187] and Xilinx DNNDK [188]. The int8

quantization has the advantage of typically not leading to relevant performance degradation

(as can be observed from the results later in this section± see Fig. 4.17). This work will not

restrict itself to int8 quantization only but, in contrast, will also use the BO to determine the

best number of bits for the quantization process.

The PoT quantization is a logarithmic quantizer [189] designed to approximate the

weights to the closest power of two in the range defined by the considered number of bits.

The PoT quantization with 2BW elements can be represented mathematically as follows:

Q(x)BW = R(x,αLPot(BW )), (4.50)

LPot(BW ) =







−1,0,±1

2
, ...,± 1

2(2
BW−1−1)

︸ ︷︷ ︸

2BW−1−1 amplitudes







. (4.51)

The POT quantization leads to much smaller computational complexity when compared to

the uniform quantization because all multiplications can be represented in terms of bit-shift

operations (since it uses power-of-two values only). However, as pointed out in several

works [124, 186, 189, 190], the performance of the PoT-quantized system can degrade

compared to the uniform quantized one due to this scheme’s rigid resolution problem.

The APoT quantization was recently proposed to encompass the benefits of PoT and

uniform quantization types. As stated in the original work in Ref. [124], the PoT and uniform

quantization are special cases of APoT with specific design parameters. The goal of APoT

is to have fewer shift-adds than the uniform quantization but, at the same time, to take

advantage of its non-uniform quantization levels as the PoT does. Mathematically, the APoT

quantization [124] considering 2BW levels can be described as:

QBW (x) = R
(
x,αLAPot(BW )

)
, (4.52)

LAPot(BW ) =

[

−1,

{
n−1

∑
i=0

pi

}]

, (4.53)
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pi ∈









0,± 1

2i+1
,± 1

2n+i+1
, ...,± 1

2[(2
K−2)∗n+i+1]

︸ ︷︷ ︸

2K−1 amplitudes









, (4.54)

where n is the number of additive terms, k is defined as k = (BW −1)/n, and {. . .} is the set

containing all possible combinations of n additions from the 2K different elements in the list

pi
11. In this description, by setting n = 1 it is equivalent to having the PoT case, whereas

setting k = 1 leads to the uniform case12. This work has considered n fixed and equal to 2,

3, or 4. It has also addressed the case from the original APOT paper in Ref. [124], where k

was fixed equal to 2. Importantly, the drawbacks of using the APoT quantization with k = 2

when the model has already been pruned will also be presented.

Post-Training Quantization

The post-training quantization (PTQ) [179, 181, 185, 191] is a conversion technique in

which all trained weights and activations of the NN model are converted to some fixed point

representation, following some quantization precision established after the training phase.

As indicated in Fig. 4.9, blue box, a quantization approach is applied after training the neural

network weights, and the quantized weights are saved for future use. As a result, the PTQ

is an extremely fast method of quantizing NN models. Moreover, when using the PTQ, a

quick grid search was already enough to analyze all possibilities and get a satisfactory result.

Thus, here, it was not used the BO to determine the optimal precision (bitwidth per layer).

However, this approach usually leads to a small degradation of the model’s performance,

independent of the quantization approach selected.

Quantization Aware Training

As stated previously, the inference performance of the quantized integer models is gener-

ally worse than that of the floating-point models due to the information loss induced by

quantization. To address this limitation, a method known as quantization-aware training

(QAT) [122, 179, 192] was proposed. QAT accounts for the loss of information during

the training phase, resulting in a smaller performance degradation during inference. This

work uses the QAT approach proposed in Ref. [193], where the quantized weight levels are

11To explain the notations better, consider the case where n = 2 and k = 3, such that we have two sets, p0 =
{p1

0, p2
0, p3

0}, and p1 = {p1
1, p2

1, p3
1}. Then, {∑

1
i=0 pi}= {p1

0 + p1
1, p1

0 + p2
1, p1

0 + p3
1, p2

0 + p1
1, . . . , p3

0 + p3
1}.

12Eqs. (4.49), (4.51), (4.53) are valid for bw > 1; when bw = 1, we have the same set of values, 1 or 0,

independently of the type of quantization.
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optimized. Afterward, the quantization is reversed, but the final forward-propagated values

also include the errors aggregated by the weight quantization scheme.

The implementation of the QAT is illustrated in the green box in Fig. 4.9. In the QAT

case, the fine-tuning block operates as follows: 1) It receives the weights quantized via the

chosen quantization strategy; 2) Then, it performs the forward propagation; 3) Afterward, it

converts all variables to float precision; 4) Finally, it does the backpropagation. This cycle

is repeated until the weights are definitively quantized. The inference about the quantized

structure’s performance is then completed.

For practical reasons, the QAT scheme for learning depicted in Fig. 4.10 is similar to

the one used with weight clustering. In the case of weight clustering, the quantizer box is

an identity since the cluster centroids are the alphabet that the NN is training to learn (a

nonuniform quantizer), and both centroids and weights are updated in the training process.

Instead, the centroids were forced to be fixed into a defined alphabet (e.g., uniform, Eq. (4.49);

POT, Eq. (4.51); APOT, Eq. (4.53), and update the weights only (the centroids will fall into

one of the possibilities in the quantization alphabet). For the forward propagation, all weights

in the NN, W , are quantized to the nearest element of the quantized alphabet cq, resulting in

the quantized weights Wqc that will be used to compute the loss function. However, in the

backpropagation stage, the gradients were computed using the floating-point values (W ). This

is possible because the backpropagation engine is forced to ªignore" the quantization step

used in the forward propagation. The latter is done by assuming that
∂Wqc

∂W
= 1. As stated

in [6], this process is known as a Straight-Through Estimator, and it results in a smoother

transition between consecutive quantization levels in the learning process.

Gather

Quantizer

Indices
Quantized
Weights

 Layer

Backward Pass for Weight Update

Centroids 
Gradient

Aggregation

Weights Argmin

Fig. 4.10 Quantization-aware training scheme for forward and backpropagation. The forward

propagation uses the quantized alphabet cq to generate the quantized weights Wqc and, in the

backpropagation, such a weight is ªskipped" by imposing its gradient to be one (straight-

through estimator, Ref. [6]).

Finally, BO was used to fine-tune, i.e., find the best hyperparameters, in the QAT. Note

that, differently from the other two compression approaches, where the computational

complexity C is measured in terms of the number of real multiplications, it is now measured

in terms of the number of bit operations.
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Quantization Applications in Optical Channel Equalization: the Current State of the

Art

Several quantization strategies have already been proposed to equalize optical channels.

Regarding the post-training quantization, the authors of Ref. [194] implemented an MLP-

based equalizer with two hidden layers in an FPGA (XCZU9EG FFVC900) using post-

training quantization with traditional uniform int8 precision; the quantized equalizer was

tested in an experimental setup of a 50Gb/s PON with a 30 km SSMF link. Next, this time

using a recurrent NN-based equalizer, Ref. [195] tested the equalizer in a PAM4-based 100-

Gbps PON signal transmission over a 20 km SSMF fiber testbed and applied post-training

quantization, changing the bitwidth of the weights from 8 to 2 bits, to evaluate the BER

degradation resulting from the quantization. Also, the authors of Ref. [195] implemented

such an equalizer in an FPGA using the Xilinx Vivado toolset for high synthesis. The

authors of Ref. [196] focused on coherent transmission. In this case, a complex-valued

dimension-reduced triplet input neural network was proposed and experimentally tested with

a 16-QAM 80 Gbps single polarization signal transmitted along 1800 km of SSMF (100 km

SSMF loop). In this study, to validate the robustness of such a NN equalizer on quantization,

they reduced the bit precision of weights to up to 2 bits, observing mostly minor performance

degradation. Finally, in [197], an MLP equalizer was used to mitigate the impairments in

a 30 GBd 1000 km system. In this case, the PTQ strategy together with the traditional

uniform 8-bit quantization was demonstrated using low-performing hardware (Raspberry Pi

and Jetson nano).

Regarding the QAT strategy description, an important discussion on the quantization of

NN weights was held in Ref. [198] where it was emphasized that the equalizer inference

should be performed by a fixed-point system to address a more hardware-friendly situation.

An MLP-based equalizer was used, and its weights were quantized with a PoT quantization

strategy. The authors incorporated the quantization error in the training of the equalizer by

using the Learning-Compression (LC) algorithm, which is a possible QAT strategy. The

authors of Ref. [199] used a deep CNN equalizer to assess their proposed quantization

strategy, which combines QAT and post-equalization to find the most appropriate number

of bits for uniform quantization. Using only 5-bit weights, the CNN equalizer was able to

achieve performance that was similar to that of the full-precision model for a theoretical

dispersive channel with AWGN noise and ISI. More recently, Ref. [125] demonstrated that

the APoT strategy could provide much higher resilience to quantization than the ordinary

PoT. In this case, a ResMLP equalizer was tested (using simulation results) considering the

transmission of a dual-polarization 64/256QAM, 34 GBd 11Ch-WDM signal over 22 spans

of 80 km of SSMF.
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Finally, for better visualization of what was discussed so far in this section, Fig. 4.11

illustrates the weight distribution of the recurrent kernel in the LSTM layer of the NN

equalizer from the different phases of the NN design in this section: (a) Original trained NN;

(b) The pruning phase; (c) The weight clustering phase; (d) The quantization phase.
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(b) After Pruning.
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(c) After clustering.
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(d) After quantization.

Fig. 4.11 Illustration of the weight distribution of the recurrent kernel in the LSTM layer of

the NN equalizer from the different phases of the NN design in this section. (a) Original

trained NN; (b) The pruning phase; (c) The weight clustering phase; (d) The quantization

phase.

4.3.5 Simulation and experimental setups

The performance of the NN-based equalizers with reduced complexity is assessed using data

not only from numerical simulations but also from a real experimental setup to make the

analysis as complete as possible. The setup used in this experiment is depicted in Fig. 4.12.

At the transmitter side, a dual-polarized probabilistic shaped 64QAM (8bits/4D symbol)

34.4 GBd symbol sequence was mapped out of data bits generated by a Marsenner twister

generator [200]. Then, a digital root-raised cosine (RRC) filter with a roll-off factor of

0.1 was applied to limit the channel bandwidth to 37.5 GHz. The resulting filtered digital

samples were resampled and uploaded to a digital-to-analog converter (DAC) operating at

88 GSamples/s. The DAC outputs were amplified by a four-channel electrical amplifier

that drove a dual-polarization in-phase/quadrature Mach±Zehnder modulator, modulating

the continuous waveform carrier produced by an external cavity laser at λ = 1.55 µm. The

resulting optical signal was transmitted along 9×110 km spans of SSMF with lumped

(EDFA) amplification. The EDFA noise figure was in the 4.5 to 5 dB range. The SSMF is

characterized at λ = 1.55 µm by an attenuation coefficient α = 0.21 dB/km, a dispersion

coefficient D = 16.8 ps/(nm·km), and an effective nonlinear coefficient γ = 1.14 (W· km)−1.

At the Rx side, the optical signal was converted to the electrical domain using an integrated

coherent RX. The resulting signal was sampled at 50 Gsamples/s with a digital sampling

oscilloscope and processed by an offline DSP based on the algorithms described in [113].

First, the bulk accumulated dispersion was compensated using a frequency domain equalizer,
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Table 4.6 The best hyperparameters were found by the BO for the two transmission setups

considered in this work. The same NN configuration is employed for the numerical and

experimental setups.

Transmission Case Input Window Output Window Hidden Units Kernel Size Mini-Batch size Learning Rate

20×50km SSMF link

64QAM 30GBd
221 171 100 51 3502 0.001

9×110km SSMF link

64QAM 34GBd
221 195 117 27 2153 0.0013

11
0.

6k
m

11
0.

4k
m

11
0.

6k
m

11
0.

1k
m

11
0.

6k
m

11
0.

0k
m

11
0.

5k
m

11
0.

6k
m

11
0.

4k
m

PRCPRC

PRCPRCPRC

PRC

PRC

PRC PRC

Random 
Bitstream 

Xpol

Ypol

DAC 
DAC 
DAC 
DAC 

Bit 
DSP 
Tx 

Bit ICR Bit 
DSP 
Rx 

ADC 
ADC 
ADC 
ADC 

Bit CDC 

Bit CDC+NN 

Bit DBP 

D
ec

isi
on

 

QoT
Estimation 

DP-MZM Bit 
Driver  
Amp. 

LO
 

TX
 Laser 

Bi
ts

So
ft 

Sy
m

bo
ls

Bits

Symbols

Fig. 4.12 Experimental setup. The input of the NN (shown as the red rectangle after DSP

RX) is the soft output of the regular DSP before the decision unit.

which was followed by the mitigation of the carrier frequency offset. A constant-amplitude

zero autocorrelation-based training sequence was then located in the received frame and the

equalizer transfer function was estimated from it. Afterward, the two polarizations were

demultiplexed and the signal was corrected for clock frequency and phase offsets. The

carrier phase estimation was then done with the help of pilot symbols. Subsequently, the

resulting soft symbols were used as input for the NN equalizer. Finally, the pre-FEC BER

was evaluated from the signal at the NN output.

The experimental transmission setup was mimicked by simulation. In this case, the

transmission of a DP-64QAM, single-channel (SC) 34.4 GBd signal pre-shaped by an RRC

filter with 0.1 roll-off, with an upsampling rate of 8 samples per symbol (275.2 GSamples/s)

over the same fiber link is assumed. An additional simulated setup was also tested, consisting

of the transmission of a DP-64QAM signal (but with a symbol rate of 30 GBd) along

20×50 km SSMF spans. The propagation of the optical signal along the optical fiber was

simulated by solving the Manakov equations (3.1) using the split-step Fourier method (with
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a resolution of 1 km per step). Each fiber span was followed by an EDFA with the noise

figure NF = 4.5 dB, which fully compensates for fiber losses and adds amplified spontaneous

emission noise. At the RX, after the full electronic chromatic dispersion compensation (CDC)

by the frequency-domain equalizer and downsampling of the signal to the symbol rate, the

received symbols are normalized to the transmitted ones. The performance of the system

was evaluated in terms of the Q-factor, defined as: Q = 20 log10

[√
2 erfc−1(2BER)

]

.

Focusing now on the biLSTM + CNN NN implemented in this work, the mean square

error (MSE) loss estimator and the classical Adam algorithm for the stochastic optimization

step [201] were used when training the weights and bias of the NN. The training hyperpa-

rameters (mini-batch size and learning rate) and the NN design hyperparameters (output

window, hidden units of the LSTM, and kernel size of the 1D-CNN) were found using the BO

procedure described in [116]. An input window with 221 symbols was selected because it

allows equalizing many symbols simultaneously, thus reducing the computational complexity.

The BO optimization cycle starts with the training of the NN via backpropagation for 1000

epochs with a fixed set of hyperparameters. The BER is evaluated after each training epoch.

For training, it was used a fixed dataset with 220 symbols, and, at every epoch, it was picked

218 random input symbols from this dataset. For testing, a never-seen-before dataset with

218 symbols was used. Both NN models were trained and tested using the same datasets.

The best BER estimated during training was stored. Following the training phase, the best

BER was fed to the BO as an optimization target [116] (the optimizer assumes a Gaussian

conditional distribution of BERs). Using this input, the optimizer updates the process model

and generates a new set of hyperparameters to be tested. After 20 Bayesian optimizer cycles,

it is selected the set of hyperparameters leading to the lowest BER. The BO grid space

considered was: mini-batch size [32 to 5000], learning rate [0.0001 to 0.002], hidden units

[1 to 150], and kernel size [1 to 200]. In this case, the output window is directly defined

by the input window and the kernel size of the 1D-CNN. The BO was used to learn the

best hyperparameters for the two different transmission setups considered in this study. The

results of the optimization process are summarized in Table 4.6.

4.3.6 Results and discussions

Complexity Metric for Compression

It was presented in Sec.4.1 a general way of estimating the computational complexity for

different-type of NN layers. The proposed metrics were the number of multiplications [117,

118], the number of bit operations [121±123], the number of shift and add operations

[202] and the number of hardware logic gates [203, 204]. A brief description of each of

these metrics is presented in the Table. 4.3. This subsection focuses on the expressions of
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computational complexity when combining the biLSTM and 1D-CNN layers, and on how

the compression techniques impact the computational complexity of NN equalizers.

Traditionally, the simplest estimation of complexity refers to the number of real multipli-

cations of the algorithm only. This metric is also known as the number of real multiplications

per recovered symbol (RMpS) [151]. The RMpS corresponding to the bidirectional LSTM +

CNN equalizer is given by Eq. (4.43). Since this work considers unstructured pruning, which

prunes all layers in the same way, the number of multiplications is:

RMpSNN =

(
2nsnh(4ni +4nh)

ns −nk +1
+2nhnonk

)

(1−µ)

+
6nsnh

ns −nk +1
,

(4.55)

when assuming that the achieved sparsity level is equal to µ . The explanation for the variables

entering Eq. (4.55) can be found below Eq. (4.42). Note that the pruning coefficient reflects

the multiplications’ reduction only for the weight multiplications. Since the recurrent layers

are the focus, the number of pointwise multiplications that occur internally in the recurrent

cell is not affected by pruning. Aside from pruning, weight clustering can also be used to

reduce the RMpS. As indicated in subsection 2.3, and also taking into account the equations

that describe the LSTM cell and the 1D-CNN layer in Ref. [151], each LSTM cell depends

on four input kernel matrices, W i, f ,o,c, and four recurrent kernel matrices, U i, f ,o,c. These four

matrices for input and recurrent kernel are usually treated as two matrices (say, W and U)

with shapes [ni,4nh] and [nh,4nh], respectively. Now, consider that in the input matrix, W ,

we can identify some number of clusters, ci, and for the recurrent kernel matrix, U , we can

identify c′h clusters. Therefore, the number of unique real multipliers would be ni ∗ ci for the

multiplications involving the matrix W , and nh ∗c′h for the multiplication with the matrix U13.

Then, the contribution of unique multiplications to the overall complexity of the LSTM, is:

CLSTM = ns

(
nici +nhc′h +3nh

)
, (4.56)

For the complexity analysis, it is also needed to include the contribution of the 1D-CNN

layer. Since the 1D-CNN layer receives the output of the biLSTM layer, the 1D-CNN layer

with kernel size nk and the number of filters no will possess a CNN kernel tensor with the

shape [nk, 2nh, no]. Suppose that we have identified c′′j clusters in each of no the filter and

the biLSTM the output has the shape [ns, 2nh]. Now we can split the operation for the

13Note that, once those multiplications are performed, a synthesis data-flow / routing algorithm [205] would

be needed to distribute the result of such a multiplier to the correct adders, but here it was not considered for

the complexity of this design step.
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convolution of the biLSTM output with a CNN filter as c′′j multiplications between each of

the clustered kernel values to the sum of the selected input elements which share the same

clustered weight value. This operation has to be repeated ns −nk +1 times (the output shape

of the CNN layer) for one filter, and then for the total number of operations we multiply this

value by the number of filters no. The remaining operations are just additions. Therefore, the

1D-CNN layer complexity contribution can be expressed as:

CCNN = (ns −nk +1)
(
noc′′j

)
. (4.57)

And now, the ultimate complexity for the biLSTM + CNN equalizer with clustering and

pruning, becomes:

RMpSNNp+c =
C

f orward
LSTM +Cbackward

LSTM +CCNN

ns −nk +1
, (4.58)

Note that the pruning simplifies the clustering method since it has to group fewer weights.

Also, when defining the number of clusters in each layer (ci, c′h, and c′′j ), one of the clustered

values is almost always zero. Consequently, this cluster does not add multiplications, and it

has even lower computation complexity.

When comparing solutions that use floating-point arithmetic with the same bitwidth

precision, the RMpS is usually a meaningful metric for comparative estimates. When

moving to fixed-point arithmetic, a second metric known as the number of bit-operations

(BOPs) should be adopted to understand the impact of changing the bitwidth precision on

the complexity14. Because one can readily find the number of bit operations required by the

additions and multiplications, it is possible to calculate the BOPs associated with the NN

inference process, expressed in terms of multiply-and-accumulate operations (MACs)[121±

123, 202]. As described in Ref. [202], the BOP complexity for the LSTM and 1D-CNN

layers can be expressed as:

BOPLSTM = 4nsnhMult(ni,bw,bi)

+4nsnhMult(nh,bw,ba)

+3nsnhb2
a

+9nsnhAcc(nh,bw,ba),

(4.59)

14Two assumptions are made in the definition of the BoPs. First, it was assumed that each parameter is only

fetched once from an external memory; second, the cost of fetching a b-bit parameter is assumed to be equal to

b-BOPs [121, 122]. Also, the bias is supposed to be quantized in the same way as the weights.
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BOPCNN = Out putSize ·n f Mult(nink,bw,bi)

+n f Acc(nink,bw,bi),
(4.60)

where, in the context of NNs, bw is the number of bits used to represent the weights of the

NN, bi is the number of bits used to represent the input, and ba is the number of bits used to

represent the NN’s activation functions. For the convenience of further presentation, we have

used short notations, Mult and Acc:

Mult(ni,bw,bi) = nibwbi +(ni−1)
(
bw+bi+ ⌈log2(ni)⌉

)
,

and

Acc(ni,bw,bi) = bw +bi + ⌈log2(ni)⌉.

The Acc expression represents the actual bitwidth of the accumulator15 required for MAC

operations. Therefore, for the proposed NN-based equalizer (biLSTM+1D-CNN) with 4

input features, 2 output features, nh hidden units in the LSTM cell, nk convolutional kernel

size, and ns = M memory time window, the required number of BoPs considering that the

output of biLSTM is the input of 1D-CNN can be represented, as follows:

BOP
f or/backward

LSTM = 4MnhMult(4,bw,bi)

+4MnhMult(nh,bw,ba)

+3Mnhb2
a

+9MnhAcc(nh,bw,ba),

(4.61)

BOPCNN = (M−nk +1) ·2Mult(2nhnk,bw,bi)

+2Acc(2nhnk,bw,bi),
(4.62)

BoPNN =
BoP

f orward
LSTM +BoPbackward

LSTM +BoPCNN

M−nk +1
. (4.63)

Most real DSP implementations use dedicated logic macros (e.g., DSP Slice in FPGAs or

MAC in ASIC), where the BoP metric fits as a good complexity estimation/comparison metric.

However, with the advances in new quantization techniques [124±127], those multiplications

15The accumulator is the register in which the intermediate arithmetic logic unit results are stored. For a

more detailed explanation, see [202].
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can also be implemented using just bit shifter- and adder-based algorithms [128±130], when

the fixed-point multiplications are used16. Therefore, to account for the impact of using

different quantization strategies, it is possible to utilize the metric that evaluates the number

of additions and bit shift (NABS) operations.

Next, it is discussed how to translate the complexity of the NN equalizer from RMpS

into the NABS metric, in the cases when utilizing uniform quantization, PoT quantization,

and APoT quantization (see also Section 4.3). According to Ref. [202], the NABSs metric

takes into account the conversion of all multipliers into adders and shifters, and computes

the complexity of the total number of adders (including the pre-existing adders of the NN

structure) based on bit precision while ignoring the cost of the bit shift operations. The

NABSs complexity for the LSTM and 1D-CNN layers can be expressed as [202]:

NABSLSTM = 4nsnh

[
ni(Xw +1)−1

]
Acc(ni,bw,bi)

+4nsnh

[
nh(Xw +1)+1

]
Acc(nh,bw,ba)

+6nsnhba.

(4.64)

NABSCNN = Out putSize ·n f

[
nink(Xw +1)−1

]

·Acc(nink,bw,bi)

+n f Acc(nink,bw,bi).

(4.65)

In these expressions, X represents the number of adders required, at most, to perform the

multiplication when considering that the first bit represents the sign and the remaining ones

contain the magnitude of the weight. For the uniform quantization: X = bw − 2, whereas

in the case of POT quantization: X = 0, because each multiplication costs only a shift

[6, 128]. Lastly, for the APOT quantization: X = n, where n denotes the number of additive

terms. These equations are in line with the expected complexity behavior from Ref. [124],

where it is stated that by using the APOT with k = 2 (which means that n = (bw − 2)/2),

the multiplication would be approximately 2 times faster than when using the uniform

quantization. Thus, for the biLSTM + 1D-CNN equalizer considered in this work, the

16Note that the translation from multiplications to additions and shift operations adds some quantization

noise/error since rounding the original coefficients when converting them from a float representation to a fixed

representation. However, in the context of NNs, this can be partially mitigated by training the NN with the

quantized weights, as it was done in Refs. [125±127] and in this current work.

P. Freire de Carvalho Souza, PhD Thesis, Aston University, 2022 101



The Complexity Consideration for Designing Neural Networks-based Equalizers

following expressions for the NABSs complexity per recovered symbol can be drawn:

NABS
for/backward
LSTM = 4Mnh

[
4(Xw +1)−1

]
Acc(4,bw,bi)

+4Mnh

[
nh(Xw +1)+1

]
Acc(nh,bw,ba)

+6Mnhba,

(4.66)

NABSCNN = (M−nk +1) ·2
[
2nhnk(Xw +1)−1

]

·Acc(2nhnk,bw,bi)

+2Acc(2nhnk,bw,bi),

(4.67)

NABSNN =
NABS

f orward
LSTM +NABSbackward

LSTM +NABSCNN

M−nk +1
. (4.68)

Notably, the BoPs and NABSs expressions given above do not take into account the

effects of pruning and weight clustering, but they can be corrected, similarly to how the

RMpS metric at the beginning of this subsection.

Finally, the metric that is even closer to the hardware level is the number of logic gates

(NLGs) that are used for the hardware (e.g., ASIC or FPGA) implementation of a signal

processing device. It is different from the NABSs metric because it indicates the real cost of

implementation. Within this metric, the cost of activation functions, represented by look-up

tables (LUTs), is also taken into account. However, this metric is not used in this study since

it already depends on the particular hardware type that we do not consider here.

Multi-Symbol Equalizer Performance

The results start by presenting the benchmark scenario obtained using nonlinear equaliza-

tion, i.e., using the equalizers without compression. This case shows the increase in optimum

launch power after equalization and the corresponding Q-factor improvement concerning the

case without nonlinear equalization. To speed up the training process and the acquisition of

results, we have trained this model at the highest launch power and applied the transfer learn-

ing strategy [206] for the remaining lower launch powers. For these lower power levels, we

fine-tuned the NNs for around five epochs. Fig. 4.13 shows the results of Q-factor over launch

power dependence for three transmission scenarios. For the simulated transmission with

20×50 km, the NN equalizer increased the optimum launch power from -1 dBm to 2 dBm.

Furthermore, the maximum Q-factor increased by about 2.8 dB, showing a similar maximum

performance as that achieved by 3 STpS DBP. For the transmission over 9×110 km system,

which has a similar total transmission length but more than doubled span length, it is clear

the impact of ASE noise. This effect can be observed in the results depicted in Fig. 4.13 (b).
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In this case, the optimum power increased from 4 dBm to 6 dBm and the optimum Q-factor

improved by around 1.3 dB due to the equalization. Although the performance improvement

enabled by the NN equalizer was lower than in the previous case, it was still higher than the

one enabled by the 3 STpS DBP (about 0.7 dB performance improvement).
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Fig. 4.13 Performance of the proposed NN equalizer, benchmarked against DBP [7] for

three different transmission scenarios.

Finally, Fig. 4.13 (c) shows the results obtained in the experimental setup described

in Sec. 4.3.5. In this case, it is observed that the NN equalizer leads to an increase in the

optimum launch power of about 1 dB, and an increase in the maximum Q-factor of about

0.7 dB. The NN was unable to improve the performance further because probabilistic shaping

(considered in the experimental setup) lessens the influence of nonlinearity in fiber-optic

transmission and also reduces some other non-deterministic limitations [207]. Following this

initial analysis, the best launch power is selected in each transmission setup to evaluate the

performance degradation resulting from using the different compression approaches.

Pruning Study

This comparative study starts by doing an analysis similar to what was done in Ref. [159]

for image classification, but this time in the context of coherent optical channel post-

equalization. Additionally, besides the fine-tuning approach, the weight rewinding, and

the learning rate rewinding, in this work, the fine-tuning assisted by the Bayesian optimizer

is also considered.

The results for the three transmission setups obtained after pruning are depicted in

Fig. 4.14. Similarly to the results shown in Ref. [159], the weight rewinding and the learning

rate rewinding outperform the fine-tuning when it is applied a high level of compression

(≥ 50%). As an example, for the 60% sparsity and when employing the fine-tuning for

retraining, the Q-factor is reduced by 1.9 dB, 0.6 dB, and 0.3 dB for the three considered

transmission scenarios, as compared to the original performance. If instead, the rewinding
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Fig. 4.14 Optical performance when using different pruning techniques for several NN

sparsity level. The optimum launch power (without pruning) is set for each case.

approaches are used, the Q-factor degradation of only 1.1 dB, 0.2 dB, and 0.2 dB, and

of 1.4 dB, 0.2 dB, and 0.2 dB, are observed for the learning rate and weight rewinding,

respectively, when considering the same three transmission scenarios. However, when the

fine-tuning is assisted by the BO to select the hyperparameters (as described in Sec. 4.3.2),

it is observed that the performance can be significantly improved compared to the other

approaches. This approach enabled reaching high sparsity (even higher than the 60% example

mentioned above), leading to a Q-factor degradation not exceeding 0.3 dB, 0.1 dB, and

0.1 dB for the three considered transmission scenarios. This result shows the potential of the

BO-assisted fine-tuning approach, to outperform the previous model compression techniques.

In fact, the superior performance of the BO-assisted pruning comes from the ability of this

approach to cope with the dimensionality changes in multidimensional trainable parameters’

space when the NN architecture is pruned. Therefore, the training hyperparameters to

achieve a good local minimum may differ from the initial ones, and the BO is capable

of identifying this new set of training hyperparameters, while the other methods use their

previous values obtained before pruning. However, we emphasize that the BO requires

significant computational effort, which means that this method is appropriate mainly for

offline applications. When we are interested in achieving the result in the fastest way, the

learning rate rewinding is the recommended approach.

Interestingly, the weight rewinding approach performed worse than the fine-tuning

approach in cases where the sparsity was lower than 50%, while the learning rate rewinding

led to similar or even better performance as compared to fine-tuning. This result can

be explained by recalling that the original model was learned using the transfer learning

approach, which aids in the learning process by improving generalization and avoiding local

minima. When fine-tuning and learning rate rewinding are used, the original weights are the
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starting point of the pruning process, preserving the good initialization provided by transfer

learning. However, in the case of weight rewinding, the weights are reinitialized randomly

after the pruning, which can be detrimental to training, thus leading to higher performance

degradation.

Regarding the computational complexity reduction in terms of RMpS when using the

BO plus fine-tuning (BO+FT) approach, in the result depicted in Fig. 4.14 (a), the BO+FT

approach achieved a sparsity of 72%, which represents a reduction from 1.29e+5 to 3.66e+4

in the RMpS value. In the case of Fig. 4.14 (b), the achieved sparsity was 70%, which

represents a reduction from 1.42e+5 to 4.31e+4 in RMpS. Finally, in the case depicted

in Fig. 4.14 (c), the attained sparsity was 61%, which gives a reduction from 1.42e+5 to

5.58e+4 in RMpS number.

Clustering Study

This section evaluates the weight clustering compression technique. This is the first

time that the trade-off between optical performance and computational complexity when

using such a technique in optical communications has been assessed. Note that quantization

and clustering can be implemented by maintaining a codebook structure that stores the

shared weights for each layer. However, in this work, we have also used weight clustering

as a pre-step to simplify the problem for the next step, where the traditional quantization

techniques are used. The first goal of this subsection is to assess if the weight clustering can

reduce the number of multiplications without impacting the performance significantly. The

BO described in Chapter 3 is used in this work to find the new training hyperparameters and

the number of k-weight clusters throughout the NN-structure, so that the RMpS is given by

Eq. (4.58).

Fig. 4.15 depicts the impact of weight clustering on the performance and on computational

complexity in the three considered transmission scenarios. This figure demonstrates that

weight clustering leads to a small degradation in the Q-factor while still allowing to lower

the computational complexity considerably. In Sim1 in Fig.4.15, when 74 clusters were used,

it is observed a Q-factor degradation of 0.2 B and a reduction in complexity from 36k to

20k RMpS, when compared to the pruned architecture results. In Sim2 in the same figure, it

is observed a similar degradation of the Q-factor and a reduction of complexity from 43k

to 19k RMpS when 68 clusters are used. Finally, for the experimental data, and using 62

clusters only, it is observed that the Q-factor remains mostly unchanged, and the complexity

is reduced from 55k to 17k RMpS. It is observed that clustering the weights after pruning

leads to better results than clustering the original weights. Moreover, the training time is also

improved in the former case since fewer parameters need to be learned during the training

phase.
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Now the focus is on the complexity part of the weight clustering technique, i.e., how much

can the number of weight clusters be reduced while still enabling relevant optical performance

improvement? Only the Sim1 transmission scenario is considered in the analysis, as this is

the case where nonlinear mitigation shows the most noticeable improvement.
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Fig. 4.15 Optical performance and complexity evaluation of the pruning + clustering (dark

blue and dark red columns) and pruning only (light blue and light red columns) approaches

for the three considered transmission systems (Sim1, Sim2, and Exp).

The potential of the weight clustering technique is now evaluated when using up to four

distinct weights. Launch powers in the range from -1 dBm to 2 dBm are tested to assess if

the optimum launch power changes when using such an aggressive compression approach.

The achieved results are compared to the ones obtained when using linear equalization only

(CDC) or 1 STpS DBP. Fig. 4.16 depicts the Q-factor for each equalization approach, as well

as the number of RMpS17. Fig. 4.16 shows that, when using the CDC, the optimum launch

power is -1 dBm, leading to the Q-factor of 7.8 dB (113 RMpS are used in this case). If

the reference 1 STpS DBP is used, the optimum launch power changes to 0 dBm, enabling

the Q-factor of 9.2dB but requiring 1673 RMpS. We notice that the NN-based equalizer

enables outperforming the 1 STpS DBP, which is often used as a benchmark. Indeed, the

NN with 4 clustered weights per layer [NN(4W) case in the figure], enables achieving a

Q-factor of 9.7 dB (at 1 dBm optimum launch power) using 1091 RMpS. Instead, if only 3

clustered weights are used [NN(3W) case in the figure], a Q-factor of 9.4 dB (at 1 dBm) can

17The sparsity of the NN structure was not preserved while doing the clustering, because it was observed

that by allowing the zero-value weights, where pruning removes the nodes, Fig. 4.11 (b), to acquire a different

(small, but non-zero) value helped in improving the overall performance when an ultra-low number of weight

clusters is used. Additionally, the training phase, in this case, took much longer (10k epochs).
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Fig. 4.16 Optical performance and complexity results when employing very aggressive

weight clustering in the Sim1 transmission scenario: 2 weights clustering [NN(2W)], 3

weights clustering [NN(3W)], and 4 weights clustering [NN(4W)]. The traditional CDC and

reference 1 STpS DBP results are shown as benchmark.

be reached, requiring 820 RMpS only. As expected, using 2 clustered weights [NN(2W) case

in the figure] leads to the worst performance, where it can be achieved the Q-factor of 8.4 dB

(at 0 dBm), thus still outperforming the CDC, but at the expense of 549 RMpS complexity.

Finally, if it is considered that the multiplier complexity is proportional to bibw (as

described in Sec. 4.1), the savings in complexity enabled by the clustering technique can be

even higher than the ones indicated above. Indeed, considering that bi = 8 bits for all cases,

the coefficients of the CDC and DBP filters are also represented by 8 bits. However, for the

NN with 3 and 4 clustered weights, the weights can be encoded using just a 2-bit format. So,

for the cases of 3W and 4W NN, which performed better than 1 STpS DBP, the complexity

calculated as RMpS∗bi ∗bw, is just 1.82 and 2.42 times higher than the CDC one (and 8.15

and 6.13 times lower than the 1 STpS DBP), respectively.

Quantization Study

Quantization is the other approach considered in this work to significantly reduce the

computational complexity of equalizers. The PTQ homogeneous, PTQ heterogeneous, QAT

homogeneous, and QAT heterogeneous approaches are considered in this subsection. In each

case, a combined biLSTM+CNN equalizer whose weights have undergone the clustering

procedure depicted in Fig. 4.15 is quantized. The performance and complexity in terms of
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BoPs and NABSs of the different quantization techniques are further assessed for different

bit precisions.
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Fig. 4.17 Performance of the Post Training Quantization (Homogeneous Approach).

PTQ homogeneous approach Let us assume that all weights in the structure are quan-

tized uniformly and with the same bit precision. Fig. 4.17 depicts the Q-factor as a function

of the bit precision for the three considered transmission scenarios and using the APoT with

2, 3, and 4 additive terms quantization technique as well as the original version in [124], the

uniform quantization and PoT18.

From the results depicted in Fig. 4.17, it is possible to underline the noticeable impact of

sparsity. The PoT and APoT techniques were purposely designed to have the majority of

the quantization levels close to zero since the weight distribution after training also shows

a concentration of weights close to zero value, see Fig. 4.11. However, when pruning the

NN structure, such weights are removed, Fig. 4.11 (b), the quantization levels above the

pruning threshold are no longer used and, more importantly, the remaining weights are

underrepresented. Consequently, the uniform quantization shows the best performance (for

the reduced bitwidth of the weights) in the case shown in Fig. 4.17 (a), where the sparsity

is 72%, whereas the APoT and POT reveal a better performance in the scenario depicted in

Fig. 4.17 (c), where the sparsity is 60%. Interestingly, up to 8 bits precision, it was always

possible to find a quantization scheme that provides similar optical performance as when

using the original 32 bits precision for the three considered transmission scenarios. For a

high precision bitwidth, the uniform quantization always shows superior results, whereas

for a lower bit precision (say, for less than 8 bits) and when the weight distribution is not

heavily compromised by sparsity, the original APoT introduced in [124] results in the best

18t was established a floor value of 0dB for the Q-factor since lower Q-factor means the information is

completely corrupted.
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performance. Here it is highlighted that, when doing with the PTQ strategy, the weight

distribution must serve as the main indicator to select the best type of quantization.

Now it is assessed the computational complexity of the different quantization techniques.

In such analysis, it was considered bi = ba = 16 bits and bw changing between 12 and 2

bits. Fig. 4.18a depicts the BoP metric for equally compressed models, showing that the

BoP decreases almost linearly with the value of bw. Since the Sim2 transmission scenario

requires a NN structure with more hidden units and CNN filters than Sim1, the number of

BoPs for this case is also higher than that for Sim1. This analysis evaluates the total number

of operations needed, as it is usually done in the literature [122], and therefore, does not

account for the benefits stemming from weight clustering.
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Fig. 4.18 Computational complexity when using uniform quantization (a) and when different

types of quantization are used (b/c). bi and ba have 16 bit precision whereas bw has a value

in the range of 12 to 2 bits.

Nevertheless, and as was mentioned in Sec. 4.1, when comparing the use of different

quantization strategies and bitwidth precisions, the BoPs metric can not be recommended, as

it, actually, does not account for the effect resulting from different quantization strategies. To

have a better metric, the NABS metric ought to be used, as it allows comparing the result

of the model compression in terms of the number of additions and bit shifts. Figs. 4.18b

and 4.18c show the NABS as a function of bw (the bit-precision) for the different quantization

strategies employed in this work. As expected, the uniform quantization technique leads

to the highest complexity, whereas the PoT quantization gives the smallest one. The APoT

quantization leads to a complexity in-between the uniform and PoT approaches. In the APoT

case, the complexity depends not only on bw, but also on the number of additive terms that

are considered. Interestingly, the least complex APoT strategies, i.e., those with the smaller

number of additive terms, are the ones leading to better performance for the low bit precision

region, see Fig. 4.17. It is also interesting to note that, when we reduce the bit precision
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to 5 bits, which already leads to high-performance degradation, the NABS using uniform

quantization becomes the same as that when using the APoT with 4 additive terms. If the

bit precision is further reduced to 4 bits, the NABS using uniform quantization is the same

as that when using the APoT with 3 additive terms. In the same way, if the bit precision is

reduced to 3 bits, the NABS using uniform quantization is the same as that when using the

APoT with 2 additive terms and, finally, if the bit precision is reduced to 2 bits, the NABS

using uniform quantization is the same as that when using the PoT quantization.

PTQ heterogeneous approach

When using the heterogeneous approach, the bit precision and quantization method

are allowed to vary in different parts of the NN structure. For simplicity, here we only

consider the uniform quantization, the original APoT, and the mix, where different types of

quantization are used throughout the NN structure.

Fig. 4.19 depicts 3D plots with the Q-factor as a function of i) the bitwidth of the input

and recurrent kernel of the LSTM layer, and ii) the bitwidth of the filter kernel of the CNN

layer. A gradient of colors is used, with the warmer colors corresponding to the higher

Q-factor, so we can identify which combination of bw values gives the best performance.

Similarly to the homogeneous approach (see Fig. 4.17), the uniform quantization is the

most interesting solution for the Sim1 transmission scenario, whereas the APoT leads to

better performance for the Sim2 and Exp scenarios.

However, when using heterogeneous quantization, it is observed that lower complexity

can be achieved. For example, considering the Sim1 transmission, and in order to achieve the

same optical performance as when using the 1 STpS DBP, one may quantize all weights with

6 bits (homogeneous quantization), or further reduce the recurrent kernel and CNN kernel

to 5 bits using heterogeneous quantization without any significant degradation in optical

performance. Similar results can be observed in the Sim2 and Exp transmission scenarios.

In addition to using different bit precision in different parts of the NN, it can also use

different types of quantization to improve the performance. For this objective, this work

has used a grid search, testing different combinations of quantization types. The result of

this optimization is referred to in Fig. 4.19 as Mixed Quantization. By following such an

approach, it can be observed an improvement in the hot area of the Sim 1 results when it is

quantized the input and CNN kernels with uniform quantization and the recurrent kernel with

APoT using the original terms; for Sim2, it is quantized the input with the 3 terms APoT

and the recurrent and CNN kernels with the original APoT. Unfortunately, no significant

optical improvement was observed when compared to using just the original APoT. In this

case, just an improvement of 0.1dB in Q-factor is achieved in the mix quantization, where it
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(b) APoT Original (Sim1).
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(c) Mixed Quantization (Sim1).
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(e) APoT Original (Sim2).
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(f) Mixed Quantization (Sim2).
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(g) Uniform Quantization (Exp).
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(h) APoT Original (Exp).
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Fig. 4.19 Performance of the Post Training Quantization (Heterogeneous Approach).

is quantized the input and CNN kernels with the original APoT and the recurrent kernel with

the 2 terms APoT, compared to the case with all weights quantized with the original APoT.

QAT homogeneous approach

This work now evaluates the potential of implementing quantization during the training

phase of the NN to mitigate the error introduced by the low bit precision of weights. Since

QAT leads to at least as good performance as PTQ and the results depicted in Fig. 4.20 show

that the optical performance is highly impacted when the bitwidth decreases below 6 bits, it

will focus the QAT analysis in this region (between 6 and 2 bits).

Fig. 4.20 depicts the Q-factor as a function of the bit precision for the three considered

transmission scenarios. The considered quantization techniques are the Uniform, PoT, APoT

with 2, 3, and 4 additive terms and the original version of APoT that can be found in
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Ref. [124]. In order to better illustrate the impact of QAT, it was compared to the results

in Figs. 4.17 and 4.20. As an example, first consider that all weights are quantized equally

with 4 bits. For Sim1, Fig. 4.17 (a) shows that the uniform quantization provided the best

performance with a Q-factor close to 4 dB, whereas Fig. 4.20 (a) shows that using the APoT

original and following a QAT strategy enables reaching Q-factor values close to 8.5 dB.

Similar conclusions can be drawn in Sim2 and Exp transmission scenarios: Fig. 4.20 (b)

and (c) show that optical performance is highly impacted when weights are quantized to 4

bits whereas, when implementing QAT, the original APoT provides Q-factor values close

to 4.5 dB and 7.8 dB, respectively. These results demonstrate the huge positive impact of

QAT on the compression of the NN model. Moreover, when further reducing the bitwidth,

the optical performance degradation is not as drastic as in the case of PTQ.
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Fig. 4.20 Performance of the Quantization Aware Training (Homogeneous Approach).

The original APoT quantization technique leads to very good optical performance in

most of the cases depicted in Fig. 4.20. This good performance is a direct consequence of

performing quantization during the training phase. Indeed, in this case, the weights remaining

after the pruning are no longer underrepresented, but rather adjusted to the non-uniform

levels of quantization, leading to good performance. Nevertheless, the difference between

PoT and APoT is no longer as significant as the one observed in Fig. 4.17. As a consequence,

and as can be seen in Fig. 4.20, no universal conclusion can be drawn about which is the best

quantization technique for QAT.

In general, the original APoT and the APoT with 2 terms were the two techniques that

performed the best for the range of bitwidth studied and transmission scenarios. But, since

the APOT with 2 terms uses only one adder and bit shift for each multiplication, it is probably

the best choice in terms of a trade-off between optical performance and computational

complexity.
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It is important to stress that the training of such NN structures is unstable. Consequently,

the model needs to be monitored during training. In this work, early stopping was not

used for QAT. Instead, the quantized NN structure was trained for 5000 epochs, with the

intermediate NN models leading to the best Q-factor being saved and used as the final NN.

As described in Ref. [208], the training phase of the quantized model can suffer from learning

problems (e.g., exploration vs. exploitation trade-offs). As suggested in that reference,

this work also used large mini-batch sizes (≥ 4000), since ªthis shrinks the variance of

the gradient distribution without changing the mean and concentrates more of the gradient

distribution towards downhill directions, making the algorithm more greedyº. As a result,

when performing the QAT, the training hyperparameters must be properly set, and the training

will most likely require a higher number of epochs as the bitwidth of the weights is reduced.

QAT heterogeneous approach

In this compression technique, and as described in Sec. 4.3, the BO is used to determine

the ideal bitwidth per layer as well as the type of quantization in each layer (and other

hyperparameters, like the learning rate), seeking to improve the overall performance.

Similarly to the PTQ case, when going from the homogeneous to the heterogeneous

approach, the bitwidth and quantization types employed can be different in different parts

of the NN architecture. Like in the case of heterogeneous PTQ, the performance of the

heterogeneous approach is evaluated by considering the different bit precision of the input

kernel of the LSTM layer, the recurrent kernel of the LSTM layer, and the filter kernel of

the CNN layer. The values obtained by the BO can be found in Table 4.7 for the considered

transmission scenarios as well as the Q-factor achieved when i) the NN model is not quantized

(w/o Quant.), ii) the model is only quantized (PTQ), and iii) the model is simultaneously

quantized and fine-tuned (QAT). This table shows that, at the low levels of bit precision, the

PTQ corrupted the NN model completely. Nevertheless, the QAT adapts the weights in such

a way that only a small degradation in performance is observed.

Table 4.7 Results obtained using the Bayesian Optimizer. The performance results of both

QAT and PTQ are depicted to highlight the benefit of QAT.

Scenario
bw Quant. Type Learning

Rate

Mini-Batch

Size

Q-factor

PTQ

Q-factor

QAT

Q-factor

w/o Quant.Input Recurrent CNN Input Recurrent CNN

Sim1 3 5 4 APOT Orig. APOT Orig. Uniform 0.00114 4347 0.18 dB 8.6 dB 10.31 dB

Sim2 4 3 4 APOT 2 Terms APOT Orig. APOT Orig. 0.00132 6568 0 dB 4.5 dB 5.1 dB

Exp 2 3 2 APOT Orig. APOT Orig. APOT Orig. 0.00085 5253 0 dB 7.41 dB 8.1 dB

To conclude, here, it was evaluated the complexity of the different approaches. This was

done in terms of NABS insofar as it was employed simultaneously different bit precision

and quantization techniques (see 4.1). The reference complexity is the ªtraditionalº uniform
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quantization with 8 bits in all layers, which was compared against the heterogeneous struc-

tures depicted in Table 4.7. For Sim1, the reference complexity is 28.6M NABSs while, for

the heterogeneous architecture, the complexity is 10.9M NABSs, which translates into a

complexity reduction of ≈ 62%. Similarly, for Sim2 and Exp, the reference complexity is

≈ 31M NABSs, whereas after heterogeneous QAT it is ≈ 7.9M and ≈ 7.4M NABSs, for the

two cases, respectively, representing a reduction of ≈ 76%.

4.4 Brief discussion on the FPGA implementation of neural

network-based equalizers

This section makes an important step forward in assessing the viability of NN-based equal-

izers for industrial applications by benchmarking i) their performance versus the 1-step-

per-span (StpS) DBP using 2.3 samples/symbol (Sa/symbol) in experiments and ii) their

computational complexity by comparing an FPGA implementation against the full electronic

chromatic dispersion compensation (CDC) block (used, e.g., in standard DSP chain), which

needs far fewer resources than 1 StpS DBP. In addition, for the first time, it is presented the

FPGA implementation of a NN-based equalizer that employs the bidirectional recurrent layer

with LSTM cells (biLSTM). By transmitting a 34 GBd single-channel, dual-polarization

(SC-DP) 16QAM signal over 17×70 km of large-effective area fiber (LEAF) (both simulated

and experimental), reporting ≈1.7 dB Q-factor improvement over a standard DSP chain

while requiring only ≈2.5× more FPGA resources than the CDC block implementation to

achieve 400G transmission.

4.4.1 Converting Python NN models to FPGA designs

The two NN architectures for the equalizers investigated in this work are depicted in

Figs. 4.21a and 4.21b for the biLSTM-based equalizer and the deep CNN-based equalizer,

respectively. The shape of both architectures is similar, but the nature of the mathematical

operations in each case is different: the biLSTM contains recursive connections, whereas

the deep CNN is a feedforward network. A total of 81 symbols are used as input, allowing

to simultaneously retrieve 61 symbols at the equalizer’s output. Recovering 61 symbols in

parallel at the equalizer output, allows the FPGA realization to have a higher throughput,

which is one of the main desirable design features when building a DSP block for coherent

transmission systems. In Fig. 4.21a, the hidden layer consists of a biLSTM layer with

nh = 35 hidden units. In Fig. 4.21b, the hidden layer is made up of a CNN layer with

70 filters (n f1 = n f2 = 35), with zero padding applied to retain the shape and the kernel
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Fig. 4.21 Structures of NN-based equalizers taking 81 symbols as input to recover 61

symbols in parallel at the output: (a) the recurrent equalizer using a bidirectional LSTM layer

containing 35 hidden units, and (b) the feedforward equalizer using a 1D-convolutional layer

consisting of 70 filters (n f1 = n f2 = 35).

size nk1
= nk2

= 11. The output layer in both designs is a convolutional layer with n f = 2

filters, a kernel size nk = 21, and no padding. On the basis of a grid search analysis, these

parameters were chosen to meet the hardware limitations, throughput requirements, and

optical performance needed for this FPGA realization. The activation functions for both

hidden layers were hyperbolic tangent (tanh), and the output layer is linear.

Focusing now on the biLSTM+CNN architecture implemented in this work, the mean

square error (MSE) loss estimator and the classical Adam algorithm for the stochastic

optimization step [201] were used when training the weights and bias of the NN. The training

hyperparameters (mini-batch size equal to 2001 and learning rate equal to 0.0005) were

found using the Bayesian optimization procedure described in [116]. The NN training was

carried out by backpropagation for 30000 epochs with a fixed set of hyperparameters19. The

BER is evaluated after each training epoch. For training, it was used a fixed dataset with 220

symbols, and, at every epoch, it was picked 218 random input symbols from this dataset. For

the testing and validation, it was used a never-before-seen dataset with 218 symbols. Both

NN models were trained, validated, and tested using the same datasets. The weights were

saved at the epoch at which the BER measured using the validation dataset was the lowest

(early stopping).

The HLS method provides a design flow in which the desired function, i.e., an NN in

the case considered, can be specified in C++ and then automatically converted to VHDL.

This strategy is preferred because it separates the FPGA technology-specific implementation

features, such as clocks and logic cell topology, from the NN’s functionality. Working at a

higher level of abstraction, the intended functionality can be the focus of attention and be

described more readily in fewer lines of code [210].

19For applying the model to other launch power values, it was used transfer learning [209], which allowed

utilizing less than 5 epochs to adjust the NN weights to the other launch powers.
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Fig. 4.22 High-level synthesis flow ± from C++ to FPGA realization.

In addition, functional verification in C++ is much faster than functional simulation in

VHDL. This makes it easy to test and debug the design. At this point, it is important to

remember that the functions being described will be run on hardware. The HLS supports a

substantial number of C++ syntax, but not all, because some cannot be implemented in an

FPGA or ASIC. In this case, memory allocation is a key part of writing the C++ code that

needs to be properly assessed. In the FPGA, the memory allocations are static and assigned

during the mapping phase of the physical design flow. Dynamic memory allocations found in

many C++ standard library functions cannot be supported and must be avoided or replaced

with structures optimized for the implementation in an FPGA by using the libraries provided

by the HLS tool supplier, in this study, Xilinx. Also, Operating System (OS) functions such

as file read/write and date/time cannot be implemented in an FPGA; all data transmitted into

and out of the FPGA must use input/output ports.

Consequently, two versions of the C++ codes were generated. The first is called here

the test bench, while the second is the function to be implemented in FPGA. The test bench

function reads the previously saved signal inputs and weights learned in Python and converts

them to a fixed-point format (int32). These values are then incorporated into the function

that describes the equalizers investigated in this study. The function is the C++ translation of

the Python NN equalization architecture, using fixed-point arithmetic operations. After the

equalization, the outputs of the function (the signal that has been equalized) are delivered

to the test bench code that checks the MSE. Note that, here, it was not studied the impact
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of further reducing the quantization accuracy, since this would require some further work

to overcome the quantization error caused by both the input signal and the weights. it was

chosen the int32 format because, by using it, the implementation can take advantage of the

simplified integer arithmetic while observing no significant performance reduction compared

to the floating-point BER evaluated in Python.

However, when using the HLS, even though the conversion to VHDL is automated, some

design intervention is still necessary, and engineering decisions must be taken to achieve

the desired performance. HLS supports a set of directives, or pragmas, that can be used to

modify the behavior of the HLS C++-synthesis stage to facilitate these interventions [211].

By utilizing pragmas, in order to discover the best implementation, it is useful to investigate

several design structures without re-coding them. Although there are a variety of different

pragmas, this study has primarily utilized those pertaining to pipelines, loops, and arrays.

Pipelines allow the parallel execution of operations within a function, lowering the

number of clock cycles between commencing loop iterations; these clock cycles are referred

to as the Iteration Interval (II). Each loop iteration does not need to end before the next one

begins, i.e., the iterations can overlap. The number of pipeline stages can be controlled by

setting the value of II using the HLS pipeline pragma. Setting the II to 1, as it is done in this

project, enables each cycle to begin with a new iteration.

Loops can be unrolled and flattened. By default, loops within a function are left rolled,

which means that the loop body is executed sequentially, utilizing a single set of logic

resources. The minimum loop delay is then equal to the number of loop iterations. Unrolling

generates several copies of the loop body logic, enabling parallel execution and reduced

latency at the expense of additional size. Loops can be completely or partially unrolled,

resulting in either one copy of the loop body every iteration for optimum throughput or in

fewer copies for reduced area cost. Flattening transforms a hierarchy of nested loops into a

single loop, which eliminates a clock cycle delay while traveling between higher and lower

nested loops and can help with better optimization of the loop logic. In view of this, the

loops in the feedforward NN layers can be flattened; however, the loops in the recurrent NN

layers cannot be flattened due to their memory dependence and imperfect loops. Therefore,

for the implementation of the recurrent NN layer, it was only flatten the loops relating to the

matrix multiplication that occurs internally within each LSTM cell.

Arrays can be partitioned and reshaped. HLS will implement arrays in the C++ code

as memory blocks in the VHDL description. This can cause a restriction in the design

concurrency as FPGA memory blocks only have 2 access ports, which, if the designer has

also used the previously mentioned unroll and pipeline pragmas, will need to be shared

between all instances of the loop body. By reshaping and partitioning the array, the size and
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number of these memory blocks can be controlled. To enable the successful flattening of the

loops in each NN architecture, the non-equalized signal (input signal) and the weights of the

NN architecture are totally partitioned here. The final stage of the HLS step is to export the

generated VHDL and derived constraints for use in the physical design step.

Here, it is emphasized that NNs are an excellent candidate for exploiting the bene-

fits of HLS, as their nested architecture consisting of multiple layers and several multi-

ply/accumulate functions can make good use of the loop and pipeline directives to investigate

the trade-off between area and latency to meet the design requirements.

The area and timing reports generated by the HLS stage are still simply estimates of the

final design performance based on the technology-specific data libraries for each FPGA; the

actual performance cannot be determined until the physical implementation is complete. In

this work, the Vivado Design suite from Xilinx is utilized. The physical implementation is

performed by Vivado in three steps: technology mapping, placement and routing, and timing

analysis.

Technology Mapping. Within this step, the VHDL source code is translated into

primitive logic gates and boolean equations, followed by mapping these gates onto FPGA

customizable logic blocks containing D-type FFs (DFFs) and RAM-based LUTs or more

specialized functional cells, such as DSPs. During the technology mapping, the design is

optimized and unnecessary logic is eliminated.

The next two steps constitute an iterative process executed automatically by the tool

based on design constraints, such as a clock frequency. These limitations can be inherited

from the HLS stage or defined in Vivado. The Vivado tool imposes sets of restrictions

through established optimization strategies, which are discussed in detail in the vendor

user manuals [212], and which the user can apply depending on the design goals. The

optimal technique is determined by balancing computer runtime and outcomes. In [213]

it can be found all potential pairings of synthesis and optimization procedures in Vivado

using a high-speed pulse width modulation circuit as a target design; in this web blog,

a comprehensive evaluation of the runtime versus performance of the different Vivado

optimization methodologies is given. As the objective of this work was to maximize the

throughput, it did not examine the solutions targeting chip area, power, or reduced runtime.

Therefore, the Vivado configuration called ªPerformance ExtraTimingOptº is adopted in this

work, since it effectively optimizes the throughput by reducing timing slack [213].

Placement and Routing. This stage positions the logic blocks developed during the

mapping phase, onto the specified elements of the FPGA cell array, and configures the signal

routing channels between them. The placement algorithm starts from a random seed position
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and then moves functions to the cell array based on the degree of congestion for the parts of

the die and the fanout of the driving function.

Time Analysis. This stage compares the design with the applied timing constraints to

determine whether the overall performance requirement has been met. Timing analysis, in

particular, requires a grasp of the FPGA structure and how the design has been mapped onto

the array. It may be necessary to return to the HLS phase to apply more directives or adjust

the function architecture to achieve timing closure. The time for a data (signal) to travel

between two points is determined by a variety of factors, including DFF switching time,

setup requirements (the time at which the signal must arrive at the destination before the

capturing clock edge), logic and routing path delays, and clock edge uncertainty due to jitter

and clock path skew. Here, it is pertinent to define the negative timing slack.

The negative timing slack indicates that the total delay in the data path between two

DFFs is greater than the requested clock period. In this negative slack case, the NN has

many nested loops, as discussed in the previous section; unrolling these loops would lead to

a larger design consuming more logic area, but leaving large loops, i.e., the loops with a high

number of iterations, can produce long logic multiplexer paths as the inputs to the loop logic

are selected. Using Vivado timing analysis reports and annotated netlist viewer, it is possible

to identify which paths can be the cause of the failing paths. In this case, the solution was

to return to the C++ source and reorder the nested loops so that the outer loop, which was

not unrolled, had fewer iterations; this approach reduced the size of the logic chain in the

multiplexer path. This work has also decreased the clock frequency for each of the designed

blocks to guarantee that a zero negative timing slack was achieved in all FPGA designs.

4.4.2 Simulation and experimental setups

At the transmitter, a DP-16QAM 34 Gbd symbol sequence was mapped out of the data

bits generated by a Mersenne Twister algorithm. Then, a digital RRC filter with 0.1 roll-

off was applied. The resulting filtered digital samples were resampled and uploaded to a

digital-to-analog converter (DAC) operating at 88 GSamples/s. The output of the DAC was

amplified by a four-channel electrical amplifier which drove a dual-polarization IQ Mach-

Zehnder modulator, modulating the continuous waveform carrier produced by an external

cavity laser at λ = 1.55 µm. The resulting optical signal was transmitted over 17×70 km

spans of LEAF, with the loss in each fiber span being fully compensated at its output using

Erbium-doped fiber amplifiers (EDFAs). The EDFAs noise figure was in the 4.5 to 5 dB

range. The parameters of the LEAF are: attenuation coefficient α = 0.225 dB/km, chromatic

dispersion coefficient D = 4.2 ps/(nm·km), and effective nonlinear coefficient γ = 2 (W·
km)−1. On the RX side, the optical signal was converted to the electrical domain using an
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integrated coherent receiver. The resulting signal was sampled at 80 Gsamples/s by a digital

sampling oscilloscope and processed using the offline DSP described in [113]. Thereafter,

the resulting soft symbols were used as input for the NN equalizers. Finally, the pre-FEC

BER was evaluated from the signal at the NN output. Concerning the simulation, it mimics

the experimental transmission setup. The signal propagation along the fiber was simulated

by solving the Manakov equation. At the receiver, after full CDC and downsampling to the

symbol rate, the received symbols were normalized to the transmitted ones. In addition,

Gaussian noise was added to the data signal, representing additional transceiver distortions

observed in the experiment. As a result, the Q-factor level of the simulated data matched the

experimental one
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Fig. 4.23 Q-factor versus launch power for (a) simulation and (b) experiment corresponding

to the transmission of a Single Channel DP-16QAM 34 GBd signal along 17×70km of

LEAF. The difference between the CDC and the biLSTM equalizer’s results is marked with

red arrows. The case of the floating-point models’ accuracy for the different types of NN

equalizers (described in the legends), together with the 1StpS DBP and CDC performance

curves.

4.4.3 Results and discussions

Fig. 4.23 summarizes the performance of the NN-based equalizers compared to the 1 StpS

DBP and CDC over different launch powers for simulated and experimental data. The

results referring to the simulated data are given in Fig. 4.23a. The biLSTM equalizer shows

approximately the same performance as a 1 StpS DBP while improving the optimal power

from −1 dBm to 2 dBm and the Q-factor by 1.3 dB with respect to the CDC. Regarding

the deep CNN, it performs worse than the biLSTM and the 1-StpS DBP; the optimal power
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is improved from −1 dBm to 1 dBm and the Q-factor raises by 0.8 dB compared to the

CDC. On the other hand, with the experimental data20, it was observed in Fig. 4.23b that

the biLSTM outperforms the 1-StpS DBP, especially in the noise-dominated region. For

the 1-StpS DBP case with the experimental data, the Q-factor increases by 1.3 dB in the

simulation and by 1.5 dB in the experiment. Compared to the simulation, the NN-based

equalizers in the experiment also lead to a higher gain for the Q-factor; when having CDC

as a baseline, the gain improves from 1.3 dB (simulation) to 1.7 dB (experiment) in the

case of biLSTM equalizers, and from 0.8 dB (simulation) to 1 dB (experiment) for the

deep CNN. The optimal power also shifts from 0 dBm to 1 dBm in both cases. This shows

that the NN has the potential to reduce the effects of both the Kerr nonlinearity and the

component-induced corruptions. Because all component impairments in the simulations

were modeled with white noise, whereas in reality some of these component noises can

be mitigated deterministically, this equalizer could enhance the Q-factor slightly further in

the experimental case. In particular, the biLSTM equalizer beats the deep CNN equalizer

because the biLSTM is a recurrent-based NN that benefits from temporal sequential data

learning [4, 151].

(a) biLSTM eq. (b) Deep CNN eq. (c) CDC block

Fig. 4.24 Implementation in the EK-VCK190-G-ED Xilinx FPGA [8] of the (a) biLSTM eq.,

(b) Deep CNN eq., (c) CDC block.

Now that the Q-factor performance of these NN equalizers was presented, their computa-

tional complexity will be analyzed. Figs. 4.24a, 4.24b, and 4.24c show the real implementa-

tion and used chip areas of the biLSTM, the deep CNN equalizers, and the CDC, respectively,

on the state-of-the-art EK-VCK190-G-ED Xilinx FPGA chip [8]. This chip is partitioned

into 40 clock regions, with the blue areas in Fig. 4.24 representing the used chip resources.

Table 4.8 summarizes the most important information on the VCK 190 implementation of

the biLSTM, deep CNN equalizers, and the CDC, in terms of latency, clock frequency[8],

20The Q-factor obtained with the Python model and the FPGA implementation were virtually identical

because it was not considered quantization.
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resources required, the utilization of the resources, and throughput. The achieved throughput

(Ta) can be calculated as follows:

Ta = clock× log2(QAM)×nout, (4.69)

where clock is the clock frequency, QAM is the modulation format, log2(QAM) is the

number of bits per symbol, and nout, is the number of parallel symbols it is recovered in the

output; in this case, nout = 61.

Three important conclusions can be drawn from that figure. First, although the biLSTM

renders a higher Q-factor improvement, due to the equalizer’s recurrent structure its feedback

loop connections cause a bottleneck in the design, resulting in higher latency (33 µs) and

lower clock frequency (270 MHz). On the other hand, deep CNN and CDC can be parallelized

more efficiently. The parallelizability brings about a reduction in their latency to 19.9 µs for

the deep CNN, and 1.1 µs for the CDC. Due to the fact that the CDC has one filter, whereas

the deep CNN has 70 filters, the parallelization is easier in the CDC implementation because

of hardware restrictions, resulting in an operating frequency of 524 MHz for the CDC case,

and 244 MHz for the deep CNN case. Fig. 4.24c clearly shows the CDC parallelization.

A long latency increases the time required to process each time step, leading to slower

overall processing times and reducing the speed of the network. This can be problematic

in real-time applications where a fast response is necessary. To mitigate the impact of long

latency, design optimization techniques can be applied to reduce the latency and increase the

performance, such as reducing the size of the memory blocks, using more efficient algorithms,

and implementing pipelining. In this work, due to the offline processing consideration, all

the input is already in the memory, and the request of the sequence with 81 symbols as inputs

are created so that the functioning of the NN-based equalizer parallelization works.

Second, regarding the FPGA utilization, the biLSTM equalizer is the only one using

Block Random Access Memory (BRAM)21 to store future/past recurrent states, while both

CNN and CDC do not need such blocks. BRAM is used to store the hidden states of an

LSTM, which can then be fed back into the network at the next time step to maintain its

memory, while in the case of the feedforward structures, the special LUTs are used to store

the coefficients. Note that the number shown in the tables is the number of BRAM blocks,

which was the automatic result reported after the Synthesis step (Vivado). By using BRAM,

the hidden state information can be stored in a dedicated memory block, separate from the

21BRAM is a type of memory in FPGAs that is used to store large amounts of data, typically used in FPGA

designs to implement memory-intensive functions such as image and video processing, buffers, and large arrays.

Unlike other memory elements in an FPGA, BRAM is a dedicated memory that is separate from the FPGA’s

general-purpose FFs and LUTs.
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other resources in the FPGA. This can lead to improved performance, as memory accesses

are optimized and dedicated resources are used for memory storage. However, the size of

the BRAM blocks and the memory requirements for the recurrent connections should be

carefully considered when designing an LSTM on an FPGA. The available BRAM resources

may be limited, and it may be necessary to trade off memory size for performance, depending

on the requirements of the specific LSTM design. The SRL (Shift Register Look Up Table) in

Table 4.8 and Table 4.9 is a mode available in FPGAs whereby the LUT-RAM is configured

as a shift register structure. This is more efficient, as it requires fewer cells and less routing

than using individual DFFs to build shift registers. For the usage of DSP slices, LUT, and FF

in each equalizer type, the biLSTM requires 64% DSP slices and 13% of LUT and FF, the

deep CNN uses 30% DSP slices, 13% of LUT and 21% of FF, and the CDC needs 54% DSP

slices and 1% of LUT and FF.

Third, in terms of throughput, the clock frequency is the maximum that each imple-

mentation can handle to comply with a zero-negative slack design. In this sense, the total

throughput for the 16QAM modulation format is 66G, 60G, and 127G, for the biLSTM, deep

CNN, and CDC block, respectively.

Type
Latency

(µs)

Clock

Frequency

(MHz)

BRAM SRL
DSP

Slices
LUT FF

Utilization (%)

[ DSP/LUT/FF ]

Throughput

(Gbits/s)

No FPGAs

for 200G

No FPGAs

for 400G

[dual-carrier]

No FPGAs

for 400G

[56GBd]

biLSTM+CNN 33.4 270 164 109 1260 113532 224386 64.0/12.6/12.5 66 2.6 5.3 7.2

Deep CNN 19.9 244 0 125 582 118477 379829 29.6/13.2/21.1 60 1.4 2.7 3.7

CDC 1.1 524 0 1 1072 10441 5640 54.5/1.2/0.3 127 1.2 2.3 3.1

Table 4.8 VCK190 [8] Implementation.

Lastly, regarding the calculation of the number of equivalent FPGAs for a certain target

throughput (Ttarget) from an experiment, it was considered the following equation:

NFPGA =
Ttarget

Ta
∗Ut , (4.70)

where Ta is the throughput achieved after the NN design pipeline, and Ut is the maximum

utilization after the NN design pipeline (both reported in Table 4.8). In the CNN+biLSTM

case, for example, because the experiment was 16QAM single carrier transmission at both 34

GB per pol, the target throughput is 272 Gbit/200 G. So, considering the maximum utilization

of 64% and the throughput achieved of 65.9Gbit by the NN equalizer, NFPGA would be equal

to 2.6 FPGAs.

In fact, the FPGA estimation was considered for three different cases:

1. 200G scenario: which is the scenario of the experiment in this section - 16QAM single

carrier configurations at both 34GBd per pol (resulting in 272Gbit/200G).
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2. 400G scenario: considering a dual carrier transmission instead of a single carrier. In

this case, it just needs to scale the resources of 200G by a factor of 2.

3. 400G scenario: considering a 16QAM single carrier configurations with higher symbol

rate equal to 56GBd per pol (resulting in 448Gbit, with 12% FEC overhead). In this

case, it simply multiplies the 200G resources by 562/342 = 2.71 because, given the

increased symbol rate, the resources will grow approximately quadratically with the

increase in symbol rate since the implementations were in the time domain.

For case 1, it was observed that 200G transmission can be achieved using an equivalent

FPGA that has the same capacity as ≈ 3 FPGAs (VCK190) in the case of biLSTM, ≈
2 FPGAs in a deep CNN case, and ≈ 1 FPGAs for CDC. For case 2, 400G with dual carrier

transmission can be achieved using an equivalent FPGA that has the same capacity as ≈
5 FPGAs (VCK190) in the case of biLSTM, ≈ 3 FPGAs in a deep CNN case, and ≈ 2 FPGAs

for CDC. Finally, in case 3, because of the increase in symbol rate, much more hardware was

needed. For the 400G with 56Gbd transmission case, one would need an equivalent FPGA

that has the same capacity as ≈ 7 FPGAs (VCK190) in the case of biLSTM, ≈ 4 FPGAs in a

deep CNN case, and ≈ 3 FPGAs for CDC. In all three cases, biLSTM used approximately

2.5 times more FPGA than required by the CDC implementation.

Unlike FPGAs, ASICs are application specific, and their digital circuitry contains perma-

nently connected gates and FF in silicon; therefore, in ASIC design, there is no configurable

block (such as DSP blocks). So, next, it is evaluated the approximations of the resource

requirements and the performance in terms of throughput, clock frequency, and latency of

the ASIC implementation by considering the VCK190 implementation without the usage of

DSP slices. Table 4.9 contains information for the implementation of the biLSTM, the deep

CNN, and the CDC equalizer on the FPGA with only LUT and FF. The biLSTM and CDC

have a noticeably higher latency: 5.8 µs and 1.2 µs higher, respectively, compared to imple-

mentation with DSP slices detailed in Table 4.8. The lower clock frequency is also observed:

234 MHz for biLSTM and 246 MHz for the CDC, resulting in a lower throughput: 57G for

biLSTM and 60G for the CDC. The degradation in throughput, latency, and clock frequency

highlights the fact that DSP slices speed up the execution of signal processing functions.

Especially in the CDC, when allowing implementation with DSP slices, the number of LUT

and FF used is 40 times and 4.4 times less, respectively. Therefore, it is possible to see the

degradation of performance in terms of the throughput of the CDC when the DSP slices

are not used. However, in the case of deep CNN, the latency decreases by 2 µs, the clock

frequency increases by 1 MHz, and the throughput remains unchanged. One can observe

that in the deep CNN implementation with the DSP slices in Table 4.8, the number of DSP
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slices used is only about half that for the other two equalizers, and the number of LUT and

FF is highest. Therefore, the removal of DSP slices did not affect the deep CNN because the

processing time for LUT and FF was already the bottleneck in the previous implementation.

Here, it is essential to recall that the clock frequency, which is essential to establishing the

throughput, is chosen to guarantee zero negative timing slack. In this regard, since the routing

and mapping are performed automatically by the Vivado platform, it can be observed that

when restricting the software from using the DSP slices, longer paths are generated during

the synthesis in the biLSTM and CDC cases. The longer paths cause the clock frequency to

decrease to achieve the zero-negative slack level. In contrast, the deep CNN’s paths when

deploying the DSP slices are already long due to the logic implementation and synthesis,

and, therefore, there is no significant variation in clock frequency after removing the DSP

slice in that case.

Type
Latency

(µs)

Clock

Frequency

(MHz)

BRAM SRL LUT FF
Utilization (%)

[ LUT/FF ]

Throughput

(Gbits/s)

No FPGAs

for 200G

No FPGAs

for 400G

[dual-carrier]

No FPGAs

for 400G

[56GBd]

biLSTM+CNN 39.2 234 164 163 566070 249763 62.9/13.9 57 3.0 6.0 8.1

Deep CNN 17 245 0 162 300426 399868 33.4/22.3 60 1.5 3.0 4.1

CDC 2.3 246 0 1 418534 24968 46.5/1.4 60 2.1 4.2 5.7

Table 4.9 Implementation where all multiplications are done using LUT and FF.

Regarding the utilization of LUT and FF: the biLSTM uses 62.9% of LUT and 13.9% of

FF, the deep CNN uses 33.4% of LUT and 22.3% of FF, and the CDC uses 46.5% of LUT

and 1.4% of FF. The utilization of LUT for all three equalizers is considerably increased

compared to the previous case (standard FPGA implementation). As the number of LUTs

and FFs increases, the equivalent number of FPGAs used to represent the biLSTM and the

CDC equalization also grows.

For the same three cases discussed previously, it can be observed the following. For case

1, 200G transmission can be achieved using an equivalent FPGA that has the same capacity

as ≈ 3 FPGAs (VCK190) in the case of biLSTM, ≈ 2 FPGAs in a deep CNN case, and ≈
2 FPGAs for CDC. For case 2, 400G with dual carrier transmission can be achieved using

an equivalent FPGA that has the same capacity as ≈ 6 FPGAs (VCK190) in the case of

biLSTM, ≈ 3 FPGAs in a deep CNN case, and ≈ 4 FPGAs for CDC. Eventually, in case 3

with a 16 QAM 56Gbd transmission, one would need an equivalent FPGA that has the same

capacity as ≈ 8 FPGAs (VCK190) in the case of biLSTM, ≈ 4 FPGAs in a deep CNN case,

and ≈ 6 FPGAs for CDC. In all three cases, biLSTM used approximately 1.5 times more

FPGA than required by the CDC implementation.

Finally, note that in this study, it was established the approximate resources and perfor-

mance of the equalizers implemented on ASIC by excluding the DSP slices. However, this is
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still not an optimized realization: in ASIC implementation, the number of resources used

needs to be further optimized to reduce the utilization, increase the clock frequency, and

enable high-speed processing.
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Chapter 5

The Flexibility Consideration for

Designing Neural Networks-based

Equalizers

This chapter presents an extremely alluring technical answer for the fast adaptability for

varied transmission setups required in high-speed optical communications DSP-related

solutions. One of the primary barriers to neural network equalizers being used in fiber-optic

communication systems is their limited operational region. Here, it is proposed the transfer

learning (TL) technique to solve this issue by substantially improving the performance of the

neural network channel equalizers in terms of training complexity. With the proposed TL

for mitigation of fiber nonlinear effects, the solution becomes flexible for different launch

powers, modulation formats, and symbol rates after a short period of retraining.

5.1 Transfer learning in optical fiber communications

The TL can be defined as a system’s ability to identify and adapt knowledge acquired in

previous tasks to new tasks [214].

Recent publications on the application of TL in optical communication focus on optical

network tools [215±220]. A few works also addressed the nonlinearity mitigation issue [221±

223]. However, the TL in optical networks has been mainly used for optical signal-to-noise

ratio (OSNR) monitoring. In [217], this application was introduced using an artificial NN-

based TL approach to accurately predict the quality of the transmission of different optical

networks without re-training NN models from scratch. In that study, the source domain was a

4×80 km (4 spans) large effective area fiber (LEAF) link using QPSK modulation. The target
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domain was the same system but with a different number of spans (propagation distance)

and different modulations formats (4×80 km LEAF with 16-QAM; 2×80 km LEAF with

16-QAM; and 3×80 km dispersion-shifted fiber with QPSK). The results showed that when

using the TL, just 2% of the original training dataset size was enough to calibrate the NN

for the new target domain. More recently, in Ref. [216], the experimental demonstration

of the application of TL for joint OSNR monitoring and modulation format identification

from 64-QAM signals was presented. It was shown that by implementing the TL from

simulation to experiment, the number of training samples and epochs needed for the same

prediction quality was reduced by 24.5% and 44.4%, respectively. Another recent application

of TL was in the spectrum optimization problem for resource reservation [220]. To predict a

spectrum defragmentation time, the pre-trained NN model for a source domain (having a

6-node topology) was transferred and trained again using the data from the target domain

(the NSFNet with 14 nodes). It was shown that by using the TL technique, the proportion

of affected services was reduced, the overall likelihood of resource reservation failure was

diminished, and the spectrum resource utilization was improved.

Only a few works have addressed the topic of TL for nonlinearity mitigation, and

they focus on short-haul direct detection systems. In [222] the successful transfer of the

knowledge for the links with different bit rates and fiber lengths was demonstrated. Both

feedforward and recurrent NNs were tested for the TL application: about 90% (feed-forward)

and 87.5% (recurrent) reduction in epochs were achieved, and 62.5% (feed-forward) and

53.8% (recurrent) reduction in training symbols were demonstrated. Another work in direct

detection, Ref. [221], applied the TL from 5 dBm launch power to other powers (ranging

from -7 dBm to 9 dBm) and from one transmission distance (640 km) to other ones (from

80 km up to 800 km). The experimental results showed that the iterations of TL constitute

approximately one-fourth of the full NN training iterations. Additionally, the TL did not

result in a performance penalty in a five-channel transmission when transferring the learned

features from training just the middle channel to the four other channels.

Finally, the TL in coherent optical systems was first investigated in Ref. [223]. In that

work, the authors applied the TL for different launch powers but provided a very brief

explanation of the technique. Note, however, that compared to the previous works, this

chapter explicitly explains how one can successfully transfer the learned features from

nonlinear optical channels using the NN equalizers, addressing the coherent transmission

systems. Also, this chapter presents a novel and broad description of how the TL can be

efficiently used to realize flexible NN equalizers for adaptation to changes in launch power,

modulation format, symbol rate, and fiber setup.
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5.2 Application of transfer learning to nonlinearity mitiga-

tion

First, it is important to identify the domain and the task notions for optical channel equal-

ization. The domain consists of a feature space Y which is an array of time-domain vectors

(the memory window vectors). Each window vector consists of the real and imaginary parts

of the received symbol (in each polarization) at time-step k and its 2N neighboring (past

and future) symbols. The task consists of two parts: i) the label space X , which is the set of

real and imaginary parts of the transmitted symbols, and ii) the channel posterior function f ,

which defines the conditional probabilistic distribution p(X |Y ). Several machine learning

models can be used to learn the function f . Herein, this work uses the proposed NN-based

equalizer CRNN or the "CNN+biLSTM" equalizer; described in Sec. 3.2 at Fig. 3.9. This

architecture was chosen because it delivers the best performance for impairments mitigation

in long-haul coherent optical systems when compared to several alternative NN structures,

provided that the computational complexity is not restricted, as shown in Chapters 3 and 4.

Having identified the domain and task in the sense of optical channel equalization,

it is now time to explain ªwhat to transferº, i.e., which information can be transferred

between different domains and tasks. The pass-averaged Manakov equation [96] describes

the averaged evolution of the slowly varying complex-valued envelopes of the electric field

in an optical fiber. From the Manakov equation, it can be stated that the channel likelihood,

or the conditional probability of the received signal given the transmitted signal, p(Y |X),

is affected by the launch power, symbol rate, fiber type characterized by its attenuation

coefficient α , the dispersion coefficient β2, the Kerr nonlinear coefficient γ , and the link

setup, characterized, e.g., by the number of spans Ns, the span length L, the amplifier noise

figure NF . In a nutshell, the NN-model that learns f seeks to grasp the inverse correlation

between the transmitted and received symbols, hence the aforementioned parameters are also

important for determining the posterior function f .

As far as the propagation within both Task A (the source) and Task B (the target) is

governed by the Manakov equation, the TL boosts the training performance of the Task B

model from the Task A model. The TL strategy that fits this goal is the inductive TL [224].

In the inductive TL, the source and target tasks are different but related, and the TL seeks to

strengthen the target task by exploiting the source domain’s inductive biases. The transductive

and unsupervised TLs are the two other TL techniques [225]. The definition of unsupervised

TL is analogous to inductive TL; however, since no labels are available in this case, it

is infeasible to solve the purposed regression problem of channel equalization using this

strategy. In the case of transductive TL, the source and target tasks must be identical but, as
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mentioned before, in this case, the task will change as the transmission parameters change.

As a result of these constraints, transductive and unsupervised TLs are inapplicable to the

current goal of nonlinearity mitigation in optical channel equalization.

From the model perspective, this TL uses the parameter control strategy [225]. In this

case, the attribute priors, or probabilistic distribution parameters of the signal features, can

be learned from the source domain and then be used to ease the learning of the target

equalizer model. The parameters of a model reflect the knowledge learned by the model. As

a consequence, the knowledge can be passed by sharing the parameters between different

task models.

Note that the interpretability of composite neural network structures is still, largely,

a matter of debate in the machine learning community [226±228]. For the CRNN-based

equalizer (CNN+biLSTM) [151], both the LSTM layer and the CNN layer jointly contribute

to the nonlinear mitigation, but they do this in a complementary manner under their respective

ªstrengthsº. However, some insights can be readily earned when analyzing the TL technique

application to the considered CNN+biLSTM equalizer. In this chapter, to save the training

complexity during the transfer process, it did a standard procedure to test which layers are

due to be retrained and which ones can be kept frozen. During the tests, it was observed that

whether freezing/retraining a layer depends on the characteristics of the source and target

domains. The implemented TL procedure is summarized in Fig. 5.1. First, train all the layers

in the model using Domain/Task A (the source, top panel). It was marked the NN equalizer

layers that were (re)trained with a dark gray color, and the layers with the fixed weights with

a light gray color. Next, transfer the learned weights to the model for a new Domain/Task

B (the target): three possible procedures for the transfer can be executed, as shown in the

middle panel of Fig. 5.1. In the first case (case (a), the top inset in the middle panel), all the

weights are learned again for the new Task B. Such an approach is recommended when there

are considerable changes in nonlinearity and dispersion simultaneously (e.g., when having a

change in both the symbol rate and power). In the second case marked with (b), the middle

part of the inset in the middle panel, the convolutional layer was frozen, and only the weights

in the biLSTM and output layers are trainable. This type of transfer (without losing the

performance) obtains a reduction in training complexity when the channel memory changes

noticeably, but the nonlinearity is still similar for both Tasks A and B. Such a scenario exists

when, for instance, increasing or decreasing the symbol rate for Task B, but keeping the same

optical launch power for both Tasks A and B. Finally, in the third case (c) ± the lower part of

the middle inset, ± the convolutional layer is trainable, but the biLSTM and output layers are

frozen. This strategy evidently reduces the training complexity as well. This TL type can be

used when the memory of the system is similar for both Tasks (e.g., the symbol rate is kept

P. Freire de Carvalho Souza, PhD Thesis, Aston University, 2022 130



5.2. Application of transfer learning to nonlinearity mitigation

Fig. 5.1 Schematics of transferring the learning for the optical communication system with

the NN-based equalizer (CNN+biLSTM). The leftmost subfigures display the received

constellations, while the equalized constellations are shown in the rightmost ones. XI, XQ,

YI, YQ refer to the I and Q components of X and Y polarizations. The NN elements that

are getting trained/retrained are marked with dark gray, while the fixed NN elements are

highlighted with light gray. The top panel represents the offline learning to train the NN

model to a certain Domain/Task A. Three possible strategies of TL for the new Domain/Task

B are shown in the middle panel: a) the model is retrained completely to the new Task B with

the initial weights coming from the model trained on Task A; b) only the biLSTM and output

layers are retrained to the new Task B and the convolutional layer is frozen with the weights

coming from Task A; c) only the CNN layer is retrained to the new Task B and the biLSTM

and output layers are frozen with the weights coming from Task A. In the lowest panel, it

is evaluated the performance of the NN with a completely new dataset for Domain/Task B,

keeping all layers frozen.
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the same), but the nonlinearity for Task B changes, e.g., when changing the launch power.

Finally, when evaluating the performance of the new model attributed to Task B, all weights

were frozen: this case is indicated in the lower panel of Fig. 5.1, entitled ªTesting Phaseº.

With this in mind, it is now possible to unveil some physical interpretations/motivations for

the choice of the layers to be retrained. The reason for retraining only the CNN layer when

the power changes, is that the hidden weights connecting different cells in the LSTM layer

should remain fixed since the correlation between symbols remains almost the same. On

the other hand, the kernel weights of each filter in the CNN layer need to be updated to

account for the difference in the intensity of the nonlinearity. A similar logic can be followed

when the memory of the transmission system changes. In this case, only the LSTM needs to

be retrained since the weights between cells must learn the new correlation of the domain

while the CNN can be kept frozen. The next section will analyze how efficiently it is to

transfer the learned network parameters from Domain/Task A to Domain/Task B for different

modifications in the transmission parameters.

5.3 Numerical Setup and Neural Network model

× 𝑁𝑠↑ ↓
Fig. 5.2 Scheme of the numerical setup (single channel) considered in this chapter, where the

red elements indicate the 3 possible different NN implementations evaluated. The red arrows

show that it was used the transmitted symbols for the regression retraining but, since the

S-NN is not retrained, it does not require using any transmitted symbols of the target domain.

This section explicitly evaluates the efficiency of the TL technique in terms of reducing

the size of the training dataset and the number of epochs needed to reach acceptable accuracy

of signal recovery. For comparison purposes, it was used four key reference curves. i)

only linear equalization is applied, where the respective Q-factor level is independent of the

number of epochs, as no training occurs. This case is labeled as ªw/o NNº and plotted with an

orange straight line. The efficiency of the NN equalizer is measured against this curve. ii) The

next reference curve is used to demonstrate the impact of changes in transmission parameters
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on the performance of the NN-based equalizer. In this case, the purple curve (labeled as

the source NN, S-NN) shows the Q-factor when the NN equalizer is trained with the source

Domain/Task A data only and tested on the target Domain/Task B without retraining. iii) It

also evaluated the impact of training the NN using the data from the target Domain/Task B

without using TL. This curve is labeled as ªT-NN w/o TLº, (T-NN means the target NN). In

this case, the weights are initialized randomly, which corresponds to the traditional training

of the NN equalizers. iv) Finally, this work included the approach proposed in this chapter,

corresponding to transferring the learned parameters from the source Domain/Task A. It was

denoted as ªT-NN TL x %º, where the ªxº value represents the percentage of data used to

train when compared to the T-NN w/o TL.

The following sections address the details of the simulation setup and how the NN was

trained. The results of the TL will also be shown for the changes in fiber type (using the TL

of Fig. 5.1 (a)), symbol rate (using the TL of Fig. 5.1 (b)), and launch power and modulation

format (using the TL of Fig. 5.1 (c)). This section ended with a short discussion of the TL

limitations for this task.

To illustrate the effect of the application of the proposed TL to the NN-based optical

channel equalizers, it was numerically simulated the dual-polarization (DP) transmission of

a single-channel signal at 34.4 / 45 / 65 / 85 GBd. The signal is pre-shaped with a root-raised

cosine (RRC) filter with 0.1 roll-off at a sampling rate of 8 samples per symbol. In addition,

the signal had four possible modulation formats: 16 / 32 / 64 / 128-QAM. Modulation formats

up to 128QAM were evaluated, since recent publications showed performance analysis for

these modulation formats using simulation as well as experiment setups [111, 229, 230]. It

was considered the following two test cases: (i) transmission over an optical link consisting

of 9×50 km TWC spans; and (ii) transmission over 18×50 km SSMF spans. The optical

signal propagation along the fiber was simulated by solving the Manakov equation via split-

step Fourier method (SSFM) [231] with the resolution of 1 km per step. The considered

parameters of the TWC fiber are: the attenuation parameter α = 0.23 dB/km, the dispersion

coefficient D = 2.8 ps/(nm·km), and the effective nonlinearity coefficient γ = 2.5 (W·km)−1.

The SSMF parameters are: α = 0.2 dB/km, D = 17 ps/(nm·km), and γ = 1.2 (W·km)−1.

Every span was followed by an optical amplifier with the noise figure NF = 4.5 dB, which

fully compensated fiber losses and added amplified spontaneous emission (ASE) noise. At

the receiver, a standard Rx-DSP was used. It includes the full electronic chromatic dispersion

compensation (CDC) using a frequency-domain equalizer, the application of a matched filter,

and the downsampling to the symbol rate. Finally, the received symbols were normalized

(by phase and amplitude) to the transmitted ones. No other transceiver distortions were

considered.
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After the Rx-DSP, the bit error rate (BER) was estimated using the transmitted symbols,

received soft symbols, and hard decisions after equalization, addressing the four cases

depicted on the right side of Fig. 5.2. The NN input mini-batch shape can be defined by three

dimensions [151]: (B,M,4). B is the mini-batch size, M is the memory size defined through

the number of neighbors N as M = 2N +1, and 4 is the number of features for each symbol,

referring to the real and imaginary parts of two polarization components. The output target is

to recover the real and imaginary parts of the k-th symbol in one of the polarization, so the

shape of the NN output batch can be expressed as (B,2).

In general, for the CNN+biLSTM NN considered in this section, it was incorporated the

mean square error (MSE) loss estimator and the classical Adam algorithm for the stochastic

optimization step with the default learning rate set equal to 0.001 [201]. The training was

carried out for up to 200 epochs with a batch size of 1000, which has proven to be high

enough to show the convergence for the transmission scenarios. Additionally, the total

dataset used was composed of 218 symbols for the training dataset and of 218 independently

generated symbols for the testing phase. The training dataset was shuffled at the beginning of

every epoch to avoid overfitting caused by learning the connections between the neighboring

training pairs [108]. All datasets were generated using the Mersenne twister generator [200]

with different random seeds, which guarantees a cross-correlation below 0.004 between the

training and testing datasets, meaning that the symbols are virtually independent.

Finally, since the goal of this chapter is to demonstrate the efficiency of the TL technique,

it was used the same best-performing CNN+biLSTM architecture with 244 filters, kernel size

10, and 226 hidden units in the LSTM cell, as in Ref. [151]. Also, the number of taps used

was N = 40: this is the maximal memory size estimation for all scenario changes investigated

in this work. Note that the memory effect is important because, even though it is compensated

by the chromatic dispersion compensator electronically, it is still needed to mitigate also the

impact of the coupling between the nonlinearity and the chromatic dispersion along with

optical fiber transmission. To unroll this coupling efficiently, it is needed the information

from the neighboring symbols. Note that this is true in other perturbation techniques [1],

where the triplets are used to enhance the signal after the chromatic dispersion compensation.

This memory guarantees no artificial degradation of the NN performance for all the cases

considered. Also, it is important to highlight that the objective of the approach proposed

in this study was to produce a NN complex enough to deal with the different levels of

nonlinearity but without needing to increase its number of hyperparameters (e.g., the number

of layers, neurons, filters, etc.). As it was explained in Ref. [151], increasing the NN

parameters’ number above the NN’s capacity would cause overfitting, therefore limiting

the achievable performance improvement. Clearly, in the ideal scenario, the neural network
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topology/hyperparameters should be optimized to the new configuration when changing the

transmission setup. However, in this work, the equalizer is kept unchanged, although this

approach requires higher complexity to fully cope with a strong nonlinear scenario.

5.4 Transfer learning for different scenarios of launch power
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Fig. 5.3 Transfering the learning between the launch powers. Case I: from 8 dBm to (a)

7 dBm, (b) 6 dBm, (c) 5 dBm, using 18×50 km SSMF fiber link and DP-16-QAM 34.4 GBd.

Case II: from 5 dBm to (d) 4 dBm, (e) 3 dBm, (f) 2 dBm, using 9×50 km TWC fiber link

and DP-16-QAM 34.4 GBd.

This analysis begins by transferring the learned parameters from a system that has been

trained with a specific launch power to a system that operates at different power levels. Both

the SSMF and TWC fiber types are considered. Fig. 5.3 presents the results of TL between

different powers for two cases, considering the SSMF and TWC separately. The first case

(Case I) compares the system performance in terms of Q-factor when the source dataset

consists of a 16-QAM signal with a launch power of 8 dBm to the three target datasets with

different optical power: (a) 7 dBm, (b) 6 dBm, and (c) 5 dBm. The systems keep the same

DP-16-QAM at 34.4 GBd, and the same transmission parameters (18×50 km SSMF fiber

link). Some important conclusions can be drawn from this figure. First, as expected, when

moving from the source power (8 dBm) to the target power (5 dBm), the S-NN’s output

degraded showing even worse performance than the reference case (when only the linear
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equalization was applied). Since the conditional probability defined by the models did not

generalize for different powers, this observation reveals that the NNs, by default, are not

flexible enough to be used when the launch power changes. In practice, such changes in

launch power may be necessitated by the addition of neighboring channels to the network,

which will result in a reduction in the optimum launch power owing to XPM effects. However,

the TL usage allows the NN to quickly reconfigure, and the latter then provides an efficient

output in the new scenario. By retraining only the convolutional layers, it is required 1 epoch,

4 epochs, and 10 epochs for the 7 dBm, 6 dBm, and 5 dBm scenarios, respectively, to achieve

the best Q-factor. This translates into an approximate reduction in the number of epochs to

99%, 95%, and 88%, respectively, compared to achieving the same Q-factor when trained

from scratch. Another advantage of the TL is that the size of the required training dataset can

be reduced without compromising the equalizer’s efficiency. Case I show that, depending on

the difference between the launch power considered in the source and target links, it can be

saved up to 99 % of the amount of training data. Note that this work considered the analysis

when training with different dataset sizes (1/ 5/ 10/ 20/ 50/ 100%), as shown in Fig. 5.3

(c) and (f). However, for clarity, the rest of this chapter only reported the TL for the cases

where it was saved the most epochs using 100% of the dataset, and the case in which it was

trained with the least amount of data while achieving the same or better Q-factor as in the

case without the TL.

Case II illustrates how general the findings are. It was checked a source dataset with

DP-16-QAM 34.4 GBd considering a launch power of 5 dBm in a 9×50 km TWC link and

transferred to the target sets of (d) 4 dB, (e) 3 dBm, and (f) 2 dBm launch powers, with

the same setup. The use of TL was helpful in this case as well, and the results are given in

Fig 5.3. When switching to (d) 4 dBm, (e) 3 dBm, and (f) 2 dBm, the number of epochs

necessary to achieve the maximum Q-factor decreased approximately by 99%, 90%, and

80%, respectively. Also, the re-training process required fewer data: 99%, 95%, and 95%,

respectively.

At this stage, it is pertinent to address three questions: i) what happens if the launch power

is reduced further; ii) can the knowledge be transferred from lower to higher launch powers;

and iii) would the TL still work in the presence of a transceiver noise. To answer the first

question, it was tested the TL for a wide range of launch power levels (from 8 to -8 dBm) and

found that it performs quite well as long as the NN-based equalizer still works, i.e., for the

powers where it produces a non-zero improvement in symbol recovery. The TL works well

in the nonlinear fiber transmission regime because the NN reverses the Kerr nonlinearity and

uncompensated dispersion-related effects. However, the equalizer’s effectiveness degrades

in the linear regime. This is because the NN equalizer itself cannot recover impairments
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in the linear regime of the simulated data, since they come from a stochastic noise-related

effect emerging from the amplifiers. Note that in the simulations, it was considered the ideal

components, e.g., DAC/ADC, etc. Nonetheless, despite the fact that it used such high power,

7/ 6/ 5 dBm, the TL works efficiently in the whole range of powers down to the optimal

launch power.

Table 5.1 Dependence of the TL performance on the transfer direction, for the case where

only the launch powers were changed from the source to target datasets.

Fiber Scenario Max Q-factor Epochs required

SSMF

TL 8 dBm → 5dBm 11.56 <10

TL 2 dBm → 5dBm 11.56 >100

w/o TL 11.56 >80

TWC

TL 5 dBm → 2dB 13.56 <10

TL -1 dBm → 2dBm 13.56 >100

w/o TL 13.56 >45

Question ii) is relevant because it stresses the need of comprehending the underlying

physical effects. After analyzing the effectiveness of transferring the knowledge from smaller

to higher launch powers and vice-versa, it was found that the TL is more effective when the

training is carried out at higher launch powers and the TL occurs from higher to lower launch

powers. The results regarding the TL direction effects are summarized in Table 5.1. The

explanation for the TL direction dependence is that the NN equalizer reverses the nonlinear

effects, and the latter intensifies with the growth of launch power. The source domain NN

trained with higher launch power possesses a better ªknowledgeº of nonlinearity, the NN

learns the nonlinear channel function well. Therefore, the high power regime has more useful

information about the channel function, which can be readily adapted for target systems with

lower launch powers, compared to the situation when the TL is employed in the opposite

direction. To illustrate this phenomenon, consider the case where a polynomial Volterra

equalizer is used. It is evident that if training it for a higher nonlinearity scenario, it will need

more coefficients to get a satisfactory result than if training it for a lower nonlinearity [232].

The TL follows the same logic whereby training the source NN with the worst-case scenario,

it is easier for NN architectures to discard some of the source NN’s elements that are not

meaningful in the lower nonlinear regime than it is to learn new ones from scratch.

Finally, Fig. 5.4 was added to answer the third question of whether the TL would still

work with the addition of component-generated noise. To generate the data with noise, it was
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Fig. 5.4 Launch power transfer learning from a dataset without transmitter noise to the dataset

with transmitter noise. (a) SSMF (from 8 dBm to 5 dBm); (b) TWC (from 5 dBm to 2 dBm).

assumed realistic transceivers affected by electrical noise with back-to-back SNR given by:

SNR[dB] =−0.175R+30, (5.1)

where R is the symbol rate1. This equation is an approximate fit to the experimentally

measured values described in [233] and the noise, modeled as an additive white Gaussian,

is contributed equally by the transmitter and receiver. Fig. 5.4 (a) refers to the case of

18×50 km SSMF transferring from the source 8 dBm (without transceiver noise) to the

target 5 dBm (with transceiver noise); Fig. 5.4 (b) refers to the 9×50 km TWC transferring

from the source 5 dBm (without transceiver noise) to the target 2 dBm (with transceiver

noise). The analysis of the results given in Fig. 5.4 reveals that the system performance was

slightly impacted by the increased noise level, but the TL continued to work with the same

effectiveness. In Fig. 5.4 (a), the reduction of 90% in epochs and 99% in the training dataset

was observed. By the same token, Fig. 5.4 (b) shows a decrease of 90% in epochs and 95%

of the training dataset. Note that the case depicted in Fig. 5.4 was selected to highlight that

the transmitter noise in the target domain does not harm the TL performance. It was also

tested by adding noise to both the source and target domains, with the TL still showing quite

good performance in this case as well.

1This equation was derived by the authors of Ref. [233] for a reference system and distributed within

TRANSNET Project members.
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5.5 Transfer learning for different modulation formats

This section analyzes the impact of changing the modulation format on the NN equalizer’s

performance. The source dataset modulation format is 16-QAM, whereas the target modula-

tion formats are 32-QAM, 64-QAM, and 128-QAM. First, the same launch power is kept

independent of the selected modulation format. Fig. 5.5 shows the results for the two cases

studied where only the modulation format changes: Case I (Fig. 5.5-a, b, c) with the SSMF

setup at a launch power of 4 dBm, and Case II (Fig. 5.5-d, e, f) with the TWC setup at a

launch power of 2 dBm.

In this scenario, only the convolutional layers were retrained in the case of T-NN with

TL. From the results obtained, one can infer that both the T-NN with TL and S-NN can be

successfully used with different modulation formats, as can be readily seen from Fig. 5.5.

This means that it is not needed to retrain the model if changing only the constellation size of

the modulation format. These results also demonstrate that the nonlinear propagation channel

law is almost unaffected by changing the modulation format (from the 16-QAM to a higher-

order one) when the power level remains the same. Thus, the NN equalizer, which is reverting

the channel nonlinear effects, continues to function well for other modulation formats. This

is in stark contrast to the case of classification equalizers (classifiers) [4, 76, 234], because

the latter incorporates the decision boundaries in the NN structure itself. For the classifiers,

the S-NN will not work with the new target task since its output stage does not capture

the different symbol alphabet. For the NN structure used in this work (the CNN+biLSTM

with regression), the channel reversion capability of the equalizer is independent of the

modulation format. In contrast, for the classification task, the number of neurons in the

last layer is defined by the number of constellation points. So, for the classification model,

the output layer with an updated dimensionality should be retrained to correctly identify

the new constellation points. Note that the small performance deviation of the T-NN with

and without TL, shown in Fig. 5.5, is a consequence of the particular weight initialization.

Finally, TL direction in the case of the modulation format modification is irrelevant to the TL

performance inasmuch as the regression-based NN functionality is not affected by the format

changes.

The performance of TL when it simultaneously changes the modulation format and launch

power is also evaluated in Fig. 5.5. The source dataset in Case III was the transmission

of 16-QAM signals with a launch power of 8 dBm in the SSMF link, and transferring the

learned parameters to the target having 4 dBm launch power and (g) 32-QAM, (h) 64-QAM,

(i) 128-QAM modulation formats. The source dataset of Case IV was the transmission of

16-QAM signals with a launch power of 5 dBm in the TWC fiber link, and transferring the

learned parameters to the target with 2 dBm launch power and (j) 32-QAM, (k) 64-QAM, (l)
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Fig. 5.5 Transferring the learning between modulation formats. Case I: from 16-QAM to

(a) 32-QAM, (b) 64-QAM, (c) 128-QAM, using 18×50 km SSMF fiber link and 4 dBm

34.4 GBd signals. Case II: from 16-QAM to (d) 32-QAM, (e) 64-QAM, (f) 128-QAM, using

9×50 km TWC fiber link and 2 dBm at 34.4 GBd signals. Case III: from 8 dBm / 16-QAM

to (g) 4 dBm / 32-QAM, (h) 4 dBm / 64-QAM, (i) 4 dBm / 128-QAM, using 18×50 km

SSMF fiber link and 34.4 GBd. Case IV: 5 dBm / 16-QAM to (j) 2 dBm / 32-QAM, (k)

2 dBm / 64-QAM, (l) 2 dBm / 128-QAM, using 9×50 km TWC fiber link and 34.4 GBd.
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128-QAM modulation formats. From the analysis of Cases III and IV in Fig. 5.5, one can

notice a reduction of up to 95% in epochs and 90% in the training dataset for the SSMF case

and a decrease of up to 85% in epochs and 90% in the training dataset for the TWC case.

As expected, these figures are close to the ones obtained when evaluating the TL between

different launch powers, Subsec. 5.4.

5.6 Transfer learning for different symbol rates

This section evaluates the functionality of TL when only the symbol rate is changed. By

changing the symbol rate and keeping the remaining system parameters constant, it effectively

changes how the neighboring symbols interact with each other. In other words, this change

impacts the channel memory. As the channel memory is primarily handled by the biLSTM

part of the CNN+biLSTM equalizer, in this section it is used the TL defined in Fig. 5.1, middle

panel, inset (b). It retrained the biLSTM and output weights, but keep the convolutional

weights frozen. Note that when changing the symbol rate, the effective nonlinearity level

is also affected. Nonetheless, it is observed that no retraining is needed in the CNN layer

because the features that were extracted by it (embedded in the values of its kernels), do

represent the case of higher nonlinearity, and those can be fine-tuned to the lower nonlinearity

by just adjusting the LSTM layer input weights. On the other hand, the weights between

the LSTM cells, which cater to the memory effects among other possible representations,

had to be retrained because the memory effect changes when the symbol rate does. The

source dataset is the 34.4 GBd signal, and the target symbol rates are 45 GBd, 65 GBd, and

85 GBd. It was considered the SSMF and TWC link cases with 16-QAM modulation format

and 6 dBm and 2 dBm launch powers, respectively. Fig. 5.6 depicts the results for the SSMF

and TWC fiber links, referred to as Case I and Case II, respectively. The analysis of this

figure shows that, by significantly changing the symbol rate with respect to the source, the

S-NN performance can degrade below the reference system (w/o NN).

In Case I, when moving to (a) 45 GBd, (b) 65 GBd, and (c) 85 GBd, the number of

necessary epochs decreased by 99%, 95%, and 81%, respectively, for the SSMF link case.

Furthermore, the re-training process needs much fewer data, with a reduction of up to 99%

of the required training data for the three symbol rates considered. The number of required

epochs for the TWC fiber link (Case II), decreased by 92%, 73%, and 75%, respectively,

when switching to (d) 45 GBd, (e) 65 GBd, and (f) 85 GBd. So, the retraining phase

requires fewer data: 95%, 95%, and 90%, respectively. This demonstrates the potential

of TL when adjusting the NN to different symbol rates, which is a very important feature

when considering the current commercial transponders which can operate in a very wide
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Fig. 5.6 Transfer learning between symbol rates. Case I: from 34.4 GBd to (a) 45 GBd, (b)

65 GBd, (c) 85 GBd, in a 18×50 km SSMF link using 16-QAM and 6 dBm of launch power.

Case II: from 34.4 GBd to (d) 45 GBd, (e) 65 GBd, (f) 85 GBd, in a 9×50 km TWC fiber

link using 16-QAM and 2 dBm of launch power.

range of symbol rates. In some cases, when retraining with the least possible training data

percentage (green curve), a negative transfer (slight performance degradation) occurs at early

epochs. This is a situation whereby the randomly selected portion of the training data has a

distribution that deviates from the distribution of test data. But it can be seen that this negative

transfer is resolved after just a few epochs (typically less than 10). This effect is attributed

to the difficulty in training recurrent layers [235]. For example, when the training dataset is

reduced to 1% of its original size, this corresponds to updating the weights approximately

99% less time per epoch compared to the training with the full dataset. Having such a small

amount of updates per epoch for the RNN can lead to instability in the training. But, again,

this effect can be sorted out by using several epochs.

Finally, just as it was done with the TL for the change in the launch power, now it is

explained why TL from the lower to the higher symbol rate scenarios is used. The studies

considering SSMF and TWC fiber are summarized in Table. II. The analysis of Table. II

shows that transferring the learned features from a lower symbol rate to a higher one results

in fewer epochs being required to train the NN-based equalizer, which indicates an increase

in the TL effectiveness. This behavior is a consequence of reducing the impact of nonlinear

effects that occur in optical fiber transmission by increasing the symbol rate while maintaining
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Table II Dependence of the TL performance on the transfer direction, for the case where we

change only the symbol rates from the source to target datasets.

Fiber Scenario Max Q-factor Epochs required

SSMF

TL 34.4GBd → 45GBd 10.30 <5

TL 64GBd → 45GBd 10.30 >100

w/o TL 10.30 >100

TWC

TL 34.4GBd → 45GBd 9.50 <10

TL 64GBd → 45GBd 9.50 >40

w/o TL 9.50 >60

the same launch power. Just like when changing the launch power, here it is also important

to choose the direction from a higher nonlinearity scenario to a lower one to improve the

effectiveness of the TL.

5.7 The operational limits of transfer learning for NN-

based equalizers

The effectiveness of TL when multiple changes simultaneously occur in the transmission

setup is discussed in this last section. In this complicated case, it is transferred the learning

from the source and re-train all layers of the NN model, because now the memory size and

the intensity of nonlinearity change simultaneously.

To demonstrate the performance rendered by the TL, the following case is addressed. For

SSMF, it was transferred the learning from the source domain, i.e., from the setup operating

at 8 dBm power, with 34.4 GBd symbol rate, with 16QAM (we can represent the domain

parameters as {8 dBm, 34.4 GBd, 16QAM}), to {6 dBm, 65 GBd, 64QAM}; the second

case SSMF studied is the transfer from {4 dBm, 34.4 GBd, 16QAM}), to {8 dBm, 65 GBd,

16QAM}. For the TWC, it was studied the TL from {5 dBm, 34.4 GBd, 16QAM} towards

{3 dBm, 65 GBd, 64QAM}, and from {8 dBm, 65 GBd, 16QAM}), to {4 dBm, 34.4 GBd,

16QAM}. These results are summarized in Table III, rows 7 to 10. TL is still useful even for

such drastic scenario changes, and it can have variable but nonzero savings percentages in

both the number of epochs and training dataset size, but the improvement can be much less

pronounced as compared to the single parameter change scenarios.

When increasing the symbol rate while keeping the power and transmission setup the

same, the power spectral density reduces. A reduced power spectral density implies a

reduction in the nonlinear effects, and it was analyzed in the previous section on the TL of
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symbol rates. However, in test cases 8 and 10 from Table III, it was addressed the cases

where the source and the targets had approximately the same power spectral density because

of changing the symbol rate and the launch power proportionally. With this, it was achieved

some non-trivial results regarding the direction of the transfer. In test case 8, when using the

TWC fiber which is characterized by a chromatic dispersion parameter that is 6 times smaller

and by a nonlinear coefficient that is almost twice the one of SSMF, respectively, the best

performance occurred when following the ªrule of powerº (i.e., going from a higher launch

power to a lower one). However, in test case 10, considering the use of SSMF, memory is the

key factor. Thus, in this case, the best performance was achieved by following the ªrule of

symbol rateº (from low to high).

Table III Summary of the TL effectiveness for the different scenario changes addressed.

Rows Test 1 to 6 depict the main results from sections 5.4 (the launch power change), 5.5 (the

modulation format change), and 5.6 (the symbol rate change). Rows Test 7 to 12 highlight

the results of section 5.7, where multiple changes in the transmission configuration, including

the change of the fiber type, are analyzed. For computing the epochs saving ratio with the

TL, we used 100% of the training dataset. The red color highlights the particular changes in

each test case.

Test
Scenarios of TL Evaluation

Fiber Power [dBm] Symbol rate [GBd] Mod. Format [QAM] Max Q-factor[dB] Epochs Saved w TL Dataset Saved w TL

1 TWC → TWC 5 → 3 34.4 → 34.4 16 → 16 12.66 90% 94%

2 SSMF → SSMF 8 → 6 34.4 → 34.4 16 → 16 10.16 94% 94%

3 TWC → TWC 5 → 2 34.4 → 34.4 16 → 64 4.64 84% 90%

4 SSMF → SSMF 8 → 4 34.4 → 34.4 16 → 64 8.14 94% 80%

5 TWC → TWC 2 → 2 34.4 → 45 16 → 16 9.54 90% 94%

6 SSMF → SSMF 6 → 6 34.4 → 45 16 → 16 9.76 98% 98%

7 TWC → TWC 5 → 3 34.4 → 65 16 → 64 8.66 30% 50%

8 TWC → TWC 8 → 4 65 → 34.4 16 → 16 10.08 78% 90%

9 SSMF → SSMF 8 → 6 34.4 → 65 16 → 64 5.75 55% 50%

10 SSMF → SSMF 4 → 8 34.4 → 65 16 → 16 7.24 94% 99%

11 TWC → SSMF 5 → 5 34.4 → 34.4 16 → 16 11.49 10% 50%

12 SSMF → TWC 5 → 5 34.4 → 34.4 16 → 16 10.73 0% 50%

Finally, it was studied the possible performance limits of the TL technique and discussed

the prospect of transferring the learned features between different fiber setups. For this

analysis, it was transferred the knowledge from the 18×50 km SSMF link to the 9×50 km

TWC fiber link and vice versa, keeping the other transmission parameters the same: {5 dBm,

34.4 GBd, 16QAM}. Table III, rows 11 and 12, depicts the results for such a TL approach.

This can be seen even when changing the fiber plant, and this is the largest change in channel

function considered in this study, the TL can still provide a 50% reduction in the re-training

dataset size, thus demonstrating the potential of the TL approach. However, it was not

possible to identify a decrease in the number of necessary epochs for such a TL case. In fact,

such a decrease in the TL effectiveness can be expected as the TL is well-tailored to different
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but still related source and target channel function [224, 225, 236, 237]. However, when

the fiber type changes, the resulting channel posterior functions may become quite distinct,

reducing the TL effectiveness.
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Chapter 6

The Pitfalls in Neural Networks-based

Optical Channel Equalizers

Despite the acknowledged advantages and benefits of neural networks, as explained in the

preceding chapters of this dissertation, there are still difficulties and pitfalls that prevent the

deployment of such solutions, particularly in optical transmission-related problems. This

chapter will present the common misunderstandings and misinterpretations that arise when

ML techniques are used for channel equalization in coherent optical communications.

Before discussing the pitfalls themselves, it is necessary to clarify why such issues emerge

in the first place when neural networks are applied to optical communications. In optical

transmission-related problems, 99% accuracy Ð when deciding which bit was transmitted

Ð is typically the minimum required by cutting-edge transponders operating at pre-forward

error correction (FEC). However, when working with neural networks in more known fields,

such as image recognition, such ultra-high levels of precision are uncommon; hence, it can

be anticipated the emergence of unexpected phenomena when employing neural networks

in such high-precision systems. Therefore, stricter requirements must be imposed on such

NN architectures in the case of optical communications, since the learning quality must be

greater than in other fields.

In addition, this chapter focuses on the training challenges that arise when dealing with

optical channel equalization. Overfitting and local minima difficulties are undoubtedly

the most significant factors limiting the equalization capabilities of the NN-based DSP

elements. The following sections will present details on how these two points may occur

when employing approaches based on machine learning for impairment compensation in

coherent optical communication systems.
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6.1 The problem of overestimation in some quality of trans-

mission metrics

Several performance metrics can be used to evaluate the quality of M-ary QAM transmission

systems, including bit error rate (BER), mutual information (MI), Q-factor, signal-to-noise

ratio (SNR), effective SNR, and error vector magnitude (EVM), to name a few.

In digital communications, the post-FEC bit error rate (BER) is the ultimate quality of

transmission (QoT) metric, as all actual transmissions have post-FEC BER values near 0. In

addition to the post-FEC BER information, the MI can be a highly valuable metric as well,

because it estimates the achievable spectral efficiency. When the decoder is unavailable (such

as when assessing channel equalization using received soft symbols), the post-FEC metric

is sometimes disregarded in favor of the pre-FEC metric, which is a typical performance

statistic for uncoded systems.

After soft symbol equalization, the pre-FEC BER can vary based on the decision technique

(hard or soft decision; HD and SD) employed. This metric predicts exactly the post-FEC

BER for HD-FEC with appropriate interleaving [238]. Adopting such a metric, however, can

lead to an inaccurate estimate of spectral efficiency, which is particularly apparent at low

code rates (see [238] for more). However, when dealing with NN equalizers, the pre-FEC

BER/Q is commonly used because obtaining the post-FEC BER/Q would require integrating

the equalized symbols into the rest of the DSP chain, which is not worth the work for initial

performance evaluations.

The SNR and EVM are the least accurate QoT measurements. However, these two mea-

surements can also be utilized to provide a qualitative comparison of different transmission

regimes. It is worth noting that these metrics are related to channels with known statistics,

such as the additive white Gaussian noise (AWGN) channel. The correlations between the

different QoT metrics in nonlinear channels, on the other hand, are not always known, and

adopting extrapolations based on linear theories should be done with caution.

Although the pre-FEC BER is an important QoT metric, it does require the transmission of

a known pattern, such as a training sequence, through the system for continuous performance

monitoring1. As a result, the effective SNR (ESNR) and EVM gained popularity insofar

as they lent themselves well to the study of unknown symbol sequences. Furthermore, as

previously stated, these QoT metrics can still provide an accurate estimation of the BER

when the system errors are primarily caused by optical AWGN, i.e., when fiber transmission

is close to the linear regime and nonlinear effects (arising in TX/RX components and non-

1Note that in practical terms, the pre-FEC BER is usually derived from the post-FEC BER assuming that

the FEC can correct all errors.
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Fig. 6.1 Constellation diagrams after the MLP-based equalization, corresponding to the best

performance when using the different QoT metrics. (a) and (d) lowest EVM; (b) and (e) best

Q-factor; (c) and (f) highest MI. The simulated transmission scenarios are: 15× 100 km

SSMF, 4 dBm, 28 GBd 16-QAM (a)±(c); 10× 60 km SSMF, 3 dBm, 30 GBd, 64-QAM

(d)±(f). In each constellation, the QoT metrics were presented as (EVM/ MI/ Q-factor) in the

caption.

additive noise) are almost negligible. For such metrics, it is inherently assumed that the

reception is non-data-aided and that a quadratic-QAM signal constellation is used. The

ESNR, EVM, and Q-factor can be calculated using the following expressions that are valid

for a Gaussian-distributed signal [239±242]:

EVMRMS =

[
1/N ∑

N
n=1 |yn − xn|2

1/N ∑
N
n=1 |xn|2

] 1
2

, (6.1)

SNR ≈
[

1

EVMRMS

]2

, (6.2)

Q =
√

2 erfc−1(2∗BER), (6.3)

where yn is the normalized n-th symbol in the stream of measured symbols, xn is the

ideal normalized constellation point of the n-th symbol (i.e., a symbol from the M-QAM

alphabet), N is the total number of symbols in the constellation, and erfc−1 is the inverse
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complementary error function. These metrics are typically considered in dB, using the

relation: T [dB] = 20log10(T ), where T is the QoT metric under investigation.

From a statistical perspective, the BER depends on the particular decision mechanism

utilized at the receiver side, whereas the MI gives the effective transmission capacity re-

gardless of the decision process. However, because the received soft symbols are used in

the equalization, the MI cannot be conveyed explicitly. One option to derive the MI value

is to estimate it by assuming a single-input single-output AWGN channel, which yields a

suboptimal estimate giving out the MI’s lower bound. This lower bound to the MI, I(X ;Y ),

can be expressed as [243±245]:

I(X ;Y ) = E

[

log2

(

p(y|xk)

∑
MF−1
i=0 p(i)p(y|xk)

)]

, (6.4)

where p(i) is the probability distribution of each k-th QAM alphabet symbol, and p(y|xk)

defines the conditional probability of the received constellations given the k-th QAM input

symbol. Then, the multivariate Gaussian distribution estimator [246, 247] can be used to

calculate p(y|xk) of the transmitted-received complex symbols, which, ultimately, gives as

the lower bound for the MI via Eq.(6.4).

Now that the foundation for the most pertinent QoT metrics were defined and discussed

the assumptions underlying their computation, it is time to examine how these metrics may

be used to assess the performance of the NN equalizer. This section’s primary objective is

to raise awareness of the fact that, depending on the modulation format, the NN structure,

and the level of noise, the NN can produce the ªjail windowº pattern by squeezing the

QAM constellations. Notice that numerous other works [40, 248±254] have also reported

the ªjail windowº type constellations after the NN-based equalization, often without paying

attention to the true meaning and consequences of this phenomenon. This effect is elucidated

and any potential misinterpretations associated with it are discussed. The ªjail windowº

effect originates from the regression task performed by NN equalizers based on MSE loss;

the effect occurs because the ultimate objective of such NNs is to reduce the Euclidean

distance between recovered and transmitted symbols. Note, however, that the ªjail windowº

constellation violates the Gaussian channel assumption employed in the derivation of several

of the aforementioned QoT metrics. In reality, this effect diminishes the precision of all

Gaussian-assumption-based metrics (e.g., the ESNR) other than the Q-factor calculated

directly from the BER obtained from direct error counting. Consequently, when utilizing

these imprecise Gaussian-assumption metrics, it is possible to generate deceptive findings

indicating that the NN performs well, whilst the true benefit supplied by the ªjail windowº

constellation is grossly overstated. The ªjail windowº effect can also be explained by the
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mismatch between the true transmission performance metric (the BER/MI) and the metric

that is minimized by the neural network training (the MSE loss), resulting in a disagreement

between the objective function and the actual NN result. However, the BER itself cannot be

used as a NN loss function because it is not differentiable. The effects of the ªjail windowº

are examined in greater detail later in Section 6.5.

To illustrate the metric-related problem, two types of equalizers were tested, 1 hidden

layer biLSTM and 3 hidden layers MLP, in four different numerical transmission setups:

i) 20×80 km SSMF when transmitting 8-QAM at 34.4 GBd; ii) 15×100 km SSMF when

transmitting 16-QAM at 28 GBd; iii) 30×50 km SSMF when transmitting 16-QAM at

64 GBd; iv) 10×60 km SSMF when transmitting 64-QAM at 30 GBd; the launch power

was set to 3 dB higher than the power level for the best performance without NN equalizer.

Clearly, the optimal launch power should increase when a nonlinear equalizer is utilized. The

scenarios and equalization results for different metrics are summarized in Table. 6.1.

Table 6.1 Summary of the best performance after 1000 training epochs for different QoT

metrics and transmission setups. (Simulation results of single-channel transmission)

Scenarios
MI [bits/symbol] EVM [%] Q-factor [dB]

Ref biLSTM MLP Ref biLSTM MLP Ref biLSTM MLP

Case i) 20×80km; SSMF;

5dBm; 8-QAM; 34.4GBd
2.93 2.99 2.90 22.7 5.9 8.3 7.82 10.72 8.37

Case ii) 15×100km; SSMF;

4dBm; 16-QAM; 28GBd
3.83 3.99 3.89 19.7 7.4 9.4 7.42 10.48 7.89

Case iii) 30×50km; SSMF;

5dBm; 16-QAM; 64GBd
3.84 3.97 3.87 19.4 8.1 10 7.48 9.15 7.65

Case iv) 10×60km; SSMF;

3dBm; 64-QAM; 30GBd
5.68 5.98 5.92 10.4 5 7.9 7.1 12.75 8.95

Here, note that Table 6.1 shows the best value of each QoT metric after running the

process over 1000 epochs, but the best value did not occur at the same epoch number for all

metrics. For example, in case ii), 15×100 km SSMF with 16-QAM at 28 GBd, it can be

observed that for the epoch corresponding to the lowest EVM (9.4%), the MI and Q-factor

values were, respectively, 3.12 bits/symbol and 7.87 dB; for the epoch corresponding to the

highest MI (3.89 bits/symbol), the EVM and Q-factor values were, respectively, 17.27%

and 7.84 dB; and for the epoch leading to the highest Q-factor (7.89 dB), the MI and EVM

values were, respectively, 3.25 bits/symbol and 9.8%. This result clearly highlights that

the particular QoT metric selected for performance optimization does impact the eventual

result for the system with an equalizer, and that the differences can be even more accentuated

if another transmission setup/ NN architecture is used. Indeed, depending on the quality
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Fig. 6.2 Evolution of Q-factor (simulations), MI, and EVM over the training epochs when

using the MLP equalizer in the 15×100 km, 4 dBm, 28 GBd 16-QAM system.

metric, the constellation after the equalization changes. Fig. 6.1 shows the constellation

corresponding to the maximum of each metric for cases ii) and iv), where, in the first case, the

ªjail windowº pattern does appear, but in the second it does not. For case ii), it can be seen the

ªjail windowº with thin lines connecting the constellation points for the best EVM. The same

ªjail windowº, but with somewhat thicker lines, can be observed in the case leading to the

best Q-factor. Contrarily, the traditional Gaussian-type constellations are observed in the case

leading to the best MI. For case iv), the NN did not generate the ªjail windowº pattern. In

this case, the minimum in the EVM and the maximum in the MI and Q-factor were achieved

at approximately the same epoch. It is important to note that the Q-factor in all three cases

did not change significantly, but the improvement in the EVM with the ªjail windowº caused

a high decrease in the MI estimation from 3.89 bits/symbol (the epoch leading to the best MI)

down to 3.12 bits/symbol (the epoch leading to the best EVM). This result is the consequence

of the non-Gaussian shape of the constellation obtained, which violates the applicability

conditions of Eq. (6.4) used to measure the MI. Furthermore, Fig. 6.1 points to one of the

repercussions of the ªjail windowº pattern: the NN continued to minimize the Euclidean

distance between the prediction and the labels, but this process no longer decreases the BER,

and so it departed from the main goal of equalization. After the epoch of the highest MI

(Fig. 6.1 (c)), the NN began to converge to the ªjail windowº and stopped further improving

the Q-factor, which is why Fig. 6.1 (a) and (c) have roughly the same BER / Q-factor but

Fig. 6.1 (a) has a much smaller EVM than Fig. 6.1 (c).

This effect shows that the usage of QoT metrics mentioned above for the regression task

can be misleading, resulting in an underestimation of the true achievable MI and converging

to a non-optimal equalizer’s structure. Ultimately, Fig 6.2 presents the evolution of those
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three metrics over the epochs for case ii), to visualize the previous statements, where one can

see that the overall behavior and the best values are different for different metrics.

Table 6.1 also demonstrates that the NN equalizer may lead to significant improvement

of the EVM when compared to the linear equalization only, but without rendering the same

corresponding improvement in the Q-factor. To better illustrate this effect, the following

expression can be used to estimate the BER from EVM after the equalization [255]:

BER = κ
1−M−1/2

1/2log2(M)
erfc

[√

3/2

(M−1)EVM2
RMS

]

, (6.5)

where M is the cardinality of the modulation format and κ is the correction factor. Now,

it was estimated how much the result obtained through Eq. (6.5) deviates from the one

calculated through the direct bit error counting. Starting by using the EVM and BER before

the NN to calculate the correction factor κ: for case ii), the correction factor is κ = 1.076,

which means that the BER calculated via (6.5) using the reference value of the EVM (before

the NN equalization) is a suitable QoT estimator, almost matching the true BER value after

the respective conversion. However, this equation shows how overestimated the EVM can be

if the ªjail windowº is present after the NN equalization. For the MLP equalizer, by using

Eq. (6.5) for case ii), it was obtained a Q-factor estimate of 13.62 dB while, in reality, it

is only 7.89 dB. Additionally, in case iii), the Q-factor estimated using Eq. (6.5) is 13 dB,

whereas the true Q-factor is just 7.65 dB. However, in case iv), where the ªjail windowº is

absent (see Fig. 6.1) the Q-factor estimated through the EVM is equal to 9.4 dB, whereas the

true one is 9.2 dB, showing a good match. Interestingly, even in cases where the ªjail windowº

is absent, the Q-factor calculated through the EVM can be considerably overestimated. For

instance, in case ii) and using the biLSTM equalizer, the Q-factor estimated through the

EVM is 15.6 dB, whereas the true value is 10.7 dB.

Finally, the data in Table 6.1 also indicate that the ªjail windowº phenomenon happens

less frequently when the biLSTM equalization is utilized as opposed to the MLP equalizer.

Nonetheless, it may continue for the biLSTM in some circumstances, as will be discussed

in section 6.5. In order to avoid an overestimation of the system’s performance, the find-

ings should be stated in terms of BER or Q-factor calculated from Eq. (6.3). If not, the

constellations following equalization must be evaluated to ensure that they are still approxi-

mately Gaussian so that the other QoT measures provide a good representation of the actual

performance.
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6.2 PRBS Order Impact in Systems’ Performance

There has been a plethora of empirical evidence that deep enough NNs can memorize random

labels, even when using considerably large datasets [256]. Thus, in principle, by sufficiently

increasing the size of a NN, one can always reduce the training error to small enough values,

even though the task of learning a completely random sequence is meaningless.

Unfortunately, when transmitting commonly-used PRBS (for example, of orders 7, 9,

11, 15, 20, and 23), the benefits of NN-based equalization may be overestimated due to

the phenomena described in the previous paragraph. In fact, the NN may learn the PRBS

generation rules themselves, rather than estimating the inverse of the transmission channel

model, and this naturally results in sharp performance degradation of the equalizer when

truly random data (obtained from live traffic, for instance) is transmitted. This overfitting

effect is especially relevant because, even in experiments, NN-based equalizers are frequently

trained using PRBS-based datasets.

When dealing with NNs, two key PRBS-related issues must be addressed. First, the

PRBS has a periodicity that is determined in terms of symbols by the PRBS order and the

modulation format cardinality. The order 20 PRBS, for example, has a period of 220 −1 bits,

and if it used a 64-QAM signal with 6 bits per symbol representation, the symbol periodicity

will be around 174k symbols2. To avoid NN learning such a pattern in this circumstance, the

size of the training dataset used to train the NN must be less than the aforementioned quantity.

This topic was investigated in Ref. [108], where an MLP classifier was used to check the

overestimation of PRBSs of orders 7 and 15 in the 4-pulse amplitude modulation (PAM)

transmission system using a large training dataset of size 219. According to the findings of

that work, the NN was able to produce a reasonable result when tested on another PRBS

sequence, but when tested on a fully random signal, the system’s performance degraded

dramatically because the NN did not learn the channel equalization but instead learned the

PRBS periodicity.

The second important aspect relates to the PRBS generator’s rules. A very simple and

popular approach for the generation of PRBS is to use a linear feedback shift register (LFSR)

with particular initialization and feedback. This approach can lead to a serious problem

because if the NN’s input is broad enough to catch the whole set of inputs used by the LFSR

to construct the current symbol, the NN will be able to learn the PRBS model generator

instead of performing the genuine nonlinearity mitigation task. More recently, in Ref. [257],

2The true period of symbols will be 6 times longer in this case, because this is when the bit sequence is

aligned to the symbol boundaries. However, because the NN maps the input symbols onto a multidimensional

space, the NN may also trace the information on bit periodicity. As a result, symbol periodicity is defined as the

number of symbols that contain the entire bit periodicity.
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Fig. 6.3 Q-factor’s dependencies on the PRBS order for (a) the different values of input

memory (the different number of taps is highlighted with different bar’s color) and different

random seeds for training and testing with dataset sizes of 218 symbols; (b) for the same

random seed for training and testing, but taken from different chunks, with using 40 taps and

different training dataset sizes per PRBS order as indicated in Table 6.2. The red dashed

lines for both panels show the threshold, over which we arrive at the overestimation issue.

(Simulation results)

this issue was mathematically studied and tested for an MLP classifier for both on-off keying

(OOK) and 4-PAM transmission. In that Ref. [257], the authors used the PRBS of order 20

and generated 219 bits, a sequence that is shorter than the generator periodicity. The bits

were converted into symbols and fed into the NN classifier. The authors then created an input

with the neighbor symbols but removed the current symbol to be classified. If the current

symbol cannot be learned from adjacent symbols, the NN cannot correctly decide which bit

was transmitted, and this situation corresponds to BER = 0.5. Otherwise, the BER should be

significantly lower than 0.5, indicating that the NN can understand the symbol generation

and mapping rules. In Ref. [257], the authors found that, in the case of OOK signals, the

input memory length of 17 was enough to recover the symbols. In the case of transmission

of 4-PAM signals, the same behavior was observed once the input had 9 taps. In the case of

4-PAM, some fewer taps were needed because each symbol carries 2 bits, whereas the OOK

signals carry only 1 bit per symbol. In order to avoid the issues resulting from the limited

PRBS length, instead of LSFR, the Mersenne Twister random sequence (MTRS) generator

should be used, which can provide the sequences with a much longer period than that of the

LFSR.
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This section, different from the two previous works [108, 257], evaluated both aforemen-

tioned issues using the recurrent equalizer (biLSTM). The biLSTM’s likelihood of learning

the deterministic time correlation due to the PRBS order is by far superior to that of the

MLP equalizer. Additionally, it was considered the transmission of a 64-QAM modulation

format, which increases the number of bits per symbol, therefore enhancing the PRBS-related

problems in the NN-based equalization.

Table 6.2 Summary of parameters such as periodicity and training/testing dataset size per

PRBS order used in this study with 64-QAM.

PRBS Order
Periodicity

Bits

Periodicity

Symbols

Training

Dataset Size

Testing

Dataset Size

16 216 −1 ≈ 10k 5k 5k

18 218 −1 ≈ 43k 20k 20k

20 220 −1 ≈ 174k 87k 87k

22 222 −1 ≈ 699k 262k 262k

24 224 −1 ≈ 2.79M 1M 1M

26 226 −1 ≈ 11.18M 1M 1M

28 228 −1 ≈ 44.7M 1M 1M

30 230 −1 ≈ 178.9M 1M 1M

32 232 −1 ≈ 715M 1M 1M

34 234 −1 ≈ 2.8B 1M 1M

This study used generated data from 10 transmission runs with PRBS orders 16, 18, 20,

22, 24, 26, 28, 30, 32, and 34. AWGN was added to the RX input in a back-to-back scenario

so that all data sets after the hard decision had the same Q-factor (6.9 dB). Since the only

source of signal degradation is a random noise coming from the AWGN added, the NN

should not provide any performance improvement, as the NN is a nonlinear deterministic

function. Hence, any Q-factor improvement when employing the NN results from the NN’s

learning of the PRBS generation rule.

It was performed two tests to evaluate the impact of the PRBS order on the performance

of NN. First, it was studied the impact of the training data set and PRBS symbol periodicity.

Fig. 6.3 shows the Q-factor as a function of the PRBS order when 218 symbols are used to

train the NN. A different seed is used to generate another sequence of 218 symbols (with the

same PRBS order), which are used to test the NN. The analysis of Fig. 6.3 shows a clear

improvement in the Q-factor for PRBS orders 16 and 20. This result confirms that the NN

can learn the PRBS periodicity when the training data sets (218 symbols) are larger than the
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symbol periodicity. Moreover, Fig. 6.3 also shows that increasing the number of taps enables

achieving an even better Q-factor (the NN could train faster); this behavior was also observed

in Ref. [257]. For the PRBS orders higher than 24, the training data set becomes smaller than

the symbol periodicity, and, consequently, the NN is no longer capable of learning the PRBS

generation rules: the values drop below the threshold (the dashed line).

At this stage, it is important to consider the dataset size for which the NN would learn

the data generation rule for the higher-order PRBS. In order to answer this problem, it was

conducted a second round of testing, in which it was trained the neural network using up

to 1M symbols for PRBS orders ranging from 16 to 34. The main results of this study are

reported in Fig. 6.3(b). Note that to guarantee that the NN learns the PRBS generation rule

instead of the symbol periodicity, the training and testing datasets were generated with the

same seed, but for training and testing, different data blocks with lengths shorter than the

PRBS periodicity were selected. Table 6.2 provides the periodicity for each PRBS order, and

the training/testing data set sizes for this study. The number of taps was set equal to 40 and

the NN equalizer was trained for more than 5000 epochs. As before, if the Q-factor increases

above the reference (red line in Fig. 6.3 (b) is the B2B level), this indicates that the NN was

able to learn the data generation rule. Fig. 6.3 (b) shows that the Q-factor increases with

PRBS order up to 22. This behavior can be explained by the fact that PRBS orders 16 and

18 were trained with 5k and 20k symbols, respectively. This training data set is too small to

fully train the NN, but one cannot increase it further because of the periodicity constraint

given in the third column of Table 6.2.

When the PRBS order is increased, the amount of training data required to learn the

respective PRBS generation rule also increases. However, increasing the size of the training

data beyond 1M becomes impractical (the training takes too long). Thus, the Q-factor curve

in Fig. 6.3 (b) starts decreasing for PRBS orders above 22, indicating that the NN’s capacity

to recover the PRBS generation rule becomes progressively worse. In this case, the 1M

training data size is insufficient (and/or the NN complexity is insufficient to learn the PRBS

generation rule of the highest order). Thus, when increasing the PRBS order from 24 to 30,

it was observed a decrease in the Q-factor until the point where the NN completely ceases

to learn the PRBS generation rule (for the PRBS orders equal to or higher than 32). To

conclude, this result underlines that the MTRS should always be employed in simulations,

rather than the LSFR because it produces PRBS lengths that are virtually infinite. Therefore,

an undesired overestimation of system performance can be prevented. However, when this is

not possible, even bigger PRBS orders (e.g. ≥ 32) can be utilized with caution when working

with experimental data since, depending on the size of the training dataset, modulation

format, and input memory, overestimation can still occur.
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6.3 DAC/ADC Memory Impact on Training NN Equalizers

As described in the previous section, the two most influential factors related to the data

quality are the dataset size and its variability (the absence of spurious periodicity, bias, etc.).

Fig. 6.4 shows the typical layout of a lab-style optical transmitter and a coherent receiver.

𝐼𝑥 𝑄𝑥 𝐼𝑦 𝑄𝑦

Fig. 6.4 A simplified block diagram illustrating the components of a typical transmitter

and receiver. The DAC/ADC RAM memory is highlighted to emphasize its role in the

transmission chain.

The Tx-DSP writes the signal samples into the DAC memory, and the signal is transmitted

cyclically. On the Rx side, the output of the ADC is written into memory and processed

subsequently by the Rx-DSP. When dealing with experimental data, there are several factors

to take into account in order to ensure proper data quality for the NN training. First, the DAC

and ADC memory is clearly limited in size, which puts an upper limit on the length of the

signal to be transmitted. This applies primarily to capturing the buffers built into real-time

transponders, where the memory resource is very precious and, hence, the available memory

is usually rather limited. However, the same argument applies, in principle, to lab equipment,

where, however, the limits are not so stringent. The other factors to consider are the sampling

frequency of DAC and ADC devices and the symbol rate of the transmitted signal. For the

NN training, we are interested in the sequences of symbols or bits; for a given DAC memory,

the number of symbols the DAC can hold depends on the sampling frequency and symbol

rate. Finally, an additional constraint can emerge due to the Rx DSP architecture. Often,

to achieve synchronization, the DSP implementation assumes that the data are composed

of frames of equal length. Furthermore, all frames may be assumed to contain the same

payload data to facilitate the alignment of received and reference sequences. In this case,

only the data obtained from a single received frame can be taken up for the NN’s training and

testing. This section will report on how the aforementioned properties impact the training of

NN-based equalizers and data variability quality.
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Consider an exemplary scenario where having a DAC / ADC with a memory equal to

512k samples per channel, operating at the sampling frequency of 80 GSample/s. Assume

that the DSP requires about 10 frames holding identical data to achieve proper synchro-

nization and evaluate BER. Then, the number of samples per frame is around 52k samples.

Furthermore, it was assumed that the transmission symbol rate is 34.4 GBd. This leads to

the number of effective symbols 52k/(80/34.4) ≈ 22k, which are available for NN training.

This can be easily verified by applying the autocorrelation function for the received symbols:

Fig. 6.5 shows the autocorrelation of the experimental data that was produced with a DAC

specification close to the ones mentioned above. As can be seen, the difference in the peaks

is around 22k, which is the same value that was calculated.

Fig. 6.5 The auto-correlation diagram of the received experimental signal shows the impact

of the DAC memory on the signal’s periodicity.

With this information, two main concerns can be raised in terms of the use of machine

learning in systems employing DAC/ADC. First, having a system that is unintentionally

biased towards one subset of symbols can result in poor model performance when the latter is

validated on a different subset. This fact can ultimately lead to the overfitting of the NN-based

equalizer. Second, as shown in Fig. 6.5, even when it was used a PRBS of order 32 or even

completely random data, the periodicity could not be removed from the data since the DAC

will repeat just a portion of the PRBS. Because of this, the same transmission trace cannot be

used for training and testing even if it is selected non-overlapping chunks. Fig. 6.6 shows the

constellations after NN equalization using different chunks of the same transmission trace,

Fig. 6.6(a), and when using the transmission traces with different random seeds, Fig. 6.6(b).

From these constellations, it is evident that using the same random seed to train and test

the NN provides a constellation of outstanding quality (the respective Q-factor is equal to

13 dB). Nevertheless, the NN trained with the same random seed (the one that produced the

picture in Fig. 6.6(a)) cannot generalize to perform the channel equalization: when using it
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with another random seed, it is seen that the resulting equalized constellation is noticeably

degraded, and the NN’s true performance in terms of Q-factor is just 8.66 dB, well below

the previous overestimated value. This fact clearly demonstrates that, in this scenario, the

system has overfitted over the training sequence pattern. Therefore, when reporting results

using the same random seed for training and testing, you may overestimate the performance

of your equalizer.
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Fig. 6.6 16-QAM signal constellation after the NN-based equalization when (a) training and

testing are carried out using different datasets but generated with the same random seed, and

when (b) training and testing are run using datasets generated with different random seeds.

To avoid overfitting, the NN inputs were generated with the following procedure. First, it

was recorded 60 measurement traces, each with 218 symbols, using a different random seed to

generate each trace. After that, the entire dataset was split into two parts: 50 traces were taken

for training purposes and the remaining 10 traces were saved for testing. From these traces,

it was generated the input of window vectors for each symbol to be recovered. Afterward, all

these window vectors were concatenated to generate the training and testing datasets. Finally,

after having ≈ 13M window vectors in the training and ≈ 2M window vectors in the testing

datasets, 220 random input vectors were selected from the overall 13M in each epoch while

training the NN. To show the impact of not having enough variability in the training dataset,

the NN equalizer performance trained was compared using the aforementioned dataset

generation solution with the case where was trained the NN with 220 vectors generated by

just one random seed. To evaluate the performance of the equalizers, both trained models

were tested with 218 input vectors taken from 2M (the testing set) that were never used in the

training.

The results of the comparison are summarized in Fig. 6.7, and several conclusions can

be readily drawn from that figure. First, for the case where we trained the NN with only
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Fig. 6.7 Q-factor versus training epochs for the experiment with 16-QAM 5×50 km SSMF,

34.4 GBd, 6 dBm power, using the biLSTM equalizer. These curves refer to the training

and testing performance of the NN when using one trace or when using multiple traces (our

solution is described in the main text) for training.

one trace, the traditional overfitting appears: the training curve keeps growing while the

testing curve bends down after some point as the model does not generalize. Because the

model’s variability was only for 22k points, it overfitted quickly, and the maximum Q-factor

of the testing dataset was just 8.66 dB. On the other hand, when using the multiple trace

training solution, it was possible to see that both the training and testing datasets’ curves grow

simultaneously, indicating the generalization capability of the equalizer. Using the proposed

method, it was possible to reach a maximum Q-factor of 9.69 dB using the testing dataset,

which is almost 1 dB higher than the value obtained when training the NN with one single

trace. Note that this solution uses the different parts of the training dataset, which benefits

not only from the diversity of different symbols picked from different random seeds but also

from the fact that noise (which is different for each trace) adds diversity to the dataset as well.

Heuristically, this noise is expected to ªsmear outº each data point, making it difficult for

the network to properly match individual data points, and therefore reducing the overfitting

[258]. Moreover, as it has been observed in several previous works [259±265], the noise

injection to various parts of the NN during the back-propagation training can remarkably

improve NN’s generalization capability, and the latter observation fully complies with the

result achieved with this solution, Fig. 6.7.
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6.4 Regression or Classification (Soft Demapping) NN Equal-

izers: The Design Dilemma

As discussed in Sec. 2.1, equalization is the task of recovering the transmitted data Xn from

the received data Yn. It maps Yn to the most likely transmitted data, X̂n = f (Yn;Θ), for a given

mapping function f (·) and the set of trainable parameters Θ, optimized according to some

likelihood measure. In this case of NN-based equalization, f (·;Θ) denotes the NN itself, and

Θ denotes its trainable weights and biases. Here, Xn and Yn can denote either a single sample

of transmitted and received data or the sequences of samples for either one or both of them.

For simplicity of presentation, it was assumed the single sample representation, and that Xn

is chosen from a constellation alphabet {c1,c2, ...,cm} with ci ∈ C, the complex space.

The most popular and, perhaps, simple approach to improving the channel capacity is

the receiver-based equalizer that is typically designed and optimized based on the minimum-

mean-squared-error (MMSE) criteria. The usefulness of MMSE equalizers is stipulated

for several reasons, including: (i) the MSE minimization is an optimal condition for the

transmission over the additive white Gaussian noise (AWGN) channel; (ii) the MMSE is

quite convenient for mathematical optimization because of convexity and differentiability of

its objective function; and (iii) the MMSE equalizer is usually optimized independently of

the underlying waveform or modulation format. In this section, this category of NN models

based on MMSE is called a regression equalizer (Reg.), but one can term them as a dual-stage

soft-demapping (i.e., the NN MMSE post-equalizer followed by the AWGN demapper).

Another approach is to design a model incorporating the decision step, which corresponds

to the classifier in the machine learning literature, see, e.g., [266, Chapter 6]. Such a device

is convenient insofar as the transmitted signal in digital communications is usually generated

from a discrete finite-size constellation, e.g., quadrature amplitude modulation, QAM. This

approach has received more attention recently [4, 76, 267±270], in view of the following

reasons: (i) the classifier is optimized for the specific in-use modulation format; (ii) it directly

maximizes the information rate, the main objective of the channel equalization, and outputs

the likelihoods for each received symbol, a more suitable metric for the subsequent forward

error correction; (iii) and, even more importantly, it can adapt itself to the correct statistical

channel characteristics. In this section, this category of a predictive model is called a multi-

class classifier (MC Class.), and in this communication study case, one can see them as

single-stage soft demapping, in which it is used the categorical CEL in the learning process.

Given that there are two techniques to equalize a channel, it is only logical to wonder

which of the two is the best or most appropriate under specific conditions. In this section,

the performance of the multi-class CEL classifier and regression MMSE predictive models
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are examined, highlighting the potential drawbacks of each task for the NN-based long-haul

optical channel soft-demapping problem.

A fair comparison between regression and classification is quite challenging, as these

two produce different output variable types: discrete versus continuous, respectively. Such

comparison studies have been carried out in theoretical machine learning-related work [271±

273]. The desire to determine the optimal approach between regression- and classification-

based NN models is a common concern in various fields. This motivates research into the

use of these models in the development of NN-based soft-demappers for coherent optical

systems. For the optical channel demapping, this comparison may be made more evident

by contrasting the multi-class classifier output to that obtained with the regression, in terms

of bit error rate (BER) (i.e., using a hard decision metric) or with respect to the mutual

information (MI), i.e., using a soft decision metric.
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bits
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Fig. 6.8 Scheme of the two classic configurations of NN models, using the LSTM as an

exemplary NN core: regression (top) and multi-class classification (bottom), in the context

of channel equalization and soft demapping in communications.

As it can be seen in Fig.6.8, to guarantee a fair comparison, both regression NN and

MC. Class NN has the same hidden structure composed of a biLSTM layer with ns cells and

nh hidden units, and the only differences between using each architecture for regression or

classification tasks occur in i) the structure of the output layer, as shown in Fig 6.8, and ii) in

the loss function type used for each task. In the case of regression, the output layer has two

linear neurons referring to the real and imaginary parts of the recovered symbol, and the loss

function used is the MSE. For multi-class classification, the number of neurons in the output

layer is determined by the modulation format cardinality (#QAM), and the NN structure ends

with the softmax layer, while the loss function is the categorical CEL. It is important to point

out once again that besides these two differences, the regression and classifier models that it

P. Freire de Carvalho Souza, PhD Thesis, Aston University, 2022 163



The Pitfalls in Neural Networks-based Optical Channel Equalizers

was compared here, share the same number of inputs, hidden layers, and the training and test

datasets are also the same.

Moreover, in the regression-based equalization, f (Yn;Θ) is relaxed to freg(Yn;Θ) out-

putting any complex value, and its likelihood maximization boils down to the minimization

of MSE, i.e., to find the specific set of parameters Θ∗
reg:

Θ∗
reg = argminΘ

{
EXn,Yn

[
|Xn − freg(Yn;Θ)|2

]}
. (6.6)

The above expectation EXn,Yn
is taken over the samples of transmitted data and the corre-

sponding received data. Those samples are, in fact, distributed according to P(Xn,Yn) =

P(Xn)P(Yn|Xn), where P(Xn) is the transmitted signal distribution and P(Yn|Xn) describes

how likely the channel output Yn is upon the transmission of Xn. For regression, the MSE

loss function can be treated as a simplification of the true likelihood measurement for

the case of optical channel equalization: using the MSE optimization, the channel noise

distribution is assumed as additive Gaussian; if the noise distribution is non-Gaussian or

signal-dependent, then the MSE-based optimization fails to capture all information in the

distorted sequences [274], and may not learn the model parameters that optimally maximize

the negative log-likelihood that is the cross-entropy between the empirical distribution de-

fined by the training set and the probability distribution defined by the model Ref. [266,

Chapter 5.5]. In practice, when using MSE-based regression, the model tries to recover the

deterministic part by assuming that the stochastic part has a Gaussian distribution with a

signal-independent variance. This approximation is often reasonable, as in many systems the

noise-signal interaction is smaller than the transmitter-induced and additive optical amplifier

signal-independent noises, and the latter two can often be well approximated as a Gaussian

process [275].

In contrast, the classification-based equalization combines the regression with soft demap-

ping into a single NN, so it has as outputs: X̂n ∈ {c1,c2, ...,cm}. In this case, f (Yn;Θ)

is relaxed to fcl(Yn;Θ) outputting a vector of posterior probabilities (q1, ...,qm), where

qk := Q(Xn = ck|Yn;Θ), showing how likely Xn = ck are, given receiving Yn. Then, X̂n is

equal to the ck that has the largest posterior probability. It turns out that the ªmaximum likeli-

hoodº estimation (the best effort of the model fcl(·)) is obtained if the following categorical

CEL of the actual posterior P(Xn|Yn) and Q(Xn|Yn;Θ) is minimized:

X (P,Q;Θ) =−EYn

[
m

∑
k=1

P(ck|Yn) log2(Q(ck|Yn;Θ))

]

. (6.7)
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Equivalently, one can instead maximize

IΘ(Xn; X̂n) = EX [log2(P(Xn))]−X (P,Q;Θ), (6.8)

where IΘ(Xn; X̂n) is the mutual information for the mismatched decoding rule Q(Xn|Yn;Θ)

[276, Def. 12], [277, Theorem 2] 3. As a result, the classification-based equalization is

optimized for the following set of parameters4:

Θ∗
cl = argmaxΘ

{
IΘ(Xn; X̂n)

}
. (6.9)

Therefore, for the classification, the cross-entropy loss [279] is the most suitable loss

function concerning its meaning in information theory [280], effectively representing any type

of noise statistics. However, there are two major drawbacks associated with this loss function,

emerging specifically from the machine learning-related perspective, which can make the

training of such a classifier a troublesome task. First, regardless of the corresponding

inaccuracy in the target space, the CEL penalizes the misclassification between the two

classes (i.e., between any two constellation points in such a problem) with the same ªcostº

value: the penalization ignores the spatial proximity of the labels, reflecting only the fact

that the constellation point has been misclassified. However, typically, the account of the

misclassification ªtypeº, i.e., when the cost of all errors is not equal, can be (and typically

is) quite beneficial for the efficient NN’s training. The cost of making a mistake can

be determined by the projected and actual classes of an example [281, 282]. Each class

represents a distinct notion that can be identified using a NN in the conventional classification

task, for example, when one classifies different kinds of coordinate objects. However, when

it comes to the problem of optical equalization, each class contains more information than

just a label. In other words, the different classes correspond to different point positions

in the constellation, and each class has its own nonlinear distortion level. The additional

information about each label can be obtained by using the physical nature of each nonlinear

level, i.e., the aforementioned distortion level that depends on the constellation point’s power.

To better understand this question, consider the task of classifying symbols in, say a

16-QAM constellation. In this problem, the misclassification between classes that share the

same decision boundary should cost less than the misclassification of the ones that do not

3In the case of regression-based equalization, the MI cannot be expressed directly from the optimization

cost, Eq. (6.6), as it is possible in the case of classification. Instead, it was computed an MI using the Gaussian

approximation of conditional probabilities (a mismatched distribution) as it was already introduced in Sec. 6.1

Eq.(6.4) [276, 278].
4Note that IΘ(Xn; X̂n)≤ I(X ;Y ), the true mutual information (MI) of the channel, and the equality holds if

Q(Xn|Yn;Θ∗
cl) = P(Xn|Yn) for all (Xn,Yn).
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share any decision boundary: in the first case, one naturally shares some symbols due to

the noise-induced clouds’ spreading and overlap, while the second case is a ªserious errorº.

However, using the CEL will only capture errors in the target class: it discards any notion of

errors that you might consider ªfalse positivesº and does not care how predicted probabilities

are distributed other than the predicted probability of the true class (since one-hot encoded

vectors are used), implying that only the predicted probability associated with the label

influences the value of the CEL. Thus, from the standpoint of machine learning, one can say

that there is a natural order among the labels of the target variable. The training difficulties

that the standard CEL can bring in classification with natural ordering problems are discussed

in more detail in Ref. [283].

The second classification disadvantage is the magnitude of the gradients that arise during

the training process with the CEL. The CEL surfaces, according to Ref. [273], present fewer

local minima than the square error-based losses (SEL), the type to which the MSE loss

belongs. The CEL, on the other hand, has stronger gradients than the SEL, which leads to

a stronger tendency of overfitting in CEL-trained systems, leading to the SEL’s having a

better generalization property in almost all scenarios examined in Ref. [273]. This result

was explained thereby assuming that the CEL loss surface is more prone to sharp minima

(narrow valleys) than the SEL’s surface, making the overfitting considerably ªeasierº to

happen for the former systems. Additionally, it was also shown that such classification-based

systems can suffer from the gradient vanishing problem. For instance, Ref. [284] shows

the gradient vanishing when using the softmax with categorical-CEL, and the same for the

sigmoid with the binary-CEL was reported in Ref. [285]. It was observed the same tendency

in the coherent channel equalization problem, when the MSE-based system generalized better

than the categorical CEL systems, due to overfitting, sharp local minimal, and ultimately the

gradient vanishing problem that is observed in the CEL-based learning.

Finally, one final disadvantage of classification-based equalizers is more relevant to their

use in real transmission systems. When utilizing the classification, the equalization must

have a predefined number of outputs that correspond to the constellation’s cardinality. This

means that the classifier model’s operation is dependent on the modulation format on which it

was trained. In other words, a classifier’s practical implementation (e.g., in hardware) would

limit the device’s applicability to a particular modulation format only, which greatly reduces

the device’s flexibility and adaptability. However, as shown in Refs. [209], when using

regression, the model can easily adapt itself to work with different modulation formats. As a

result, regression-based models are much more flexible (reconfigurable) than classification

models, allowing the former to be used under conditions different from the ones in which the

regression models were trained.
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Fig. 6.9 Performance metrics’ comparison for the regression- and classification-based equal-

izers, showing the impact of overfitting that can be seen when comparing the training and

testing learning curves. The analyzed setup considered a 20×50 km SSMF link and a single-

carrier-DP 64-QAM signal with 30 GBd and 0.1 RRC pulse shape (simulation results).

Now, since the key points related to the regression and classification tasks were covered,

this work will focus on how an equalizer (or a soft-demapper) with the same architecture

(applied to the data from the same transmission setup) performs, and how the result depends

on whether the regression or classification task is employed. In this test, a single channel

DP signal of 30 GBd is transmitted over 20×50 km employing 64-QAM (used in Figs. 6.9

and 6.10). The optical launch power is varied from -3 dBm to 5 dBm. A biLSTM equalizer

was used with nh =208 hidden units and ns = 133 number of cells. Note that, the mini-batch

size and learning rate were optimized for each equalizer type individually because it was

observed that using the same ones in regression and classification was causing even stronger

overfitting after a few epochs for the latter, which is one of the classification drawbacks.

Fig. 6.9 shows the Q-factor and MI dependencies for training and test datasets when the

same biLSTM equalizer is used for regression and classification (of course, the output layers

of NN structures are different for the two tasks). The Q-factor curves for the training and

testing of the classifiers exhibit a considerable discrepancy, as shown in Fig. 6.9a, indicating

that the classification model is overfitted. This noticeable difference in the classification task

persisted even after optimizing the learning rate and mini-batch size. However, in the case of

regression, the training and testing output curves behave almost identically, in contrast to the

classifier’s results. It follows that for the test scenarios, the regression model based on the

MSE generalizes considerably better, which is consistent with the findings from Ref. [273],

where the strong gradients in the classification task loss function impact learning further: the
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learning state gets ªtrappedº in a sharp local minimum of loss landscape. Furthermore, after

the equalization, the regression equalizers resulted in a higher Q-factor than the achieved

value for the classifiers, owing to the better generalization of the regression-based NN

structures on the optical datasets. The maximum regression-based NN’s Q-factor on the

testing dataset was 9.82 dB at 2 dBm, while the maximum Q-factor for the classification

was 7.74 dB at -1 dBm. Besides the Q-factor, it is also instructive to show the MI for both

tasks as well. The reason for this is that the classification loss function, the CEL, is directly

related to the MI metric, therefore, displaying the Q-factor after a hard decision can limit

the entire potential of the model [209]. Looking at the MI values in Fig. 6.9b, one can

see that the classifier’s training performance was overfitted, yielding nearly the maximum

MI attainable for each power when the training dataset was used. However, in the case

of regression, the training and testing curves followed the same trend, indicating a much

better generalization capability of the equalizers. The maximum MI on the testing dataset of

the regression NN was 5.97 bits/symbol (note that this value is only a MI’s lower bound),

and the one for the classification was 5.87 bits/symbol (but this MI value is exact). So,

it is possible to conclude that in typical optical transmission tasks, the machine learning

drawbacks associated with conventional classification ªoverpowerº the regression-related

shortcomings related to statistical limitations.

Aside from the overfitting, it is also important to highlight the consequence of the second

classification drawback, regarding the gradient vanishing in the training process. According

to Ref. [266, Chapter 8.2.2], a practical way to demonstrate that the local minimum is

potentially the cause of the learning problem is to verify that the gradient norm shrinks

to some ªinsignificantº values along with the training. As in Ref. [286], it was depicted

in Fig. 6.10 the gradient norm of the last layer for the biLSTM equalizer over the epochs

to show the effects of the loss function on the behavior of the gradient norm. Unlike

Ref. [286] that presented this plot for the MLP architecture, this study now shows it for the

biLSTM equalizer, basically observing the same trend as reported for the MLP equalizer

in a completely different transmission setup. From Fig. 6.10, it is clear that after just 200

epochs, the gradient norm for the categorical-CEL case drops from 1.25 to 7× 10−5 and,

with continued training, goes even lower to 8×10−7. For the regression case using MSE, the

gradient continues to stably decrease over the epochs, reaching a minimum of around 0.003.

Therefore, it can be affirmed that the categorical CEL potentially has sharp local minima

for the optical channel equalization task since, as described in Ref. [266, Chapter 8.2.2], the

gradient norm shrinks to a negligible value (on the order of 10−7) during training.

Finally, a brief discussion of the loss function study in the task of optical channel

equalization/soft demapping is presented in this section. Although the MSE is a good fit
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Fig. 6.10 Gradient norm over the training epochs for the Regression model (red) and Classifier

model (blue), to highlight the gradient vanishing problem and sharp loss-landscape local

minima.

when dealing with a Gaussian noise model and makes the NN learn effectively, delivering

attractive Q-factor gains, in some scenarios, the MSE continues to decrease with the stochastic

gradient descent (SGD) algorithm, but this does not translate into the BER improvement,

resulting in falling into a local minimum. The ºjail windowº constellation pattern visually

indicates a mismatch between the MSE loss and the BER metric, and it is believed to appear

for local minima in learning, producing seemingly good BER results, but not the ultimate

equalization. In the next section, a scenario is presented where the model’s final Q-factor

performance increases when the ªjail windowº disappears due to mini-batch size optimization.

The suitability of CEL as the most suitable loss function for communication applications

can be claimed since minimizing cross-entropy maximizes the mutual information of the

system, matching the QoT metric of the transmission and the loss function of the learning

algorithm, and therefore, no mismatch between the loss function and the QoT metric appears.

However, other machine learning-related problems attributed to the learning process, namely

SGD learning, were observed in this section. It is noted that the landscape of such a loss

function has very sharp local minima, and the gradients tend to vanish in the early learning

stage due to high accuracy requirements in optical channel equalization tasks. Therefore,

even though the CEL does not have a statistical limitation for the noise likelihood, it poses

many learning difficulties that can ultimately make its performance worse than that of the

regression NNs based on MSE. It is also stressed here that several works have acknowledged

that both regression and classification have disadvantages [287±293].
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It can be confidently said that for optical communication, the ultimate answer to the

question of what the best loss function would be is still not available, as each candidate has its

drawbacks. It is believed that further investigation is required by looking at different fields to

potentially find some other possible candidates. It has been observed that in computer vision,

the majority of the pixels in an image describe the background, while only a few pixels

express the objects in the image. This has resulted in inefficient training, as most parts of

the image correspond to an easy prediction, which offers little relevant learning. To address

this issue, Facebook A.I. developed a new modified approach named focal loss (FL) [293] by

adding a weighting factor to the CEL function. The FL gives a higher weight to cases that

are hardly misclassified, which corresponds to cases that have been misclassified after the

HD process in communications. It is believed that the difficulty of dataset imbalance exists

in virtually all high-accuracy communication-related equalization/demapping problems. For

instance, in a system where an initial SER after HD is equal to 10−3, only 100 symbols

(0.1%) in a dataset of 100K symbols correspond to errors that persist after HD and that

the model needs to learn from them to mitigate impairments. A similar focal loss function

as in computer vision could be created for communications applications to improve the

performance of classifiers. This could be an interesting topic for future research in the fields

of optical channel equalization and efficient NN-based soft symbol demapping.

6.5 Interrelation Between Batch Size, Constellation Cardi-

nality, and Equalization Quality

The NN training presupposes the use of optimization algorithms, such as SGD or Adam [294],

to update the NN parameters (weights) based on the value of the loss function. Traditionally,

two training methods are utilized: batch training, in which the algorithm updates the weights

after the entire training dataset, and online learning, which is executed after each training

sample.

In practice, however, stochastic optimization methods use mini-batches, i.e., the portions

of all training examples with a size greater than one, but less than the entire training dataset,

to compute the gradients using less memory and update the parameters after each mini-

batch [266]. One reason for this is that modern NNs demand such a large amount of data

that the computer dynamic memory cannot hold the entire dataset. Notably, the size of

a mini-batch is regarded as one of the most important hyperparameters to consider when

training an NN. Large mini-batches are well known in deep learning for their ability to

significantly speed up the training process, while also providing an accurate approximation
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of the gradient [266]. Small mini-batches, on the other hand, have been shown to have

a regularizing impact, preventing overfitting [266, 295]. The latter phenomenon can be

explained by the fact that, while the large mini-batches can indicate the gradient’s direction,

the algorithm cannot forecast how long this trend would continue, usually causing the training

process to take a large update step forward. This leads to unstable learning or falling into

local minima. However, small mini-batches, while carrying added noise due to their smaller

sampling across the entire dataset, result in small steps and the system can easily converge

to a true direction [295]. Several studies have been carried out to investigate the effects

of mini-batches size on the NNs performing traditional deep learning tasks. Ref. [296]

proposed using small mini-batches to introduce noise in the gradient estimation and push

the gradient away from sharp local minima; the authors of that Ref. [296] also demonstrated

that the optimal batch size for the CIFAR-10 dataset is 80. In Ref. [297], it was empirically

demonstrated that the large mini-batch sizes lead to the convergence at sharp local minima,

resulting in poor NN generalization, whereas the smaller mini-batches lead to flatter local

minima, allowing the NN to achieve a better generalization. However, no research has been

conducted to study the effect of mini-batch size on the performance of NN-based regression

equalizers in optical transmission.

Fig. 6.11 Signal constellation of 16-QAM after metro-link (450 km) simulated optical

transmission using a Nonzero Dispersion Fiber [9]. We used this highly-nonlinear exemplary

system to visually demonstrate the distinct distortion levels at different constellation points:

the constellation points at the outer layer are clearly more distorted than the ones closer to

the origin.

The motivation for this study is that the mini-batch in the NN performing optical channel

equalization has more physical meaning than it does in other ªtraditionalº machine learning
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tasks, such as computer vision. Recall that different transmitted symbols in the constellation

correspond to different optical field intensities, depending on the modulation format. This

can be seen by looking at the 16-QAM received constellation diagram, Fig. 6.11, where the

outermost points are the most distorted ones. This happens because the fiber nonlinearity is

proportional to the cube of the optical field amplitude, so the most distant points (having the

largest amplitude) experience the most nonlinear effects. Because the NN’s parameters are

updated after each mini-batch, the training process can be more efficient if each mini-batch

contains training samples that cover the whole range of possible constellation amplitudes,

to encompass different distortion levels. If this hypothesis is correct, there should be

a relationship between the mini-batch size and the modulation format’s cardinality, also

affecting the NN’s performance. This section reports tests and simulations to explain the

aforementioned connections.

Table 6.3 Summary of biLSTM and MLP performance dependence on the mini-batch size

for the different constellation cardinalities. Simulation results.

MLP Equalizer

Q-factor (Different Batch Sizes)

biLSTM Equalizer

Q-factor (Different Batch Sizes)
QAM

Q-factor

Ref 8 16 32 64 128 2048 8 16 32 64 128 2048

8 8.65 dB 8.62 dB 8.70 dB 8.65 dB 8.74 dB 8.82 dB 9.44 dB 10.08 dB 10.25 dB 10.51 dB 10.71 dB 11.28 dB 13 dB

16 7.22 dB 6.91 dB 7.02 dB 7.09 dB 7.17 dB 7.28 dB 7.72 dB 8.58 dB 9.14 dB 9.72 dB 10.10 dB 10.43 dB 11.57 dB

32 5.05 dB 4.47 dB 4.57 dB 4.69 dB 4.80 dB 5.01 dB 5.58 dB 7.02 dB 7.66 dB 8.36 dB 8.69 dB 8.75 dB 8.79 dB

64 3.15 dB 2.67 dB 2.73 dB 2.95 dB 2.96 dB 3.06 dB 3.79 dB 5.78 dB 5.87 dB 6.29 dB 6.47 dB 6.51 dB 6.78 dB

128 1.53 dB 0.77 dB 0.90 dB 1.10 dB 1.30 dB 1.36 dB 2.09 dB 3.54 dB 3.92 dB 4.09 dB 4.13 dB 4.14 dB 4.27 dB

Table 6.3 shows the Q-factor of optical signals equalized by the MLP and biLSTM

MSE-regression equalizers for a range of modulation formats: 8-, 16-, 32-, 64, 128-QAM5

and mini-batch sizes: size 8, 16, 32, 64, 128, and 2048. In this section, simulations were

performed for the SSMF 16×60 km link at 5 dBm launch power and 34.4 GBd symbol

rate. When the size of the mini-batch increases, it can be observed a progressive growth

in the Q-factor after equalization. Considering the case of biLSTM, which gives the best

equalization quality. When the mini-batch size is increased for the 8- and 16-QAM, the Q-

factor after the biLSTM-based equalization dramatically improves. For example, comparing

the post-equalization Q-factors in the 16-QAM scenario, for mini-batch sizes 8 and 2048, a 3

dB improvement can be seen for the largest mini-batch over the smallest one.

This behavior of mini-batch vs. Q-factor gain for biLSTM is illustrated in Fig. 6.12 for

8-QAM and 16-QAM. Note that increasing the mini-batch size above 2048 does not provide

any further improvement: the Q-factor reaches some kind of plateau (saturates) after the

batch size of approximately 1000. When using a higher constellation cardinality, 128-QAM,

5Note that to generate the 8-QAM constellation it was used the standard Matlab function qammod; the same

constellation shape was used in Refs. [298±301].
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Fig. 6.12 Q-factor of 8- and 16-QAM simulated signals equalized by the biLSTM trained with

different mini-batch sizes: 8, 16, 32, 64, 128, 1024, and 2048. The simulated transmission

setup is described in the main text.
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Fig. 6.13 Signal constellations (simulation results) for different batch sizes after equalization

using the biLSTM equalizer for 8- and 16-QAM. The transmission system is described in the

text. The Q-factor of each constellation is also shown to highlight the improvement in QoT.

the improvement rendered by the biLSTM equalizer increases from 3.54 to 4.27 dB when

changing from the mini-batch size from 8 to 2048. We note that, from Table 6.3, for the

128-QAM with the MLP equalization, the difference between the Q-factors corresponding to

the lowest and highest mini-batch sizes is approximately 1.3 dB, which is bigger than the
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difference for the biLSTM. The increase in Q-factor backs up the claim that the NNs can

learn more efficiently when given training samples covering all nonlinearity levels in the

constellation.

Together with the improvement in Q-factor (up to some limiting value) following the

growth of the mini-batch size, one can see the interrelation between the constellation distri-

bution after equalization and the mini-batch size used in training. The constellations for the

8- and 16-QAM systems for different mini-batch sizes utilizing the biLSTM equalization,

are given in Fig. 6.13. In this figure, it can be observed that utilizing a small batch size for

8-QAM drives the NN-based equalizer to fall into the previously discussed ªjail windowº

pattern rather than into the Gaussian-type distribution, but the latter can be obtained when

using larger mini-batch sizes. In the 16-QAM case, the signal constellations after NNs with

small mini-batches become noticeably distorted, and the ªjail windowº elements are clearly

seen. At the same time, for the larger mini-batches, the 16-QAM constellations show little

distortion, with clear concentrations at the center of each constellation point.

The degradation of constellations from circular clusters into the ªjail windowº pattern

when training with small mini-batch sizes, is actually a new and intriguing phenomenon: so

far, there have been no studies relating the equalizer’s performance deterioration to the size

of the training mini-batches. Generally, as already seen, several factors can contribute to the

patterning effect of the ªjail windowº. In this section, it is addressed the specific situation,

where the ªjail windowº occurred solely due to the batch size effect, so it is possible to

understand how and why the batch size relates to the ªjail windowº patterning. In a more

general case, different contributions amalgamate, resulting in the ªjail windowº pattern; the

latter is always an indication that something is not good with the training or with the NN

system itself. This is actually evident from the results in Fig. 6.13 (a) to (d). In case (a),

where the learned weights resulted in the ªjail windowº, the Q-factor is around 10 dB, while

in case (d), where the learned weights did not generate the ªjail windowº, it was measured

the Q-factor to be around 13 dB. Therefore, it is expected that when the ªjail windowº pattern

is present, even though the performance metric value can be rated as ªsatisfactoryº, in the

training, it has most likely reached just a local minimum, and some better equalization results

can be achieved with the more appropriate training or by using a modification of the NN

architecture.

To explain the degradation of signal constellations further, when training the biLSTM

equalizer with small mini-batch sizes, it was investigated the weight distribution inside the

NNs. More precisely, it was compared the weight distributions in the last linear layer (output

layer) of the biLSTM, and the distribution in the forward LSTM layer, for two values of the

training mini-batch size: 16 and 2048, using an 8-QAM system as an example. Fig. 6.14
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shows that the weights, when training with small mini-batches, range over a considerably

larger interval than when training the NN with larger mini-batches. From Fig. 6.14b, it can

be seen that the final layer weights were significantly saturated when the NNs were trained

with small mini-batches6. The saturation is indicated by the presence of large value weights

and typically degrades the performance of the NN. At this point, one can hypothesize that the

presence of large weights makes the output of the NN strongly dominated by a few weights

with a large value. This is a widely known phenomenon in deep learning when training NNs

to perform regression tasks [266, 302]. The NNs featuring large weights tend to have the

regression output converging to a few values that are hard-coded from the input. In the case

of optical signal equalization, this effect deteriorates the signal constellations into a ªjail

windowº.

To carry out the analysis further, it was examined the number of outlier weights in the

linear layer. As can be seen in Fig. 6.14, weights greater than one can be considered outliers.

It was observed that in the case of 8-QAM, the real parts of the recovered symbols have

twice as many outliers (larger than 1) weights as the imaginary parts (298 for the latter case

in comparison with 153 for the former)7 When increasing the outlier weight threshold value

criteria from 1 to 4, it found just four weights on the neuron representing the real value of

the constellation, while the neuron for the imaginary part had just two. This is the exact

ratio between the number of continuous straight ªlinesº (each ªlineº is made up of equalized

constellation points) in the amplitudes of the in-phase and quadrature, as seen in Fig. 6.13a.

We propose the following explanation for the aforementioned patterning effects. When

employing small mini-batch sizes with a small cardinality constellation, there exists a

noticeable probability that many points in the batch belong to just a single amplitude level.

As a result, the NN tends to learn the inverse channel function at this particular nonlinearity

level and is more likely to hard-code some inputs to this obvious amplitude output. This

issue is less likely to occur with high-cardinality modulation formats since it is less probable

that the batch will contain a lot of samples belonging to the same amplitude level. However,

even in high modulation formats, it was possible to see the ªjail windowº pattern when

using the MLP equalizer, but now with less intensity8. One possible explanation for why the

optical signals recovered by the MLP equalizer are more prone to constellation degeneration

than in the case of the biLSTM equalizer is that the feed-forward structure (e.g., the MLP)

6Well-trained NNs usually have the weights’ distribution being close to the Gaussian distribution with a

small variance. When this variance is too large, say more than one, as shown in Fig. 6.14, it usually indicates

saturation of weights, which, in the NN terms, means disregarding some important input features.
7This effect persists in the case of symmetric 16-QAM and other constellations when the ªjail windowº

occurs, such that it is not relevant to the asymmetry of the 8-QAM constellations used in this study.
8It was observed that the ªjail windowº pattern is modulation format dependent. An interesting discussion

on the fact that non-linear MSE equalizers realize a stair function can be found in Ref. [280]
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2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

Weights Value
0

200

400

600

800

1000

Re
cu

rre
nc

es
 o

f W
eig

ht
s Batch size 16

Batch size 2048

(b) Weight distribution at the final linear layer

Fig. 6.14 Weight distributions of the biLSTM equalizer’s forward and output layers, corre-

sponding to the mini-batch size of 16 (red) and 2048 (blue).

makes it easier to hard-code input data to the output. At the same time, the recurrent-type

structures (e.g., the LSTM type) allow parameters to be shared across the NN model [266],

making the hard-coding effect more difficult to emerge. Here, however, one can remark on

the performance of the MLP and LSTM equalizers. Both Sections 6.1 and 6.5 demonstrated

that the LSTM equalization produces a better result than the MLP equalizer. The LSTM,

which can be deemed as a nonlinear infinite impulse response (IIR) filter, can represent the

inverse of a nonlinear channel more accurately than equalizers that use an MLP structure; the

latter is actually a non-linear finite impulse response (FIR) filter [303]. IIR filters, unlike FIR

filters, do not require that the system has finite memory, giving the LSTM-type equalization

an advantage. Theoretically, the MLP may also achieve such a high degree of performance

when the input accounts for large enough memory; but, due to the overfitting of the MLP

structure9, which turns out to be extremely difficult to achieve. On the other hand, because

the large-memory handling LSTM structures are simpler than MLPs, the overfitting there

does not occur, or at least, is much less pronounced.

After considering the deteriorating effects attributed to the presence of large-value

weights, we advocate the use of a well-known regularization technique, L2 regularization, as

a feasible way of minimizing the degradation in the equalized signal constellations. The idea

behind L2 regularization is to penalize large weights and favor smaller weights throughout

the model [302]. From a Bayesian statistics standpoint, the addition of L2 regularization

is equivalent to performing a maximum a posteriori estimation with a Gaussian prior; the

traditional MSE loss function corresponds to a maximum likelihood estimation when the

9To recover the nonlinear channel, the MLP would need a complicated structure with large memory.

However, such a redundant architecture is equally susceptible to learning the training dataset, which leads to

overfitting [151].
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likelihood has a Gaussian distribution. This means that after the learning, the equalization

transfer function (likelihood) has been re-weighted to reflect a prior, making it much more

difficult to have hard-coded correlations between the input and output (recall that the hard-

coding is one of the reasons causing the ªjail windowº pattern). The following equation

represents the L2 contribution to the regularized loss function L(y, ŷ):

L(y, ŷ) = MSE(y, ŷ)+λ
n

∑
i=1

w2
i , (6.10)

where the first addend is the initial MSE loss function, λ is the regularization parameter that

must be optimized10, n is the total number of weights in the NN topology, and wi is the i-th

weight in the NN topology.

(a) Without regularisation (b) With regularization

Fig. 6.15 8-QAM signal constellations after the NN-based simulated channel equalization

when training with mini-batch size equal to 16 without (a) and with (b) L2 regularization.

Fig. 6.15 shows the signal constellations of the 8-QAM signal equalized by the NNs

trained with the mini-batch size of 16, with and without regularization. It was observed that

when using regularization, the degradation of signal constellations can be prevented. It is

worth pointing out that although regularization can render better constellations, the equalizing

performance is still badly affected by the small mini-batch sizes: even with regularization, it

cannot match the performance of the NNs trained with large mini-batches. Thus, while the

large weights contribute to the degeneration of constellations, this is not the only detrimental

effect caused by a small mini-batch size. This observation suggests that the most important

10The regularization parameter was tested from the range between 0.01 and 0.0001, but no drastic difference

was observed in terms of Q-factor improvement. In the plots presented in this section, it used the parameter

value λ = 0.001.
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problem with small mini-batch sizes can relate to the insufficient number of unique amplitude

levels that are present in each mini-batch, as suggested above.

Fig. 6.15a and 6.15b demonstrate the signal constellations at the epoch with the highest

Q-factor. It was observed that when training the NNs after this level, performance degen-

eration took place even with the regularization. Although most of the weights after the

regularization turned out to have a relatively low value, there still exist significantly larger

outliers. One possibility for this is that these outliers contribute to the distortion of the

signal’s constellations. Interestingly, using large mini-batch results in a narrower distribution

of the weights, which does not feature any significant outliers even when regularization is

not applied. This observation strongly supports the claim that training with an insufficiently

large mini-batch brings about the performance degradation of NN-based coherent optical

channel equalizers.

Fig. 6.16 Distribution of MLP weights for the entire model: non-regularized (Original) and

regularized cases. The insets show the respective equalized constellations for each case.

Finally, it was applied the L2 regularization to all hidden layers of the MLP equalizer

in another transmission case where the ªjail windowº was really strong: it was the case (ii)

described in Section 6.1 and given in Fig. 6.1 (b). The weight distribution of the entire model

for the MSE (marked as ªOriginalº) and for the MSE with the L2 regularization (marked as

ªRegularizedº) is presented in Fig. 6.16. From this result, it can be seen that, this time, for a

higher modulation format (16-QAM), the regularization makes the original ªjail windowº

constellation again a set of ºGaussian-likeº clusters, see the corresponding insets in Fig. 6.16.

However, even though the regularization produced a visually different constellation output,
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the original and regularized model revealed almost identical performance in terms of the

eventual Q-factor: the original one gave 7.89 dB, regularized ± 7.61 dB. This fact shows that

regularization is not the solution to make the model learn further11, but it rather helped us to

identify which element in the NN-model was responsible for the ªjail windowº pattern.

In conclusion, the challenges and common misconceptions that often arise during the

development of NN-based equalizers for high-speed coherent optical communication sys-

tems include poor model generalization, dependence on dataset characteristics (periodicity),

overfitting behavior and indications, performance overestimation, and inaccurate estimation

of computational complexity. Table 6.4 summarizes some findings and recommendations.

Although this exploration of pitfalls is undoubtedly incomplete, the identified issues repre-

sent some of the most common problems that pose a significant risk to developing efficient

NN-based equalizers and other machine-learning structures used in optical transmission

lines.

Table 6.4 Overview of Main Issues in Devising Efficient NN-based Equalizers

Topic Problem Solution

QoT Metrics

The ªjail windowº effect in the NN-based equalizers. The use of

the metrics assuming Gaussian channel statistics, such as

EVM and SNR can lead to overestimated results in terms of BER.

To avoid overestimation it is recommended to always report the results in terms

of BER or Q-factor calculated directly from BER.

PRBS Order

Depending on the PRBS order, the NN can learn the PRBS periodicity

or the generation rule of the PRBS sequence that is based on its

linear feedback shift register.

The training and testing datasets must be different fragments within

the PRBS periodicity range. This periodicity depends on the PRBS

order and the modulation format. Also, high PRBS orders should be used, (≥32)

, and the NNs are to be tested with a B2B system to guarantee the absence

of overestimation and overfitting effects.

DAC Memory

Depending on the DSP implementation, the DAC memory limits

the data variability to a few thousand samples, which makes the NN to

overfit quickly into the training dataset statistics.

Increase the variability by, concatenating different traces generated with different

random seeds to create a large training dataset of more than 13M symbols, and

train the NN with different random 1M symbols from this training dataset for

each epoch.

Regression vs Classification

The regression and classification have some statistical and machine

learning drawbacks that can impact the learning in the field of

nonlinearity mitigation in coherent optical channels.

In all tests in this study, regression has performed better than classification. However, we

mention that this check always needs to be done. For fairness reasons, take into account

that mini-batch size, learning rate, and the number of epochs need to be individually

tuned for each configuration since the gradients are different when using CEL or MSE.

Batch Size Study

The batch size is an important hyperparameter to guarantee a proper

learning process of channel equalization. Using small mini-batch sizes,

in the regression can make the NN move the learning in a direction

that is not the best.

We observed that using a large mini-batch size (≥1000) is good for generalization

when using regression for NN-based equalizers. We see that when using small

mini-batches, the NN was not generalizing for the different levels of nonlinearity

for points in the QAM constellation

Computational Complexity

The computational complexity can be confused with the number of NN

parameters. Also, it can be mistakenly underestimated if one uses memory

to save some common multiplications. The underestimation can take place

as well if quantization and pruning are not accounted for accurately.

We recommend reporting the computational complexity in terms of real

multiplications per recovered symbol. In the same way, when using the quantization

and pruning, the CC should be reported in terms of BoPs or NABS. Also,

when reporting the CC values considering that some computations can

be saved to be used later, it needs to be clearly stated that latency is not a constraint.

11Using the L2 regularizer can also make the NN model be a single point attractor in the space of its weights,

where the attractor is located at the origin. In such a case, any information that was inserted into the NN model

dies out exponentially fast. As described in Ref. [235], this can hide long-term memory traces that impact the

learning process in this task.
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Chapter 7

Conclusion and future work

It is expected that a capacity bottleneck will occur in the near future because fiber-optic

communication, the backbone of the global data network, is under pressure to carry more

data every day. Now, more than ever, it is crucial to study alternative information transfer

strategies in order to make optimal use of the existing fiber infrastructure. WDM, SDM, PDM,

etc., have all been tried in recent decades to boost data rates, each with its own advantages

and disadvantages. To combat the signal degradation introduced by fiber, especially the

phenomenon known as Kerr nonlinearity, many DSP-based methods have been developed.

Fiber channels, unlike more common linear ones like wireless and copper, are distinguished

by their nonlinearity. To adapt to the new fiber channel, it is important to rethink what

had been created to lessen only the negative effects of the linear channel. This is not a

simple task because one must take into account the physics governing fiber distortions

as described by the well-known NLSE. This thesis shows the steps to designing a neural

network-based equalizer to mitigate the nonlinearity in the optical channel. It started by

showing an analysis of the performance pillar, comparing the performance of such NN-based

equalizers with the standard DBP method. Then, the computational complexity pillar is

presented, where equations to measure the computational complexity of NN structures from

a software to a hardware perspective are introduced. After that, a trade-off study between

the performance versus the complexity of the most famous NN structures in the literature

is produced. Next, the performance of the different compression techniques is presented

considering three different transmission setups, comparing the Q-factor versus computational

complexity in all scenarios. As the most relevant result, it was observed that when using

weight clustering and pruning, as a nonuniform quantization step, for the Sim1 transmission,

it presented a Q-factor gain of 1.6 dB compared to the CDC in the case of 3 clustered weights

with the cost of increasing the complexity by 182%, and a Q-factor gain of 0.6 dB at the

expense of a 61% increase in complexity in the case of 2 clustered weights. This result
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represents a big step forward in reaching commercial implementation, since it is approaching

the computational complexity of the existing CDC block in the DSP chain. Also, here a

detailed study of the design of NN-based optical equalizers was carried out, addressing the

steps from Python realization to FPGA implementation. The complexity, performance, and

resources required for the approximations have been evaluated. The proposed realization

showed that the biLSTM requires only ≈ 2.5 times more FPGA resources than the CDC,

while still outperforming the 1-StpS DBP in Q-factor.

In the case of flexibility, the applicability of transfer learning methods for the adaptation

and reconfiguration of NN-based equalizers in coherent optical systems was investigated. In

particular, the potential of TL to reduce the number of training epochs and the training dataset

without impacting the equalizer’s performance was assessed. Furthermore, the transfer

direction was evaluated when the system’s launch power, modulation format, and symbol

rate are changed. Overall, it could be observed that a reduction of up to 99% in terms of

training epochs (required to achieve the best performance in the equalization) and 99% in

terms of training dataset size can be achieved without affecting the performance quality of

the retrained equalizer.

In the last technical chapter of this thesis, important hidden caveats and pitfalls when

dealing with the applications of machine learning methods and, particularly, the NNs for non-

linear impairments’ compensation in coherent optical communications are presented. This

chapter underlines the challenges and common misconception errors that often occur in the

development of NN-based equalizers applied in high-speed coherent optical communication

systems: a poor model generalization, dependent dataset characteristics (periodicity), overfit-

ting behavior and indications, performance overestimation, and inaccuracy in estimating the

computational complexity.

Certainly, for consistency, it is now important to reiterate at the end of this thesis what

was stated in the beginning, namely that the NN-based equalizer provides a noticeable

enhancement in channel capacity, as indicated by the increase in mutual information. As

previously discussed, Table 6.1 presents the results of four different transmission setups,

wherein the fourth configuration (i.e., 10×60km; SSMF; 3dBm; 64-QAM; 30 GBd) yielded

a mutual information increase of 0.3 bits per symbol relative to the CDC mutual information

baseline. Additionally, Fig. 6.9 (b) shows that for a transmission over a 20×50 km SSMF link,

utilizing an SC-64-QAM modulation scheme operating at 30 GBd and 3 dBm, the mutual

information improvement over CDC is approximately 1 bit per symbol. This outcome clearly

demonstrates the considerable potential of NN-based equalizers to enhance the channel

capacity, leading to an estimated throughput increase of approximately 21% in the latter case.
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Finally, this thesis is concluded by describing some open problems in the design of low

complexity NN-based equalizers that were not investigated in this thesis, with the aim of

spurring more research effort on advancing the design of machine learning solutions in

optical communication systems.

1) The parallelization problem. Training and evaluating each node can be very time-

consuming in large NNs. This is unquestionably a bottleneck in the development of a

high-speed NN design suitable for optical communication applications. A possible solution

is to parallelize such models when implementing them in hardware. This topic was partially

covered in Ref. [304] for feed-forward layers. If recurrent layers, like the LSTM layer

proposed in this work, are in demand for future industrial applications, it would be interesting

to investigate how to parallelize them in hardware implementations.

2) Knowledge distillation. This is another possible type of compression that was not

investigated in this work, but that is receiving increasing attention from the community [305].

The idea behind knowledge distillation is to train a distilled NN model that has many layers

and is truly computationally complex, and then use it to train a more compact NN model. An

interesting direction for future work would be to figure out how this technique could be used

to make NN-based equalizers work better.

3) Meta Learning Based Compression. In Ref. [306], the authors have jointly consid-

ered network pruning and quantization in an end-to-end meta-learning framework. Other

works, e.g., Ref. [307, 308], used meta-learning to learn how to quantize or how to prune

the NN structure. This can potentially be a good alternative to the BO technique used in

this thesis, which, perhaps, could provide the same or even better solutions, but in a faster

manner.

4) Stabilization of the quantization training for different transmission scenarios. The

effectiveness of quantization, as mentioned in this work, is highly dependent on the difficulty

of the transmission equalization task and the learning process. Several authors have already

discussed the challenges and possible solutions of the training process for the quantized NN

models [208, 309, 310]. To fully understand this application for future industrial applications,

e.g., in the optical communications field, a deeper investigation into how to make this training

process more stable and faster, independently of the transmission setup, is required.

5) Probabilistic neural networks. This can be a potential solution for the issue of signal

corruption due to stochastic noise that was not investigated in this thesis.

6) Time-frequency representation in neural networks. In this thesis, all the investi-

gation was considered as an input of the NN a memory vector of the complex symbols to

be equalized. It is important as well to perform a comparative study with different types of
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Conclusion and future work

inputs (e.g., spectrum, triplets, images of the received constellations, etc.) so that one can

identify if the performances can be further improved and complexity reduced.

7) Further flexibility analysis to avoid the need to retrain the hardware NN imple-

mentation. Even though this thesis presented the transfer learning technique, there is still

room for investigation on how to improve the NN design for multiple transmission scenarios

with no or very limited retraining.

8) Improvements in the FPGA Realization In this thesis, it was presented an FPGA

implementation using an int32 quantization. So an open question is to push such FPGA to

int8 or less, if possible, by using heterogeneous quantization together with quantization-aware

training.

9) New loss function for optical communications. Investigation of new loss functions

that will produce a better learning/training phase of neural network equalizer in the context

of using datasets from long-haul optical transmission systems
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