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Lay summary

This thesis investigates specific questions around objects known as maximal func-
tions, essential tools in Harmonic analysis used to study a function’s local and
global behaviour. To understand what maximal functions do, we first consider an
averaging (or smoothing) process, which takes a function f and finds its average
over a region in space. This region can be a ball, a sphere, or a line. A maximal
function Mf then looks for the worst values such averages can attain by varying
the regions where the functions are averaged. The fundamental question we ask
is the following.

If we start with a function f that has a tall and thin distribution, does the
output function of this process, Mf , also carry a similar distribution?

To answer this question meaningfully, we need a tool to measure the distribu-
tion of functions, which is done using mathematical objects known as Lp-norms.
Here, we consider two types of maximal functions.

In the first type, the averages are taken on singular surfaces (such as curves
or two-dimensional surfaces in three-dimensional space). In this case, it is shown
that the answer to our question depends on the geometry of the surfaces. In
particular, the maximal function preserves distributions (in the sense of Lp norm)
if the surface is not entirely flat in the space.

In the second type, averages are taken on long thin tubes (or boxes) in the
space, and the maximal function looks at the worst averaged value after varying
the directions of the tubes along a curve in a lower-dimensional space. Here, it
is shown that the maximal function preserves distributions (in the sense of Lp

norm) if the curve bends and twists in the space.
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Abstract

The broad theme of the thesis is of geometric maximal functions associated to
curved surfaces. We produce novel results about two maximal functions of dif-
ferent types, presented in two parts of the thesis.

In the first part (Chapter 2), we study the Lp → Lp boundedness of a lacunary
maximal function on a graded homogeneous group. The main theorem of this
part generalises the existing maximal results in specific homogeneous groups, such
as the Euclidean space and the Heisenberg group. Using an iteration scheme, we
estimate the maximal function, assuming that the measure associated to the
maximal function satisfies a curvature condition.

This second part of this thesis (Chapters 3 and 4) deals with the problem of
Lp → Lp boundedness of a Nikodym maximal function in the Euclidean space.
The maximal function is defined using a one-parameter family of tubes in Rd+1,
whose directions are determined by a non-degenerate curve in Rd. These operators
naturally arise in the analysis of maximal averages over space curves. The main
theorem generalises the known results for d = 2 and d = 3 to general dimensions.
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Notation

• (G, dx) always denotes a Lie group with the associated Haar measure.

• Cc(G) denotes the space of continuous functions on G with compact sup-
port.

• C∞
c (G) denotes the space of infinitely differentiable functions on G with

compact supported.

• Lp(G) denotes the space of measurable functions f such that∫
G

|f(x)|pdx <∞.

• S(G) denotes the Schwartz space of smooth rapidly decreasing functions in
G.

• W k,p(Rd) denotes the Sobolev space given by

W k,p(Rd) := {f ∈ Lp(Rd) : Dαf ∈ Lp(Rd) for all 0 ≤ |α| ≤ k}

where Dαf denotes the weak derivative of f with order α.

• N0 denotes the set N ∪ {0}.

• For a set E ⊆ Rn, we denote its characteristic function by χE.

• Given f ∈ L1(Rn) we let either f̂ or F(f) denote its Fourier transform and
f̌ or F−1(f) denote its inverse Fourier transform, which are normalised as
follows:

f̂(ξ) :=

∫
Rn

e−ix·ξf(x) dx, f̌(ξ) :=

∫
Rn

eix·ξf(x) dx.

• For m ∈ L∞(Rn), we denote by m(1
i
∂x) the Fourier multiplier operator

defined by its action on g ∈ S(Rn) as

F(m(1
i
∂x)g)(ξ) := m(ξ)F(g)(ξ) for ξ ∈ Rn.

• Given two numbers A,B ≥ 0 and a list of parameters M1, . . . ,Mn, the
notation A ≲M1,...,Mn B or A = OM1,...,Mn(B) signifies that A ≤ CB for some
constant C = CM1,...,Mn > 0 depending only on the parameters M1, . . . ,Mn.
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In addition, A ∼M1,...,Mn B is used to signify that both A ≲M1,...,Mn B and
B ≲M1,...,Mn A hold.
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Chapter 1

Introduction

In the extensive field of harmonic analysis, maximal functions can take various
forms and appear in different contexts. In this thesis, we investigate maximal
functions linked to ‘curved’ geometric objects in Rn. In order to provide a unified
framework for the questions we address, we present the following general formu-
lation. The discussion here is given in a somewhat imprecise manner to simplify
the statements.

Let n,m ≥ 1 and E ⊂ R. For each t ∈ E (the set E will be referred to as
the parameter set or the index set), let σ(t) be a finite Borel measure supported
on a compact set S(t) ⊆ Rn. Consider a smooth function Φ : Rm ×Rn → Rn and
consider an averaging operator

Atf(x) :=

∫
Rn

|f ◦ Φ(x, y)| dσ(t)(y) for x ∈ Rm and t ∈ E, (1.1)

originally defined over a ‘nice’ class of functions so that we can ignore the concerns
about the definability of the operator. On this class of functions, define the
maximal function

Mf(x) := sup
t∈E

|Atf(x)| for x ∈ Rm. (1.2)

The general nature of problems studied in the thesis is to seek if M can be
extended as a bounded operator between Lp spaces, and what are the best bounds
we can obtain for ∥M∥Lp(Rn)→Lp(Rm) for p ≥ 1.

While a broad formulation of this type helps present the questions at hand, it
is essential to note that it may be deceptive, as a comprehensive theory of these
operators falls outside the scope of this thesis. Instead, our analysis focuses on
two particular branches of the framework, which will be examined in separate
parts of the thesis.

In the first part of our thesis, we consider a specialized group structure (ei-
ther commutative or non-commutative) on Rn. Specifically, we examine a ho-
mogeneous group (denoted by (Rn, · )) that possesses a one-parameter family of
dilations (δt)t>0 which are smooth maps on Rn that are compatible with the group
law. These objects are rigorously defined in Chapter 2, and we refer the reader
to the content of §2.1.1 for further details. Essentially, a homogeneous group can

1



2 Aswin Govindan Sheri

be thought of as a space that extends many of the fundamental aspects of Rn,
such as its abelian group law, manifold structure, Euclidean dilation structure,
and the presence of a Haar measure (which is the Lebesgue measure).

Recalling the general setup described in (1.1) – (1.2), we let m = n and
E := {2k : k ∈ Z}. Begin with a compactly supported finite Borel measure σ and
define σ(t) as a dilate of σ by the action ⟨σ(t), f⟩ = ⟨σ, f ◦ δt⟩ on test functions. If
σ is supported on a set S ⊂ Rn, note that the dilated measure σ(t) is supported
on S(t) := δt(S). Define

Φ(x, y) := x · y−1 for x, y ∈ Rn,

where · denotes the new group law on Rn and y−1 denotes the inverse of y ∈ Rn

with respect to this group law. With these assumptions, we can re-write (1.1) as

Atf(x) :=

∫
Rn

f(x · y−1) dσ(t)(y).

In other words, At maps a function f to a convolution product (using the group
law) between f and the t-dilate of σ. As the index set contains all the lacunary
numbers, the maximal function defined by (1.2) will be called a lacunary maximal
function and be denoted by the symbol Mlac. In Chapter 2, we study sufficient
conditions for Mlac to be extended as a bounded operator between Lp spaces
for p > 1. The main theorem of this chapter (Theorem 2.2.4) generalises many
known maximal results in some of the special homogeneous groups, such as the
Euclidean space and the Heisenberg group. Our key assumption in this theorem
is a ‘curvature assumption’ on the underlying measure σ (see the discussion in
§2.2.2). It is known that without any curvature conditions, non-trivial maximal
inequalities may fail.

In the second part of this thesis, we begin with a smooth non-degenerate curve
γ : [−1, 1] → Rm. In particular,

| det
(
γ(1)(t) · · · γ(m)(t)

)
| > 0 for all t ∈ [−1, 1].

The curve γ determines a one-parameter family of directions in Rm+1, and these
directions will constitute the index set E for the maximal function. Let E :=
[−1, 1]. For each t ∈ E, we consider a long thin box Tγ(t) ⊂ Rm+1 with the

long axis (of unit length) along the direction
(
γ(t) 1

)t
and the other axes are

determined by the derivatives of γ (see §4.1 for a precise definition). Define

S(t) := Tγ(t) and dσ(t)(y) := |Tγ(t)|−1χTγ(t)(y)dy.

Fix n = m+ 1. For y ∈ Rn, we write y = (y1, y2) where y1 ∈ Rm and y2 ∈ R and
define Φ(x, y) := (x− y1, y2) for x ∈ Rm. With these definitions, (1.1) now reads
as

Atf(x) := |Tγ(t)|−1

∫
Tγ(t)

|f(x− y1, y2)|dy1dy2, for x ∈ Rm.

By (1.2), the associated maximal function then seeks the largest average of f
over all boxes whose long directions vary in a one-parameter family. Consequently,

2



On certain geometric maximal functions in Harmonic analysis 3

we refer to the resulting maximal function as a Nikodym maximal function (de-
noted by Mnik), keeping in line with the existing literature [14, 37, 3]. Maximal
functions of this form arise in the study of certain local smoothing problems and
the related (more complex) maximal functions. Via Theorem 4.1.2, we establish
Lp(Rm+1) → Lp(Rm) estimates for Mnik for dimensions m ≥ 2 and for exponent
p ≥ 2, and improves on known results for m = 2 and m = 3. See the discussion
in §4.1 after the statement of Theorem 4.1.2 for further details.

An important distinction between the study of Mlac and Mnik is seen to be
in the role played by ‘curvature’. In the Mlac analysis, a curvature assumption
is placed on the underlying singular measures to obtain non-trivial maximal es-
timates. In the case of the Lp estimates for Mnik, however, the non-degeneracy
assumption is placed on the curve that determines the class of directions upon
which we take the supremum.

The structure of the thesis is the following.

Part 1:
In Chapter 2, we study the lacunary maximal function Mlac in the setting

of a graded homogeneous group. To familiarise the reader with the theory of
homogeneous groups and to keep it self-contained to an extent, we detail many
fundamental notions and results in an abstract setup before stating our first main
result and its proof. The same chapter discusses many examples of measures
satisfying the required curvature assumption.

Part 2:
In Chapter 3, we conduct a literature review to examine how maximal in-

equalities relate to local smoothing problems. The primary goal of this chapter is
to contextualise our main finding (Theorem 4.1.2) within the broader framework
of local smoothing estimates. We begin this chapter by discussing a technique
from [37] for solving the local smoothing problem for the wave equation in the
plane, which leads to the proof of the Bourgain circular maximal theorem. Later,
we explore the potential for generalising these methods to higher dimensional lo-
cal smoothing problems, which involves studying a higher dimensional Nikodym
maximal function.

In Chapter 4, we establish Lebesgue estimates for a Nikodym maximal func-
tion, a generalisation of the maximal function encountered in Chapter 3. In the
final section of Chapter 4, we examine the geometric nature of the maximal func-
tion and discuss the challenges involved in devising a geometric proof for the
Nikodym maximal estimate.

3



Chapter 2

Lp estimates for lacunary
maximal functions on
homogeneous groups

The content of this chapter is based on a joint work [50] with Jonathan Hickman
and Jim Wright.

2.1 Background on homogeneous groups

The setting where we place our discussion is that of a homogeneous group which
is a natural platform to build theories of operators originally arising from the
Euclidean harmonic analysis1. In this section, we survey the background material
on the theory of homogeneous groups. The material is standard and can be found,
for instance, in [17] or [18].

2.1.1 Basic definitions

Lie groups and Lie algebras

Definition 2.1.1. A Lie group G is a smooth real manifold endowed with the
smooth maps (x, y) 7→ x ·G y and x 7→ x−1 satisfying the properties

i) x ·G (y ·G z) = (x ·G y) ·G z,

ii) e ·G x = x ·G e = x and

iii) x ·G x−1 = x−1 ·G x = e

for all x, y, z ∈ G, where e ∈ G is an element of the group called the identity
element.

Definition 2.1.2. A Lie algebra is a real vector space V endowed with a bilinear
map [ · , · ] : V × V → V that maps (a, b) 7→ [a, b], called the Lie bracket of a and
b, such that

1See, for example, in the introduction to [18], where the authors list several reasons why it
is interesting to study operators in such generality.
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On certain geometric maximal functions in Harmonic analysis 5

i) [a, a] = 0 for all a ∈ V and

ii) the Jacobi identity

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0

holds for all a, b, c ∈ V . By writing [a+ b, a+ b] = [a, a] + [a, b] + [b, a] + [b, b] we
see that the first property is equivalent to

[a, b] = −[b, a] for all a, b ∈ V.

There is a natural association between Lie groups and Lie algebras. To see
this, we begin with a Lie group G and derive a Lie algebra structure using some
of the fundamental features of the group.

Definition 2.1.3. Let a ∈ G. A mapping Xa : C
∞(G) → R is called a tangent

vector to G at a if

i) Xa(f + g) = Xaf +Xag and

ii) Xa(fg) = Xa(f)g(a) + f(a)Xa(g)

for all f, g ∈ C∞(G). The collection of all tangent vectors at a forms a vector
space denoted by TaG.

TaG is a finite dimensional2 vector space with dimTaG = dimG for any a ∈ G.
The disjoint union

TG :=
⊔
a∈G

TaG,

called the tangent bundle, assumes3 a natural manifold structure from that of G.

Definition 2.1.4. A vector field on G is a smooth map X : G → TG such that
Xx := X(x) ∈ TxG for any x ∈ G. It can act on C∞(G) by

(Xf)(x) = Xxf for all f ∈ C∞(G).

We can introduce a bracket structure, called the commutator, on the space of
vector fields by

[X, Y ](x) := XxY − YxX for all x ∈ G. (2.1)

It is easy to verify that [X, Y ] is also a vector field and that the commutator
satisfies the properties of a Lie bracket. Thus, the collection of all vector fields on
G forms a Lie algebra (albeit an infinite dimensional one). We are interested in
one of its Lie sub-algebra, which can be introduced by taking the group structure
of G also into consideration.

2See [17, §1.2] for a proof.
3See [17, §1.2] for further details.

5



6 Aswin Govindan Sheri

For a ∈ G, consider the left and right translation maps La,Ra : G → G
defined by

La(x) := a ·G x, Ra(x) := x ·G a, (2.2)

and the associated differential maps dLa, dRa : TG→ TG defined by

dLa(X)f := X(f ◦ La) ◦ La−1 and dRa(X)f := X(f ◦ Ra) ◦ Ra−1

for all X ∈ TG and f ∈ C∞(G).

Definition 2.1.5. A vector field X : G→ TG is called left-invariant if

X ◦ La = dLa ◦X for all a ∈ G. (2.3)

Similarly, the vector fields X : G→ TG is called right-invariant if

X ◦ Ra = dRa ◦X for all a ∈ G.

The vector space of all left-invariant vector fields is closed under taking Lie
brackets. Indeed, using (2.1) and (2.2), the identity

[dLa(X), dLa(Y )] = dLa([X, Y ])

can be verified for any two vector fields X and Y and a ∈ G. Consequently, if X
and Y are left-invariant vector fields, then

[X, Y ] ◦ La = [X ◦ La, Y ◦ La] = [dLa(X), dLa(Y )] = dLa([X, Y ])

which implies that [X, Y ] is also left-invariant. Therefore, the space of all left-
invariant vector fields forms a Lie algebra equipped with the commutator bracket.

Definition 2.1.6. The Lie algebra g of a Lie group G is the space of all left-
invariant vector fields on G equipped with the commutator bracket of vector
fields.

One important observation to be noted here is that by Definition 2.1.5, a
left-invariant vector field is uniquely determined at all points in G, once it is
determined at the identity (or at any other point for that matter). The mapping
X 7→ X(e) is therefore seen to be a vector space isomorphism between g and the
tangent space TeG; for a vector Xe ∈ TeG, we use (2.3) to define the unique vector
field that identifies with Xe at the identity, the smoothness of which can be easily
checked4. We can use this isomorphism to equip TeG with a Lie bracket induced
from the commutator Lie bracket of g. Then, TeG becomes a Lie algebra that is
isomorphic to g. In view of this, we use the symbol X ∈ g to represent both a
left-invariant vector field and its value at the identity, as long as the notational
inconsistency does not lead to any ambiguity in the statement.

4See [17, §1.2] for further details.
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On certain geometric maximal functions in Harmonic analysis 7

The exponential map

We can now introduce the exponential map, which plays an important role in
establishing the Lie algebra - Lie group correspondence5. For X ∈ g, consider
the initial value problem for a function γ : [0, ϵ) → G, ϵ > 0, satisfying

γ′(t) = X(γ(t)), γ(0) = e.

From the theory of ordinary differential equations, we know that this equation
has a unique solution (which is also called a flow associated to X) on an interval
[0, ϵ) for a small positive value ϵ, and the solution depends smoothly on Xe.
Furthermore, the interval of existence can be extended by taking smaller and
smaller vectors Xe around the origin, in particular, so that the solution exists on
[0, 1]. In this case we define

exp(X) := γ(1).

By applying the inverse function theorem6, the exponential map can be shown to
be a local diffeomorphism from some open neighborhood of 0 ∈ g to some open
neighborhood of e ∈ G.

The interaction between the group law, the Lie bracket, and the exponential
map is made explicit by the Baker–Campbell–Hausdorff formula. In particular,
for any X, Y ∈ g sufficiently close to the origin, we have

expX · expY = expP (X, Y )

whenever P (X, Y ) converges, where7

P (X, Y ) := X + Y +
1

2
[X, Y ] +

1

12
([X, [X, Y ]] + [Y, [Y,X]]) + higher order terms.

(2.4)
In what follows, we restrict our attention to Lie algebras where P reduces to a
finite degree polynomial.

Definition 2.1.7. A Lie algebra g is called nilpotent if there exists m ∈ N such
that the lower central series

[X1, [X2, [. . . , [Xm, Xm+1]] . . . ]] = 0 for any X1, . . . , Xm+1 ∈ g. (2.5)

The step of g (and the step of the associated Lie group) is the smallest natural
number m satisfying (2.5).

If G is a connected and simply connected nilpotent group (with step m), it
is possible to show that8 the exponential map is a global diffeomorphism from
g to G. By fixing a basis for g, one can identify the Lie algebra with Rn where
n = dim g. Using the exponential map, we can then identify G with Rn. In view
of (2.4), the group law of G is expressed as a polynomial with degree m.

5We do not provide a full picture of the Lie algebra - Lie group correspondence here. The
interested reader can refer to standard textbooks on Lie theory such as [5] for further details.

6See [17, §1.2] for details.
7The exact formula may be found in [17, Theorem 1.3.2].
8see [18, Proposition 1.2] for details.
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8 Aswin Govindan Sheri

Let dx denote the Lebesgue measure on g. The push-forward of dx under the
exponential map, a bi-invariant (invariant under the left and right translations)
Haar measure on G, will also be denoted by dx. In other words, G is a unimodular
group, a group where the left-invariant Haar measure coincides with the right-
invariant Haar measure.

Homogeneous groups

Generalising the Euclidean dilation structure, one can equip g with a one param-
eter family of automorphisms under the same name.

Definition 2.1.8. For t > 0, the t-dilation on g, denoted by δt is an algebra
automorphism of g defined by

δt := e(A log t) =
∑
l≥0

((log t)A)l

l!
, (2.6)

where the dilation matrix A is a diagonalisable linear operator on g with positive
eigenvalues. In particular, the identity δst = δs ◦ δt holds for any s, t ∈ R+.

Remark 2.1.9. For any t > 0, the map exp◦δt ◦ exp−1 is a group automorphism
of G. These maps are called the dilations of G and, by an abuse of notation, are
also denoted by δt. In particular,

δt exp (X) = exp (δtX) for X ∈ g and t > 0. (2.7)

Consider a basis {Xj ∈ g : 1 ≤ j ≤ n} for g that consists of eigenvectors of
A. Once and for all, we fix such a basis for g so that the dilation structure on G
takes a neat form in exponential coordinates. In particular, if λi is the eigenvalue
associated to Xi, then

δr((x1, . . . , xn)) = (rλ1x1, . . . , r
λnxn) for all (x1, . . . , xn) ∈ G.

The following lemma shows that the admission of a dilation structure in a Lie
algebra is a stronger condition than the nilpotency.

Lemma 2.1.10. [18, Proposition 1.3] If g admits a family of dilations, it is
nilpotent.

Proof. It suffices to verify (2.5) for some m ∈ N with Xi’s chosen from a basis of
g. As g admits a family of dilations, we may fix a basis formed by eigenvectors
of the dilation matrix A (recall Definition 2.1.8).

Suppose X, Y ∈ g are two eigenvectors of A with eigenvalues a ∈ R+ and
b ∈ R+ respectively. Equivalently, for any t > 0, they are eigenvectors of δt with
eigenvalues ta and tb, respectively. Since δt is an algebra automorphism,

δt([X, Y ]) = [δtX, δtY ] = ta+b[X, Y ].

In particular, [X, Y ] is an eigenvector of δt with a new eigenvalue ta+b for any
t > 0. Thus, if Xi is an eigenvector of δt for 1 ≤ i ≤ m, the iterated bracket

8



On certain geometric maximal functions in Harmonic analysis 9

product

[X1, [X2, [. . . , [Xm, Xm+1] . . . ]] (2.8)

is also an eigenvector of δt with an eigenvalue different from any of Xi. As the
dilation map, and equivalently, the dilation matrix A can only have finitely many
eigenvalues, there must exist an m ∈ N such that the iterated product (2.8) gives
0 for any choice of Xi from the basis. The proof ends here.

With all these definitions, we can introduce the notion of homogeneous groups.

Definition 2.1.11 (Homogeneous group). A homogeneous group G is a con-
nected, simply connected Lie group associated with a Lie algebra g which admits
a one-parameter family of dilations {δt}t>0.

Example 2.1.12. The prototypical example of a non-commutative homogeneous
group is the Heisenberg group. To introduce its group structure, consider a
homogeneous group G with a Lie algebra g equipped with a one-parameter family
of dilations (δt)t>0 such that {1, 2} forms the set of eigenvalues for the dilation
matrix A. As A is diagonalisable, we write g = V1 ⊕ V2, where Vj denotes
eigenspace of A associated to the eigenvalue j. As in the proof of Lemma 2.1.10,
the inclusions

[V1, V1] ⊆ V2 and [V1, V2] = [V2, V2] = {0}

follow as easy consequences of the properties of the dilation mapping. In other
words, g is nilpotent with step 2. Let dimV1 = m and dimV2 = d. By Baker–
Campbell–Hausdorff formula, the associated connected and simply connected Lie
group G has a group operation, expressed in exponential coordinates as

(x⃗, u⃗) ·G (y⃗, v⃗) := (x⃗+ y⃗, u1 + v1 +
1

2
x⃗⊤J1y⃗, . . . , ud + vd +

1

2
x⃗⊤Jdy⃗)

where x⃗, y⃗ ∈ Rm, u⃗ = (u1, . . . , ud), v⃗ = (v1, . . . , vd) ∈ Rd and each Ji is a skew-
symmetric m ×m matrix. Furthermore, for t > 0, the dilation map δt : G → G
maps

(x⃗, u⃗) 7→ (tx⃗, t2u⃗),

which is again expressed in exponential coordinates. Now, consider the special
case when m = 2k even, d = 1 and J1 = J where

J :=

[
0 Ik×k

−Ik×k 0

]
.

In this case, the Lie algebra g (which is identified with R2k ⊕ R) is called the
kth Heisenberg Lie algebra (denoted by hk) the corresponding group is the kth
Heisenberg group (denoted by Hk).

Definition 2.1.13 (Homogeneous dimension). Let G admit a family of dilations.
If λ1, . . . , λn > 0 are the eigenvalues (with repetitions) of the dilation matrix A,

9
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then
Q(G) :=

∑
1≤i≤n

λi = tr(A)

is called the homogeneous dimension of G.

Example 2.1.14. It is immediate to see that Q(Rn) = n and Q(Hk) = 2(k+1).

Remark 2.1.15. For ψ ∈ L1(G) and t > 0, by a simple change of variables,

∥ψt∥L1(G) = ∥ψ∥L1(G) (2.9)

where
ψt := t−Qψ ◦ δt−1 . (2.10)

Definition 2.1.16 (Homogeneous norm). A homogeneous norm on G is a func-
tion | · |G : G → [0,∞), that is C∞ away from the identity, satisfying the
following:

(a) |0|G = 0 and |x|G > 0 for any 0 ̸= x ∈ G.

(b) |δt(x)|G = t|x|G and |x−1|G = |x|G, for any x ∈ G, t > 0.

(c) There exists C > 0 such that |x · y|G ≤ C(|x|G + |y|G) for all x, y ∈ G.

To give an example, the Korányi norm on Hk, defined by

|w⃗|Hk := (
2k∑
i=1

x4i + u2)1/4 whenever w⃗ = (x1, . . . , x2k, u) ∈ Hk,

is a homogeneous norm.
At this point, it is worth noting that the Euclidean norm G assumes from its

coordinate identification with a Euclidean space does not result in a homogeneous
norm. Nevertheless, as the following lemma shows, a homogeneous group can
always be equipped with a homogeneous norm. The result is taken from [18, §1.
A].

Lemma 2.1.17. At least one homogeneous norm exists on any homogeneous
group G.

Proof. For x ∈ G \ {0}, the Euclidean norm |δtx| is a monotonically increasing
function in t and has the range (0,∞). Thus, there exists t = t(x) ∈ (0,∞) such
that |δtx| = 1. We define

|x|G :=

{
[t(x)]−1 when x ̸= 0,

0 when x = 0.

It is easy to verify the conditions (a) and (b) in Definition 2.1.16 for | · |G. By
setting

C := sup
|x|G+|y|G=1

|x · y|G,

we can also verify (c) when |x|G + |y|G = 1 and this can be extended to any
x, y ∈ G via homogeneity assumption in (b).

10



On certain geometric maximal functions in Harmonic analysis 11

By a ball in G, we always refer to a ball that is defined using the homogeneous
norm:

Definition 2.1.18. For x ∈ G and r ∈ R+, the symbol B(x, r) represents a ball
centered at x with radius r defined by

B(x, r) := {y ∈ G : |x−1y|G ≤ r}.

Another group feature that is important to our analysis is grading.

Definition 2.1.19. A Lie algebra g is graded if it is endowed with a vector space
decomposition of the form

g =
∞⊕
j=1

Vj such that [Vi, Vj] ⊆ Vi+j, (2.11)

where all but finitely many of the Vj’s are trivial vector spaces. A Lie group is
graded if it is a connected and simply connected Lie group whose Lie algebra is
graded.

Example 2.1.20. The Lie algebra hk associated to the Heisenberg group Hk is
graded and takes the form hk = R2k ⊕ R.

Using the following lemma, we see that the admission of a graded structure
is stronger property than the existence of dilations.

Lemma 2.1.21. If g is a graded Lie algebra, it admits a one-parameter family
of dilations.

Proof. Recalling Definition 2.1.8, it suffices to construct a diagonalisable matrix
A with positive eigenvalues; for each t > 0, the dilation operator δt can then be
defined by (2.6). Recalling (2.11), we may choose A to be such that

AX = jX whenever X ∈ Vj and j ∈ N.

To complete the proof of the lemma, we must show that the dilation operators
defined by (2.6) are algebra automorphisms. To this end, take t ∈ R+, and
by definition, the vector space Vj is the eigenspace of δt corresponding to the
eigenvalue tj for each j ∈ N. Thus, δt is a bijective linear map on g. Furthemore,
for X ∈ Vj and Y ∈ Vk, (2.11) implies that [X, Y ] ∈ Vj+k. Thus, using (2.6), we
have

δt([X, Y ]) = tj+k[X, Y ] = [tjX, tkY ] = [δt(X), δt(Y )].

As g is graded, the linearity of δt can now be used to conclude that

δt([X, Y ]) = [δtX, δtY ] for any X, Y ∈ g.

The proof ends here.

11



12 Aswin Govindan Sheri

Definition 2.1.22. a Lie algebra g is stratified when it is graded, g =
⊕∞

j=1 Vj,
and V1 generates g as an algebra. In other words, every element of g can be
written as a linear combination of iterated Lie brackets of elements of V1, or
equivalently,

[V1, Vj] = V1+j, for all 1 ≤ j ≤ m− 1.

A Lie group is stratified if it is a connected and simply connected Lie group whose
Lie algebra is stratified.

In the next subsection, we discuss some of the actions on the class of smooth
functions on the group.

2.1.2 Analysis on homogeneous groups

Definition 2.1.23. For a function f : G→ C, the symbol f̃ denotes its reflection,
defined by

f̃(x) := f(x−1) for x ∈ G.

Definition 2.1.24. Let M(G) denote the collection of complex Borel measures
on G with finite total variation norm. For µ ∈ M(G), we use the notation
∥µ∥M(G) to represent its total variation norm.

Action by vector fields

In view of the definition of the exponential map, a vector field X ∈ g can also be
interpreted as a left-invariant differential operator on C∞(G) defined by

Xf(x) :=

(
d

dt

)
t=0

f(x ·G exp(tX)). (2.12)

Let X ∈ g is an eigenvector of the dilation matrix A (recall (2.6)) with eigenvalue
λ. Using (2.12) and (2.7), we deduce that

X[f ◦ δs(x)] =
(

d

dt

)
t=0

f(δs(x)δs exp (tX))

=

(
d

dt

)
t=0

f(δs(x) exp (tδs(X)))

=

(
d

dt

)
t=0

f(δs(x) exp (ts
λX))

= sλ(Xf) ◦ δs(x).

The above computation will be extremely useful later in the chapter.

Convolutions

The convolution product in G is always assumed to be the right convolution. In
particular, for measurable functions f and g, define

f ∗ g(x) :=
∫
G

f(xy−1)g(y)dy =

∫
G

f(y)g(y−1x)dy for x ∈ G,

12



On certain geometric maximal functions in Harmonic analysis 13

if the integrals converge. In the below, we state Young’s inequality over homoge-
neous groups, which in particular, ensures absolute convergence of the integrals
almost everywhere when f and g belong to some Lebesgue spaces.

Proposition 2.1.25 ([18], Proposition 1.189). Suppose 1 ≤ p, q, r ≤ ∞ and
1/r + 1 = 1/p+ 1/q. If f ∈ Lp(G) and g ∈ Lq(G), then f ∗ g ∈ Lr(G), and

∥f ∗ g∥Lr(G) ≤ ∥f∥Lp(G)∥g∥Lq(G).

Furthermore, if µ ∈ M(G), then

∥f ∗ µ∥Lp(G) ≤ ∥µ∥M(G)∥f∥Lp(G) for any 1 ≤ p ≤ ∞. (2.13)

The following convolution identities are verified by elementary computations.
We omit their proofs here.

(i) For f, g ∈ L1(G), the reflection of f ∗ g is same as g̃ ∗ f̃ .

(ii) For any f, g ∈ L1(G) and t > 0, we have (f ∗g)t = ft ∗gt, where the t-dilate
of a function is defined by (2.10).

(iii) Suppose X is a left-invariant and X̃ is a right-invariant vector field. Let
f, g ∈ C2(G) ∩ L1(G). Then, by differentiating under the integral sign, we
have

X(f ∗ g) = f ∗Xg and X̃(f ∗ g) = X̃f ∗ g.

(iv) For X ∈ g, let X̃ represent the (unique) right-invariant vector field that
coincides with X at the tangent space at the identity. Let the functions
f, g ∈ C1(G) ∩ L1(G) be chosen such that X̃f ∈ L1(G) and Xg ∈ L1(G).
Then, by integration-by-parts,

f ∗Xg = X̃f ∗ g.

As we have acquired sufficient knowledge of homogeneous groups, we can
proceed to our main section, where a specific maximal question will be framed in
this setting.

2.2 The lacunary maximal problem

2.2.1 The maximal function

For a compactly supported finite Borel measure σ on G, define the averaging
operator A[σ] by

A[σ]f(x) := f ∗ σ(x) =
∫
G

f(xy−1) dσ(y) for x ∈ G, (2.14)

9The reference only treats the functional case, but the version of Young’s inequality for
measures follows in a similar manner

13
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whenever f ∈ Cc(G). We are interested in a maximal averaging operator defined
over G, where the averages are taken with respect to dilations of a fixed measure.
For t > 0, we define the t-dilate of σ by the action

⟨σt, f⟩ :=
∫
G

f ◦ δt(x) dσ(x) for all f ∈ Cc(G).

Define the lacunary maximal function

Mf(x) := sup
k∈Z

|A[σ2k ]f(x)| for x ∈ G, f ∈ Cc(G).

We shall investigate the Lp(G) mapping properties ofM under certain ‘curvature’
conditions on the underlying measure.

In the Euclidean setting (when G = Rn), the first major result on this problem
comes from [8], where σ is taken to be the surface measure on the unit sphere
Sn−1. In this case, [8] proves that M is strong type (p, p) whenever 1 < p ≤ ∞. A
more general result was presented in [16] where maximal functions associated with
a larger collection of measures are considered, and the only assumption placed
on the class of measures is in terms of the decay of their Fourier transforms. In
particular, if σ̂(ξ) = O(|ξ|−ϵ) for some ϵ > 0 and for large values of ξ ∈ R̂n, then it
was shown that M is strong type (p, p) for p ∈ (1,∞). At the endpoint near L1,
although strong type estimates fail, weak type estimates such as H1 → L1,∞ or
L logL→ L1,∞ bounds have been established under various assumptions related
to either the Fourier decay of the measure or the curvature features of its singular
support (see [27, 39, 48, 12]).

Coming to the non-euclidean regime, the maximal problem has been studied
over Heisenberg groups or Métivier groups. The case when σ is the surface
measure on the unit sphere under the Korányi norm in the Heisenberg group
has been considered in [20, 43]. A more singular case was considered in [2], where
the measure is supported on a co-dimension 2 sphere in Hk, k ≥ 2. A more
detailed discussion of these results will be carried out later in the chapter.

2.2.2 Curvature assumption

For all known estimates of the lacunary maximal function, some assumption about
the ‘curvature’ of the singular support of σ is used. It is well established that
no non-trivial maximal estimates are available when the averages are taken along
lines or other surfaces of zero curvature. From [16], we see that the Fourier decay
on the measure σ can be used as the basic assumption in order to obtain operator
bounds for M when G = Rn. When the singular support of the measure is a
compact submanifold in Rn, the Fourier decay assumption can also be related
to the standard notions of Gaussian or principle curvatures of the manifold.10

However, at the level of generality of homogeneous groups, the machinery of the
Fourier transform becomes extremely difficult to work with. Instead, we work
with a different property of a measure well connected to the Fourier decay or
the curvature properties of the associated singular support in the Euclidean case,

10See [54, VIII. B] for further details.
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On certain geometric maximal functions in Harmonic analysis 15

which easily extends to the abstract setting of a homogeneous group. An ideal
candidate is a property of the iterated convolution products of the measure.

Let σ be a compactly supported finite Borel measure on G and recall the
definition of A[σ] from (2.14). Observe that its adjoint is given by the map A[σ̃],
where σ̃ is defined by the action

⟨σ̃, f⟩ :=
∫
G

f(x−1) dσ(x) for f ∈ Cc(G).

Now, for N ∈ N0, we define the Nth convolution product σ(N) recursively;
starting with σ(0) = σ, define

σ(N) :=

{
σ(N−1) ∗ σ̃ when N is odd,

σ(N−1) ∗ σ N ≥ 2 is even.
(2.15)

We frame our ‘curvature assumption’ around the regularity properties of such
iterated products. To motivate the assumption, take G = Rn. Suppose the
decay estimate σ̂(ξ) = O(|ξ|−ϵ) holds for any ξ ̸= 0 and for a fixed ϵ > 0. Let
Nϵ := 10⌈nϵ−1⌉ and µ := σ(Nϵ). Observe that

µ̂(ξ) = On(|ξ|−10n) for ξ ∈ R̂n \ {0} .

Since ν is compactly supported with a finite mass, one can improve this further
to |ν̂(ξ)| ≲n (1 + |ξ|)−10n for any ξ ∈ R̂n. Consequently, ν̂ lies in L2(R̂n) ∩
L1(R̂n). Using Plancherel’s theorem, we deduce that ν is absolutely continuous
with respect to the Lebesgue measure with an L2 density, say h. Furthermore,

|h(x− y)− h(x)| ≲n

∣∣∣∣∫
R̂n

ĥ(ξ)ei⟨x,ξ⟩
(
e−i⟨y,ξ⟩ − 1

)
dξ

∣∣∣∣
≤
∫
R̂n

|ĥ(ξ)|⟨y, ξ⟩| dξ ≤ |y|
∫
R̂n

min{|ξ|, |ξ|−10n+1}dξ

≲ |y|,

whenever x, y ∈ Rn. In other words, one can amplify the Fourier decay of the
measure by taking iterated convolution products with itself (or its adjoint), ul-
timately reaching an absolutely continuous measure with a Lipschitz density. In
situations where the singular support of σ is (a piece of) a submanifold embed-
ded in Rn, non-trivial Fourier decay is related to non-zero curvature. In these
situations, we can also give a geometric interpretation to the first part of the
above observation, that the process of iterated self-sums of the submanifold will
culminate in a set of positive measure, provided the manifold curves.

In [42], while studying the problem of norm-estimating convolution operators
where the kernels are supported on smooth low-dimensional varieties in G, the
authors studied the regularity properties of the iterated products. Motivated by
their results, we consider the following definition.

Definition 2.2.1 (Curvature assumption). Let σ be a Borel measure in G. We
say that σ satisfies curvature assumption (C) if the following hold.

15
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(i) There exists N > 0 such that µ := σ(N) is absolutely continuous with
respect to the Haar measure on G.

(ii) If h denotes the density of µ, then h satisfies an L1-Hölder type condition:
there exists δ > 0 and Cδ > 0 such that∫

G

|h(xy−1)−h(x)|dx+
∫
G

|h(y−1x)−h(x)|dx ≤ Cδ|y|δ for y ∈ G. (2.16)

Definition 2.2.2. Let δ > 0. We use the notation L1
δ(G) to represent space of

all L1(G) functions satisfying (2.16), equipped with the norm

∥h∥L1
δ(G) := ∥h∥L1(G) + C̄δ(h),

where C̄δ(h) is the smallest constant for which (2.16) holds.

Going back to the discussion on the relation between the Fourier decay of a
measure and (C) in the Euclidean setting, we note the equivalence between the
two notions:

Lemma 2.2.3. Let σ be a compactly supported finite Borel measure on Rn. σ
satisfies (C) if and only if there exists ϵ > 0 such that σ̂(ξ) = O(|ξ|−ϵ) for all
ξ ∈ R̂n \ {0}.

Proof. The “if” part has already been verified by the discussion above. To see how
the reverse implication holds, we first note that by Plancherel’s theorem, Fourier
decay of σ can be deduced from that of σ(l) for some l ≥ 0. Fix N ≥ 0 such
that σ(N)(x) = h(x)dx satisfies the regularity conditions (i) and (ii) in Definition
2.2.1. Now,

|
(
e−i⟨y,ξ⟩ − 1

)
ĥ(ξ)| =

∣∣∣∣∫
Rn

(h(x− y)− h(x))dx

∣∣∣∣
≤
∫
Rn

|h(x− y)− h(x)|dx ≲ ∥h∥L1
δ(Rn)|y|δ.

Choosing y to be πξ/|ξ|2, we conclude the proof.

2.2.3 Maximal theorem and applications

We are now in a position to state our maximal theorem.

Theorem 2.2.4. Let G be a homogeneous group and σ be a finite compactly
supported Borel measure on G. If σ satisfies (C), then M is bounded on Lp(G)
for all p > 1.

Before turning to the proof of Theorem 2.2.4, we discuss some applications.
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On certain geometric maximal functions in Harmonic analysis 17

Euclidean case

For G = Rn, in view of Lemma 2.2.3, our theorem recovers a classical result
of Duoandikoetxea and Rubio de Francia [16]. In particular, if σ is a finite,
compactly supported Borel measure on Rn such that for some ϵ > 0 the Fourier
decay condition

|σ̂(ξ)| ≲ |ξ|−ϵ for all ξ ∈ R̂n \ {0} (2.17)

holds, then the associated lacunary maximal function M is bounded on Lp(G)
for all 1 < p ≤ ∞. Examples of measures satisfying the Fourier decay assumption
(2.17) include

(a) surface measures on finite type surfaces in Rn (see [54, §3.2] for the Fourier
decay estimates),

(b) special fractal measures; see [34, Theorem 1.4] for the construction of mea-
sures in a torus with varying Fourier and Hausdorff dimensions, and [19]
for explicit Salem sets in Rn.

Surfaces in the Heisenberg group

For G = Hk, we list two important applications of Theorem 2.2.4. Verifying the
curvature assumption for both cases is postponed until the next subsection.

(i) Let σ be the surface measure on the unit Korányi sphere

Skor := {w ∈ Hk : |w|Hk = 1}.

For this case, Theorem 2.2.4 recovers the previously known maximal bounds;
the Lp estimates for the Korányi lacunary maximal function obtained in
[20, Theorem 1.2] for the range k ≥ 2. Theorem 2.2.4 also removes the
dimensional constraint and proves that the associated maximal function is
bounded on Lp(Hk) for all 1 < p ≤ ∞ and k ≥ 1.

(ii) For the second example, we let σ be the surface measure on the co-dimension
two sphere

S2k−1 := {(z, 0) ∈ R2k+1 : |z|R2k = 1}. (2.18)

Theorem 2.2.4 recovers [2, Theorem 1.1] when k ≥ 2 (see also [43], where
the k = 1 case and extensions to Métivier groups are considered) although,
as remarked in [43], such bounds can be directly deduced from earlier work
such as [38].

Both examples are special cases of results on more general groups (see Lemma
2.2.5 and 2.2.6).

Analytic surfaces in general homogeneous groups

In this section, we consider classes of analytic surfaces that satisfy the curvature
assumption and, as a consequence, come under the purview of Theorem 2.2.4.11

11The findings of this section are proved in collaboration with J. Hickman.
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Let G be a homogeneous group and S be a smooth submanifold G. We say
a Borel measure σ on G is a C∞

c -density on S if it is of the form ηdσS where
η ∈ C∞

c (S) is a smooth, compactly supported function on S and σS is the natural
surface measure on S induced by the Haar measure on G.

Lemma 2.2.5. Let G be a graded homogeneous group with dimG ≥ 2. Suppose
Ω is an open convex domain in g with an analytic boundary Σ := ∂Ω. It follows
that any C∞

c -density σ on exp(Σ) satisfies (C).

For any graded homogeneous group G and a homogeneous norm ∥ · ∥ on G,
the unit sphere in G with respect to ∥ · ∥ can be written as exp (Σ) such that Σ
is an analytic boundary to a convex domain as in Lemma 2.2.5. In particular, we
recover the maximal estimates associated to the Korányi sphere in Hk as listed
in the previous subsection.

Under a stronger assumption on the group, we can verify the curvature as-
sumption on a larger class of analytic surfaces.

Lemma 2.2.6. Let G be a stratified group with dimG ≥ 2 with the Lie algebra
g =

⊕m
i=1 Vi. Let Σ ⊆ g be an analytic submanifold of g such that Π1(Σ) generates

V1 (in terms of vector addition) where Πℓ : g → Vℓ denote the subspace projection
onto Vℓ for 1 ≤ ℓ ≤ m. It follows that any C∞

c -density σ on exp(Σ) satisfies (C).

As the first application of the lemma, we see that the surface measure on the
co-dimension two sphere in the Heisenberg group as defined by (2.18) satisfies
the curvature assumption. By glancing through the literature, we list a few
interesting examples that satisfy the assumptions of Lemma 2.2.6.

(a) ‘Non-degenerate’ surfaces in V1: Let Σ ⊆ V1 be a surface that cannot be
contained in any proper subspace of V1. It is clear that Σ satisfies the
assumptions of the lemma. A concrete example in this class is the co-
dimension two sphere in the Heisenberg group defined by (2.18).

(b) Tilted ‘non-degenerate’ surfaces of V1: Consider the map

M : V1 → g, X 7→ M(X) := (X,Λ(X)),

where Λ is an (n− d1)× d1 matrix. Let Σ ⊆ V1 be a surface that cannot be
contained in any proper subspace of V1 and let ΣΛ be the image of Σ under
this map. If µ denotes the surface measure on Σ, we use µΛ to denote the
push-forward of µ under M. Averaging or maximal operators associated to
such measures in the Heisenberg group, along with natural extensions to the
class of Métivier groups, have been considered in several works [38, 1, 43].

(c) Analytic curves : any curve in γ ∈ g come under the purview of the lemma,
provided γ1 := Π1(γ) generates V1. In particular, the lemma applies mo-
ment curves in g. Furthermore, it applies to a curve γα,β : [0, 1] → H1

defined by
γ(s) := (s, s2, αs3 + βsσ)

for any α, β ∈ R and σ ≥ 0. Averaging operators associated to such curves
are studied previously in [46].

18



On certain geometric maximal functions in Harmonic analysis 19

Both Lemma 2.2.5 and Lemma 2.2.6 follow from a testing condition provided
by [42].

Proposition 2.2.7 (Corollary 2.3, [42]). Let S be a connected analytic submani-
fold of a homogeneous group G. If S generates the group G, then any C∞

c -density
σ on S satisfies (C).

Here we say a set S ⊆ G generates G if G = ⟨S⟩ where

⟨S⟩ := {s1 · . . . · sN : s1, . . . , sN ∈ S ∪ S̃}

for S̃ := {s−1 : s ∈ S}. Ricci–Stein [42] work with the ostensibly weaker condition
that G = clos(⟨S⟩); however, in all cases we consider (that is, for S a connected
analytic submanifold) these conditions turn out to be equivalent.12

We remark that the result in [42, Corollary 2.3] is somewhat more general.
There, the authors consider a family of connected analytic submanifolds Sj for
1 ≤ j ≤ N such that the iterated product set S1 · . . . · SN contains a non-trivial
open subset of G. For each j, one fixes σj a smooth density on Sj and considers
the convolution product σ1 ∗ · · · ∗ σN . To recover Proposition 2.2.7, we choose
the Sj to alternate between S and the reflection S̃ and, accordingly, the σj to
alternate between σ and σ̃. Using [42, Proposition 1.1], the hypothesis that S
generates G implies the existence of some N such that S1 · . . . · SN contains a
non-trivial open subset of G, and so [42, Corollary 2.3] applies.

In view of Proposition 2.2.7, it is clear that Lemma 2.2.5 follow from the
following result.

Lemma 2.2.8. Let G be a graded homogeneous group with dimG ≥ 2. Suppose
Ω is an open convex domain in g with an analytic boundary Σ := ∂Ω. It follows
that exp(Σ) generates G.

Similarly, Proposition 2.2.7 immediately reduces the proof of Lemma 2.2.6 to
the following lemma.

Lemma 2.2.9. Let G be a stratified m-step homogeneous group and let Σ ⊆ g.
exp(Σ) generates the group G if and only if Π1(Σ) generates V1 (in terms of vector
addition).

We will now proceed to prove the lemmas one by one.

Proof of Lemma 2.2.8. Suppose g denotes the corresponding graded Lie algebra
of the form g =

⊕m
i=1 Vi with dimVj = dj and

[Vi, Vj] ⊆ Vi+j for all 1 ≤ i ≤ m− 1, 1 ≤ j ≤ m− i.

For X ∈ g, define the commutator function

ΦX : g → g, Y 7→ ΦX(Y ) := [X, Y ].

Note that ΦX is linear, and as g is graded, the range of ΦX is contained in⊕m
j=2 Vj. First, we prove an elementary property about the kernel of this map.

12See the cited reference for further details.
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Claim A. For any X ∈ g, the nullity of ΦX is at least 2.

Proof: We divide the proof into two parts; first, let

dim(V1) ≥ 2.

As the range of ΦX is a subspace of
⊕m

j=2 Vj, the rank–nullity theorem can be
applied here to deduce that dimker(ΦX) ≥ 2. This concludes the argument for
the first case.

In the second case, dim(V1) = 1. As the Lie bracket is skew-symmetric, it
follows that [V1, V1] = {0}. Therefore, the range of ΦX is contained in

⊕m
j=3 Vj.

By applying the rank-nullity theorem again,

dim ker(ΦX) ≥ dim(V1) + dim(V2) ≥ 2,

where the final inequality is justified by the assumption that the dimension of the
group is at least two. The proof ends here. ■

Assume, without loss of generality, that

B(0, 1) := {x ∈ G : |x|G ≤ 1} ⊆ exp(Ω).

Choose x ∈ B(0, 1) and let X = exp−1(x). Let Sg denote the unit sphere in g
with respect to the euclidean norm. By Claim A, we can choose a subspace HX

of kerΦX with dimension 2. The set Dx := Sg ∩HX is connected with dimension
one in g. By the convexity assumption on Ω, we can construct unique continuous
mappings t, s : Dx → R+ such that for any W ∈ Dx, we have

X + t(W )W, X − s(W )W ∈ Σ.

Consider the continuous function F : Dx → R mapping

W 7→ F (W ) := t(W )− s(W ).

Clearly, t(−W ) = s(W ) and s(−W ) = t(W ), so that F (−W ) = −F (W ). Ap-
plying the intermediate value theorem, we deduce the existence of Wx ∈ Dx such
that

F (Wx) = 0 or, equivalently, t(Wx) = s(Wx).

Let wx := exp(Wx). Since Wx ∈ HX , by the Baker–Campbell–Hausdorff formula
and the bilinearity of the Lie bracket,

x ·G x = x ·G (t(Wx)wx) ·G (t(Wx)wx)
−1x ∈ exp(Σ) ·G exp(Σ).

As x was chosen arbitrarily, we can conclude that exp(Σ) ·G exp(Σ) contains an
open ball in G. This implies that exp(Σ) generates G.

Before we begin the proof of Lemma 2.2.9, we must define a few auxiliary
mappings and verify some of their basic properties. In what follows, we use capital
letters to represent elements of the Lie algebra and small letters to represent
elements of the Lie group, related by the exponential map (for instance, X =

20
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exp−1(x)).

For 1 ≤ ℓ ≤ m, let Φℓ : g
ℓ → g be the mapping

Φℓ : (X1, . . . , Xℓ) 7→ [X1, [X2, . . . [Xℓ−1, Xℓ] . . . ]]

which takes a nested sequence of commutators of ℓ elements. If g is stratified,
the restricted mapping

Φℓ|V ℓ
1
: V ℓ

1 7→ Vℓ

is a surjection. Furthermore, for any X1, . . . , Xℓ ∈ g, we have

Πi ◦ Φℓ(X1, . . . , Xℓ) = 0 for 1 ≤ i ≤ ℓ− 1 (2.19)

and
Πℓ ◦ Φℓ(X1, . . . , Xℓ) = Φℓ

(
Π1(X1), . . . ,Π1(Xℓ)

)
. (2.20)

Let Φ̃ℓ : G
ℓ → G be a mapping defined iteratively; Φ̃ℓ(x1) := x1 and

Φ̃ℓ(x1, . . . , xℓ) := x1 ·G Φ̃ℓ−1(x2, . . . , xℓ−1) ·G x−1
1 ·G Φ̃ℓ−1(x2, . . . , xℓ−1)

−1.

Claim B. For any ℓ ≥ 1, the mappings Φℓ and Φ̃ℓ are related by the identity

exp−1(Φ̃ℓ(x1, . . . , xℓ)) = Φℓ(X1, . . . , Xℓ) + Eℓ+1(x1, . . . , xℓ) (2.21)

for all x1, . . . , xℓ ∈ G, where Eℓ+1(x1, . . . , xℓ) ∈ g is a linear combination of
commutators of order at least ℓ+ 1 formed by the vector fields X1, . . . , Xℓ.

Proof: The proof is based on induction. When ℓ = 1, the statement is obvious.
Let x := (x1, . . . , xℓ). Assuming (2.21) for ℓ = k − 1, take

Φ̃k(x) = x1 ·G Φ̃k−1(x
′) ·G x−1

1 ·G Φ̃k−1(x
′)−1

where x′ := (x2, . . . , xk). By Baker–Campbell–Hausdorff formula,

exp−1 Φ̃k(x) = [X1, exp
−1 Φ̃k−1(x

′)] + E3(x1, Φ̃k−1(x
′)),

where E3 is a linear combination of Lie bracket products of order at least 3. As
exp−1 Φ̃k−1(x

′) is a linear combination of commutators of order at least k−1 by the
induction assumption, the minimum order of a commutator in E3(x1, Φ̃k−1(x

′))
is k + 1. On the other hand, by the induction assumption again,

[X1, exp
−1 Φ̃k−1(x

′)] = [X1,Φk−1(X2, . . . , Xℓ)] + [X1, Ek(x
′)].

Therefore,

exp−1 Φ̃k(x) = [X1,Φk−1(X2, . . . , Xℓ)] + Ek+1(x1,x
′)

= Φk(X1, . . . , Xℓ) + Ek+1(x)

where Ek+1 is a linear combination of commutators of order at least k+1. Thus,
we can close the induction and complete the proof of (2.21). ■
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For 1 ≤ ℓ ≤ m, define the group mappings

πℓ : G→ G, πℓ : x 7→ exp ◦Πℓ ◦ exp−1(x).

Observe that the projection π1 satisfies

exp−1 ◦π1(x1 ·G x2) = exp−1 ◦π1(x1) + exp−1 ◦π1(x2) (2.22)

for all x1, x2 ∈ G.
As a consequence of (2.21), (2.19) and (2.20), we record the identities

πi ◦ Φ̃ℓ(x1, . . . , xℓ) = e for 1 ≤ i ≤ ℓ− 1 (2.23)

and

πℓ ◦ Φ̃ℓ(x1, . . . , xℓ) = exp ◦Φℓ

(
exp−1 ◦π1(x1), . . . , exp−1 ◦π1(xℓ)

)
. (2.24)

Proof of Lemma 2.2.9. It suffices to look at the ‘if’ part, as the other implication
trivially holds.

For any x ∈ exp(V1) there exists some g(x) ∈ G such that

g(x) ∈ ⟨expΣ⟩ and π1(g(x)) = x. (2.25)

Indeed, from our hypothesis on Σ there exists a finite sequence of elements

S1, . . . , Sk ∈ Σ such that X = Π1(S1) + · · ·+Π1(Sk),

where X = exp−1(x). If we define

g(x) := s1 ·G · · · ·G sk

for si = exp(Si), then clearly g(x) ∈ ⟨expΣ⟩ whilst, by (2.22), we also have

exp−1 π1(g(x)) = exp−1 π1(s1) + · · ·+ exp−1 π1(sk) = X.

We therefore obtain a function g : expV1 → G. This function is not uniquely
defined, but for our purposes it suffices to work with some g satisfying (2.25).13

We now use induction to prove that

Wℓ :=

{
exp

( m∑
i=ℓ

Yi

)
: Yi ∈ Vi for ℓ ≤ i ≤ m

}
⊆ ⟨expΣ⟩ (2.26)

for all 1 ≤ ℓ ≤ m + 1, where Wm+1 is interpreted as {0}. For ℓ = 1, the above
statement becomes G = ⟨expΣ⟩, which is precisely the content of the lemma.

We take ℓ = m + 1 as the base of the induction, in which case (2.26) is
trivial. Let 2 ≤ ℓ ≤ m + 1 and suppose, by way of induction hypothesis, that
Wℓ ⊆ ⟨expΣ⟩. To complete the argument, it suffices to show Wℓ−1 ⊆ ⟨expΣ⟩.

13We could easily stipulate additional conditions to ensure g is uniquely defined and thus
avoid arbitrary choices in the definition.
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Fix Yi ∈ Vi for ℓ− 1 ≤ i ≤ m. Since G is stratified, X1, . . . , Xℓ−1 ∈ V1 can be
chosen such that

Φℓ−1(X1, . . . , Xℓ−1) = Yℓ−1.

It follows from (2.24) and (2.25) that

πℓ−1

(
Φ̃ℓ−1(g(x1), . . . ,g(xℓ−1))

)
= exp ◦Φℓ−1

(
exp−1 ◦π1(g(x1)), . . . , exp−1 ◦π1(g(xℓ−1))

)
= Φℓ−1(X1, . . . , Xℓ−1).

On the other hand, from (2.23) we have

πi
(
Φ̃ℓ−1(g(x1), . . . ,g(xℓ−1))

)
= e for 1 ≤ i ≤ ℓ− 2.

Consequently, we may write

z := Φ̃ℓ−1(g(x1), . . . ,g(xℓ−1)) = exp
(
Yℓ−1 +

m∑
i=ℓ

Zi

)
for some Zi ∈ Vi for ℓ ≤ i ≤ m. In view of (2.25), we have z ∈ ⟨expΣ⟩.

By the basic properties of the group operation, there exist polynomial map-
pings

Pi : Vℓ+1 × · · · × Vi−1 7→ Vi

such that if u = exp(U) := exp(
∑m

i=ℓ Ui) ∈ G with Ui ∈ Vi, then

πi(u ·G z) = exp(Ui + Pi(U)) for ℓ ≤ i ≤ m

where Pi depends only Uℓ, . . . , Ui−1 and z. In particular, Pi(U) is independent
of Ui, . . . , Um and so the polynomial Pℓ is constant as a function of U (in fact,
Pℓ(U) = Zℓ). On the other hand, the remaining projections are given by

πi(u ·G z) = e for 1 ≤ i ≤ ℓ− 2 and πℓ−1(u ·G z) = expYℓ−1

Let u = exp(
∑m

i=ℓ Ui) ∈ Wℓ so that, by our induction hypothesis, u ·G z ∈
⟨expΣ⟩. In view of the dependence properties of the Pi, it is possible to induc-
tively choose the ui so that

Yℓ = Uℓ + Pℓ(U),
Yℓ+1 = Uℓ+1 + Pℓ+1(U),

...
Ym = Um + Pm(U).

Thus, from the preceding observations,

u ·G z = exp(
m∑

i=ℓ−1

Yi).

23



24 Aswin Govindan Sheri

Since the right-hand side is an arbitrary element of Wℓ−1, we conclude that

Wℓ−1 ⊆ ⟨expΣ⟩.

This closes the induction and completes the proof.

Let us now turn to the proof of Theorem 2.2.4.

2.3 Proof of Theorem 2.2.4

The proof is motivated by an argument presented by Ricci and Stein [42] (with
the key ideas tracing back to [11]). In their work [42], the authors investigate the
boundedness of classical singular operators and maximal functions along subman-
ifolds, so it is reasonable to expect their strategy to be applicable to our problem
as well. The outline of the proof can be summarised as follows.

Through initial reductions, we observe that the maximal estimates can be
derived from Lp estimates of frequency-localised singular integral operators (such
reductions are standard; see, for instance, [16]). To estimate these operators,
we employ the Calderón–Zygmund theory adapted to homogeneous groups. In
particular, the key steps involve obtaining L2 estimates for one endpoint and
verifying a Hörmander-type condition for the other endpoint near L1. To prove
the L2 estimate, we utilise a method from [42] in which iterated applications
of T ∗T allow us to make use of the curvature assumption. On the other hand,
the Hörmander-type condition is verified by applying a mean-value theorem for
homogeneous groups.

Before commencing the proof, we must survey some aspects of the Littlewood–
Paley theory adapted to the setting of homogeneous groups.

2.3.1 A glimpse into Littlewood–Paley theory

First, we discuss the Littlewood–Paley decomposition of a function in this setting.
As in the Euclidean case, the frequency localisation of a function is defined as the
convolution with a smooth function satisfying large moment conditions. Consider
a function ψ ∈ C∞

c (G) which is mean zero in the sense that∫
G

ψ = 0

and, for some large M ∈ N, satisfies the higher moment conditions∫
G

ψ(y)yα dy = 0, for any α ∈ Nn
0 and 0 < |α| ≤M . (2.27)

Here we recall the standard notation yα =
∏n

i=1 y
αi
i whenever y = (y1, . . . , yn) ∈ G

and α = (α1, . . . , αn) ∈ Nn
0 . To familiarise ourselves with this function, let us try

to make sense of (2.27) when G = Rn. In this case, (2.27) implies that

∂αξ ψ̂(0) = 0 for all α ∈ Nn
0 , |α| ≤M .
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By the Taylor series approximation, we deduce that ψ̂(ξ) = O(|ξ|M) for all |ξ| ≤ 1.
On the other hand, when |ξ| > 1, we use the fact that ψ̂ ∈ S(Rn) to deduce that
ψ̂(ξ) = ON(|ξ|−N) for any N ∈ N0. Therefore, it can be concluded that the
essential support of ψ̂ is contained inside the unit strip

D1 := {ξ ∈ Rn : |ξ| ≈ 1}

and as a consequence, convolution with the function ψ amounts to essentially
localising the frequency support to D1.

The following result dictates the degree of orthogonality between two convolu-
tion operators whose kernels are different dilates for a function satisfying (2.27).
Although the proposition will not be used in the upcoming arguments, it verifies
the essential orthogonality properties one expects to be manifested between these
‘frequency projection operators’.

Proposition 2.3.1 ([13], Lemma 4.2). Suppose ψ, ϕ ∈ C∞
c (G) satisfy (2.27).

For t, s ∈ (0,∞), define the operators Qt, Q
′
s by

Qtf := f ∗ ψt and Q′
sf := f ∗ ϕs for f ∈ L1(G).

For any constant M ≥ 1, we have

∥(Qt)
∗Q′

s∥L2→L2 + ∥Qt(Q
′
s)

∗∥L2→L2 ≲ϕ,ψ,M (min{t/s, s/t})(M+1),

where Q∗ denotes the adjoint of Q.

Proof. We will restrict our attention to estimating Q∗
tQ

′
s when s ≥ t. The argu-

ment for the other cases is similar.
By Young’s inequality, it suffices to obtain an L1 norm bound on the kernel of

Q∗
tQ

′
s. The kernel can be expressed as ϕs ∗ ψ̃t, where ψ̃ denote the reflection of ψ

as given by Definition 2.1.23. Using (2.9), it suffices to estimate the L1 norm of
ϕ ∗ ψ̃t/s. Since s ≥ t, the function ψ̃t/s and therefore ϕ ∗ ψ̃t/s is supported inside
an ball of bounded radius. In view of this, it suffices to estimate the L∞ norm of
ϕ ∗ ψ̃t/s.

Temporarily fixing x ∈ G, we define the function ϕx by

ϕx(y) := ϕ(xy−1) for y ∈ G.

Suppose px denotes the Taylor polynomial of degree M associated with ϕx. Now,
using (2.27), we have

ϕ ∗ ψ̃t/s(x) =
∫
G

ϕ(xy−1)ψ̃t/s(y)dy

=

∫
G

(ϕx(y)− px(y)) ψ̃t/s(y
−1)dy.

Now, ψ̃t/s is supported inside a Euclidean ball Beucl(0, C̃(t/s)) for some C̃ ≥ 1.
Therefore,

|ϕx(y)− px(y)| ≲ |y|M+1 ≲ (t/s)M+1 for any y ∈ supp ψ̃t/s,
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where | · | denotes the Euclidean norm. Thus,∣∣∣ϕ ∗ ψ̃t/s(x)
∣∣∣ = ∣∣∣∣∫

G

(ϕx(y)− px(y)) ψ̃t/s(y)dy

∣∣∣∣ ≲ (t/s)(M+1) ∥ψ̃∥L1(G),

completing the proof.

Finally, we show the existence of a Littlewood–Paley decomposition for any
smooth function on G, which is a key tool in our argument.

Proposition 2.3.2. Let G be a homogeneous group. There exists ψ ∈ C∞
c (G) of

mean zero satisfying (2.27) such that

f =
∑
k∈Z

f ∗ ψ2k for all f ∈ C1
c (G), (2.28)

where the convergence holds uniformly.

This result is well-known (for instance, it can be deduced from [13, Proposition
3.4]); however, for completeness, we present the straightforward proof.

Proposition 2.3.2 follows from a basic result on L2 approximate identities.
Consider ϕ ∈ C∞

c (G) satisfying ∫
G

ϕ = 1. (2.29)

Given any f ∈ C1
c (G), it follows that

∥f ∗ ϕt − f∥L∞(G) → 0 as t→ 0+ and ∥f ∗ ϕt∥L∞(G) → 0 as t→ ∞;
(2.30)

the standard proofs are left to the reader.

Proof (Proposition 2.3.2). Suppose ϕ ∈ C∞
c (G) satisfies (2.29) as above and also

(2.27). By (2.30), we have

f = lim
K→∞

f ∗ ϕ2−K − f ∗ ϕ2K

and so, by the fundamental theorem of calculus,

f = − lim
K→∞

∫ 2K

2−K

f ∗
(∂ϕt
∂t

)
dt = −

∑
k∈Z

f ∗
(∫ 2k+1

2k

∂ϕt
∂t

dt
)
, (2.31)

where in each case the convergence holds uniformly over G. A computation shows

∂ϕt
∂t

(x) = −t−1ht(x) for some h ∈ C∞
c (G).

Moreover, if we define

ψ(x) :=

∫ 2

1

ht(x)
dt

t
, (2.32)
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On certain geometric maximal functions in Harmonic analysis 27

then, by a simple change of variables,

−
∫ 2k+1

2k

∂ϕt
∂t

(x) dt =

∫ 2k+1

2k
ht(x)

dt

t
= ψ2k(x). (2.33)

Combining (2.31) and (2.33), we see that (2.28) holds for ψ as defined in (2.32).

It remains to show ψ is of mean zero and satisfies the moment condition (2.27).
Clearly, it suffices to show the same properties hold for the function h. However,
since for all α ∈ Nn

0 we have∫
G

h(x)xα dx = −t ∂
∂t

∫
G

ϕt(x)x
α dx

∣∣∣
t=1
,

the mean zero property for h is an immediate consequence of (2.29) whilst the
moment condition (2.27) for h is inherited directly from ϕ.

The proof of Theorem 2.2.4 is divided into three parts; in the first part, we
linearise the maximal function, and in the last two parts, we obtain two endpoint
estimates for the linearised operator.

2.3.2 ℓ2- domination and randomisation

Let us begin by choosing a non-negative function ϕ ∈ C∞
c (G) such that∫

G

ϕ = σ(G).

Introducing the measure ν := σ − ϕ, we note that ν is a compactly supported
Borel measure on G such that ∥ν∥M(G) <∞ and

ν(G) = 0. (2.34)

Using this new measure, we define the maximal function.

M̃f := sup
k∈Z

|f ∗ ν2k | for f ∈ Cc(G) .

Using Proposition 2.3.2, we can choose a function ψ ∈ C∞
c (G) which satisfies

(2.27). Now, consider the maximal function

M̃lf := sup
k∈Z

|f ∗ ψ2k+l ∗ ν2k | for f ∈ Cc(G) and l ∈ Z .

By standard reductions, we deduce L2 estimates forM from those for M̃l (details
to follow). After replacing the supremum in k with an ℓ2 sum, we consider the
square function

Slf :=

[∑
k∈Z

|f ∗ ψ2k+l ∗ ν2k |2
] 1

2

for f ∈ Cc(G) and l ∈ Z.
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The proof of Theorem 2.2.4 is reduced to proving norm estimates for Sl with a
decay in the l parameter.

Proposition 2.3.3. For any p ∈ (1, 2], there exists ϵ(p) > 0 such that

∥Sl∥Lp(G)→Lp(G) ≲p 2
−ϵ(p)|l|, (2.35)

where the implicit constant is independent of l.

Proposition 2.3.3 =⇒ Theorem 2.2.4. Observing the trivial case p = ∞ in The-
orem 2.2.4, it suffices to estimate the maximal function when p lies in the interval
(1, 2]. The Lp estimates for the maximal function when p ∈ (2,∞) then follows
by Marcinkiewicz’s interpolation theorem [52, §4].

Fix p ∈ (1, 2] and f ∈ C∞
c (G). Using the definition of M̃, the inequality

Mf(x) ≲ϕ M̃f(x) +Mϕf(x) for x ∈ G

directly follows, where
Mϕf := sup

k∈Z
|f ∗ ϕk|

is a variant of the Hardy-Littlewood maximal function on G. It is well-known that
Mϕ is bounded on Lp(G) for all p > 1 (see, for instance, [18, §2] for proof). There-
fore, it suffices to estimate the maximal function M̃f . Using Proposition 2.3.2,
we may write

f ∗ ν2k =
∑
l∈Z

f ∗ ψ2k+l ∗ ν2k .

By triangle inequality and ℓ2 domination,

M̃f(x) ≤
∑
l∈Z

M̃lf(x) ≤
∑
l∈Z

Slf(x) for x ∈ G.

Now, Proposition 2.3.3 yields

∥M̃f∥Lp(G) ≤
∑
l∈Z

∥Slf∥Lp(G) ≲p

∑
l∈Z

2−ϵ(p)|l|∥f∥Lp(G) ≲ ∥f∥Lp(G),

concluding the proof of Theorem 2.2.4.

In order to prove Proposition 2.3.3, we randomise/linearise the operator Sl.
This step is carried out using the Rademacher system. Let r⃗ = (rk)k∈Z be a
sequence of the Rademacher functions. In particular, the functions rk : [0, 1] →
{−1, 1} form a collection of independent and identically distributed random vari-
ables.

For t ∈ [0, 1], consider the function

Tl,r⃗(t)f :=
∑
k∈Z

rk(t)T
k
l f

where
T kl f := f ∗ ψ2k+l ∗ ν2k .
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Now, Khintchine’s inequality14 gives

|Slf(x)|p ≈p E
[
|Tl,r⃗f(x)|p

]
for any x ∈ G. (2.36)

In view of this, we restrict our attention to studying norm estimates of the lin-
earised operator Tl,r⃗(t) for each t ∈ [0, 1]. We prove two endpoint norm estimates
to this end.

Lemma 2.3.4. There exists ρ1, ρ2 > 0 such that

∥(T kl )∗T
j
l ∥L2(G)→L2(G) + ∥T kl (T

j
l )

∗∥L2(G)→L2(G) ≲ min{2−ρ1|l|, 2−ρ2|j−k|} (2.37)

holds for all j, k, l ∈ Z.

Lemma 2.3.5. Let r⃗ ∈ {−1, 1}Z. For any ε > 0, there exists Cε > 0 such that

∥Tl,r⃗∥L1(G)→L1,∞(G) ≤ Cε2
ε|l|, (2.38)

where the implicit constant is independent of r⃗ and l ∈ Z.

To obtain favourable L2 estimates for Tl,r⃗, we must combine Lemma 2.3.4 with
the Cotlar–Stein almost orthogonality lemma. For completeness, we include the
result here.15

Lemma 2.3.6 (Almost orthogonality lemma). Let T i : L2(G) → L2(G) be a
collection of operators satisfying the almost-orthogonality condition:

∥T j(T k)∗∥L2(G)→L2(G) + ∥(T j)∗T k∥L2(G)→L2(G) ≤ [γ(j − k)]2 for any j, k ∈ Z,

such that
∑

i∈Z |γ(i)| = A <∞. Then,
∑

k∈Z T
k converges in the strong topology

and
∥
∑
k∈Z

T k∥
L2(G)→L2(G)

≤ A.

Proposition 2.3.3 can be proved by combining these lemmas.

Proof of Proposition 2.3.3. Fix l ∈ Z. From Lemma 2.3.4, we see that Lemma
2.3.6 can be applied for T i := T il and γ(i) := C2−(ρ1|l|+ρ2(i))/2 for a uniform
constant C. In particular, there exists ρ > 0 such that

∥Tl,r⃗∥L2(G)→L2(G) ≲ 2−ρ1|l|/2, (2.39)

where the implicit constant is independent of r⃗ and l ∈ Z.
Interpolating between (2.39) and the weak L1 estimate from Lemma 2.3.5, we

further deduce that for any p ∈ (1, 2], there exists ϵ(p) > 0 such that

∥Tl,r⃗∥Lp(G)→Lp(G) ≲p 2
−ϵ(p)|l|. (2.40)

By duality, the range of exponents allowed in (2.40) extends to (1,∞). By (2.36),
(2.40) implies (2.35) for any p in this range, completing the proof.

14see, for reference, [21, Chapter 12]
15a proof of the lemma can be found in [30].
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Proofs for Lemma 2.3.4 and Lemma 2.3.5 are given in the next two subsections.

2.3.3 Obtaining the L2 bounds (proof of Lemma 2.3.4)

We begin by introducing further notation:

• Let C1 denote the sub-collection of M(G), consisting of measures µ such
that µ(G) = 0.

• Let C2 be a sub-collection of M(G) consisting of compactly supported Borel
measures on G of the form ϱ1 + · · ·+ ϱq for some q ∈ N, where each ϱi lies
in M(G) and satisfies (C).

The main result in this subsection is the following.

Lemma 2.3.7. Let µ, ϑ ∈ C1 ∩ C2. Then, there exists ρ > 0 such that

∥A[µs ∗ ϑt]∥L2(G)→L2(G) ≲µ,ϑ

(
min{s/t, t/s}

)ρ
,

for any s, t ∈ (0,∞).

Assuming the lemma, we proceed to the proofs of the L2 bounds.

Lemma 2.3.7 =⇒ Lemma 2.3.4. By unwinding definitions, we can write

(T kl )
∗T jl = A[ψ2j+l ∗ ν2j ∗ ν̃2k ∗ ψ̃2k+l ] (2.41)

and

(T kl )(T
j
l )

∗ = A[ν̃2j ∗ ψ̃2j+l ∗ ψ2k+l ∗ ν2k ]. (2.42)

By (2.27) and (2.34), we see that ψ, ν, ψ̃, ν̃ ∈ C1. Furthermore, as σ, ϕ and ψ
satisfy (C) and ν = σ − ϕ, we may further deduce that

ψ, ν, ψ̃, ν̃ ∈ C1 ∩ C2.

Therefore, Lemma 2.3.7 can be applied to an averaging operator whose kernel
is a convolution product of scaled copies of any two among these four measures.
Considering the form of the operators in (2.41) and (2.42), we apply the lemma
only to the cases listed in the following table. By cases, we mean the different
measures and scales we feed into Lemma 2.3.7. In the final column of the table,
we list the values which, after applying the lemma, come up in the operator norm
estimates for the corresponding averaging operator.

Operator µ ϑ s t min{ s
t
, t
s
}

A[ψ2j+l ∗ ν2j ] ψ ν 2j+l 2j 2−|l|

A[ν2j ∗ ν̃2k ] ν ν̃ 2j 2k 2−|k−j|

A[ν̃2j ∗ ψ̃2j+l ] ν̃ ψ̃ 2j 2j+l 2−|l|

A[ψ̃2j+l ∗ ψ2k+l ] ψ̃ ψ 2j+l 2k+l 2−|k−j|
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By applying Lemma 2.3.7, we can find ρ1, ρ2 > 0 such that

∥A[ψ2j+l ∗ ν2j ]∥L2(G)→L2(G) + ∥A[ν̃2j ∗ ψ̃2j+l ]∥L2(G)→L2(G) ≲ν,ψ 2−ρ1|l|, (2.43)

and

∥A[ν2j ∗ ν̃2k ]∥L2(G)→L2(G) + ∥A[ψ̃2j+l ∗ ψ2k+l ]∥L2(G)→L2(G) ≲ν,ψ 2−ρ2|k−j|. (2.44)

To deduce the statement of Lemma 2.3.4 from the above estimates, we use Young’s
inequality. In particular, by repeated applications of (2.13), we obtain the in-
equalities

∥(T kl )∗T
j
l ∥L2(G)→L2(G)

≲ν,ψ min
{
∥A[ψ2j+l ∗ ν2j ]∥L2(G)→L2(G), ∥A[ν2j ∗ ν̃2k ]∥L2(G)→L2(G)

}
and

∥(T kl )(T
j
l )

∗∥L2(G)→L2(G)

≲ν,ψ min
{
∥A[ν̃2j ∗ ψ̃2j+l ]∥L2(G)→L2(G), ∥A[ψ̃2j+l ∗ ψ2k+l ]∥L2(G)→L2(G)

}
.

Combining these with (2.43) and (2.44), we obtain (2.37), completing the proof
of Lemma 2.3.4.

Proof of Lemma 2.3.7. The proof begins with two elementary reductions.
First, notice that the adjoint of A[µs ∗ ϑt] is given by the operator A[ϑ̃t ∗ µ̃s].

From the Hilbert space theory, we recall that the L2 operator norm of an operator
and its adjoint are the same. Therefore, it suffices to prove the existence of a ρ > 0
such that

∥A[µs ∗ ϑt]∥L2(G)→L2(G) ≲µ,ϑ

(
s/t
)ρ
,

whenever s ≤ t, µ ∈ C1 and ϑ ∈ C2.
Second, if ϑ ∈ C2, then we have a decomposition ϑ = ϱ1 + · · · + ϱq with

each ϱi ∈ M(G) satisfying (C). This induces a decomposition for the operator
A := A[µs ∗ ϑt], given by

A =

q∑
i=1

A[µs ∗ (ϱi)t].

To estimate A, it suffices to estimate each summand individually. Because of
this, we may further assume that ϑ satisfies (C).

Let u := s
t
≤ 1. After recalling (2.15), we consider the measure

ϖ(n) := µu ∗ ϑ(n) for n ∈ N0.

By a simple rescaling argument, we see that

∥A∥L2(G)→L2(G) = ∥A[ϖ(0)]∥L2(G)→L2(G). (2.45)
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We claim that for any n ∈ N0, the following inequality holds:

∥A[ϖ(n)]∥L2(G)→L2(G) ≤ ∥µ∥1/2M(G)∥ϑ∥
n/2
M(G)∥A[ϖ(n+1)]∥1/2L2(G)→L2(G). (2.46)

To prove the claim, we use the Hilbert space identity

∥A[ϖ(n)]∥L2(G)→L2(G) = ∥(A[ϖ(n)])
∗ ◦ A[ϖ(n)]∥1/2L2(G)→L2(G).

However,
(A[ϖ(n)])

∗ ◦ A[ϖ(n)] = A[ϖ(n) ∗ R(ϑ(n)) ∗ µ̃u],

where R maps a measure ϱ to ϱ̃, its reflection. In view of (2.15), we deduce that

ϖ(n) ∗ R(ϑ(n)) ∗ µ̃u = µu ∗ ϑ(n) ∗ R(ϑ(n)) ∗ µ̃u
= µu ∗ ϑ(n+1) ∗ R(ϑ(n−1)) ∗ µ̃u
= ϖ(n+1) ∗ R(ϑ(n−1)) ∗ µ̃u.

Thus, by repeated applications of (2.13), we obtain the claim (2.46) (note that
the (n− 1)th convolution product as defined by (2.15), involves the convolution
of n measures).

By combining (2.46) and (2.45), we deduce that

∥A∥L2(G)→L2(G) ≤ Cµ,ϑ(n)∥A[ϖ(n)]∥
1
2n

L2(G)→L2(G) for n ∈ N0, (2.47)

where

Cµ,ϑ(n) =

{
1 if n = 0,

∥µ∥
∑n

k=1
1

2k

M(G) ∥ϑ∥
∑n

k=1
k−1

2k

M(G) if n ≥ 1.

Recall the assumption that ϑ satisfies (C). Thus, there exists N ∈ N0 such that
ϑ(n) is absolutely continuous with density function h which lies in L1

δ for some
δ > 0. We fix n = N , and in view of (2.47), it suffices to estimate the operator
norm of A[ϖ(N)].

By Young’s inequality, the operator bound for A[ϖ(N)] follows from an esti-
mate on ∥ϖ(N)∥L1(G). Since µ ∈ C1, it follows that

∥ϖ(N)∥L1(G) = ∥µu ∗ h∥L1(G)

=

∫
G

∣∣∣∣∫
G

[
h(y−1x)− h(x)

]
dµu(y)

∣∣∣∣ dx
≤
∫
G

(∫
G

∣∣h(y−1x)− h(x)
∣∣ dx) d|µu|(y)

≤ ∥h∥L1
δ(G)

∫
G

|δuy|δd|µ|(y)

≤ uλminδ∥h∥L1
δ(G)

∫
G

|y|δd|µ|(y),

where λmin := min1≤i≤n λi, the smallest eigenvalue of the dilation matrix A. Com-
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bining this deduction with (2.47) and Young’s inequality, we obtain the desired
estimate

∥A∥L2(G)→L2(G) ≤ Cµ,ϑ(N)∥ϖ(N)∥
1

2N

L1(G) ≲ C ′
µ,ϑ

(s
t

)ρ
,

where ρ = 2−Nλminδ and C ′
µ,ϑ = Cµ,ϑ(N)∥h∥

1

2N

L1
δ(G)

. This concludes the proof.

2.3.4 Proof of Lemma 2.3.5

Fix a vector r⃗ = (rk)k∈Z ∈ {−1, 1}Z and let Kl denote the kernel of Tl,r⃗. We may
write

Kl =
∑
k∈Z

rkK
k
l , (2.48)

where Kk
l := (ψ2l ∗ ν)2k is the kernel of T kl .

Using Calderón–Zygmund theory adapted to the homogeneous setting16, we
see that to prove (2.38), we must verify the Hörmander-condition

sup
y∈G

∫
|x|G≥C0|y|G

|Kl(y
−1x)−Kl(x)|dx ≲ε 2

ε|l| for any ε > 0, (2.49)

where C0 is some fixed constant. In our attempts to prove the above inequality,
we will fix the value of C0 depending on C, the constant appearing in item (c) of
Definition 2.1.16. In particular, we define C0 := 2C.

In view of (2.48), it is clear that (2.49) follows from the estimate

sup
y∈G

∑
k∈Z

Ikl (y) ≲ε 2
ε|l| for any ε > 0, (2.50)

where

Ikl (y) :=

∫
|x|G≥C0|y|G

|Kk
l (y

−1x)−Kk
l (x)|dx.

Our first step towards (2.50) is to identify the region where Ikl vanishes. By
unwinding the definition of Kk

l , we write

Ikl (y) =

∫
|x|G≥C0|y|G

|(ψ2l ∗ ν)2k(y−1x)− (ψ2l ∗ ν)2k(x)|dx (2.51)

=

∫
|x|G≥C02−k|y|G

|(ψ2l ∗ ν)((δ2−ky)−1x)− (ψ2l ∗ ν)(x)|dx. (2.52)

As both ν and ψ are assumed to be compactly supported, we can find a constant
C1 > 1, depending only on ν and ψ, such that the support of ψ2l ∗ ν is contained
inside the ball B(0, C12

max{l,0}). Set C2 := 2C1. We claim that

Ikl (y) = 0 whenever |y|G ≥ C22
k+max{l,0} . (2.53)

16see, for instance, [54, Theorem 3 on p. 19] for a reference.
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To see this, we fix a y ∈ G such that |y|G ≥ C22
k+max{l,0}. In view of (2.51), it

suffices to check that

|(δ2−ky)−1x|G, |x|G ≥ C12
max{l,0} whenever |x|G ≥ C0|δ2−ky|G.

The lowerbound on |x|G is clear, as C0 ≥ 1 and |x|G ≥ C0|δ2−ky|G ≥ C0C22
max{l,0}.

On the other hand, by item (c) of Definition 2.1.16, we may deduce the chain of
inequalities

C0|δ2−ky|G ≤ |x|G ≤ C(|(δ2−ky)−1x|G + |(δ2−ky)−1|G).

Therefore,

C1C2
max{l,0} < C2C2

max{l,0} = C2(C0 − C)2max{l,0} ≤ C|(δ2−ky)−1x|G.

As a consequence, the required lower bound on |(δ2−ky)−1x|G is achieved, com-
pleting the proof of the claim (2.53).

Now, we can attempt to estimate the non-zero values of Ikl . Applying Young’s
inequality shows that the kernel Kk

l is L1 normalised. Consequently, we have the
uniform estimates for Ikl , given by

Ikl (y) ≲ 1 for any k, l ∈ Z. (2.54)

However, to sum different Ikl ’s and obtain (2.50), one must prove non-trivial decay
estimates for Ikl in the k variable. The decay is proved using a variant of the mean
value theorem in G, which we have expressed as a lemma below.

Before stating the lemma, we recall a few features of our setup from Remark
2.1.9. In particular, the set {Xi}1≤i≤n represents a basis for g, consisting of the
eigenvectors of the dilation matrix A. Furthermore, the eigenvalue associated to
Xi, denoted by λi, is positive for 1 ≤ i ≤ n. We also recall that for any X ∈ g,
the symbol X̃ represents the (unique) right invariant vector field that coincides
with X in the tangent space at the identity.

The lemma we present below is a variant of [18, Theorem 1.33].

Lemma 2.3.8. Let g ∈ C1(G). For any z ∈ G, we have∫
G

|g(zx)− g(x)|dx ≲
n∑
j=1

|z|λjG ∥X̃jg∥L1(G). (2.55)

The proof of the lemma is postponed till the end of this subsection. Assuming
the lemma, we resume the proof of (2.50).

Fix k, l ∈ Z. After dropping the restriction over the region of integration in
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(2.52), we see that

Ikl (y) ≤
∫
G

|(ψ2l ∗ ν)((δ2−ky)−1x)− (ψ2l ∗ ν)(x)|dx

=

∫
G

∣∣∣∣∫
G

ψ2l((δ2−ky)−1xz−1)− ψ2l(xz
−1)dν(z)

∣∣∣∣ dx
≤ ∥ν∥M(G)

∫
G

|ψ2l((δ2−ky)−1x)− ψ2l(x)|dx.

At this point, apply Lemma 2.3.8 for g = ψ2l and z = (δ2−ky)−1; since X̃j(ψ2l) =
2−lλj(X̃jψ)

2l
, we deduce that

Ikl (y) ≲ν

n∑
j=1

(2−k|y|G)λj∥X̃j(ψ2l)∥L1(G) =
n∑
j=1

(2−(k+l)|y|G)λj∥X̃jψ∥L1(G).

Combining this with the trivial estimate (2.54), we write

Ikl (y) ≲ψ,ν min{1,
n∑
j=1

(2−(k+l)|y|G)λj}. (2.56)

Now, the estimation of the sum in (2.50) is carried out in two steps:

Case 1 (2l ≥ 1): By (2.53) and (2.56), we deduce that∑
k∈Z

Ikl (y) =
∑

k∈Z:|y|G≤C22(l+k)

Ikl (y)

≲ψ,ν

n∑
j=1

(2−l|y|G)λj
( ∑
k∈Z:C−1

2 2−l|y|G≤2k

2−kλj
)

≲ψ,ν 1.

Case 2 (2l < 1): Using (2.53) and (2.56) again,∑
k∈Z

Ikl (y) =
∑

k∈Z: |y|G≤C22k

Ikl (y)

=
∑

k∈Z: 2−k|y|G≤C22l

Ikl (y) +
∑

C22l<2−k|y|G≤C2

Ikl (y)

≲ψ,ν

n∑
j=1

(2−l|y|G)λj
( ∑
k∈Z: C−1

2 2−l|y|G≤2k

2−kλj
)
+

∑
C12l≤2−k|y|G≤C1

1

≲ψ,ν,λ 1 + |l|.

Combining both cases, we obtain (2.50), completing the proof of Lemma 2.3.5.

Proof of Lemma 2.3.8. The proof has two parts. First, assume that z can be
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written as exp(tX̃j) for some 1 ≤ j ≤ n. In this case, we aim for a sharper
estimate than (2.55) by replacing the sum on the left-hand side with its jth
summand.

By the Fundamental Theorem of Calculus and the identity (2.3), we write

g(zx)− g(x) =

∫ t

0

(
d

ds′

)
s′=s

[g(exp(s′X̃j)x)]ds

=

∫ t

0

X̃jg(exp(sX̃j)x)ds.

Therefore, ∫
G

|g(zx)− g(x)|dx ≤
∫ t

0

∫
G

|X̃jg(exp(sX̃j)x)|dxds

= |t|∥X̃jg∥L1(G). (2.57)

Since |z|G = | exp(tX̃j)|G = |t|
1
λj | exp(X̃j)|G, we can conclude that∫

G

|g(zx)− g(x)|dx ≤ C1|z|Gλj∥X̃jg∥L1(G)

where C1 := max1≤j≤n | exp(X̃j)|−λj .

In the second part of the proof, z can be chosen to be any arbitrary member
of G. Here, we may express z as zn, where

zj := exp(tjX̃j) ·G · · ·G exp(t1X̃1) for 1 ≤ j ≤ n and t1, . . . , tn ∈ R,

and g(zx)− g(x) as the telescopic sum

n∑
j=1

(g(zjx)− g(zj−1x)),

where z0x = x. By repeated applications of the first case, specifically the inequal-
ity (2.57), we have∫

G

|g(zx)− g(x)|dx ≤
n∑
j=1

|tj|∥X̃jg∥L1(G) ≲
n∑
j=1

|z|λjG ∥X̃jg∥L1(G), (2.58)

as required. The final step in (2.58) follows from the inequality

|z|−1
G

n∑
j=1

|tj|
1
λj ≤ sup

{
n∑
j=1

|sj|
1
λj : | exp(snX̃n) ·G · · ·G exp(s1X̃1)|G = 1

}
≲ 1

which becomes obvious when we notice that |δ|z|−1
G
(z)|G = 1 and that we can

write
δ|z|−1

G
(z) = exp(tn|z|−λnG X̃n) ·G · · ·G exp(t1|z|−λ1G X̃1),
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using the basic properties of the group dilations.
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Chapter 3

Maximal estimates and Local
smoothing problems

The content of this chapter is broadly based on the works of Mockenhaupt–
Seeger–Sogge [37], Guth–Wang–Zhang [26], and Beltran–Guo–Hickman–Seeger
[3]. The discussion is included to introduce and contextualise the result in the
next chapter.

3.1 Introduction: Spherical and circular maxi-

mal theorems

In this chapter, we discuss some of the well-known methods in Harmonic analysis
used to study maximal operators. To illustrate these methods, we use the spher-
ical maximal operator in Rd as a model operator, with a particular emphasis on
the case d = 2. The first part of the chapter (till the end of §3.4) demonstrates
known results in this area, whereas the second part (§3.5) addresses the question
of extending these results to higher dimensions.

For d ∈ N, let σd denote the surface measure on the sphere Sd−1 ⊂ Rd, induced
by Lebesgue measure on Rd+1, normalised to have total mass one. For each t > 0,
let σdt denote the measure on the dilated sphere tSd−1 defined by the action

⟨σdt , f⟩ :=
∫
Sd−1

f(tx)dσd(x) for any f ∈ L1
loc(Rd).

The Stein spherical maximal function Md
s (which is named after E. Stein, who

formulated the maximal problem) is defined by the formula

Md
sg(x) := sup

0<t<∞
|σdt ∗ g(x)| for g ∈ S(Rd) and x ∈ Rd. (3.1)

As in the previous chapter, we are interested in the problem of Lp boundedness
for the maximal function Md

s . Naturally, the first step towards formulating this
problem is to find the necessary conditions on the range of Lebesgue spaces where
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the Md
s can be extended as a bounded operator. To this end, we define

g(x) :=
1

|x|d−1 log(|x|−1)
χB(0,1)(x) for x ∈ Rd.

Fix d ≥ 2. It is easy to see that |Md
sg(x)| = ∞ for all x ∈ Rd. However,

∥g∥2Lp(Rd) =

∫
B(0,1)

1

(|x|d−1 log(|x|−1))p
dx <∞ ⇐⇒ p ≤ d/(d− 1).

In other words, when p ≤ d/(d− 1) and d ≥ 2, the maximal function Md
s cannot

be Lp bounded (Note that we reach the same conclusion even when we replace
(0,∞) is replaced with [1, 2] as the index set for the supremum in (3.1)). When
d = 1, it is easy to see that Md

s cannot be Lp bounded when p < ∞, and
L∞ boundedness always holds in all dimensions. Therefore, the right maximal
problem to be framed is the following: can Md

s be extended as an Lp bounded
operator when d ≥ 2 and p > d/(d− 1)?

The first result in this direction came from E. Stein, who proved sharp spher-
ical maximal estimates in all dimensions except for the plane.

Theorem 3.1.1 (Stein [53]). Let d ≥ 3. For p > d/(d− 1), there exists Cp,d > 0
such that

∥Md
s∥Lp(Rd)→Lp(Rd) ≤ Cp,d.

Stein’s argument fell short of obtaining any non-trivial maximal estimates
when d = 2. We will shortly describe the difficulties in the argument that pre-
vented it from being extended to the planar setting. It took almost another ten
years before a different approach to the maximal problem was developed by J.
Bourgain, and he used it to tackle the Lp boundedness for the maximal function
in the plane (which is often called the circular maximal function). To distinguish
these two arguments, we use the notation Mb to represent the maximal operator
Md

s when d = 2. Sharp Lp estimates for Mb were established by Bourgain.

Theorem 3.1.2 (Bourgain [6]). For p ∈ (2,∞], there exists Cp > 0 such that

∥Mb∥Lp(R2)→Lp(R2) ≤ Cp. (3.2)

The failure of L2 boundedness for Mb is crucial in understanding how Bour-
gain’s proof of the circular maximal theorem (Theorem 3.1.2) contrasts with
Stein’s proof of the spherical maximal theorem (Theorem 3.1.1). We plan to first
sketch the proof of a simplified version of Theorem 3.1.1 and highlight why the
argument fails to provide any maximal estimate when d = 2. Afterward, we will
describe a proof strategy that overcomes these issues and prove Theorem 3.1.2,
following an argument of [37].
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Proof of a weaker version of Theorem 3.1.1

Fix d ≥ 3 and drop the superscript in σdt . Simplifying the setup, we restrict our
attention to norm-estimating the local maximal operator Ms,loc defined by

Ms,locg := sup
t∈[1,2]

|Atg| where Atg := σt ∗ g

for any g ∈ S(Rd). Furthermore, we plan to address the question of only the L2

boundedness for Ms,loc. Although we are working in such a simplified setup, the
core ideas in the full proof of Theorem 3.1.1 are not lost1.

We begin by introducing a dyadic frequency localisation to the maximal op-
erator. Suppose η, β ∈ C∞

c (R) are the classical Littlewood–Paley functions such
that

supp η ⊆ {r ∈ R : |r| ≤ 2}, supp β ⊆ {r ∈ R : 1/2 ≤ |r| ≤ 2} (3.3)

and

η(r) +
∑
j∈N

β(r/2j) = 1 for all r ∈ R. (3.4)

Let g ∈ S(Rd). Using Plancherel’s theorem,

Atg(x) =
∞∑
j=0

Aj
tg(x)

where

Aj
t(g)(x) := (2π)−d

∫
Rd

ei⟨x,ξ⟩σ̂(tξ)β(j)(tξ)ĝ(ξ)dξ for x ∈ Rd, (3.5)

and

β(j)(ξ) :=

{
η(|ξ|) if j = 0,

β(2−j|ξ|) if j ∈ N,

for ξ ∈ Rd. By the triangle inequality,

Ms,locg(x) ≤
∞∑
j=0

Mj
s,locg(x) where Mj

s,locg(x) := sup
t∈[1,2]

|Aj
tg(x)|

for any x ∈ Rd. Thus, the L2 norm of Ms,locg can be dominated by the sum of
L2 norms of Mj

s,locg over all j ∈ N. Therefore, to show that Mloc is strong-type

(2, 2), it suffices to show that the L2 operator norm of Mj
s,loc has a decay in the

j parameter.

1A full proof of the theorem can be found in [54, Page 510].
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Proposition 3.1.3. Let d ≥ 3. For all j ∈ N0, we have

∥Mj
s,loc∥L2(Rd)→L2(Rd) ≲ 2−j(d−2)/2. (3.6)

The proof of (3.6) contains two key ingredients. The first is a result that will
be referred to as the Sobolev embedding lemma hereafter.

Lemma 3.1.4. Let F ∈ C1(R) and p > 1. Then it follows that

sup
1≤t≤2

|F (t)|p ≤ |F (1)|p + p

(∫ 2

1

|F (t)|pdt
)(p−1)/p

·
(∫ 2

1

|F ′(t)|pdt
)1/p

Proof. The proof is a simple application of the Fundamental Theorem of Calculus.
For s ∈ [1, 2], we begin with the identity

|F (s)|p = |F (1)|p + p

∫ s

1

|F (t)|p−1F ′(t)dt.

Applying Hölder’s inequality now completes the proof.

The Sobolev embedding lemma allows us to dominate the maximal function
by Fourier integral operators. This brings us to the second ingredient in the
proof, which is the estimation of the Fourier decay of the spherical measure. By
standard stationary phase methods, it is well known that

|σ̂(ξ)|+ |∇ξσ̂(ξ)| ≲ (1 + |ξ|)−(d−1)/2 for ξ ∈ Rd. (3.7)

The proof of (3.7) can be found in [54, Chapter 7]. With these two ingredients,
we can now prove the above proposition.

Proof of Proposition 3.1.3. Since σ ∗ β̌(0) ∈ S(Rd), we can dominate M0
s,loc by

a variant of the Hardy–Littlewood operator2, which is bounded for any p > 1.
Thus, it suffices to look at the case of j ̸= 0.

Fix j ∈ N and g ∈ S(Rd). To highlight that t plays the role of a variable
rather than a parameter, define

Ajg(x, t) := Aj
tg(x) for (x, t) ∈ Rd+1. (3.8)

Temporarily fixing x ∈ Rd, set

F (t) := Ajg(x, t) for t ∈ [1, 2].

Combining Fubini’s theorem with Lemma 3.1.4, we see that (3.6) follows from
the norm estimates

∥Aj
1g∥L2(Rd) ≲ 2−j(d−2)/2∥g∥L2(Rd) (3.9)

2see [54, Chapter 2, §2.1] for more details.
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and

∥Ajg∥1/2
L2(Rd×[1,2])

∥∂tAjg∥1/2
L2(Rd×[1,2])

≲ 2−j(d−2)/2∥g∥L2(Rd). (3.10)

By combining Plancherel’s theorem with (3.7), we deduce that

∥Aj
1∥L2(Rd)→L2(Rd) ≲ 2−j(d−1)/2,

which is a stronger estimate than (3.9). On the other hand, by combining (3.7)
with Fubini’s theorem and Plancherel’s theorem,

∥Aj∥L2(Rd)→L2(Rd×[1,2]) ≲ 2−j(d−1)/2. (3.11)

Because of (3.5), ∂tAjg can be expressed as a Fourier multiplier operator with the
multiplier function ∂t[σ̂(tξ)β(j)(tξ)]. By Leibnitz rule and (3.7), we can deduce
that this function is uniformly bounded by 2j · 2−j(d−1)/2. Therefore,

∥∂tAj∥L2(Rd)→L2(Rd×[1,2]) ≲ 2−j(d−3)/2.

Combining the above inequality with (3.11), we obtain (3.10), and that concludes
the proof.

When d = 2, Stein’s argument does not give any decay in the L2 operator
norms of Mj

s,loc. Since we have earlier verified that Mb (and its localised version)
is unbounded on L2, this was already expected. We must significantly modify
these arguments to get decay in their Lp norms for p > 2, a requirement to
prove the circular maximal theorem. First, note that in the process of obtaining
(3.10), we have not used the extra t-integration in the L2 norms in the left side
of the inequality. To improve the argument, we must utilise the averaging in the
t variable and gain a non-trivial factor in the operator norm of Aj.

Bourgain’s original argument in [6] for the circular maximal theorem relied
on a combination of Fourier analytic tools and geometric considerations. An
alternate proof of (3.2) was given in [44] purely using geometric tools. For the
thesis, however, we wish to focus on a third line of argument that relates maximal
estimates with the so-called local smoothing estimates for the wave equation. This
approach was laid out through the results of Sogge [51] and Mockenhaupt–Seeger–
Sogge [37]. Following their strategy, a wide variety of maximal functions were
estimated in subsequent years by several other authors (see, for instance, [3], [9],
[29]).

3.2 Proof of the circular maximal theorem

As in the proof for the spherical maximal theorem, we introduce frequency lo-
calised maximal operators.

Let g ∈ S(R2). For j ∈ N0 and t ∈ R, recall the definition of the frequency
localised averaging operatorAj

tg from (3.5), where we set d = 2 and σ now denotes
the normalised surface measure on the unit circle. Introducing the maximal
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function

Mj
bg(x) := sup

t∈(0,∞)

|Aj
tg(x)| for x ∈ R2 and g ∈ S(R2),

we see that

∥Mb∥Lp(R2)→Lp(R2) ≤
∞∑
j=0

∥Mj
b∥Lp(R2)→Lp(R2) for p ≥ 1.

Therefore, the proof of Theorem 3.1.2 reduces to the following result.

Proposition 3.2.1. For p > 2, there exists ε(p) > 0 such that

∥Mj
b∥Lp(Rd)→Lp(Rd) ≲ 2−jε(p) for any j ∈ N0. (3.12)

Compared withMj
s,loc, the maximal functionMj

b is a global maximal function.
In particular, in its definition, the supremum of averages is taken over the entire
positive real line. Because of this, one cannot directly apply Lemma 3.1.4 to
relate the maximal operator with a Fourier integral operator. To use the lemma,
we must consider the following result, which reduces global maximal estimates to
local maximal estimates. The lemma and its proof have been reproduced from
[4, Lemma 3.4], but it can be traced back to at least Bourgain’s result [6].

Lemma 3.2.2 (Lemma 3.4, [4]). Consider a function m ∈ L∞(Rd) such that

supp m ⊆ {ξ ∈ Rd : λ0/2 ≤ |ξ| ≤ 2λ0}

for a fixed λ0 ∈ R \ {0}. For t ∈ R, consider the Fourier multiplier Ãt defined as

Ãtg(x) := [m(t · 1
i
∂x)g](x), whenever g ∈ S(Rd).

Let p ≥ 2. Suppose there exists Mp(λ0) > 0 such that the local maximal estimate

∥ sup
t∈[1,2]

|Ãt|∥Lp(Rd)→Lp(Rd) ≤Mp(λ0)

holds. Then, there exists Cp > 0 such that

∥ sup
t∈(0,∞)

|Ãt|∥Lp(Rd)→Lp(Rd) ≤ CpMp(λ0).

Proof. Fix g ∈ S(Rd). Let k0 ∈ Z be chosen such that λ0 ∈ [2k0 , 2k0+1). Recall
the definition of β ∈ C∞

c (Rd) from (3.3). For l ∈ Z, let Pl denote the classical
smooth Littlewood–Paley projection operator defined by Pl := β

(
2−l|1

i
∂x|
)
, so

that ∑
l∈Z

Plg(x) = g(x) for a.e. x ∈ Rd.

To be used later in the proof, we recall the Littlewood–Paley square function
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estimate3

∥(
∑
l∈Z

|Plg|2)1/2∥Lp(Rd) ≲p ∥g∥Lp(Rd) for any p ∈ (1,∞). (3.13)

In view of the support properties of m, we deduce that

Ãtg =
∞∑

l=−∞

ÃtPlg =
∑

|l−(k+k0)|≤10

ÃtPlg, if t ∈ [2−k, 2−k+1].

By a simple rescaling, it is easy to show that

∥ sup
t∈[1,2]

|Ãt|∥Lp(Rd)→Lp(Rd) = ∥ sup
t∈[2k,2k+1]

|Ãt|∥Lp(Rd)→Lp(Rd) for any k ∈ Z.

Fixing k ∈ Z for now, we combine these observations with the assumption of the
lemma. ∫

Rd

sup
t∈[2k,2k+1]

|Ãtg(x)|pdx =

∫
Rd

sup
t∈[2k,2k+1]

|
∑

|l−(k+k0)|≤10

ÃtPlg(x)|pdx

≤ (Mp(λ0))
p

∫
Rd

|
∑

|l−(k+k0)|≤10

Plg(x)|pdx

≲ (Mp(λ0))
p

∫
Rd

∑
|l−(k+k0)|≤10

|Plg(x)|pdx.

Therefore,∫
Rd

sup
t∈(0,∞)

|Ãtg(x)|pdx ≤
∑
k∈Z

∫
Rd

sup
t∈[2k,2k+1]

|Ãtg(x)|pdx

≲ (Mp(λ0))
p

∫
Rd

∑
k∈Z

∑
|l−(k+k0)|≤10

|Plg(x)|pdx

≲ (Mp(λ0))
p

∫
Rd

∑
l∈Z

|Plg(x)|pdx

≲ (Mp(λ0))
p

∫
Rd

(
∑
l∈Z

|Plg(x)|2)p/2dx

≲p (Mp(λ0))
p∥g∥p

Lp(Rd)
,

where we made use of the inclusion ℓ2 ⊆ ℓp for p > 2 in the penultimate step,
and (3.13) in the last step.

Because of the above lemma, we see that Proposition 3.2.1 follows from its
localised version:

3See, for a reference, [54, p. 267].
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Proposition 3.2.3. For p > 2, there exists ε(p) > 0 such that

∥Mj
b,loc∥Lp(Rd)→Lp(Rd) ≲ 2−jε(p) for any j ∈ N. (3.14)

Proposition 3.2.3 =⇒ Proposition 3.2.1. As in the proof of Proposition 3.1.3,
the j = 0 case in Proposition 3.2.1 is almost immediate. Thus, it suffices to look
at the cases when j ̸= 0.

Fix j ∈ N and consider m := σ̂ · β(j). Observe that the definition of Ãt now

coincides with that of Aj
t . By applying Lemma 3.2.2 for d = 2, we see that the

operator estimates in (3.12) and (3.14) are equivalent, concluding the proof.

Arguing along the lines of the proof of Proposition 3.1.3, the required decay in
the Lp operator norms of the frequency localised maximal operators from certain
related Fourier integral estimates.

Proposition 3.2.4. For j ∈ N, recall the definition of Aj from (3.8). There
exists p0 ∈ (2,∞) and ε1, ε2 > 0 such that for all g ∈ S(R2) and j ∈ N, we have

∥Ajg(·, 1)∥Lp0 (R2) ≲ 2−jε1∥g∥Lp0 (R2) (3.15)

and

∥Ajg∥1−1/p0
Lp0 (R2×[1,2])∥∂tA

jg∥1/p0Lp0 (R2×[1,2]) ≲ 2−jε2∥g∥Lp0 (R2). (3.16)

Proposition 3.2.4 =⇒ Proposition 3.2.3. Fix j ∈ N. The proposition is proved
by interpolating operator norm estimates forMj

b,loc between three cases: p = 2, p0
and p = ∞.

Case p = p0: Let g ∈ S(Rd). The key result to use here is the Sobolev embedding
lemma (Lemma 3.1.4). Temporarily fixing x ∈ Rd, set

F (t) := Ajg(x, t) for t ∈ [1, 2].

Combining (3.15) and (3.16) with Lemma 3.1.4 and applying Fubini’s theorem,

∥Mj
b,loc∥Lp0 (R2)→Lp0 (R2) ≲ 2−jmin{ε1,ε2}.

Case p = 2: This case has already been investigated in the proof of Proposition
3.1.3. In particular, the Fourier decay of the circular measure yields

∥Mj
b,loc∥L2(R2)→L2(R2) ≲ 1.

Case p = ∞: An application of young’s inequality gives the kernel estimate
∥σ ∗ ˇβ(j)∥L1(R2) ≲ 1. As an immediate consequence,

∥Mj
b,loc∥L∞(R2)→L∞(R2) ≲ 1.
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By interpolating between these estimates, we can conclude the proof of Proposi-
tion 3.2.3.

The proof of Proposition 3.2.4 relies on what is known as the local smoothing
phenomenon. In the next section, we take a brief detour from the main line of
argument to introduce the local smoothing problem; and afterwards, we will see
how it relates to the proposition.

3.3 The local smoothing problem in the plane

Let ρ, β̃ ∈ S(R) be real-valued and chosen such that

supp ρ̂ ⊆ [−1, 1] and ρ(t) ≳ 1 for t ∈ [1, 2], (3.17)

and
supp β̃ ⊆ [1/4, 4] and β̃(t) = 1 for t ∈ [1/2, 2]. (3.18)

For λ ∈ N, consider the Fourier integral operator defined by

Tλ(g)(x, t) := (2π)−2

∫
R2

ei(⟨x,ξ⟩+t|ξ|)β̃(λ−1|ξ|)ρ(t)ĝ(ξ)dξ (3.19)

whenever g ∈ S(R2). The operator Tλ is closely related to the Euclidean half-wave
propagator eit

√
−∆ which is used to construct solutions to the Cauchy problem

for the wave equation (a detailed discussion on this topic can be found in [28]).
We are interested in the sharp Lp(R2) → Lp(R2× [1, 2]) estimates for Tλ. One

way to obtain this is by freezing the time variable and individually investigating
the operators of the form Tλt (g) := Tλ(g)( · , t) for each t ∈ [1, 2]. To this end, we
record the fixed time estimates from Peral [40] and Miyachi [36] (see [47] for a
more general version).

Proposition 3.3.1. Let λ ∈ 2N and p ∈ [2,∞]. For any t > 0, we have

∥Tλt ∥Lp(R2)→Lp(R2) ≲p λ
−(1/p−1/2). (3.20)

By acting on certain test functions (see, for instance, [4, §2.1]), we can also
see that (3.20) is sharp. Now, by Fubini’s theorem, Proposition 3.3.1 implies that

∥Tλ∥Lp(R2)→Lp(R2×[1,2]) ≲p λ
−(1/p−1/2). (3.21)

In the local smoothing problem (for the wave equation in the plane), we seek the
possibility of proving stronger estimates for Tλ, compared to what is obtained as
the output of the best fixed time estimates.

By sharp local smoothing estimates, we refer to the operator norm estimates

∥Tλ∥Lp(R2)→Lp(R2×[1,2]) ≲α,p λ
−α for α < αcrit(p)− 1/2, (3.22)

where

αcrit(p) =

{
1/2 for 2 ≤ p ≤ 4,

2/p for p > 4.
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Observe that (3.22) is a stronger estimate than (3.21) whenever p > 2. In this
range, the non-trivial improvement (by a power of λ) from the fixed time estimates
can be interpreted as a manifestation of the smoothing effect of averaging in the
t variable.

The connection between the local smoothing problem and maximal inequali-
ties was laid out by the works of Sogge [51] and Mockenhaupt–Seeger–Sogge [37].
In the former article, Sogge produced local smoothing estimates for p > 2, refor-
mulating Bourgain’s proof to the circular maximal theorem in terms of the local
smoothing phenomenon (in fact, the main theorem in [51] is a variable-coefficient
generalisation of Theorem 3.1.2). In the same article, Sogge conjectured the sharp
local smoothing estimates (3.22).

We list out some of the major milestones in the direction of solving the sharp
local smoothing estimates:

• Wolff [56] proved (3.22) for all p > 74. His argument used the ℓp-decoupling
phenomenon for the light cone in R3, kick-starting the theory of Fourier
decoupling. Building upon Wolff’s argument, the range was later extended
to p > 190/3 by Garrigós and Seeger [23], and to p > 20 by Garrigós—
Seeger—Schlag [22].

• By proving L3 estimates for a square function associated to the light cone
in R3, Lee and Vargas [35] obtained (3.22) whenever p ∈ [2, 3].

• Bourgain and Demeter [7] established sharp decoupling inequalities for the
cone in 2015. Using Wolff’s strategy, this implies (3.22) whenever p lies in
the range [6,∞). Thus, the only regime where local smoothing conjecture
remained unsolved was the interval (3, 6).

• Guth–Wang–Zhang filled this gap by proving the sharp L4 estimate for
the cone square function in [26] (square functions estimates are, in gen-
eral, harder to prove compared to the decoupling estimates). Their result
completely resolved the local smoothing conjecture in the plane.

By following the arguments from [37] and assuming the square function esti-
mate from [26], we reproduce the sharp local smoothing estimates.

Theorem 3.3.2. For any λ ∈ 2N and p ∈ [2,∞], the estimate (3.22) holds.

Postponing the proof of Theorem 3.3.2 until later sections, we will investigate
how this theorem relates to the circular maximal theorem.

3.3.1 Local smoothing to maximal estimates

Following the discussion in §3.2, the proof of the circular maximal theorem re-
duces to Proposition 3.2.4. Before commencing the proof of the proposition, we
introduce the following definition.

Definition 3.3.3. A function a ∈ C∞(Rd ×R) is said to be a symbol of order µ
if it is smooth away from the origin and for any α ∈ Nd and β ∈ N, we have

|∂αξ ∂
β
t a(ξ, t)| ≲α,β (1 + |ξ|)µ−|α| for (ξ, t) ∈ (Rd \ {0})× R.
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The collection of all symbols with order µ is denoted as Sν .

To relate the circular maximal function with the local smoothing problem, we
write circular averages in the form of Fourier integral operators. Recall that the
method of stationary phase yields the formula (for a reference, see [54, chapter 8])

σ̂(ξ) = (2π)2
∑
±

a±(|ξ|)e±i|ξ|, (3.23)

where a+, a− ∈ S−1/2 (the (2π)2 factor is included in (3.23) for convenience).
Using (3.5) and the above formula, we write

Ajg(x, t)ρ(t) =
∑
±

Aj
±(g)(x, t) for g ∈ S(R2) (3.24)

where ρ is recalled from (3.17) and

Aj
±(g)(x, t) := ρ(t)

∫
R2

ei(⟨x,ξ⟩±t|ξ|)a±(t|ξ|)β(2−jt|ξ|)ĝ(ξ)dξ

for j ∈ N and (x, t) ∈ R3. Observe that the operators Aj
+ and Tλ in (3.19) are

similar Fourier integral operators, except for the order of the associated symbol.

Theorem 3.3.2 =⇒ Proposition 3.2.4. Among the two inequalities to be proved
in Proposition 3.2.4, let us first focus on the easier one: the fixed time estimate
(3.15). We claim that

∥Ajg( · , t)∥Lp(R2) ≲ 2−j/p∥g∥Lp(R2) for any t > 0 and p ∈ [2,∞].

When p = 2, Plancherel’s theorem and the decay of σ̂ are sufficient to yield the
claim. On the other hand, when p = ∞, the claim follows by Young’s inequality.
By interpolating between these two cases, we deduce the claim for any p in the
mentioned range, completing the proof of (3.15) with ε1(p) = 1/p. We may
proceed to the proof of (3.16).

In view of (3.24), it suffices to estimate the operators Aj
±. After setting λ = 2j,

we can use the support properties of β and β̃ to write

λ1/2|Aj
±(g)(x, t)| ≲ |χ1,±(

1
i
∂x, t) ◦ Tλ(g)(x, t)|

where χ1,±(ξ, t) := λ1/2a±(t|ξ|)β(λ−1t|ξ|)ρ(t).
Direct computations show that for t ∈ [1, 2], we also have

∂tA
j
±(g)(x, t) =

∫
R̂2

ei(⟨x,ξ⟩+t|ξ|)b±(ξ, t)β(λ
−1t|ξ|)ĝ(ξ)dξ,

where b+, b− ∈ S1/2(R2+1). Therefore, as above, we write

λ−1/2|∂tAj
±(g)(x, t)| ≲ |χ2,±(

1
i
∂x, t) ◦ Tλ(g)(x, t)|,

where χ2,±(ξ, t) := λ−1/2b±(ξ, t)β(λ
−1t|ξ|)ρ(t). From the order properties of a±
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and b±, we deduce that χ1,±, χ2,±∈ S0. Therefore, the Hörmander–Mihilin mul-
tiplier theorem4 can be applied to conclude that

λ1/2∥Aj
±(g)∥Lp(R2×[1,2]) + λ−1/2∥∂tAj

±(g)∥Lp(R2×[1,2]) ≲ ∥Tλg∥Lp(R2×[1,2]),

when λ = 2j. Applying Theorem 3.3.2, we obtain

∥Aj
±∥Lp(R2)→Lp(R2×[1,2]) ≲α,p 2

−j(α+1/2)

and
∥∂tAj

±(g)∥Lp(R2)→Lp(R2×[1,2]) ≲α,p 2
−j(α−1/2),

for α < αcrit(p)− 1/2 and p ∈ (2,∞). By combining these norm inequalities with
(3.24), we obtain

∥Aj∥Lp(R2)→Lp(R2×[1,2]) + 2−j∥∂tAj∥Lp(R2)→Lp(R2×[1,2]) ≲α,p 2
−j(α+1/2),

for any α < αcrit(p)− 1/2 and p ∈ (2,∞). Consequently,

∥Ajg∥1−1/p

Lp(R2×[1,2])∥∂tA
jg∥1/pLp(R2×[1,2]) ≲ε2,p 2

−jε2∥g∥Lp(R2),

provided ε2 < εcrit(p) := αcrit(p) − 1/p. Since εcrit(p) > 0 for any p ∈ (2,∞), we
obtain (3.16) after choosing any p0 in this range. Thus, we conclude the proof of
Proposition 3.2.4 and thereby establish Theorem 3.1.2.

3.4 Proving the sharp local smoothing theorem

Fix λ ∈ 2N. We begin by noting an easy but crucial observation about the support
properties of the space-time Fourier transform of Tλ.

For g ∈ S(R2), we use the integral expression (3.19) to deduce that

Fx,tT
λ(g)(ξ, τ) = β̃(λ−1|ξ|)ρ̂(τ − |ξ|)ĝ(ξ).

Recalling (3.17) and (3.18), the above identity tells us that the space-time Fourier
transform of Tλ(g) lies in an O(1)-neighborhood of the truncated light cone

Λλ :=
{
(ξ, τ) ∈ R3 : 1/4λ ≤ |ξ| ≤ 4λ and τ = |ξ|

}
.

Because of this, we can relate the local smoothing problem with a bunch of ques-
tions in Fourier restriction theory surrounding functions frequency-supported in
a tiny neighborhood of a compact curved sub-manifold (see the survey articles [4]
and [25] for a detailed discussion on these topics). In these studies, it has become
a standard practice to decompose the neighborhood of the submanifold into many
essentially convex boxes. This division induces a natural decomposition of the
function, such that we can expect cross-cancellations to occur between different
parts while summing them back. Typically, the cancellations are manifested as
decoupling or square function inequalities. On the other hand, the individual

4for a reference, see [54, Proposition 2 on p.245]
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pieces are much easier to study. For instance, the uncertainty principle gives us
efficient heuristics about the kernel associated with a Fourier multiplier operator
whose multiplier function is a bump function supported inside a convex region.

For our argument, considering the direction of the non-vanishing principle
curvature of the light cone, we realise that the right decomposition should be
done in the angular variable.

Introducing the angular decomposition in R2

Let {ξν}ν∈W(λ) be a maximal λ−1/2 separated subset of S1, so that the index
set W(λ) is of cardinality O(λ1/2). For each ν ∈ W(λ), let χν ∈ C∞(R2) be a
homogeneous function of degree 0 satisfying the following properties:

(i) |∂αξ χν(ξ)| ≲ λ−|α|/2 for α ∈ Z2,

(ii) supp χν ⊆ {ξ ∈ R2 : |ξ/|ξ| − ξν | ≲ λ−1/2},

(iii)
∑

ν∈W(λ)

χν(ξ) = 1 for all ξ ∈ R2.

Recalling (3.19), write Tλ(g) =
∑

ν∈W(λ)

Tλν(g), where

Tλν(g)(x, t) :=

∫
R2

ei(⟨x,ξ⟩+t|ξ|)β̃(λ−1|ξ|)χν(ξ)ρ(t)ĝ(ξ)dξ.

To underline the importance of the specific decomposition here, notice the non-
linearity (in ξ) of the phase function ϕ(x, t, ξ) := ⟨x, ξ⟩+t|ξ|. By decomposing the
Tλ, we have linearised the phase function; if Kλ

ν ( · , t) denotes kernel associated
to Tλν( · , t) for each t > 0, then we can write

Kλ
ν (x, t) = (F−1

x eit⟨ξν ,·⟩mλ
ν(·, t))ρ(t),

where

mλ
ν(ξ, t) := eit(|ξ|−⟨ξν ,ξ⟩)χν(ξ)β̃(λ

−1|ξ|)

behaves like a bump function. Indeed, using the properties of χν , it is easy to
deduce that

|∂αξνm
λ
ν(ξ, t)| ≲α λ

−|α|, |∂αξ⊥ν m
λ
ν(ξ, t)| ≲α λ

−|α|/2 for any α ∈ N.

Now, standard integration-by-parts arguments yield the decay estimates

|Kλ
ν (x, t)| ≲N

λ3/2

(1 + λ|⟨x− tξν , ξν⟩|+ λ1/2|⟨x− tξν , ξ⊥ν ⟩|)N
(3.25)

for any N ≥ 1 and (x, t) ∈ R2 × [1, 2]. Consequently,

∥Kλ
ν ( · , t)∥L1(R2) ≲ 1 for each t ∈ [1, 2]. (3.26)
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Using the analysis so far, we can prove two easy end-point cases in Theorem 3.3.2:

Case p = ∞ : Note that the (3.26) combined with Fubini’s theorem imply that

∥Tλν∥Lp(R2)→Lp(R2×[1,2]) ≲ 1 for p ∈ [1,∞].

By summing in ν, we also obtain

∥Tλ∥Lp(R2)→Lp(R2×[1,2]) ≲ λ1/2 for p ∈ [1,∞], (3.27)

which coincides with the required inequality (3.22) when p = ∞.

Case p = 2 : In this case, we can improve from (3.27) in view of the finitely over-
lapping supports of {mλ

ν}ν∈W(λ). Indeed, by a simple combination of Plancherel’s
theorem and Fubini’s theorem,

∥Tλ∥L2(R2)→L2(R2×[1,2]) ≲ 1. (3.28)

In view of (3.27) and (3.28), we may restrict our focus on the estimate

∥Tλ∥L4(R2)→L4(R2×[1,2]) ≲ϵ λ
ϵ for any ϵ > 0. (3.29)

Indeed, by interpolating between these three operator estimates, we can prove
Theorem 3.3.2.

Forward, reverse square function estimates and maximal inequalities

To prove (3.29), which asks for a nontrivial improvement from (3.27), we must
exploit the oscillations carried by Tλν , and the argument involves many different
elements. The most important among them is a deep result about a related cone
square function.

For 0 < r < 1 and ν ∈ W(r−1), a plank Θr
ν centered at (ξν , 1) is defined by

Θr
ν :=

{
Ξ ∈ R3 : |⟨Ξ, Ej(ν)⟩| ≲ r(3−j)/2 for j = 1, 2 and |⟨Ξ, E3(ν)⟩| ≈ 1

}
where

E1(ν) :=

(
ξν
−1

)
, E2(ν) :=

(
ξ⊥ν
0

)
, E3(ν) :=

(
ξν
1

)
.

Note that {Θr
ν : ν ∈ W(r−1)} is a collection of finitely overlapping convex boxes

covering the r-neighbourhood of the truncated piece (at height one) of light cone
Λ1.

The result of Guth–Wang–Zhang [26] gives the sharp (reverse) square function
estimates associated to these planks.5

Theorem 3.4.1 (Theorem 1.1, [26]). Let 0 < r < 1. Consider a collection
{fν ∈ S(R3)}ν∈W(r−1) such that supp f̂ν ⊆ Θr

ν. It follows that for any ε > 0,

5Interested reader should also see [37, §1] and [35] for previous results for square function.
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there exists Cε > 0 such that∥∥∥ ∑
ν∈W(r−1)

fν

∥∥∥
L4(R3)

≤ Cεr
−ε
∥∥∥( ∑

ν∈W(r−1)

|fν |2)1/2
∥∥∥
L4(R3)

.

The proof of the square function estimate is highly nontrivial and beyond the
scope of this discussion. For this reason, we omit its proof here.

To apply Theorem 3.4.1 for the local smoothing problem, we fix g ∈ S(R2).
Using the support properties of β and χν , we see that the space-time Fourier
transform of Tλν(g) is supported inside the scaled plank6 λΘλ−1

ν . Therefore, after
setting r = λ−1, Theorem 3.4.1 combined with a simple scaling argument gives∥∥Tλ(g)∥∥

L4(R3)
≤ Cελ

ε
∥∥∥( ∑

ν∈W(r−1)

|Tλν(g)|2)1/2
∥∥∥
L4(R3)

. (3.30)

Now, we claim that∫
R3

∑
ν∈W(λ)

|Tλν(g)(x, t)|2 · f(x, t)dxdt ≲ε λ
ε∥g∥L4(R2) for any ε > 0, (3.31)

whenever f ∈ L2(R3) and ∥f∥L2(R3) ≤ 1.

To prove the claim, we first note that the frequency localisation present in the

operator can be translated to the function g. Let
≈
β ∈ C∞

c (R) be defined such that

supp
≈
β ⊆ [−1/8, 8] and

≈
β · β̃ = β̃. Similarly, for ν ∈ W(λ), define χ̃ν ∈ C∞(R2)

in such a manner that it satisfies all the properties7 of χν and χ̃ν ·χν = χν . Upon
defining gλν to be such that

Fx(g
λ
ν )(ξ) := Fx(g)(ξ)

≈
β(λ−1|ξ|)χ̃ν(ξ),

it follows immediately from the definitions that Tλν(g)(x, t) = Tλν(g
λ
ν )(x, t) for

almost every (x, t) ∈ R3. By the Cauchy–Schwarz inequality and (3.26), we
obtain

|Tλν(g)(x, t)|2 = |Tλν(gλν )(x, t)|2 ≲ (|Kλ
ν ( · , t)| ∗ |gλν |2)(x).

6For a set E ⊆ Rd and r ∈ R, recall that rE denotes the scaled set {y ∈ Rd : r−1y ∈ E}.
7with a reasonable modification of item (iii) in its properties
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Thus, for f ∈ L2(R3), we can make the following deductions:∫
R3

∑
ν∈W(λ)

|Tλν(g)(x, t)|2 · |f(x, t)| dxdt

≤
∫
R2

∑
ν∈W(λ)

[∫
Rd

|Kλ
ν (x− y, t)||gλν (y)|2dy

]
· |f(x, t)| dxdt

=

∫
R2

∑
ν∈W(λ)

|gλν (y)|2 ·
(∫

R2

|Kλ
ν (x− y, t)||f(x, t)| dxdt

)
dy.

≤
∫
R2

 ∑
ν∈W(λ)

|gλν (y)|2
Nλ−1,plane(f)(y) dy

≤
∥∥∥( ∑

ν∈W(λ)

|gλν |2)
1
2

∥∥∥
L4(R2)

· ∥Nλ−1,plane(f)∥L2(R2), (3.32)

where

Nλ−1,plane(f)(y) := sup
ν∈W(λ)

∫
R3

|Kλ
ν (x− y, t)||f(x, t)|dxdt for y ∈ R2.

The forward square estimate required to bound the first term in (3.32) is obtained
by Cordoba [15].

Theorem 3.4.2 (Cordoba [15]). For g, gλν as defined above and for any ε > 0,
we have

∥(
∑

ν∈W(λ)

|gλν |2)
1
2∥L4(R2) ≲ε λ

ε∥g∥L4(R2).

An alternate proof of Theorem 3.4.2 is given by Carbery–Seeger [10, Propo-
sition 4.6]. We omit the proof of the theorem here.

In view of the forward square function estimate, we move to the most im-
portant result for this thesis, the L2 norm bound on Nλ−1,plane, a Nikodym type
maximal operator associated to the circle.

Theorem 3.4.3 (Lemma 1.4, [37]). For any ε > 0, we have

∥Nλ−1,plane∥L2(R3)→L2(R2) ≲ε λ
ε.

Combining the discussion so far, we complete the proof of the sharp local
smoothing theorem.

Proof of Theorem 3.3.2. By combining Theorem 3.4.3, Theorem 3.4.2 and (3.32),
we yield the claim (3.31). Combining this inequality with (3.30), we obtain (3.29).
Now, using Marcinkiewicz’s interpolation theorem [52, §4], we can interpolate
between the operator estimates (3.29), (3.28) and (3.27). Thus, we obtain (3.22),
concluding the proof of Theorem 3.3.2.
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Brief discussion on the Nikodym maximal estimate

The first step in proving Theorem 3.4.3 is to relate the maximal function with
its geometric variant. To this end, we note that (3.25) implies rapid decay of the
function Kλ

ν away from the box

T λsν :=
{
(x, t) ∈ R2 × [1, 2] : |(x, t) · (ξν , 1)| ≤ λ−1, |(x, t) · (ξ⊥ν , 0)| ≤ λ−1/2

}
,

where sν ∈ [0, 2π) is chosen such that ξν = (cos sν , sin sν). In view of this, we
define the geometric maximal function

N geom
λ−1,plane(f)(y) := sup

s∈[0,2π)

1

|T λs |

∫
Tλ
s

|f(x− y, t)|dxdt,

whenever f ∈ S(R3). In [37], the authors were able to estimate the L2 operator
norm of N geom

λ−1,plane and obtain Theorem 3.4.3 as a consequence.

Theorem 3.4.4 (Nikodym maximal estimate: geometric version). For any ε > 0,
we have

∥N geom
λ−1,plane∥L2(R3)→L2(R2) ≲ε λ

ε.

Theorem 3.4.4 =⇒ Theorem 3.4.3. Let us begin by dyadically decomposing the
R3 spaces using dilates of the boxes of the form T λs . For k ≥ 2, define8 Wk,ν :=
2k+1T λsν \ 2

kT λsν and set W1,ν := T λsν . Now, the decay estimate (3.25) implies that

|Kλ
ν (x, t)| ≲N

∑
k∈N

2−kNλ3/2χWk,ν
(x, t) for N ≥ 1.

Temporarily fix N . For y ∈ R2, we have∫
R3

|Kλ
ν (x, t)||f(x− y, t)|dxdt

≲
∑
k∈N

2−kNλ3/2
∫
Wk,ν

|f(x− y, t)|dxdt

≲
∑
k∈N

2−kN+3(k+1) 1

|2k+1T λsν |

∫
2k+1Tλ

sν

|f(x− y, t)|dxdt.

Taking the supremum in ν, we obtain

Nλ−1,plane(f)(y) ≲
∑
k∈N

2−kN+3(k+1) sup
s∈(0,2π]

1

|2k+1T λs |

∫
2k+1Tλ

s

|f(x− y, t)|dxdt.

8Note that the dilates are defined with respect to the centroid of the tube. In particular,

2kTλ
sν := {(x, t) ∈ R2 × [1, 2] : |(x, t) · (ξν , 1)| ≤ 2kλ−1, |(x, t) · (ξ⊥ν , 0)| ≤ 2kλ−1/2}
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However, for each k ∈ N, a simple change of variables gives

sup
s∈(0,2π]

1

|2k+1T λs |

∫
2k+1Tλ

s

|f(x− y, t)|dxdt =
(
N geom
λ−1,plane(f2−(k+1))

)
2(k+1)(y),

where we use the notation9 hr to represent the r- dilate of a function h : Rm → R,
defined by

hr(w1, . . . , wm) := h(r−1w1, . . . , r
−1wm) for (w1, · · · , wm) ∈ Rm

whenever r > 0. Using Theorem 3.4.4, we compute that

∥
(
N geom
λ−1,plane(f2−(k+1))

)
2(k+1)∥L2(R2) = 2(k+1)∥

(
N geom
λ−1,plane(f2−(k+1))

)
∥L2(R2).

≲ε λ
ε2(k+1)∥f2−(k+1)∥L2(R3)

= λε2−(k+1)/2∥f∥L2(R3),

for any ε > 0. Therefore,

∥Nλ−1,plane(f)∥L2(R2) ≤
∑
k∈N

2−kN+3(k+1)∥
(
N geom
λ−1,plane(f2−(k+1))

)
2(k+1)∥L2(R2)

≲ϵ λ
ε
∑
k∈N

2−kN+5(k+1)/2∥f∥L2(R3),

for any ε > 0. By setting N = 10, we conclude the proof of Theorem 3.4.3.

As we have hinted before, the purpose of our literature review so far is to
introduce this version of the Nikodym-type maximal function. The next chap-
ter considers the study of estimating higher dimensional versions of N geom

λ−1,plane.
Theorem 3.4.4 then follows as a consequence of the main result (Theorem 4.1.2)
over there. Because of this, we omit any discussion on the proof of Theorem
3.4.4 here. Nevertheless, it is worth pointing out that estimating the maximal
function N geom

λ−1,plane is comparatively simpler than the circular maximal problem.
One reason behind the relative simplicity is that the class of curves associated to
N geom
λ−1,plane consists of line segments whose intersection patterns are much easier

to study compared to those of curved objects. Furthermore, in contrast with the
circular maximal theorem, here we are tasked to estimate the L2 operator norm
of the maximal function, which allows us to efficiently use the machinery of the
Fourier transform.

9Note that the notation used here differs from that introduced in §1.1.1.
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3.5 Nikodym maximal estimates and

a local smoothing problem in Rd.

Let I := [−1, 1] and consider a curve γ : I → Rd. We say that γ is non-degenerate
if there exists A > 1 such that

A−1|ξ| ≤
d∑
i=1

|⟨γ(i)(s), ξ⟩| ≤ A|ξ| for ξ ∈ Rd and s ∈ I.

For s ∈ I, let {e1(s), . . . , ed(s)} denote the collection of Frenet frame basis vec-
tors, formed by applying Gram–Schmidt process to the set {γ(1)(s), . . . , γ(d)(s)}.
The curve γ defines a one-parameter family of directions in Rd+1. For r ∈ (0, 1),

we consider an anisotropic tube in Rd+1 in the direction of

(
γ(s)
1

)
, defined by

Tr(s) :=
{
(x, t) ∈ Rd × [1, 2] : |⟨x− tγ(s), ej(s)⟩| ≤ rmin{j/2,1} for 1 ≤ j ≤ d

}
.

(3.33)

Consider the maximal function

Nr(f)(y) := sup
s∈I

1

|Tr(s)|

∫
Tr(s)

|f(x− y, t)|dxdt, y ∈ Rd (3.34)

for any f ∈ L1
loc(Rd+1). We will be obtaining L2 norm estimates for this maximal

function.

Theorem 3.5.1. Let r ∈ (0, 1). For any ϵ > 0, there exists Cϵ > 1 such that

∥Nr∥L2(Rd+1)→L2(Rd) ≤ Cεr
−ε

The proof of Theorem 3.5.1 is contained in Chapter 3 (See Theorem 4.1.2).
The purpose of the present section, however, is to place this result in the study
of a local smoothing problem in Rd.

3.5.1 A higher dimensional local smoothing problem

Let a ∈ C∞(Rd \ {0} × I × [1, 2]) be a symbol of order 0. In other words, for
every multi-indices α, β, γ ∈ Zd, we have

|∂αξ ∂βs ∂
γ
t a(ξ, s, t)| ≲α,β,γ (1 + |ξ|)−|α| for (ξ, s, t) ∈ supp a.

We are interested in a higher dimensional local smoothing problem that fo-
cuses on the Fourier integral operator

m[a](D)f(x, t) := (2π)−d
∫
Rd

ei⟨x,ξ⟩m[a](ξ, t)f̂(ξ)dξ for (x, t) ∈ Rd+1 and
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f ∈ S(Rd+1), where the multiplier is defined as

m[a](ξ, t) =

∫
I

e−it⟨γ(s),ξ⟩a(ξ, s, t)ds for (ξ, t) ∈ Rd+1. (3.35)

When d = 2 and γ is the unit circle, an asymptotic expression form[a] is available
through stationary phase methods. This fact enabled us to present the proof of
the local smoothing problem in the plane neatly. However, when d ≥ 3, we do
not possess such an explicit form to work with. Nevertheless, in view of (3.35),
we write

m[a](D)f(x, t) = (2π)−d
∫
R̂

∫
R
ei⟨x−tγ(s),ξ⟩a(ξ, s, t)f̂(ξ)dsdξ.

Recall the definition of β from (3.3) and write

aλ(ξ, s, t) := a(ξ, s, t)β(λ−1|ξ|) for (ξ, s, t) ∈ supp a, λ ∈ 2N.

The sharp local smoothing conjecture in this setup can be formulated as below.

Conjecture 3.5.2 (§1, [32]). Let d ≥ 3. For λ ∈ 2N, the operator norm estimate

∥m[aλ](D)∥Lp(Rd)→Lp(Rd×[1,2]) ≲p,σ λ
−σ hold for σ < σcrit(p),

where

σcrit(p) =

{
1/d for 2 ≤ p ≤ 2d,

2/p for p > 2d.

To the author’s best knowledge, the best-known partial result in the way of
establishing the conjecture comes from the recent work of Ko–Lee–Oh [32]. Their
result obtained sharp local smoothing estimates in the restricted range p ≥ 4d−2
for any d ≥ 3.

Through arguments almost identical to the ones in §3.2, the local smoothing
conjecture implies Lp estimates for a related maximal function in Rd. To introduce
the maximal function, we consider a probability measure σ supported on the non-
degenerate curve γ. For t > 0, define the dilated measure σt by the action

⟨σt, f⟩ = ⟨σ, f(t · )⟩ for f ∈ L1
loc(Rd).

Consider the maximal function

Mγ
df(x) := sup

t>0
|σt ∗ f(x)| for x ∈ Rd

whenever f ∈ L1
loc(Rd). The sharp local smoothing conjecture implies sharp Lp

estimates for this maximal function.

Conjecture 3.5.3 (§1, [32]). Let d ≥ 3. For γ non-degenerate,

∥Mγ
d∥Lp(Rd)→Lp(Rd) ≲d,p,γ 1

for any p > d.
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When d = 3, the maximal conjecture follows from the independent results of
[3] and [31]. When d ≥ 4, the best partial result comes from [31, Theorem 1.4],
where Lp boundedness of Mγ

d is obtained in the restricted range p > 2(d− 1).

As the higher dimensional local smoothing conjecture is extremely difficult to
prove, we focus on a simpler problem wherein we restrict the support of the symbol
to a region where a stronger non-degeneracy condition holds. In particular, we
will be only interested in the region where the inequalities

A−1|ξ| ≤ |⟨γ(1)(s), ξ⟩|+ |⟨γ(2)(s), ξ⟩| ≤ A|ξ|, (3.36)

hold for (ξ, s) ∈ suppξ,s a. In this simplified setup, we expect the operator
m[aλ](D) to have an Lp operator decay, similar to Tλ, since the non-degeneracy
assumptions resemble the planar setup. Having said that, we must also be cau-
tious of the fact that the Fourier Integral Operator Tλ differs from m[aλ](D) (for
d = 2) by a symbol of order 1/2. This difference must be reflected in their decay
estimates.

Conjecture 3.5.4. Let γ ⊆ Rd be a non-degenerate curve and a be a symbol
order zero. Assume that the strong non-degeneracy assumptions (3.36) hold in
support of a. For λ ∈ 2N, it follows that

∥m[aλ](D)∥Lp(Rd)→Lp(Rd×[1,2]) ≲p,α λ
−α for α < αcrit(p), (3.37)

where

αcrit(p) =

{
1/2 for 2 < p ≤ 4,

2/p for p > 4.

Extending the arguments from §3.4, we sketch a possible proof to this con-
jecture, conditional on certain square function estimates. As one can imagine,
Theorem 3.4.3 will feature in this argument.

3.5.2 Initial reductions

Recall that the specific form of the local smoothing operator Tλ (in particular, the
form of the phase function in (3.19)) made it more or less immediate to identify
the ‘most singular’ part of the operator in the planar case. As we lack a compact
expression (such as (3.23)) for the Fourier transform of a measure supported on
γ ⊆ Rd when d ≥ 3, additional deductions are required to achieve the same goal
here. By carrying out many step-by-step reductions, we will now show that the
most singular part of the operator m[aλ](D) has many characteristics similar to
Tλ.

We note that many of the ideas in this subsection are taken from [3].

Strengthening the non-degeneracy condition

To begin with, we reduce the proof to a situation where stronger non-degeneracy
conditions hold.
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Conjecture 3.5.5. Let γ be a non-degenerate curve and a ∈ S0. Suppose there
exists B > 1 and s∗ ∈ I such that

B−1|ξ| ≤ |⟨γ(2)(s), ξ⟩| ≤ B|ξ| for (ξ, s) ∈ suppξ(a)× I (3.38)

and
|⟨γ(1)(s∗), ξ⟩| ≤ 10−10B−1|ξ| for ξ ∈ suppξ(a). (3.39)

For λ ∈ 2N, it follows that

∥m[aλ](D)∥Lp(Rd)→Lp(Rd×[1,2]) ≲p λ
−α for α < αcrit(p). (3.40)

The following argument is motivated from [41, §4.3].

Conjecture 3.5.5 =⇒ Conjecture 3.5.4. Consider the function

g(ξ, s) := ⟨γ(1)(s), ξ/|ξ|⟩ for (ξ, s) ∈ Rd \ {0} × I,

and let
Cγ := sup

s,ξ
|(∇ξg)(s, ξ)|, Dγ := sup

s,ξ
|⟨γ(2)(s), ξ⟩|.

Fix constants 0 < c3 < c2 < c1 ≪ 1. Let {ξi}i∈N denote a (c2λ)/2 sepa-
rated subset of B(0, 2λ) ⊆ Rd. Similarly, let {sj}j∈N denote a (c3/2) separated
subset of R. Suppose {ϕλi }i∈N is a smooth partition of unity in Rd associated to
the collection of balls {B(ξi, c2λ)}i∈N and let {ψj}j∈N denote a smooth partition
of unity in R associated to the collection of intervals {B(sj, c3)}j∈N. Defining
aλi,j(ξ, s, t) := aλ(ξ, s, t)ϕλi (ξ)ψj(s) for (ξ, s, t) ∈ Rd+2, we can write

aλ(ξ, s, t) =
∑
i,j

aλi,j(ξ, s, t).

Note that only O((c2c3)
−1) many symbols aλi,j are non-zero, and each of them is

of order 0. Thus, it suffices to prove (3.37) after replacing aλ with aλi,j for fixed
indices (i, j) ∈ N2.

Depending on the size of the value g takes at (ξi, sj), two cases arise here:

Case 1 (|g(ξi, sj)| < c1): For (ξ, s) ∈ suppξ,s a
λ
i,j, the mean value theorem gives

|g(ξ, s)− g(ξi, sj)| ≤ |g(ξ, s)− g(ξ, sj)|+ |g(ξ, sj)− g(ξi, sj)|
≤ sup

t∈[0,1]
|∇ξg(tξi + (1− t)ξ, sj)|λc2 +Dγc3

≤ Cγc2 +Dγc3.

Note that in the final step, we used the fact that g is homogeneous of degree zero
in ξ variable and |ξ| ≈ λ on the support of aλ. Thus, if c2, c3 are chosen small
enough depending on c1 and γ, we can estimate

|⟨γ(1)(s), ξ⟩| ≤ 2c1|ξ| for all (ξ, s) ∈ suppξ,s a
λ
i,j.

Now, by choosing c1 small enough depending on A and combining this inequality
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with (3.36), we obtain (3.38) for B := A/2 and (ξ, s) ∈ suppξ,s a
λ
i,j. If we set

s∗ = sj, (3.39) also becomes clear. Therefore, we can apply Conjecture 3.5.5 in
this case, and (3.37) follows from (3.40).

Case 2 (|g(ξi, sj)| ≥ c1): By following the argument from case 1, we deduce that

|g(ξ, s)| ≥ c1
2

for (ξ, s) ∈ suppξ,s a
λ
i,j. (3.41)

For f ∈ S(Rd), recall that

m[aλi,j](D)f(x, t) := (2π)−d
∫
ei⟨x−tγ(s),ξ⟩aλi,j(ξ, s, t)f̂(ξ)dsdξ.

Note that by (3.41), we have a lower bound on the derivative of the phase function
here. If Kλ

i,j denote the kernel associated to m[aλi,j](D), a simple integration-by-
parts argument gives∣∣∣∣∫ ei⟨x−tγ(s),ξ⟩aλi,j(ξ, s, t)dsdξ

∣∣∣∣ ≲N,M
λ−(N−d)

(1 + λ|x|)M
for x ∈ Rd, N,M ∈ N.

The above estimate immediately implies that

∥m[aλi,j](D)∥Lp(Rd)→Lp(Rd×[1,2]) ≲N λ−N ,

completing the argument for case 2.

The highlight of the stronger non-degeneracy assumptions in Conjecture 3.5.5
is that by combining (3.38) and (3.39) with the Implicit function theorem we can
ensure the existence of a smooth map s : suppξ a

λ → I such that

⟨γ(1) ◦ s(ξ), ξ⟩ = 0 for ξ ∈ suppξ a
λ. (3.42)

This map plays a vital role in the reductions to follow. Note that by implicitly
differentiating (3.42), we have

∂ξjs(ξ) = −⟨γ(1) ◦ s(ξ), ej⟩
⟨γ(2) ◦ s(ξ), ξ⟩

for ξ ∈ suppξ a
λ and 1 ≤ j ≤ d, (3.43)

where ej denotes that standard jth basis vector in R̂d.

Localisation along the curve

Using non-stationary phase arguments, we can restrict the (ξ, s)-support of the
symbol to a neighbourhood of the ‘degenerate’ surface

Σd
λ := {(ξ, s(ξ)) : ξ ∈ suppξ a

λ}.
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Let 0 < ε0 ≪ 1. Recalling the definition (3.3), write

aλ(ξ, s, t) = aλ(ξ, s, t)[η(c−1
0 λ1/2−ε0(s− s(ξ))) + (1− η(c−1

0 λ1/2−ε0(s− s(ξ)))]

= aλ,ε0main(ξ, s, t) + aλ,ε0err (ξ, s, t),

where c0 = 10−2B−1/2 is an auxiliary constant. Estimating the operator norm of
m[aλ,ε0err ](D) is an easy matter, as shown by the following lemma.

Lemma 3.5.6. For p ∈ [1,∞], we have

∥m[aλ,ε0err ](D)∥Lp(Rd)→Lp(Rd×[1,2]) ≲N λ−N for N ∈ N0.

Proof. Suppose Kλ,ε0
err denote the kernel associated to m[aλ,ε0err ](D). In other words,

Kλ,ε0
err (x, t) = (2π)−d

∫
Rd×I

ei⟨x−tγ(s),ξ⟩aλ,ε0err (ξ, s, t)dξds for (x, t) ∈ Rd+1.

(3.44)

We aim for rapid L1 decay estimates for Kλ,ε0
err ( · , t), uniformly in t. From the

definition, it is clear that |s− s(ξ)| ≥ c0λ
−(1/2−ε0) in the support of the integrand

in (3.44). By the mean value theorem and (3.38), we have

|⟨γ(1)(s), ξ⟩| ≥ B−1λ · c0λ−(1/2−ε0) = c0B
−1λ1/2+ε0 for (ξ, s) ∈ suppξ,s a

λ,ε0
err .

By Leibniz rule, we deduce that

|∂βs aλ,ε0err (ξ, s, t)| ≲β,c0 λ
(1/2−ε0)β ≲c0,B λ

−2ε0β|⟨γ(1)(s), ξ⟩|β,

for any β ∈ N0 and (ξ, s, t) ∈ supp aλ,ε0err . Using a standard integration-by-parts
argument in the s variable, we obtain

∥Kλ,ε0
err ( · , t)∥L∞(Rd) ≲N λ−ε0N for N ∈ N0 and t ∈ [1, 2].

As a matter of fact, a stronger estimate for the kernel is achievable if we also
integrate-by-parts in ξ variable in (3.44). To do so, we record the ξ derivative
estimates of the symbol. By elementary computations, we deduce the estimate

|∂αξ s(ξ)| ≲α,B,γ |ξ|−|α| for ξ ∈ suppξ a
λ and α ∈ Nd

0

from (3.43) and (3.38). Therefore, by Leibniz rule,

|∂αξ ∂βs aλ,ε0err (ξ, s, t)| ≲α,β,c0,B λ
−(1/2+ε0)|α|λ−2ε0β|⟨γ(1)(s), ξ⟩|β

for α ∈ Nd
0 and β ∈ N0. We can now carry out an integration-by-parts argument in

both ξ, s variables in (3.44) (we use the differential operator Lξ,s := ( −1
it⟨γ(1)(s),ξ⟩∂s)◦

⟨x−tγ(s),∇ξ⟩
|x−tγ(s)|2 to run the integration-by-parts argument). In particular, we obtain

∥(1 + | · |10d)Kλ,ε0
err ( · , t)∥L∞(Rd) ≲N λ−ε0N for N ∈ N0 and t ∈ [1, 2].
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The statement of the lemma follows immediately from here.

Because of Lemma 3.5.6, it suffices to estimate the operatorm[aλ,ε0main]. The next
step is to identify the essential support of the spatio-temporal Fourier transform
of this operator.

Spatio-temporal localisation

Let m ∈ L∞(Rd+1) be a function that takes the frequency variables (ξ, τ) as its
arguments. We define the Fourier integral operator m(D) by

m(D)f(x, t) := (2π)−(d+1)

∫
Rd+1

ei(⟨x,ξ⟩+tτ)m(ξ, τ)f̂(ξ)dξdτ for f ∈ S(Rd)

whenever (x, t) ∈ Rd+1.
Consider the function

h(ξ) := ⟨γ ◦ s(ξ), ξ⟩ for ξ ∈ suppξ a
λ.

It is clear that h is a homogeneous function of degree one. Consider the cone

Σd := {(ξ, τ) ∈ Rd+1 : τ + h(ξ) = 0}.

Recall that in the planar problem, the spatio-temporal Fourier transform of Tλ

supports inside a neighborhood of the light cone in R3. In similar fashion, the
lemma below shows that the most degenerate part of m[aλ](D)f has its spatio-
temporal Fourier transform supported near Σd

λ. Consider the multiplier functions

mλ,ε0
main(ξ, τ) := Ft[m[aλ,ε0main](ξ, ·)](τ)η(λ−2ε0(τ + h(ξ))), (3.45)

mλ,ε0
err := Ft[m[aλ,ε0main]]−mλ,ε0

main.

By the non-stationary phase methods, we can see that the contributions coming
from mλ,ε0

err are negligible.

Lemma 3.5.7. For p ∈ [1,∞], we have

∥mλ,ε0
err (D)∥Lp(Rd)→Lp(Rd+1) ≲N λ−N , for any N ∈ N.

Proof. Let Kλ,ε0err denote the kernel associated to mλ,ε0
err (D). Write

Kλ,ε0err (x, t) = (2π)−(d+1)

∫
Rd+1

ei(⟨x,ξ⟩+t·τ)mλ,ε0
err (ξ, τ)dξdτ.

We aim to prove rapid L1 decay estimates for Kλ,ε0err , or, equivalently, efficient
regularity estimates for the multiplier mλ,ε0

err . Unwinding the definitions, we see
that mλ,ε0

err (ξ, τ) is the same as

(1− η(λ−2ε0(τ + h(ξ))))

∫
I×R

e−it(τ+⟨γ(s),ξ⟩)aλ(ξ, s, t)η(c−1
0 λ1/2−ε0(s− s(ξ)))dsdt.

(3.46)
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By recalling the support properties of η from (3.3), observe that |τ +h(ξ)| ≥ λ2ε0

in the support of mλ,ε0
err . By Taylor’s theorem,

τ + ⟨γ(s), ξ⟩ = τ + h(ξ) + (s− s(ξ))2⟨γ(2)(s0), ξ⟩ for some s0 ∈ [s, s(ξ)].

However, in view of the s-localisation and (3.38),

(s− s(ξ))2|⟨γ(2)(s0), ξ⟩| ≤ 8Bc20λ
−1+2ε0λ = 8Bc20λ

2ε0

in the support of the integrand of (3.46). As c0 is chosen sufficiently small, the
inequality |τ+⟨γ(s), ξ⟩| ≳ λ2ε0 holds in the same support. By integration-by-parts
in the t-variable,

|∂βτ ∂αξ (mλ,ε0
err (ξ, τ))| ≲N λ−2ε0N for |α|+ |β| ≤ 10, N ∈ N

and (ξ, τ) ∈ supp mλ,ε0
err . The statement of Lemma 3.5.7 is immediate now.

By combining Lemma 3.5.6 and Lemma 3.5.7, we deduce that

∥m[aλ](D)g∥Lp(Rd+1) ≲ ∥mλ,ε0
main(D)g∥Lp(Rd+1) +ON(λ

−N∥g∥Lp(Rd)) for N ≥ 1

whenever g ∈ Lp(Rd). Therefore, to prove Conjecture 3.5.5, it suffices to estimate
the Lp norm of mλ,ε0

main. The key observation here is that the spatio-temporal
frequency support properties of the operator is very similar to that of Tλ from
the R2 setup. In particular, the co-dimension one surface Σd

λ here seems to be
the equivalent of the truncated light cone for latter setup. In view of this, our
attempt to estimate its operator norm will be along the lines of the method
explained (which will be referred to as the M–S–S scheme) in §3.4. Let us also
note that our attention will be restricted to obtaining (3.37) solely for the case
p = 4, which is the critical exponent.

3.5.3 Implementing the M–S–S scheme

The first step is to decompose the neighbourhood of the slow decaying cone Σd
λ.

The decomposition we have here originates from [3] (See [3, Definition 5.1]).

Plank decomposition and the square functions

Let {sν ∈ I : ν ∈ Ω(λ−1/2+ε0)} be a collection of points in I whose elements are

separated by a factor of c0λ
− 1

2
+ε0 , so that the index set Ω(λ−1/2+ε0) has cardinality

O(λ
1
2
−ε0). Define

aλ,ε0ν (ξ, s, t) := aλ,ε0main(ξ, s, t)η(c
−1
0 λ1/2−ε0(s(ξ)− sν))) (3.47)

and

mλ,ε0
ν (ξ, τ) := η[λ−2ε0(τ + h(ξ))]Ft[m[aλ,ε0ν ](ξ, ·)](τ)

= mλ,ε0
main(ξ, τ)η(c

−1
0 λ1/2−ε0(s(ξ)− sν)). (3.48)
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To parametrise the planks that cover the slow-decaying cone Σd, we introduce
the notion of the lift of a curve. For γ : I → Rd, its lift Γ is a curve in Rd+1

defined by

Γ(s) =

(∫ s
0
γ(t)dt
s

)
for s ∈ I.

Fix s ∈ I and r ∈ (0, 1). Since γ is assumed to be non-degenerate in Rd, the
curve Γ is, by definition, non-degenerate in Rd+1. Let

Vs :=
[
span({Γ(j)(s) : 1 ≤ j ≤ 3})

]⊥
.

Define a box Π(s, r) ⊆ Rd+1 to be the collection of all Ξ ∈ Rd+1 satisfying the
inequalities

|⟨Γ(1)(s),Ξ⟩| ≤ r2, (3.49)

|⟨Γ(2)(s),Ξ⟩| ≤ r, (3.50)

1/2 ≤ |⟨Γ(3)(s),Ξ⟩| ≤ 1, (3.51)

|projVs(Ξ)| ≤ 1, (3.52)

where projV : Rd+1 → V is the orthogonal projection onto the subspace V . With
this definition, it is not hard to verify that10

supp mλ,ε0
ν ⊆ CBλΠ(sν , λ

−1/2+ε0), (3.53)

for a constant CB that depends only on B. Indeed, (3.38) implies that

(2B)−1λ ≤ |⟨Γ(3)(sν),Ξ⟩| ≤ 2Bλ, (ξ, τ) ∈ suppξ a
λ × R. (3.54)

On the other hand, for any (ξ, τ) ∈ supp mλ,ε0
ν , Taylor’s theorem gives 11

|⟨Γ(1)(sν),Ξ⟩| = |τ + ⟨γ(sν), ξ⟩| ≤ |τ + h(ξ)|+ 2Bλ|sν − s(ξ)|2 ≲ λ2ε0 (3.55)

where we made use of the s-localisation in (3.48) with τ -localisation in (3.45) and
(3.38). Similarly, by combining (3.48), (3.38) and (3.42), we have

|⟨Γ(2)(sν),Ξ⟩| = |⟨γ(1)(sν), ξ⟩| ≤ |⟨γ(1) ◦ s(ξ), ξ⟩|+ 2Bλ|sν − s(ξ)| ≲ λ1/2+ε0

(3.56)

for any (ξ, τ) ∈ supp mλ,ε0
ν . Furthermore, the inequality

|projVs(Ξ)| ≤ |Ξ| ≲ λ for Ξ ∈ supp mλ,ε0
ν (3.57)

follows from (3.45) and (3.38). Comparing (3.49), (3.50), (3.51), (3.52) with
(3.55), (3.56), (3.54) and (3.57), we finally obtain (3.53).

As in §3.4, we now frame a reverse square function problem to move from
studying the whole operator to operators micro-localised to these planks. The

10Recall that for a set E ⊆ Rd and r ∈ R, rE denotes the scaled set {y ∈ Rd : r−1y ∈ E}.
11provided c0 is chosen sufficiently small compared to B
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reverse square function problem is the hardest part of the argument, and we
present its statement as a conjecture.

Conjecture 3.5.8. Let 0 < r < 1. Consider a collection {fν ∈ S(Rd+1) : ν ∈
Ω(r)} such that supp f̂ν ⊆ Π(sν , r). It follows that for any ϵ > 0, there exists
Cϵ > 0 such that∥∥∥ ∑

ν∈Ω(r)

fν

∥∥∥
L4(Rd+1)

≤ Cεr
−ε
∥∥∥( ∑

ν∈Ω(r)

|fν |2)1/2
∥∥∥
L4(Rd+1)

.

For the remainder of the section, we may assume the validity of the reverse
square function conjecture. Let g ∈ S(Rd). Recalling (3.53), we apply Conjecture
3.5.8 for r = λ−1/2+ε0 and a scaling argument to conclude that∥∥∥mλ,ε0

main(D)g
∥∥∥
L4(Rd+1)

≲d,ϵ λ
(1/2−ε0)ϵ

∥∥∥( ∑
ν∈Ω(λ−1/2+ε0 )

|mλ,ε0
ν (D)g|2)

1
2

∥∥∥
L4(Rd+1)

for any ϵ > 0. By Lemma 3.5.7, the right side can be dominated by

λ(1/2−ε0)ϵ
∥∥∥( ∑

ν∈Ω(λ−1/2+ε0 )

|m[aλ,ε0ν ](D)g|2)
1
2

∥∥∥
L4(Rd+1)

+ON(λ
−N)∥g∥L4(Rd) (3.58)

for any N ≥ 1.
As before, the main term in (3.58) is estimated via a duality argument, using

a forward square function estimate and Theorem 3.5.1. As the duality argument
has already been presented in §3.4, we will only identify the correct formulation
of the square function and the maximal problem in this case.

Suppose η̃, β̃ ∈ S(R1) are chosen such that supp η̃ ⊆ [−2, 2], supp β̃ ⊆ [1/4, 4],
η̃ · η = η and β̃ · β = β. Consider the Fourier multiplier operators χλ,ε0ν (D) where

χλ,ε0ν (ξ) := η̃(λ1/2−ε0(s(ξ)− sν))β̃(λ
−1|ξ|).

In view of the frequency localisations ofm[aλ,ε0ν ], we frame the appropriate forward
square function problem as below:

Theorem 3.5.9. For any ε > 0, there exists Cε > 0 such that∥∥∥( ∑
ν∈Ω(λ−1/2+ε0 )

|χλ,ε0ν (D)g|2
) 1

2
∥∥∥
L4(Rd)

≲ε λ
ε∥g∥L4(Rd) for any g ∈ S(Rd).

We may briefly discuss how Theorem 3.5.9 can be proved without going into
the details. The argument is an easy generalisation of a related proof presented
in [3]. In particular, [3, Proposition 8.10] deals with a similar square function
estimate when d = 3. The authors prove the required estimate by combining
two elements; an iteration scheme originating from Carbery–Seeger [10] and the
L2 boundedness of a related maximal function. It is not hard to see that the
iteration scheme can be generalised to higher dimensions from the d = 3 case it
was presented in. The required maximal estimate, on the other hand, is already
presented in great generality in the article; in particular, the maximal function
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considered in [3, Proposition 10.3] is defined in Rd for d ≥ 2 (see the cited reference
for further details). Because of these observations, the argument presented in [3]
can be modified to provide a proof for Theorem 3.5.9. As the focus of the thesis
is in a different direction, we omit the full details here.

Now, we can talk about the Nikodym maximal estimates. As before, to see
how we get to the definition (3.34) of the geometric maximal function, we must
look at the kernel of the operator m[aλ,ε0ν ](D).

Kernel estimates and final arguments

For s ∈ I, set Ws := span(γ(1)(s), γ(2)(s)). Recall that {e1(s), e2(s)} form an
orthonormal basis for Ws.

Let Kλ,ε0
ν denote the kernel associated to m[aλ,ε0ν ](D). The following lemma

describes the essential support of the kernel.

Lemma 3.5.10. Let λ ∈ 2N, ε0 ∈ (0, 1) and ν ∈ Ω(λ−1/2+ε0). For any N ≥ 1,
we have

|Kλ,ε0
ν (x, t)| ≲N

λ(d−1)+2ε0ρ(t)

(1+
∑2

j=1 λ
j
2−(j−2)ε0 |⟨x−tγ(sν),ej(sν)⟩|+λ|proj

W⊥
sν
(x−tγ(sν))|)N

whenever (x, t) ∈ Rd+1. In particular,

∥Kλ,ε0
ν ∥L1(Rd+1) ≲ε0 λ

−1/2+Cε0 for some constant C > 1.

Proof. Using the definition, we write

Kλ,ε0
ν (x, t) =

∫
R×R̂d

ei⟨x−tγ(s),ξ⟩aλ,ε0ν (ξ, s, t)dsdξ.

For s ∈ I, recall that {e3(s), · · · , ed(s)} ⊆ Rd form an orthonormal basis for
W⊥
s . Fix 1 ≤ j ≤ d and consider the differential operator

Lν,j := [i⟨x− tγ(sν), ej(sν)⟩]−1 ∂ej(sν),

so that Lν,j(ei⟨x−tγ(sν),ξ⟩) = ei⟨x−tγ(sν),ξ⟩. By repeated integration-by-parts,

|Kλ,ε0
ν (x, t)| =

∣∣∣∣∫ ei⟨x−tγ(sν),ξ⟩(L∗
ν,j)

N
[
eit⟨γ(sν)−γ(s),ξ⟩aλ,ε0ν (ξ, s, t)

]
dξds

∣∣∣∣
≲|{ξ ∈ R̂d : |ξ| ≈ λ, |s(ξ)− sν | ≲ λ−

1
2
+ε0}|·

sup
ξ∈suppξ aλ

∣∣∣∣∫
I

(L∗
ν,j)

N
[
eit⟨γ(sν)−γ(s),ξ⟩aλ,ε0ν (ξ, s, t)

]
ds

∣∣∣∣ .
Using the fact that ξ → s(ξ) is homogeneous of degree 0, it is not hard to prove
the estimate

|{ξ ∈ R̂d : |ξ| ≈ λ, |s(ξ)− sν | ≲ λ−
1
2
+ε0}| ≲ λ(d−1) · λ

1
2
+ε0 .
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Combining this with the s-localisation,

|Kλ,ε0
ν (x, t)| ≲ λ(d−1)+ 1

2
+ε0−( 1

2
−ε0) sup

(ξ,s,t)∈supp aλ

∣∣(L∗
ν,j)

N
[
eit⟨γ(sν)−γ(s),ξ⟩aλ,ε0ν (ξ, s, t)

]∣∣
(3.59)

Fix ξ ∈ suppξ a
λ. Our goal now is to estimate the quantities ∂ej(sν)

[
eit⟨γ(sν)−γ(s),ξ⟩

]
and ∂ej(sν)

[
aλ,ε0ν (ξ, s, t)

]
. By Taylor’s theorem,

γ(s)− γ(sν) = γ(1)(sν)(s− sν) + γ(2)(sν)(s− sν)
2 + γ(3)(s∗)(s− sν)

3,

for some s∗ ∈ (sν , s). Since γ(i)(s) ∈ span{e1(s), · · · , ei(s)} by construction, we
have

⟨γ(i)(s), ej(s)⟩ = 0 whenever i ≤ j − 1.

Therefore,12

|⟨γ(s)− γ(sν), ej(sν)⟩| ≲γ

{
|s− sν |j when j = 1 and 2 ,

|s− sν |3 when j ≥ 3.

Consequently, whenever s ∈ supps a
λ,ε0
ν , we deduce that

|∂ej(sν)
(
eit⟨γ(sν)−γ(s),ξ⟩

)
| ≲ λ−min{j,3}(1/2+ε0) for (ξ, s, t) ∈ supp aλ,ε0ν . (3.60)

To estimate the partial derivatives of the symbol, we compute

∂ej(sν)(β(λ
−1|ξ|)) = λ−1(∂ej(sν)β)(λ

−1|ξ|), (3.61)

∂ej(sν)(η(λ
1/2−ε0(s(ξ)− sν))) = λ1/2−ε0∂ej(sν)(s(ξ))(∂ej(sν)η)(λ

1/2−ε0(s(ξ)− sν))
(3.62)

By implicitly differentiating (3.42), we obtain

∂ej(sν)(s(ξ)) = −⟨γ(1) ◦ s(ξ), ej(sν)⟩
⟨γ(2) ◦ s(ξ), ξ⟩

for ξ ∈ suppξ a
λ and 1 ≤ j ≤ d.

By Taylor’s theorem,

γ(1) ◦ s(ξ) = γ(1)(sν) + γ(2)(sν)(s(ξ)− sν) + γ(3)(s∗)(s(ξ)− sν)
2

for some s∗ ∈ (sν , s). In view of the s-localisation in (3.47),

|⟨γ(1) ◦ s(ξ), ej(sν)⟩| ≲ λ−min{(j−1),2}(1/2−ε0) for (ξ, s) ∈ suppξ,s a
λ,ε0
ν . (3.63)

12This is only true when |s−sν | is smaller than 1. However, by decomposing the symbol into
many parts at the start, we can always ensure that this is the case.
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Combining (3.38), (3.62) and (3.63), we see that

|∂ej(sν)[η(λ1/2−ε0(s(ξ)− sν))]| ≲ λ1/2−ε0λ−1λ−min{(j−1),2}(1/2−ε0)

= λ−min{j/2,3/2}+min{j−2,1}ε0 . (3.64)

Now, combining (3.60), (3.61) and (3.64), we obtain

|∂ej(sν)(eit⟨γ(sν)−γ(s),ξ⟩aλ,ε0ν (ξ, s, t))| ≲

{
λ−j/2+(j−2)ε0 j = 1, 2

λ−1 j ≥ 3,

for any (ξ, s, t) ∈ aλ,ε0ν . Feeding this estimate back into (3.59), we can conclude
the decay estimate of Kλ,ε0

ν in the Lemma. The estimate on the L1 norm of Kλ,ε0
ν

follows immediately as a consequence.

In view of Lemma 3.5.10, the function Kλ,ε0
ν is essentially supported in the

tube Tr(sν) defined by (3.33), for r = λ−1. In view of this, we see that the
maximal function Nr is the higher dimensional equivalent of N geom

r,plane.
Now, by arguments very similar to the one presented in §3.4, we see that

Theorem 3.5.1, Theorem 3.5.9 and the kernel estimate from Lemma 3.5.10 implies
that ∥∥∥( ∑

ν∈Ω(λ−1/2+ε0 )

|m[aλ,ε0ν ](D)g|2)
1
2

∥∥∥
L4(Rd+1)

≲ε0 λ
Cϵ0∥g∥L4(Rd).

In view of the discussions until (3.58), we see that this completes the conditional
proof of Conjecture 3.5.4, as ε0 ∈ (0, 1) is chosen arbitrarily.
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Chapter 4

L2 estimates for a Nikodym
maximal function associated to
space curves

The content of this chapter is based on author’s own work in [49].

4.1 Introduction

As mentioned in §3.5, the goal of this chapter is study and estimate a higher
dimensional Nikodym maximal function.

Let I := [−1, 1] and γ := I → Rd be a C∞ non-degenerate curve. In other
words,

det
(
γ(1)(s) · · · γ(d)(s)

)
̸= 0 for all s ∈ I. (4.1)

For each s ∈ I and 1 ≤ i ≤ d, recall the definition of a Frenet frame basis vector
ei(s) from the initial discussions of §3.5. For r = (r1, . . . , rd) ∈ (0, 1)d, we consider

an anisotropic tube in Rd+1 in the direction of

(
γ(s)
1

)
, whose axis-lengths are

determined by r. Define

Tr(s) :=
{
(y, t) ∈ Rd × I : |⟨y − tγ(s), ej(s)⟩| ≤ rj for 1 ≤ j ≤ d

}
.

We define the corresponding averaging and maximal operator as

Aγ
rg(x, s) :=

1

|Tr(s)|

∫
Tr(s)

g(x− y, t)dydt for (x, s) ∈ Rd × I (4.2)

and

N γ
r g(x) := sup

s∈I
|Aγ

rg(x, s)| for x ∈ Rd,

whenever g ∈ L1
loc(Rd+1).

The main result in this chapter addresses the Lp boundedness problem for N γ
r
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under mild conditions on r.

Definition 4.1.1. A d-tuple r = (r1, . . . , rd) ∈ (0, 1)d is said to be admissible if

rd ≤ · · · ≤ r1 ≤ r
1/2
2 and rj ≤ r

k−j
k−i

i r
j−i
k−i

k for 1 ≤ i ≤ j ≤ k ≤ d. (4.3)

Our main theorem is as follows.

Theorem 4.1.2. Let r = (r1, . . . , rd) ∈ (0, 1)d be admissible. There exists
Cd,γ > 0 such that

∥N γ
r ∥L2(Rd+1)→L2(Rd) ≤ Cd,γ(log r

−1
d )d/2.

By interpolating with the trivial bound at L∞, we estimate the Lp operator
norm for the maximal function as O((log r−1

d )d/p) for 2 ≤ p ≤ ∞. This is sharp in
the sense that the Lp operator norm has polynomial blowup in δ−1 for 1 ≤ p < 2.
The result is new for d ≥ 4. The theorem also slightly strengthens the known
estimates for d = 2 and d = 3 (see [37, Lemma 1.4] and [3, Proposition 5.5],
respectively) by improving the dependence on r−1

d .
We have already seen that a specific case (see the special cases listed below)

of the maximal function arises in the study of local smoothing problems in higher
dimensions. It is also natural to consider N γ

r as a variant of the classical Nikodym
maximal function considered in [15]. The main difference lies in the dimensional
setup of the problem: by the above definition, N γ

r maps functions on Rd+1 to
functions on Rd, whereas the classical operator considered in [15] is a mapping
between functions on the same Euclidean space. A detailed discussion is included
in §4.5 where this relation is further explored.

Before proceeding to the main section containing the proof of Theorem 4.1.2,
let us discuss some of its special cases:

(i) Isotropic case: For 0 < δ < 1 and s ∈ I, consider a δ-tube in Rd+1 in
the direction of γ(s), defined as

Tδ(s) := {(y, t) ∈ Rd × I : |y − tγ(s)| ≤ δ}. (4.4)

As before, we introduce the corresponding averaging and maximal operator
as

Aγ
δg(x, s) :=

1

|Tδ(s)|

∫
Tδ(s)

g(x− y, t)dydt for (x, s) ∈ Rd × I

and

N γ
δ g(x) := sup

s∈I
|Aγ

δg(x, s)| for x ∈ Rd (4.5)

whenever g ∈ L1
loc(Rd+1).

By a simplified version of the argument presented in this chapter, the fol-
lowing result has been proved in [49].
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Theorem 4.1.3. Let γ : I → Rd be a non-degenerate curve. There exists
Cd,γ > 0 such that

∥N γ
δ ∥L2(Rd+1)→L2(Rd) ≤ Cd,γ(log δ

−1)d/2 for all 0 < δ < 1.

Theorem 4.1.2 is a stronger version of Theorem 4.1.3. To see this, we first
note that r = (δ, . . . , δ) is admissible by (4.3). By applying Theorem 4.1.2
for this special case, Theorem 4.1.3 follows easily.

(ii) Anisotropic case: Let 1 ≤ L ≤ d and r ∈ (0, 1). Suppose

ri =

{
ri when 1 ≤ i ≤ L,

rL when L < i ≤ d.

With these choices, it is not hard to check that r is admissible. But first,
observe that by setting L = 2, we obtain Theorem 3.5.1 as a consequence
of Theorem 4.1.2. Furthermore, if d = L = 2, we also reproduce Theorem
3.4.4 from the previous chapter.

In verifying the admissibility of r, the only non-trivial estimate to check is

rj ≤ r
k−j
k−i

i r
j−i
k−i

k for 1 ≤ i ≤ j ≤ k ≤ d. (4.6)

Its verification is done by cases.

Case a) Let i, j, k ≤ L or i, j, k ≥ L. In both cases, (4.6) follows from direct
computations.

Case b) Let i ≤ L and j, k ≥ L. Here, (4.6) follows from the inequality

i(k − j) + L(j − i)

k − i
≤ L(k − j) + L(j − i)

k − i
= L.

Case c) Let i, j ≤ L and k ≥ L. We can see that (4.6) now follows from
the inequality

i(k − j) + L(j − i)

k − i
≤ i(k − j) + k(j − i)

k − i
= j,

completing the verification of (4.6) in all the cases.

4.2 Initial reductions and Sobolev embedding

Many components of our proof are inspired from the existing literature [37, 3]
on the maximal function. However, our method of proof differs from the cited
works in two key respects. First, we use a fractional Sobolev embedding ar-
gument to dominate the maximal function by a Fourier integral operator (see
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Proposition 4.2.1). This allows us to fully access orthogonality in the subsequent
decomposition. Secondly, we use an induction scheme, which hides the complex-
ity of the root analysis in [3]. The induction is motivated by [32], where a (more
complex) induction argument is used to investigate the local smoothing problem
associated to averages along curves in Rd.

4.2.1 Initial reductions

Let I := [−1, 1] and γ : I → Rd be a non-degenerate curve, as in §4.1. We begin
by replacing the classical averaging operators by Fourier integral operators. Given
a ∈ L∞(R̂d × I × I), consider

A[a, γ]g(x, s) :=

∫
I

∫
Rd

ei⟨x−tγ(s),ξ⟩a(ξ, s, t)Fx(g)(ξ, t)dξdt for g ∈ S(Rd+1),

(4.7)

where Fx(g)(ξ, t) denotes F(g( · , t))(ξ), the Fourier transform of g in x only.
Define the associated maximal operator

N [a, γ]g(x) := sup
s∈I

|A[a, γ]g(x, s)|.

Choose a function ψ ∈ C∞
c (R) with supp ψ ⊆ [−1, 1] such that its inverse

Fourier transform ψ̌ is non-negative and ψ̌(y) ≳ 1 whenever |y| ≤ 1. Let χ̃I be a
non-negative smooth function that satisfies χ̃I(x) = 1 for all x ∈ I and χ̃I(x) = 0
when x /∈ [−2, 2]. Define

ar(ξ, s, t) :=
d∏
j=1

ψ(⟨ξ, ej(s)⟩rj)χ̃I(s)χ̃I(t). (4.8)

Let Kr denote the kernel of the averaging operator Aγ
r defined in (4.2). In

particular,

Kr(x, s, t) :=
1

|Tr(s)|
χTr(s)(x, t).

By integral formula for the inverse Fourier transform and a change of variable,

Kr(x, s, t) ≲d

∫
Rd

ei⟨x−tγ(s),ξ⟩ar(ξ, s, t)dξdt.

Thus, the pointwise estimate

|Aγ
rg(x, s)| ≲d |A[ar, γ]g(x, s)|

holds. It is therefore enough to bound the operator N [ar, γ].

We now perform an endpoint Sobolev embedding result to replace the L∞
s

norm in the maximal function with an L2
s norm. Here we write

DsA[a, γ] := (1 +
√
−∂2s )1/2A[a, γ],
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where a and γ are as above and (1+
√
−∂2s )1/2 is the fractional differential operator

in s with multiplier (1 + |σ|)1/2.

Proposition 4.2.1. For γ a nondegenerate curve, a d-tuple r = (r1, . . . , rd) with
ri+1 ≤ ri and ar as defined in (4.8), we have

∥N [ar, γ]g∥L2(Rd) ≲γ,d | log rd|1/2∥DsA[ar, γ]g∥L2(Rd+1) + ∥g∥L2(Rd+1)

for all g ∈ S(Rd+1).

Before proceeding to its proof, we make a brief remark about the statement
of the proposition. Recall from the classical Sobolev embedding theorem1 that
the embedding W 1/2+ϵ,2(R) ⊆ L∞(R) holds if and only if ϵ > 0. Therefore,
Proposition 4.2.1 is an endpoint result in the sense that it essentially embeds
a subset of the Sobolev space W 1/2,2 in L∞ (both in the s variable). The key
observation is that the Fourier transform (in the s variable) of the function we
consider in the proposition is essentially localised in the dual variable of s (see
(4.9) in the proof below). This is what allows us to achieve an embedding of this
form with a permissible loss in the operator norm.

Proof of Proposition 4.2.1. Let χ̃ : R → [0, 1] satisfy χ̃(σ) = 1 for all σ ∈
(−Cr−2

d , Cr−2
d ) and χ̃(σ) = 0 when σ /∈ (−2Cr−2

d , 2Cr−2
d ). The constant C =

C(d, γ) is chosen large enough to satisfy the requirements of the forthcoming
argument. Defining

Amain[ar, γ] := χ̃(1
i
∂s) ◦ A[ar, γ] and Aerr[ar, γ] := A[ar, γ]−Amain[ar, γ],

it suffices to prove

∥Amain[ar, γ]g∥L2
xL

∞
s (Rd×I) ≲d | log rd|1/2∥DsA[ar, γ]g∥L2(Rd+1), (4.9)

∥Aerr[ar, γ]∥L2
xL

∞
s (Rd×I) ≲γ,d ∥g∥L2(Rd+1) (4.10)

for all g ∈ S(Rd+1).

To prove (4.9), fix g ∈ S(Rd+1) and write

Amain[ar, γ]g(x, s) = χ̃1(
1
i
∂s) ◦DsA[ar, γ]g(x, s) for (x, s) ∈ Rd × I,

where χ̃1(σ) := (1 + |σ|)−1/2χ̃(σ). Temporarily fix x ∈ Rd. The above expres-
sion can be written as a convolution product in s variable between F−1

s (χ̃1) and
DsA[ar, γ]g(x, · ). Using Young’s inequality, Plancherel’s theorem and by noting
that the L2 norm χ̃1 is O(| log rd|1/2), we obtain

∥Amain[ar, γ]g(x, · )∥L∞
s (I) ≲ | log rd|1/2∥DsA[ar, γ]g(x, · )∥L2

s(R).

Combining Fubini’s theorem with the above estimate for each x ∈ Rd, we obtain
(4.9).

1which can be found in [24, Theorem 1.3.5].
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To prove (4.10), write

Aerr[ar, γ]g = (1 +
√
−∂2s )−1 ◦ (1 +

√
−∂2s ) ◦ (1− χ̃)(1

i
∂s) ◦ A[ar, γ]g

= χ̃2(
1
i
∂s) ◦ χ̃3(

1
i
∂s) ◦ A[ar, γ]g

where

χ̃2(σ) := (1 + |σ|)−1(1− χ̃(σ))1/2 and χ̃3(σ) := (1 + |σ|)(1− χ̃(σ))1/2

for σ ∈ R. Note that (1+ |σ|)−1(1− χ̃(σ))1/2 has uniformly bounded L2 norm (in
rd). Thus, an application of Young’s convolution inequality gives

∥Aerr[ar, γ]g(x, ·)∥L∞
s (I) ≲ ∥χ̃3(

1
i
∂s) ◦ A[ar, γ]g(x, ·)∥L2

s(R) for x ∈ Rd.

Integrating in x using Fubini’s theorem,

∥Aerr[ar, γ]g∥L2
xL

∞
s (Rd×I) ≲ ∥χ̃3(

1
i
∂s) ◦ A[ar, γ]g∥L2(Rd+1).

By Plancherel’s theorem, the quantity on the right can be estimated from above
by L2 norm of the function Berr[ar, γ, χ̃3]g, where

Berr[ar, γ, χ̃3]g(ξ, σ) :=

∫
I

br(ξ, σ, t)Fx(g)(ξ, t)dt

for

br(ξ, σ, t) := χ̃3(σ)

∫
I

e−i(σs+t⟨γ(s),ξ⟩)ar(ξ, s, t)ds. (4.11)

By Minkowski’s integral inequality and Plancherel’s theorem,

∥Berr[ar, γ, χ̃3]g∥L2(Rd+1) ≲ ∥br∥L∞
ξ,tL

2
σ(Rd×I×R)∥g∥L2(Rd×I).

Thus, the proof of (4.10) boils down to the estimate ∥br(ξ, · , t)∥L2
σ(R) ≲ 1 uni-

formly in (ξ, t) ∈ Rd × I. Since rd ≤ ri for all 1 ≤ i ≤ d, it follows from (4.8)
that

|ξ| ≲d r
−1
d for ξ ∈ suppξ ar. (4.12)

Thus, by choosing C large (in particular, it suffices to have C = 10d1/2∥γ∥C1),
we have

|σ + t⟨γ′(s), ξ⟩| ∼ |σ| whenever (ξ, s, t) ∈ supp ar and σ ∈ supp χ̃3.

Furthermore, using (4.8), (4.12) and the support properties of χ̃3, one obtains
the derivative bounds

|∂βs ar(ξ, s, t)| ≲β,γ,d r
−β
d ≲β,γ,d |σ|β/2 for β ∈ N,

whenever (ξ, s, t) ∈ supp ar and σ ∈ supp χ̃3. Combining these observations,
we apply integration-by-parts to estimate the oscillatory integral in (4.11). In
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particular,

br(ξ, σ, t) = ON,γ((1 + |σ|)−N) (ξ, t) ∈ Rd × I and N ≥ 1.

It is evident that the required L2
σ estimate for br(ξ, ·, t), uniformly in ξ and t

variables follows from this rapid decay. This completes the proof of (4.10).

Proposition 4.2.1 reduces the analysis to estimating the operator DsA[ar, γ].
Now, we radially decompose the frequency space using the smooth Littlewood–
Paley functions.

Recall the functions η, β ∈ C∞
c (R) satisfying (3.3) and (3.4). For λ ∈ {0}∪2N,

introduce the dyadic symbols

aλr (ξ, s, t) :=

{
ar(ξ, s, t)η(|ξ|) if λ = 0,

ar(ξ, s, t)β(|ξ|/λ) if λ ∈ 2N.
(4.13)

Theorem 4.1.2 is a consequence of the following result.

Proposition 4.2.2. Suppose λ ∈ {0} ∪ 2N and let r be admissible. Then,

∥DsA[aλr , γ]∥L2(Rd+1)→L2(Rd+1) ≲d,γ (log(2 + λ))(d−1)/2.

Proposition 4.2.2 =⇒ Theorem 4.1.2 . Let η̃, β̃ ∈ C∞
c (R) be two non-negative

functions such that η̃(r) = 1 for r ∈ supp η, β̃(r) = 1 for r ∈ supp β and

η̃(r) +
∑
λ∈2N

β̃(r/λ) ≲ 1 for all r ∈ R.

For g ∈ S(Rd+1), define

gλ :=

{
η̃
(
|1
i
∂x|
)
g if λ = 0,

β̃
(
|1
i
∂x/λ|

)
g if λ ∈ 2N.

It is clear from the definitions that DsA[aλr , γ]g = DsA[aλr , γ]g
λ. By Plancherel’s

theorem and the support properties of the aλr , we have

∥DsA[ar, γ]g∥2L2(Rd+1) ≲
∑

λ∈{0}∪2N
∥DsA[aλr , γ]g

λ∥2L2(Rd+1).

Applying Proposition 4.2.2 for each λ and observing that aλr = 0 when r−1
d ≲d λ,

we obtain

∥DsA[ar, γ]g∥2L2(Rd+1) ≲d,γ

∑
λ∈{0}∪2N

(log(2 + λ))d−1∥gλ∥2L2(Rd+1)

≲d,γ (log r
−1
d )d−1∥g∥2L2(Rd+1).

Combining the above inequality with Proposition 4.2.1, we deduce Theorem 4.1.2.
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The multiplier associated toDsA[a0r, γ] is a bounded function and so the λ = 0
case of Proposition 4.2.2 is immediate. More interesting cases arise when λ ∈ 2N.

4.3 The proof of Proposition 4.2.2

4.3.1 Some basic definitions

Our proof is based on an induction argument. We begin with a series of definitions
that describe the general forms of curves and symbols we encounter at several
stages of the induction.

Definition 4.3.1. For 1 ≤ L ≤ d, Define S(B,L) to be the collection of all
curves γ : I → Rd such that for all s ∈ I, we have

∥γ∥C2d(I) ≤ B and
∣∣ det (γ(1)(s) · · · γ(L)(s)

) ∣∣ ≥ B−1, (4.14)

where the square of the determinant is interpreted as the sum of squares of its
L× L minors.

The driving force of our induction argument is a rescaling method. The form
of symbols we encounter during the induction process carries many features of
this rescaling. To present these features, we introduce a collection of auxiliary
functions. In what follows, γ : I → Rd is assumed to be smooth and r =
(r1, . . . , rd) ∈ (0, 1)d, λ ∈ 2N are fixed.

For 1 ≤ h ≤ d, consider a (d+ 1− h)-tuple

R := (Rh+1, . . . , Rd+1) ∈ Rd+1−h.

For j, k ∈ N, consider the function

N j,k,R,h
γ (ξ, s) := rj

(
d+1∏
l=h+1

Rj
l

)
|⟨γ(j+k)(s), ξ⟩| for (ξ, s) ∈ Rd × I. (4.15)

Let β ∈ N0. Define

Mβ,R,h
γ (ξ, s) := max

1≤m≤d
j∈W(m)
k∈Z(β,m)

m∏
i=1

N ji,ki,R,h
γ (ξ, s) for (ξ, s) ∈ Rd × I, (4.16)

where

Z(β,m) : = {k = (k1, . . . , km) ∈ Nm : 1 ≤ ki ≤ d and
m∑
i=1

ki ≤ β}, (4.17)

W(m) : = {j = (j1, . . . , jm) ∈ Nm : 1 ≤ j1 < · · · < jm ≤ d}. (4.18)

The following is the motivation behind the definitions (4.15) and (4.16). Re-
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calling (4.13), we can show that

|∂βs aλr (ξ, s, t)| ≲γ M
β,R,d
γ (ξ, s) + 1, for any β ∈ N0,

provided Rd+1 = 0 (See the proof of Proposition 4.2.2 in §4.3.2 for a detailed
calculation). Similarly, we use the function defined by (4.16) to dictate the growth
of the derivatives of the symbol through the induction process. With this in mind,
it is natural to expect terms of the form ⟨γj+k(s), ξ⟩ in (4.16), considering the
form of the symbol (4.8). The coefficients Ri track the factors a symbol gain or
lose when it undergoes rescaling. In particular, the term Ri gets incorporated
into the symbol while moving from step i to (i − 1) of the induction. Typically,
we must think of Ri as some power of λ. It is also worth mentioning that the
term Rd+1 has been introduced purely for convenience, and its value (which will
be assumed to be independent of λ) plays no significant role in the analysis.

Fix 1 ≤ h ≤ d and R ∈ Rd+1−h. For h ≤ j ≤ k ≤ d, let

λRj,k :=

{
λ when j = k,∏k

i=j+1R
i
iλ when j < k.

For h ≤ j ≤ d, define the set

Z(R, j, λ) :=

{
j ≤ k ≤ d : ∃ Ck > 0 such that rk ≤ Ck

d+1∏
i=k+1

R−k
i (λRj,k)

−1

}
.

(4.19)

Although the definition of Z(R, j, λ) depends on r, we have not made it explicit
in its notation as r is a fixed tuple throughout the argument. It is also worth
emphasising that the constant Ck should not depend on λ or any of the coefficients
Ri. Now, define

J(R, j, λ) := min [(Z(R, j, λ) \ {j}) ∪ {d+ 1}] , (4.20)

K(R, j, λ) := maxZ(R, j, λ).

Let us record an easy observation about these quantities here. For h ≤ j ≤ k ≤
l ≤ d, observe that

(λRj,k)
R
k,l = λRj,l.

Thus, Z(R, k, λRj,k) ⊆ Z(R, j, λ), and consequently, J(R, j, λ) ≤ J(R, k, λRj,k).

Due to the nature of our inductive argument, we may restrict our attention
to tuples R of a form, which we describe now.

Definition 4.3.2. We say that R ∈ Rd+1−h is λ-admissible if Rd+1 = 1 and
Ri ≥ 1 for any h+ 1 ≤ i ≤ d. Moreover, for h ≤ j ≤ d, we must have

Ri = 1 whenever j < i < J(R, j, λRh,j). (4.21)

With these definitions, we are now well-equipped to introduce the class of
symbols tailored for our induction argument.
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Definition 4.3.3. Let 1 ≤ L ≤ d. Suppose γ ∈ S(B,L) and r ∈ (0, 1)d. A
symbol a ∈ C3d(Rd × I × I) is said to be of type (λ,A, L) with respect to γ, if
the following hold:

i) There exists a constant C > 1, independent of λ, such that

suppξ a ⊆ {ξ ∈ Rd : Cλ ≤ |ξ| ≤ 2Cλ}.

ii) There exists a λ−admissible tuple R ∈ Rd+1−L such that for any β ∈ N0

with β ≤ 3d and (ξ, s, t) ∈ supp a, we have

|∂βs a(ξ, s, t)| ≲A,β M
β,R,L
γ (ξ, s) + 1, (4.22)

max
1≤j≤d

rj

(
d+1∏
i=L+1

Rj
i

)
|⟨γ(j)(s), ξ⟩| ≲ 1, (4.23)

and

max
L+1≤j≤d+1

k∈N

(λRL,j)
−1(

j∏
i=L+1

Ri)
k|⟨γ(k)(s), ξ⟩| ≲A 1. (4.24)

iii) The inner product estimates

A−1|ξ| ≤
L∑
i=1

|⟨γ(i)(s), ξ⟩| ≤ A|ξ| for all (ξ, s) ∈ suppξ,s a. (4.25)

Remark 4.3.4. Before proceeding to the next step, let us briefly mention what
happens in the isotropic case (where r1 = · · · = rd). In this case, (4.23) combined
with (4.15) and (4.16) imply the uniform estimate

Mβ,R,L
γ (ξ, s, t) = Oβ,d(1) for (ξ, s, t) ∈ supp a, β ∈ N0 and 1 ≤ L ≤ d.

This implies that in the isotropic case, Mβ,R,L
γ and the tuple R do not play any

significant role in the argument. If the reader is only interested in the proof of the
isotropic case, the inequalities (4.22) to (4.24) can be replaced with the uniform
estimate

|∂βs a(ξ, s, t)| = Oβ(1) for (ξ, s, t) ∈ supp a, β ∈ N0

in Definition 4.3.3 and proceed to the next step. Furthermore, as we are not
required to provide finer estimates for the derivatives of the symbol, the overall
argument simplifies to a great extent in this case, and in particular, all the up-
coming discussions about estimating Mβ,R,L

γ can be avoided. A detailed proof, in
this case, can be found in [49].

We record a technical lemma here that can be used to control the derivatives
of symbols during later stages of the proof.
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Lemma 4.3.5. Let r ∈ (0, 1)d be admissible and 1 ≤ L ≤ d. Suppose a is a
symbol of type (λ,A, L) with respect to γ. Assume that L ∈ Z(R, L, λ) where R
is the λ-admissible tuple associated to a. Then,

Z(R, L, λ) = {L, . . . , d}. (4.26)

Furthermore, for L ≤ j ≤ d and k ∈ N, we have

|N j,k,R,L
γ (ξ, s)| ≲A,B 1 for all (ξ, s) ∈ suppξ,s a. (4.27)

Proof. To prove (4.26), assume that it is false, and we will try to reach a contra-
diction. Simplifying notation, we use λj and K to represent λRL,j and K(R, L, λ)
in this proof. Let j ∈ {L+ 1, . . . , d} \ Z(R, L, λ) ̸= ∅. Two cases arise here:

Case 1. Suppose K < j. Recall from the definition that Z(R, K, λK) is the
singleton set {K}. Therefore, by (4.20), we have J(R, K, λK) = d+1. Combining
this with (4.21), we see that RK+1 = · · · = Rd+1 = 1, and as a consequence, we
see that the values of λj and λK are the same. Since rj ≤ rK by (4.3) we therefore
deduce that

rj

(
d+1∏
i=j+1

Rj
i

)
≤

(
rK

d+1∏
i=K+1

Rj
i

)
≲ λ−1

K = λ−1
j .

By (4.19), this implies that j ∈ Z(R, L, λ), reaching a contradiction.

Case 2. Suppose Case 1 does not hold, or, in other words, L < j < K. Since
L,K ∈ Z(R, L, λ), we can find j0, j1 ∈ Z(R, L, λ) such that L ≤ j0 < j1 ≤ K
and

(j0, j] ∩ Z(R, L, λ) = [j, j1) ∩ Z(R, L, λ) = ∅.

Since J(R, j0, λj0) = j1, we also have Rl = 1 when j0 < l < j1 − 1 by (4.21).
Thus, λj0 = λj = λj0−1. Set t = (j − j0)/(j1 − j0) and recall the estimate

rj ≤ r1−tj0
rtj1

from (4.3). Combining these observations,

rj

(
d+1∏
i=j+1

Rj
i

)
≤

(
rj0

d+1∏
i=j+1

Rj0
i

)1−t(
rj1

d+1∏
i=j+1

Rj1
i

)t

=

(
rj0

d+1∏
i=j0+1

Rj0
i

)1−t(
rj1

d+1∏
i=j1+1

Rj1
i

)t

Rj1t
j1

≲ λ
−(1−t)
j0

λ−tj1 R
j1t
j1

= λ
−(1−t)
j0

λ−tj1−1

= λ
−(1−t)
j λ−tj = λ−1

j .

Consequently, j ∈ Z(R, L, λ), reaching a contradiction again. Thus, we have
shown that (4.26) holds.

It remains to prove (4.27). For j ∈ Z(R, L, λ) and k ∈ N0, it is clear from the

79



80 Aswin Govindan Sheri

definitions (4.15) and (4.19) that

N j,k,R,L
γ (ξ, s) ≲

(
d+1∏
i=j+1

R−j
i λ−1

j

)(
d+1∏
i=L+1

Rj
i

)
|⟨γ(j+k)(s), ξ⟩|

for (ξ, s) ∈ Rd+1. When j = L, by applying the Cauchy–Schwarz inequality, the
quantity on the right is seen to be bounded above by OB(1) for (ξ, s) ∈ suppξ,s a
(recall that λL = λ). On the other hand, when j ≥ L+1, we apply (4.24) so that

λ−1
j

(
j∏

i=L+1

R−j
i

)
|⟨γ(j+k)(s), ξ⟩| ≲A,B λ

−1
j

(
j∏

i=L+1

R−j
i

)(
j∏

i=L+1

Ri

)−(j+k)

λj

≲
j∏

i=L+1

R−k
i ≤ 1

for (ξ, s) ∈ suppξ,s a. Note that the assumption that Ri ≥ 1 has been used in the
final inequality. This completes the proof of (4.27).

4.3.2 Setting up the induction scheme

Proposition 4.2.2 is a consequence of the following inductive statement.

Proposition 4.3.6. Let 1 ≤ L ≤ d and λ ∈ 2N. Suppose γ ∈ S(B,L) and let r
be admissible. Let a ∈ C3d(Rd × I × I) be a symbol of type (λ,A, L) with respect
to γ. Then,

∥DsA[a, γ]∥L2(Rd+1)→L2(Rd+1) ≲d,L,A,B (log λ)(L−1)/2. (4.28)

Before proceeding to the proof of the proposition, we show that Proposi-
tion 4.2.2 can be obtained as a special case of Proposition 4.3.6.

Proof of Proposition 4.2.2. Fix an admissible r. By the final remarks in the pre-
vious section, λ = 0 case of Proposition 4.2.2 has been dealt with. Fix λ ∈ 2N.

We claim that the statement of Proposition 4.2.2 corresponds to the special
case L = d of Proposition 4.3.6. To see this, we must first verify that aλr is of type
(λ,A, L) with respect to γ for some A > 0. In view of the frequency localisation of
the symbol aλr and (4.1), it suffices to check the validity of the inequalities (4.22)
to (4.24) for a = aλr , L = d and Rd+1 = 1. An application of Cauchy–Schwarz
inequality directly gives (4.24). We will aim for (4.23) now.

The construction of the Frenet frame along with (4.14) gives

l∑
i=1

|⟨ei(s), ξ⟩| ∼B,l

l∑
i=1

|⟨γ(i)(s), ξ⟩| (4.29)
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with constants in the inequalities being uniform for all (ξ, s) ∈ Rd × I. Thus,

d∑
i=1

ri|⟨γ(i)(s), ξ⟩| ≲B,d

d∑
i=1

i∑
j=1

ri|⟨ej(s), ξ⟩| =
d∑
j=1

(
d∑
i=j

ri

)
|⟨ej(s), ξ⟩|

≲d

d∑
j=1

rj|⟨ej(s), ξ⟩| (4.30)

where in the final step, we used the assumption ri ≤ rj whenever j ≤ i. The
form of the frequency localisation of the symbol (in particular, the localisation
arising from (4.8)) implies that the sum on the right in (4.30) is Od(1) when
(ξ, s) ∈ suppξ,s a

λ
r , establishing (4.23). We may proceed to the verification of

(4.22) now.

By direct computations that use the basic properties of the Frenet coordinate
system, we can estimate the first-order s−derivative of the symbol as

|∂saλr (ξ, s, t)| ≲
d−1∑
i=1

ri|⟨ei+1(s), ξ⟩|+
d∑
i=2

ri|⟨ei−1(s), ξ⟩| for (ξ, s, t) ∈ supp aλr .

More generally, for higher-order derivatives, we can write

|∂βs aλr (ξ, s, t)| ≲
d∑

m=1

∑
j∈W(m)

∑
k∈Z̃(β,j,m)

m∏
i=1

rji |⟨eji+ki(s), ξ⟩| (4.31)

for (ξ, s, t) ∈ supp aλr and β ∈ N0. Here, the set W(m) is as introduced in (4.18)
and

Z̃(β, j,m) :=
{
k = (k1, . . . , km) ∈ Nm

0 : ki ∈ [1− ji, d− ji],
∑m

i=1 ki ≤ β
}
.

However, by (4.8) and (4.3), we can estimate

rji |⟨eji+ki(s), ξ⟩| ≲ rjir
−1
(ji+ki)

≤ 1 for ki ≤ 0.

Therefore, we can simplify (4.31) and write

|∂βs aλr (ξ, s, t)| ≲β,d max
(m,j,k)∈V(β)

m∏
i=1

rji |⟨eji+ki(s), ξ⟩|+ 1 (4.32)

for (ξ, s, t) ∈ supp aλr , where

V(β) :=

{
(m, j,k) :1 ≤ m ≤ d, j ∈ W(m) and

k ∈ Z(β,m) with ki + ji ≤ d for each i

}
.
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To prove (4.22), it remains to replace the Frenet vectors eji+ki with γ(ji+ki) in
(4.32). To do this, we use (4.29), (4.23) and the assumption ri ≤ rj whenever
j ≤ i, so that

rj|⟨ej+k(s), ξ⟩| ≲ max
1−j≤k′≤k

rj|⟨γ(j+k
′)(s), ξ⟩|

≲ max
1≤k′≤k

rj|⟨γ(j+k
′)(s), ξ⟩|+ max

1−j≤k′≤0
rjr

−1
j+k′

≲ max
1≤k′≤k

rj|⟨γ(j+k
′)(s), ξ⟩|+ 1. (4.33)

Recalling the definition (4.17), it is easy to see that (k′1, . . . , k
′
m) ∈ Z(β,m) when

k′i ≤ ki and (k1, . . . , km) ∈ Z(β,m). Therefore, we can obtain (4.22) for a = aλr
with L = d by combining (4.33) for each 1 ≤ j ≤ d− 1 with (4.32).

From the above discussion, we conclude that aλr is type (λ,A, d) with respect
to γ.Thus, statement of Proposition 4.3.6 applies, concluding the proof of Propo-
sition 4.2.2.

Proposition 4.3.6 is proved by inducting on L. Given an arbitrary symbol
a ∈ C3d(Rd × I × I) and a smooth curve γ, we now present a general argument
that will be used repeatedly through the induction process to obtain favorable
norm bounds for the Fourier integral operator DsA[a, γ]. For a Schwartz function
g, we aim for the estimate

∥DsA[a, γ]g∥L2(Rd+1) ≲d ∥g∥L2(Rd+1). (4.34)

By applying Plancherel’s theorem and the Cauchy–Schwarz inequality,

∥DsA[a, γ]g∥2L2(Rd+1) =

∫
R
(1 + |σ|)|Fx,s(A[a, γ]g)|2(σ, ξ)dξdσ

≲ ∥A[a, γ]g∥L2(Rd+1)∥(1 +
√
−∂2s )A[a, γ]g∥L2(Rd+1)

≤ ∥A[a, γ]g∥2L2(Rd+1)

+ ∥
√
−∂2sA[a, γ]g∥L2(Rd+1)∥A[a, γ]g∥L2(Rd+1).

Since the Hilbert transform is bounded on L2,

∥
√

−∂2sA[a, γ]g∥L2(Rd+1) ≲ ∥∂sA[a, γ]g∥L2(Rd+1).

Thus, to prove (4.34), it suffices to show that there exists Λ > 1 such that

∥∂ιsA[a, γ]∥L2(Rd+1)→L2(Rd+1) ≲d Λ
(2ι−1)/2 for ι = 0, 1.

Applying Plancherel’s theorem and the Cauchy–Schwarz inequality,

∥A[a, γ]g∥2L2(Rd+1) ∼d

∫
I

∫
Rd

B[a]Fx(g)(ξ, t)Fx(g)(ξ, t)dξdt

≤
∫
Rd

∥B[a]Fx(g)(ξ, ·)∥L2(R)∥Fx(g)(ξ, ·)∥L2(R)dξ,
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where B[a] is the operator that integrates (in t′ variable) functions against the
kernel

K[a](ξ, t′, t) :=

∫
I

ei⟨(t−t
′)γ(s),ξ⟩a(ξ, s, t′)a(ξ, s, t)ds. (4.35)

At this point, note that ∂sA[a, γ]g can be expressed as A[dsa, γ]g, with a symbol

dsa(ξ, s, t) := t⟨γ′(s), ξ⟩a(ξ, s, t) + ∂sa(ξ, s, t) for (ξ, s, t) ∈ Rd+2.

Applying Schur’s test, we see that (4.34) is a consequence of the estimates

sup
(ξ,t′)∈suppξ a×I

∥K[dιsa](ξ, t
′, ·)∥L1

t (I)
≲d Λ

2ι−1 for ι = 0, 1, (4.36)

completing the discussion.
The first application of this reduction is the following lemma.

Lemma 4.3.7 (Base case). Proposition 4.3.6 holds when L = 1.

Proof of Lemma 4.3.7. Choose a curve γ and a symbol a that satisfies the as-
sumptions of the proposition. In particular, a is of type (λ,A, 1) with respect to
γ and as a consequence,

|⟨γ′(s), ξ⟩| ∼A λ holds in supp a. (4.37)

Following the previous discussion, we wish to obtain good decay estimates for
the function K[dιsa] with ι = 0, 1. The plan is to integrate by parts in (4.35)
after obtaining uniform upper bounds for the derivatives of a. To this end, we
note an easy observation that 1 ∈ Z(R, 1, λ), which follows from (4.25) for L = 1
and (4.23). Thus, Lemma 4.3.5 can be applied for L = 1. Combining (4.27) for
L = 1 with (4.16), we deduce thatMβ,R,1

γ (ξ, s) = Oβ,d(1). By (4.22), we therefore
obtain

|∂βs a(ξ, s, t)| ≲β,d 1 for all (ξ, s, t) ∈ supp a. (4.38)

Integrating-by-parts in (4.35) using (4.37) and (4.38), we have

|K[dιsa](ξ, t
′, t)| ≲A,B,d,N λ2ι(1 + |t− t′|λ)−N for ι = 0, 1 and N ≥ 1.

Clearly, these decay estimates imply the required bounds (4.36) with Λ = λ.
Consequently, we obtain (4.34), concluding the proof of Lemma 4.3.7.

Lemma 4.3.7 addresses the base case of Proposition 4.3.6. It remains to es-
tablish the inductive step.

Proposition 4.3.8. Suppose the statement of Proposition 4.3.6 is true for all
L ≤ N − 1. Then it is also true for L = N .

Proposition 4.3.6 and therefore Theorem 4.1.2, follow from Proposition 4.3.8
and Lemma 4.3.7. In the remainder of the section, we present the proof of Propo-
sition 4.3.8, which is broken into steps.
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4.3.3 Initial decomposition

Let γ and a be chosen to satisfy the assumptions of the Proposition 4.3.6 with
L = N . We begin with a natural division of the symbol a. Let H : Rd+1 → R be
defined as the product

H(ξ, s) :=
N−1∏
i=1

η(A′λ−1⟨γ(i)(s), ξ⟩)

where A′ is large constant which will be chosen depending only on A, B and N .
Here η is as defined in (3.3). Note that

|∂βsH(ξ, s)| ≲β,A,B 1 for (ξ, s) ∈ suppξ,s a and β ∈ N ∪ {0}. (4.39)

The following lemma verifies the type condition for the pair (a(1−H), γ).

Lemma 4.3.9. The symbol a(1−H) is of type (λ,A′, N − 1) with respect to γ.

Proof. The definition of H combined with the assumption on the type of a give
(4.25) for L = N − 1, a = a(1 − H) and A = A′. Thus, it remains to verify
Definition 4.3.3 ii) for a = a(1−H) and L = N − 1.

Let R = (RN+1, . . . , Rd+1) be the λ-admissible tuple associated to a. Set
RN := 1 and write

R′ := (RN , RN+1, . . . , Rd+1).

First, we verify that R′ is λ-admissible. Since λRN,j = λR
′

N−1,j and R is assumed
to be λ-admissible, (4.21) clearly holds with R replaced with R′ and h = N − 1
whenever N ≤ j ≤ d− 1. When j = N − 1, we obtain (4.21) as a consequence of
the easy observation

J(R′, N − 1, λ) ≤ J(R, N, λ).

Thus, we conclude that R′ is λ-admissible.
It now remains to verify the estimates (4.22) to (4.24) for a = a(1 − H),

L = N − 1 and R = R′. The first bound (4.22) is immediate from the type
condition on a, (4.39) and the easy observation that Mβ,R,N

γ = Mβ,R′,N−1
γ . The

remaining estimates also follow quite easily since RN = 1. This completes the
proof of the lemma.

Given the above lemma, the induction hypothesis can be applied to deduce
the desired estimate (4.28) when a = a(1−H).

Since (4.25) holds with L = N in supp a by assumption, the inequalities

(10A)−1|ξ| ≤ |⟨γ(N)(s), ξ⟩| ≤ A|ξ|, (4.40)

N−1∑
i=1

|⟨γ(i)(s), ξ⟩| ≤ 10−10A−1|ξ| (4.41)

also hold for all (ξ, s) ∈ suppξ,s aH, provided A′ is chosen large enough depending
on N and A. Without loss of generality, we can therefore work with the stronger
assumptions (4.40) and (4.41) on the support of a. An application of the implicit
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function theorem now shows that for any ξ ∈ suppξ a, there exists σ(ξ) ∈ I with

⟨γ(N−1) ◦ σ(ξ), ξ⟩ = 0. (4.42)

The strategy now involves a decomposition of the symbol away from the most
degenerate regions in Rd+1. Set

G(ξ, s) :=
N−1∑
i=1

|ε−1
0 λ−1⟨γ(i) ◦ σ(ξ), ξ⟩|2/(N−i) + ε−2

0 |s− σ(ξ)|2,

where the constant ε0 = ε0(B, d) will be chosen small enough to satisfy the
forthcoming requirements of the proof.2 The function G should be interpreted as
the function measuring the distance of (ξ, s) from the co-dimension N surface

Γ := {(ξ, s) ∈ Rd × I : ⟨γ(i) ◦ σ(ξ), ξ⟩ = 0 for 1 ≤ i ≤ N − 1 and |s− σ(ξ)| = 0}.

We now decompose the (ξ, s)-space dyadically away from Γ. Suppose we have
η1, β1 ∈ C∞

c (R) chosen such that

supp η1 ⊆ {r ∈ R : |r| ≤ 4}, supp β1 ⊆ {r ∈ R : 1/4 ≤ |r| ≤ 4} (4.43)

and

η1(r) +
∑
n∈N

β1(2
−2nr) = 1 for all r ∈ R.

Set

an(ξ, s, t) := a(ξ, s, t) ·

{
η1(ε

2
1λ

2/NG(ξ, s)) if n = 0,

β1(ε
2
12

−2nλ2/NG(ξ, s)) if n ≥ 1.
(4.44)

where ε1 will be chosen small enough (depending on ε0) to satisfy the forthcoming
requirements of the proof.3 Observe that a = a0+

∑
n∈N a

n and this automatically
induces a similar decomposition for the Fourier integral operator DsA[a, γ]. Since

|G(ξ, s)| = OB,d(ε
−2
0 ) for all (ξ, s) ∈ suppξ,s a, (4.45)

the symbols an are trivially zero except for OA,B(log λ) many values of n. Thus,
by Plancherel’s theorem,

∥DsA[
∑
n≥0

an, γ]g∥2L2(Rd+1) =
∑
n≥0

∥DsA[an, γ]g∥2L2(Rd+1)

≲A,B | log λ|max
n≥0

∥DsA[an, γ]g∥2L2(Rd+1). (4.46)

In light of the above, it remains to bound the fractional operator DsA[an, γ]
for different values of n. The case of n = 0 is dealt with by the following lemma.

2As we will note later, ε0 := (min1≤N≤d cN )(50(2 +B))−1 would suffice for our purposes.
3ε1 := ε0/(10dB

2d+1) would be sufficient
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Lemma 4.3.10.

∥DsA[a0, γ]∥L2(Rd+1)→L2(Rd+1) ≲A,B,d 1. (4.47)

The next lemma addresses the case of all other values of n.

Lemma 4.3.11. For any n ≥ 1, we have

∥DsA[an, γ]∥L2(Rd+1)→L2(Rd+1) ≲A,B,d (log λ)
(N−2)/2. (4.48)

Assuming the lemmas for now, we plug (4.47), (4.48) into (4.46) and obtain

∥DsA[a, γ]g∥L2(Rd+1) ≲A,B,d (log λ)
(N−1)/2∥g∥L2(Rd+1).

This concludes the proof of Proposition 4.3.8.

The remaining parts of this section is dedicated to the proofs of Lemma 4.3.10
and Lemma 4.3.11.

4.3.4 Proof of Lemma 4.3.10

To prove Lemma 4.3.10, we do not appeal to the induction hypothesis but directly
estimate the operator. There are two key elements in the proof, which are stated
below in the form of lemmas. In the first one, uniform bounds on inner products
with derivatives of γ are obtained by using the information that a0 is supported
near the degenerate surface Γ.

Lemma 4.3.12. For any (ξ, s) ∈ suppξ,s a
0 and 1 ≤ i ≤ N , we have

|⟨γ(i)(s), ξ⟩| ≲A,B,N λi/N . (4.49)

Proof. By the definition of a0 from (4.44), it is known that

|⟨γ(i) ◦ σ(ξ), ξ⟩| ≲A,B,N λλ(i−N)/N and |s− σ(ξ)| ≲A,B λ
−1/N

for (ξ, s) ∈ suppξ,s a
0. Using Taylor’s theorem,

|⟨γ(i)(s), ξ⟩| ≤
N−1∑
j=i

∣∣⟨γ(j) ◦ σ(ξ), ξ⟩∣∣ |s− σ(ξ)|j−i

(j − i)!
+B|ξ| |s− σ(ξ)|N−i

(N − i)!

≲A,B,N λi/N

in the support of supp a0, as required.

Through the next lemma, we record a property that the admissible tuples
satisfy.

Lemma 4.3.13. For any admissible r = (r1, . . . , rd), we have

rj ≤ r
j/k
k for all 1 ≤ j ≤ k ≤ d. (4.50)
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Proof of Lemma 4.3.13. For 2 ≤ j ≤ d, we have r21 ≤ r2 and r2 ≤ r
j−2
j−1

1 r
1

j−1

j as
direct applications of (4.3). Combining both inequalities, we deduce that

r1 ≤ r
1/j
j for 1 ≤ j ≤ d.

Combining the above with the second part of (4.3) for i = 1, we deduce that

rj ≤ r
k−j
k−1

1 r
j−1
k−1

k ≤ r
k−j

j(k−1)

j r
j−1
k−1

k for 1 ≤ j ≤ k ≤ d.

Rearranging, we obtain (4.50).

Proof of Lemma 4.3.10. In view of discussions around (4.34) and (4.36), it suffices
to show

|K[dιsa
0](ξ, t′, t)| ≲B λ

(2ι−1)/N for ι = 0, 1 and (ξ, t′, t) ∈ Rd × I × I. (4.51)

Indeed, (4.51) implies (4.36) with a = a0 and Λ = λ1/N , which in turn gives
(4.47).

The estimate (4.51) for ι = 0 is immediate from (4.35) as the supps a
0(ξ, · , ·)

is contained in an interval of length λ−1/N for any fixed ξ ∈ Rd. By (4.35) again,
the case ι = 1 becomes evident once we verify the estimates

|⟨γ(1)(s), ξ⟩|+ |∂s(a0)(ξ, s, t)| ≲A,B,d λ
1/N for (ξ, s, t) ∈ supp a0.

The estimate on the first term yields by putting i = 1 in (4.49). To estimate the
latter term, recall (4.16) for β = 1 and write

M1,R,N
γ = max

1≤j≤d
N j,1,R,N
γ = max

l∈{1,2}
max
j∈Sl

N j,1,R,N
γ

where S1 := {1, . . . , N − 1} and S2 := {N, . . . , d}. We claim that

max
j∈S1

N j,1,R,h
γ (ξ, s) = OA,B,d(λ

1/N) and max
j∈S2

N j,1,R,h
γ (ξ, s) = OA,B,d(1)

(4.52)

for (ξ, s) ∈ suppξ,s a
0. Once the claim is verified, we can use (4.22) to conclude

that
|∂sa(ξ, s, t)| ≲A,B,d λ

1/N for (ξ, s, t) ∈ supp a0.

An application of Leibniz’s rule gives a similar estimate where a is replaced with
a0, completing the proof of (4.51) and therefore Lemma 4.3.10.

To prove the claim (4.52), we first assume that j ∈ S1. Using (4.49), (4.40)
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and (4.23), we have

N j,k,R,N
γ (ξ, s) = rj

(
d+1∏

l=N+1

Rj
l

)
|⟨γ(j+1)(s), ξ⟩|

≲A,B,N rj

(
d+1∏

l=N+1

Rj
l

)
λ(j+1)/N

≲ λ1/Nrj

(
d+1∏

l=N+1

Rj
l

)(
r−1
N

d+1∏
l=N+1

R−N
l

)j/N

≲ λ1/Nrjr
−j/N
N ≲ λ1/N ,

where the final inequality follows from (4.50).
To deal with the case j ∈ S2, we first note that (4.23) combined with (4.40)

gives

rN

(
d+1∏

i=N+1

RN
i

)
≲ |⟨γ(N)(s), ξ⟩|−1 ≈ λ−1 for (ξ, s) ∈ suppξ,s a.

Combining the above with (4.19), we see that N ∈ Z(R, N, λ). Therefore,
Lemma 4.3.5 applies here. By (4.27), we establish the second part of (4.52),
completing the argument.

4.3.5 Further decomposition

In order to prove Lemma 4.3.11 we must introduce a further decomposition
of the symbol. Let ζ ∈ C∞

c (R) be chosen such that supp ζ ⊆ [−1, 1] and∑
ν∈Z ζ( · − ν) = 1. For n ∈ N and ν ∈ Z, consider the symbol

an,ν(ξ, s, t) := an(ξ, s, t)ζ(2−nλ1/N(s− sn,ν)) (4.53)

where sn,ν := 2nλ−1/Nν. Observe that the original symbol is recovered as the sum

a =

C log(λ)∑
n=0

an = a0 +

C log(λ)∑
n=1

∑
ν∈Z

an,ν , (4.54)

where C is a constant that depends only on A,B. The following lemma records a
basic property of the localised symbols, which becomes useful later in the proof.

Lemma 4.3.14. Let n ≥ 1, ν ∈ Z and ρ := 2nλ−1/N . For (ξ, s) ∈ suppξ,s a
n,ν,

we have

N−1∑
i=1

ρi−N |⟨γ(i)(s), ξ⟩| ∼A,B,d |ξ| ∼ λ. (4.55)

Proof. The upper bound in (4.55) is easier to prove than the lower bound and
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follows from a similar argument. Consequently, we will focus only on the lower
bound.

Fix n ≥ 1 and ν ∈ Z. Recall from the definitions that

ε−2
1 /4 ≤

N−1∑
i=1

|ε−1
0 λ−1ρi−N⟨γ(i) ◦ σ(ξ), ξ⟩|2/(N−i) + |ε−1

0 ρ−1(s− σ(ξ))|2 ≤ 4ε−2
1

(4.56)

for all (ξ, s) ∈ suppξ,s a
n,ν . Fixing ξ, we now consider two cases depending on

which terms of the above sum dominate.

Case 1. Suppose (ε0ε
−1
1 ρ)/4 ≤ |s− σ(ξ)|. By Taylor’s theorem, there lies s∗ ∈ I

between s and σ(ξ) such that

⟨γ(N−1)(s), ξ⟩ − ⟨γ(N−1) ◦ σ(ξ), ξ⟩ = ⟨γ(N)(s∗), ξ⟩(s− σ(ξ)).

Combining this with (4.40) and (4.42), we deduce that

|⟨γ(N−1)(s), ξ⟩| ≳A λ(ε0ε
−1
1 ρ).

This gives the lower bound in (4.55).

Case 2. Suppose Case 1 fails. Using (4.56), we can find 1 ≤ i0 ≤ N − 2 such that

cNε0λ(ε
−1
1 ρ)N−i0 ≤ |⟨γ(i0) ◦ σ(ξ), ξ⟩| ≤ 2Nε0λ(ε

−1
1 ρ)N−i0 , (4.57)

with cN := (4N)−N , whilst |s− σ(ξ)| ≤ ε0ε
−1
1 ρ and

|⟨γ(i) ◦ σ(ξ), ξ⟩| ≤ 2Nε0λ(ε
−1
1 ρ)N−i for all i0 < i ≤ N − 1.

By Taylor’s theorem,

|⟨γ(i0)(s), ξ⟩−⟨γ(i0) ◦ σ(ξ), ξ⟩|

≤
N−1∑
i=i0+1

2Nε1+i−i00 λ(ε−1
1 ρ)N−i(ε−1

1 ρ)i−i0 +Bλ(ε0ε
−1
1 ρ)N−i0

≤ (cNε0/2)λ(ε
−1
1 ρ)N−i0 , (4.58)

provided the constant ε0 is chosen small enough depending on B and d (in par-
ticular, ε0 := (min1≤N≤d cN)(50(2 + B))−1 would suffice). Combining (4.57) and
(4.58), we deduce that

|⟨γ(i0)(s), ξ⟩| ∼ϵ0 λ(ε
−1
1 ρ)N−i0 for all s ∈ supps a

n,ν ,

which implies the lower bound in (4.55).

In view of (4.54), we restrict our attention to DsA[an,ν , γ] for fixed n ∈ N
and ν ∈ Z. Before proceeding to its analysis, we make the following elementary
observation about the size of ρ := 2nλ−1/N . From the definition (4.43) of β1, note
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that
ε−2
1 /4 ≤ ρ−2G(ξ, s) for (ξ, s) ∈ suppξ,s a

n.

Combining this with (4.45), we deduce that ρ = OB,d(ε1ε
−1
0 ). Thus, by choosing

ε1 small enough depending on ε0, B, d, (in particular, set ε1 := ε0/(10dB
2d+1))

we can assume that

ρ ≤ B−2d. (4.59)

In the following subsections, the norm bounds for the operator DsA[an,ν , γ]
are obtained using the induction hypothesis via a method of rescaling.

4.3.6 Rescaling for the curve

In this subsection, we describe the rescaling map in a generic setting and describe
its basic properties, which will play a crucial role in the proof of Lemma 4.3.11.

For γ ∈ S(B,N) and s◦ ∈ I, let

V N
s◦ := span{γ(1)(s◦), . . . , γ(N)(s◦)}.

Using (4.14), note that dimV N
s◦ = N . For 0 < ρ < 1, define a linear operator

TNs◦,ρ such that

TNs◦,ρ
(
γ(i)(s◦)

)
:= ρiγ(i)(s◦) for 1 ≤ i ≤ N (4.60)

and

TNs◦,ρv = ρNv for v ∈ (V N
s◦ )

⊥.

It is clear that TNs◦,ρ is a well-defined map such that

∥(TNs◦,ρ)
−1∥ ≲B ρ

−N . (4.61)

Supposing [s◦ − ρ, s◦ + ρ] ⊆ I, we define the rescaled curve

γNs◦,ρ(s) :=
(
TNs◦,ρ

)−1
(γ(s◦ + ρs)− γ(s◦)).

For simplicity, we introduce the notations

T := TNs◦,ρ, T ∗ :=
(
TNs◦,ρ

)−⊤
and γ̃ := γNs◦,ρ. (4.62)

The following lemma verifies nondegeneracy assumptions for the rescaled curve.

Lemma 4.3.15. For 0 < ρ ≤ B−2d and γ ∈ S(B,N), the rescaled curve γ̃ lies
in S(B1, N − 1) where B1 depends only on B and N .

Proof of Lemma 4.3.15. We begin by verifying the first part of (4.14) for the
curve γ̃. From the definition, we see that γ̃(i)(s) = ρiT−1(γ(i)(s◦ + ρs)) for any
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i ∈ N. Combining this identity with (4.14) and (4.61), we deduce that

∥γ̃(i)∥L∞(I) = OB(ρ) whenever N + 1 ≤ i ≤ 2d. (4.63)

Let 1 ≤ i ≤ N . By Taylor’s theorem, (4.60) and (4.61), we have

γ̃(i)(s) = ρi
N∑
j=i

T−1γ(j)(s◦)
(ρs)j−i

(j − i)!
+OB(∥T−1∥ρN+1)

=
N∑
j=i

γ(j)(s◦)
sj−i

(j − i)!
+OB(ρ) (4.64)

Combining (4.64) with (4.14), we obtain uniform size estimates for γ̃(i)(s) when
1 ≤ i ≤ N . Together with (4.63), this implies

∥γ̃∥C2d(I) ≲B 1. (4.65)

It remains to verify the second part in (4.14) for the curve γ̃ and L = N − 1.
In view of (4.65), it suffices to obtain a lower bound for the determinant of the
d×N matrix whose columns vectors are formed by (γ̃(i)(s))1≤i≤N . Observe that
using the multilinearity of the determinant and elementary column operations,
(4.64) gives

| det
(
γ̃(1)(s) · · · γ̃(N)(s)

)
| = | det

(
γ(1)(s◦) · · · γ(N)(s◦)

)
|+OB(ρ).

By assumption, ρ is small enough so that the above identity combined with (4.14)
gives the estimate

| det
(
γ̃(1)(s) · · · γ̃(N)(s)

)
| ≥ (2B)−1.

Now, an application of (4.65) (in particular, |γ̃(N)(s)| ≲B 1) completes the proof
of (4.14) for γ = γ̃, L = N − 1 and B replaced with a new constant B1.

The rescaling map TNs◦,ρ can be used to introduce a rescaling for the operators
we are interested in. This is done in the next subsection.

4.3.7 Rescaling for the operator

To introduce the operator rescaling, we begin by considering a Schwartz function
u : R → R. Let s◦ ∈ I and 0 < ρ < 1. Direct computations give

[(1 +
√

−∂2s )1/2u](s◦ + ρs) = ρ−1/2[(ρ+
√

−∂2s )1/2ũ](s),
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where ũ(s) := u(s◦ + ρs). Thus,

∥(1 +
√

−∂2s )1/2u∥2L2(R) ∼
∫
R
|(ρ+ |σ|)1/2Fs(ũ)(σ)|2dσ

≤
∫
R
|(1 + |σ|)1/2Fs(ũ)(σ)|2dσ

= ∥(1 +
√
−∂2s )1/2ũ∥2L2(R). (4.66)

For an arbitrary symbol a ∈ C3d(Rd × I × I) and γ ∈ S(B,N), recall the
definition of A[a, γ] from (4.7). Temporarily fixing x ∈ Rd, set

u(s) = A[a, γ]g(x, s) and Ã[a, γ]g(x, s) := A[a, γ]g(x, s◦ + ρs). (4.67)

By combining (4.66) for each x ∈ Rd with Fubini’s theorem,

∥DsA[a, γ]g∥L2(Rd+1) ≲ ∥(1 +
√
−∂2s )1/2Ã[a, γ]g∥L2(Rd+1). (4.68)

We claim that for (x, s) ∈ Rd+1, the identity

Ã[a, γ]g(x, s) = | detT ∗|1/2A[ã, γ̃]g̃(T−1x, s) (4.69)

holds with T , γ̃ as in (4.62), symbol

ã(ξ, s, t) := a(T ∗ξ, t, s◦ + ρs)

and input function g̃ defined by

Fx(g̃)(ξ, t) := | detT ∗|1/2eit⟨T−1γ(s◦),ξ⟩Fx(g)(T
∗ξ, t).

Verifying (4.69) is just a matter of unwinding the definitions. First, we expand
Ã[a, γ]g(x, s) using (4.67) as the oscillatory integral∫

Rd×I
ei⟨x−t(γ(s◦+ρs)−γ(s◦)),ξ⟩a(ξ, s◦ + ρs, t)eit⟨γ(s◦),ξ⟩Fx(g)(ξ, t)dξdt.

Applying change of variables ξ → T ∗ξ, the above expression can be written as

| detT ∗|1/2
∫
Rd×R

ei⟨(T
−1x−tγ̃(s),ξ⟩a(T ∗ξ, s◦ + ρs, t)Fx(g̃)(T

∗ξ, t)dξdt (4.70)

= | detT ∗|1/2(A[ã, γ̃]g̃)(T−1x, s),

proving the claim (4.69).

Fix n ∈ N, ν ∈ Z and recall the definitions of an,ν and sn,ν from §4.3.5.
Consider the rescaling map T as defined in §4.3.6 for

s◦ = sn,ν and ρ = 2nλ−1/N .

Furthermore, we consider the operator rescaling as in (4.69) for a = an,ν . In
this setup, we record some of the basic observations about how T ∗ (as defined in
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(4.62)) interacts with ã.

Lemma 4.3.16. The rescaling map T ∗ satisfies the estimate

ρ−N |ξ| ≲A,B |T ∗ ξ| ≲B ρ
−N |ξ| for all ξ ∈ suppξ ã. (4.71)

Proof. Fix 1 ≤ i ≤ N . From the definition of T , we have

⟨γ(i)(sn,ν), ξ⟩ = ρi⟨T−1γ(i)(sn,ν), ξ⟩ = ρi⟨γ(i)(sn,ν), T ∗ξ⟩. (4.72)

Fix ξ ∈ suppξ ã so that, by the definition of the rescaled symbol, T ∗ ξ ∈ suppξ a
n,ν .

Using Lemma 4.3.14 when i ≤ N − 1 and the Cauchy–Schwarz inequality (or
(4.40)) when i = N , we obtain∣∣⟨γ(i)(sn,ν), T ∗ξ⟩

∣∣ ≲A,B ρ
N−i∣∣T ∗ξ

∣∣ for 1 ≤ i ≤ N.

Combining this with (4.72), we deduce that

|⟨γ(i)(sn,ν), ξ⟩| ≲A,B ρ
N |T ∗ ξ|. (4.73)

On the other hand, if v ∈ (V N
sn,ν

)⊥ is a unit vector, one can argue as in (4.72) to
have

|⟨v, ξ⟩| = |ρN⟨v, T ∗ξ⟩| ≤ |T ∗ξ| (4.74)

where the fact ρ < 1 has been used. Combining (4.73), (4.74) and (4.14), we
obtain the lower bound in (4.71). The upper bound follows from (4.61).

The following lemma now verifies how rescaling improves the type condition
of the symbol.

Lemma 4.3.17. The rescaled symbol ã is of type (ρNλ,A1, N − 1) with respect
to γ̃, where A1 depends only on A,B and N .

Proof of Lemma 4.3.17. By Lemma 4.3.16, it is clear that

suppξ ã ⊆ {ξ ∈ Rd : |ξ| ∼A,B ρ
Nλ}.

Thus, the proof of the lemma reduces to verifying Definition 4.3.3 ii) and iii)
for a = ã, γ = γ̃ and L = N − 1. For now, we restrict our focus on the latter.

Recall from Lemma 4.3.14 that

N−1∑
i=1

ρi−N |⟨γ(i)(s), ξ⟩| ∼A,B λ for all (ξ, s) ∈ suppξ,s a
n,ν . (4.75)

However, by unwinding the definition,

⟨γ̃(i)(s), ξ⟩ = ρi⟨T−1γ(i)(sn,ν + ρs), ξ⟩ = ρi⟨γ(i)(sn,ν + ρs), T ∗ ξ⟩.
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Thus, by (4.75) and Lemma 4.3.16,

N−1∑
i=1

|⟨γ̃(i)(s), ξ⟩| ∼A,B ρ
N |T ∗ ξ| ∼ |ξ| for all (ξ, s) ∈ suppξ,s ã,

obtaining the required estimate (4.25) for the rescaled setup for L = N − 1 and
A replaced with a new constant A1.

It remains to verify Definition 4.3.3 ii) for the rescaled setup for L = N − 1.
Since, a is of type (λ,A, L) with respect to γ by assumption, there exists a λ-
admissible tuple R = (RN+1, . . . , Rd+1) such that the inequalities (4.22) to (4.24)
hold in the support of a for L = N . Since a genuine rescaling has happened at
this stage, a non-trivial coefficient will be added to R. We define

RN := ρ−1.

By (4.59), it is known that RN ≥ B2d > 1. The modified (d + 1 − N)-tuple is
introduced as

R̃ := (RN , RN+1, . . . , Rd+1).

It is our aim to establish (4.22) to (4.24) for the rescaled setup for L = N − 1
and R = R̃. But first, we must check if R̃ is (ρNλ)-admissible. To this end,
observe that (4.23) combined with (4.40) gives

rN

(
d+1∏

i=N+1

RN
i

)
≲ |⟨γ(N)(s), ξ⟩|−1 ≈ |ξ|−1 ≈ λ−1

for (ξ, s) ∈ suppξ,s a
n,ν . Recalling (4.19), we see that N ∈ Z(R̃, N − 1, ρNλ)

(observe that (ρNλ)R̃N−1,N = λ) and as a consequence,

J(R̃, N − 1, ρNλ) = N. (4.76)

Furthermore, it follows from the definitions that

(ρNλ)R̃N−1,j = λRN,j for j ≥ N . (4.77)

Therefore,

J(R̃, j, (ρNλ)R̃N−1,j) = J(R, j, λRN,j) for j ≥ N . (4.78)

Combining (4.76), (4.78) and (4.21), we conclude that R̃ is (ρNλ)-admissible.

We proceed to the proof of (4.22) for this setup. Let β ∈ N0. From (4.16) and
(4.17), it is clear that the function Mβ,R,N

γ pointwise dominate Mα,R,N
γ whenever

α ∈ N0 and α ≤ β. Thus, one can use Leibnitz rule and (4.22) for L = N to
deduce that

|∂βs ã(ξ, s, t)| = ρβ|∂βs an,ν(T ∗ξ, sn,ν + ρs, t)|
≲ R−β

N Mβ,R,N
γ (T ∗ξ, sn,ν + ρs) + 1 (4.79)
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for (ξ, s, t) ∈ supp ã. By direct computations, we have

|⟨γ(j+k)(sn,ν + ρs), T ∗ξ⟩| = ρ−(j+k)|⟨γ̃(j+k)(s), ξ⟩| (4.80)

for any j, k ∈ N and (ξ, s) ∈ suppξ,s a
n,ν . Combining (4.80) with (4.15), we get

R−β
N

m∏
i=1

N ji,ki,R,N
γ (T ∗ξ, sn,ν + ρs) = R

−(β−
∑m

i=1 ki)
N

m∏
i=1

N ji,ki,R̃,N−1
γ (ξ, s)

for any m ∈ N,k = (k1, . . . , km) ∈ Z(β,m) and j ∈ W(m). Recall from the
definitions that

∑m
i=1 ki ≤ β and RN ≥ 1. Therefore, we deduce that

R−β
N Mβ,R,N

γ (T ∗ξ, sn,ν + ρs) ≤Mβ,R̃,N−1
γ̃ (ξ, s).

Combining this with (4.79), we obtain

|∂βs ã(ξ, s, t)| ≲Mβ,R̃,N−1
γ̃ (ξ, s) + 1

for (ξ, s, t) ∈ supp ã, completing the proof of (4.22) for a = ã, L = N − 1 and
R = R̃.

Proofs of (4.23) and (4.24) for the rescaled setup are easier and follow almost
immediately from the same inequalities for the non-rescaled setup, using (4.80)
and (4.77). This completes the proof of Lemma 4.3.17.

4.3.8 Proof of Lemma 4.3.11

With all the available components, the operator estimate for DsA[an, γ] for n ≥ 1
now follows easily.

Proof of Lemma 4.3.11. Fix n ≥ 1. Temporarily fix ν ∈ Z. In view of (4.68) and
(4.69) for a = an,ν , we have

∥DsA[an,ν , γ]g∥L2(Rd+1) ≲ ∥DsA[ã, γ̃]g̃∥L2(Rd+1). (4.81)

Suppose ζ̃ ∈ C∞
c (R) is chosen such that supp ζ̃ ⊆ [−4, 4], ζ̃(r) = 1 when |r| ≤ 3

and ∑
ν∈Z

ζ̃( · − ν) ≲ 1.

In view of the support properties of an,ν (in particular (4.44) and (4.53)), we have

ζ̃(ε−1
0 ε1ρ

−1(σ(T ∗ξ)− sn,ν)) = 1 for ξ ∈ suppξ ã.

Consequently, recalling the integral expression (4.70), it is clear that one can
replace g̃ with g̃n,ν in (4.81) where

g̃n,ν := ζ̃
(
ε−1
0 ε1ρ

−1(σ ◦ T ∗(1
i
∂x)− sn,ν)

)
g̃.

Now, Lemma 4.3.15 and Lemma 4.3.17 ensures that the rescaled pair (ã, γ̃) satisfy
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the assumptions of Proposition 4.3.6 with L = N − 1 (note that (4.59) ensures
that ρ is of the right size, as assumed in Lemma 4.3.15). Thus, the statement of
the proposition applies and we obtain

∥DsA[ã, γ̃]g̃n,ν∥L2(Rd+1) ≲A,B,d (log ρ
Nλ)(N−2)/2∥g̃n,ν∥L2(Rd+1)

≲A,B,d (log λ)
(N−2)/2∥g̃n,ν∥L2(Rd+1). (4.82)

Thus, the proof of Lemma 4.3.11 reduces to summing the above estimates in ν
without further loss in λ. Using (4.54), Plancherel’s theorem and the support
properties of symbols an,ν , we combine (4.82) for different values of ν to deduce
that

∥DsA[an, γ]g∥2L2(Rd+1) ≲d

∑
ν∈Z

∥DsA[an,ν , γ]g∥2L2(Rd+1)

≲A,B,d (log λ)
N−2

∑
ν∈Z

∥g̃n,ν∥2L2(Rd+1).

After a change of variable, it is evident that ∥g̃n,ν∥L2(Rd+1) = ∥gn,ν∥L2(Rd+1), where

gn,ν := ζ̃
(
ε−1
0 ε1ρ

−1(σ(1
i
∂x)− sn,ν)

)
g.

Thus, by another application of Plancherel’s theorem,

∥DsA[an, γ]g∥2L2(Rd+1) ≲A,B,d (log λ)
N−2

∑
ν∈Z

∥gn,ν∥2L2(Rd+1)

≲A,B,d (log λ)
N−2∥g∥2L2(Rd+1)

concluding the proof.

4.4 Sharpness of Theorem 4.1.2 and Theorem

4.1.3

By acting the maximal operator on standard test functions, here we discuss the
sharpness of Theorem 4.1.2 in the range of p and the sharpness of Theorem 4.1.3
in the dependence of the operator norm on log δ−1.

4.4.1 Sharpness of the range of p in Theorem 4.1.2

Fix p ∈ [1,∞), a curve γ ∈ Rd and assume that given any ϵ > 0, we have

∥N γ
r ∥Lp(Rd+1)→Lp(Rd) ≲ϵ r

−ϵ
d for all r ∈ (0, 1)d. (4.83)

Temporarily fix ϵ and r. Let h = (0, . . . , 0, 1) ∈ Rd+1 and define gr := χh+B(0,rd).
It is easy to see that the rd-neighbourhood of the curve −γ is a subset of the
super-level set

{x ∈ Rd : |N γ
r gr(x)| ≳ rd}.
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Applying Chebyshev’s inequality and using (4.83), we have

rdrd
(d−1)/p ≲ϵ r

(d+1)/p−ϵ
d .

Letting rd → 0, we see that p ≥ 2 − ϵ. Letting ϵ → 0, we conclude that p ≥ 2.
Thus, Lp operator norm of N γ

r has polynomial blowup in r−1
d for p ∈ [1, 2).

4.4.2 Sharpness of the operator norm in Theorem 4.1.3

Fix δ ∈ (0, 1). Consider the vectors w := (x, 0), z := (y, 0) in Rd+1. It follows
from the definition that

w + Tδ(r) ∩ z + Tδ(s) ̸= ∅

if and only if there exists a t ∈ [−1, 1] such that

(x− y) + t(γ(r)− γ(s)) = O(δ). (4.84)

Assuming |γ(s)| ∼ 1 for all s ∈ [−1, 1], it is also not hard to see that

VolRd+1(w + T10δ(r) ∩ z + Tδ(s)) ∼
δd+1

δ + |γ(r)− γ(s)|
(4.85)

whenever (4.84) holds.
Fixing (x, r) ∈ Rd × I, set fδ := χw+T10δ(r) and note that ∥fδ∥L2(Rd+1) ∼ δd/2.

Fix 0 ≤ k ≤ ⌊log(δ−1)⌋, define

Ak := {y ∈ Rd : |N γ
δ fδ(y)| ∼ 2−k}.

We claim that
|Ak| ≳ 22kδd.

Indeed, in view of (4.85), Ak contains all points y ∈ Rd for which there exist
s, r ∈ [−1, 1] such that (4.84) holds and |γ(s)− γ(r)| ∼ 2kδ. The latter condition
ensures that the admissible directions γ(s) belong to a portion of the curve which
is contained inside a ball of radius ∼ 2kδ. Moreover, for a fixed direction γ(s), any
y ∈ Rd that lies in the δ-neighbourhood of the tube x+{t(γ(r)−γ(s)) : t ∈ [−1, 1]}
satisfies (4.84). Therefore, Ak contains the δ-neighbourhood of a two-dimensional
cone in Rd of diameter ∼ 2kδ, justifying our claim. Thus,

(log δ−1)δd ≲
⌊log(δ−1)⌋∑

k=0

2−2k|Ak| ≤ ∥N γ
δ ∥

2
L2(Rd+1)→L2(Rd)∥fδ∥

2
L2(Rd+1).

Consequently, we see that

∥N γ
δ ∥L2(Rd+1)→L2(Rd) ≳ (log δ−1)1/2.

In view of the above, we may conjecture that (log δ−1)1/2 is the sharp L2 operator
norm of N γ

δ . In other words, it is possible that Theorem 4.1.3 gives only a partial
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result in this direction.

4.5 A discussion on Geometric methods

In this section, we discuss the scope and challenges of crafting a geometric proof
for Theorem 4.1.2. We begin by considering a simpler setup where an easy geo-
metric argument is sufficient to obtain sharp operator estimates for the maximal
function.

4.5.1 Case of the classical Nikodym maximal function in
the plane

Fix 0 < δ < 1. For v ∈ Sd−1, consider the δ-tube

Tδ(v) := {y ∈ Rd : |y · v| ≤ 1 and |projv⊥y| ≤ δ}.

By the classical Nikodym maximal function, we refer to the maximal function
defined as

N clas
δ g(x) := sup

v∈Sd−1

1

|Tδ(v)|

∫
Tδ(v)

g(x− y)dy for x ∈ Rd

for g ∈ L1
loc(Rd). Following Córdoba’s well known argument [14] for the Kakeya

maximal theorem, we present here a geometric argument, which obtains sharp
L2 estimates for N clas

δ when d = 2. Although the author was unable to find a
reference to this argument, it is understood that the argument is widely known
in the field. The result is as follows.

Proposition 4.5.1. There exists C > 0 such that for any 0 < δ < 1, we have

∥N clas
δ ∥L2(R2)→L2(R2) ≤ C(log δ−1)

1
2 . (4.86)

Proof. Fix 0 < δ < 1. The argument can be split into several steps.
Localisation: Note thatN clas

δ is a local operator. In other words, ifQ andQ∗ ⊆ R2

denote the cubes centered at the origin with side-lengths 1 and 3 respectively, we
have

N clas
δ χQ(x) = 0 for x /∈ Q∗.

In view of the above, we claim that the proof of (4.86) follows from the operator
norm estimate

∥N clas
δ g∥L2(Q) ≲ (log δ−1)

1
2∥g∥L2(R2), for g ∈ S(R2) (4.87)

where the implicit constant is independent of δ. To see this, we fix g ∈ S(R2)
and write

∥N clas
δ g∥2L2(R2) =

∑
m∈2Z2

∥N clas
δ g∥2L2(m+Q).
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Now, translation invariance of N clas
δ combined with its local behaviour allows one

to extend (4.87) to the bound

∥N clas
δ g∥2L2(m+Q) ≲ (log δ−1)∥g∥2L2(m+Q∗) uniformly in m ∈ R2.

Thus,

∥N clas
δ g∥2L2(R2) ≲ (log δ−1)

∑
m∈2Z2

∥g∥2L2(m+Q∗) ≲ (log δ−1)∥g∥2L2(R2),

obtaining the bound (4.86).

Discretisation and Dualisation. It is easy to see that the maximal function is
locally constant at scale δ. Motivated by this observation, we discretize the setup
at the same scale. Suppose {Bi ⊂ Q : 1 ≤ i ≲ δ−2} be a maximal cover of Q
consisting of balls of radius δ. For each ball Bi, let xi be chosen such that

sup
x∈Bi

|N clas
δ g(x)| ≤ 2|N clas

δ g(xi)|.

For each xi, we can find a direction vi ∈ S1 such that

|N clas
δ g(xi)| =

1

|Tδ(vi)|

∫
Tδ(vi)

|g(xi − y)|dy.

Set T iδ := x+ Tδ(vi). Combining the above estimates and the duality principle,

∥N clas
δ g∥L2(Q) ≲

 ∑
1≤i≲δ−2

|N clas
δ g(xi)|2δ2

1/2

≲

 ∑
1≤i≲δ−2

(∫
χT i

δ
(y)|g(y)|dy

)2
1/2

= sup
ai∈C:∥ai∥ℓ2≤1

∫
R2

∑
1≤i≲δ−2

aiχT i
δ
(y) · |g(y)|dy


≤ ∥

∑
1≤i≲δ−2

aiχT i
δ
∥L2(R2)∥g∥L2(R2).

Therefore, the proof of (4.86) reduces to the estimate

∥
∑
T∈T

aTχT∥L2(R2) ≲ [log δ]
1
2 for (aT )T∈T ∈ C(#T ) with ∥aT∥ℓ2 ≤ 1, (4.88)

where T is a collection of δ-tubes whose centers form a δ-net inside Q.

Counting incidences with an angle parameter. Fix a collection T with the prop-
erties mentioned above. For two δ-tubes T1, T2 ∈ T , let θ(T1, T2) denote the angle
made by the long directions of the T1 and T2. It is easy to see that for k ≥ 0, we
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have

θ(T1, T2) ≈ 2kδ =⇒ |T1 ∩ T2| ≲ 2−kδ. (4.89)

Since the angle of separation determines the volume of intersection between two
tubes, it is reasonable to make at attempt at controlling the number of incidence
pairs of tubes with a specific angular separation.

For a fixed T1 ∈ T , let us denote by T T1
k the collection of all T2 ∈ T such that

T1 ∩ T2 ̸= ∅ and

θ(T, T1) ≈ 2kδ when k ≥ 1 or θ(T, T1) ≲ δ when k = 0.

It is not hard to see that the center of any tube in T T1
k lies inside a rectangle

of dimensions 1 × 2kδ. Since the centers of any two tubes in the collection are
δ-seperated, we easily obtain the bound

#T T
k ≲ 2kδ−1 for any T ∈ T . (4.90)

We have all the necessary ingredients to prove the required L2 estimate. Fix a
complex sequence (aT )T∈T . Squaring and expanding the L2 term in (4.88),

∥
∑
T∈T

aTχT∥2L2(R2) =
∑

T1,T2∈T

aT1 āT2|T1 ∩ T2|

=

C log δ−1∑
k=1

∑
T1∈T

aT1
∑

T2∈T
T1
k

āT2|T1 ∩ T2|,

where C is an absolute constant. Applying the Cauchy–Schwarz inequality in the
T1 sum,

∥
∑
T∈T

aTχT∥2L2(R2) ≲
C log δ−1∑
k=1

(∑
T1∈T

|aT1|2
)1/2

∑
T1∈T

(
∑

T2∈T
T1
k

āT2|T1 ∩ T2|)2


1/2

.

(4.91)

However, by another application of the Cauchy–Schwarz inequality and noting
the ℓ2-normalisation of (aT )T∈T , we have∑

T1∈T

(
∑

T2∈T
T1
k

āT2)
2 ≤

∑
T1∈T

∑
T2∈T

T1
k

(#T T1
k )|aT2 |2

≤ (max
T∈T

#T T
k )
∑
T2∈T

∑
T1∈T

T2
k

|aT2|2

≤ (max
T∈T

#T T
k )2

∑
T2∈T

|aT2|2 ≤ (max
T∈T

#T T
k )2.
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Combining the above with (4.91) and recalling (4.89) and (4.90), we deduce that

∥
∑
T∈T

aTχT∥2L2(R2) ≲
C log δ−1∑
k=1

(max
T∈T

#T T
k )2−kδ

≲ log δ−1,

completing the proof of (4.88) and thereby (4.86).

In the following subsection, we attempt to establish L2 estimates for the max-
imal function considered in Theorem 4.1.3 by extending the argument just de-
scribed.

4.5.2 Runnning the Córdoba-type argument for N γ
δ .

Recall the definition of the maximal function N γ
δ from (4.5). For simplicity, we

investigate N γ
δ only when d = 2 and γ is the unit circle in the plane. In this

simpler setup, we discuss the possibility of carrying out the argument similar to
the one described in the previous subsection (the argument will be referred to
as the Córdoba-type argument henceforth) and the necessary modification our
problem seeks for.

Fix 0 < δ < 1. Let x ∈ R2 and w ∈ S1. In view of (4.4), we are interested in
the tubes Tw(x) defined as the δ-neighbourhood of the line segment

Lw(x) :=

{(
x
0

)
+ t

(
w
1

)
: t ∈ [−1, 1]

}
.

Let Q ⊆ R2 denote the unit square centered at the origin. Suppose T denotes a
collection δ-tubes of the form Tw(x) for w ∈ S1 and x ∈ R2 such that their ‘centers’
x form a δ-net inside Q. By following the steps of localisation, discretisation
and dualisation as in the proof of Proposition 4.5.1, we see that the estimate of
Theorem 4.1.3,

∥N γ
δ ∥L2(R2+1)→L2(R2) ≲ (log δ−1).

for centered unit circle γ can be obtained as a consequence of the estimate

∥
∑
T∈T

aTχT∥L2(R3) ≲ δ(log δ−1), (4.92)

where T is a collection of δ-tubes with the above-mentioned properties and
(aT )T∈T is ℓ2-normalised. Compared to (4.88), we note that there is an addi-
tional δ term in the required dual estimate. This additional factor arises due
to the fact that the geometric objects of interest in this setup have a higher
co-dimension to what was the case for the classical Nikodym maximal function.

Further simplifying the setup, we restrict our attention to the case when
aT = [#T ]−

1
2 for each T ∈ T . For this special case, we re-write our goal (4.92)

as
∥
∑
T∈T

χT∥L2(R3) ≲ δ(log δ−1)[#T ]
1
2 . (4.93)
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Recall that the Córdoba-type argument relied on two key components. One, a
volume estimate for the region of intersection between two δ-tubes. Two, an effec-
tive control over the number of tubes incident to a typical tube under a constaint
on the volume of intersection between the two (In the proof of Propostion 4.5.1,
this translated to a constraint on the angular separation). We will argue along
similar lines.

For T ∈ T , let lT := projR2(T ) and define Θ(T1, T2) denote the angle between
long directions of lT1 and lT2 whenever T1, T2 ∈ T . For a fixed T1 ∈ T , define T T1

k

to be the collection of all tubes T ∈ T such that T1 ∩ T2 ̸= ∅ and

Θ(T, T1) ≈ 2kδ when k ≥ 1 and Θ(T, T1) ≲ δ when k = 0.

In the following lemma, we record a volume estimate on the intersecting region
between two tubes and also an estimate on the number of incident neighbours to
a tube.

Lemma 4.5.2 (Intersection lemma). For T1, T2 ∈ T , we have

|T1 ∩ T2| ≲
δ3

δ +Θ(T1, T2)
. (4.94)

Furthermore, for any T ∈ T and k ∈ N, we have

#T T
k ≲ 22k. (4.95)

Proof. The proof of the volume bound (4.94) is immediate once we project the
tubes onto the R2 plane. Thus, we may restrict our attention to (4.95).

For α ∈ [0, 1), let w(α) := e2πiα. To simplify notations, we use the notation
Tα to represent Tw(α) for the rest of the discussion. From the definition, it follows
that Tα(x) ∩ Tβ(y) ̸= ∅ whenever there exists t ∈ [−1, 1] with

(x− y) + t(w(α)− w(β)) = O(δ).

Fix x ∈ R2, α ∈ [0, 1). If Tβ(y) ∈ T Tα
k , we have

2kδ ≤ |θ(Tα(x), Tβ(y))| = |w(α)− w(β)| ≤ 2k+1δ.

Thus, without losing generality, we may assume that β lies in a sub-interval
(βk, βk+1) of [0, 1] with length 2kδ. By multiple applications of law of cosines,
we can see that4 the angle between w(βk) − w(α) and w(βk+1) − w(α) is at
most O(2kδ). Therefore, whenever Tβ(y) ∈ T Tα

k , we sees that y lies inside the
δ neighbourhood of a sector of angular width O(2kδ), centered around x, at a
distance of at most approximately 2kδ from x. This region is contained inside
a rectangle of side-lengths O((2kδ)2 + δ) and O(2kδ), there its area is bounded
above by O((2kδ)3+2kδ2). Computing its δ-entropy gives us the desired estimate
(4.95).

4Here one has to additionally assume that |2kδ| ≤ π
4 for all k, but this is fine as we can

decompose the maximal function into finitely many maximal functions for which it holds.
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We feed the estimates (4.94) and (4.95) into the Córdoba-argument to see
what comes out of it. Expanding the L2 sum,

∥
∑
T∈T

χT∥2L2(R3) =

| log δ|∑
k=1

∑
T1∈T

∑
T2∈T

T1
k

|T1 ∩ T2|

≲
| log δ|∑
k=1

[#T ](max
T∈T

#T T
k )2−kδ2

≲ δ2[#T ]

| log δ|∑
k=1

2k

≲ δ[#T ]. (4.96)

Clearly, the bound (4.96) is much weaker than what is required by (4.93) and
therefore fails to reprove this specific case of the maximal theorem.

The above calculation clearly demonstrates difficulties of executing a simple
Córdoba-type argument for the maximal problem that we are interested in. It
also conveys the reason why we have presented a proof using Fourier analytic
tools rather than geometric argument, although the latter seems to be the most
natural method to study a geometric maximal function like N γ

r . Nevertheless, in
view of the results on the Wolff’s circular maximal function [33, 55] or Bourgain’s
circular maximal function [44, 45], it is reasonable to expect that a geometric
argument, if exists, has to carefully investigate the geometry of large collections
T where most tubes intersects with every other tube in the family. This is well
beyond the scope of this thesis and we end the discussion here.
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[Cham], 2016.

[18] G. B. Folland and Elias M. Stein. Hardy spaces on homogeneous groups,
volume 28 of Mathematical Notes. Princeton University Press, Princeton,
N.J.; University of Tokyo Press, Tokyo, 1982.

[19] Robert Fraser and Kyle Hambrook. Explicit Salem sets in Rn. Adv. Math.,
416:Paper No. 108901, 23, 2023.

[20] Pritam Ganguly and Sundaram Thangavelu. On the lacunary spherical max-
imal function on the Heisenberg group. J. Funct. Anal., 280(3):Paper No.
108832, 32, 2021.

[21] D. J. H. Garling. Inequalities: a journey into linear analysis. Cambridge
University Press, Cambridge, 2007.

[22] Gustavo Garrigos, Wilhelm Schlag, and Andreas Seeger. Improvements in
wolff’s inequality for decompositions of cone multipliers. preprint, 2009.

[23] Gustavo Garrigos and Andreas Seeger. On plate decompositions of cone
multipliers. Proceedings of the Edinburgh Mathematical Society, 52, 07 2007.

[24] Loukas Grafakos. Modern Fourier analysis, volume 250 of Graduate Texts
in Mathematics. Springer, New York, third edition, 2014.

[25] Larry Guth. Decoupling estimates in fourier analysis, 2022.

[26] Larry Guth, Hong Wang, and Ruixiang Zhang. A sharp square function
estimate for the cone in R3. Ann. of Math. (2), 192(2):551–581, 2020.

[27] Ya Ryong Heo. An endpoint estimate for some maximal operators associated
to submanifolds of low codimension. Pacific J. Math., 201(2):323–338, 2001.

105



106 Aswin Govindan Sheri
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