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Abstract 
 

Honeybees construct nests that consist of tessellated hexagonal prismatic structures. The bees 

develop a linear succession of tetrapod structures that serve as the nest’s foundation in the 

initial stage of construction. This natural hexagonal lattice structure has been the epitome of 

extensive aerospace applications. And, has particularly been widely used on aircraft control 

surfaces as they provide an ideal set of mechanical properties; minimal density and ability to 

withstand high magnitudes of compressive and shear force. 

This paper analyses this hexagonal lattice configuration using theoretical analysis and 

simulations. It first analyses the lattice structure by breaking it down into three individual 

components somewhat resembling the constructional stages in which the nests are developed: 

cantilever beam, unit cell which is initially the tetrapod structure, and the complete system of 

the lattice itself.  

In further chapters, refined geometries, namely stepped and quadratic lattice of the 

honeycomb, are then analysed with the objective of enhancing its strength to weight ratio, this 

is again analysed through the same bottom-up approach and procedure. Two approaches are 

implemented in the enhancement procedure. The obtained numerical results are then reviewed 

through simulations using multiple computer-aided software, Solidworks and ANSYS where 

the mechanical properties are established and compared.  
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Chapter 1 – Preface 
 

1.1  Introduction 
 

Through recent years, three-dimensional (3D) printing technologies have progressed 

significantly and have become a revolutionary advancement in the way products have been 

developed and manufactured. Due to this technological phenomenon, it has opened the world 

to new methods of manufacturing products, it is not only harnessed by large scale industries 

but directly by the consumer [1].   

Additive Manufacturing (AM) or Additive Layer Manufacturing (ALM), more widely 

known as 3D printing, is a manufacturing process which uses computer aided design (CAD) 

[2]. ALM is implemented by means of developing models and structures of various scales and 

intricacies by combining materials layer by layer using a method called fused depositional 

modelling (FDM) [3]. This can include micron level additive manufacturing in the 10–20-

micron range to a build volume of 1.4m x 1.11m x 1.5m [4-5]. Each layer is equivalent to a 

thin cross-section of the CAD model. Configurations developed through ALM are 

fundamentally different from traditionally made structures due to the variance in the interior 

configuration. The structure can be manipulated and altered in numerous ways. Some of the 

multiple parameters that can be applied to a 3D printed component include diversifying the 

volume fractions, ranging from 0 – 100% or altering the internal configuration that the model 

could entail [6].  These infill structures include honeycomb, grid, and concentric circles [7].   

Predictably, combining different parameters would greatly affect the mechanical properties of 

the design. For instance, increasing the density comes with increasing strength but undesirably 

increasing the weight.  

By combing the comprehensive array of materials that can now be utilised and this new 

manufacturing approach, it provides unique advantages over conventional manufacturing. It 

can reduce costs, increase production speed as well as allowing for unlimited complex and 

customisable designs without an added cost [8-17]. In particular, the sustainable aspect that 

ALM provides is of particular interest as this would reduce material wastage bringing forth a 

further reduction in cost. 

At present, there are a wide range of experimental and theoretical studies carried out 

worldwide focusing on the superior parameter combinations. However, as ALM is a relatively 



new advancement, there is a lack of thorough analysis and investigation into the possible 

irregular geometries that could perform well in all areas. 

Therefore, this paper will examine a specific infill pattern, in this instance the 

hexagonal arrangement, better known as the honeycomb structure. This particular infill was 

chosen due to its presence in nature and due to the fact, it has already been extensively used on 

aircraft surfaces. Further investigation could potentially influence the alteration of current 

manufactured components. The objective, in the interest of aerospace applications, is to 

optimise the resistive capability to deformation of the altered structure, whilst maintaining the 

mass of the uniform configuration. In a simplified manner, to ultimately achieve minimal 

deformation[18]. The investigation involves an in-depth analysis of the structure when 

subjected to compressive and tensive forces in the horizontal and vertical direction, both 

together and separately. A probable complication of uniform hexagonal structures is the 

positive Poisson’s ratio that they entail. This would result in the elongation of the structure in 

the direction parallel to the load and analogously, minimise the cross-sectional area 

perpendicular to the load. This can result in failure. Thus, by taking this into consideration two 

approaches are analysed in the enhancement procedure through the distribution of the cross-

sectional area: the introduction of ‘steps’ in the lattice structure and profile optimisation.  

To achieve this, numerous models are created using the CAD software, Solidworks and 

then simulated on another CAD software, ANSYS. Two software are used in the simulation 

process as each have their own area of expertise; ANSYS has the ability to analyse the structure 

created by Solidworks in a more thorough manner. Comparisons between the theoretical results 

and finite element analysis (FEA) results will then be developed and discussed. 

 

1.2 Thesis Layout 
 

The paper is structured into 3 main chapters (2, 3, 4) which is further split into various sections 

and subsections. Conclusions and summaries are then written in the chapter 5, the final chapter. 

 

1.2.1 Hexagonal Lattice Analysis 
 

The second chapter of this paper establishes the theoretical foundation required to understand 

the nonlinear dynamics of hexagonal lattice configurations subjected to in-plane compressive 

and tensile stresses. As previously stated, the bottom-up approach is used where analysis begins 



at the unit cell, then subsequently a complete complex system of an entire lattice. Results are 

validated through different approaches and methods: numerical analysis and finite element 

analysis. The physical properties of lattice materials such as malleability and high 

compressibility are among the reasons, they perfectly fulfil the criteria to be exploited in a 

range of revolutionary and innovative engineering applications.  

With the aim of analysing and designing optimised and intricate cellular metamaterials, 

a high level of physics-based understanding is crucial. In conjunction with this, choosing the 

correct computational approach to use is of utmost importance. The analysis of the honeycomb 

structure consists of splitting it into individual segments and where further analysis is 

conducted for each separate subdivision. Again, this is more widely known as the bottom-up 

approach [19-25].  

The constitutive beam elements’ stiffness matrices coefficients are used to express the 

nonlinear equivalent elastic modulus and Poisson’s ratios of the stressed lattice. Transcendental 

displacement function allows the derivation of the stiffness coefficients required. These are the 

exact solutions of corresponding governing ordinary differential equations with appropriate 

boundary conditions. The closed-form analytical equivalent elastic properties of the lattice are 

expressed in terms of different functions depending on the stress that is subjected upon the 

structure. For the compressive case, it is expressed in terms of trigonometric functions whilst 

contrarily, when subjected to a tensile stress it is expressed as a hyperbolic function.  

Three special cases of diverse lattice structures are then investigated using these general 

expressions: auxetic hexagonal, rhombus-shaped, and rectangular lattices. The analytical 

expressions derived are then validated through finite element simulations, specifically 

independent nonlinear computational analysis. Separate numerical expressions were developed 

for lattices under applied loads in multiple directions. It is shown that the equivalent elastic 

moduli act adversely when under compression and tension, a softening effect and stiffening 

effect occurs respectively. It is important to note that the Poisson’s ratios are not significantly 

dependent on the applied stresses and thus are not entirely significant in these cases but will 

continue to be discussed. The proposed analytical methodology, as well as the recent closed-

form expressions offer a computationally effective and mechanically intuitive structure for the 

study and parametric nature of lattice materials subjected to external stresses. 

  



1.2.2 Stepped Lattice 
 

The third chapter of this paper explores one approach of optimising a hexagonal lattice 

configuration through varying the geometry of the constitutive beam elements by introducing 

‘steps. The analysis consists of the same procedures as the preceding chapter where the 

hexagonal honeycomb structure is separated into sub systems and individually analysed. This 

would then be pieced together to develop the complex lattice which is then again analysed as 

a whole system. The two major forms to be investigated and demonstrated are ‘step-up’ and 

‘step-down’ geometries, further defined in the chapter. Likewise, the validation of results is 

then again executed through different approaches and methods: numerical analysis and finite 

element analysis.  

The objective of this analysis is the development of a geometry with a heightened 

deformation resistance whilst maintaining the mass of the uniform structure. It is crucial that 

the mass of the altered structure is maintained for comparison purposes. The main focal point 

is the derivation of the closed form expressions of these ‘stepped’ hexagonal lattices. Further 

objectives include investigating the effect of redistributing the mass in the constitutive beam 

elements whilst of course as previously mentioned maintaining the uniform beam mass. This 

combined with obtaining a range of equivalent elastic parameter values which can then be 

manipulated for design purposes and achieve the criteria. 

In the same manner as the preceding chapter, the numerical theory developed can be 

compared to the current beam theory that has been researched; Euler-Bernoulli beam theory. 

These are exploited to derive the closed form derivations. 

 

1.2.3 Quadratic Profile 
 

The fourth chapter of this paper investigates another approach of optimising the hexagonal 

configuration but in this instance through varying the beam profile by introducing a quadratic 

curve merely due to its simplicity and also as the thickness of the member is so small, using 

higher order curves are not necessary as it wouldn’t have a huge additional impact. Identical 

procedures are implemented as the first optimising approach. 

For the attainment of theoretical values, boundary conditions were first put into place 

to find the unknown constants of the beam element. Subsequently, analysis is then conducted 

on the unit cell which would consist of an inclined angle of 30 degrees. It is important to note 

that necessary changes in the numerical analysis could be made to the derivations if the inclined 



angle was any other value. The numerical analysis of this piece of the lattice consists of the 

formulation of the individual cantilever beams’ local stiffness matrices and transforming them 

into a global coordinate system resembling the lattice. Initially, the derivation of the lattice 

expressions is derived from the unit cell. Periodic boundary conditions were applied for a 

minimum number of unit cells i.e., an assumption made is the deformation of one-unit cell is 

identical to all the other unit cells. The establishment of stiffness matrix coefficients is of 

absolute importance and continues to be an objective of the paper as it allows the strength 

comparisons to be made between the uniform and optimised lattice. 

 



Chapter 2 – Hexagonal Lattice Analysis 

 

2.1 Summary 
 

This chapter summarises the findings of [26] and sets out much of the analytical framework 

that is then used to extend this work to refined geometries. Beginning from subsection 2.2 of 

Chapter 2. This section presents the elasticity tensor of 2D lattices along with the unit cell 

approach used to obtain the equivalent elastic properties. The equivalent elastic properties of 6 

cases are investigated: 3 cases for compression and 3 in tension. These properties include 

elastic moduli, Poisson’s ratio, and shear modulus. In closed form, the elements of the elasticity 

tensor are expressed in terms of the stiffness matrix coefficients of the beams within the unit 

cell.  

In the next section, subsection 2.3, the Euler-Bernoulli beam is analysed when 

subjected to axial forces. Three cases are considered: (a) using the classical finite element 

method, the stiffness matrix can be obtained, (b) the exact stiffness matrix can be obtained 

when subjected to a compressive axial force, and (c) the exact stiffness matrix can be obtained 

when subjected to a tensile axial force. In summary, the derivation of the stiffness matrix of 

the beam is obtained in this section. And from this, the expression of the equivalent elastic 

properties of the lattice can then be obtained.  

Subsection 2.4 illustrates and deliberates hexagonal lattice configurations subjected to 

compressive stresses. Again, three separate scenarios are considered: (a) compressive stresses 

in the horizontal direction, (b) compressive stresses in the vertical direction and (c) 

compressive stresses in both directions.  

The same three cases are discussed in subsection 2.5 but with forces in tension. 

Subsection 2.6 describes the methodology and finite element analysis procedures for the 

simulations. Subsection 2.7 discusses and compares the results of the two approaches: 

numerical and finite element analysis. Subsection 2.8 applies the general theoretical framework 

for the equivalent elastic properties of strained hexagonal lattices to various lattice geometries. 

Auxetic hexagonal lattices, rhombus-shaped lattices, and rectangular lattices are among the 

special cases studied. The five equivalent elastic constants have exact closed-form expressions 

that have been explicitly derived.  



And finally, subsection 2.9 and 2.10 summarises all the analysis and discussions of 

each section and conclusions are drawn based on the findings obtained as well as 

recommendations for future research. 

2.2 Equivalent elastic moduli of hexagonal 

lattices 
 

2.2.1    The elasticity tensor of 2D lattices 
 

A key property when performing global stress-strain analysis on a lattice material is the 

effective elastic property. The expression for an in-plane elastic 2D material is as follows: 

 

{

𝜀11
𝜀22
2𝜀12

} = [
1/𝐸1 −𝑣21/𝐸2 0

−𝑣12/𝐸1 1/𝐸2 0
0 0 1/𝐺12

]  {

𝜎11
𝜎22
𝜎12

} 

 

This expression is developed based on the orthotropic material. The representation of each 

symbol within the 2D material is as follows: 

▪ 𝜀(−) – Strain  

▪ 𝜎(−) – Stress  

▪ 𝐸1 – Transverse Young’s Modulus 

▪ 𝐸2 – Longitudinal Young’s Modulus 

▪ 𝐺12 – Shear Modulus 

▪ 𝑣12, 𝑣21– Poisson’s Ratios 

 

The stress-strain relationship can be defined by these properties. This can be illustrated by 

inverting the coefficient matrix in eq. (1) as 

{

𝜎11
𝜎22
𝜎12
} = [

𝐸1/(1 − 𝑣12𝑣21) 𝑣21𝐸1/(1 − 𝑣12𝑣21) 0
𝑣12𝐸2/(1 − 𝑣12𝑣21) 𝐸2/(1 − 𝑣12𝑣21) 0

0 0 𝐺12

] {

𝜀11
𝜀22
2𝜀12

} 

With the assumption that the material is subjected to large magnitudes of external stress, the 

elastic constants will be affected and thus require to be altered. Furthermore, with the 

assumption of linear material behaviour, it is also important to consider geometric nonlinearity 

arising due to large deformation. The equations below can then be obtained from eq. (2): 

(2) 

(1) 



 

 

𝜎11(𝜇) =
𝐸1(𝜇)

(1 − 𝑣12(𝜇)𝑣21(𝜇))
(𝜀11(𝜇) + 𝑣21(𝜇)𝜀22(𝜇)) 

𝜎22(𝜇) =
𝐸2(𝜇)

(1 − 𝑣12(𝜇)𝑣21(𝜇))
(𝑣12(𝜇)𝜀11(𝜇) + 𝜀22(𝜇)) 

𝜎12(𝜇) = 𝐺12(𝜇)[2𝜀12(𝜇)] 

 

Definition of 𝜇 is defined later in the paper, please refer to Eq. (20). 

 

As seen in eq. (3), three elastic moduli and two Poisson’s ratios, better known as the five 

elasticity constants, are put as functions of 𝜇, a scalar parameter. This represents the external 

stress that the lattice is subjected to. The exact expression of this parameter will depend on the 

nature of the applied stress, but this will be further investigated and discussed later in the paper. 

The analysis of complex systems such as a lattice structure with embedded cellular materials 

is overseen by boundary value problems. It is found that generally, various numerical methods 

including finite element analysis are crucial to solve these problems. These methods allow the 

use of stress-dependent elasticity constants which allow coarser discretisation leading to an 

efficient computational approach. The efficiency is dependent upon the existence and 

implementation of these elasticity constants as they take account the nonlinear stress-strain 

relationship that is seen in eq. (3). 

 

2.2.2    The Unit Cell Approach 
 

The effective elastic property of a lattice structure can be obtained using the periodicity of a 

suitably selected unit cell. In fig. (1), a hexagonal lattice configuration is illustrated with its 

corresponding unit cell. The unit cell can be seen repetitively throughout the lattice where the 

unit cell is tessellated creating the entire lattice. When subjected to in-plane compressive and 

tensile stresses, each of the unit cell walls will uniformly bend and expand/compress. On the 

other hand, when subjected to out-of-plane uniform stresses, the three segments of the unit cell 

in fig. 1(b) can be represented as single beam elements. Each of these elements are seen in fig. 

1(c) with six degrees of freedom and two nodes on each end. Thus, the stiffness matrix of fig. 

1(c) can be expressed by a 6 x 6 matrix with degrees of freedom at each node corresponding to 

the multiple deformations: axial, transverse and rotational. The equivalent elastic moduli of 

(3) 



hexagonal cellular materials are obtained by Gibson and Ashby as eq. (4 - 8) [24]. It is 

important to note that the expansive/compressive deformations are ignored and only the 

bending deformation is considered in these expressions. 

Fig. 1(a) Illustration of a hexagon lattice structure under compressive stress in direction- 1 

only 

Fig. 1(b) A single unit cell used to analyse the entire lattice structure 

Fig. 1(c) A beam element (representing the three different segments/beams in the unit cell 

model) with two nodes on each end as well as six degrees of freedom. Each degree of freedom 

at each node represents the axial, transverse, and rotational deformations. 

 

𝐸1𝐺𝐴 = 𝐸𝛼3
cos (𝜃)

(𝛽 + sinθ) sin2 θ
 

𝐸2𝐺𝐴 = 𝐸𝛼
3
(𝛽 + sinθ)

cos3 θ
 

𝑣12𝐺𝐴 =
cos2 𝜃

(𝛽 + sinθ) sinθ
 

𝑣21𝐺𝐴 =
(𝛽 + sinθ) sinθ

cos2 𝜃
 

𝐺12𝐺𝐴 = 𝐸𝛼
3

(𝛽 + sinθ)

𝛽2(1 + 2𝛽)cosθ
 

 

The representation of the symbols in the Gibson and Ashby expressions above are as follows: 

▪ E – Elastic Modulus of the base material 

▪ θ – Cell angle as shown in fig. 1(b) 

(4) 

(5) 

(6) 

(7) 

(8) 



▪ 𝛼 and 𝛽 – Geometric non-dimensional ratios given by eq. (9 - 10) 

𝛼 =
𝑡

𝑙
 (𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑟𝑎𝑡𝑖𝑜) 

𝛽 =
ℎ

𝑙
 (ℎ𝑒𝑖𝑔ℎ𝑡 𝑟𝑎𝑡𝑖𝑜) 

The main focal point of this paper is to analyse the elastic behaviour of 2D lattices when 

subjected to in-plane stresses. Using the top-down approach, the way in which the three 

structures shown in fig. (1), fig. 1(b) and fig. 1(c) work together to be analysed are explained 

as follows. In general, a non-linear relationship is to be expected. This can be seen in the elastic 

constants which are dependent on the applied stress as in eq. (3). When a cellular material is 

subjected to external stresses as illustrated in fig 1. (a), it results in forces and moments shown 

in fig. 1(b). Using the coefficients of the stiffness matrix of the beam element shown in fig. 

1(c), the deformation of the unit cell when subjected to an applied stress can be obtained. 

𝐸1(𝜇) =
𝐾55(𝜇)cos (𝜃)

𝑏(𝛽 + sin 𝜃) sin2 𝜃 (1 + cot2 𝜃
𝐾55(𝜇)
𝐾44(𝜇)

)
 

𝐸2(𝜇) =
𝐾55(𝜇)(β + sin𝜃)

𝑏𝑐𝑜𝑠3𝜃 (1 + tan2 𝜃
𝐾55(𝜇)
𝐾44(𝜇)

+ 2 sec2 𝜃
𝐾55(𝜇)

𝐾44
(ℎ)(𝜇)

)

 

𝑣12(𝜇) =
cos2 𝜃 (1 −

𝐾55(𝜇)
𝐾44(𝜇)

)

(𝛽 + sin 𝜃) sin 𝜃 (1 + cot2 𝜃
𝐾55(𝜇)
𝐾44(𝜇)

)
 

𝑣21(𝜇) =
(𝛽 + sin𝜃) sin𝜃 (1 −

𝐾55(𝜇)
𝐾44(𝜇)

)

cos2 𝜃 (1 + tan2 𝜃
𝐾55(𝜇)
𝐾44(𝜇)

+ 2 sec2 𝜃
𝐾55(𝜇)

𝐾44
(ℎ)(𝜇)

)

 

𝐺12(𝜇) =
(β + sin𝜃)

𝑏𝑐𝑜𝑠𝜃
=

1

(

 
 
 
 

−
ℎ2

𝑠𝑙𝐾65(𝜇)
+

4𝐾66
(
ℎ
2
)
(𝜇)

(𝐾
55

(
ℎ
2
)
(𝜇)𝐾66

(
ℎ
2
)
(𝜇) − (𝐾

56

(
ℎ
2
)
(𝜇))

2

)

+
(𝑐𝑜𝑠𝜃 + (β + sin𝜃)𝑡𝑎𝑛𝜃)2

𝐾44(𝜇)

)

 
 
 
 

 

 

The representation of each symbol in eq. (11 – 15) are as follows: 

▪ b – depth of the lattice 

 

▪ Kij – ij-th element of the stiffness matrix of the beam element shown in Fig. 1(c) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 



▪ 𝜇 – External stress parameter in which the stiffness coefficients have been made in the 

function of 

 

 

Fig. 2(a) Lattice model for the obtainment of E1 

Fig. 2(b) Lattice model for the obtainment of E2 

Fig. 2(c) Lattice model for the obtainment of G12 

 

It is important to note that to obtain values E1, E2 and G12, different models must be simulated. 

For E1, the number of cells must be greater in the x-axis whilst for E2, there must be more cells 

in the y-axis. And for G12, the model must be square and thus equal cells in both axes. This 

paper focuses on the first model in fig. 2(a) and therefore the obtainment of E1. 

2.3 Stiffness matrices of axially loaded 

beams 
 

2.3.1    The classical beam element 
 

When analysing the beam element, it is important to consider the magnitude of the forces 

applied to the hexagonal lattice structure as a whole. When the lattice is subjected to a 

compressive or tensile stress, the beam members would also experience compression or tension 

in the same manner. If the axial forces applied were miniscule, the deformation, whether it be 

compression or tension, would not have a significant impact on the bending of the beam. 

However, if the applied force was on a larger scale, the deformation experienced cannot be 



ignored. The Euler-Bernoulli theory is used to characterise the underlying deformation 

undergone by the beams. 

 

A beam with a compressive force, N, is shown in fig. (2).  

 

Fig. (3) A Euler-Bernoulli beam subjected to an axial force, N. 

 

From this diagram shown in fig. (3), the transverse deflection can then be derived giving the 

following fourth-order ordinary differential equation: 

 

𝐸𝐼
𝑑4𝑊(𝑥)

𝑑𝑥4
+𝑁

𝑑2𝑊(𝑠)

𝑑𝑥2
= 𝐹(𝑥)  

 

The representation of the symbols in eq. (16) are as follows: 

▪ W(x) – Transverse Displacement 

▪ F(x) – Applied Transverse force acting on the beam 

▪ E – Young’s Modulus of the beam material 

▪ I – Inertia Moment of the beam cross-section 

▪ EI – Bending stiffness of the beam 

 

As shown in fig. (3), the beam element has two nodes on each end and four degrees of freedom. 

The displacement field within the element is expressed by cubic shape functions [25] for the 

classical finite element analysis and they are given by 

 

𝑵(𝜉) = [2𝜉3 − 3𝜉2 + 1, 𝐿𝜉(𝜉 − 1)2, −2𝜉3 + 3𝜉2, 𝐿𝜉2(𝜉 − 1)]𝑇 

 

In eq. (17), the non-dimensional length variable is expressed as 

𝜉 = 𝑥/𝐿 

 

It should be noted that these shape functions are not explicitly derived from the exact solution 

of the governing differential equation that is eq. (16) with relevant boundary conditions. The 

(16) 

(17) 

(18) 



stiffness matrix of the general beam element can be obtained by using these shape functions in 

accordance with the traditional variational formulation [25]. This is expressed as 

 

𝜥 = 𝐸𝐼∫
𝑑2𝑵(𝑥)

𝑑𝑥2
𝑑2𝑵𝑇(𝑥)

𝑑𝑥2
𝑑𝑥

𝐿

0

−𝑁∫
𝑑𝑵(𝑥)

𝑑𝑥

𝑑𝑵𝑇(𝑥)

𝑑𝑥
𝑑𝑥

𝐿

0

 

𝜥 =
𝐸𝐼

𝐿3
∫

𝑑2𝑵(𝜉)

𝑑𝜉2
𝑑2𝑵𝑇(𝜉)

𝑑𝜉2
𝑑𝜉

1

0

−
𝑁

𝐿
∫

𝑑𝑵(𝜉)

𝑑𝜉

𝑑𝑵𝑇(𝜉)

𝑑𝜉
𝑑𝜉

1

0

 

𝜥 =
𝐸𝐼

𝐿3
∫ (

𝑑2𝑵(𝜉)

𝑑𝜉2
𝑑2𝑵𝑇(𝜉)

𝑑𝜉2
− 𝜇2

𝑑𝑵(𝜉)

𝑑𝜉

𝑑𝑵𝑇(𝜉)

𝑑𝜉
)

1

0

 𝑑𝜉 

 

In eq. (19), the non-dimensional axial force is given by 

𝜇2 =
𝑁𝐿2

𝐸𝐼
 

 

Expanding and simplifying the integral in eq. (19), the classical stiffness matrix of a beam 

element corresponding to fig. (3) is obtained as 

𝜥 =
𝐸𝐼

𝐿3

[
 
 
 𝑑1
−
−
𝑠𝑦𝑚

     

𝑑2𝐿

𝑑3𝐿
2

−

 

−

     

−𝑑1
−𝑑2𝐿
𝑑1
−

     

𝑑2𝐿

𝑑4𝐿
2

−𝑑2𝐿

𝑑3𝐿
2 ]
 
 
 

 

The representation of each symbol in eq. (21) is as follows: 

 

▪ d1 = 12 −
6

5
𝜇2 

▪ d2 = 6 −
1

10
𝜇2 

▪ d3 = 4 −
2

15
𝜇2 

▪ d4 = 2 +
1

30
𝜇2 

 

But if the axial forces were in tension, these equations would also be valid, but the signs would 

change as follows: 

 

▪ d1 = 12 +
6

5
𝜇2 

▪ d2 = 6 +
1

10
𝜇2 

▪ d3 = 4 +
2

15
𝜇2 

(19) 

(20) 

(21) 

(22) 

(23) 



▪ d4 = 2 −
1

30
𝜇2 

 

If 𝜇 = 0, this implies there is no axial force applied, eq. (21) can be therefore simplified and 

reduced to the conventional stiffness matrix of Euler-Bernoulli beams as  

𝜥𝐸𝐵 = 𝜥(𝜇=0) =
𝐸𝐼

𝐿3
[

12
6𝐿
−12
6𝐿

     

6𝐿
4𝐿2

−6𝐿
 

2𝐿2

     

−12
−6𝐿
12
−6𝐿

     

6𝐿
2𝐿2

−6𝐿2

4𝐿2

] 

 

Since the integral in eq. (19) is evaluated precisely when deriving the stiffness matrix, the error 

when using this matrix in the sense of the finite element analysis stems from the assumption 

that the displacement field within the beam is not perfectly expressed by the cubic polynomials 

used in the shape function in eq. (17). Therefore, when solving practical problems, the required 

number of elements is increased. This could potentially be appropriate in a numerical approach, 

but the exact stiffness matrix of the beam elements is necessary to obtain the closed-form 

analytical expressions of the equivalent elastic properties. 

 

2.3.2    Beams subjected to a compressive force 
 

In comparison to the previous example, if the stiffness matrix is derived using the exact 

displacement field, only ‘one’ element is required for an entire beam. This will allow the 

obtainment of the exact expressions for the elasticity constants of the lattice material. Using 

eq. (16), by transforming the non-dimensional coordinate ξ the following is obtained 

d4𝜔(𝜉)

d𝜉4
+ 𝜇2

d2𝜔(𝜉)

d𝜉2
= 0 

 

In eq. (25), 𝜔(𝜉) = 𝑊(𝑥) and the subjected force is absent. Assuming a solution of the form  

𝜔(𝜉) = exp [𝜆𝜉] 

 

and substituting eq. (26) into eq. (25) results in the expression below 

𝜆4 + 𝜇2𝜆2 = 0    𝑜𝑟   𝜆2(1 + 𝜇2) = 0 

Solving eq. (27) gives four solutions 

𝜆2 = 0, 𝜆 = ±𝑖𝜇   𝑜𝑟  𝜆1,2,3,4 = 0,0,±𝑖𝜇  

Using these solutions, the vector of basis functions can be obtained as 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 



𝑠𝑇(𝜉) = {𝑒(0,0,±𝑖𝜇)𝜉} = {1, 𝜉, sin 𝜇𝜉 , cos 𝜇𝜉} 

 

The general solution can then be expressed as 

𝜔(𝜉) = sT(𝜉)𝐜 

Here, the vector of unknown constants is given by 

𝐜 = {𝑐1, 𝑐2, 𝑐3, 𝑐4}
𝑇 

 

Using eq. (30) which is made of displacement functions, the vector of shape functions is 

expressed as 

𝑵(𝜉) =

{
 

 
𝑁1(𝜉)

𝑁2(𝜉)

𝑁3(𝜉)

𝑁4(𝜉)}
 

 
=

[
 
 
 
 
𝒄1
𝑇

𝒄2
𝑇

𝒄3
𝑇

𝒄4
𝑇]
 
 
 
 

s(𝜉) 

 

The vector of constants, allowing the existence of the jth shape function, is cj.  The boundary 

conditions that characterise the form functions are required to achieve these unknown 

constants. Table 1 depicts the relationship between shape functions and boundary conditions, 

where boundary conditions in each column give rise to the subsequent shape function. When 

solving eq. (30) for the four sets of boundary conditions mentioned above, one obtains 

𝑨[𝐜1, 𝐜2, 𝐜3, 𝐜4] = 𝐈 

 𝑁1(𝜉) 𝑁2(𝜉) 𝑁3(𝜉) 𝑁4(𝜉) 
𝑊(0) = 𝜔(0) 1 0 0 0 

Θ(0) = 𝜔′(0)/𝐿  0 1 0 0 

𝑊(𝐿) = 𝜔(1) 0 0 1 0 

Θ(𝐿) = 𝜔′(1)/𝐿 0 0 0 1 

 

Table (1) The correlation between the boundary conditions and shape functions 

 

Table (1) depicts a 4 x 4 identity matrix, and the matrix A is identified as  

𝑨

[
 
 
 
 
 
𝑠𝑇(0)
1

𝐿
𝑠′𝑇(0)

𝑠𝑇(1)
1

𝐿
𝑠′𝑇(1)]

 
 
 
 
 

=

[
 
 
 
 1
0
1
0

     

0
𝐿−1

1
 

𝐿−1

     

0
𝜇/𝐿 
sin (𝜇)

−
𝜇 cos(𝜇)

𝐿

     

1
0

cos (𝜇)

−
𝜇sin (𝜇)

𝐿 ]
 
 
 
 

 

 

  

(30) 

(31) 

(32) 

(33) 

(34) 



By solving eq. (33) for the unknown constants and substituting into eq. (32), the exact shape 

function can be obtained as 

 

𝑵(𝜉) = [𝑨−1]𝑇𝑠(𝜉) =

[
 
 
 
 
 
 

𝜇 cos(𝜇)−sin(𝜇)+𝜇

𝜇 cos(𝜇)−2sin(𝜇)+𝜇

−
𝐿(𝜇 cos(𝜇)−sin(𝜇))

𝜇(𝜇 sin(𝜇)+2cos(𝜇)−2)

−
sin(𝜇)

𝜇 cos(𝜇)−2sin(𝜇)+𝜇

𝐿(𝜇−sin(𝜇))

𝜇(𝜇 sin(𝜇)+2cos(𝜇)−2)

     

−
𝜇 sin(𝜇)

𝜇 sin(𝜇)+2cos(𝜇)−2

−
𝐿 sin(𝜇)

𝜇 cos(𝜇)−2sin(𝜇)+𝜇

𝜇 sin(𝜇)

𝜇 sin(𝜇)+2cos(𝜇)−2

 

−
𝐿 sin(𝜇)

𝜇 cos(𝜇)+2sin(𝜇)+𝜇

     

sin(𝜇)

𝜇 sin(𝜇)+2cos(𝜇)−2

𝐿(−sin(𝜇)+𝜇 (cos(𝜇)+1))

𝜇(−2𝜇 sin(𝜇)+𝜇 (cos(𝜇)+1))

−
sin(𝜇)

𝜇 sin(𝜇)+2cos(𝜇)−2

𝐿 sin(𝜇)

𝜇(𝜇 cos(𝜇)−2sin(𝜇)+𝜇)

     

−
sin(𝜇)

𝜇 cos(𝜇)−2sin(𝜇)+𝜇

𝐿(𝜇 cos(𝜇)−sin(𝜇))

𝜇(𝜇 sin(𝜇)+2cos(𝜇)−2)

sin(𝜇)

𝜇 cos(𝜇)−2sin(𝜇)+𝜇

𝐿(sin(𝜇)−𝜇)

𝜇(𝜇 sin(𝜇)+2cos(𝜇)−2)]
 
 
 
 
 
 

{

1
𝜉

sin(𝜇𝜉)

cos(𝜇𝜉)

}  

 

Through substitution of the exact shape functions in the integral expression of the stiffness 

matrix in eq. (19) and simplification, the following expression is obtained 

𝑲 =
𝐸𝐼

𝐿3
𝑨−1

𝑇
{∫ (

𝑑2𝑠(𝜉)

𝑑𝜉2
𝑑2𝑠𝑇(𝜉)

𝑑𝜉2
− 𝜇2

𝑑𝑠(𝜉)

𝑑𝜉

𝑑𝑠𝑇(𝜉)

𝑑𝜉
)𝑑𝜉  

1

0

}𝑨−1 

𝑲 =
𝐸𝐼

𝐿3

[
 
 
 𝑑1
−
−
𝑠𝑦𝑚

   

𝑑2𝐿

𝑑3𝐿
2

−
−

   

−𝑑1
−𝑑2𝐿
𝑑1
−

   

𝑑2𝐿

𝑑4𝐿
2

−𝑑2𝐿

𝑑3𝐿
2 ]
 
 
 

 

 

The non-dimensional coefficients in the above equation are given by: 

 

▪ d1 =−
𝜇3 sin(𝜇)

∆
 

▪ d2 = −
𝜇2 (cos(𝜇)−1)

∆
 

▪ d3 = −
𝜇(𝜇 cos(𝜇)−sin(𝜇))

∆
 

▪ d4 = −
𝜇(sin (𝜇)−𝜇)

∆
 

▪ ∆ = 𝜇 sin(𝜇) + 2 cos(𝜇) − 2 

 

The four unique non-dimensional coefficients are solely functions of the axial force parameter, 

𝜇 .Using expansion and the Taylor series about 𝜇 = 0, the following are obtained: 

 

▪ d1 = 12 −
6

5
 𝜇2 −

1

700
𝜇4 −

1

63000
𝜇6 −

37

194040000
𝜇8 −

59

25225200000
𝜇10 + 𝑂(𝜇12) 

▪ d2 = 6 −
1

10
 𝜇2 −

1

1400
𝜇4 −

1

126000
𝜇6 −

37

388080000
𝜇8 −

59

50450400000
𝜇10 + 𝑂(𝜇12)  

(35) 

(36) 

(37) 

(38) 



▪ d3 = 4 −
2

5
 𝜇2 −

11

6300
𝜇4 −

1

270000
𝜇6 −

509

582120000
𝜇8 −

14617

681080400000
𝜇10 + 𝑂(𝜇12)  

▪ d4 = 2 +
1

3−
 𝜇2 −

13

12600
𝜇4 −

11

3780000
𝜇6 −

907

1164240000
𝜇8 −

27641

1362160800000
𝜇10 +𝑂(𝜇12)  

 

 

Using only the first term in the above expansion, it confirms that the stiffness matrix in eq. (37) 

reduced to the classical stiffness matrix of the Euler- Bernoulli beam [25] given in eq. (24). If 

the second term of this expansion is considered, the classical tangent stiffness matrix of Euler-

Bernoulli beams is obtained, as seen in eq. (22). As a result, the higher-order terms, quantify 

the enlarged impact of the axial force on the transverse deflection of the beam. 

 

2.3.3    Beams subjected to a tensile force 
 

When the beam is subjected to a tensile force, the equation for the deflection in the transverse 

direction of the beam can be expressed in the non-dimensional coordinate ξ as 

d4𝜔(ξ)

dξ4
− 𝜇2

d2𝜔(ξ)

dξ2
= 0 

Similarly, to the preceding case, a solution of the form 𝑤(𝜉) = exp [𝜆𝜉]. Substituting this into 

eq. (40), the following equation is obtained  

𝜆4 − 𝜇2𝜆2 = 0   𝑜𝑟   𝜆2(1 − 𝜇2) = 0 

Solving eq. (41) gives four solutions 

𝜆2 = 0, 𝜆 = ±𝜇    𝑜𝑟    𝜆1,2,3,4 = 0,0 ± 𝜇 

Using these solutions, the vector of basis functions can be obtained as 

𝑠𝑇(𝜉) = {𝑒(0,0,±𝑖𝜇)𝜉} = {1, 𝜉, sinh 𝜇𝜉 , cosh 𝜇𝜉} 

By following a similar procedure to the previous compressive case, the stiffness is express by 

eq. (37). But instead, the four non-dimensional stiffness coefficients are now given in terms of 

hyperbolic functions. 

▪ d1 =
𝜇3 sinh(𝜇)

∆
 

▪ d2 = 
𝜇2 (cosh(𝜇)−1)

∆
 

▪ d3 = 
𝜇(𝜇 cosh(𝜇)−sinh(𝜇))

∆
 

▪ d4 = 
𝜇(sinh (𝜇)−𝜇)

∆
 

▪ ∆ = 𝜇 sinh(𝜇) − 2 cosh(𝜇) + 2 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 



Again, the four unique non-dimensional coefficients in terms of the tensile axial force 

parameter, 𝜇. By using expansion and the Taylor series about 𝜇 = 0, it is found that the first 

two terms are identical to the classical coefficients given in Eq. (23). 

 

2.3.4    The general stiffness matrix 
 

As stated in the previous sections of this paper, the beam element shown in fig. 1(c) is 

illustrated to have two nodes and three degrees of freedom per node thus totalling six degrees 

of freedom. This includes both axial and bending deformation which is discussed in previous 

subsections. The axial deformation seen in eq. (45) corresponds to degrees of freedom 1 and 

4. Similarly, the bending deformation governed by eq. (16) corresponds to the displacements 

of the degrees of freedom 2,3,5 and 6. The equation related to axial deformation is expressed 

by a second-order ordinary differential equation as 

 

𝐸𝐴
𝜕2𝑈(𝑥)

𝜕𝑥2
= 𝐹𝑎(𝑏) 

 

The representation of the symbols in Eq. (45) is as follows: 

 

▪ U(x) – Transverse Displacement 

▪ Fa(x) – Applied transverse force acting on the beam 

▪ E – Young’s Modulus of the beam material 

▪ A – Cross-sectional area of the beam 

▪ EA – Axial Stiffness of the beam 

 

As previously mentioned, the axial, transverse and rotational deformations are represented by 

the degrees of freedom of each node or in simpler terms the arrows 1-6 in Fig. (1c). The 

stiffness matrix of the beam element in fig. 1(c) is expressed by the 6 x 6 matrix. 

 

(45) 



K(𝜇) =

[
 
 
 
 
 
 
 
 
 
𝐸𝐴

𝐿
0 0 −

𝐸𝐴

𝐿
0 0

0
𝑑1𝐸𝐼

𝐿3
𝑑2𝐸𝐼

𝐿2
0 −

𝑑1𝐸𝐼

𝐿3
𝑑2𝐸𝐼

𝐿2

0
𝑑2𝐸𝐼

𝐿2
𝑑3𝐸𝐼

𝐿
0 −

𝑑2𝐸𝐼

𝐿2
𝑑4𝐸𝐼

𝐿

−
𝐸𝐴

𝐿
0 0

𝐸𝐴

𝐿
0 0

0 −
𝑑1𝐸𝐼

𝐿3
−
𝑑2𝐸𝐼

𝐿2
0

𝑑1𝐸𝐼

𝐿3
−
𝑑2𝐸𝐼

𝐿2

0
𝑑2𝐸𝐼

𝐿2
𝑑4𝐸𝐼

𝐿
0 −

𝑑2𝐸𝐼

𝐿2
𝑑3𝐸𝐼

𝐿 ]
 
 
 
 
 
 
 
 
 

  

 

 

The non-dimensional coefficients (d1, d2, d3 and d4) is dependent of the direction of the force 

whether it is tensile or compressive. And whether it is considered with the exact beam theory 

as given by eqs. (22), (23), (39) and (44) or the classical theory. 

 

The geometry of the cross-section beam is as follows: b is the width and t represents the 

thickness. The moment of inertia and the cross-sectional area are given by  

𝐼 =
1

12
𝑏𝑡3 

𝑎𝑛𝑑 𝐴 = 𝑏𝑡 

 

An error measure is introduced to understand the errors that are given by the classical finite 

element stiffness matrix. The error norm below is defined for a given stiffness coefficient. 

𝜀𝑘 = 100 ×
𝑑𝑘𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 − 𝑑𝑘

𝑑𝑘𝐸𝐵
,    𝑘 = 1,2…4 

(46) 

(47) 

(49) 

(48) 



In eq. (49), dkEB represents the stiffness coefficients that originated from the conventional 

Euler-Bernoulli beam equation in eq. (24).  Fig. (4) illustrates the errors for the four unique 

coefficients for various non-dimensional axial force magnitudes, μ, specifically for 

compressive and tensile forces. It is important to be aware of the behavioural difference of 

errors for the two cases. It is evident in fig. (4) that the error is larger when the force is 

compressive in comparison to the tensile force error. As the compressive axial force increases, 

the error increases proportionally up to 10%. Nevertheless, the coefficient, d1, experiences an 

error of less than 2%. This is important to note as it’s the most crucial equivalent elastic 

property. 

Fig. (4) In contrast to the exact transcendental stiffness coefficients as functions of the non-

dimensional axial force, errors in the four special stiffness coefficients obtained using the 

classical method. 

 

2.4 Lattices under compressive stress 
 

With the purpose of obtaining the necessary properties such as E1(μ), E2(μ), v12(μ) and v21(μ), 

the two coefficients from the 6x6 element stiffness matrix of the inclined member and another 

coefficient from the other 6x6 element stiffness matrix of the vertical member are required. 

These are K55, K44 and K44
(h), and can obtained from the unit-cell derivations in subsection 2.2. 

 



The element stiffness matrix in eq. (46) provides the respective coefficients. Eqs. (47) and (48), 

equations for moment of inertia and the cross-sectional area, can be used to derive the stiffness 

coefficients as  

𝐾55(𝜇) =
𝑑1𝐸𝐼

𝑙3
= 𝐸𝑏𝛼3

𝑑1
12
,𝐾44 =

𝐸𝐴

𝑙
= 𝐸𝑏𝛼   𝑎𝑛𝑑   𝐾44

(ℎ)
=
𝐸𝐴

ℎ
=
𝐸𝑏𝑡

ℎ
=
𝐸𝑏𝛼

𝛽
 

 

From eq. (50), the Poisson’s ratios can be obtained 

𝐾55(𝜇)

𝐾44
= 𝛼2

𝑑1
12
   𝑎𝑛𝑑   

𝐾55(𝜇)

𝐾44
(ℎ)

= 𝛼2𝛽
𝑑1
12
    

 

Then, by substituting eqs. (50) an (51) into eqs. (11) – (14). The general expressions can be 

obtained  

 

𝐸1(𝜇) =
𝐸𝛼3 cos𝜃

(𝛽 + 𝑠𝑖𝑛𝜃) (12 sin2
𝜃
𝑑1
+ 𝛼2 cos2 𝜃)

 

𝐸2(𝜇) =
𝐸𝛼3(𝛽 + sin 𝜃)

(
12
𝑑1
− 𝛼2) cos3 𝜃 + 𝛼2(2𝛽 + 1) cos 𝜃

 

𝑣12(𝜇) =
cos2 𝜃 (

12
𝑑1
− 𝛼2)

(𝛽 + 𝑠𝑖𝑛𝜃)𝑠𝑖𝑛𝜃(12/𝑑1 + 𝛼2 cot2 𝜃)
 

𝑣21(𝜇) =
(𝛽 + 𝑠𝑖𝑛𝜃)𝑠𝑖𝑛𝜃 (

12
𝑑1
− 𝛼2)

(
12
𝑑1
− 𝛼2) cos2 𝜃 + 𝛼2(2𝛽 + 1)

 

 

As a means to obtain the shear modulus, five elements are required from two different stiffness 

matrices. The two coefficients of the 6 x 6 element stiffness matrix of the inclined member 

which are K65, K44 and three other elements from the stiffness matrix of the vertical with half 

the length. (The supplementary paper provided will give further details on this). There is no 

axial force acting on the vertical members as there is an applied shear stress present. Thus, in 

eq. (15), the only term affected by the axial stress in the expression of the shear modulus is 

K65. This coefficient corresponds to the segments/members of the unit cell which are inclined. 

Thus, the following expression is acquired 

 

(50) 

(51) 

(52) 

(54) 

(55) 

(53) 



𝐾65(𝜇) = −𝑑2
𝐸𝐼

𝑙2
= −𝑑2

𝐸𝑏𝑡3

12𝑙2
  

The three elements of the stiffness matrix of the vertical member with half the length is 

required. This is given by  

𝐾55
(ℎ/2)

=
12𝐸𝐼

(
ℎ
2)

3 =
8𝐸𝑏𝑡3

ℎ3
,    𝐾56

(ℎ/2)
= −

6𝐸𝐼

(
ℎ
2)

2 = −
2𝐸𝑏𝑡3

ℎ2
,    𝐾66

(ℎ/2)
=
4𝐸𝐼

ℎ
2

=
2𝐸𝑏𝑡3

3ℎ
 

 

Using the above equations, the expression below can be obtained  

𝐺12(𝜇) =
𝛽+𝑠𝑖𝑛𝜃

𝑏𝑐𝑜𝑠𝜃

1

(

 
 
 
 

−
ℎ2

2𝑙𝐾65(𝜇)
+

4𝐾66

(
ℎ
2
)

(𝐾55

(
ℎ
2
)
𝐾66

(
ℎ
2
)
−(𝐾56

(
ℎ
2
)
)

2

)

)

 
 
 
 

=
𝐸𝛼3(𝛽+𝑠𝑖𝑛𝜃)

(𝛽2(
6

𝑑2
+2𝛽)+𝛼2(𝑐𝑜𝑠𝜃+(𝛽+𝑠𝑖𝑛𝜃)𝑡𝑎𝑛𝜃)2)𝑐𝑜𝑠𝜃

   

 

By taking 𝑙𝑖𝑚μ→0 and substituting 𝛼2 = 0, the derivations of the equations can be simplified 

to corresponding classical expressions by Gibson and Ashby in eqs. (4 – 8) [24]. The stresses 

in two directions both separately and together are considered for this paper. Four properties are 

discussed: E1, E2, v12 and v21. The shear modulus is not included since there is a miniscule 

difference, in simple terms there is a limited effect on this property. 

2.4.1    Case 1 – Compressive stress in direction-1 only 
 

Fig. (5) illustrates a compressive stress in direction- 1 acting on the hexagonal lattice 

configuration. The equivalent force acting on the unit cell is also shown on fig. (4). 

Fig. (5) (a) Hexagonal lattice structure experiencing a compressive stress in 1-direction 

Fig. (5) (b) Force in the constituent beams within the unit cell model. The compressive axial 

force is equivalent P cos θ with P = σ1b (h + l sin θ).  

(56) 

(57) 

(58) 



 

The compressive axial force acting on the inclined beam elements is N = P cos θ where  

𝑃 = 𝜎1𝑏(ℎ + 𝑙𝑠𝑖𝑛𝜃) 

The symbols b and σ1 represent the out-of-plane thickness of the lattice and applied stress 

respectively. From these, the non-dimensional axial force in eq. (20) can be obtained as 

𝜇2 =
𝑁𝑙2

𝐸𝐼
=
𝜎1𝑏(ℎ + 𝑙 sin 𝜃) cos𝜃 𝑙

2

𝐸𝑏𝑡3

12

= (
𝜎1
𝐸
)
12(𝛽 + sin 𝜃)

𝛼3
cos𝜃  

𝑜𝑟     𝜇 = √(
𝜎1
𝐸𝛼3

)12(𝛽 + sin 𝜃) cos 𝜃 

 

 

The non-dimensional coefficient, d1 which appears in eqs. (52) – (55) can be obtained using 

the above expression of μ as well as using eq. (22) or eq. (38). Which equation used is solely 

dependent on whether the classical or exact formulation is chosen. For the classical case, the 

non-dimensional coefficient from eq. (22) is used to obtain the following approximate 

expressions 

𝐸1
(𝑐)(𝜇) ≈

𝐸𝛼3 cos 𝜃

(𝛽 + sin 𝜃)(10 sin2 𝜃 /(10 − 𝜇2) sin2 𝜃 + 𝛼2 cos2 𝜃)
 

𝐸2
(𝑐)(𝜇) ≈

𝐸𝛼3(𝛽 + sin 𝜃)

(10/(10 − 𝜇2) − 𝛼2) cos3 𝜃 + 𝛼2(2𝛽 + 1) cos 𝜃)
 

𝑣12
(𝑐)(𝜇) ≈

cos2 𝜃 (10/(10 − 𝜇2) − 𝛼2)

(𝛽 + sin 𝜃) sin 𝜃 (10/(10 − 𝜇2) + 𝛼2 cot2 𝜃)
 

𝑣21
(𝑐)(𝜇) ≈

(𝛽 + sin 𝜃) sin 𝜃 (10/(10 − 𝜇2) − 𝛼2)

(10/(10 − 𝜇2) − 𝛼2) cos2 𝜃 + 𝛼2(2𝛽 + 1)
 

 

The superscript (•) (c) represents the elastic constants for the lattice when it is subjected to a 

compressive stress. It is clearly shown from these expressions that all four of the constants are 

nonlinear functions of the stress parameter, μ, which is obtained in eq. (60). On the other hand, 

using the non-dimensional coefficient from eq. (38), the exact expression can be attained. 

Substitution of the coefficient must be carried out into eqs. (52) – (55) and simplification for 

the exact expression of the elastic constants. Therefore, the following expressions for the 

constants are derived.  

 

(59) 

(60) 

(61) 

(62) 

(63) 

(64) 



𝐸1
(𝑐)(𝜇) =

𝐸𝛼3𝜇3 sin(𝜇) cos𝜃

(𝛽 + sin 𝜃)(𝜇3 sin(𝜇) 𝛼2 cos2 𝜃 − 12 sin2 𝜃∆)
 

𝐸2
(𝑐)(𝜇) =

𝐸𝛼3𝜇3 sin(𝜇) (𝛽 + sin 𝜃)

𝜇3 sin(𝜇) 𝛼2(2𝛽 + 1) cos 𝜃 − (𝜇3 sin(𝜇) 𝛼2 + 12∆) cos3 𝜃
 

𝑣12
(𝑐)(𝜇) =

cos2 𝜃 (12∆ + 𝜇3 sin(𝜇) 𝛼2)

(𝛽 + sin 𝜃) sin 𝜃 (12∆ − 𝜇3 sin(𝜇) 𝛼2 cot2 𝜃)
 

𝑣21
(𝑐)(𝜇) =

(𝛽 + sin 𝜃) sin 𝜃 (12∆ + 𝜇3 sin(𝜇) 𝛼2)

(12∆ + 𝜇3 sin(𝜇) 𝛼2) cos2 𝜃 − 𝜇3 sin(𝜇) 𝛼2(2𝛽 + 1)
 

 

where ∆ = μ sin(μ) + 2 cos(μ) – 2.  

 

A nonlinear relationship with the applied stress is evident as a direct result of the trigonometric 

functions of the stress parameter μ in eq. (60) present in these expressions. Fig. (6) presents the 

comparison of analytical results to the direct nonlinear finite element simulation results. The 

graph in fig. (6) presents the normalised compressive stress, σ1/ Eα3 against an equivalent 

normalised modulus, E1/Eα3. A comparison of the exact and approximate expressions given by 

eq. (65) and eq. (61) is also demonstrated. The results from both expressions are almost 

identical with very miniscule differences. ANSYS, a commercial software, has been used for 

the finite element analysis. A mesh study has been executed to ensure and increase the validity 

and accuracy of the results obtained. For the solution, the ‘large deformation’ feature was 

turned on for the nonlinear analysis to be carried out. Although, as it can be seen, the results 

are not identical to the analytical expressions, the trend is somewhat similar with a percentage 

error within 10%. It is astonishing that simple closed-form expressions can produce a similar 

result to the full scale nonlinear finite element analysis for the two different geometries 

analysed in fig. (6). These are further discussed in subsequent sections of this paper. 

(65) 

(66) 

(67) 

(68) 



 

Fig. (6) Equivalent normalised Young’s modulus, (E1/Eα3) against the normalised compressive 

stress (σ1/ Eα3) in direction-1 as shown in fig. (4). A comparison of the analytical expressions 

results, and finite element analysis results are presented. Two different hexagonal lattice 

geometries are analysed and considered in (a) and (b). 

 

It can be observed in fig. (6) that as the applied compressive stress increases, the effective 

Young’s modulus decreases significantly and further from the classical results. Fig. (7) displays 

contours of the Poisson’s ratios of the lattice when subjected to a compressive stress in 

direction- 1 and its normalised effective elastic moduli. This figure should help understand the 

observations found in fig. (6). The effect on E1 decreases as the cell angle increases whilst the 

effect increases on E2 for all magnitudes of the compressive stress. Furthermore, the effect that 

the cell angle has on the Poisson’s ratios is as follows; there’s a decreasing effect on v12 whilst 

an increasing effect is put upon v21 for all values of the compressive stress. Moreover, the 

increasing compressive stress for all values of the cell angle, θ, causes a decrease in the elastic 

moduli. But this is expected as by analysing the lattice material, it can be known that the 

stiffness decreases due to the compressive stress which causes the lattice to experience a 

softening effect in direction- 1.  Likewise, as the compressive stress increases, there is a slight 

increase in the Poisson’s ratios. 



 

Fig. (7) Contours of the Poisson’s ratios and normalised effective elastic moduli of a lattice 

subjected to a compressive stress in direction 1 corresponding to fig. (4). The normalised 

compressive stress (σ1/ Eα3) varies in the x-axis as well as the cell angle in the y-axis. The 

geometric dimensional ratios are α= t/l =0.15 and β = h/l =1.  

 

2.4.2    Case 2 – Compressive stress in direction-2 only 
 

Now, the hexagonal lattice subjected to a compressive stress in direction-2 is analysed and 

observed in fig. (8). The equivalent force acting on the unit cell is also shown on fig. (8). The 

compressive axial force acting on the inclined beam elements is N = W sin θ where  

𝑊 = 𝜎2𝑏𝑙 cos 𝜃 

The symbols b and σ2 represent the out-of-plane thickness of the lattice and applied stress 

respectively. From these, the non-dimensional axial force in Eq. (20) can be obtained as 

 

(69) 



𝜇2 =
𝑁𝑙2

𝐸𝐼
=
𝜎1𝑏𝑙 sin 𝜃 cos𝜃 𝑙

2

𝐸𝑏𝑡3

12

= (
𝜎1
𝐸
)
12 sin 𝜃 cos 𝜃

𝛼3
  

𝑜𝑟     𝜇 = √(
𝜎1
𝐸𝛼3

)12 sin 𝜃 cos𝜃 

 

The derivations of the expressions of the equivalent elastic constants in subsection 2.4.1 are 

valid with the expression of μ given in eq. (70). Fig. (9) displays contours of the Poisson’s 

ratios of the lattice when subjected to a compressive stress in direction- 1 and its normalised 

effective elastic moduli. Similar to the preceding case, the effect on E1 decreases as the cell 

angle increases whilst the effect increases on E2 for all magnitudes of the compressive stress. 

Furthermore, the effect that the cell angle has on the Poisson’s ratios is as follows; there’s a 

decreasing effect on v12 whilst an increasing effect is put upon v21 for all values of the 

compressive stress. Moreover, the increasing compressive stress for all values of the cell angle, 

θ, causes a decrease in the elastic moduli. But this is expected as by analysing the lattice 

material, it can be known that the stiffness decreases due to the compressive stress which causes 

the lattice to experience a softening effect in direction- 1.   

 

Fig. (8) (a) Hexagonal lattice structure experiencing a compressive stress in the 2-direction 

Fig. (8) (b) Force in the constituent beams within the unit cell model. The compressive axial 

force is equivalent to Wsinθ with W = σ2blcosθ.  

 

(70) 



2.4.3  Case 3 – Compressive stresses in both directions 
 

And finally, the hexagonal lattice subjected to both a compressive stress in direction--1 and 

direction- 2 is analysed and observed in fig. (10). The equivalent force acting on the unit cell 

is also shown on fig. (10). Since the axial force, N, within the individual beams are now 

functions of compressive stresses in both directions, σ1 and σ2. Using fig. 9(b), the total axial 

forces are  

𝑁 = 𝑃 cos 𝜃 +𝑊 sin 𝜃 = 𝜎1𝑏(ℎ + 𝑙 sin 𝜃) cos 𝜃 + 𝜎2𝑏𝑙 sin 𝜃 cos 𝜃 

The non-dimensional axial force parameter can then be attained.  

𝜇2 =
𝑁𝑙2

𝐸𝐼
=
𝜎1𝑏(ℎ + 𝑙 sin 𝜃) cos𝜃 𝑙

2 + 𝜎2𝑏𝑙 sin 𝜃 cos𝜃 𝑙
2

𝐸𝑏𝑡3

12

  

𝑜𝑟     𝜇 = √12cos𝜃 {(
𝜎1
𝐸𝛼3

) (𝛽 + sin 𝜃) + (
𝜎2
𝐸𝛼3

) sin 𝜃} 

 

The derivations of the expressions of the equivalent elastic constants in subsection 2.4.1 are 

valid with the expression of μ given in eq. (72). Fig. (11) displays contours of the Poisson’s 

ratios of the lattice when subjected to a compressive stress simultaneously in both direction- 1 

and direction- 2 as well as its normalised effective elastic moduli. Both the elastic moduli are 

normalised by Eα3. This normalised value decreases as the compressive stress values increase. 

Again, this is expected as by analysing the lattice material, it can be known that the stiffness 

decreases due to the compressive stress which causes the lattice to experience a softening effect 

in both directions.   

(71) 

(72) 

(73) 



 

Fig. (9) Contours of the Poisson’s ratios and normalised effective elastic moduli of a lattice 

subjected to a compressive stress in direction 2 corresponding to fig. (8). The normalised 

compressive stress (σ2/ Eα3) varies in the x-axis as well as the cell angle in the y-axis. The 

geometric dimensional ratios are α= t/l =0.15 and β = h/l =1. 

  



2.5 Lattices under tensile stress 

 

Fig. (10)(a) Hexagonal lattice structure experiencing a compressive stress in both directions 

1 and 2 

Fig. (10)(b) Force in the constituent beams within the unit cell model. The compressive axial 

force is equivalent to Pcos θ + Wsinθ with P = σ1b (h + l sin θ) and W = σ2blcosθ 

 

 

The exact closed-form expressions for lattice when subjected to simultaneous compressive 

stresses in both directions have been derived for E1(μ), E2(μ), ν21(μ) and ν21(μ) in section 2.4. 

Eqs. (52), (53), (54) and (55) are generalised and thus has high validity when the stiffness 

coefficient, d1, is substituted by the tensile force case in the beam. This non-dimensional 

coefficient can be obtained using eq. (23) or eq. (44). Similar to the previous compressive case, 

which equation used is solely dependent on whether the classical or exact formulation is 

chosen. For the classical case, the non-dimensional coefficient from eq. (23) is used to obtain 

the following approximate expressions 

𝐸1
(𝑐)(𝜇) ≈

𝐸𝛼3 cos 𝜃

(𝛽 + sin 𝜃)(10 sin2 𝜃 /(10 + 𝜇2) sin2 𝜃 + 𝛼2 cos2 𝜃)
 

𝐸2
(𝑐)(𝜇) ≈

𝐸𝛼3(𝛽 + sin 𝜃)

(10/(10 + 𝜇2) − 𝛼2) cos3 𝜃 + 𝛼2(2𝛽 + 1) cos 𝜃)
 

𝑣12
(𝑐)(𝜇) ≈

cos2 𝜃 (12/𝑑1 − 𝛼
2)

(𝛽 + sin 𝜃) sin 𝜃 (10/(10 + 𝜇2) + 𝛼2 cot2 𝜃)
 

𝑣21
(𝑐)(𝜇) ≈

(𝛽 + sin 𝜃) sin 𝜃 (10/(10 + 𝜇2) − 𝛼2)

(10/(10 − 𝜇2) − 𝛼2) cos2 𝜃 + 𝛼2(2𝛽 + 1)
 

(74) 

(75) 

(76) 

(77) 



The superscript (•) (t) represents the elastic constants for the lattice when it is subjected to a 

tensile stress. It is clearly shown from these expressions that all four of the constants are again 

nonlinear functions of the stress parameter, μ. On the other hand, using the non-dimensional 

coefficient from eq. (44), the exact expression can be attained. Substitution of the coefficient 

must be carried out into eqs. (52) – (55) and simplification for the exact expression of the elastic 

constants. Therefore, the following expressions for the constants are derived. 

 

𝐸1
(𝑡)(𝜇) =

𝐸𝛼3𝜇3 sinh(𝜇) cos𝜃

(𝛽 + sin 𝜃)(𝜇3 sinh(𝜇) 𝛼2 cos2 𝜃 + 12 sin2 𝜃∆)
 

𝐸2
(𝑡)(𝜇) =

𝐸𝛼3𝜇3 sinh(𝜇) (𝛽 + sin 𝜃)

𝜇3 sinh(𝜇) 𝛼2(2𝛽 + 1) cos 𝜃 + (−𝜇3 sinh(𝜇) 𝛼2 + 12∆) cos3 𝜃
 

𝑣12
(𝑡)(𝜇) =

cos2 𝜃 (12∆ − 𝜇3 sinh(𝜇) 𝛼2)

(𝛽 + sin 𝜃) sin 𝜃 (12∆ + 𝜇3 sinh(𝜇) 𝛼2 cot2 𝜃)
 

𝑣21
(𝑡)(𝜇) =

(𝛽 + sin 𝜃) sin 𝜃 (12∆ − 𝜇3 sin(𝜇) 𝛼2)

(12∆ − 𝜇3 sinh(𝜇) 𝛼2) cos2 𝜃 + 𝜇3 sin(𝜇) 𝛼2(2𝛽 + 1)
 

  

(78) 

(79) 

(80) 

(81) 



 

 

Fig. (11) Contours of the Poisson’s ratios and normalised effective elastic moduli of a lattice 

subjected to a compressive stress in directions 1 and 2 corresponding to fig. (9). The contours 

of a unit cell with a cell angle of 30 degrees are plotted as normalised compressive stress in 

both directions with α= t/l =0.15 and β = h/l =1. 

where ∆ = μ sinh (μ) − 2 cosh (μ) + 2.  

 

A nonlinear relationship with the applied stress is evident as a direct result of the hyperbolic 

functions of the stress parameter μ present in these expressions. 

 

2.5.1    Case 4 – Tensile stress in direction-1 only 
 

Fig. (12) illustrates a compressive stress in direction- 1 acting on the hexagonal lattice 

configuration. The equivalent force acting on the unit cell is also shown on fig. (12). The forces 

applied are equal to the previous case in subsection 2.4.1 where a compressive stress is applied. 

Therefore, again, the value of μ is given by eq. (60).  

 



A comparison of analytical results to the direct nonlinear finite element simulation results are 

illustrated in fig. (13). The graph in fig. (13) presents the normalised compressive stress, σ1/ 

Eα3 against an equivalent normalised modulus, E1/Eα3. A comparison of the exact and 

approximate expressions given by eq. (78) and Eq. (74) is also demonstrated. And the results 

from the classical expression by Gibson and Ashby in eq. (4) is also plotted. The results from 

both expressions are almost identical with very miniscule differences. 

 

Fig. 12 (a) Hexagonal lattice structure experiencing a tensile stress in 1-direction 

Fig. 12 (b) Force in the constituent beams within the unit cell model. The tensile axial force is 

equivalent to P cos θ with P = σ1b (h + l sin θ).  

 

 

Fig. (13) Equivalent normalised Young’s modulus, (E1/Eα3) against the normalised tensile 

stress (σ1/ Eα3) in direction-1 as shown in fig. (11). A comparison of the analytical expressions 

results, and finite element analysis results are presented. Two different hexagonal lattice 

geometries are analysed and considered in (a) and (b).  

 



ANSYS, a commercial software, has again been used for the finite element analysis. A mesh 

study has been executed to ensure and increase the validity and accuracy of the results obtained. 

For the solution, the ‘large deformation’ feature was turned on for the nonlinear analysis to be 

carried out. This would allow for the software to consider the stiffness changes as the geometry 

changes during the simulation. This feature is applied to all cases in this paper. The two lattice 

models considered in this case are the same as the compressive stress case discussed 

previously. But the difference is that the direction of stress has been changed when carrying 

out the finite element analysis since it is now a tensile case. Although, as it can be seen, the 

results are not identical to the analytical expressions, the trend is somewhat similar with a 

percentage error within 10%. It is astonishing that simple closed-form expressions can produce 

a similar result to the full scale nonlinear finite element analysis for the two different 

geometries analysed in fig. (13). 

 

It can be observed in fig. (13) that as the applied tensile stress increases, the effective Young’s 

modulus increases significantly and further from the classical results. Fig. (14) displays 

contours of the Poisson’s ratios of the lattice when subjected to a tensile stress in direction- 1 

and its normalised effective elastic moduli. This figure should help understand the observations 

found in fig. (13).  

 

The effect on E1 works similarly to the preceding case where it decreases as the cell angle 

increases whilst the effect increases on E2 for all magnitudes of the tensile stress. Furthermore, 

the effect that the cell angle has on the Poisson’s ratios is as follows; there’s a decreasing effect 

on v12 whilst an increasing effect is put upon v21 for all values of the compressive stress. 

Moreover, the increasing tensile e stress for all values of the cell angle, θ, causes an increase 

in the elastic moduli. But this is expected as by analysing the lattice material, it can be known 

that the stiffness increases due to the tensile stress which causes the lattice to experience a 

stiffening effect in direction- 1.  Likewise, as the tensile stress increases, there is a slight 

increase in the Poisson’s ratios. 



 

Fig. (14) Contours of the Poisson’s ratios and normalised effective elastic moduli of a lattice 

subjected to a tensile stress in direction 1 corresponding to fig. (11). The normalised tensile 

stress (σ1/ Eα3) varies in the x-axis as well as the cell angle in the y-axis. The geometric 

dimensional ratios are α= t/l =0.15 and β = h/l =1.   

  



2.5.2    Case 5 – Tensile stress in direction-2 only 
 

Now, the hexagonal lattice subjected to a tensile stress in direction-2 is analysed and observed 

in fig. (15). The equivalent force acting on the unit cell is also shown on fig. (15). The forces 

applied are equal to the previous case in subsection 2.4.1 where a compressive stress is applied. 

Therefore, again, the value of μ is given by eq. (70).  

 

Fig. 15(a) Hexagonal lattice structure experiencing a tensile stress in the 2-direction 

Fig. 15(b) Force in the constituent beams within the unit cell model. The tensile axial force is 

equivalent to Wsinθ with W = σ2blcosθ.  

 

Fig. (16) displays contours of the Poisson’s ratios of the lattice when subjected to a tensile 

stress in direction-2 and its normalised effective elastic moduli. The effect on E1 decreases as 

the cell angle increases whilst the effect increases on E2 for all magnitudes of the tensile stress. 

Furthermore, the effect that the cell angle has on the Poisson’s ratios is as follows; there’s a 

decreasing effect on v12 whilst an increasing effect is put upon v21 for all values of the tensile 

stress. Moreover, the increasing tensile stress for all values of the cell angle, θ, causes an 

increase in the elastic moduli. But this is expected as by analysing the lattice material, it can 

be known that the stiffness increases due to the tensile stress which causes the lattice to 

experience a stiffening effect.  Likewise, as the tensile stress increases, no significant change 

is seen in the Poisson’s ratios. 



 

Fig. (16) Contours of the Poisson’s ratios and normalised effective elastic moduli of a lattice 

subjected to a tensile stress in direction 2 corresponding to fig. (7). The normalised tensile 

stress (σ2/ Eα3) varies in the x-axis as well as the cell angle in the y-axis. The geometric 

dimensional ratios are α= t/l =0.15 and β = h/l =1. 

 

2.5.3    Case 6 – Tensile stresses in both directions 
 

And finally, the hexagonal lattice subjected to both a tensile stress in direction-1 and direction- 

2 is analysed and observed in fig. (17). The equivalent force acting on the unit cell is also 

shown on fig. (17). The forces applied are equal to the previous case in subsection 2.4.1 where 

a compressive stress is applied. Therefore, the value of μ is given by eq. (72).  



 

Fig. 17(a) Hexagonal lattice structure experiencing a tense e stress in both directions 1 and 2 

Fig. 17(b) Force in the constituent beams within the unit cell model. The tensile axial force is 

equivalent to Pcos θ + Wsinθ with P = σ1b (h + l sin θ) and W = σ2blcosθ 

 

Fig. (18) displays contours of the Poisson’s ratios of the lattice when subjected to a tensile 

stress simultaneously in both direction- 1 and direction- 2 as well as its normalised effective 

elastic moduli. Both the elastic moduli are normalised by Eα3. It is evident that the normalised 

value increases as the tensile stress values increase. Again, this is expected as by analysing the 

lattice material, it can be known that the stiffness decreases due to the tensile stress which 

causes the lattice to experience a stiffening effect in both directions.  Consistent with the 

preceding observations, as the tensile stress increases, there is a slight increase in the Poisson’s 

ratios. But it should be noted that they do not exceed a value of 1 for the parameter range that 

has been selected. 

 



Fig. (18) Contours of the Poisson’s ratios and normalised effective elastic moduli of a lattice 

subjected to a tensile stress in directions 1 and 2 corresponding to fig. (9). The contours of a 

unit cell with a cell angle of 30 degrees are plotted as normalised tensile stress in both 

directions with α= t/l =0.15 and β = h/l =1. 

 

2.6 Methodology and Finite Element 

Analysis Procedures 
 

It is important to emphasise that the finite element analysis is conducted on solid elements. 

Although using beam elements would increase the promptness of the simulation running time, 

a major benefit of using solid elements is that it would better resemble the physical problem 

and captures the influence of the ‘joint’ regions of the structures. Therefore, offering additional 

visualised information and allows the behaviour of the component to be fully captured such as 

distributions of stress and strains which are particularly important in this type of analysis. 

Furthermore, when conducting the experimental studies, the model to be tested is identical to 



those being computationally analysed therefore providing a better comparison between the two 

results.  

 

Finite element analysis was performed on two separate unit cells with varying cell angle values 

(θ): 30 and 45 degrees.  

 

2.6.1    Geometry and Material Properties of Unit Cell 

and Lattice Models 
 

The dimensions applied according to the diagram in fig. (19) to a unit cell with θ=30 degrees 

were as follows (all values are in millimetres): 

 

▪ Length (l) = 8.23094011 

▪ Height (h) = 8.23094011 

▪ Thickness (t) = 0.8 

▪ Depth (b) = 1 

 

Fig. (19) Dimensions of Unit Cell Model; length (l), height (h) and thickness (t). 

 

Whilst for a unit cell with θ=45 degrees, the dimensions were as follows: 

 

▪ Length (l) = 8 

▪ Height (h) = 8 



▪ Thickness (t) = 0.8 

▪ Depth (b) = 1 

Since the simulations were run on a 3D model, these dimensions correspond to the inner 

skeleton of the solid element, this is again better depicted in fig. (19). 

 

These were then expanded and tessellated to create the hexagonal lattice configuration model. 

The tested symmetrical model consisted of 20 by 8 hexagon units.  

 

The material properties applied to the unit cell and lattice model were the default material 

settings of the software, ANSYS. These were from structural steel. This is not particularly 

important as the results are independent of the material used. The properties that were applied 

to all the simulations run in this paper are shown in Table (2). 

 

Property Value Units 

Elastic Modulus 200 GPa 

Poisson’s Ratio 0.3  

Mass Density 7850 kgm-3 

Tensile Yield Strength 250 MPa 

Tensile Ultimate Strength 250 MPa 

Shear Modulus 79.615 GPa 

Bulk Modulus 172.5 GPa 

Table (2) Mechanical Properties of Structural Steel 

2.6.2    Simulation Set-Up of Unit Cell 
 

The set-up of the FEA simulation study for the unit cell were again according to subsection 

2.4.1. A fixed support was applied to the top face of the unit cell and subjected to compressive 

forces on the bottom two corner faces in direction-1 which in this case is in the horizontal 

direction.  

 

The displacements experienced in the x-axis were observed and recorded in the same corner 

faces where the forces were subjected. In an ideal world, these values should be identical but 

recognisably in opposite directions. It is important to emphasise that the displacements 

experienced in the z-axis were fixed to a value of zero as this is an in-plane analysis. This was 



observed in all the finite element analysis studies. As previously mentioned, the ‘large 

displacement’ feature was applied so that the geometrical stiffness can be observed in all cases. 

 

For all finite element analysis studies, a mesh refinement study is highly suggested as it ensures 

the reliability, accuracy and validity of the results produced by the static simulations. But since 

ANSYS has a convergence feature, the mesh refinement study was automatically run by the 

software. The mesh would adapt and became more intricate until the set convergence was found 

in the results which in all instances was 5%.  

 

2.6.3    Simulation Set-Up of Lattice 
 

The set-up of the FEA simulation study for the lattice were once again according to subsection 

2.4.1. A fixed support was applied onto all the parallel faces to the left of the lattice and 

subjected to various compressive forces on all the faces on the opposite side in direction-1 

which in this case is in the vertical direction. The displacements in the x-axis were again 

observed and recorded. When analysing the lattice, it was found that due to the complexity of 

the lattice, the simulations were running for a prolonged period therefore a few simplified cases 

were conducted for each lattice simulated. Dependent on the results from the unit cell cases, 

three different magnitudes of force were applied that would cover the range that the unit cell 

was subjected to. This is so that comparisons can be implemented between the unit cell and 

lattice finite element and the classical case results as well as the exact analytical values. Again, 

an automatic mesh refinement was run by the convergence feature tool that ANSYS provides. 

 

2.7 Results and Discussion 
 

Graphical representations of the mechanical behaviour of the unit cell and lattice are illustrated. 

Three graphs in particular are demonstrated: Young’s modulus against the strain, young’s 

modulus against stress and finally the normalised compressive stress against an equivalent 

normalised modulus. Within these graphs, the approximate analytical, exact analytical, Gibson 

Ashby and Euler-Bernoulli values are also plotted in all three figures for comparison purposes. 

Cases 1 and 4 were particularly the centre of interest. Unequivocally, if the FEA results and 

theoretical results of these two simple cases were similar then it was assumed this would apply 

for all the other cases.  



2.7.1    Case 1 Results for θ = 30 degrees 
 

Various magnitudes of compressive forces in the horizontal direction were applied to the unit 

cell and lattice with a cell angle of 30 degrees to obtain the graphs demonstrated by fig. (20). 

The applied forces were adjusted so that both the unit cell and lattice results were comparable. 

A negative linear relationship is evident from these illustrations. Since the Gibson-Ashby and 

Euler-Bernoulli equations are not dependent on the stress applied, the results for these can be 

seen as a single plot at zero stress. The results from each case were seen to present somewhat 

identical trends. 

 

Fig. (20) Three graphs for the results of Case 1 where θ = 30 degrees are illustrated.  

(a) Young’s Modulus against Strain value  

(b) Young’s Modulus against Stress value 

(c) Normalised Axis 
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The young’s modulus, E1, against the strain, ε1, is displayed in fig. 20(a). There is a solid 

relationship between the two variables and can be observed to have a strong negative 

correlation for the unit cell and lattice results. Evidently as the applied compressive stress 

increases, the young’s modulus draws further from the classical results. 

 

Furthermore, fig. 20(b) exhibits the young’s modulus, E1, against the compressive stress, σ1. 

Linear negative correlations can again be seen in this figure. Similarly, fig. 20(c) shows the 

same correlation where the equivalent normalised modulus, E1/Eα3
, against the normalised 

compressive stress, σ1/ Eα3 is plotted. For both cases, as the independent variable increases, the 

dependent variable decreases and goes further from the classical results. It should be noted that 

lattice results are seemingly nonlinear.  

 

It should also be noted that the values presented in all graphs (fig. (20 - 23)) have been through 

the process of calibration, so that the results for all models can be visualised. But overall, for 

Case 1 where the inclined angle is 30 degrees, the percentage error found between the exact 

analytical results, unit cell and lattice results were: 9% and 0.5% respectively. 

 

2.7.2    Case 1 Results for θ = 45 degrees 
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Fig. (21) Three graphs for the results of Case 1 where θ = 45 degrees are illustrated.  

(a) Young’s Modulus against Strain value  

(b) Young’s Modulus against Stress value 

(c) Normalised Axis 

 

The same graphs have been produced for this case where model subjected to compressive 

forces has an inclined angle of 45 degrees. The young’s modulus, E1, against the strain, ε1, is 

displayed in fig. 21(a). The relationships between the variables are again seen to have a strong 

negative correlation for the unit cell and lattice results. Evidently as the applied compressive 

stress increases, the young’s modulus draws further from the classical results. In comparison 

to the previous model, it is perceptible that the young’s modulus is found to be larger, more 

than double, in the model with an inclined angle of 30 degrees. This would indicate a more 

rigid body, being able to cope with larger magnitudes of compressive stress. 

 

Furthermore, fig. 21(b) again exhibits the young’s modulus, E1, against the compressive stress, 

σ1. Linear negative correlations can again be seen in this figure. Similarly, fig. 21(c) shows the 

same correlation where the equivalent normalised modulus, E1/Eα3
, against the normalised 

compressive stress, σ1/ Eα3 is plotted. For both cases, the relationships are identical to the 

preceding case whereas the independent variable increases, the dependent variable decreases 

proportionally and goes further from the classical results. It should be noted that lattice results 

are again seemingly nonlinear. 
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For this case where the models possess an inclined angle of 45 degrees, the percentage error 

found between the exact analytical results, unit cell and lattice results were: 15% and 19% 

respectively. 

2.7.3    Case 4 Results for θ = 30 degrees 

 

Fig. (22) Three graphs for the results of Case 4 where θ = 30 degrees are illustrated.  

(a) Young’s Modulus against Strain value  

(b) Young’s Modulus against Stress value 

(c) Normalised Axis 
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The same graphs have again been produced for this case where the model with an inclined 

angle of 30 degrees is subjected to magnitudes of tensile forces. The young’s modulus, E1, 

against the strain, ε1, is displayed in fig. 22(a). The relationships between the variables are 

again seen to have a comparatively opposite correlation of Case 1 for the unit cell and lattice 

results. But similarly, to preceding case, as the applied compressive stress increases, the 

young’s modulus draws further from the classical results.  

 

Continuing, fig. 22(b) again exhibits the young’s modulus, E1, against the compressive stress, 

σ1. Linear positive correlations are evident in this figure. Similarly, fig. 22(c) shows the same 

correlation where the equivalent normalised modulus, E1/Eα3
, against the normalised 

compressive stress, σ1/ Eα3 is plotted. For both cases, the relationships are inversely identical 

to the preceding case whereas the independent variable increases, the dependent variable 

increases proportionally and goes further from the classical results. It should be noted that the 

gradient is steeper than the unit cell. 

 

For this case where the models possess an inclined angle of 30 degrees, the percentage error 

found between the exact analytical results, unit cell and lattice results were: 9% and 2% 

respectively. 

2.7.4    Case 4 Results for θ = 45 degrees 
 

Identical graphs to the preceding cases have been produced for these sets of simulation and 

theoretical results. The relationships between the variables seen in fig. (23) are similar to the 

trends in fig. (22). But due to the change in dimensions of the models where the inclined angle 

has now changed, the percentage errors have increased between the exact analytical values and 

unit cell results and lattice results: 19% and 22% respectively. 



   

Fig. (23) Three graphs for the results of Case 4 where θ = 45 degrees are illustrated.  

(a) Young’s Modulus against Strain value  

(b) Young’s Modulus against Stress value 

(c) Normalised Axis 
 

2.7.5    Discussion 
 

It is evident that there is a significant difference in percentage errors between the two cases 

with varying cell angles. This may occur as the numerical analysis is based on a 2D system. 

Therefore, when applying the numerical analysis to a 3D simulation with the use of solid 

elements, it is difficult to determine whether the dimensions for the unit cell and ultimately the 
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lattice is how the study for finite element analysis has or should have been conducted where 

the inner skeleton represents the 2D system indicated. Albeit the similarity between the results 

obtained for the unit cell and lattice for both the numerical analysis and finite element 

simulations is still remarkable. 

 

2.8 The analysis of different lattice models 
 

The suggested analytical method can be extended to a variety of other lattice patterns and 

geometry of constituent members thanks to the general formulation built here. 

 

Fig. (24) illustrates three cases specifically chosen to be analysed due to wide interest put upon 

them. The three cases include the auxetic lattice (θ is negative), the rhombus lattice (h = 0) and 

the rectangular lattice (θ = 0). Fig. (24) also shows the corresponding unit cell for each special 

case. The equivalent elastic moduli and Poisson's ratios for all three special cases are then 

derived. 

 

Fig. (24) Three special 2D geometric cases are illustrated.  

(a) The auxetic lattice where θ is negative  

(b) The rhombus lattice where h=0  

(c) The rectangular lattice where θ=0. The corresponding and degenerated unit cells are 

highlighted in red in the figures. 

 

2.8.1    The auxetic lattice: θ is negative 
 

The first case to be analysed is the auxetic lattice. It can also be known as the re-entrant lattice. 

This configuration can be obtained when the cell angle, θ, is negative. fig. 24(a) illustrates the 

unit cell and the corresponding lattice material for this case. Thus, by using the negative angle 



of theta and eqs. (60) and (70), for the two directions, the axial force parameter can be obtained 

as  

 

For direction 1: 𝜇2 = (
𝜎1

𝐸𝛼3
) 12(𝛽 − sin 𝜃) cos𝜃 

For direction 2: 𝜇2 = −(
𝜎2

𝐸𝛼3
) 12 sin 𝜃 cos𝜃 

 

For the stress in direction- 2, it is crucial to be aware that the value of μ2
 
is negative. The unit 

cell structure in fig. 24(a) will physically verify this. Thus, from this, when the subjected stress 

is in direction- 2, the values of the non-dimensional coefficients, d1 and d2 is required to be 

altered from that in direction- 1. The stiffness coefficients for the tensile case in eq. (44) can 

be used for the compressive stress, σ2. And similarly, the stiffness coefficients for the 

compressive case in eq. (38) can be used for the tensile stress, σ2. Once the axial force 

parameter, μ is obtained, the next steps can be taken. The derivation of the equivalent elastic 

properties of the auxetic lattice from eqs. (52), (53), (54) and (55) as well as using substitution 

by inputting the negative value of theta. The five equivalent elastic moduli are expressed as 

 

𝐸1(𝜇) =
𝐸𝛼3 cos𝜃

(𝛽 − sin 𝜃)(12 sin2 𝜃 /𝑑1 + 𝛼2 cos2 𝜃)
 

𝐸2(𝜇) =
𝐸𝛼3(𝛽 − sin 𝜃)

(12/𝑑1 − 𝛼2) cos3 𝜃 + 𝛼2(2𝛽 + 1) cos𝜃
 

𝑣12(𝜇) = −
cos2 𝜃 (12/𝑑1 − 𝛼

2)

(𝛽 − sin 𝜃) sin 𝜃 (12/𝑑1 + 𝛼2 cot2 𝜃)
 

𝑣21(𝜇) = −
(𝛽 − sin 𝜃) sin 𝜃 (12/𝑑1 − 𝛼

2)

(12/𝑑1 − 𝛼2) cos2 𝜃 + 𝛼2(2𝛽 + 1)
 

 

 

The shear modulus can also be obtained from Eq. (58) as: 

𝐺12(𝜇) =
𝐸𝛼3(𝛽 − sin 𝜃)

(𝛽2 (
6
𝑑2
+ 2𝛽) + 𝛼2(cos𝜃 − (𝛽 − sin 𝜃) tan 𝜃)2) cos𝜃

 

 

 

(84) 

(85) 

(86) 

(87) 

(82) 

(83) 

(88) 



2.8.2    The rhombus lattice: h=0 
 

The second case is the rhombus lattice, and this can be obtained when h = β = 0. Due to this, it 

indicates that vertical member is absent in this case. This reconfigured unit cell is illustrated in 

fig. 24(b) with its corresponding lattice structure. By using the limit β = 0 and substituting it 

into eq. (60), the axial force parameter for stress applied in direction- 1 can be obtained as  

𝜇 = lim
𝛽→0

√(
𝜎1
𝐸𝛼3

)12(𝛽 + sin 𝜃) cos 𝜃 = √(
𝜎1
𝐸𝛼3

)12 sin 𝜃 cos𝜃 

 

But on the contrary, eq. (70) does not change which is the expression giving the axial force 

parameter for stress in direction- 2. This is because it is not a function of β. Once the axial force 

parameter, μ is obtained, the next steps can be taken. The derivation of the equivalent elastic 

properties of the auxetic lattice from the same equations as the previous case, eqs. (52), (53), 

(54) and (55), as well as using substitution by inputting the value of beta. The five equivalent 

elastic moduli are expressed as 

𝐸1(𝜇) = lim
𝛽→0

𝐸𝛼3 cos 𝜃

(𝛽 − sin 𝜃)(12 sin2 𝜃 /𝑑1 + 𝛼2 cos2 𝜃)
=

𝐸𝛼3 cos𝜃

sin 𝜃 (12 sin2 𝜃 /𝑑1 + 𝛼2 cos2 𝜃)
 

𝐸2(𝜇) = lim
𝛽→0

𝐸𝛼3(𝛽 + sin 𝜃)

(12/𝑑1− 𝛼2) cos3 𝜃 + 𝛼2(2𝛽 + 1) cos 𝜃
=

𝐸𝛼3 sin 𝜃

cos𝜃 (12 sin2 𝜃 /𝑑1 + 𝛼2 cos2 𝜃)
 

𝑣12(𝜇) = lim
𝛽→0

cos2 𝜃 (12/𝑑1 − 𝛼
2)

(𝛽 + sin 𝜃) sin 𝜃 (12/𝑑1 + 𝛼2 cot2 𝜃)
=
cos2 𝜃 (12/𝑑1 − 𝛼

2)

12/𝑑1 + 𝛼2 cos2 𝜃
  

𝑣21(𝜇) = lim
𝛽→0

(𝛽 + sin 𝜃) sin 𝜃 (12/𝑑1 − 𝛼
2)

(12/𝑑1 − 𝛼2) cos2 𝜃 + 𝛼2(2𝛽 + 1)
=

sin2 𝜃 (12/𝑑1 − 𝛼
2)

12 cos2 𝜃 /𝑑1 + 𝛼2 sin2 𝜃
  

 

 

Following the same procedure, the shear modulus can be obtained from Eq. (58) as  

𝐺12(𝜇) = lim
𝛽→0

𝐸𝛼3(𝛽 − sin 𝜃)

(𝛽2 (
6
𝑑2
+ 2𝛽) + 𝛼2(cos 𝜃 + (𝛽 + sin 𝜃) tan 𝜃)2) cos 𝜃

= 𝐸𝛼 sin 𝜃 cos𝜃 
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2.8.3    The rectangular lattice: θ = 0 
 

Finally, the last case of the rectangular lattice is analysed. This configuration can be obtained 

when θ = 0. Due to this, it indicates that two inclined members/beams are parallel in this case. 

This reconfigured unit cell is illustrated in fig. 24(c) with its corresponding lattice structure. 

By using the limit θ = 0 and substituting it into eq. (60), the axial force parameter for stress 

applied in direction- 1 can be obtained as  

𝜇 = lim
𝜃→0

√(
𝜎1
𝐸𝛼3

)12(𝛽 + sin 𝜃) cos 𝜃 = √(
𝜎1
𝐸𝛼3

)12𝛽 

 

Eq. (70), the expression giving the axial force parameter for stress in direction- 2, is now equal 

to 0 when θ = 0. Due to this equation being nullified, the elastic properties of the rectangular 

lattice are not affected by the stress applied in direction- 2. The derivation of the equivalent 

elastic properties of the auxetic lattice from the same equations as the previous case, eqs. (52), 

(53), (54) and (55), as well as using substitution by inputting the value of theta as  

𝐸1(𝜇) = lim
𝜃→0

𝐸𝛼3 cos𝜃

(𝛽 + sin 𝜃)(12 sin2 𝜃 /𝑑1 + 𝛼2 cos2 𝜃)
=
𝐸𝛼

𝛽
 

𝐸2(𝜇) = lim
𝜃→0

𝐸𝛼3(𝛽 + sin 𝜃)

(12/𝑑1 − 𝛼2) cos3 𝜃 + 𝛼2(2𝛽 + 1) cos𝜃
=

𝐸𝛼3𝛽

12/𝑑1  + 2𝛼2𝛽
 

𝑣12(𝜇) = lim
𝜃→0

cos2 𝜃 (12/𝑑1 − 𝛼
2)

(𝛽 + sin 𝜃) sin 𝜃 (12/𝑑1 + 𝛼2 cot2 𝜃)
= 0  

𝑣21(𝜇) = lim
𝜃→0

(𝛽 + sin 𝜃) sin 𝜃 (12/𝑑1 − 𝛼
2)

(12/𝑑1 − 𝛼2) cos2 𝜃 + 𝛼2(2𝛽 + 1)
= 0 

 

It is evident that both the Poisson’s ratios are equal to zero and the moduli E1 is independent 

of the applied stress. 

 

Following the same procedure, the shear modulus can be obtained from eq. (58) as  

𝐺12(𝜇) = lim
𝜃→0

𝐸𝛼3(𝛽 + sin 𝜃)

(𝛽2 (
6
𝑑2
+ 2𝛽) + 𝛼2(cos𝜃 + (𝛽 + sin 𝜃) tan 𝜃)2) cos𝜃

=
𝐸𝛼3𝛽

𝛽2 (
6
𝑑2
+ 2𝛽) + 𝛼2
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2.9 Conclusions 
 

From the analysis executed in the preceding sections, it is evident that a vital problem of highly 

stretchable and compressible lattice materials is the underlying geometric nonlinearity. This 

feature of the lattice was found to cause both the axial softening and stiffening of the constituent 

beam elements depending on whether a compressive or tensile stress is subjected upon the 

lattice. An in-depth analysis and solely physics-based approached was observed. Following 

this approach led to the determination of closed-form expressions of in-plane equivalent elastic 

properties of the hexagonal lattice configuration. The bottom-up approach was also presented 

allowing three key steps required to be accomplished to acquire the correct analytical 

derivations. The first step to be taken was grasping that the constituent members of the lattice 

are thin beam elements. In this case, it was understood that the stiffness matrices of beams 

when subjected to compressive and tensile stresses were then derived. The exact solutions of 

the governing ordinary differential equation with appropriate boundary conditions, also known 

as transcendental displacement functions, were used to attain these matrices. Secondly, from 

the bottom-up approach, the unit cell was next observed. Using the mechanics, a selected unit 

cell the five equivalent elastic moduli of the lattice were derived: Young’s Moduli, Poisson’s 

ratios, and the shear modulus. This was the case as the expressions resulting from this analysis 

utilise the stiffness matrix derived in the first stage. And finally, from combining steps one and 

two, the equivalent elastic properties were obtained for lattice subjected to compressive and 

tensile stresses. Th equivalent properties found were nonlinear functions of the applied 

compressive stresses (through trigonometric functions) and tensile stresses (through hyperbolic 

functions). Due to the nature of the functions used, this resulted in a nonlinear homogenous 

stress-strain relationship for the cellular material. 

 

The distinct aspects of this chapter include: 

▪ A general methodology and procedure to be taken to derive the equivalent elastic 

properties of the hexagonal lattice configurations using the non-dimensional 

coefficients of the stiffness matrix of the constituent beams. 

▪ The use of ordinary differential equations to govern the deformation of axially loaded 

beams and the integration of the results into the unit cell-based analysis. 

▪ Exact closed-form expressions are used to directly quantify the effect of external 

compressive and tensile stresses on analogous elastic properties. 



▪ Many special cases of interest are defined by taking approximate mathematical limits, 

resulting in the generalised nature of the newly derived expressions. The general 

expressions for the equivalent elastic properties were used to examine three special 

cases of broad interest, namely auxetic hexagonal, rhombus-shaped, and rectangular 

lattices. 

 

The validation for the analytical expressions derived has been determined through finite 

element analysis with nonlinear analysis for both compression and tension applied. The results 

obtained from the analytical expressions are graphically depicted as functions of the applied 

compressive and tensile stresses. Three special cases were analysed for each type of applied 

stress; the stress is applied in directions 1, direction- 2 and both directions 1 and 2. When a 

compressive stress is applied to the lattice, it was found that there was a decrease in the 

effective elastic moduli. But for the tensile case the circumstances were different and opposite 

to the preceding case as the effective elastic moduli would increase. The Poisson’s ratio for 

both cases were analogous where there was no significant change when subjected to an external 

stress.  

 

Further into the finite element analysis static simulations conducted. Solid elements (3D FEA) 

were analysed over beam elements since the real world and physical phenomena are better 

replicated and simulated through this element type. A further analysis is conducted using solid 

elements since it provides more detail about the mechanical properties of the structure. This is 

particularly important in the procurement of the results required for this paper. The results in 

each case show somewhat matching results in the two analytical methods used. Most notably, 

cases 1 and 4, for both cell angles analysed, show promising results with miniscule percentage 

errors ranging between 2 and 10%. Whilst for more complicated cases, namely cases 3 and 6, 

where two forces are applied to the structures in different directions, the percentage errors were 

almost triple the errors of the preceding cases discussed. In terms of physical meaning, general 

behaviours of the structure have been depicted highlighting the stiffening/softening effect of 

increasing stress. 

 

  



2.10 Recommendations for Future Work 
 

The expressions derived provide a basis and great opportunity to be utilised in many 

engineering and scientific applications. More specifically in the design and optimisation of 

highly stretchable and compressible 2D lattices. While the geometric nonlinearity resulting 

from large deformation is written in this paper, the material behaviours are presumed to be 

linear. Therefore, upon completing this chapter of this research, there are numerous ways in 

which the work covered in the prior sections could be further developed. It is recommended 

that the following aspects are considered in the future:  

 

▪ Focus on nonlinear material behaviour to incorporate the numerous available materials 

that can manufacture lattices. 

▪ The same analysis procedure to be carried out on different lattice structures such as the 

three special cases discussed in section 6 of this chapter.  

 

 



Chapter 3 – Stepped Profile 

 

3.1 Introduction 
 
As previously mentioned, this chapter of the paper explores one approach of optimising a 

hexagonal structure, with the aim of increasing the strength to weight ratio, through 

redistributing the cross-sectional area of the single beam element by introducing ‘steps’. This 

is then developed into a full system and analysed. The structural nature of the distorted 

hexagonal cellular lattice is once again analysed through computational modelling. The two 

major forms to be analysed and demonstrated are step-up and step-down geometries.  

The optimisation approach of the stepped lattice was chosen to be analysed since it was found 

that specific sections of the constituent beams of the lattice experience different magnitudes of 

stress. The outer section of the segment experiences the higher magnitudes of stress whilst the 

inner section experiences the least. Therefore, different forms as mentioned, the step-up and 

step-down geometries, are set to be analysed. 

 

3.2 Framework of Stepped Lattices 
 

The stepped lattice optimisation concept was developed as a simple solution where analysis 

can be conducted. As mentioned, two types of geometrical changes have been applied with the 

aim of optimising the properties of the lattice structure. The optimisation of the lattice in this 

section involves the redistribution of the mass of a conventional honeycomb lattice through the 

introduction of ‘steps. This is better depicted in fig. (25). The objective of this analysis is to 

understand the effect of this redistribution whilst also obtaining the range of equivalent elastic 

parameter values which can then be further exploited for design purposes. Due to the mass 

constraints, this causes a limitation upon the parameters of the structure. The geometry of the 

constituent beam member of regular hexagonal lattice, stepped lattice and their parameter 

limitations are described in the next subsection. A stepped lattice and its corresponding unit 

cells are seen in fig. (25). 



 

(a)                                                                        (b) 

 

Fig. (25) (a) Stepped Lattice Geometry 

Fig. (25) (b) Corresponding Unit Cell of the stepped lattice seen in (a) 

 

3.3 Numerical Analysis 
 
Following the bottom-up approach previously used in the preceding chapter, the honeycomb 

is once again deconstructed and analysed individually and eventually altogether as one whole 

system.  

 

3.3.1 Numerical Analysis of a Cantilever Beam 
 

When completely dismantling the lattice, the first segment to be analysed is the cantilever 

beam. Fig. (26) demonstrates the uniform prismatic structure whilst fig. (27) displays the 

irregular altered beam. The new dimensions applied to the optimised beam for the numerical 

analysis were as follows: 

 

▪ Thickness of middle segment (𝑡1)  

▪ Thickness of outer segments (𝑡2)  

▪ Length on middle segment (𝐿1)  

ℎ 



▪ Length of outer segments (𝐿2) 

 

Fig. (26) Dimensions of Uniform Beam 

 

 
Fig. (27) Dimensions of Stepped Beam 

 

The key aim in the numerical analysis of the beam element is to equate the cross-sectional 

area of the uniform beam and the stepped beam for comparison purposes. This would then 

also lead to equating masses. The values of different lengths and thicknesses of the stepped 

beam are as follows: 

 

▪ 𝐿2 = 𝜂𝐿  

▪ 𝐿 = (1 − 2𝜂)   

▪ 𝑡1 = 𝛼1𝑡 

▪ 𝑡2 = 𝛼2𝑡 

When considering the density of the material, 𝜌, and through equating the masses of the 

uniform beam and the optimised stepped beam, the following can be obtained: 

𝐴𝜌 = 𝐿𝑡𝜌 = 2(𝛼2𝑡)𝜂𝐿𝜌 + 𝛼1𝑡(1 − 2𝜂)𝐿𝜌 

2(𝛼2𝑡)𝜂 + 𝛼1𝑡(1 − 2𝜂) = 1 

 

 

 

Thus, the value of 𝛼1 is: 

𝛼1 =
1 − 2𝛼2𝜂

1 − 2𝜂
 

(101) 

(103) 

(102) 



From this, it is evident that 𝜂 <
1

2
. 

 

As seen in fig. (27), the stepped beam has been divided into three parts. Therefore, the 

equation for the strain energy becomes: 

𝑈 =
1

2
∫

𝑀2

𝐸𝐼2
𝑑𝑥

𝐿2

0

+
1

2
∫

𝑁2

𝐸𝐴2
𝑑𝑥

𝐿2

0

+
1

2
∫

𝑀2

𝐸𝐼1
𝑑𝑥

𝐿1+𝐿2

𝐿1

+
1

2
∫

𝑁2

𝐸𝐴1
𝑑𝑥

𝐿1+𝐿2

𝐿1

+
1

2
∫

𝑀2

𝐸𝐼2
𝑑𝑥

𝐿

𝐿1+𝐿2

+
1

2
∫

𝑁2

𝐸𝐴2
𝑑𝑥

𝐿

𝐿1+𝐿2

 

 

 

The coefficients Qis for the stepped beam are defined as 

 

𝑄𝑖 = ∫
𝑥(𝑖−1)

𝐸𝐼2
𝑑𝑥

𝐿2

0

+ ∫
𝑥(𝑖−1)

𝐸𝐼1
𝑑𝑥

𝐿1+𝐿2

𝐿2

+ ∫
𝑥(𝑖−1)

𝐸𝐼2
𝑑𝑥

𝐿

𝐿1+𝐿2

          𝑖 = 1 − 3 

𝑆 = ∫
1

𝐸𝐴2
𝑑𝑥

𝐿1

0

+ ∫
1

𝐸𝐴1
𝑑𝑥

𝐿1+𝐿2

𝐿2

+ ∫
1

𝐸𝐴2
𝑑𝑥

𝐿

𝐿1+𝐿2

 

 

 

The representation of each symbol is as follows: 

▪ 𝐼1 =
𝑏𝑡1

3

12
  

▪ 𝐼2 =
𝑏𝑡1

3

12
   

▪ 𝐴1 = 𝑏𝑡1 

▪ 𝐴2 = 𝑏𝑡2 

The stiffness values of the bending and axial parts are obtained separately. After all 

simplifications are conducted, the stiffness matrix for the constituent Euler Bernoulli is as 

follows 

𝐾𝑖𝑗 =

[
 
 
 
 
 
 
 
 
 

    

𝑎1
𝐸𝐴

𝐿
0 0 −𝑎1

𝐸𝐴

𝐿
0 0

0 𝑑1
12𝐸𝐼

𝐿3 𝑑2
6𝐸𝐼

𝐿2 0 −𝑑1
12𝐸𝐼

𝐿3 𝑑2
6𝐸𝐼

𝐿2

0 𝑑2
6𝐸𝐼

𝐿3 𝑑3
4𝐸𝐼

𝐿
0 −𝑑2

6𝐸𝐼

𝐿2 𝑑4
2𝐸𝐼

𝐿

−𝑎1
𝐸𝐴

𝐿
0 0 𝑎1

𝐸𝐴

𝐿
0 0

0 −𝑑1
12𝐸𝐼

𝐿3 −𝑑2
6𝐸𝐼

𝐿2 0 𝑑1
12𝐸𝐼

𝐿3 −𝑑2
6𝐸𝐼

𝐿2

0 𝑑2
6𝐸𝐼

𝐿3 𝑑4
2𝐸𝐼

𝐿
0 −𝑑2

6𝐸𝐼

𝐿2 𝑑3
4𝐸𝐼

𝐿 ]
 
 
 
 
 
 
 
 
 

  

 

 

(105) 

 

 

 

 

 

(106) 
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Where the representation of each symbol is as follows: 

▪ 𝐴 – Cross sectional area of the regular beam with equivalent mass as the stepped beam 

▪ 𝐼 – Moment of Inertia of the regular beam with equivalent mass as the stepped beam 

▪ 𝑎1 =
1

𝛼1
  2−2𝜂(𝛼1

  2−𝛼2
  2)

 

▪ 𝑑1 =
𝛼1

  3𝛼2
  3

(𝛼1
  3−𝛼2

  3)((2𝜂−1)3+1)+𝛼2
  3 

▪ 𝑑2 = 𝑑1 =
𝛼1

  3𝛼2
  3

(𝛼1
  3−𝛼2

  3)((2𝜂−1)3+1)+𝛼2
  3 

▪ 𝑑3 =
𝛼1

  3𝛼2
  3(((𝛼1

3−𝛼2
3)((𝜂−1)3+1+𝜂3)+𝛼2

3)

(2𝜂(𝛼1
3−𝛼2

3)+𝛼2
3)((𝛼1

3−𝛼2
3)((2𝜂−1)3+1)+𝛼2

  3 

▪ 𝑑4 =
𝛼1

  3𝛼2
  3(𝛼2

  3−(𝛼1
  3−𝛼2

  3)(4𝜂3−6𝜂2))

(2𝜂(𝛼1
3−𝛼2

3)+𝛼2
3)((𝛼1

3−𝛼2
3)((2𝜂−1)3+1)+𝛼2

  3 

 

By applying the limits, lim
𝛼1→1𝛼2→1

  from the case of a regular beam and the coefficient 𝑎1, 𝑑̅
𝑖 

become  

 

lim
𝛼1→1𝛼2→1

𝑎1 = lim
𝛼1→1𝛼2→1

1

𝛼1
2 − 2𝜂(𝛼1

2 − 𝛼2
2)

= 1 

lim
𝛼1→1𝛼2→1

𝑑1 = lim
𝛼1→1𝛼2→1

1

(𝛼1
3 − 𝛼2

3)(2𝜂 − 1) + 1) + 𝛼2
3)

= 1 

𝑑2 = 𝑑1 

lim
𝛼1→1𝛼2→1

𝑑3 = lim
𝛼1→1𝛼2→1

𝛼1
3𝛼2

3(((𝛼1
3 − 𝛼2

3)((𝜂 − 1)3 + 1 + 𝜂3) + 𝛼2
3

(2𝜂(𝛼1
3 − 𝛼2

3) + 𝛼2
3)(𝛼1

3 − 𝛼2
3)((2𝜂 − 1)3 + 1) + 𝛼2

3)
= 1 

lim
𝛼1→1𝛼2→1

𝑑4 = lim
𝛼1→1𝛼2→1

𝛼1
3𝛼2

3(𝛼2
3 − (𝛼1

3 − (𝛼1
3 − 𝛼2

3)(4𝜂3 − 6𝜂2)

(2𝜂(𝛼1
3 − 𝛼2

3) + 𝛼2
3)((𝛼1

3 − 𝛼2
3)((2𝜂 − 1)3 + 1) + 𝛼2

3)
= 1 

 

When considering, all the limitations of the values, the stiffness matrix for the regular Euler 

Bernoulli beam becomes 

𝐾𝑖𝑗 =

[
 
 
 
 
 
 
 
 
 
 
 
 

    

𝐸𝐴

𝐿
0 0 −

𝐸𝐴

𝐿
0 0

0
12𝐸𝐼

𝐿3

6𝐸𝐼

𝐿2
0 −

12𝐸𝐼

𝐿3

6𝐸𝐼

𝐿2

0
6𝐸𝐼

𝐿3

4𝐸𝐼

𝐿
0 −

6𝐸𝐼

𝐿2

2𝐸𝐼

𝐿

−
𝐸𝐴

𝐿
0 0

𝐸𝐴

𝐿
0 0

0 −
12𝐸𝐼

𝐿3
−

6𝐸𝐼

𝐿2
0

12𝐸𝐼

𝐿3
−

6𝐸𝐼

𝐿2

0
6𝐸𝐼

𝐿3

2𝐸𝐼

𝐿
0 −

6𝐸𝐼

𝐿2

4𝐸𝐼

𝐿 ]
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Where again: 

▪ 𝐼 =
𝑏𝑡3

12
  

▪ 𝐴 = 𝑏𝑡 

 

After considering the stiffness coefficients from eq. (31), the non-dimensional geometric 

parameters are defined as 

𝛼 =
𝑡

𝐿
   𝑎𝑛𝑑  𝛽 =

ℎ

𝐿
 

 

where t, is the thickness of the uniform beam.  

 

3.3.2 Numerical Analysis of the Lattice 
 

For the numerical analysis of the lattice, the expressions of the moment of inertia and the cross-

sectional area can be used to obtain the stiffness coefficients. These are given by the follow 

expressions: 

 

▪ 𝐾55 = 𝑑1
12𝐸𝐼

𝐿3 = 𝑑1𝐸𝑏𝛼1
  3   

▪ 𝐾44 = 𝑎1
𝐸𝐴

𝐿
= 𝑎1𝐸𝑏𝛼 

▪ 𝐾44
ℎ = 𝑎1

𝐸𝐴

ℎ
= 𝑎1

𝐸𝑏𝛼

𝛽
  

 

It can then be found that 

 

▪ 
𝐾55

𝐾44
= 𝛼2 𝑑1

𝑎1
  ▪ 

𝐾55

𝐾44
ℎ = 𝛼2𝛽

𝑑1

𝑎1
   

The generalised expressions for the optimised stepped lattice can now be obtained as 

 

𝐸1 =
𝑑1𝐸𝛼3𝑐𝑜𝑠𝜃

(𝛽 + 𝑠𝑖𝑛𝜃) (sin2 𝜃 + 𝛼2 𝑑1

𝑎1
𝑐𝑜𝑠2 𝜃)

 

𝐸2 =
𝑑1𝐸𝛼3(𝛽 + 𝑠𝑖𝑛𝜃)

𝑐𝑜𝑠3 𝜃 (1 + 𝛼2 𝑑1

𝑎1
𝑡𝑎𝑛2 𝜃 + 2𝛼2𝛽

𝑑1

𝑎1
𝑠𝑒𝑐2 𝜃)

 

𝑣12 =
(1 − 𝛼2 𝑑1

𝑎1
) 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠2 𝜃

(𝛽 + 𝑠𝑖𝑛𝜃) (sin2 𝜃 + 𝛼2 𝑑1

𝑎1
𝑐𝑜𝑠2 𝜃)

 

(114) 
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𝑣21 =
(1 − 𝛼2 𝑑1

𝑎1
) 𝑠𝑖𝑛𝜃(𝛽 + 𝑠𝑖𝑛𝜃)

(1 + 𝛼2 𝑑1

𝑎1
𝑡𝑎𝑛2 𝜃 + 2𝛼2𝛽

𝑑1

𝑎1
𝑠𝑒𝑐2 𝜃)

 

 

 

Where; 

𝐺12 =
(𝛽 + 𝑠𝑖𝑛𝜃)𝐸𝛼3𝑑2(4𝑑1ℎ − 3𝑑2ℎ

2 )𝑎1𝑐𝑜𝑠𝜃

2(𝑎1𝑑2𝛽 + 2 (−𝛼2𝑑2 + 𝑎1) (𝑑1ℎ𝑑3ℎ −
3
4

𝑑2ℎ
2 ))𝛽2 𝑐𝑜𝑠2 𝜃

+ 8𝑑2 (𝛽 + 𝑠𝑖𝑛𝜃 +
1

2
𝛽2 +

1

2
) (𝑑1ℎ𝑑3ℎ −

3

4
𝑑2ℎ

2 ) 𝛼2 

𝐾55

ℎ
2 = 𝐾55

0 𝑑1ℎ =
12𝐸𝐼

(
ℎ
2)

3 𝑑1ℎ 

𝐾56

ℎ
2 = 𝐾56

0 𝑑2ℎ = −
6𝐸𝐼

(
ℎ
2)

2 𝑑2ℎ 

𝐾66

ℎ
2 = 𝐾66

0 𝑑3ℎ =
4𝐸𝐼

ℎ
2

𝑑3ℎ 

𝑑1ℎ =
𝛼1

3𝛼2
3(2𝜂(𝛼1

3 − 𝛼2
3)𝛼2

3)

𝐷𝐸𝐵
ℎ  

𝑑2ℎ =
((𝛼1

3 − 𝛼2
3)(4𝜂2 − 4𝜂) − 𝛼2

3)𝛼1
3𝛼2

3

𝐷𝐸𝐵
ℎ  

𝑑3ℎ =
((𝛼1

3 − 𝛼2
3)(8𝜂3 − 12𝜂2 + 6𝜂) + 𝛼2

3)𝛼1
3𝛼2

3

𝐷𝐸𝐵
ℎ  

𝐷𝐸𝐵
ℎ = 16((𝜂 −

1

2
)

4

𝛼2
6 − 2𝜂𝛼1

3 (𝜂 −
1

2
) (𝜂2 −

𝜂

2
+

1

2
)𝛼2

3 + 𝛼1
6𝜂4) 
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3.4 Methodology and Finite Element 

Analysis Procedures 
 
Finite Element Analysis (FEA) was again used to simulate loading conditions. Again, as 

previously mentioned, simulations are an incredibly useful way to visualise how the structure 

will behave. To investigate the structural stability of the hexagonal design the three-

dimensional design and engineering software, ANSYS was once again utilised.  

 

3.4.1 Geometry of Beam Model 
 

From the numerical analysis, as previously mentioned the dimensions were reformed as the 

cross-sectional area was redistributed. 6 different cases were modelled and simulated, the 

dimensions in each case are shown in table (3) (where all values are in millimetres): 

 

 

 

Case 𝜶𝟏 𝒕𝟏 𝑳𝟏 𝜶𝟐 𝒕𝟐 𝑳𝟐 

1 1.0 1.5 

10 

1.0 1.5 

5 

2a 1.3 1.95 0.7 1.05 

2b 1.2 1.8 0.8 1.2 

3a 0.8 1.2 1.2 1.8 

3b 0.7 1.1 1.3 2 

3c 0.5 0.75 1.5 2.3 

 

Table (3) The dimensions of the cases analysed 

In cases where 𝑡1 > 𝑡2, this is considered as a step-up model whilst evidently for cases  𝑡2 >

𝑡1, this is considered as a step-down model. This is better depicted in fig. (28). 

 

(a) 



 

(b) 

 

Fig. 28 (a) Schematic of step-up beam model i.e. where 𝑡1 > 𝑡2 

Fig. 28 (b) Schematic of step-down beam model i.e. where 𝑡1 > 𝑡2 

 

3.4.2 Geometry of Lattice Model 
 

To create the lattice models, the beam elements for the 6 cases mentioned are repetitively made 

and combined to therefore develop tessellations. The lattice consists of 20-unit cells by 8 units. 

Fig. (29) shows the whole system of the lattice and how it has been built through the 

combinations of the cantilever beam and corresponding unit cells. And as these were only two 

dimensional, another dimension must be added for the simulation study and thus an extrusion 

of 1.5mm was applied. 
 

Fig (29). Stepped Lattice and a detailed view of its corresponding unit cell to show how the 

unit cell is multiplied and developed to make the whole system 

 



3.4.3 Mesh Refinement of Lattice Model 
 

For any and in this case, all the finite element analysis studies for the stepped and uniform 

lattice, it was important for a mesh refinement study to be conducted. This would ensure the 

reliability, validity and accuracy of the results produced by the static simulations. This was 

carried out in prior simulations in preceding chapters. 

 

ANSYS has a convergence feature that can be applied to allow for an in-depth and detailed 

mesh that “adapts” to the complex geometry. This feature reduces the element size on the 

structure until the desired allowable change is achieved, 5% was chosen for all simulations, 

therefore conducting the mesh refinement study automatically. This procedure was utilised in 

all simulations conducted. Fig. 30 shows a less than 0.1% change in the 2 solutions therefore a 

more than sufficient mesh size has been chosen; this is further specified in Table (4). 

 
Fig. (30) Mesh Convergence Results for Case 2a 

 

Solution Number 
Deformation in 

X axis(mm) 

Percentage Change 

in X axis 

deformation (%) 

Number of Nodes 
Number of 

Elements 

1 0.010475 - 364821 100395 

2 0.010483 0.076372 554310 294644 

 

Table (4) Mesh Convergence Results for case 2a showing allowable change to be fulfilled 
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3.4.4 Lattice Simulation Set-Up 
 

For the simulation of a lattice, the re-enactment of a simple general static analysis is conducted. 

The following initial external loads, fixtures and limitations were applied: 

• Varying compressive magnitudes of force subjected on all faces of the right-hand side 

of the lattice in the x direction 

• A fixed support on the left outer faces of the lattice 

• Deformation in the z-axis is limited to a value of 0 

 

As previously mentioned, the large deflection feature was also applied, meaning the change in 

stiffness due to change in the shape being tested were accounted for during analysis, therefore 

nonlinear analysis is being undergone. 

This is better depicted in fig. (31). 

 

 
 

Fig. (31) The simulation set up of the lattices to be tested where the blue areas are where the 

fixed support was applied whilst the red cross-sectional areas represent where the magnitude 

of forces were subjected 

  



The mechanical properties of structural steel were applied to the models. These were as 

follows: 

 

Property Value Units 

Elastic Modulus 200 GPa 

Poisson’s Ratio 0.3 - 

Mass Density 7850 kgm-3 

Tensile Strength 250 MPa 

Compressive Strength 250 MPa 

 

Table (5) Mechanical Properties of Structural Steel 

 

3.5 Discussion and Comparison of 

Numerical and Finite Element Results of 

Lattice 
 

The displacements collected from the simulations were used to calculate the Young’s modulus. 

The dimensions of the lattice after testing and the area in which the force was applied were 

also noted for the stiffness calculation. Basic structural mechanics equations (127), (128) and 

(129) were used for this computation. 

 

                       

𝜎 =
𝐹

𝐴
 

 

 

                    

𝜀 =
∆𝑙

𝑙0
 

 

           

𝐸 =
𝜎

𝜀
 

 

The representation of each symbol within these structural equations are as follows: 

▪ 𝜎 – Stress  

▪ 𝐹 – Force  

▪ 𝐴 – Cross-sectional Area 

(127) 

 

 

 

 

(128) 

 

 

 

(129) 



▪ 𝜀 – Strain  

▪ ∆𝑙 – Deformation in Y Axis  

▪ 𝑙0 – Original Length of Lattice  

▪ 𝐸 – Transverse Young’s Modulus 

 

Fig. (32) shows plots of stress against strain for all cases mentioned. This stress dependency 

study shows the relationship between the stress and strain as a logarithmic curve for all cases. 

 

      

Fig (32):The relationship between the stress and strain for all cases

(a) Case 1 Results 

(b) Case 2a Results 

(c) Case 2b Results 

(d) Case 3a Results 

(e) Case 3b Results 

(f) Case 3c Results

Fig. (32) displays the stress and strain results for all cases. A nonlinear relationship is shown 

for all cases. 
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Fig. (33) displays the results collected for both the numerical and finite element analysis of all 

cases mentioned but now plotting the young’s modulus against the magnitude of force in which 

the lattice is subjected to. Since, the theoretical result does not depend upon the force or stress, 

this is seen as a single plot.  

 

When comparing the numerical and finite element analysis values, generally it was found that 

with increasing stress comes with increasing percentage error. But oddly, for Case 1, when 

uniform lattice is subjected to a magnitude of 1 newton, the error percentage was found to be 

6.85% whilst when subjected to 2000 newton this declined to 0.31% and then continually 

increased with increasing force. 

 

Fig (33): The finite results for all cases where the relationship is shown between the young’s 

modulus and force whilst also a single plot is shown for the theoretical young’s modulus value 

 

(a) Case 1 Results  

(b) Case 2a Results 

(c) Case 2b Results  

(d) Case 3a Results 

(e) Case 3b Results 

(f) Case 3c Results
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 Young’s Modulus  

Case Analytical Result (MPa) 
FE Result when subjected 

to a 1 newton force (MPa) 
Percentage Error 

1 191.62 204.740 6.85% 

2a 74.189 73.716 0.64% 

2b 108.32 108.322 0.002% 

3a 253.69 240.005 5.39% 

3b 249.42 249.266 0.062% 

3c 152.02 142.481 6.28% 

 

Table (6) Summarised Analytical and finite element results for all cases and their 

corresponding percentage errors 

 

It is evident that the ‘step-up’ lattices have a lower Young’s modulus value than the uniform 

cases whilst this varies in the ‘step-down’ configurations. It’s found that for the step-down 

models, the young’s modulus value was lower than the uniform structure whilst for step-up 

models this was significantly larger. This was particularly evident in cases 3a and 3b whilst 

for 3c was not the case. It’s crucial to highlight that the lattice models’ masses for all cases 

simulated differed on a minuscule scale. The magnitude of the largest difference was 2.23%.  

3.6 Conclusions 
 
A proposed approach to optimise the hexagonal configuration, with the aim of maximising the 

strength to weight ratio, has been investigated where ‘steps’ have been introduced. The stepped 

lattice has been developed by redistributing the cross-sectional area of the uniform lattice 

ensuring their equivalence. 6 models were specifically investigated further through modelling 

and running finite element analysis upon the structures. Table (6) summarises the results 

obtained from the analytical results as well as the finite element analysis. It can be observed 

from table (6) that the percentage error was found to be <6.28% therefore showing promising 

results that the numerical analysis has been conducted correctly. Case 3a was found to have 

the highest magnitude of the young’s modulus with a value ~32% larger than the prismatic 

structure. The ratio between the minimum and maximum values of thickness parameters was 

therefore found to be optimal. Further investigation into the ideal parameter combinations 

could potentially offer a huge advancement in the manufacturing of additively manufactured 

structures. 



Chapter 4 – Quadratic Profile 

 

4.1 Introduction 
 
Continuing from the previous chapter, this section of the paper of again focuses on the natural 

structure of the honeycomb configuration but a further look into the introduction of a quadratic 

profile for geometrical optimisation. For aerospace, weight reduction and deformation 

resistance enhancement are key to extensive applications, hence being the stimuli of the 

project. Similarly, to the preceding chapter, in this instance, the bottom-up approach is used. A 

cantilever beam is the first element to undergo analysis, then a unit cell (Y shaped segment), 

followed eventually by a complete complex system of an entire lattice. The obtained numerical 

theoretical results are then reviewed through ANSYS static structural simulations. This is 

naturally the extension of the analytical formulations that are established as it can represent the 

real-life model without compromising the cost of manufacturing and reduce the duration of 

attaining the results. The models used for the experiments are additively manufactured thus 

being another focus of this paper.  

 

4.2 Numerical Analysis 
 

4.2.1 Numerical Analysis of a Cantilever Beam 
 

Following the bottom-up approach previously used in the first chapter, the honeycomb 

structure analysis involves splitting the structure into individual elements. And the first piece 

to be analysed is the cantilever beam. Fig. (34) displays the uniform prismatic structure 

whilst fig. (35) demonstrates the irregular altered beam. The dimensions applied to the 

optimised beam for the numerical analysis were as follows:  

▪ Maximum Thickness (𝛼𝑡)  

▪ Minimum Thickness (𝜂𝑡)  

▪ Length (𝐿)  



 
 

Fig. (34) Dimensions of Uniform Beam 

 
Fig. (35) Dimensions of Optimised Beam 

 

For the attainment of theoretical values, boundary conditions were first introduced. These were 

based on the coordinates of the structure shown in fig. (36). It is also evident from fig. (36) that 

𝛼 > 𝜂 and 𝑡 = 1 – 𝜂. 

 
Fig. (36) Co-ordinates of Optimised beam with quadratic profile 

 

These conditions were then used to obtain the quadratic equation, eq. (130): 

 

𝑦 (𝑥) =
2𝑡(𝛼 − 𝜂)

𝐿2
𝑥2 −

2𝑡(𝛼 − 𝜂)

𝐿
𝑥 +

𝛼𝑡

2
 

(130) 

 

 

 

 



 

These boundary conditions also allowed the establishment of the unknown constants from the 

quadratic equations. Once this was achieved, it was critical to ensure the optimised structure 

and original beam cross-sectional areas were equal for comparison purposes as the structures 

would then sustain equivalent masses. Calculations were therefore formulated to fulfil this 

criterion. As seen in the equations (131), (132) and (133) below, an area condition was 

evaluated to sustain the masses of the beams as a control variable. 

 

∫ 𝑦(𝑥)𝑑𝑥 =
𝑡𝐿

2

𝐿

0

 

 

𝑡𝑙(𝛼 + 𝜂2)

6
=

𝑡𝐿

2
 

 

𝐴𝑟𝑒𝑎 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛: 𝛼 = 3 − 2𝜂 

 

For simplification purposes, 𝜂 = 1 – 휀 was substituted into the equation (130). This created 

equation (134) for the final optimised dimension of the length in the irregular structure. 

 

𝑦 (𝑥) = 𝑡휀 (
12

𝐿2
𝑥2 −

12

𝐿
𝑥 + 2) + 𝑡  

 

Further analysis was then conducted to find the optimal epsilon value where peak strength is 

found when the edge of the beam is subjected to a force, P which can be seen in fig. (37). The 

equation for rotation due to bending moments and displacement were used to derive the optimal 

epsilon value through basic calculus. Thus, the properties of the uniform beam structure are 

then found through equations (135) and (136). 

 

(131) 

 

 

 

 

(132) 

 

 

(133) 

 

(134) 



 
Fig. (37) Non-uniform beam subjected to a downwards force, P. 

 

𝜃(𝑥) = ∫
𝑀(𝑥)

𝐸𝐼(𝑥)
𝑑𝑥 =

𝑃 (𝑙𝑥 −
1
2 𝑥2)

𝐸𝐼
 

𝛿(𝑥) = ∫𝜃(𝑥) =
𝑃 (

1
2 𝑙𝑥2 −

1
6𝑥3)

𝐸𝐼
 

For the nonuniform structure, the same integration process was followed as seen in equation 

(137) and (138). 

 

𝜃(𝑥) = ∫
𝑀(𝑥)

𝐸𝐼(𝑥)
𝑑𝑥 =

𝑃(𝐿 − 𝑥)

𝐸𝐼 (휀 (
12𝑥2

𝐿2 −
12𝑥
𝐿 + 2) + 1)

3 

 

𝛿(𝑥) = ∫𝜃(𝑥) = ∫
𝑃(𝐿 − 𝑥)

𝐸𝐼 (휀 (
12𝑥2

𝐿2 −
12𝑥
𝐿 + 2) + 1)

3 

 

Equations (137) and (138) were evaluated and used to obtain stiffness coefficients with 

appropriate boundary conditions. To ensure the correct equations were acquired, the epsilon 

value of 0, corresponding to the uniform structure, was substituted into equations (137) and 

(138). The results were then compared to the results from equations (135) and (136), where 

their equality is a criterion to be fulfilled. 
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4.2.2 Numerical Analysis of the Unit Cell and Lattice 
 

The next segment in the study procedure to be analysed constitutes of three beam elements 

combined to make the unit cell as discussed in previous chapters. Each beam element is treated 

as beams of thickness (t), depth (b), length (l) at an inclined angle (θ).  

 
 

Fig. (38) Dimensions and geometry of Unit Cell with epsilon value of 0.1 

 

For the unit cells analysed, the inclined angle is at an obligatory 30°, but necessary changes 

could be made to the derivations if θ ≠ 30°. The numerical analysis of the unit cell consists of 

formulating the individual cantilever beams’ local stiffness matrices and transforming them 

into a global coordinate system which in this case represents the lattice. The equations of the 

whole complex system of the lattice are thus derived from the unit cell. The beam stiffness 

matrix can be expressed by equation (139). Periodic boundary conditions were applied for a 

minimum number of unit cells. These are a set of boundary conditions chosen and applied to 

enable the approximation of a larger system (which in this case is the lattice) from the unit cell 

i.e. the deformation of one-unit cell occurs, all the other unit cells deform in the same manner 

within the lattice. 
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(139) 

 



K5,5 represents one of the stiffness matrix coefficients needing to be established as it is used in 

Young’s modulus calculations. The stiffness coefficients and their ratios are first found for the 

uniform structure. 

 

𝐾55 =
𝐸𝑏𝑡3

𝐿3
 

 

𝐾44 =
𝐸𝑏𝑡

𝐿
 

 

𝐾44ℎ =
𝐸𝑏𝑡

ℎ
 

                                    

𝑅1 =
𝐾55

𝐾44
=

𝑡2

𝐿2
 

                                   

𝑅2 =
𝐾55

𝐾44ℎ

=
𝑡2ℎ

𝐿3
 

 

The same formulation process is followed for the irregular altered structure as seen in equations 

(145) – (149).  

 

𝐾55 =
8𝐸𝑏3(휀 − 1)

3
2휀

3
2(2휀 + 1)2

𝐿3 (4 (휀 +
1
2)

2

√3tanh−1 (√ 3휀
휀 − 1) + √휀 − 1 (√휀 − 4휀

3
2))

  

                                 

𝐾44 =
𝐸𝑏𝑡√3휀(휀 − 1)

𝐿tanh−1 (√ 3휀
휀 − 1)

 

                           

𝐾44ℎ = −
𝐸𝑏𝑡√3휀(휀 − 1)

ℎtanh−1((√ 3휀
휀 − 1)

 

    

(140) 

 

 

(141) 

 

 

 

(142) 

 

 

 

(143) 

 

 

 

(144) 

(145) 

 

 

 

 

 

 

(146) 

 

 

 

 

(147) 

 



𝑅1 =
𝐾55

𝐾44
=

8(휀 − 1)휀 (휀 +
1
2)

2

𝑡2tanh−1 (√ 3휀
휀 − 1)√3

𝐿2 ((휀 +
1
2)

2

√3tanh−1 (√ 3휀
휀 − 1) +

3√휀 − 1 (√휀 − 4휀
3
2)

4 )

 

 

𝑅2 =
𝐾55

𝐾44ℎ

=

32√3(휀 − 1)tanh−1 (√ 3휀
휀 − 1
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The formulation for K5,5 was simplified to obtain equations (150) and (151).  These formulae, 

equations (150) and (151), are equal but consisting of different variables [11]. 
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Similar to the cantilever beam numerical analysis, the epsilon value of 0 was substituted into 

the stiffness coefficient and ratio formulas. These were then compared to the uniform case 

values to verify their equality, if this condition was fulfilled this would imply the correct 

equations were obtained. 

 

4.3 Methodology and Finite Element 

Analysis Procedures 
 
Finite Element Analysis (FEA) was again used to simulate loading conditions and determine 

the deformation experience by the beam in y axis. Again, as previously mentioned, simulations 

are an incredibly useful way to visualise how the structure will behave. To investigate the 

(150) 
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structural stability of the hexagonal design the three-dimensional design and engineering 

software, ANSYS was once again utilised.  

 

4.3.1 Geometry of Beam Model 
 

From the numerical analysis, the dimensions were reformed by introducing a quadratic curve 

function. This was applied to the length of the beam. For the model to be simulated, the 

dimensions were as follows: 

▪ length (l) = 20mm 

▪ Thickness (t) = 2mm 

 

Both values were then substituted to easily simplify equation (134) into equation (152). 

 

𝑦 = 0.06휀𝑥2 − 1.2휀𝑥 + 4휀 + 12 

      

A variety of epsilon values were also substituted to create several models ready to be 

structurally analysed and compared. As these were only two dimensional, another dimension 

must be added for the simulation study and thus an extrusion of 20mm was applied. 

 

4.3.2 Mesh Refinement Study of Beam Model 
 

Again, for all the finite element analysis studies conducted in this optmisation, it was again 

crucial to conduct a mesh refinement study as mentioned previously. For the cantilever beam, 

the deformation experienced by the beam in the y axis was recorded. It was assumed that the 

optimal mesh size differed for each beam since the complexity of each model differed. 

 

Another software, Solidworks, much like ANSYS can be used to run these simulations where 

a curvature mesh can be applied. This would allow the mesh to account for the geometrical 

intricacy of the design. But a huge difference between software is that ANSYS has a 

convergence feature which allows for an in-depth and detailed mesh that “adapts” to the 

intricacy or simplicity of the geometry. This feature continues to reduce the element size on 

the structure until the desired allowable change is achieved. Again, 5% was chosen for all 

simulations, therefore conducting the mesh refinement study automatically. This procedure 

was utilised in all simulations conducted. 

 

(152) 



This is completely different to Solidworks as both the minimum and maximum element sizes 

can be defined for the curvature mesh mentioned. The use of various elements’ sizes would 

therefore increase the accuracy of the results. The aim for the mesh refinement is to find a 

convergence for the displacements which as mentioned, ANSYS can achieve automatically. 

Once this was attained, the optimal mesh to be used for the geometry can be easily determined. 

This is ultimately how a mesh study is conducted manually.  

 
 

Fig. (39) Mesh Convergence Results for Epsilon=0 

 

 

Solution Number 
Directional 

Deformation (mm) 
Change (%) Number of Nodes 

Number of 

Elements 

1 0.058264 - 26745 13134 

2 0.058278 0.22772 80596 47081 

 

Table (7) Mesh Convergence Results for epsilon =0 showing allowable change to be fulfilled 
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4.3.3 Cantilever Beam Simulation Set-Up 
 
For the simulations, a single vertical downward force was applied on the edge of each beam, 

ranging from 50 newtons to 500 newtons in 50 newton increments. A fixed geometry was then 

applied to the opposite end and face of the beam. It is also important to note that the 

displacements experienced in the z-axis were fixed to a value of zero since this is an in-plane 

analysis. With this set-up, its replication of a general linear static analysis of a simple cantilever 

beam was established. 

 

The average deformation experienced by the elements of the opposite face of the fixture in the 

Y axis was recorded. The mass of each of the structures was observed, ensuring their 

equivalence. This is particularly important for comparison purposes. Through these 

simulations, it can be determined whether the model with the found optimal epsilon value can 

not only be applied mathematically but in real life models. 

 

                                                    

Fig (40) (a) Arrow indicating where force is applied on a beam model with an epsilon value 

of 0.4 

 

Fig. (4) (b) Beam model with an epsilon value of 0.4 where the green covered face area 

indicates the location in which the fixed support is applied  

 

  

(a) (b) 



The mechanical properties of structural steel were applied to the models. These were as 

follows: 

 

Property Value Units 

Elastic Modulus 200 GPa 

Poisson’s Ratio 0.3 - 

Mass Density 7850 kgm-3 

Tensile Strength 250 MPa 

Compressive Strength 250 MPa 

 

Table (8) Mechanical Properties of Structural Steel 

 

4.3.4 Geometry and Mesh Study of Unit Cell 
 

Following on from the reformed beam with a quadratic curve, this is then expanded into the 

unit cell consisting of three cantilever beams. As previously mentioned, the inclined angle is 

by default 30 degrees to create this ‘Y’ segment that we call the unit cell. The same quadratic 

curve formulations from the beam elements are applied to the unit cell whilst this time, the 

depth of the unit cell has been reduced to 10mm. Furthermore, the identical procedure applied 

to the beam was conducted in terms of mesh following through with the convergence feature 

to optimise the accuracy of the results. 

 

4.3.5 Unit Cell Simulation Set-Up 
 

To replicate the beam’s linear static analysis, a fixed support was applied to the top face of the 

middle beam element and the edge of inclined beams were subjected to forces with a magnitude 

of 500N. As previously mentioned, as this is an in-plane analysis, the deformation experienced 

in the z-axis direction is set to 0. This is better demonstrated in fig. (41). The average y axis 

deformation experienced by the faces of the inclined beams were recorded. 



 
Fig. (41) Simulation set up of unit cell model with epsilon value of 0.2 where the blue covered 

face indicates where the fixed support has been applied and the red arrows indicating where 

the fore is subjected upon. 

 

The masses of these various unit cell models were again monitored, as their inequivalence 

would mean the models are incomparable. It was found that the masses were different where 

the mass would increase with increasing epsilon value. To enforce control measures, the forces 

applied to the unit cells were adjusted according to their mass. The force and mass implemented 

to the uniform structure were arranged into an equation to create a constant as seen in eq. (X). 

The various epsilon values of the models were represented by ‘n’ in this equation and ‘0’ 

represented the uniform case. The adjusted values of force according to the masses of the 

models can be seen in table (9). 

 
𝐹0

𝑚0
=

𝐹𝑛

𝑚𝑛
 

 

 

Epsilon Value Mass (g) Force (N) 

0 19.38 500.00 

0.01 19.41 500.57 

0.02 19.43 501.14 

0.03 19.45 501.73 

0.04 19.47 502.33 

0.05 19.50 502.95 

0.06 19.52 503.57 

0.07 19.55 504.20 



0.08 19.57 504.85 

0.09 19.60 505.50 

0.1 19.62 506.17 

0.2 19.91 513.47 

0.3 20.23 521.88 

0.4 20.60 531.42 

0.5 21.02 542.09 

0.6 21.47 553.87 

0.7 21.97 566.78 

0.8 22.52 580.81 

0.9 23.10 595.96 
 

Table (9) Varying Epsilon values and their respective masses and forces in which they are 

subjected to 

 

The mechanical properties of structural steel, shown in table (7), were again applied to this set 

of models. 

 

 

4.3.6 Geometry and Mesh Refinement Study of 

Lattice        Model 
 

The complete system of an entire lattice is last to be analysed. The lattice consisted of 20-unit 

cells by 8 units. Fig. (42) shows the whole lattice and how it has been built through the 

combinations of the cantilever beam and unit cells. 

 

 
 

Fig. (42) Model of Lattice with ε=0.3136 



4.3.7 Lattice Simulation Set-Up 
 

To re-enact the same structural test undergone by the beam and unit cell for the optimised 

lattice, the following initial external loads, fixtures, and limitations were applied: 

• 50N force subjected on all bottom faces of the lattice. 

• A fixed support was applied on the top faces of upper cells of the lattice 

• Deformation in the z-axis is limited to a value of 0 

 
 

Fig. (43) Faces of Lattices indicated by blue covered area that are subjected to compressive 

forces 

 

 
 

Fig. (44) Faces of Lattices with fixed supports 



Again, it was essential to pay attention to the mass of the lattices as if these were not identical, 

the lattices are not comparable. It was found that the masses were in fact different just like the 

preceding case; the masses increased as the epsilon value increased which is not ideal. Identical 

control measures applied to the unit cell were applied to the complex system of the lattice. 

 

Epsilon 

Value 
Force (N) 

0 50.000000000 

0.01 50.114210641 

0.02 50.230681414 

0.03 50.349413055 

0.06 50.719174516 

0.1 51.243919898 

0.2 52.713936706 

0.3136 54.658347162 

0.4 56.332659702 

0.5 58.481142789 

0.6 60.855778304 

 

Table (10) Magnitude of forces applied to lattice models dependent on each value of epsilon 

 

Property Value Units 

Elastic Modulus 2.96 GPa 

Poisson’s Ratio 0.37 - 

Mass Density 1420 kgm-3 

Tensile Strength 57.3 MPa 

Compressive Strength 92.9 MPa 

Thermal Conductivity 0.261 W/mK 

Specific Heat 1140 J/kgK 

 

Table (11) Mechanical Properties of PET 

 

For future research comparison purposes, the mechanical properties of a material called 

polyethylene terephthalate (PET) were applied to the lattice models. This was applied as it was 

readily available for printing in the experimental stage, the values are then easily comparable 

to real life models due to the similarities in mechanical properties. 

 

 



4.4 Discussion and Results  
 

4.4.1 Discussion and Comparison of Beam Element 

Results 
 

Fig. (45) illustrates the results collected for the numerical analysis of the cantilever beam where 

D0/Dn represents the ratio of  displacements experienced by the uniform beam to the 

displacement of the altered cantilever beam . Similarly, the influence of epsilon on the y axis 

displacement from the simulation results are shown in table (12). It can evidently be seen that 

the curvatures created by both methods are extremely alike. As expected, both graphs 

experience a declination of vertical displacement before escalating. 

 

The displacement is minimal at slightly different values of epsilon; the numerical analysis 

found the optimal value of epsilon to be 0.06086460418 whilst in the simulations, it was found 

to be around 0.06. Therefore, showing an 98.6% margin of accuracy.  



 

 

Fig. (45) Numerical and Finite Element Analysis Results 

 

Table (12) displays the simulations results when a force of 100N is subjected upon the beam. 

It can also be clearly seen that the masses of all the models with varying epsilons are identical, 

allowing for their comparison. The original uniform structure displaced by 0.011691mm whilst 

at the optimal value of 0.06, displaced at a decreased value of 0.011478mm. This demonstrates 

a promising ~1.02% increase in structural stability.  

 



Epsilon 

Value 
Mass (g) Force (N) Displacement (mm) Dn/D0 

0 

12.56 100 

0.011691 1.000000 

0.01 0.011626 0.994440 

0.02 0.011570 0.989650 

0.03 0.011530 0.986229 

0.04 0.011500 0.983663 

0.05 0.011485 0.982380 

0.06 0.011478 0.981781 

0.07 0.011484 0.982294 

0.08 0.011503 0.983919 

0.09 0.011531 0.986314 

0.1 0.011569 0.989565 

0.2 0.012552 1.073646 

0.3 0.014759 1.262424 

0.4 0.018791 1.607305 

0.5 0.026107 2.233085 

0.6 0.040718 3.482850 

0.7 0.075462 6.454709 

0.8 0.190320 16.279189 

0.9 1.036600 88.666496 

 

Table (12) Finite Element Analysis results when a force of 100N is subjected upon the beam 

models 

  



 

4.4.2 Discussion of Unit Cell Results 
 

The ratio of displacements was also found in this case, seen in table (13). Similarly, the 

influence of epsilon value on the y axis displacement from the simulations results are shown 

in fig. (46) and table (13).  

 

 

Fig. (46) Results of Unit Cell Models where the ratio of the uniform unit cell deformation  
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Epsilon Value Average Y Displacement Dn/D0 

0 0.113380 1.000000 

0.01 0.112760 0.995849 

0.02 0.112050 0.990374 

0.03 0.111625 0.985605 

0.04 0.111210 0.982602 

0.05 0.110985 0.980041 

0.06 0.110835 0.977303 

0.07 0.110520 0.975007 

0.08 0.110700 0.977215 

0.09 0.110825 0.979776 

0.1 0.111215 0.982690 

0.2 0.119825 1.057670 

0.3 0.140430 1.239601 

0.4 0.179795 1.588802 

0.5 0.253485 2.234214 

0.6 0.414095 3.631370 

0.7 0.783200 6.830522 

0.8 2.112950 18.679679 

0.9 - - 

 

Table (13) Results from Finite Element Analysis of the Unit Cell 

 

It is evident that the deformation decreases with increasing epsilon value until a specific point 

where the displacement starts to increase once again. This point where minimum displacement 

was achieved, was at the epsilon value of around 0.07. In comparison to the beam element 

results, this is within a reasonable range. But this is expected as the simulations conducted for 

the unit cell were methodised to replicate the structural analysis undergone by the beam 

element. 

 

4.4.3 Discussion and Comparison of Numerical and 

FEA Results of Lattice 
 

The displacements collected from the simulations were used for the Young’s modulus 

calculation. The dimensions of the lattice after testing and the area in which the force was 

applied were also noted for the stiffness calculation. Basic structural mechanics equations 

(127), (128) and (129) were used for this computation. 

 



Fig. (47) displays the results collected for both the numerical and finite element analysis of the 

lattice. The trends in both analysis results indicates that the ratio of the prismatic young’s 

modulus to the optimised structures’ young’s modulus (En/E0) increases with rising values of 

epsilon but reaches a point where a sudden decrease occurs.  

 

 

Fig. (47) Finite Element Results of Lattice Models where the ratio of Young’s Modulus for 

the uniform model and altered model is plotted again the epsilon value corresponding to 

individual lattice models 

 

The curvatures created by both methods are extremely alike where the peak of the Young’s 

modulus ratio occurs at the epsilon value of 0.3136 in both the numerical and finite element 

analysis. 



4.5 Conclusions 
 
The detailed analysis of a natural design, the honeycomb structure, was investigated with the 

aim of optimising the structure’s resistive capabilities to deformation. The analysis was 

conducted by following the bottom-up approach and two different methods: numerical and 

finite element analysis. It can be observed from fig. (47) that the mechanical properties in the 

lattice where ε= 0.3136 performed better than the original prismatic structure where ε = 0. 

Through these two different methods, it was found that the optimised structure can resist the 

occurrence of elastic deformation by ~20% in comparison to the uniform structure. This 

optimal resistance came with the benefit of sustaining the mass of the prismatic structure. When 

the lattice was analysed through splitting its structure into different elements, the optimal value 

of epsilon would range but the altered structures would always perform better than the uniform 

structure. This applied to both the beam model and unit cell model and of course as discussed, 

the full complex system of the lattice. In this case, the optimised geometry of the honeycomb 

infill could offer an innovative favourable change for the development of additively 

manufactured structures where its current parameters and analysis remains limited. 

 

4.6  Recommendations for Future Research 
 
Upon completing the research for this chapter, the results are very promising but, there are 

numerous ways in which the work covered could be further elaborated. It is recommended that 

the following aspects are considered in the future:  

• Due to unfortunate circumstances, lattices of various epsilon values were three 

dimensionally printed but were not experimentally tested. Therefore, a full 

investigation should be carried out on the optimised structure through conducting more 

experimental studies (e.g., compression and tensile tests) for the purpose of verifying 

the results obtained from the numerical analysis and simulations. 

• An in-depth comparison between the honeycomb structure made by bees and the 

optimised structure developed in this chapter should be considered.  

• Since the paper covered the optimisation of the geometry in a single plane, changes in 

further planes could be examined. Or even an analysis of microstructure upon 

microstructure of the hexagonal lattice. 



• Instead of focusing on the honeycomb infill, following the same analysis procedures, 

research could be carried out to explore the optimisations of other infill patterns’ 

geometries.  

• The potential of combining infill structures depending on the structural objective. The 

hybrid configuration could exhibit versatility.  

• Due to the varying masses of the unit cell and lattices dependent on the epsilon values, 

this is not ideal therefore further numerical analysis should be considered to maintain 

this property for improved comparison purposes 

 

 



Chapter 5 – Summary and Conclusions 

 

Chapter 2 has analysed the hexagonal structure and a vital problem of highly stretchable and 

compressible lattice materials is the underlying geometric nonlinearity. This feature of the 

lattice was found to cause both the axial softening and stiffening of the constituent beam 

elements depending on whether a compressive or tensile stress is subjected upon the lattice. 

An in-depth analysis led to the determination of closed-form expressions of in-plane equivalent 

elastic properties of the hexagonal lattice configuration. The key sections of this chapter 

include as mentioned the general methodology and procedure to be followed to derive the 

elastic properties of the hexagonal configuration as well as the use of ordinary differential 

equations. Furthermore, special cases were of particularly interest and were defined through 

approximations which then lead to newly derived expressions. These special cases were 

namely auxetic hexagonal, rhombus-shaped, and rectangular lattices. The numerical analysis 

was further validated through finite element analysis. The results in each case show somewhat 

matching results in the two analytical methods used. As previously mentioned, cases 1 and 4, 

for both cell angles analysed, show results with miniscule percentage errors ranging between 

2 and 10%. Whilst for more complicated cases, namely cases 3 and 6, where two forces are 

applied to the structures in different directions, the percentage errors were almost triple the 

errors of the preceding cases discussed. Therefore, for future recommendations of this chapter, 

further analysis with the aim of reducing these percentages for all cases should be considered 

as well as also following the same procedure for the three special cases mentioned. 

 

The third and fourth chapter of this paper explores two approaches of optimising a hexagonal 

lattice configuration through varying the geometry of the constitutive beam elements. One 

approach was through the introduction of steps whilst the second approach involved the 

introduction of a quadratic curve on the beam profile. The objective of the optimisation process 

is to heighten resistive capabilities to deformation whilst maintaining equal masses of the 

uniform structure. The bottom-up approach has been executed where again, the lattice has been 

separated into sub systems and individually analysed. This would then be put together to 

produce the whole honeycomb configuration which is then again analysed as a whole system. 

Likewise, the validation of results is then again executed through different approaches and 

methods: numerical analysis and finite element analysis. It was found that for the stepped 



lattice analysis, the optimal structure had a young’s modulus around 32% larger than the 

uniform structure whilst for the beam profile optimisation this was found to be ~20%. Both 

incredibly encouraging results. 

  

Upon completing the research for these chapters, the results are very promising but 

nonetheless, there is always room for improvement in which the work covered could be further 

developed. As previously mentioned, the recommended key areas to be considered in the future 

are as follows: the production of lattice models through 3D printing ready to be experimentally 

tested, in-depth analysis to fulfil the mass control variable for improved comparison purposes, 

hybrid configurations depending on the structural objectives. 
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