
On the Creation of a Secure Key Enclave via the Use of Memory Isolation in
Systems Management Mode

James Andrew Sutherland, Natalie Coull & Robert Ian Ferguson
Division of Cybersecurity

Abertay University
Dundee, UK

email: {j.sutherland, n.coull, ian.ferguson}@abertay.ac.uk

Abstract — One of the challenges of modern cloud computer
security is how to isolate or contain data and applications in a
variety of ways, while still allowing sharing where desirable.
Hardware-based attacks such as RowHammer and Spectre
have demonstrated the need to safeguard the cryptographic
operations and keys from tampering upon which so much
current security technology depends. This paper describes
research into security mechanisms for protecting sensitive
areas of memory from tampering or intrusion using the
facilities of Systems Management Mode. The work focuses on
the creation of a small, dedicated area of memory in which to
perform cryptographic operations, isolated from the rest of the
system. The approach has been experimentally validated by a
case study involving the creation of a secure webserver whose
encryption key is protected using this approach such that even
an intruder with full Administrator level access cannot extract
the key.

Keywords- key-enclave; hardware security; system-
management mode.

I. INTRODUCTION

Computer security is largely concerned with erecting
boundaries between entities: users, privilege levels,
processes. Wherever a resource crosses a boundary, it creates
the potential for compromise, either through passive
information leakage (as in the case of timing attacks, where
the exact details of how long an operation takes inadvertently
discloses some information) or the potential for active
tampering (as in RowHammer [1], where writing to one
memory location indirectly affects another through non-
obvious electrical coupling between parts of a memory chip).

A. Motivation

Attacks based upon covert channels and side channels
depend on unexpected interactions; RowHammer for
example, can be used to achieve privilege escalation via a
previously-unexpected interaction between physically
proximate memory components [2] . Since there was no
correlation between physical and virtual addresses, as
different processes and the kernel would commingle pages
arbitrarily, low-privilege pages could easily be found which
happened to be adjacent to highly sensitive system ones,
allowing tampering. The same applies between virtual
machines and hypervisor control structures. As detailed later,
the more coarse-grained the sharing gets, the more limited

the avenues of attack become, though any level of shared
caching can be an avenue of attack [3].

As encryption keys are typically stored in RAM, a
successful compromise of a system via techniques such as
these can reveal those keys used to protect data at rest on the
system, e.g., full-disk encryption, and data in transit to/from
the system, e.g., via an SSL connection.

The ability to improve segregation of memory to securely
store keys etc. separately from less sensitive data has
previously required a system to have dedicated features, e.g.,
Intel’s SGX integrated with the processor. The consequences
of an attack that compromises such facilities can be
widespread: In the case of SGX, this protection was
defeated in 2018 via side-channel attack [4], forcing Intel to
update SGX’s deployment mechanism to be able to check
whether the Spectre [5] attacks were properly mitigated on
the target hardware.

B. An alternative approach to creating an enclave

The current generation of Intel processor architectures
have a feature called Systems Management Mode (SMM)
which can be used during the boot process to create an area
of RAM (SMRAM), which is subsequently ‘locked’ and thus
rendered inaccessible/unusable by ‘userland’ code. This
offers the possibility of creating a secure memory enclave for
the storage of cryptographic keys and the code which
manipulates them (negotiation, verification etc.) The locked
area can only be accessed by returning to SMM mode which
automatically executes the code that has been securely
locked in that area. This fact led to the following research
hypothesis for the work:

Secure isolation can be practically implemented using
only the long-established Systems Management Mode
mechanisms, giving better security isolation than existing
techniques such as process separation.

The work described in the remainder of this paper shows
how this can be used to create a secure enclave. It is worth
noting that some other processor architectures, e.g., ARM,
have equivalent facilities and the proposed technique for
enclave creation is thus generalisable.

The material in the paper is based on the PhD thesis of
the first author and is published here for the first time [6].

The remainder of the paper is structured thus: In Section
II previous work on providing secure key stores is
considered. This acts as a baseline for comparison with the
technique presented here. Section III describes the proposed
solution to this problem whilst Section IV discusses how the

30Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

approach was evaluated. The results of the evaluation are
given in Section V. Conclusions and proposals for further
developing the approach are given in Section VI.

II. BACKGROUND

The provision of cryptographic services to a system
depends upon the inviolability of any stored keys. As such
services form the basis of secure computing, a secure place
to store them is referred to as a Trusted Computing Base
(TCB). Finding a means of creating such a TCB in RAM is
thus an important security problem. This section therefore
reviews various attempts at organising and protecting
memory, dating from early multi-tasking operating systems
and the consequent need to provide process separation
through to recent hardware crypto-key enclaves before going
on to review the solution-space technique of System
Management Mode.

A. Protecting memory

1) Memory management/virtual memory
The idea of programs sharing system resources without

interfering with each other can be traced back to the MIT
‘Compatible Time Sharing System’ [7]. Prior to this, only
one process would be executing hence the idea of
‘interference’ did not apply.

Modern processor architectures implement some form of
virtual memory mapping [8]: the memory a user process can
access at address 0x10000, for example, may be stored in
any arbitrary page of physical memory, or indeed be entirely
absent and filled in by the operating system when an attempt
is next made to access that, known as a ‘page fault’.

To reduce the overhead of loading this mapping from
memory, processors generally feature Translation Lookaside
Buffers (TLBs), a set of cached address mappings.
(Architectures have varying approaches to this; on MIPS, the
operating system explicitly populates TLB entries as needed;
x86 and more recent ARM variants populate TLB entries
directly within the hardware without OS involvement, while
the original ARMv2 had 512 explicit memory mappings
within the MEMC1 memory controller chip as Content
Addressable Memory.)

A key concept in ensuring that concurrently executing
programs cannot interfere with each other or access their
data is that each process be allocated its own set of memory
pages and be unable to access RAM outwith those bounds.
Attacks such as RowHammer, Heartbleed [9] and Spectre
have shown that such OS-enforced restrictions can be
circumvented and thus a more secure approach is required
when storing particularly sensitive information such as
encryption keys.

2) RAM Encryption
TRESOR [10] demonstrated that a general-purpose

computer system can be operated with almost all of its main-
memory encrypted while at rest, albeit with a significant
performance penalty, using a modified Linux kernel. There
is some overlap with the research this paper describes:
TRESOR uses the processor debug registers as an area of
storage which cannot be accessed via Direct Memory Access
(DMA). This was intended to protect against DMA attacks,

among others, but was not successful in that respect since
this cannot protect the associated code: TRESOR-Hunt [11]
demonstrated a successful attack on this protection, using
code injection via DMA - an attack which could not be
prevented through software mechanisms alone.

TreVisor [12] extended the techniques of TRESOR to a
hypervisor level in combination with techniques from
BitVisor [13] to incorporate Intel VT-d (IOMMU) protection
from DMA attack.

On other platforms, the ARMORED [14] project applied
TRESOR techniques to the Android operating system on
ARM architecture processors as a countermeasure to their
own FROST [15] attack, which used a cold boot attack to
retrieve information from mobile handsets running
Android 4.0 despite the disk encryption employed.

3) Address Space Layout Randomisation - ASLR
Traditionally software systems (and operating systems in

particular) locate certain critical pieces of information at
well-known, or at least predictable, memory addresses.
Having its origins in the (Linux) PaX project [16] ASLR
involves varying the location of memory contents over time
thus making it more difficult for an attacker to find those
critical locations.

4) Swap encryption
A cold boot attack can retrieve RAM contents for a brief

period after a system is shut down, but the system’s virtual
memory persists indefinitely after shutdown unless explicitly
wiped. To avoid this, keeping that data encrypted is an idea
which long predates efforts to encrypt or otherwise protect
the RAM, including the encrypted swap space [17]
extensions to the virtual memory (VM) system originally
proposed as an enhancement of the original 4.4 BSD
approach [7]. The much slower nature of disk storage meant
the extra overhead of this encryption was more widely
accepted early on.

B. Other approaches to key protection

The approaches outlined above are general in that they
seek to prevent cross-process interference between any two
processes. Given the sensitive nature of crypto-services/keys,
i.e. the consequences of their compromise, work has been
done specifically on preventing inappropriate access to such
keys: This sub-section reviews some typical attempts to
provide such an enclave.

1) Process separation
Process separation in a cryptographic context is a

software system design principle that demands that all
handling of keys and cryptographic operations be performed
in a separate process from the ‘worker’ process thus relying
on the properties of the OS memory management system to
deny the ‘worker’ any access to sensitive information. Its
importance to the current work that the performance of our
SSM-based solution is compared with a ‘process separation’
solution in experiment 4b (See Section IV).

2) Process isolation
The commercial content delivery network (CDN)

Cloudflare has an interesting implementation of TLS/SSL in
two respects. First, they offer ‘Keyless SSL’ [18] in which
the site’s private key is handled remotely. Secondly, the

31Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

SSL/TLS handling is performed in a separate isolated
instance of the Nginx web server — an example of defence
in depth which ensured that when a bug was found in their
HTML parsing implementation, the information disclosed
could not include site private keys, unlike with the
widespread Heartbleed bug in OpenSSL [19] — only a
kernel or hardware level exploit could have exposed the key,
not an application level one.

3) VM isolation/hypervisors
Microsoft recently released a software-only

implementation of a similar approach, Credential Guard [20],
in which authentication keys are held in a dedicated virtual
machine running on top of the Hyper-V hypervisor platform.
This way, even a kernel compromise of the main operating
system is not sufficient to extract credentials for reuse: no
more ‘Pass The Hash’ privilege escalation once a system is
compromised. Only a compromise of the underlying
hypervisor itself, or the hardware isolation mechanisms,
would suffice: a much smaller attack surface compared to the
full OS.

4) Trusted Platform Module
The primary alternative to the general approach outlined

above, where enhanced security is needed compared to direct
key handling without extra isolation, is to use a dedicated
cryptographic hardware device. Some PCs and servers are
now equipped with a Trusted Platform Module (TPM) which
provides a dedicated cryptographic and storage facility, with
a fixed set of algorithms, limited storage and minimal
performance [21].

5) Intel Software Guard Extensions - SGX
Intel Software Guard Extensions aim to deliver similar

benefits within the main processor through architectural
extensions, with an encrypted area of main memory rather
than one isolated by the memory controller hardware. SGX-
Shield [22] reviews the main limitations of this
implementation and proposes an implementation of ASLR
(varying the location of memory contents to make attacks
more difficult) within this enclave for additional protection
from outside interference.

This isolation is a mixed blessing, providing a hiding
place for less benign code as well [23], while failing to
protect against variants of the Spectre attack [4]. The TaLoS
project [24] has significant similarities to the final
experiment in Section V, in that it seeks to protect the
encryption keys and traffic over an SSL/TLS connection but
using SGX rather than SMM to isolate the data in question.

C. System Management Mode (SMM)

The approach considered in this paper is based upon the
System Management Mode of the x86 family of processors
(see Figure 1). As its operation provides the security
guarantees necessary for creating a key enclave, it is
discussed here in detail.

Figure 1. System Management Mode

The defining characteristic of SMM is that while the
processor core is executing code in that mode, it asserts the
SMIACT2 output line. This signal is interpreted by the
Memory Controller Hub (MCH): when asserted, addresses
are decoded differently, enabling access to the otherwise-
inaccessible SMRAM area. Physically, this is just part of the
main RAM, but gated by the memory controller to prevent
non-SMM access. In early SMM implementations, the
address used was 0xA0000, which is also used by legacy
graphics support: any attempt by non-SMM code to read or
write this area will access the video memory instead.

The location of SMRAM is defined by the SMBASE
register, initially set to 0x30000 (192 kilobytes from the
bottom of the memory space); setting the G_SMRAME
control flag on the processor’s SMRAMC (SMRAM control)
register puts 128 kilobytes of SMRAM at a base address of
0xA0000, or 640 kilobytes, while setting T_EN (TSEG
Enable) grants access to a larger area higher up. The address
layout is depicted in Table I.

TABLE I. THE X86 PROCESSOR MEMORY MAP

Address Size Content
(normal)

Content
(SMM)

0xF0000 64k BIOS ROM

0xC0000 192k Device ROM/Upper Memory
Blocks

0xA0000 128k Legacy video SMRAM

0x00000 640k Legacy (DOS) memory

It is important to note that SMM is not a privileged mode of
execution as such, despite common references to it as ‘ring -
1’ or ‘ring -2’ as if it were a more privileged alternative to
ring 0 in which kernel code executes. For example, Wojtczuk
and Rutkowska [25] refers to “escalation from ring 3 to
SMM” — in reality, SMM code is entered in ring 0, and can
transition to a reduced privilege level if desired.

In all cases, access to the SMRAM area is permitted only
if the access is by the processor core (as opposed to any other
peripheral), and then only if either SMIACT is asserted or
the D_OPEN control bit in the system chipset is set to permit
this. As a result, SMRAM has robust protection against any

32Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

sort of DMA attack: attempted access from the PCI bus or
elsewhere is not valid at any time.

1) Bootstrapping SMM
As noted earlier, access to the dedicated area of memory

SMM uses (the SMRAM) is gated by the memory controller.
In order to bootstrap the SMI handler, however, it must be
possible to load this memory area before the first SMI
instance. This is permitted by the D_OPEN control bit in the
chipset: when set, this bit permits access to SMRAM without
being in SMM. After initialisation is complete, this bit
should be cleared and the D_LCK (Lock) bit set, rendering
all the SMM control registers read-only until the processor is
reset.

This should be done very early in the system boot
process by the system BIOS before activating any
peripherals or executing any other code to prevent malicious
code using SMM as a hiding place; older BIOS
implementations often failed to secure the state properly
during the boot process, leaving the way open for a variety of
SMM rootkits at least as far back as 2009 [26].

2) Using SMM for security
Soon after malicious use of SMM’s isolation property

was demonstrated, more benign uses were found, with
HyperGuard [27] in 2008, HyperCheck [28] in 2010,
HyperVerify [29] in 2013 and a US patent on the concept
being granted in 2014 [30].

The TrustZone-based Real-time Kernel Protection (TZ-
RKP) [31] applies the same concepts to an ARM system,
using ARM’s TrustZone mechanism in place of SMM.
(TrustZone was created later, with a ‘Secure World’ entered
by invoking a Secure Monitor Call exception.)

The underlying concept in each case is to generate then
periodically verify cryptographic hashes of critical structures
or code, in HyperGuard’s case, by walking the Page Tables
to identify all executable pages marked for supervisor access.
At the time, this was not wholly sufficient since the
processor could still execute non-supervisor pages with
supervisor privilege; the later development of Supervisor
Mode Execution Protection (SMEP) by Intel [32] closed this
loophole.

The level of privilege at which code executes in x86
Protected Mode is determined by the two least significant
bits of the CS (Code Selector/Segment) register, so the code
at a single address in memory may normally be executed at
any privilege level without modification. This has its origins
in the 80286’s implementation of Protected Mode, prior to
the 80386’s introduction of paged virtual memory: as the two
mechanisms were orthogonal, prior to SMEP a page could be
user writable (ring 3) yet run at kernel privilege (ring 0).

III. PROPOSED SOLUTION

This work aims to secure a network-connected system
against remote or transient physical attack, using a simple
web server as the model and endeavouring to protect it
against unauthorised information disclosure, in particular,
disclosure of the cryptographic keys which are used to
authenticate the server to clients. The keys and the code used
to negotiate and verify them are protected by storing them in

SMRAM as outlined in the previous section. The approach is
clearly generalisable to securing the authentication material
on the client end as well: client cryptographic keys, stored
passwords, and payment mechanisms could also be
improved. This section thus describes how a secure proof-of-
concept webserver was created which uses an SMM enclave
to protect the keys it uses for serving HTTPS requests.

The starting point in creating the proof-of-concept server
was an OpenSSL example TLS server [33] which was linked
with Google’s SSL implementation: BoringSSL [34] to
which was added code implementing the SMM key
protection from the previous section. The server runs as a
normal unprivileged application (‘ring 3’) under Linux and
used TLS 1.2.

Key design goals for the proof-of-concept server were a
minimal overhead in each transition to/from SMM, and
presenting a minimal attack surface on the SMM component
while enabling the application counterpart to run with
minimal privileges. From the programmer’s perspective, the
enclave functions in a manner akin to a physical hardware
device, passing messages in both directions via a page of
physical memory.

A. Overall operation

Three actions are necessary at boot time:
- A public/private key pair are generated (see Section

III.A.1 “Key Negotiation” below)
- The private key and the code for verifying a candidate

public key are placed in the SMRAM page.
- The SMRAM is locked (using technique described in

Section II.C.1)
In subsequent operations, i.e., when the webserver wishes

to serve a page, there is a need to pass information to the
code now locked in SMRAM. This is achieved through the
use of a small (4Kb) area (known as the ‘mailslot’) which is
accessible from both inside and outside of SMM (See Figure
2).

Figure 2. API/Using SMM for signature verification

Userland code inserts any public key to be verified into
the mailslot, transitions into SMM (See Section III.A.2 -
“Transitioning to SMM” below) which causes a jump to the
code in the SMRAM. That code has access to both the
mailslot RAM and the SMRAM - verifies the public key

33Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

against the private key held in SMRAM and places the result
of verification(true/false) in the mailslot RAM and exits from
SMM causing a return to the calling userland code.

To make use of the cryptographic enclave services, the
userspace code must first allocate and lock a page of physical
memory, determining the underlying physical address via the
Linux /proc/self/pagemap virtual file and communicating
this to the SMM enclave at initialisation time. This shared
page can then be used as a mailslot for exchanging data: the
userspace (ring 3) code interacts directly with the SMM
cryptographic code, without transitions to/from the kernel in
between.

1) Key negotiation
To protect the most sensitive data requires the

construction of some sort of containment to which access
from all other components is restricted or prevented — but
with just enough interaction permitted to enable the intended
use of the keys (or other material) in question. For an
SSL/TLS web server, the sensitive data is created as a
public/private key pair. As the name implies, the public part
of the pair may be freely exported and shared — indeed, it is
provided to every client connecting, as part of the initial
protocol handshake — while the private key is never to be
disclosed to anyone else. To prove the identity of the server,
a Certificate Signing Request (CSR) is generated and signed
using the private key; after completion of appropriate checks,
a Certification Authority (either one trusted by the general
public and the software they use, such as LetsEncrypt, or an
internal entity such as the US Department of Defense’s
internal CA) usually signs that CSR to produce a certificate.
Any entity can issue certificates, it is merely a matter of
policy which issuers are trusted or not for any given
situation; for experimental purposes, a self-issued certificate
is equally suitable.

2) Transition to SMM
The process of transitioning to SMM is worth examining

as it incurs an overhead and as it needs to be accomplished
each time a cryptographic verification operation is required,
minimising that overhead is a worthwhile goal.

Entry to SMM requires triggering an SMI (System
Management Interrupt). Ordinarily, hardware interrupts
cannot be triggered directly from user mode applications;
first a system call would be required, to effect a transition to
kernel mode (‘ring 0’ on x86), then the corresponding kernel
code would trigger the interrupt on the application’s behalf.
This, however, incurs additional overhead, two mode
transitions rather than one. A more efficient approach is for
the application to write to the I/O address 0xb2 as explained
below.

Most modern processors implement a unified hardware
memory map, in which RAM and devices occupy the same
address space; x86 has two distinct memory spaces, a 64
kilobyte legacy space accessed via the IN/OUT set of
instructions, and a much larger space accessed via standard
memory operations.

For devices mapped into the main memory space, the
usual memory permissions apply: the appropriate 4 kilobyte
(or larger) page could be mapped with appropriate
permission bits set. The I/O space has different, fine-grained

permissions: the I/O Permissions Bitmap (IOPB) within the
Task State Segment (TSS) controls whether access is granted
or not to any given byte within the I/O address space. On
Linux, the ioperm system call may be used to enable access
to any specified I/O address.

To make use of the cryptographic enclave services, the
userspace code must first allocate and lock a page of physical
memory, determining the underlying physical address via the
Linux /proc/self/pagemap virtual file and communicating
this to the SMM enclave at initialisation time. This shared
page can then be used as a mailslot for exchanging data: the
userspace (ring 3) code interacts directly with the SMM
cryptographic code, without transitions to/from the kernel in
between.

IV. EVALUATION PROCESS

In order to show that the proposed solution is practicable
(and establish the hypothesis) three aspects of the proof-of-
concept webserver’s behaviour were evaluated:
functionality, security, and performance. Functionality was
demonstrated by testing with a) a number of web-browsers
(Experiment 1) and b) an industry-standard test suite
(Experiment 2). Security is shown by reasoning from
properties of the SMM system. Performance was tested by a)
examining the impact on execution time of the overhead of
entering and exiting SMM through micro-benchmarking
(Experiment 3) and b) comparing the time taken to serve
pages i) with no key protection (Experiment 4a) ii) with
‘process-separation’ based key-protection (Experiment 4b)
and iii) with SMM-based key protection (Experiment 4c). A
summary is given in Table II below.

TABLE II. LIST OF VALIDATION EXPERIMENTS PERFORMED AND

PURPOSE

Num Experiment Purpose

1 Use with range of
browsers

Verifying basic webserver functionality

2 Qualys - SSL
Labs

Verifying webserver SSL protocol
compliance

3 Micro-
benchmarking

Measuring the ‘real-time’ overhead
imposed by entering and exiting SMM

4a Comparison of
webserver
performance with
crypto operation
performed with 3
different levels of
protection

Measuring the rate that pages could be
served with crypto-keys handled in-
process, i.e., with no protection

4b Measuring the rate that pages could be
served with crypto-keys handled in a
separate process, i.e., with process-
separation protection

4c Measuring the rate that pages could be
served with crypto-keys handled in
SMM

As the webserver’s cryptographic code is unmodified – a
standard x86/x86-64 implementation of the elliptic curve
algorithms – the key performance metric is the additional
overhead introduced by transitions to and from SMM. For

34Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

context, this should be compared with the overhead entailed
in a context switch between usermode processes (as applies
where the cryptographic code is run in a separate process, as
CloudFlare does in their content delivery network’s edge
devices) and user-kernel mode transitions particularly after
implementation of the Kernel Page Table Isolation (KPTI)
changes to mitigate the Spectre/Meltdown security issues.
Experiments 3 and 4b quantify these.

For a better indication of the real-world performance
impact, standard HTTPS benchmarking — downloading
static content over encrypted connections in each
configuration tested — gives indicative throughput speeds
(Experiment 4).

A. Functionality

Once the HTTP-over-TLS (HTTPS) server was
implemented, a variety of protocol interactions were tested.
Initially, standard HTTPS clients (wget, curl, Mozilla Firefox
and Google Chrome) were used to verify basic functionality
(Experiment 1), and any issues encountered resolved; after
this, the more comprehensive industry standard test suite -
SSL Labs from Qualys [35] - was employed (Experiment 2).

B. Security

The webserver’s resistance to RowHammer and Spectre
attacks was analysed. While web server performance testing
is a well studied and long-established field [36][37], security
is more nebulous. In this context, the architecture is intended
to provide isolation, and substantial literature has already
studied the various possible routes to accessing SMRAM
[25] — cache aliasing, Memory-Type Range Registers
(MTRR) manipulation; and early BIOS implementations
which neglected to enable D_LOCK timeously). It can also
be verified empirically that the SMRAM-protected data/code
is not exposed, even to the kernel via a scan of the Linux
/dev/mem device, which can be configured to expose the
kernel’s view of the entire memory space. Since the SMM
protected data has no functioning address except while the
processor is executing in SMM, exploits such as Spectre
cannot access this data. (Physical level attacks such as
RowHammer or address line fault injection could still be
effective.)

1) RowHammer
The RowHammer attack allows modification of bits in

physically adjacent areas of memory, which could
theoretically be used to exfiltrate information from the SMM
enclave. Integrity checking would provide some protection
against this, while ASLR would make such an attack almost
impossible — just shifting the code and data by a small
random number of bytes each time the system is booted
would mean the attacker was operating blindly (able to flip
some bits, but without knowledge of which instruction or
piece of data is being affected), while the use of ‘canary’
values around the code and data would make such an
attempted attack very unlikely to go undetected. Moreover,
given sufficient knowledge of the memory arrangement in
use, simply adding a single disused row between the SMM
code and data area and memory used by the system would

frustrate any RowHammer attempt: it would corrupt only
that buffer space, with no effect on the SMM area.

Also, on the specific test hardware used for the majority
of this experimentation, the DDR2 memory installed is much
less susceptible to RowHammer attacks anyway: exploiting
this generally requires DDR3 or newer, due to the smaller
feature size and faster access.

A similar approach would also be effective against most
direct hardware attacks, such as address line glitching:
without knowing the exact address to target, a successful
attack would be very much more difficult than against a
system without this protection.

2) Spectre/Meltdown
The most recent memory protection attacks against

vulnerable Intel and ARM processor architectures pose two
potential threats against an SMM protection implementation.

Firstly, the Meltdown techniques can be used directly to
extract otherwise protected data, for example from kernel
buffers, by using the address of that data indirectly then
observing side-effects of that operation. This is not
applicable to SMM code or data, since there is no address
which refers to that memory in the first place. This was
empirically verified by Eclypsium[38].

Secondly, the Spectre attacks have been used against
system firmware executing in SMM to bypass bounds checks
(ibid.) — that issue is avoided entirely in this work by using
only fixed size parameters, with no bounds checks or
boundaries to be violated.

C. Performance

For the performance assessment, two approaches are
used: first (Experiment 3), microbenchmarks, measuring the
individual components involved in transitions to and from
SMM and kernel mode in isolation ; secondly (Experiments
4a - 4c), to measure the overall performance of a web server
using different isolation mechanisms, to be able to compare
SMM isolation’s performance overhead against versions
with no isolation of key handling and one which uses
process-level isolation which would protect against process
level compromise, but not a root or kernel level one as SMM
isolation does.

1) Experiment 3 - Microbenchmarking the mode
transition cost

The experiment described here investigates the
performance aspects of using SMM, detailing the
performance impact of each transition to and from SMM
compared to transitions to kernel space and back which is the
dominant factor in the overall performance of the SMM-
isolated server.

After prototyping work on the Bochs hardware
simulation, a physical target system was required for
performance tests. A Lenovo ThinkPad X200 was obtained
and loaded with the Libreboot free software project’s variant
of the open-source Coreboot firmware (Libreboot), including
its SMI handler code which could then be freely modified in
theory. An unmodified ThinkPad T60, with similar hardware
but retaining the original manufacturer’s BIOS, served as
control, backup and development system, allowing testing of

35Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

SMM code under the Qemu-KVM virtualisation system in
conjunction with the related SeaBIOS project[39].

The first performance tests focused on comparing the raw
latency penalty imposed by the architecture on transitions
between userspace and either kernel mode or SMM as
appropriate. This would give an early indication of the
viability of the overall approach to explore later, as well as
determining how much effort might be required to optimise
the design for performance to be viable.

Each test consists of executing the function under test
multiple times, recording the elapsed time and calculating
the time per iteration from that. To ensure consistency, each
test was repeated multiple times and checked for outliers.
Timing is measured in two ways: the system ‘time of day’
clock which records times in microseconds and, for the T60
and virtualised system, the processor Time Stamp Counter
read via the ‘read time-stamp counter’ (RDTSC) instruction.
On recent Intel processors, including those in use here, the
time stamp counter advances at a constant rate regardless of
power saving modes or clock speed, making this a useful
timing measurement. (On earlier implementations, the TSC
rate varied with processor speed, making this usage more
problematic.)

The operations tested are listed in Table III. Each set of
measurements was performed on each test system, to provide
a baseline for interpreting performance figures later (see
Section V.C). Table IV shows the test platforms used for
benchmarking in the experiments.

TABLE III. OPERATIONS TESTED IN MICRO-BENCHMARKING

Operation Purpose

NOP SMI Round trip to/from SMM

open-close System call requiring access to kernel memory

getpid() Trivial system call to reflect minimal kernel
transition cost

signing Execute a cryptographic operation - specifically
generate a signed certificate

TABLE IV. TEST PLATFORMS FOR BENCHMARKING

Model X200 T60 Qemu-VM

CPU Core 2 Duo
P8400

Core 2 Duo
T5600

Core 2 Duo
T5600

Clockspeed 2.26 GHz 1.83GHz 1.83GHz

RAM 4 GiB 3 GiB 1 GiB

BIOS Libreboot Lenovo
original

SeaBIOS

The test code was compiled with level 2 optimisation (‘-
O2’), for x86-64, in each case. To gather statistical details

about the distribution of each individual operation, the test
code optionally records the TSC value after each; for the
overall operations, to avoid the extra overhead, a consecutive
sequence of runs is timed without recording timestamps in
between, by compiling with the BATCHONLY flag. For the
1,000,000 iterations of getpid(), 8,000,000 bytes of
values are written out to memory, almost four times the size
of the L2 cache, although writing the values to disk is
deferred until after the timed portion. Ordinarily the
getpid() function is accessed via vDSO for performance
reasons— the kernel puts a copy of the PID in the process’s
own memory space and provides a function to retrieve that
directly, avoiding the userspace-kernel round trip, but in
order to measure that round trip the legacy system call is
used here.

The getpid() system call was chosen as the most
trivial, since it only copies a non-sensitive constant integer;
the open system call will be reading the file system cache,
which is not readable from user mode, so incurs greater
overhead in a full transition to restore access to kernel data.
In normal usage getpid() is faster than this, avoiding a
system call entirely by returning the process’s own copy of
this value directly via a mechanism known as Virtual
Dynamic Shared Object (vDSO).

The ‘signing’ test measured a realistic cryptographic
operation carried out entirely in SMM. For a web server to
be accepted as ‘valid’ for a given name, it must present a
signed certificate asserting ownership of that name, signed
by either a trusted root Certificate Authority (CA) directly, or
an intermediate certificate which is itself trusted.

This is a two stage process. First, a Certificate Signing
Request must be generated, containing a copy of the server’s
public key and a signature using the private key (the private
key itself is never exposed). Secondly, this CSR must be
submitted to and accepted by the CA. Originally, this was
done manually using human verification of documents and
credentials; this still applies for ‘Extended Validation’
certificates, but for standard ‘Domain Validation’ certificates
this process can now be entirely automatic. Specifically, the
free “LetsEncrypt” CA allows ownership of a name to be
verified by publishing specific challenge response values in
the DNS entries of the name in question, without the server
ever having to be publicly accessible. This is one variant of
the Automated Certificate Management Environment
(ACME) protocol; other variants use the TLS SNI handshake
process and HTTP messages respectively to accomplish
similar results via other protocols.

This allows a public-private keypair to be generated
within the SMM enclave, issued with a valid certificate, then
used to host a secured website for testing and demonstration
purposes, without ever exposing the key material externally.
For testing purposes, however, this external signing step is
not necessary: a ‘self-signed’ certificate is sufficient.

2) Experiment 4 - Webserving
The proof-of-concept webserver application was operated

(on the local machine to nullify effects of other network
traffic) with three different levels of key isolation: none (a
control), process separation, and fully SMM isolated key

36Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

handling. In each case the multiple HTTPS requests for
pages of differing sizes where pages were automatically
generated (via curl etc.) and the rate at which requests
were served was measured. This allowed a comparison of the
relative speeds of the three levels, which are discussed in
Section V.D.

V. RESULTS

The results of the four experiments were thus:

A. Experiment 1 - Basic functionality

Testing with a range of browsers revealed no significant
errors.

B. Experiment 2 - Protocol compliance verification

The results of testing with the comprehensive industry
standard test suite SSL Labs from Qualys are shown in
Figure 3.

Figure 3. Qualys test suite results

The “T” score indicates a Trust issue — the test server is
not configured with a publicly trusted certificate, issued by a
genuine Certification Authority such as Verisign or
LetsEncrypt — but all cryptographic and protocol aspects
are correct; the test suite proceeds to simulate the
cryptographic handshakes of a variety of common browsers.
With the exception of Google Chrome on Windows XP
Service Pack 3, which experiences a handshake failure, all
compatible clients negotiate and connect correctly. It is
worth noting that no security checks are performed for
known vulnerabilities, e.g., Heartbleed etc. – this is purely
for compliance with the standard.

C. Experiment 3 - Microbenchmarking the mode transition
cost

The timing figures obtained are shown in Tables V, VI
and VII below. Unfortunately, the X200 system failed during
testing, so further results could not be recorded; the

remaining tests had to be performed on the fallback system
alone, the T60. SMI calls caused the unmodified T60 control
laptop to freeze; this appears to be a known, long-standing
issue with the stock Lenovo BIOS[40].

TABLE V. EXECUTION TIME FOR SYSTEM CALLS AND SMI
INVOCATIONS

Operation X200 T60 T60 Qemu-KVM
Units μs μs TSC μs TSC
NOP SMI 448 Not available 1310 2.4m
getpid 0.4 1.1 620 21 12k

open/close 3 7.1 3900 26 26k
signing Not

available
878 1.606m 905 1.65m

TABLE VI. EXECUTION TIME (TSC TICKS) ON BARE METAL

Operation Minimum 1st Quartile M e d i a n 3rd Quartile Maximum
getpid 1133 1155 1155 1155 5211503
open-
close

6347 6479 6512 6545 3776872

signing 1534995 1542285.25 1544378 1547757.75 2924856

TABLE VII. EXECUTION TIME (TSC TICKS) UNDER KVM

Operation M inimum 1st Quartile M e d i a n 3rd Quartile M axi m um

NOP
SMI

2235276 2326436.75 2921712.5 3618389 26339800

getpid 2 0 2 2 9 2 0 2 9 5 2 0 3 1 7 2 0 3 6 1 33031357
open-
close

4 4 9 0 2 4 5 3 9 7 4 5 4 9 6 4 5 5 9 5 29565196

signing 1536480 1 5 4 30 6 9 1546578 1596921 12533972

The relative performance of the two hardware test
platforms is indicated by comparing the first two columns
indicating the T60 has just under half the speed of the X200
on system calls, while comparing the two pairs of T60
figures (‘T60’ represents the test code running directly under
Linux, ‘T60 Qemu-VM’ represents the same code executed
under Qemu-VM simulation) indicates the relative
performance penalty of the simulation system itself:
approximately three orders of magnitude slowdown (a factor
of 1,000). On the most trivial system call, the additional
overhead of simulation dominates (as shown by the much
smaller difference between getpid and open/close times), but
the relative performance of SMI invocation and open/close
calls is more similar: 88 times slower in simulation versus
149 times slower on bare metal.

The maximum times for all operations are extreme
outliers — around 3-5 million ticks on bare metal, around
four times as high under KVM. Each indicates the test
application was interrupted during that operation for between
2-20 ms. The additional KVM overhead is most apparent
when comparing the getpid operations (a median more than
17 times slower), closing to a factor of 7 for open-close and
no discernable difference on cryptographic operations
performed in userspace.

The SMI transition overhead is less uniform, with the
upper quartile more than 55% higher than the lower — an
interesting characteristic, worthy of further study elsewhere.

37Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

One important comparison is between the two full mode
transitions (userland/SMM and userland/kernel mode). Since
the secured server developed here achieves the security
benefits by transitioning into SMM before performing each
signing operation, the relative performance impact of this
change is indicated by the relationship between the ‘signing’
and ‘SMM’ figures: the signature operation in isolation takes
a little less than the round-trip to and from SMM, 1.6 million
processor ticks versus 2.4 million.

D. Experiment 4 - Performance comparison

The rate of request processing, i.e., the number of
requests per second served by the webserver, were measured
in three configurations (for a range of response sizes 1KiB-
MiB) to identify the additional overhead contributed by the
use of SMM to isolate the cryptographic private key and
associated code. The control configuration (no isolation at all
- so no change of mode - labelled Q0) was compared with
the simple option (using a separate user-space process for
isolation userland to kernel mode transition - Q1) and the
SMM configuration (userland - SMM transition- Q2). The
measured rates are shown in Figure 4.

Figure 4. Relative rate of web requests served against response (page)
size for each configuration of hardware/enclave type

The performance overhead of simulation as opposed to
direct execution is apparent. Across the range of request
sizes tested, physical hardware is consistently and
proportionally faster than simulated. As the request size
increases, the difference between SMM and other modes
diminishes to less than 10% at the largest size, one MiB.

VI. CONCLUSION AND FUTURE WORK

This work proves the hypothesis: “Secure isolation can
be practically implemented using only the long-established
Systems Management Mode mechanisms, giving better
security isolation than existing techniques such as process
separation”. In comparison to the baseline approaches
(typified by those discussed in Section II) the SMM
approach to key-protection has been shown to address their
shortcomings and to be robust in circumstances in which
they are not. The performance impact of SMM has been
explored both on bare hardware and in virtualised form, and

a proof-of-concept server demonstrated and benchmarked
successfully. Even on relatively old legacy hardware, with
additional overhead, the performance impact due to SMM
isolation was not prohibitive — approximately doubling the
CPU time per handshake operation, causing a performance
penalty falling from 50% on the smallest payload sizes
(where the handshaking process dominates the overall
workload) to 10% at 1 MiB.

A. Implications of results

With a working HTTPS implementation using SMM
security, Experiment 4 gave the best indication of SMM’s
performance impact in the worst case. The relative
performance on simulated hardware corroborates the
microbenchmark results: performing the cryptographic
handshake computations in SMM approximately halves the
rate at which handshakes are performed, causing a
corresponding slowdown on the smallest requests (where this
aspect dominates the overall server performance), falling to
around 10% with 1 MiB requests. The effect of size is to be
expected: SSL/TLS uses two levels of encryption. First, the
connection is established using public key cryptography.
This handshake process negotiates two pairs of keys which
are then used to encrypt subsequently exchanged data and
has a fixed computational cost regardless of the volume of
data transferred later. Secondly, the request and response are
encrypted using those keys, taking time proportional to the
volume involved. So, on small requests the former aspect
dominates performance; on larger requests, the latter
becomes dominant. The performance shown on the smallest
requests, 572 1k requests per second, is also consistent with
the bare metal SMM transition measurements from
experiment 2 of 448 µs on a processor with approximately
twice the performance (a higher clock speed and faster
memory bus).

Our results demonstrate the upper bound on the
performance or latency cost of isolating the keys in two
different ways, validating the original hypothesis about
SMM’s suitability for this technique. At the smallest extreme
of payload sizes, where the cryptographic handshake for
each new connection dominates, the additional SMM
overhead is of a similar magnitude; as the size increases, the
impact of this extra overhead on overall throughput rapidly
diminishes.

B. Future work

This work confirms the potential for new uses of SMM in
a security context. Unlike reactive patching, SMM isolation
provides proactive protection against issues of low-level
hardware bugs and protection. Alternative areas for the
application of SMM to improve security are discussed
below.

1) Intrusion countermeasures
The HyperGuard/HyperCheck projects leveraged SMM

as an integrity checking mechanism to detect and alert
compromises of a system. These could be incorporated
within the application of the SMM: not only would the keys
in SMM remain protected, but the compromise would also

38Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

be detected and appropriate defensive responses could be
triggered.

2) Operation batching
When adopting the SMM approach, significant gains in

throughput are expected (in a server situation) from
performing multiple cryptographic operations per transition
to/- from SMM: rather than passing individual requests
immediately, combine the requests into sets and process a
full set each time. This would amortise the transition cost
across however many connection handshakes are being
performed in that batch, trading increased throughput for
increased latency determined by the batch size.

3) Other applications and protocols
Particularly with the inclusion of other algorithms, the

key protection and handling techniques demonstrated here
could be applied to other protocols and applications such as
SSH authentication, cryptocurrency transactions or a
credential store akin to Microsoft’s Credential Guard (which
uses a special-purpose virtual machine to isolate credentials
from the primary OS on desktop systems).

4) Handshaking overhead in TLS 1.3
The latest version of TLS has a faster handshake than TLS
1.2 used in the experiments but the effect of this on the
overhead should be verified.

REFERENCES

[1] Y Kim et al., “Flipping bits in memory without accessing them: An
experimental study of DRAM disturbance errors”. In: ACM
SIGARCH Computer Architecture News. Vol. 42 3. IEEE Press, pp.
361–372, 2014

[2] M.Seaborn and T. Dullien, “Exploiting the DRAM rowhammer bug
to gain kernel privileges”. In: Black Hat, pp. 7–9, 2015

[3] D. Liu et al., “Architectural support for copy and tamper resistant
software”. In: ACM SIGPLAN Notices 35.11, pp. 168–177, 2000

[4] G. Chen, et al., “SgxPectre Attacks: Leaking Enclave Secrets via
Speculative Execution”. In: CoRR abs/1802.09085. arXiv:
1802.09085. Url: http://arxiv.org/abs/1802.09085 Retrieved:
2023.06.01.

[5] NVD Spectre – “NVD-CVE-2017-5753 – Spectre”, url:

https://www.cve.org/CVERecord?id=CVE-2017-5753 Retrieved:
2023.06.0, 2017

[6] J. Sutherland, “On Improving Cybersecurity Through Memory
Isolation Using Systems Management Mode”, PhD Thesis, Abertay
University, Dundee, UK, 2018

[7] F. J. Corbató, M. Merwin-Daggett and R. C. Daley, “An experimental
time-sharing system”. In: Proceedings of the May 1-3, 1962, spring
joint computer conference. ACM, pp. 335–34, 1962

[8] P. J. Denning, “Virtual Memory”. In: ACM Comput. Surv. 2.3, pp.
153–189. issn: 0360-0300. doi: 10 . 1145 / 356571 . 356573. url:
http://doi.acm.org/10.1145/356571.356573, 1970, Retrieved:
2023.06.01

[9] NVD Heartbleed (2023) - “NVD-CVE-2014-0160 - Heartbleed”, url:
https://nvd.nist.gov/vuln/detail/CVE-2014-0160 Retrieved:
2023.06.01, 2014

[10] T. Müller, F. C. Freiling and A. Dewald, “TRESOR Runs Encryption
Securely Outside RAM.” In: USENIX Security Symposium, pp. 17–
17, 2011

[11] E-O. Blass and W.Robertson, “TRESOR-HUNT: attacking CPU-
bound encryption”. In: Proceedings of the 28th Annual Computer
Security Applications Conference. ACM, pp. 71–78, 2012

[12] T. Müller, B. Taubmann and F. C. Freiling, “TreVisor”. In: Applied
Cryptography and Network Security. Springer, pp. 66–83, 2012

[13] T. Shinagawa, et al., “Bitvisor: a thin hypervisor for enforcing i/o
device security”. In: Proceedings of the 2009 ACM
SIGPLAN/SIGOPS international conference on Virtual execution
environments. ACM, pp. 121–130, 2009

[14] J. Götzfried and T. Müller, “ARMORED: CPU-bound Encryption for
Android-driven ARM Devices”. In: Availability, Reliability and
Security (ARES), 2013 Eighth International Conference on. IEEE, pp.
161–168, 2013

[15] T. Müller and M. Spreitzenbarth, “Frost”. In: Applied Cryptography
and Network Security. Springer, pp. 373–388, 2013

[16] B. Spengler, "PaX: The Guaranteed End of Arbitrary Code
Execution" (PDF). grsecurity.net. Slides 22 through 35. Retrieved:
2023.06.01, 2003

[17] N. Provos, “Encrypting Virtual Memory.” In: USENIX Security
Symposium,pp. 35–44, 2000

[18] N. Sullivan, “Keyless SSL: The Nitty Gritty Technical Details”, url:
https://blog.cloudflare.com/keyless-ssl-the-nitty-gritty-technical-
details/ Retrieved: 2023.06.01, 2014

[19] J.Graham-Cumming, “Incident report on memory leak caused by
Cloudflare parser bug”, url: https://blog.cloudflare.com/incident-
report-on-memory-leak-caused-by-cloudflare-parser-bug/ Retrieved:
2023.06.0, 2017

[20] Wikipedia – “Credential Guard” url:
https://en.wikipedia.org/wiki/Credential_Guard, Retrieved:
2023.06.0, 2023

[21] S. Bajikar, “Trusted Platform Module (TPM) based Security on
Notebook PCs — White Paper”. In: Mobile Platforms Group Intel
Corporation 1, p. 20., 2002

[22] J. Seo et al., “SGX-Shield: Enabling address space layout
randomization for SGX programs”, In: Proceedings of the 2017
Annual Network and Distributed System Security Symposium
(NDSS), San Diego, CA, 2017

[23] M.Schwarz, S. Weiser, D. Gruss, C. Maurice and S. Mangard,
“Malware Guard Extension: Using SGX to Conceal Cache Attacks”.
In: arXiv preprint arXiv:1702.08719, 2017

[24] P-L. Aublin et al., “TaLoS: Secure and transparent TLS termination
inside SGX enclaves”. In: Imperial College London, Tech. Rep 5,
2017

[25] R. W. and J. Rutkowska, “Attacking SMM memory via Intel CPU
cache poisoning”. Online: Invisible Things Lab, url:
http://invisiblethingslab.com/resources/misc09/smm_cache_fun.pdf
Retrieved: 2023.06.01, 2009

[26] S. Embleton, S. Sparks and C. C. Zou, “SMM rootkit: a new breed of
OS independent malware”. In: Security and Communication
Networks 6.12, pp. 1590–1605, 2013

[27] J. Rutkowska and R. Wojtczuk, “Preventing and detecting Xen
hypervisor subversions”. In: Blackhat Briefings USA, 2008

[28] J. Wang, A. Stavrou and A. Ghosh, “HyperCheck: A hardware
assisted integrity monitor”. In: Recent Advances in Intrusion
Detection. Springer, pp. 158–177, 2010

[29] B.Ding, Y. He, Y. Wu and Y. Lin, “HyperVerify: a VM-assisted
architecture for monitoring hypervisor non-control data”. In: Software
Security and Reliability-Companion (SERE-C), 2013 IEEE 7th
International Conference on. IEEE, pp. 26–34, 2013

[30] K. C. Barde, “Hypervisor security using SMM”. US Patent 8,843,742,
2014

[31] A. M. Azab et al., “Hypervision across worlds: Real-time kernel
protection from the arm trustzone secure world”. In: Proceedings of
the 2014 ACM SIGSAC Conference on Computer and
Communications Security. ACM, pp. 90–102, 2014

[32] A. van de Ven et al., “Supervisor mode execution protection”, US
Patent 9,323,533, 2016

39Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

https://arxiv.org/search/cs?searchtype=author&query=Maurice%2C+C

[33] OpenSSL, “Simple TLS Server”, url:
https://wiki.openssl.org/index.php/Simple_TLS_Server, Retrieved
2023.06.01, 2022

[34] Google, “Google’s SSL implementation: BoringSSL”, url:
https://boringssl.googlesource.com/boringssl/ Retrieved: 2023.06.0,
2022

[35] Qualys, “SSL Labs SSL server test”, url: https : / / www.ssllabs.com/
Retrieved: 2023.06.0, 2014

[36] G. Trent and M. Sake, “WebSTONE: The first generation in HTTP
server benchmarking”, 1995

[37] G. Banga and P.Druschel, “Measuring the capacity of a Webserver
under realistic loads”. In: World Wide Web 2.1-2, pp. 69–83, 1999

[38] Eclypsium, “System Management Mode Speculative Execution
Attacks”, url: https://eclypsium.com/2018/05/17/system-
management-modespeculative-execution-attacks/ Retrieved:
2023.06.01, 2018

[39] SeaBIOS Project. “SeaBIOS”, url: https://www.seabios.org/SeaBIOS
Retrieved: 2023.06.01.

[40] Ubuntu 2011 - “Lenovo W520 laptop freezes on ACPI-related
actions.” url: https : / /
bugs.launchpad.net/ubuntu/+source/linux/+bug/776999 Retrieved:
2023.06.01

40Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

