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a b s t r a c t

Video capsule endoscopy (VCE) is a revolutionary technology for the early diagnosis of gastric disorders.
However, owing to the high redundancy and subtle manifestation of anomalies among thousands
of frames, the manual construal of VCE videos requires considerable patience, focus, and time. The
automatic analysis of these videos using computational methods is a challenge as the capsule is un-
tamed in motion and captures frames inaptly. Several machine learning (ML) methods, including recent
deep convolutional neural networks approaches, have been adopted after evaluating their potential of
improving the VCE analysis. However, the clinical impact of these methods is yet to be investigated.
This survey aimed to highlight the gaps between existing ML-based research methodologies and
clinically significant rules recently established by gastroenterologists based on VCE. A framework for
interpreting raw frames into contextually relevant frame-level findings and subsequently merging
these findings with meta-data to obtain a disease-level diagnosis was formulated. Frame-level findings
can be more intelligible for discriminative learning when organized in a taxonomical hierarchy. The
proposed taxonomical hierarchy, which is formulated based on pathological and visual similarities,
may yield better classification metrics by setting inference classes at a higher level than training
classes. Mapping from the frame level to the disease level was structured in the form of a graph based
on clinical relevance inspired by the recent international consensus developed by domain experts.
Furthermore, existing methods for VCE summarization, classification, segmentation, detection, and
localization were critically evaluated and compared based on aspects deemed significant by clinicians.
Numerous studies pertain to single anomaly detection instead of a pragmatic approach in a clinical
setting. The challenges and opportunities associated with VCE analysis were delineated. A focus on
maximizing the discriminative power of features corresponding to various subtle lesions and anomalies
may help cope with the diverse and mimicking nature of different VCE frames. Large multicenter
datasets must be created to cope with data sparsity, bias, and class imbalance. Explainability, reliability,
traceability, and transparency are important for an ML-based diagnostics system in a VCE. Existing
ethical and legal bindings narrow the scope of possibilities where ML can potentially be leveraged
in healthcare. Despite these limitations, ML based video capsule endoscopy will revolutionize clinical
practice, aiding clinicians in rapid and accurate diagnosis.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The gastrointestinal (GI) system, commonly known as the
igestive system, plays a vital role in sustaining the health of the
uman body to perform daily activities. A large-scale multina-
ional study [1] suggested that over 40% of the people worldwide
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are affected by GI disorders. GI-related cancers account for 26% of
the total cancer cases and 35% of all cancer-related deaths world-
wide. Furthermore, gastrointestinal diseases can manifest at least
once in an individual’s lifetime in 43% of the UK population [2].
Therefore, early diagnostic check-up is essential and effective for
ruling out fatal medical conditions and taking in-time therapeutic
measures in case malignancy or disease is diagnosed. The GI
tract comprises two parts: the upper and lower GI tract. The
upper GI tract is generally considered to be the mouth, esophagus,
stomach, and the first part of the small intestine (duodenum).
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Fig. 1. An example Video Capsule Endoscopy. (a) Medtronic PillCam SB3 capsule and (b) Medtronic PillCam recording device (image courtesy of Medtronic [6]).
The lower GI tract extends from the small intestine to the large
intestine. Endoscopy and colonoscopy are interventional diagnos-
tic procedures used for the upper and lower GI, respectively.
A thin flexible probe comprising a camera, light source, and
therapeutic port is inserted into the body to capture a live video
of the GI organs, which is displayed on the screen for real time
analysis. However, this procedure requires the expert to be highly
adept and vigilant during the operation; moreover, diagnostics
must run in parallel. Despite the expert-based procedure, the
misdetection rate for colonoscopic polyps is 20% [3]. Moreover,
an invasive procedure is associated with complications such as
perforation, bleeding, and infection during colonoscopy [4]. In
particular, an invasive procedure, along with its risks and fear of
being at the hospital, naturally deters patients in need of early
diagnosis. An alternative noninvasive technique was introduced
in the early 2000s [5], called video capsule endoscopy (VCE) or
wireless capsule endoscopy (WCE). A miniaturized camera, light
source, small electronics, and transmitter antenna are embedded
in a pill that can be easily swallowed by the patient. The capsule
captures the video frames as it traverses passively along the GI
tract and sends frames wirelessly to a receiver device held by
the patient. The typical frame capture rate varies in the range 1–
30 frames per second, and 50–100 thousand frames per patient
can be captured. The capsule is disposable and passes out with
feces after remaining inside the body for approximately 10–16 h.
The video is then transferred to a computer for analysis by an
expert. Fig. 1 shows a Medtronic [6] VCE capsule and record-
ing device. Such devices can potentially facilitate early diagnosis
of certain diseases such as inflammatory bowel diseases (IBD).
IBDs are highly associated with the development of malignancies
over time; if not detected early, they may progress to lethal
diseases such as cancer [7,8]. Therefore, the early detection of
IBD is essential to prevent cancer in the digestive organs. Capsule
endoscopy is a non-invasive, patient-friendly, and hospital-free
procedure and is an apt candidate for delivering an early diag-
nostic or screening check for IBDs on a massive scale. In other
words, capsule endoscopy, as an appropriate screening procedure
among masses, can potentially reduce cancer cases by detecting
cancer-risk conditions such as IBD early. Furthermore, VCE can
potentially carry out remote screening and diagnostics in areas
where experts are not readily available for more complex inter-
ventional diagnostic procedures. However, what offers patients a
hospital-free, risk-free, and friendly experience burdens experts
with the task of viewing these VCE videos, which comprises thou-
sands of frames, offline. At times, a pathological condition might
be present in just one frame, which could lead to an incorrect
diagnosis. Typically, the time taken for an expert to analyze a VCE
video is approximately 1–2 h [9].

Artificial intelligence (AI) is considered as new electricity that
transforms every field of life, and hence, holds potential in coping
192
with the analysis of substantial amounts of VCE frames. AI has
advanced considerably in the last two decades, particularly in the
fields of computer vision and natural language processing (NLP).
Machine learning, which is the backbone of AI, encompasses
computational methodologies and algorithms that enable ma-
chines to learn knowledge and patterns from either data or their
own experience. Until the late 2000s, image and video analysis
was mostly performed by designing handcrafted filters to extract
useful features from raw images or video frames. The extracted
features were subsequently fed into conventional machine learn-
ing methods such as support vector machine (SVM), random
forests, and logistic regression for downstream tasks such as
classification or segmentation. Deep neural networks (DNN) and
deep learning (DL) can extract useful features directly from raw
data and have achieved considerable success with the availability
of parallel computing hardware in the last two decades. Deep
convolutional neural networks (DCNNs), a type of DNN for images
and computer vision in deep learning, have achieved tremendous
milestones in image classification, detection, segmentation, and
tracking [10]. The basic architecture of CNNs is inspired by the
primate visual cortex [11,12]. The stack of learnable convolutional
filters extracts features in their local receptive fields, which are
further subjected to nonlinear activation functions and local pool-
ing to cater to the abstract concepts in successive layers. Earlier
layers extract low-level features such as edges, color, gradient
orientation, and texture, whereas successive layers learn more
high-level features such as shape, entities, and the relationship
between them. Learning in CNNs is achieved by employing the
widely-used back propagation as in multi-layer perceptron (MLP)
and other artificial neural networks (ANN). Since the inception of
the first CNN architecture, many modifications and enhancements
have been proposed in different aspects, such as skipping the
connections, branching within a layer, modifying a processing
unit, and optimization strategies for hyperparameters. Several
alternatives to CNNs have also been proposed, such as graph
neural networks (GNN) [13] or capsule neural networks (Caps-
Net) [14] for image analysis. However, CNNs are reported to be
the most successful and are widely used in real-life computer
vision applications [10].

Earnest attempts have been made to leverage the true po-
tential of AI in VCE analysis and precision diagnostics. In this
study, we critically analyze and present a survey of those at-
tempts; that is, we highlight both the current challenges VCE
poses to AI as a computer vision problem in the context of
machine vision and the essential requirements for a prospective
AI solution in the light of recent articles and reports published
by gastroenterologists. We focus on video capsule endoscopy,
particularly for the small bowel, as VCE is the gold standard
and first-line examination for small bowel disorders [15]. Various
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nteresting surveys have been conducted on AI for VCE analysis. A
linical survey presented in Kim and Lim [16] discussed recently
roposed deep learning-based solutions for identifying various
mall bowel diseases and concluded that AI in VCE is still in
ts research phase, and with rapidly evolving methods, a fully
utomated VCE analysis may prove helpful in GI diagnostics.
rasolini et al. [17] presented a clinical review of different AI-
ased VCE studies conducted between 2000 and 2020. Deep
earning studies of VCE are all retrospective in nature and are
ighly prone to bias. Studies have discussed the future need for
generalized AI-based system for VCE [18–21] . Shelly et al. [15],

n their meta-analysis and systematic review, presented a review
f CNN-based VCE methods. Furthermore, they also performed
uality assessment and bias risk analysis on existing studies. Khan
t al. [22] presented a survey of several computer-vision-based
trategies and tasks employed in the VCE domain. Moreover, they
ighlighted challenges, recommendations, and future directions,
ith a major focus on the prospective potential of delivering a
mart healthcare diagnostic system by merging the Internet of
hings (IoT) and VCE.
Comparing the existing CNN-based detection approaches sug-

est higher accuracy, sensitivity, and specificity for single anomaly
etection tasks, such as bleeding, angioectasia, and ulcers. How-
ver, many of these studies were retrospective in nature and
ad an intrinsic risk of bias. Furthermore, many studies did not
escribe their data dynamics and many are not publicly available.
tudies on detecting multiple abnormalities are rare. Therefore,
here is a dire need to apply these AI methods prospectively to a
arge multicenter dataset in a more pragmatic way to deliver an
fficacious impact in the field of video capsule endoscopy. In this
tudy, contemporary challenges are identified hampering AI to be
ffectively applied in VCE domain. VCE frames are intrinsically
emanding from a computer vision perspective. In contrast to
onventional endoscopic probe cameras, a capsule is untamed
nd wild in its motion-capturing frames in a highly diverse and
oncealed manner (to the examiner) [23]. This, in addition to the
ow resolution of VCE frames compared to endoscopic frames,
equires extra care to be taken in the context of computer vi-
ion. Deep-learning approaches have outperformed conventional
andcrafted feature-based methods. However, when it comes
o robustness and generalizability, paramount factors for em-
loying AI in clinical practice, deep learning is deemed to be
ata-hungry [24]. The availability of datasets for medical imaging
as been a persistent challenge, let alone the datasets for VCE,
here labeling tens to hundreds of thousand frames for a single
atient is both a time- and attention-seeking task. In this context,
utomated AI-based labeling procedures and un-supervised or
emi-supervised learning offer an opportunistic area to explore.
erging different datasets to build a large multicenter dataset
ffers new challenges in resolving data incongruity in the VCE
omain, where the choice of defining frame labels is highly
isparate. Coping with diversity, introduced by combining frames
rom different manufacturers, is another challenge. Rare med-
cal conditions should not be underrepresented in data-driven
earning processes. More often, a rare condition happens to be
ore fatal; for example, polyps are rare in the small bowel
ut very significant in detecting the possibility of malignancy.
he competitive performance metrics reported in the lierature
or selective tasks on selective data in a retrospective way sug-
ests considerable potential; however, developing an end-to-end
olistic solution to harness the essence of AI in video capsule
ndoscopy might first need these contemporary challenges to be
ddressed.
The remainder of this paper is organized as follows: Section 1

ntroduces the concept of AI for VCE analysis and elucidates
ts potential impact on early and precise diagnosis and large-
cale remote screening. A brief overview of recently published
193
survey articles in this field is provided. Furthermore, the chal-
lenges and recommendations for improving existing studies have
been discussed. Section 2 develops a hierarchy of essential steps
required for analyzing the raw frames of VCE for the diagnosis
made at the disease level. The taxonomic organization of frame-
level findings and their relative pertinence with disease-level
findings are discussed in light of recent international consensus.
Semantic and visual descriptions of typical representative frame-
level findings are also presented in this section. Section 3 provides
a brief overview and comparison of existing datasets for small-
bowel video capsule endoscopy. Section 4 critically describes
existing machine learning and computational methods applied
to several tasks in the analysis of VCE, such as summarization,
classification, segmentation, and localization. Section 5 reflects
on contemporary challenges identified as hampering factors in
reaching the full potential of computer-aided diagnosis for VCE.
Possible opportunistic areas for coping with these challenges are
also highlighted. Finally, Section 5 concludes the study.

2. Overview of small bowel diseases in context of VCE

The small bowel, a tubular structure physically located in the
middle of the GI tract before the large intestine and after the
stomach, is responsible for 90% of the digestion- and absorption-
related workload [25]. In adults, the average length of the small
bowel is approximately 6–7 m, is highly convoluted, and narrowly
twisted around the abdominal cavity [26]. Longitudinally, it is
further divided into three parts: duodenum, jejunum, and ileum.
The wall of the small bowel is layered cross-sectionally, with the
inner-most layer containing small finger-like projections extend-
ing into the lumen, called villi, which increases the surface area
of the intestinal wall for maximum absorption. Narrowly tangled
placement of the small intestine offers a difficult approach for
the traditional endoscopic probe to maneuver in a diagnostic
procedure [27]. By contrast, a capsule can easily reach and access
all areas of the small bowel owing to its small size. Therefore, easy
accessibility to reach the entire small bowel, non-invasiveness
nature, and patient friendliness make capsule endoscopy the gold
standard diagnostic procedure for the diagnosis of small bowel
diseases.

In traditional endoscopy, real-time endoscopic motion-
controlled viewing lasts for 20–30 min; however, the analysis
of an 8–12 h VCE video from diagnostic intention is a slightly
different task. For example, an expert performing endoscopy is
naturally more vigilant looking for a suspected anomaly, since it
is at his discretion to focus and explore anything that is thought to
be an anomalous area in real time. Moreover, controlled camera
motion and therapeutic add-on reinforce the active attention
mechanism [28–30]. In contrast, VCE video analysis is naturally
a less attention-luring task owing to the following reasons: a
sense of being offline and not in real time, the idea of observing
a lengthy monotonous screen, low resolution of VCE frames, and
less presence in the scene due to lack of motion control [31–
34]. To present this offline and wearisome video analysis in
a goal-oriented task manner, Fig. 2 shows a hierarchy of the
VCE-based small bowel disease diagnosis process with a brief
comparison of human experts and artificial intelligence in per-
forming the tasks. First, the video frames in the raw VCE video
are labeled with contextually relevant frame-level findings. This
further involves subtasks such as first removing redundant, poor
quality, and duplicate frames. An expert performing this task
must be aware of the well-defined consensual nomenclature of
contextually relevant frame-level findings in an SB VCE scope.
Excessive supervised training hours are required for such kinds
of image recognition tasks; however, it is relatively more chal-
lenging to classify VCE frames accurately owing to poor quality
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Fig. 2. Hierarchy of steps for a disease level diagnosis in small bowel Video Capsule Endoscopy.
mages, subtle manifestation of anomalies, and mimicking nature
f various frame-level findings. The next major and final task
n this hierarchy is to develop an inference regarding disease-
evel finding for only those video samples comprising one or
ore anomalous frame-level findings. This task involves the
nalysis of annotated frames combined with meta-data (capsule
194
spatial–temporal stamp, age, sex, history, ethnicity, geo-graphical
location, etc.) to give a probability score for prospective small
bowel digestive disease. An anomaly detected in just one frame
may not be the most representative when it comes to disease-
level diagnosis. In the whole video, there could be multiple
occurrences of a single type of anomaly or multiple anomalies



H. Wahab, I. Mehmood, H. Ugail et al. Future Generation Computer Systems 143 (2023) 191–214

a
p
d
m
d
b
m
f
b
t
d
e
s
a
a
f
a
d
V

2

b
s
v
d
t
b
r
f
s
d
b
d
l
s
b
s
a
T
d
s
c
l
l
b

p
D
d
p
c
t
r
t
t
c

e
t
a
a
c
t
a

t different places; therefore, a holistic approach catering to all
ossible scenarios needs to be taken in making a disease-level
iagnosis. An annotated video with anomalous frames along with
eta-data needs to be further analyzed and consulted for a
isease-level investigation and diagnosis in light of a knowledge
ase, including clinical relevance studies, case studies, and do-
ain knowledge. In practice, clinical experts mostly appear to

ollow the same hierarchical approach; unfortunately, AI has not
een applied in such a hierarchal manner in this domain. Mostly,
he task of frame-level anomaly detection has been confused with
isease-level detection. However, these two tasks complement
ach other to reach an accurate diagnosis. For an end-to-end
olution, AI needs to be applied in the same cognitive hierarchy
s human experts to perform a disease level diagnosis by first
nalyzing each frame, and holistically analyzing all anomalous
rames in a video along with other metadata to obtain a more
ccurate and robust disease level decision. In this section, we
iscuss the frame-level and disease-level findings for small bowel
CE in detail.

.1. Frame level findings

The task of developing frame-level recognition expertise either
y human experts or AI first and foremost requires a well-defined
emantic and visual nomenclature for the findings under obser-
ation. Even the relatively simple case of recognizing a cat or
og first requires the visual definitions of these respective classes
o be made implicitly in the visual cortex, as well as in a CNN-
ased model. In a more complex case, such as in VCE frame-level
ecognition, where the closely spaced visual peculiarities of these
indings are not so conspicuously pronounced, the visual and
emantic description of frame-level findings needs to be explicitly
elineated and endorsed by domain experts worldwide. Since the
irth of capsule endoscopy in 2000, there has been a prevalent
issensus and confusion regarding the nomenclature of frame-
evel findings. Korman et al. [35] proposed capsule endoscopy
tructured terminology (CEST) in 2005; however, it could not
e adapted globally in clinical practice because of its complex
tructure [36]. This has been a significant setback for both VCE
nd AI in VCE to reach their full potential in clinical practice.
he lack of consensual nomenclature led to various names and
efinitions of frame-level findings, specifically for ambiguous and
ubtle lesions [37]. Low-resolution images and diverse capturing
onditions introduced by the free nature of the capsule make
esions and ulcerative conditions appear visually inseparable and
ess distinct than the more unequivocal frame findings for active
leeding and deep ulcers [38].
More recently, gastroenterologists and experts from different

arts of the world have attempted to reach an international
elphi consensus statement on the nomenclature and semantic
escription of vascular, inflammatory and ulcerative, and lym-
hatic lesions in small bowel VCE [39,40]. This international
onsensus is highly commendable. Indeed, it was much needed
o overcome many problems in the VCE domain. In light of this
ecent consensus and other related work [41–48], we propose a
axonomy of frame-level findings to help better understand the
ask of VCE frame annotation and small bowel-related luminal
onditions for capsule endoscopy, as shown in Fig. 3.
A frame is perceived to contain significant information if an

xpert or AI opinion is more inclined towards one of three clus-
ers: anatomical, pathological, and normal/normal. Normal is also
cluster and frame-level finding at the same time. Normal vari-
nts are often confused with ambiguous lesions or ulcerative
onditions. Anatomical frame level findings are used as landmarks
o ensure that the capsule has passed a certain region as well
s in accurate localization of the capsule, and hence, are very
195
significant to detect. The pathological cluster subsumes all types
of anomalous frame findings that may collectively relate to the
disease level diagnosis in the next hierarchical step. Fresh blood is
a frame-level finding, however, it can coexist with various types
of lesions or other anomalous conditions, resulting in different
disease-level diagnosis in different individuals. Most anomalous
conditions exist under the label of ‘Lesions’. Indeed, lesions are
a very generic term and are related to abnormal tissue changes
due to injury or a certain disease. Vascular lesions are abnor-
mal lymphatic vessels of the gastrointestinal tract that can be
inherited or acquired. Inflammatory and ulcerative lesions are
abnormal immune or inflammatory responses, with infiltration of
inflammatory cells into the intestinal wall and manifest in various
forms. Mucosal atrophy is associated with anatomical changes in
the mucosal lining, which affect the absorption function of the
small bowel and lead to malabsorptive diseases. Hookworms are
parasites that attach to the intestinal wall and cause bleeding or
small bowel infection. Any frame is non-significant if the image
is blurred, lossy, poor light conditions, reduced view, or contains
foreign bodies such as food content, bubbles, or feces. A brief
semantic and visual description of the significant frame-level
findings in Figs. 4 and 5 is presented for understanding purpose.

The pylorus is a pinkish mucosal landmark around a smooth,
dark, round opening from the stomach into the first part of the
small bowel. The ampulla of Vater is a landmark formed by the
fusion of the pancreatic duct and the common bile duct, and
resembles a trumpet-mouth-like dilated opening at the duodenal
wall. The ileocecal valve is a valve formed by two-fold of the
mucous membrane at the opening of the ileum into the large
intestine and is marked by the presence of a group of longitudinal
ileal lines forming a rosette-type pattern at the ileocecal valve.
Blood is probably the easiest finding to detect bright or dark-
red-colored patches over the mucosal surface. Hookworms are
appeared as off-white, thread-shaped parasites attached to the
mucosal wall. In mosaicism, a mosaic-like pattern can be ob-
served on the mucosal wall. Scalloping involves a scallop pattern
on the edges of mucosal folds. Small-sized granules or micron-
odules are formed along the mucosal surface in the granular
mucosa. Minute finger-like projections called villi are reduced on
the mucosal folds in the flattened mucosa. A bright-red, flat lesion
with clustered and convoluted capillary dilations is a typical
description of angiectasia or angiodysplasia. A small (few mil-
limeters) flat reddish area without any manifestation of vessels
surrounded by intestinal villi is a consensual description of an
erythematous patch.

Red Spot/Dot is an extremely small (less than 1 mm) bright-
red-colored dotty appearance, similar to a flat lesion without
any vessel appearance within the mucosal layer. Phlebectasia
is a bluish venous dilation that grows slightly below the mu-
cosa. Diminutive angiectasia is the appearance of bright red non-
clustered capillary dilations organized in a linear fashion with
clear demarcations. Aphthoid erosion is typically a whitish center
surrounded by a red nimbus with an associated loss of epithelial
layering on a small scale. Deep ulceration usually manifests as a
candid deep loss of tissue surrounded by a swollen mucosa with
a white base. Superficial ulceration is a loss of tissue, however, to
a lesser degree, between aphthoid erosion and deep ulceration.
Stenosis reflects narrowing of the intestinal lumen circumference
and is usually associated with a delayed passage of the cap-
sule. Edema is defined as the appearance of enlarged, swollen,
or congested villi. Hyperemia is a condition in which the villi
are overly reddish. Denudation is defined as a reddish mucosal
area without villi. Lymphangiectasia is diffusively elongated and
the circumferential mucosa is covered with whitish enlarged
villi. Chylous cysts are yellow, soft submucosal lesions that are
diffused in appearance with an occasional presence of vascular
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Fig. 3. A taxonomy of frame level findings for small bowel VCE frames.
atterns across the surface. Polyps and tumors manifest as mass-
ike protruding tissue growths, often bulging as mushroom stalks
ith variations in size. Nodules are typically described as white-
cattered polypoids spread across patches on the mucosal surface.

The proposed taxonomy of frame-level findings may poten-
ially leverage multiclass classification tasks [50]. A SoftMax func-
ion applied at the frame-level finding level in the hierarchy
uring training generates probabilities against each finding. At
nference time, these probabilities can be summed all the way up
n the hierarchy to give the probability for each taxonomical clus-
er. Therefore, pathological and visual similarities within a cluster
an be contrived by considering the probabilities for cluster-
evel classes. This approach may potentially achieve partial sum-
arization in VCE as a by-product of classification, considering
robability scores at the highest cluster level ‘‘Significant/Non-
ignificant’’ would essentially dictate the decision of informative-
ess about a certain frame.

.2. Disease level finding

Annotated frames with significant frame-level findings need
o be canvassed in a spatial–temporal format with estimations
f the spatial position of each frame within the small bowel
s well as an estimate of the relative time elapsed at a certain
osition. These estimated spatial–temporal stamps for signifi-
ant frames are manifested as ‘Meta Data’ in Fig. 2, along with
ther patient-related metadata. An expert gastroenterologist or a
rospective AI solution would assess for a disease-level diagno-

is by meticulous perusal of all the above-mentioned contents.

196
Unfortunately, the significance of this second stride in the hi-
erarchy presented in Fig. 2 has been overlooked by researchers
applying AI to VCE analysis. However, a literature review of
clinical surveys and relevance analysis strongly suggest this ap-
proach. For example, stenosis narrows the lumen in its inner
circumference; however, it is recommended to reinforce this
finding by correlating with associated probable delays in capsule
passage through this area [51]. Similarly, a certain finding in
two different areas of the small bowel may lead to a different
clinical relevance. Lesions in the small bowel are not related to
small bowel VCE-indicative diseases in a single fashion. Most
clinically relevant lesions are reported to be associated with
multiple diseases. This meta-data enables physicians to contem-
plate coherently with their knowledge to obtain an outcome of
correct diagnosis. Fig. 6 shows a clinical relevance relationship
between several frame-level findings and disease-level findings,
considering an international consensual clinical survey. The most
relevant findings are those with single or multiple occurrences
that are highly thought to be correlated with a particular disease
in an international consensus [41]. Furthermore, moderately and
mildly relevant are findings having moderate and mild levels of
occurrence against a certain disease, respectively. Next, we briefly
describe each disease level finding.

Crohn’s disease is an inflammatory bowel disease (IBD) causes
inflammation and lesions in the small bowel. The most relevant
frame-level findings were deep ulcerations and stenosis. Moder-
ately relevant findings included aphthoid erosion and superficial
ulceration. Occult obscure gastrointestinal bleeding (OGIB) is a
type of GI bleeding caused by lesions in the small bowel and
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Fig. 4. Representative images of Frame Level Findings (Part-1): (a) Pylorus, (b) Ampulla of Vater, (c) Ileocecal Valve, (d) Normal, (e) Blood, (f) Hookworms, (g)
Lymphangiectasia, (h) Chylous Cysts, (i) Submucosal Tumor, (j) Nodule, (k) Polyp, (l) Epithelial Tumor, (m) Venous Structures, (n) Blurred, (o) Reduced View, (p)
Foreign Body.
Source: Images taken from [23,49].
ccurs with or without a positive fecal occult blood test. It is often
eferred to as iron deficiency anemia (IDA). The most pertinent
rames for occult OGIB are the blood, deep ulceration, typical
ngiectasia, and stenosis.
Obscure gastrointestinal bleeding (overt OGIB) is a type of GI

leeding in the small bowel that is clinically perceivable and often
ecurs or remains in patients despite negative initial endoscopic
valuations. The most pertinent frames were the same as those in
he case of occult OGIB. Celiac disease is associated with mucosal
trophy, a condition where the immune system attacks the mu-
osal surface tissues of the small intestine, resulting in nutrient
bsorption. Although, to the best of our knowledge, no large Del-
hi consensus statement exists regarding the clinical relevance of
his type of disease; however, a small-scale consensus [43–45,47]
uggests that the following frame findings are most relevant:
osaicism, scalloping, flattened mucosa, and granular mucosa.
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Neoplasms are abnormal growths of cells or tissues in the small
intestine that may or may not be malignant. Relevant findings
include different types of protruding lesions, such as polyps,
nodules, and tumors.

3. Existing VCE datasets

Since the birth of the VCE, several datasets for computer-aided
analysis and training purposes have been imparted to the litera-
ture. A brief comparison of these datasets is presented in Table 1.
Dataset availability and access in the medical domain is generally
a prevalent problem that faces many ethical and privacy issues,
let alone VCE, which has additional sparsity and redundancy
challenges, thereby fostering a phenomenal requirement of much
larger raw datasets for achieving effective and robust generaliza-
tion. At present, most of these are not publicly available for open
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Fig. 5. Representative images of Frame Level Findings (Part-2): (a) Angiectasia, (b) Erythematous Patch, (c) Red Dot/Spot, (d) Phlebectasia, (e) Diminutive Angiectasia,
f) Aphthoid Erosion, (g) Deep Ulceration, (h) Superficial Ulceration, (i) Stenosis, (j) Edema, (k) hyperemia, (l) Denudation, (m) Mosaicism, (n) Scalloping, (o) Granular
ucosa, (p) Flattened Mucosa.
ource: Images taken from [23,49].
cademic access. One commendable contribution was recently
ttributed to the literature (Kvasir-Capsule) [49] for their easily
ccessible large dataset, and comprised 117 videos and 4,694,266
mages. Although only a small portion is labeled into 14 different
rame-level findings, the unlabeled portion can be used for un-
upervised learning or labeling by a third-party group. The label
hoices for different frame-level findings are non-overlapping
cross different datasets, posing an additional overhead in merg-
ng various datasets. Only the KID [52] dataset was labeled ac-
ording to a consensus terminology standard (CEST;2005 [35]).
hese existing datasets and future contributions need to comply
ith the most recent terminology consensus [40] developed by
he international community to enable the merging of datasets
cross the globe into a large dataset as required by a prospec-
ive DL solution. The paucity of datasets for capsule endoscopy
198
potentially invites the exploitation of generative adversarial net-
works (GANs) and other synthetic data generation methods and
is further explored in Section 5.2.

4. Existing computational methodologies for analysis of VCE

Analyzing capsule endoscopy videos is a crucial task for both
experts and researchers who are developing intelligent analysis
algorithms. Since the birth of this revolutionary diagnostic tech-
nology, a plethora of computational methods and techniques have
been employed to simplify the process of analyzing a VCE video
into an easy job. The focus has been on two key factors: (a) reduc-
ing reading time and (b) increasing readability by assisting in the
recognition and indication of anomalies. However, in the context
of computer vision, the analysis of VCE frames can be further
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Fig. 6. Pertinence between Frame Level Findings and most indicated small bowel diseases for VCE.
Table 1
A brief overview of existing small bowel Video Capsule Endoscopy datasets.
Dataset Frame level findings standard Size Ground truth Availability

KID [52] CEST based labeling 2371 images,
47 videos

Labels, graphical annotations On request

GIANA [53] Small bowel lesions-based
labeling

8262 images,
38 videos

Labels On request

CAD-CAP [54] Labels: vascular, blood,
ulcero-inflammatory, normal

25,000 images Labels, graphical annotations On request

Gastrolab [55] Crohns disease and various
lesions

Few hundred
images

Labels Publicly
available

Kvasir-Capsule
[49]

14 different frame level
findings

4,694,266
images, 117
videos

Labels and graphical
annotations for 47,238 images

Publicly
available
categorized into three tasks: summarization, recognition, and
localization. The first two tasks lie purely in the computer vision
domain; however, localization of the capsule inside the body also
considers other modalities, such as radio frequency (RF), motion
sensors, and magnetic sensors. Before the recent burgeoning in
DL, most analytic enhancements were handcrafted features based
on image and signal processing techniques. However, in the last
decade, much work has been done by employing deep-learning-
based learnable feature methods. In this section, we present a
succinct and critical survey of notable existing research method-
ologies and discuss state-of-the-art software enhancements that
are contemporary in the clinical practice of VCE.

4.1. Summarization

Video summarization is a challenging task in multimedia sys-
ems and computer vision. In the VCE context, it becomes more
hallenging owing to the capsule’s inapt capturing profile and
ssociated likeliness of subtle manifestations of the anomaly.
he apparent trade-off between the miss rate and extent of
ummarization is a unique challenge in capsule endoscopy and
199
other anomalous behavior detection videos. Regardless of how
efficiently and robustly AI-based diagnosis is generated by a
prospective clinical solution; a gastroenterologist would always
like to view the video himself to ensure nothing is overlooked
by a computer-aided diagnosis (CAD) system. Therefore, summa-
rization, or in a less strict sense, removal of redundant frames,
becomes a rudimentary requirement for saving the reading time
of an expert. The effect or extent of summarization should be op-
timal to avoid missing any information conducive to an otherwise
anomalous condition. Therefore, the performance of summariza-
tion approaches in VCE is generally measured in terms of reading
reduction time or frame reduction percentage, along with the
trade-off of the associated misdetection rate.

Soon after the approval for VCE use in clinical practice, a
software-aided redundancy removal need was felt by gastroen-
terologists and manufacturers. The Given Imaging Inc. (Medtronic
now) launched initial versions of software enhancement such as
Quick View (also called Rapid mode) for summarization and Sus-
pected Blood Indicator (SBI) for indicating blood-related anoma-
lies in the early 2000s [56]. However, prospective clinical testing

has reported a significant misdetection rate as a by-product of a
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eduction in reading times [57]. Similarly, Olympus introduced a
ummarization enhancement in the last decade condensing the
ntire video into approximately 2000 key frames; however, the
ethod only detects explicit visual changes among images to
ecide for key frames, and anomalies belonging to small-scale
isual patterns were at risk of missed detection [58]. A brief com-
arison of attempts made by researchers for VCE summarization
s presented in Table 2.

Redundancy in CE is caused by the uncontrolled nature of
he capsule, irregular motility profile under the influence of peri-
talsis, poor lighting conditions, reflections and blurredness, and
bscurity caused by bubbles, chymes, and foreign bodies. Ear-
ier attempts were mostly handcrafted feature-based techniques,
here color space, texture-based features, and shape-based fea-
ures were used. The summarization method generally involves
egmentation of a video into several shots and subsequently
electing key frames from such segments based on certain criteria
n the extracted features. Iakovidis et al. [59] proposed an unsu-
ervised technique based on matrix factorization for clustering
nd orthogonality criteria to select key frames from a cluster.
owever, this way may result in grouping of timely irrelevant
rames to be grouped together, eventually causing an improper
election pool for key frames. Researchers in Liu et al. [58],Lee
t al. [60] and Lee et al. [61] attacked redundancy removal by es-
imating capsule motion based on changes in consecutive scenes
nd ego-motion analysis of capsule caused by peristaltic forward,
ackward motion of capsule respectively. However, the peristalsis
ycle itself varies among different individuals, and even within
n individual. Hence, the estimation of peristaltic motility using
ptical flow methods at a low frame rate, such as in VCE, 2 fps,
ay cause much visual deformation over the extent of optical

low techniques to correctly estimate the motion flow [62]. In
ur earlier work, we used color space transform, multi-scale
ontrast, moments, curvature, JD divergence, and Boolean se-
ies correlation to create saliency maps and key frame selec-
ion [63–65]. Deep learning has also been applied by several
esearchers. Mostly, a hybrid approach is adopted, comprising DL-
ased feature learning and conventional ML based methods for
hot segmentation and key-frame extraction. CNNs and autoen-
oders were used for feature extraction, and SVM, singular value
ecomposition (SVD), K-means clustering, and motion analysis
ere used for summarization.
A consensus needs to be reached by gastroenterologists re-

arding the summarization depth required in clinical practice.
ome experts may require the removal of duplicate and redun-
ant frames, while others may require further reduction in read-
ng time by removing confident normal mucosal findings. To date,
s an open-choice problem, researchers have provided summa-
ization solutions construing the required depth in their own way.
herefore, the evaluation metrics seem to be disparate rendering
esults that are incomparable. Many studies have used highly se-
ective pathological data; even short clips are trimmed, rendering
he quoted results less robust. Manual human-set thresholding is
sed as a parameter for summarization depth in most methods.
owever, the use of a limited dataset and the trade-off between
isdetection and summarization both suggest an optimal point

o be reached based on algorithmic or data-driven optimization,
ather than a human-selected threshold that is vulnerable to be
ess optimal for a diverse nature of lesions and anomalies.

Clinicians have expressed concern about the delineation of
alidation methods and the study population of data used for
ata-driven diagnosis methods [15]. However, most datasets used
ppear to provide little or no such information. Therefore, these
arameters are also summarized while comparing the existing
ethods in Table 2. These shortcomings in existing summa-
ization solutions need to be critically addressed to make an
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impact on the reading time of VCE videos, indeed a dire need of
hours in VCE clinical practice. Furthermore, it has been observed
that existing software enhancements (based on conventional ML)
have been largely unsuccessful in reducing reading time without
compromising the misdetection rate [70].

4.2. Recognition and identification

Recognition is a generic term in computer vision that in-
volves pattern recognition tasks such as classification, detection,
localization, and segmentation. Any analytical approach that de-
lineates an image visually or semantically manifests itself within
the scope of image recognition. However, there is much confusion
between these terminologies in the literature on visual analysis
of VCE. In particular, segmentation, detection, and localization
have been confounded with each other in the literature [71–
78]. Classification is the task of assigning a unique label to the
image. Segmentation is pixel-wise or block-based classification
into various labels under study. Detection or localization is both
classifying and locating the position of an object/class on the
image in the form of a bounding box. CADx and CADe are terms
widely used in computational medical imaging. In VCE video
analysis, CADx refers to the pathological characterization of a
frame while CADe refers to the localization of a pathology in the
frame.

Several studies have been contributed in the CADx and CADe
domains of the VCE, especially in the last decade. Table 3 presents
a brief comparative list of notable contributions. Apparently,
single anomaly classification tends be the favorite area explored
by researchers. Active bleeding or blood content-based anomaly
recognition seems to be the most explored single anomaly, pri-
marily due to more no. of clinical cases for small bowel, and
bleeding confers to be the most common indicator for SB-VCE [79–
86]. Interestingly, the recognition of blood content can be a
more unequivocal and visually comprehensive task from both
expert and computer vision perspectives. Higher intensity lev-
els of the red channel are easily detectable using color space
histograms and other color-based features [79,81,83]; therefore,
excellent performance metrics are obtained by both handcrafted
features and deep learning-based feature extraction methods.
Polyps and tumors, although rarely present in the small bowel
as compared to other GI organs, are also widely studied for
single anomaly recognition. Protruding lesions and polyps tend
to be discriminated from other anomalies in terms of geometric
features. However, color and textural information also appear to
be discriminative among different types of protruding lesions.
Indeed, the diverse appearances of polyps and various tumors
among different patients is a challenging task for both experts
and machine vision [87,88]. Researchers have also used frequency
domain features such as wavelet transform and log Gabor filter
along with other spatial features such as LBP and SUSAN edge
detectors to segment the polyps as ROI [78,89,90]. The triplet
loss function introduced in Laiz et al. [87] imposes an addi-
tional constraint on the learning process by forcing frames in
a similar category, even if they appear visually diverse, to be
represented by embedding vectors closely spaced in the feature
subspace. Therefore, such a constraint would inform the learning
put less focus on discriminative features within the same class.
Researchers [88] attempted to achieve the same goal by using the
concept of the nearest neighbor graph to model diverse image
manifolds within the same class. Hence, forcing feature vectors
evolve in a sparse autoencoder without much disturbance in the
structure of the nearest neighbor graph. The performance metrics
for both approaches conformed to the rationality introduced in
their concepts. Although the use of CADe for polyps and tumors in
colorectal colonoscopy has captured much attention, few meth-
ods exist for the detection of polyps in the small bowel. Nadimi
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Table 2
A summary of existing methods for video summarization in VCE.
Year Method Dataset & Study

population
Results Validation

method
Authors’
discipline

2006,
2009

Given Imaging Inc. Quick view
method [56,57]

100 proprietary VCE
videos (single center);
Given study population

75% reduction in time,
8% increase in miss-rate

Prospective Multi-
disciplinary

2010 Non-negative matrix
factorization of greyscale
images for shot segmentation
and orthogonality for key
frames selection [59]

8 non-public VCE videos
for small bowel (single
center); No study
population

85% reduction in reading
time with zero miss-rate

Retrospective Multi-
disciplinary

2010 A generative learning model
based on Expectation
Maximization doing epitomized
summarization with semantic
organization in the generated
epitomes [66]

Short clips of proprietary
VCE videos from a
hospital (single center);
No study population

90% reduction in frames,
quantitative measure of
miss-detection rate not
performed

Retrospective Multi-
disciplinary

2011,
2013

Near-duplicate frames
reduction using normalized
cross-correlation, Ego-motion
estimation based overlapped
frames reduction due to
peristalsis [60,61]

3 proprietary VCE videos
(single center); No study
population

52% reduction in frames,
miss-detection for
anomaly not performed

Retrospective Computational

2013 Identification of scene changes
based on VCE motion
estimation at course and fine
levels [58]

Selected short clips from
a proprietary video
(single center); No study
population

52%–90% reduction in
frames depending upon
short clip region,
miss-detection analysis
not done

Retrospective Multi-
disciplinary

2014 Key frames are selected based
on significant change in salient
values computed by fusion of
moments, multi-scale contrast
and curvature [63]

Few VCE videos for
single anomaly
(Phlebectasia)- (single
center); No study
population

Results measured in
terms of Precision, Recall
and F-score. F-score =
85%

Retrospective Computational

2014 Mobile cloud based
summarization using JD
divergence and Boolean series
correlation for key frames
extraction [64]

Few VCE videos for
single anomaly
(Phlebectasia)- (single
center); No study
population

Results measured in
terms of Precision, Recall
and F= score. F-score =
82%

Retrospective Computational

2016 Siamese Neural Networks
(SNN) for learning similarity
based feature vectors, SVM for
shot segmentation, adaptive
K-means clustering for key
frames selection [67]

50 proprietary VCE
videos labeled in terms
of similar and dissimilar
frames by experts (single
center); No study
population

Results measured in
terms of Compression
Ratio (CR) and F-score.
CR = 85 (avg.), F-score =
84 (avg.)

Retrospective-3
fold cross
validation

Computational

2021 Deep learning based hybrid
method comprising variational
autoencoder based LSTM
architecture with pointer
network and de-redundancy
mechanism providing a
summary [68]

32 VCE proprietary
videos (single center);
No study population

Results measured in
terms of Precision, Recall
and F= score. F-score =
44%

Retrospective Computational

2021 Autoencoders for feature
extraction of consecutive
frames, Euclidean distance
based shot segmentation, key
frame selection using motion
analysis [69]

3 VCE videos from KID
dataset, 20 proprietary
VCE videos
(multi-center); No study
population

Results measured in
terms of Precision, Recall
and F= score. F-score =
92%, Compression Ratio
= 84

Retrospective Computational
et al. [91] used a faster region based convolutional neural net-
work (RCNN) to localize colorectal and small bowel polyps using
datasets from both organs, since small bowel polyps rarely oc-
cur. Therefore, data sparsity might be a reason for less work.
Recently, real-time polyp segmentation for VCE and colonoscopy
was demonstrated with almost the same performance as before,
but with extremely low number of parameters and an enhanced
frame rate for conducting real-time performance [92]. Ulcerative
lesions are also diverse in each aspect of their visual appearance,
including color, shape, and texture. Superlative ulcers tend to be
more discriminative than deep ulcers considering they have more
visual complications that may sometimes overlap with other
lesion discriminative sets. Patch-based super-pixel saliency maps
and second-glance refinement were employed for classification
201
and detection, respectively, in Yuan et al. [93] and Wang et al.
[94]. Similarly, single anomaly recognition for angioectasia, hook-
worm, and celiac have been performed in He et al. [73],Leenhardt
et al. [75],Tsuboi et al. [95], and Zhou et al. [96], respectively.

Learning to discriminate between a single type of anomaly and
normal mucosa can be a relatively easier task (binary classifica-
tion problem). However, such a confined approach is rendered
unpragmatic in clinical settings. Multi-lesion recognition in VCE
is a complex task, considering low resolution and improper illu-
mination conditions coupled with untamed motion of the camera
might present one type of lesion or anomaly in diverse visual rep-
resentations, thereby reducing powerful discriminative features.
Some researchers have contributed to multi-anomaly recognition
tasks. The number of anomalies recognized by these CAD systems
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ppears to be a matter of choice among researchers, and usually
aries from 2 to 7. Researchers in Sharif et al. [74] and Khan
t al. [97] classified two types of lesions (ulcer and bleeding)
sing a transfer learning approach with VGG-16 and VGG-19
s the backbone. Transfer learning has been widely applied to
CE recognition tasks over the last five years. Some researchers,
ostly from the medical domain, have used transfer learning
ith fine-tuning according to the problem at hand [72,76,84,85,
5,98–102]. Those from a computational background have fused
ransfer learning with more customized methodologies to achieve
etter results [74,77,87,91,94,97,103–106]. Interestingly, a multi-
ask learning (MTL) approach was adopted in Vats et al. [107]
o primarily address two challenges in a VCE multi-anomaly
ecognition task: possible similarities in visual characteristics
cross different conditions and their different levels of severity;
imultaneous existence of non-pathological, visually prevalent
imilarities among various frames. In the MTL, additional self-
hosen tasks are defined to supplement domain-specific learning
y sharing information across several related tasks. However, the
ardinal learning objective is still weighed more in the over-
ll objective function. Comparison of results between MTL and
ingle-task learning (STL) for classification of vascular and inflam-
atory lesions and normal tissue suggests that this is an efficient
pproach. However, the results must be verified in a more robust
anner. In a multiple lesion classification attempt [105], few-shot

earning leveraging on deep metric learning was presented to
ddress the data sparsity problem in a multiple-lesion detection
ystem for VCE. Lumping different anomalies into one category
amed as significant and the remaining normal and variants into
nother category named as non-significant for a binary classifica-
ion using Inception-ResNet-v2 seems efficacious in highlighting
ultiple anomalies without classifying the anomaly type [99].
ing et al. in a large multicenter dataset study so far on SB-VCE to
etect multiple anomalies, presented ResNet-152 by training for
inary classification into abnormal (containing 10 types of abnor-
alities) and normal [108]. Both studies have been validated in
more pragmatic way by creating two types of reading groups:

he conventional reading group and AI-assisted reading group.
he AI-assisted reading group showed much better performance
n terms of lesion detection rate and reading time. However,
lassification into a specific lesion or abnormality name at the
nference stage is omitted in these works.

Existing research methodologies for the task of VCE image/
rame recognition do significant work; however, some technical-
ties are identified that need to be addressed before transforming
nto a reliable clinical solution. In the realm of machine learning,
oth training and validation require representative datasets from
ndependent sources. Highly selective data for training render the
odel a less generalizable solution [73,77,83,88]. In particular,
ethods where handcrafted features are generated must be ex-

ensively checked for all types of diversity in lesion shape, color,
nd texture [81,89,90]. Dataset availability for the performance
enchmarking of different techniques must be addressed. Regu-
atory bodies essentially require the study population in a medical
etting to analyze possible biases and imbalances in data repre-
entation. Most studies have not provided the study population
or their datasets, except for a few [75,96,100,101,109,110]. All
xisting studies have been validated via retrospective validation;
owever, prospective validation entails more confidence in the
pplicability of the proposed solution, and also offers the real
cenario to perform in Soffer et al. [15]. Even in retrospective
alidation, the random split between the training and validation
ets is based on the frame level in most studies except [59,73,
6,90,94,96,108]; however, it should be on a patient- or video-
evel basis to ensure full independence between the training and

alidation frames. The lack of standard metrics for the evaluation
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of proposed methods by researchers increases the challenges in
comparing the results. In summary, recognition tasks are mostly
applied for single anomaly detection, and a potential solution
may be achieved in the future for large datacenter-based multiple
anomaly recognition covering all possible anomalous conditions
under a single task by addressing critical observations.

4.3. Localization and active locomotion

It is crucial to know the location of the capsule inside the
body to locate anomalies and lesions. The accurate location of an
anomaly could be helpful in further targeted investigational pro-
cedures or for therapeutic purposes. Merging localization with 3D
mapping of the capsule’s followed path, also called simultaneous
localization and mapping (SLAM), is a significant task in machine
vision for robotics. Similarly, active locomotion could potentially
turn a passive and untamed video capsule into a controlled robot.
This motion control may potentially harness the full spectrum of
benefits of the CE. Currently, the capsule moves untamed under
gravity and peristaltic movements, which are highly dependent
on the patients’ gastric activity and retention levels. Therefore,
the motion profile is non-uniform, and sometimes longer gastric
retention may result in incomplete capture owing to limited
battery life. In this sub-section, we present a brief overview of
several computational approaches for localization and active lo-
comotion. Several localization and active locomotion approaches
have been presented by researchers using modalities such as
ultrasonic imaging, magnetic resonance imaging (MRI), positron
emission tomography (PET), fluoroscopy, radio frequency (RF),
and magnetic-field-based techniques [114–118]. However, here
we present only the machine learning-based computational ap-
proaches for these two tasks. In the context of computer vision,
visual odometry is a well-defined task for motion and pose es-
timation of the capsule. Classical visual odometry steps include
feature extraction, feature tracking, rigid body motion estimation,
and joint adjustment. The inputs to such a system are images
and the output is a 6-DoF pose. Turan et al. [119] proposed a
novel deep-learning-based visual odometry method for capsule
endoscopy. They employed a recurrent CNN (Recurrent CNN)
architecture to model subtle and complicated motion dynamics
across endoscopic frames. One significant challenge in the lo-
calization of the capsule is the validation procedure. Knowing
the ground truth for a pose during a real-time CE procedure is
complex. Investigative clinical procedures, such as planar X-ray
imaging and ultrasound, cannot be extensively used to verify
capsule estimated pose owing to their associated costs and health
risks. The researchers in this work used a real pig stomach and
synthetic human simulator dataset with a 6-DoF pose as the
ground truth. A normalized depth image was created from RGB
images, and depth images for consecutive frames stacked to-
gether as tensors were fed into the inception CNN architecture to
form the feature vector. The LSTM-based RNN uses this sequence
of feature vectors to estimate 6-DoF pose of the capsule. A per-
formance comparison with state-of-the-art SLAM methods, such
as large-scale direct monocular (LSD) SLAM [120] and oriented
fast and rotated brief (ORB) SLAM [121], shows better transla-
tion and rotation error profiles. A hybrid approach was adopted
in Bao et al. [122] by merging visual odometry with RF-based
localization. For pose estimation using visual images, they em-
ployed VO steps such as feature point detection using the ASIFT
descriptor, image unrolling to detect motion, and estimation of
speed and direction of motion. Visual motion tracking is prone
to cumulative estimation errors that drift the estimated pose
over time. RF localization is absolute in its estimation without
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Table 3
A summary of existing recognition methods for Video Capsule Endoscopy.
Year Task Method Dataset & Study

population
Results Validation method Authors’

discipline

2011 Classification,
Segmentation of
bleeding [79]

Segmentation of bleeding using
color texture features in RGB
and HIS, Probabilistic Neural
Network (PNN) for pixel-level
classification

Selective images from
150 proprietary VCE
videos (single center);
No study population

Pixel level:
Sensitivity-87,
Specificity-85;
Image level:
Sensitivity-93
Specificity-86

Retrospective with
frame level cross
validation

Computational

2011 Classification,
Segmentation into
polyps or ulcer
[89]

Log Gabor filter, SUSAN edge
detectors, color, and texture
features to segment ROIs, SVM
for classification into polyp or
ulcer

Highly selective data,
short clips of 50–60
frames for ulcer and
polyps (single center);
No study population

Sensitivity:
100, Specificity:
75

Retrospective with
frame level cross
validation

Computational

2012 Classification into
tumors and
normal [90]

Uniform LBP and wavelet
transform based features,
SVM-SFFS and SVM-RFE for
feature selection and
classification

Selective frames of
tumors from 10
proprietary videos
(single center); No study
population

Sensitivity: 87,
Specificity: 92

Retrospective,
Patient level
10-fold cross
validation

Computational

2015 Classification into
various GI organs
[111]

Deep CNN based architecture
with 3 convolutional layers

Selective frames of 30
prop. videos (single
center); No study
population

Accuracy: 95.5 Retrospective with
frame level cross
validation

Computational

2015 Classification of
ulcers vs. normal
[93]

Fusion of color and textural
features from multi-level
super-pixel groups into
saliency maps, Saliency based
locality constrained linear
coding for classification

Proprietary dataset
containing 130 ulcer and
130 normal frames
(single center); No study
population

Sensitivity: 94,
Specificity: 91

Retrospective with
frame level 5-fold
cross validation

Computational

2016 Classification into
motility conditions
[112]

Deep CNN with 5 layers and
additional channels of
Laplacian and Hessian merged
in two different ways

Selective frames from 50
proprietary videos
(single center); No study
population

Accuracy
(best): 96

Retrospective with
frame level cross
validation

Multi-
disciplinary

2016 Classification into
bleeding and
normal [80]

Deep CNN with 8 layers for
features extraction, SVM as a
classifier

10,000 selective frames
from proprietary videos
(single center)

F1 score: 99.5,
Precision: 99.9,
Recall: 99.2

Retrospective with
frame level cross
validation

Computational

2016 Segmentation of
bleeding ROIs,
Classification into
bleeding and
normal [81]

Color channel mixing and
visual contrast-based saliency
maps for segmentation, ROI
color channel features for
mapping frames into words of
color histogram, SVM and KNN
for classification

2400 selective frames of
bleeding and normal
from 10 proprietary
videos (single center);
No study population

Sensitivity: 92,
Specificity: 97

Retrospective with
frame level cross
validation

Computational

2017 Classification of
celiac and normal,
disease level
prediction in
terms of
probability [96]

GoogLeNet is used to train
initially on most representative
frames for achieving optimal
gradient profile, later rest of
frames are used

Selective frames from 21
proprietary videos
(single center); Given
study population

Disease level
sensitivity and
specificity: 100

Retrospective with
patient level 7-fold
cross validation

Multi-
disciplinary

2017 Classification into
polyps vs. other
motility conditions
[88]

Stacked sparse autoencoder
with image manifold constraint
in the cost function to cater for
visual diversity in VCE frames

Selective 4000 frames
from 35 proprietary
videos (single center);
No study population

Accuracy: 98 Retrospective with
frame level cross
validation

Computational

2017 Classification into
hemorrhage and
normal [82]

4-way data augmentation:
rotation, illumination,
blurriness, poison noise to cope
with data sparsity and diverse
visual nature, Transfer learning
models for classification

12000 selective frames
from proprietary videos
(single center); No study
population

F-score: above
95 for all four
models (Le-Net,
Alex-Net,
GoogLeNet,
VGG); data
augmentation
improved
F-score

Retrospective with
frame level cross
validation

Computational

2017 Classification,
segmentation of
active blood
normal [83]

Color histogram features based
classification into positive or
negative, Deep CNNs for
segmentation of active blood.

Highly selective 300
frames form proprietary
videos of 12 patients
(single center); No study
population

Mean IU: 77.5
Mean accuracy:
87

Retrospective with
frame level cross
validation

Computational

2018 Classification of
ulcer and erosion
vs. normal in 2
independent
models [72]

Alex-Net based transfer
learning approach for binary
classification into ulcer or
erosion vs. normal

Selective images from
144 proprietary videos
(single center); No study
population

Average results
Accuracy: 95
Sensitivity:
95.2,
Specificity: 95.7

Retrospective with
frame level cross
validation

Multi-
disciplinary

(continued on next page)
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Table 3 (continued).
Year Task Method Dataset & Study

population
Results Validation method Authors’

discipline

2018 Classification into
anomalous and
normal, anomaly
region detection
[71]

Custom Deep CNN architecture
for classification, Deep features
based salient point detection
for localization of anomaly

KID dataset 2,
Gastroscopy challenge
dataset (non-VCE); No
study population

Accuracy: 90
Sensitivity: 92,
Specificity: 87

Retrospective with
patient level cross
validation

Computational

2019 Classification +
detection of ulcers
[94]

Primary detection using
Retina-Net, second glance
patch and image level
refinement built on ResNet-18
and ResNet-34 backbone.

Selective frames from
proprietary dataset of
1504 patients
(multi-center); No study
population

Accuracy: 90
Sensitivity:
89.7 Specificity:
90.5

Retrospective with
patient level cross
validation and test

Computational

2019 Classification +
detection of angio
ectasia [95]

Deeps CNN based transfer
learning using Single Shot
Multi-Box Detector

Selective images 189
proprietary videos
(single center); No study
population

Sensitivity:
98.8 Specificity:
98.4

Retrospective with
frame level
validation

Medicine

2019 Classification into
bleeding, normal
and ulcers [74]

Fusion of VGG-16, VGG-19
features and geometric features
extracted via handcrafted
segmentation technique, KNN
for classification

Selective frames from a
proprietary collection of
10 videos (single center);
No study population

Accuracy: 99
Sensitivity and
Specificity: 100

Retrospective with
frame level 10-fold
cross validation

Computational

2019 Classification,
segmentation of
angioectasia [75]

Deep CNN based customized
architecture for pixel level
classification

Selective 6360 images
from CAD-CAP dataset
(multi-center); Given
study population

Sensitivity:100
Specificity: 96

Retrospective with
frame level split
test set

Multi-
disciplinary

2019 Detection,
classification of
erosions and
ulcers [76]

Transfer learning approach
using Single Shot Multi-Box
Detector

15,800 frames from 180
proprietary videos
(single center); No study
population

Accuracy: 90.8
Sensitivity:
88.2 Specificity:
90.9

Retrospective with
patient level split
test set

Multi-
disciplinary

2019 Classification into
normal and blood
content [84]

Transfer learning approach
using ResNet-50

Selective frames from 66
proprietary videos
(single center); Partially
provided

Accuracy: 99
Sensitivity:
96.6 Specificity:
99.9

Retrospective with
patient level split
test set

Multi-
disciplinary

2019 Classification into
ulcer and normal
[77]

Transfer learning approach
using GoogLeNet, AlexNet

1875 images from
proprietary dataset
(single center); No study
population

Accuracy,
Specificity,
Sensitivity: 100

Retrospective with
frame level split
test set

Computational

2019 Multi-anomaly
classification into
abnormal and
normal [113]

ResNet based transfer learning
(only multi-center and
multiple anomaly detection
study in VCE domain)

Large multi-center
proprietary dataset 6970
patients; No study
population

Sensitivity: 99
Specificity: 100

Retrospective with
patient level
separate validation
set of 5000 cases

Multi-
disciplinary

2020 Classification into
7 lesion types and
normal [98]

2 ResNet-34 and faster RCNN
based framework

Selective frames from
proprietary 797 videos
(multi-center); No study
population

AUC (for all
anomalies) =
84

Retrospective
frame level cross
validation

Medicine

2020 Detection of small
intestine lesions
[103]

YOLO-v3 based lesion
localization and classification

3120 lesion and normal
images from proprietary
videos (single center);
No study population

Mean Average
Precision
(mAP): 93
fps: 21

Retrospective
frame level cross
validation and test
set

Computational

2020 Classification into
significant and
non-significant
frames [99]

Inception-ResNet-v2 transfer
learning approach with fine
tuning (various lesions and
anomalies are lumped under
one class ‘significant’)

Selective images from
proprietary 139 videos
(single center); No study
population

Accuracy: 98.3
Sensitivity: 96
Specificity: 99.5

AUC: 99.8

Retrospective fame
level cross
validation,
validated also on a
patient level
different set in AI
vs. expert mode.

Multi-
disciplinary

2020 Classification into
normal mucosa
and mucosal
ulcers [100]

Xception CNN based transfer
learning approach

Selective frames from
proprietary 49 videos
(single center); Given
study population

Accuracy: 95.7
Sensitivity:
94.5 Specificity:
97

Retrospective
frame level split
5-fold cross
validation, one to
many patient level
validation

Medicine

(continued on next page)
depending on previous estimations; therefore, the accumulative
error is absent. A Kalman filter was used to estimate the pose of
the capsule using results from visual odometry, and the feedback
loop involved RF measurements to correct the pose estimations.
When compared with existing RF-based localization systems, the
average localization error reportedly reduced from 6.8 cm to
less than 2.3 cm. Active locomotion can be implemented in two
204
ways: internal locomotion using propellers or paddles attached
to the capsule’s shell, as in a robot, or external locomotion us-
ing externally applied stimuli such as a magnetic force. Internal
locomotion is problematic owing to the power constraints and
unstable movements. Therefore, most magnetically controlled ex-
ternal locomotion methods are considered feasible and have been
extensively studied. However, such active locomotive systems are
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Table 3 (continued).
Year Task Method Dataset & Study

population
Results Validation method Authors’

discipline

2020 Classification into
hemorrhagic,
ulcerative and
normal [104]

Modified VGG-Net for
classification, Grad-CAM used
to visualize class activation
maps

Selective frames from
proprietary 526 videos
(multi-center); No study
population

Accuracy: 96.8
Sensitivity:
97.4 Specificity:
98

Retrospective
validation on a
different set of
162 videos from
another center

Multi-
disciplinary

2020 Classification of
ulcer, bleeding
and normal [97]

Fusion of VGG16 and GLDM
features, PSD grand
mean-based feature selection,
cubic kernel SVM for
classification

6000 selective frames
from proprietary small
dataset (single center);
No study population

Accuracy: 98.3
F1-score: 98.4

Retrospective
frame level 10-fold
cross validation

Computational

2021 Classification into
different lesions
with associated
hemorrhagic
potential [102]

Xception based transfer
learning approach

Selective frames from
proprietary 5793 videos
(multi-center); No study
population

Accuracy: 99
Sensitivity:
88.4 Specificity:
99.2

Retrospective
frame level cross
validation

Medicine

2021 Polyp
segmentation
(real-time) for VCE
and colonoscopy
[92]

Novel Nano-Net architecture
based on encoder–decoder
framework, MobileNetv2 used
as encoder, modified Residual
block used as decoder.

Fusion of Kvasir-capsule
(polyps only), Kvasir-seg.
and other publicly
available colonoscopy
polyps datasets; No
study population

Matched
performance
with SOTA
methods, at
increased fps
and less no. of
parameters

Retrospective
frame level cross
validation

Multi-
disciplinary

2021 Classification of
blood vs. no blood
[85]

Xception model-based transfer
learning with fine tuning

22095 selective frames
from proprietary dataset
(single center); No study
population

Accuracy: 98.5
Sensitivity:
98.6 Specificity:
98.9

Retrospective
frame level cross
validation

Medicine

2021 Classification of
frames into 5
multiple lesions
and normal [109]

Framework comprising 3 SSD
network and one ResNet-50 for
classification of various lesions

Selective images from
proprietary multicenter
videos; No study
population

Average
detection rate
for all lesions:
98 (better than
quick view)

Retrospective
patient level cross
validation

Multi-
disciplinary

2021 Classification of
frames into
bleeding vs.
normal [86]

A cascaded Mobile-net and
custom deep CNN based model

Selective frames from 33
proprietary videos
(single center); No study
population

Accuracy: 99.3
F1-score: 99.7

Retrospective
frame level split
validation

Computational

2021 Binary
classification
between
significant and
non-significant
frame [110]

Inception-ResNet-v2 based
transfer learning approach

400k frames selected
from 84 proprietary
videos (multi-center);
Given study population

Cross-validation
accuracy: 98
External
validation
accuracy: 85.7
AUC: 92.2

Retrospective
frame level cross
validation,
validation also
done on data from
other center

Multi-
disciplinary

2021 Classification into
four types of
lesion [105]

Deep metric based few shots
learning incorporated into base
models of AlexNet, VGG,
ResNet

5360 frames selected
from 52 proprietary
videos (single center);
No study population

Best accuracy:
90.8 F-score:
91 (Alex-Net)

Retrospective
frame level cross
validation

Computational

2022 Attention
augmented
classification into
ulcer, blood, polyp
and normal [106]

ResNet-50 as backbone, lesion
self-attention (local and global)
maps fused with original frame
to elevate lesions for
classification network

Selective frames from
Kvasir capsule merged
with bleeding dataset.
(multi-center); No study
population

Average
accuracy: 95.1
(Kvasir), 94.7
(bleeding
detection data)

Retrospective
frame level 4-fold
cross validation
and test set

Computational
still in the validation phase, and no such commercial systems are
currently available.

4.4. State-of-the-art in clinical practice

In this sub-section, we provide an overview of the state-of-
he-art clinical systems and software features of various leading
anufacturers of capsule endoscopy. Medtronic’s latest system
ith the name of ‘‘PillCam ™ SB 3 Capsule’’ [123] along with
araphernalia that comprises a sensor belt, sensor array, and
recorder (ver. 3) is more efficient and effective than older

ersions. A major improvement in hardware is the introduction
f adaptive frame rate technology. The frame rate automatically
djusts itself from 2 fps to 6 fps depending on the motility condi-
ions, thereby facilitating efficient capturing while ameliorating
edundancy and mucosal coverage. In addition, the wide-angle
iew, image quality, and battery charge capacity of the capsule
ave been improved from previous versions. The reading software
205
has been improved with the name of ‘‘PillCam™ Software V9
Update’’. The reading time is claimed to be 10% faster than the
previous version. A new ‘‘Top 100’’ feature has been introduced
listing the top 100 most clinically relevant frames to assist in
identification of pathologies in a lesser time. A quick-view mode
enables a rapid study preview to cover videos in a few minutes.
A 2-D simplistic GI map was introduced to view the progress of
the capsule in real time. Accordingly, the necessary audio and
visual instructions are passed to the patient to help progress the
capsule into the forward stages. Similarly, Olympus introduced its
latest VCE system with the name of ‘‘Endocapsule 10’’ [124]. The
omni-mode has been claimed to reduce the reading time by up
to 64% without compromising the diagnostic outcome. The omni
mode detects the similarity in frames even if the angle of cap-
ture is changed across two frames belonging to the same scene.
Improvements in image quality, halation, noise reduction, and ad-
justment of brightness levels to balance across diverse brightness
conditions have been reported. The angle of view increased from
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45◦ to 160◦; likewise, the battery lifetime increased from 8 to
2 h, which increased the observation time by 50%. A real-time
D tracking function on the screen allows the patient to view
he progress of the capsule movement along the GI tract. The
ame visualization is available on a per-frame basis to localize
he lesion in the small intestine. In nutshell, reading time has
een significantly reduced by AI (deep learning) based omni mode
nd quick-view mode in Olympus and Medtronic systems respec-
ively [70,125]. AI-based efficient detection of multiple anomalies
as yet to be introduced in these advanced endo-capsule systems.

. Challenges and opportunities

.1. Intricate nature of VCE images

Images acquired by a capsule – by virtue of nature of the
rocess by which they are captured – are indeed intricate over
anifold aspects. Untamed motion of capsule under peristalsis
nd gravity certainly violates the benchmark rules for capturing
ffective and informative shots. Appropriate distance from target
cene, stillness of camera for focusing on a specific point, angle
f capture to avoid possible light reflections, zoom control for a
esired scene are some of the key standards being complied in
ny visual scene capturing for analysis, especially conventional
ndoscopic procedure. An expert has full control over maneuver-
ng camera inside the lumen to delineate the suspected areas in
onventional endoscopy. Conversely, nearly wild motion profile
f capturing device, i.e., capsule, posits certain challenges per-
inent to image analysis and interpretation in the case of VCE.
urthermore, air is also not inflated in case of VCE conducing to
oor luminal volume for capturing effective shots particularly for
mall bowel—already a narrowly convoluted structure. Miniatur-
zation of optics and electronics into a pill sized capsule somehow
ffects the overall image quality in terms of resolution and noise,
hich is unlikely in conventional endoscopic probe. These proce-
ural differences in VCE create subtleties and intricacies among
mages captured. Visual similarity among frames from different
ategories is the most pronounced subtlety caused. Diverse cap-
uring scenarios for various luminal structures whether normal,
ormal variant, mildly anomalous or severely anomalous tend
o lessen the visual discriminative power among various classes.
ormal frames belonging to anatomical landmarks may visually
verlap with abnormal classes. For example, Pylorus may appear
ike tumor or mass captured from the duodenal side. Similarly,
mpulla and ileocecal valve could be mistaken for a polyp ow-
ng to visual similarities in some frames. Lymphatic structures
uch as lymphectasia and lymphatics cysts are vulnerable to be
istakenly construed as more pathological appearances such as

ymphangioectasias. Tumors and polyps may be captured in a
onfined side view or closed view creating confusion with regular
ucosal bulges and rounded folds. Red spot and angioectasia
re similar and difficult to differentiate. Similarly, erosion and
lceration are visually similar in respective anomalous regions of
ome frames. Fig. 7 shows some of such similar pairs from dif-
erent categories. An anomalous frame comprises active anomaly
egion and background region, which itself could be very diverse
n visual appearance. Frames where anomaly is visually well pro-
ounced relative to the background scene are somehow obliging
o be detected. However, problems arise in such frames when
he anomalous region tends to match or overlap the anomaly
ignature for some other class. However, there exist other types
f frames where anomaly may not be much pronounced visually,
nd hence, background scene becomes a dominant player in
earning class activations. In such scenarios, multi-category classi-
ication becomes vulnerable to in-accurate results as background
cene is quite likely to be nearer to other landmarks classes or
ormal/variant mucosal categories such as in Fig. 7 (case g).
206
Visual diversity in the background of different anomalous
frames appears to be a challenge that must be addressed, partic-
ularly for frames with diffused or mild manifestations of anoma-
lies. One such case of erosion is shown in Fig. 8. The images were
adapted from an open access dataset [49].

The subtle manifestation of lesions against highly pronounced
diverse backgrounds in frames may possibly confound the neu-
rons in learning the discriminative features for each category in
a multiclass classification task. For example, image on top left
corner would possibly be wrongly classified in the ‘bubbles’ or
‘obscure’ categories if such classes exist in labels. Else, the dom-
inating bubbles or other backgrounds that manifest themselves
in other classes would interfere with the process of learning
class activation patterns or could slow the learning process owing
to the effort being wasted on learning the connection of the
image-dominant background with a peculiar type of anomaly.

Supervised learning with anomaly annotation as a bounding
box or pixel-wise segmentation can help cope with learning
discriminative features of mildly manifested lesions as anomaly
location could be leveraged by ignoring the visually dominant
diverse backgrounds, and learning could focus only on lesion-
specific areas to avoid misleading backgrounds. However, inter-
class visual similarity is a problem that must be addressed metic-
ulously while designing a learning system. Based on a compre-
hensive literature review and comparative analysis of state-of-
the-art systems, we suggest constructing a class labeling hierar-
chy to cater for visual similarities among various lesions without
significantly perturbing the pathological essence of frame-level
labels, as shown in Fig. 3. This is because the hierarchy of their
clinical relevance may arguably help in creating better margins
to discriminate among different classes. Designing a more robust
system capable of forcibly learning only discriminative features in
such a confounding multiclass dataset is another future direction
and challenge. As discussed earlier, some researchers attempted
to address the challenges of visual similarities and diversities
in Vieira et al. [78],Li et al. [82] and Yuan and Meng [88] by
proposing an additional image-manifold constraint in the cost
function, extended data augmentation, and ensemble learning.
However, in a multiclass prospective setting, the results must be
validated to ensure the rationality of the proposed methods.

5.2. Datasets related problems

The availability of VCE datasets as open-access academics
is a significant problem. Unfortunately, many publicly available
datasets have now been termed proprietary datasets and are not
available to researchers working in this domain [52–54]. Most
studies have utilized proprietary datasets collected and compiled
by the authors themselves and have never been made accessible
to the research community. This may mark a big question to the
rationality of the comparisons in terms of performance metrics
made in many articles when the foundations, that is, datasets,
have been different across these experiments. Data sparsity is
another significant challenge for the VCE datasets. Not every
sample (patient) contributed equally to the different frame-level
categories, specifically for anomalies. Some anomalies are less
likely to occur or manifest in small-bowel VCE, such as polyps, tu-
mors, hookworms, and sparsity in the number of available frames
for such anomalies engenders a typical problem in machine
learning known as class imbalance. Class imbalance precludes
achieving better results on unseen data because of the inherent
bias introduced. In multiple-lesion detection, class imbalance
must be addressed efficiently. Extended data augmentation and
sampling techniques have been frequently employed to cater to
imbalances in classes [16,82,86].



H. Wahab, I. Mehmood, H. Ugail et al. Future Generation Computer Systems 143 (2023) 191–214

Fig. 7. Some examples of mimicker images from different classes having visual similarities: (a) Polyp, Pylorus; (b) Lymphangiectasia, Lymphectasia; (c) Red spot/dot,
Angiectasia; (d) Intestinal lymphectasias, Ulceration; (e) Normal mucosal bulge, Sub-mucosal carcinoid; (f) Angioectasia, Erythema; (g) Ulcer, Ileocecal valve; (h)
Erosion, Ulcer.
Source: Images taken from [38,49].

Fig. 8. Example of anomalous frames with mild manifestation of anomaly, yet diverse background scenes.
Source: Erosion frames adapted from [49].

207
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Many dissensions exist in frame-level label terminology across
arious datasets and research studies, as discussed earlier. There-
ore, an attempt to merge all the data from various centers
equires extra effort to either label them again according to a
ommon standard labeling terminology for small bowel VCE or
evise a label merging scheme according to pathological close-
ess. Therefore, it is necessary to follow an international con-
ensus developed on frame-level labeling terminology introduced
n Leenhardt et al. [39,40] and Leenhardt et al. [41] in the future.
ounding boxes around anomaly or pixel-level lesion highlighting
an potentially identify vague anomalies and lesions accurately;
owever, generating consensual ground truth for them is a very
edious and time-consuming process, particularly for VCE, where
ither the image quality is relatively compromised or the view is
ot conducive. Interactive and user-friendly frameworks should
e designed to make this tedious and boring task interesting and
ess time-consuming.

While labeling VCE frames, especially for anatomical land-
arks, extra care is required when labeling only representative

rames where specific landmark organs are vividly present. In a
ideo, many consecutive frames in the form of a shot could be re-
ated to that anatomical landmark; however, it is quite likely that
nly a few frames in that shot may contain actual representative
mages of the landmark. This practice can potentially mitigate the
isual similarity challenge among various categories, particularly
or anatomical landmarks. Some proprietary datasets used in
esearch studies lack study population information and inclusion
nd exclusion criteria, which are considered significantly impor-
ant for understanding the limitations and biases of studies based
n such datasets. In summary, large multicenter datasets labeled
nd annotated according to the consensual frame-level findings
tandard must be created, keeping in mind the possible visual
antage point for inclusion or exclusion of a frame in a particular
ategory of the training set.
The scarcity of VCE datasets for research purposes has at-

racted significant attention for high-fidelity synthetic data gen-
ration. Fabricating synthetic data by allowing a model to learn
ll the underlying intricacies (probabilistic distributions, non-
inearities, and noise effects) from real data, without imitating
atient privacy aspects from real data, confers a handsome so-
ution to cope with data paucity as well as ethical and legal
indings in healthcare. Circumventing privacy concerns while
imultaneously maintaining high fidelity is a challenge. GANs
re extensively employed in other computer vision domains,
here less imaging data is available and the results are quite
ropitious [126,127]. In medical imaging, there have been a few
ecent attempts to apply GAN to overcome data scarcity and
lass imbalance [128–131]. The results are arguable, and GAN
eeds to undergo further evaluation for its usefulness in medical
maging, particularly capsule endoscopy [128,132]. Additionally,
ynthetic data generation raises its own privacy and security vul-
erabilities, especially in medical imaging, and poses significant
hallenges to healthcare administrative and legal policies [133].

.3. Reliability and explainability of machine learning based diag-
ostics systems

The term ‘reliability’ attains phenomenal significance for
achine-learning-based diagnostics systems in healthcare. Rely-

ng on machines or the mere assistance for critical decisions perti-
ent to precious lives implies high standards of performance and
uality. Although the standards of quality and performance have
much wider spectrum, only machine-learning-related quality
nd performance are relevant here. Machine-learning-based di-
gnostics or decision support systems are mostly data-driven;
herefore, the quality of data on which a model is trained should
208
be very high in terms of representation power, bias, popula-
tion diversity, and consensually generated ground truths. Failure
to comply with data quality standards may provide acceptable
performance on retrospectively collected validation splits; how-
ever, such a system might not perform well in a real-world
heterogeneous prospective setting. Poor quality data imparts
multi-faceted bias, leading to less generalizable and less robust,
and in turn, an unreliable system. Many of the VCE CAD systems
in research studies lack quality-related data information. Apart
from the data, the explainability of the model itself plays a vital
role in the overall system reliability. In particular, deep learning
models are being prolifically employed as black boxes without
tapping into the explainability factor. Explainable AI (XAI) is
a popular research area owing to its significance in creating
reliable systems for critical applications such as healthcare and
self-driving cars [134]. Lack of explainability may further bolster
ethical and legal issues that impede the clinical use of such in-
novative computer-aided detection systems. Tapping into several
deep learning models applied in both clinical and non-clinical
settings has recently revealed telltale observations regarding the
reliability of such performances [135,136]. Clinicians, as end
users, only accept and approve these ‘‘black-box’’ systems once
they represent a high degree of explainability, interpretability,
transparency, and traceability.

XAI refers to AI systems with an insightful rationale for their
decision-making processes. Behavioral outputs are well-reasoned,
understandable, and explorable to depict potential pros and cons;
therefore, the systems are more trustworthy and transparent to
their end users [137,138]. In the medical domain, only gener-
ally perceived clinically relevant features should be the foun-
dation basis for important decision-making or analysis. Conven-
tional machine learning-based systems are usually more explain-
able and interpretable compared to modern deep-learning-based
systems; however, the performance of DL-based systems have
proven to be better than the former ones. Deep learning-based
decisions in healthcare are easily susceptible to depending on
unwanted odd factors such as bias in certain demographic param-
eters of training data rather than clinically relevant contextual
reasons. An XAI system is believed to possess intrinsic char-
acteristics such as explainability, interpretability, transparency,
justifiability, and contestability [139–141]. Several approaches
have been adopted by researchers to employ XAI in health-
care, such as XAI by dimensionality reduction (using PCA, ICA,
etc. to simplify features enhancing interpretability) [142–144],
feature importance (finding correlations and domain relevant
reasons between features and outcomes) [145–147], attention-
based visualizations (attention-based saliency maps, CAM, Grad-
CAM, etc.) [148–150], and surrogate representations (LIME) [151,
152]. In the VCE context, CAD-based analysis can be validated by
bridging or at least explaining the gap between the outcome of
explainability methods such as class activation maps, activation
maximization, reverse engineering CNNs, and clinical relevance
established by medical experts in several case studies [140].
Adopting a modular approach, such as the framework proposed
in this work (considering frame level and disease level tasks as
separate), may offer more convenience in applying XAI methods
to CADx for capsule endoscopy. Additionally, incorporating the
explainability factor into the objective function of a learnable
model during the training process may enable the design of XAI-
aware systems with enhanced interpretability and explainability
for end-users [141].

Traceability and reproducibility can hamper the adoption of
CAD systems in clinical practice. Tracing back the outcome
through all transformations to the input data with clarity regard-
ing each processing step along the pipeline is traceability [153].
Reproducibility is broader in spectrum-encompassing methods,
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esults, and inference-related reproducibility. Together, the trace-
bility and reproducibility resolve the overall transparency of
he proposed system [154,155]. The transparency of a CAD sys-
em affects the confidence level of reliance on the system in a
linical setting. Domain experts should be aware of the limita-
ions, artifacts, working principles, strengths, and weaknesses of
omputer-based assistive systems so that the extent of reliance
n the CAD system can be well formulated as a policy to avoid
ny mishaps. In summary, the reliability of an AI-based VCE
nalysis system is highly dependent on data quality, the inherent
obustness of the model, and the extent of the system’s closeness
o an XAI system (explainability, interpretability, transparency,
nd justifiability).

.4. Ethical and legal issues

AI-assisted capsule endoscopy faces ethical and legal chal-
enges similar to those confronted by other AI systems in health-
are and medical imaging. In the realm of ethics in AI, four
actors are deemed significant by researchers across the domain:
nformed consent, data privacy and security, transparency, and
lgorithmic fairness [156,157]. Informed consent, which is the
ost immediate issue engendered by AI integration in healthcare,
as not received due attention. The intricacies around black-box
I cause many concerns regarding possible data or algorithmic
ias risks. The extent to which a patient must be informed of such
omplexities is a primary ethical and legislative concern. How-
ver, from a clinician’s perspective, answering these questions
bout risk factors is challenging. Several AI-based systems are
ependent on patient data. For example, the current regulations
egarding medical data require informed consent to delineate the
urpose of use [158]. However, much of AI today (deep learning
nd unsupervised learning) reveals certain new biomarkers or
as been used for new tasks not even conceived at the time
f retrospectively collected data. Hence, legal bindings confine
he true potential of AI to leverage. Concerns regarding data
rivacy, security, and consent for usage from patients need to be
onsidered and addressed by both communities, that is, AI and
egal experts [159]. The transparency of an AI system depends
n its accessibility, comprehensibility, and explainability to the
nd user. Be it a diagnostic system or decision support system,
he extent to which a patient and a physician should both know
bout the details or explainability of such a prospective system
s yet to be formulated by regulatory bodies. Therefore, some
ritical questions need to be contemplated and explained pur-
osefully, for example, whether the patient just requires knowing
xternal agent-level information regarding AI-based systems or
ome details explaining the algorithm, limitations, risk, and level
f transparency associated. AI here is not used as a mere endo-
copic or CT scan device, which are only the imaging modalities.
he reading and interpreting of results from these modalities
re dependent on the intelligence and experience of a human
xpert, that is, a doctor, who is chosen by the patients. Hence,
I-based CAD might require a more critical evaluation of the
xtent of transparency and the level of physician dependency on
hem by legal and ethical experts. The explainability of AI-based
ealthcare systems is deeply rooted in connections with ethical
nd legal concerns. The consistently evolving and widening ap-
lications of AI in the medical domain seek germane adaptations
n law and regulations to help such systems deliver their im-
act [160,161]. Algorithmic fairness and bias are highly related
o the level of transparency and explainability. These factors can
e the most dominant objections raised by the legislative bodies.
everal examples exist in the literature where AI-based algo-
ithmic biases cause injustice or inaccurate diagnosis based on
thnic origins, gender, skin color, age, or other disabilities [162–
209
164]. Liability is another major legislative issue for AI-based sys-
tems, particularly in healthcare. Although high-performance AI
systems are vulnerable to failure under certain unseen or inten-
tionally perturbed circumstances, no one can be held accountable
considering liability boundaries seem quite equivocal. However,
health care governance systems attribute great significance to
the principles of liability and accountability. Data protection and
cybersecurity are also important concerns in addressing legal
issues related to AI in healthcare. Hostile forces can manipulate
data to introduce bias in AI-based decisions or to misrepresent a
patient’s health record for their own benefit. Much legal work has
been attributed to cybersecurity and data protection in general
and applies to the healthcare domain as well [165]. In their
discussion paper published recently [166], the Food and Drug Ad-
ministration (FDA) discussed and invited feedback from domain
experts on proposed modifications in the regulatory framework
for incorporating AI-based software in medical systems. While it
does mention an appropriate level of transparency in the output
and algorithm, the detailed levels of ethical and legal aspects and
the precise extent of explainability, transparency, and liability
for acceptance have not been explored. In the future, a precise
and well-defined regulatory framework may be expected from
legislative bodies such as the FDA and Medical Devices Regulation
(MDR).

6. Conclusion

Capsule endoscopy has been proven to be the first-line gold
standard for diagnosing small bowel abnormalities. However,
analyzing lengthy videos for subtle anomalies among several
redundant frames by a human expert can result in a high mis-
detection rate. AI, particularly deep CNNs, promises to solve this
problem, saving both time and the misdetection rate. In this
study, we developed a prospective hierarchy of tasks for an-
alyzing VCE videos using a machine learning-based system in
the same manner, where a gastroenterologist reaches the final
disease-level conclusion by analyzing raw frames. We propose
a taxonomy of frame-level findings to conform to both patho-
logical and visual bases. Applying machine learning in such a
taxonomical manner for classification of frames may potentially
generate better classification accuracies at the lesion level for less
distinct and subtle findings under the same lesion level category.
To some extent, it may also ameliorate the mimicking nature
of VCE frames for various lesions. Mapping frame-level findings
to disease-level diagnosis along with other inputs of frame label
prediction timeline, patient history, and meta-data (gender, eth-
nicity, and age) in the light of clinical relevance surveys could
be the footprint approach for a prospective end-to-end holistic
solution.

Advancements in computer vision, particularly deep CNNs,
have demonstrated remarkable results for video analysis in cap-
sule endoscopy. Despite the outstanding performance metrics
cited in the research studies; the clinical implementation of these
state-of-the-art methods has not yet been implemented to de-
liver true potential. Furthermore, by incorporating the observa-
tions made recently by clinical experts, we contemplated the ad-
vantages and disadvantages of existing machine-learning-based
methods, highlighting some shortcomings or overlooked areas in
this study. Several studies are prone to selective approaches with
highly narrowed tasks, such as classification or detection of a sin-
gle anomaly. Moreover, the validation strategies differ among the
methods, making a direct comparison of the performance metrics
irrational. Even the risk of patient-level overlaps between training
and validation or testing sets is notable. Retrospective validation
has been adopted in almost all studies; however, validation per-
formed in a prospective manner wins more confidence over the
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eliability and applicability of such a proposed system, as in other
edical domains. Much of the shortcomings directly or indirectly

elate to the scarcity of large open academic datasets incorpo-
ating population dynamics and annotated using the most recent
tandard terminology. An end-to-end holistic solution, covering
ll possible medical conditions and population diversity with the
apability of taking in the raw frames and suggesting disease
evel diagnosis based on learned clinical relevance established
y individual frame-level findings, promises a significant impact,
nd could be a possible future direction of work for researchers
n this domain. Explainability and transparency are also less ex-
lored areas in VCE analysis. Existing ethical and legal bindings
arrow the scope of possibilities in which AI can potentially
everage healthcare facilities. Regulations regarding ethical and
egal concerns need to be updated to provide precise guidance
n the extent of explainability required for AI-based diagnostics
ystems, data privacy, security, and usability issues. Overcoming
he contemporary challenges reviewed in this paper promises
reat potential for VCE to become a first-line gold standard, not
ust for the small bowel but also for other organs of the GI tract.
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