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Abstract

With the increase of complex Machine Learning (ML) models making decisions in
everyday life in a wide range of fields from economics to healthcare, the demand
for Interpretable Machine Learning (IML) techniques has grown. One method to
broaden the understanding of the behaviour of a fitted ML model is through the
use of informative visualisations. Visualisations can aid in interpretation and can
provide a more thorough examination into the nature of the predictions generated
from an ML model. This is of particular importance when using so-called black-
box models, such as random forests or Bayesian Additive Regression Trees (BART)
models.

In this thesis, various IML approaches are proposed through the use of novel
visualisations for displaying different metrics and model summaries which can be
used for examining the behaviour of a fitted ML model. First, we present flexible
methods for investigating variable importance, interactions, and variable effects by
presenting a suite of visualisations that can aid in the interpretation of statistical
and ML models through the use of model-specific and agnostic methods. Following
from this, motivated in part by the lack of existing visualisation methods and by
the rise in popularity of this particular model, we develop novel visualisations for
examining BART models that include examining the tree structures and, through
the posterior distribution, the uncertainty surrounding predictions. Lastly, we
demonstrate and discuss our implementation of the R package software vivid
(Variable Importance and Variable Interaction Displays) which is used to explore
the behaviour of fitted ML models. Here, we focus on key package features and
general architectural principles used in vivid when designing informative IML
visualisations and provide a practical illustration of the package in use.
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CHAPTER 1
Introduction

This thesis is concerned with visualising fitted Machine Learning (ML) model be-
haviour and is motivated by the lack of development of visualisation tools to aid
in the interpretation of ML models. The aim is to facilitate the interpretation
of complex ML models by constructing a general model-agnostic framework, for
visualising different aspects of a model fit, that can be applied to any supervised
learning algorithm. Additionally, in response to the growing popularity of this spe-
cific model and the lack of available interpretation tools, we develop a framework
for evaluating and visualising Bayesian additive regression tree (BART; Chipman
et al., 2010) model fits and their associated posterior distribution.

1.1 Visualisations and Interpretable Machine
Learning Techniques

In this chapter we provide a non-exhaustive review of some of the more popu-
lar Interpretable Machine Learning (IML) approaches used for explaining model
behaviour and the most common visualisations associated with them. Having
foreknowledge of these techniques will aid the reader in understanding our visu-
alisations in later chapters. As IML is a field that is still expanding and spans a
wide range of disciplines, we focus our study on post-hoc interpretability. That

1



1.1. Visualisations and Interpretable Machine Learning Techniques

is, the use of interpretation techniques after the model has been fitted. Numerous
software packages already exist to examine and visualise model behaviour, such as
the IML (Molnar et al., 2018), mlr3viz (Lang et al., 2023), or DALEX (Biecek, 2018)
packages for the R-language framework, or the captium library (Kokhlikyan et al.,
2020) for python. For a listing of different packages available in the R-language,
see Chapter 4 of this work, and for a more detailed review and discussion on in-
terpretable machine learning and an examination of predictive models see Molnar
et al. (2020a), Molnar (2022), and Biecek and Burzykowski (2021).

To begin, we provide a brief overview of the model development procedure and
where in this process post-hoc interpretability techniques can be applied. Figure
1.1 shows a typical life cycle of a model, broken up into six steps and is a varia-
tion of common approach called cross-industry standard process for data mining
(CRISP DM; Chapman et al., 2000). The process shown in Figure 1.1 can be
summarised in the following; once the data has been prepared and cleaned (as
described in the first step), it can be explored via simple data analysis to aid in
understanding trends or patterns in the data (step two). Outliers are normally
detected at this stage, though further outliers may be identified by the modelling
process. Correlation between predictors and between predictors and response will
also be assessed in stage two. The next step in the cycle is to select, fit, and vali-
date an appropriate model. Step number four is when the model can be evaluated
for both model performance and can be visualised using post-hoc interpretabil-
ity techniques. The methods proposed in this thesis can be applied here to gain
a deeper understanding of the relationship between variables and the predicted
response and general model behaviour. The final two steps are concerned with de-
ploying the model into a production environment and maintaining/updating the
model to ensure it continues to perform as expected.

Numerous tools that automate model development exist in the R-language environ-
ment, such as mlr3 (Lang et al., 2019), H20 (LeDell et al., 2020), and tidymodels
(Wickham et al., 2019). As the visualisation methods presented in Chapters 2
and 4 are model agnostic, they can be used in conjunction with any of the afore-
mentioned R-packages. For a more detailed discussion on the model development
process see Biecek (2019).

2



1.1. Visualisations and Interpretable Machine Learning Techniques

Figure 1.1: Typical model life cycle.

In general, interpretability methods can be divided into two distinct approaches.
That is, either model-agnostic methods or model-specific methods. Model-agnostic
interpretation methods are post-hoc techniques which can be applied to any ML
algorithm. Model-specific methods are those which are tied to a specific ML algo-
rithm and rely on the structure of the model to produce interpretation methods.
A similar categorisation of these approaches has been described in Molnar (2022).

In the following examples, we visualise several common model-agnostic and model-
specific methods used to explain model behaviour. To illustrate each method, we
fit a random forest (Breiman, 2001) to the “air quality” data (Chambers et al.,
2018) with Ozone (mean ozone in parts per billion from 1 p.m. to 3 p.m. at
Roosevelt Island, New York, USA) as the response.
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1.1. Visualisations and Interpretable Machine Learning Techniques

1.1.1 Model-Agnostic Methods
An advantage of a model-agnostic approach is model choice flexibility, as they
can be applied regardless of the model that is used. Another benefit is that
model-agnostic approaches can be used to compare multiple models using the
same methodology, simplifying interpretation. A brief overview of popular model-
agnostic methods is provided in the ensuing subsections where we provide an in-
tuitive description of each approach. However, in Chapter 2, a mathematical
definition is supplied.

Permutation Variable Importance: Permutation variable importance is a
model-agnostic interpretation method which computes the change in the model’s
prediction accuracy (based on some error metric) after permuting a variable. Fol-
lowing from the permutation importance introduced by Breiman (2001) for random
forests, Fisher et al. (2019) created a model-agnostic permutation method (for an
in-depth discussion see Chapter 2). In Figure 1.2 we show a permutation variable
importance plots produced from the iml package. Here, the root mean square
error is used the error metric. The variable Temp is the most important variable
for predicting the response with an importance score of 2.25. This means when
the variable Temp is permuted, on average, 2.25 is added to the out of sample
RMSE for the model.

Month

Day

Solar.R

Wind

Temp

1.50 1.75 2.00 2.25

Feature Importance (loss: rmse)

Figure 1.2: Permutation variable importance plot of a random forest fit on the air quality
data.
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1.1. Visualisations and Interpretable Machine Learning Techniques

Shapley Values. A popular local method, which has its origins in game theory,
is Shapley values (Shapley, 1997). These values offer a solution for how to equally
distribute a prize among the participants in a collaborative game. In ML terms,
a prediction can be explained by measuring each variable’s (or “participant’s”)
contribution to the final prediction by breaking down the output into positive
and negative effects. Shapley values can also be used to calculate the importance
of a variable by comparing the model predictions with and without the variable
included. Commonly Shapley values are visualised as a barplot.

LIME. Local Interpretable Model-agnostic Explanations (LIME; Ribeiro et al.,
2016) is a method proposed using local-surrogate models, which are interpretable
models, to explain individual predictions of black-box models. Although a local-
surrogate model might not completely capture a black-box model’s behaviour glob-
ally, it can approximate the predictions from a black-box model. The LIME ap-
proach works by creating a local linear approximation of the model’s decision
boundary in the vicinity of the prediction being explained. To get this approx-
imation, LIME generates a set of perturbations around the original input data
point and uses these perturbations to generate a new dataset. The model is then
trained on this new dataset, and the resulting local decision boundary is used to
approximate the original decision boundary. LIME then creates an explanation
by identifying the features that have the highest impact on the prediction made
by the model. This is done by examining the coefficients assigned to each feature
in the local linear approximation of the decision boundary. These coefficients are
then used to generate a set of weighted features that can be used to explain the
model’s decision.

Friedman’s H-statistic: Friedman’s H-statistic (Friedman and Popescu, 2008)
is a model-agnostic method used to measure interactions between variables in a
fitted model. The H-statistic is calculated by contrasting the partial dependence
for a pair of variables to their marginal effects and is normalised in the range of
zero to one. A disadvantage of Friedman’s H-statistic is that is requires O(n2)
predicts for each pair of variables, and so can be slow to evaluate. Sampling from
the training set will speed up the process, but at the expense of increasing the
variance of the partial dependence estimates and the H-statistic. For a more in-
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1.1. Visualisations and Interpretable Machine Learning Techniques

depth discussion on Friedman’s H-statistic, see Chapter 2 of this work. In Figure
1.3 we show all pairwise interactions for the variable Temp only. A drawback to
this type of visualisation is that to view every pairwise interaction in this way
would require a large plot, which can become quickly overcrowded if the number
of variables used to train the model is large. A solution to this is presented in
Chapter 2 of this work. In Figure 1.3, the variable pair Day:Temp has the greatest
interaction, however the interaction measure only has a value of around 0.15. It
is challenging to determine when the H-statistic is high enough for us to call
an interaction “strong”. Friedman and Popescu (2008) propose a test statistic to
determine whether the H-statistic differs significantly from zero, however a model-
agnostic version has not yet been implemented.

Month:Temp
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Wind:Temp

Day:Temp
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Figure 1.3: Two-way interactions, using Friedman’s H-statistic, of all predictor variables
with the variable Temp from a random forest fit on the air quality data.

Individual Conditional Expectation (ICE): ICE curves were first introduced
by Goldstein et al. (2015) as a model-agnostic method to visualise variable effects.
ICE plots show the dependence of the prediction on each individual observation
of a variable (and draws a line for each observation). A drawback of ICE plots
is that the variable effects can be poorly estimated in the presence of correlated
predictors (Apley and Zhu, 2020). Additionally, ICE curves require extrapolation
and results that are generated from extrapolating a curve in an area with few or
no observations can be deceptive. Another disadvantage is if the data has many
observations, many curves will be drawn and can make the plot overcrowded. A
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1.1. Visualisations and Interpretable Machine Learning Techniques

solution to this is to only draw a sample of curves and practical example of this is
shown in Chapter 2.

ICE curves can help visualise any linear/non-linear effects and potential interac-
tions among the variables by observing the direction of each curve. An example of
ICE curves for the variable Temp (maximum daily temperature in degrees Fahren-
heit), obtained using the iml package, can be seen in Figure 1.4. Here, we can
see the non-linear behaviour that Temp has on the response and as the tempera-
ture increases, the predicted ozone level also increases. As the curves are mostly
parallel, this indicates no obvious interaction.
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Figure 1.4: ICE curves of a random forest fit on the air quality data for the variable
Temp.

Partial Dependence Plots (PDP): PDPs were first introduced by Friedman
(2000) as a model-agnostic method to examine the model effects. A PDP visu-
alises the change in the average predicted value when specified feature(s) vary over
their marginal distribution. The partial dependence is the average of the afore-
mentioned ICE curves and also suffers the same issues as ICE curves in relation to
extrapolation and correlated predictors. For more on PDPs and correlated predic-
tors see Chapter 2. Figure 1.5 (a) shows the partial dependence curve (in yellow)
for the variable Temp coupled with the ICE curves (seen in Figure 1.4). Observing
the partial dependence curve in (a) we can see that as the temperature increases,
the predicted ozone level also increases, with a rise at around 76°Fahrenheit. Bi-
variate PDPs can also be visualised, as in Figure 1.5 (b) which show the partial
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1.1. Visualisations and Interpretable Machine Learning Techniques

dependence for two variables at once. Here, we show a bivariate PDP for the
variables Solar.R (measured solar radiation) and Temp. The ŷ value corresponds
to the predicted ozone level. In (b), we can see distinct rectangular patches which
may be evidence of non-linear behaviour or an interaction between these variables
(which could be further investigated using additional IML tools). In general, we
observe that for high levels of solar radiation and high temperatures, the predicted
ozone level value increases.
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Figure 1.5: Partial dependence plots of a random forest fit on the air quality data. In
(a) the partial dependence and ICE curves are shown for the variable Temp. In (b) the
bivariate PDP is shown for the variables Solar.R and Temp.

Conditional Visualisations: A local interpretable tool that is useful for explor-
ing and visualising predictions is discussed in Hurley et al. (2022) and comes with
an accompanying R package called condvis2. In Hurley et al. (2022), the authors
demonstrate conditional visualisation methods for producing low-dimensional vi-
sualisations of models in high-dimensional space through the use of an interactive
Shiny app (Chang et al., 2022). condvis2 can visualise the effect of a predictor
conditional on other predictors by taking a section or slice of the surface of the
fitted model and results in a curve in two dimensions. Additionally, in condvis2,
observed data points which are deemed to be near the slice are displayed (see
Hurley et al., 2022, for more details).

Figure 1.6 shows a screenshot of the condvis2 Shiny application in use. In the
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top right is a scatterplot of Wind (average wind speed in miles per hour) and
Solar.R, with the selected value of 9.7 for Wind and 157 for Solar.R, being chosen
by clicking on the plot. Similarly, in the bottom right a scatterplot of the variables
Month and Day is shown, with the chosen values of 8 and 14, respectively. The
main plot window on the left shows the predicted values of Ozone, while varying
Temp and fixing the values of the other variables. The observations shown in this
plot are those near the selected values of the other variables and the proximity to
this value can be changed via the similarity threshold slider. The main plot of the
predicted ozone while varying Temp is in agreement with the previous ICE plot
and PDP and shows an increase in the predicted ozone level as the temperature
increases.

Figure 1.6: A screenshot of condvis2’s interactive Shiny application in use.
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1.1. Visualisations and Interpretable Machine Learning Techniques

1.1.2 Model-Specific Methods
Model-specific approaches are those which rely on the inner-workings of the ML
algorithm to produce interpretation methods. In the following subsections, we
briefly discuss some of the common model-specific methods and the visualisations
associated with them.

Model-Specific Variable Importance: Depending on the kind of model, a
number of variable importance methods have been proposed. For example, in
regression models, utilising specific aspects of a model’s structure, such as summary
statistics like the standardised regression coefficient or R2, are commonly used to
obtain a variable importance measure. For more complex ML models, like the
tree-based algorithms of random forests or Gradient Boosting Machines (GBM)
(Friedman, 2000), several model-specific variable importance metrics have been
created. For a single decision tree, importance can be determined by how much
each split point enhances some performance measure. This can then be measured
across all trees to produce a single metric. The increase in node purity and Gini
coefficient are commonly used as such a metric. Figure 1.7 below, shows a variable
importance plot produced from the randomForest package (Liaw and Wiener,
2002) using the increase in node purity as an importance measure. In Figure 1.7
we can see that the variable Temp is the most important and that the results are
comparable to those obtained using the model-agnostic approach seen in Figure
1.2.
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Figure 1.7: Variable importance plot of a random forest fit on the air quality data.

Additional variable importance methods have been produced for random forests,
which we mention here but omit visualisations. For example, Strobl et al. (2008)
developed conditional variations of the permutation variable importance in a ran-
dom forest. Furthermore, Loyal et al. (2022) describe dimension reduction forests,
which can obtain a local variable importance by using methods from sufficient
dimension reduction (Li, 2018).

Variable Interactions: In tree-based ensembles, such as random forest or Bayesian
Additive Regression Trees (BART; Chipman et al., 2010), one can use the structure
of the trees from the fitted model to assess model-specific interactions. For BART
models, the proportion of successive or concurrent splitting rules for each vari-
able pair can be used to determine interactions. For an example see Chapter 3 of
this work. For random forest models, the authors of the randomForestExplainer
package (Paluszynska et al., 2020) propose using a concept known as the mean
minimal depth (Ishwaran et al., 2010) to determine interactions, with an example
shown in Figure 1.8. The depth of the node that splits on a variable and is the
closest to the tree’s root is the minimal depth for that variable in the tree. Fig-
ure 1.8 shows the conditional mean minimal depth, where one variable is used as
the root node and the mean minimal depth for the other variable is calculated.

11



1.1. Visualisations and Interpretable Machine Learning Techniques

Consequently, the conditional minimal depth is an non-symmetric measure.

In Figure 1.8 the interactions are shown in descending order, from the most fre-
quent interactions, which are on the left side of the plot and are in a lighter blue,
to the least frequent interactions, which are on the right side of the plot and are
in a deeper blue. The height of the bar represents the mean conditional minimal
depth of each interaction. The minimum of this statistic across all interactions is
represented by the horizontal red line. The unconditional mean minimal depth,
which is just the mean minimal depth of the second variable in the interaction
(as opposed to the conditioning variable), is displayed as a lollipop extended from
each bar. From Figure 1.8 the variable pair Month:Wind has the lowest mean
minimal depth whilst also occurring the most. However, as previously mentioned,
this measure is asymmetric, and we note that the variable pair Wind:Month has
a higher mean minimal depth and occurred less frequently.

Figure 1.8: Visualisation of variable interactions using the mean minimal depth of a
random forest fit on the air quality data.

Neural Networks: Providing transparency to the intricate black-box nature of
non-tree-based models, like Neural Networks (NN), can reveal important insights
about the behaviour of the model. There are many tools specifically designed for
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model-explanation for NN. For example, a common method used for visualising
the features that the model is using to make predictions are saliency maps (for
example, see Simonyan et al. (2013)). A saliency map is a heatmap that highlights
the regions of an input image that have the greatest impact on the model’s predic-
tions. Saliency maps can be useful for interpreting the decisions made by a NN,
as they allow us to see which regions of an image are most important for making
a prediction.

Another technique used to explain deep-learning model behaviour is layer-wise
relevance propagation (LRP; Bach et al., 2015). This method is used to understand
the importance of individual input features or neurons in the output of a neural
network and can be used for a variety of tasks, such as feature visualisation,
identifying important features for decision-making, and detecting biases in the
neural network. For a summary of recent developments in the field of visualising
and interpreting deep-learning models, see Samek et al. (2017).

1.2 Outline of the thesis
The remainder of this thesis is organised as follows. The following chapters are
presented in the style of three journal articles, with Chapter 2 being published in a
peer-reviewed journal and Chapters 3 and 4 being under review at a peer-reviewed
journals. As some of these journals are based in the United States, we switch
between American English and British English spelling throughout Chapters 2, 3,
and 4.

In Chapter 2 we propose novel visualisations using both model-agnostic and model-
specific methods to view various aspects of a model’s fit. We present heatmaps
and network graphs to view variable importance and variable interactions jointly
in an effort to give a more full description of the impact the variables have on the
predictions. We create a generalised pairs plot style PDP, called a GPDP, that
contains the bivariate, univariate, and scatterplot of the raw variable values to aid
in understand the exact nature of variable effects and interactions. Additionally,
we present a space-saving PDP utilising Eulerian paths to focus on variable subsets
that have the most impact on the response. Through the use of practical examples
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and a case study concerning cervical cancer we demonstrate the flexibility and
usefulness of our approach.

In Chapter 3 we examine BART model fits using our R package bartMan. We
present visualisations to assess the behaviour of a BART model such as new tree-
based plots that can provide an insight into the tree structure. We construct
heatmaps that incorporate value suppressing uncertainty palettes to display the
importance and interaction jointly where the posterior uncertainty is visualised us-
ing colour scale. To evaluate the performance and stability of a model, we create
conventional plots (such as convergence and residual plots) and to investigate po-
tential outliers, we apply multidimensional scaling plots to BART. In this Chapter,
we provide practical examples and apply our methods on a case study concerning
bike rentals in Seoul, South Korea.

In Chapter 4 we provide a detailed discussion of the implementation of our R
package vivid (Variable Importance and Variable Interaction Displays). We ex-
plain design decisions relating to the package architecture and visualisation inter-
pretability by focusing on package functions and key features. The vivid package
was developed with the aim of investigating ML models in a way that is intu-
itive while simultaneously providing useful insights into how variables affect the
response. We additionally show a practical example of the package in use as well
as providing the code necessary to produce our visualisations.

Finally, in Chapter 5 we conclude the thesis by providing a summary and outlining
areas for additional research.

All proposed methods in this thesis were implemented using the R (R Core Team,
2019) software. The R package vivid (Variable importance and Variable Interac-
tion Displays) is a companion to Chapters 2 and 4 of this thesis and is available
from the Comprehensive R Archive Network1. For Chapter 3, the R package
bartMan (Bayesian additive regression tree Model ANalysis) was created and is
available on the author’s Github2. Additionally, R scripts are also made accessible
in order to make the studies and visualisations presented throughout reproducible.

1https://cran.r-project.org/web/packages/vivid
2https://github.com/AlanInglis/bartMan
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These can be found on the author’s GitHub. All datasets are freely available, either
as files in the aforementioned repositories or within R packages.
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CHAPTER 2
Visualizing Variable Importance
and Variable Interaction Effects

in Machine Learning Models

Variable importance, interaction measures, and partial dependence plots are important
summaries in the interpretation of statistical and machine learning models. In this pa-
per we describe new visualization techniques for exploring these model summaries. We
construct heatmap and graph-based displays showing variable importance and interac-
tion jointly, which are carefully designed to highlight important aspects of the fit. We
describe a new matrix-type layout showing all single and bivariate partial dependence
plots, and an alternative layout based on graph Eulerians focusing on key subsets. Our
new visualizations are model-agnostic and are applicable to regression and classification
supervised learning settings. They enhance interpretation even in situations where the
number of variables is large. Our R package vivid (variable importance and variable
interaction displays) provides an implementation.
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2.1 Introduction
Visualization is a key tool in understanding statistical and machine learning mod-
els. In this paper we present new visualizations to serve two main goals, namely
improved model understanding and interpretation. Our new visualizations are
based on variable3 importance and interaction measures, and partial dependence
plots. A variable importance value is used to express (in a scalar quantity) the
degree to which a variable affects the response value through the chosen model. A
variable interaction is a scalar quantity that measures the degree to which two (or
more) variables combine to affect the response variable. Variable importance and
variable interaction (henceforth VImp and VInt; together VIVI) are widely used in
many fields to understand and explain the behaviour of a model. In biology they
are used to examine gene-gene interactions (e.g. Wang et al., 2012). In high-energy
physics VImp can be an important tool in high dimensional feature selection pro-
cesses (e.g. Gleyzer and Prosper, 2008). In econometrics they are common tools
to evaluate interaction behaviour (e.g. Balli and Sorensen, 2010).

Traditional methods of displaying VImp or VInt use variants of line or bar plots,
see for example Molnar (2019). However, in variable importance plots there is
relatively little emphasis on displaying how pairs of interacting variables may be
important in a model. This can be a hindrance to model interpretation, especially
if a variable has low importance but a high interaction strength. The inclusion of
interacting terms in a model has been shown to affect the prediction performance
(Oh, 2019). However, as shown in Wei et al. (2015b), for high-dimensional models
that are governed mainly by interaction effects, the performance of certain types
of permutation-based variable importance measures will decrease and thereby pro-
duce low values of importance. Consequently, viewing the VInt and VImp together
provides a more complete picture of the behaviour of a model fit.

Our new displays present VInt and VImp jointly in a single plot. We allow for
seriation so that variables are reordered with those exhibiting high VIVI grouped
together. This assists in interpretation and is particularly useful as the number of

3We use the term ‘variable’ throughout to denote the input to a statistical and machine
learning model as this seems to be the most common parlance. Other terms commonly used
include: feature, predictor, explanatory variable, independent variable, etc
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variables becomes large. Furthermore, we make use of filtering, so less influential
variables can be removed. For our network displays we use graph clustering to
group together interacting variables.

Partial dependence plots (PDP) were introduced by Friedman (2000) to show how
the model’s predictions are affected by one or two predictors. In addition to the
above we propose a new display which shows all pairwise partial dependence plots
in a matrix-type layout, with a univariate partial dependence plot on the diagonal,
similar to a scatterplot matrix. With this display the analyst can explore, at
a glance, how important pairs of variables impact the fit. Once again, careful
reordering of the variables facilitates interpretation.

Our final display takes the filtering of all pairwise partial dependence plots a step
further. We select only those pairwise partial dependence plots with high VInt,
and display an Eulerian path visiting these plots by extending the zigzag display
algorithm of Hofert and Oldford (2020). We call this a zen-partial dependence
plot (ZPDP).

These new visualizations can be used to explore machine learning models more
thoroughly in an easily interpretable way, providing useful insights into variable
impact on the fit. This is demonstrated by practical examples. In each plot
careful consideration is given to various aspects of the design, including color
choices, optimising layouts via seriation, graph clustering, and Euler paths for
the ZPDP. Filtering options limit the plots to variables deemed relevant from
VImp or VInt scores. Our new displays are appropriate for supervised regression
and classification fits, and are model and metric agnostic in that no particular
model fit nor importance method is prescribed. The methods described here are
implemented in our R package vivid (Inglis et al., 2021).

The organisation of the paper is as follows. In Section 2.2 we discuss the concepts
of VImp and VInt. Then we describe our new heatmap and network displays of
joint variable importance and interaction and demonstrate these on an example.
In Section 2.3 we discuss our new layouts for collections of partial dependence
plots, either in a matrix format or zig-zag layout and show their application. In
Section 2.4 we use our new methodology to explore a machine learning fit from a
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larger dataset. Finally in Section 2.5, we offer some concluding discussion.

2.2 Visualizing variable importance and
interaction

We begin with a non-exhaustive review of the concepts of VImp and VInt. Though
the visualizations we present are agnostic to the measures used to determine these
scalar quantities, some degree of understanding is helpful in interpreting the later
plots. We then describe our new visualizations and their design principles and
provide illustrations.

2.2.1 Measuring variable importance
A VImp is a scalar measure of a variable’s influence on the response. Many tech-
niques have been proposed to calculate variable importance, depending on the type
of model. The term ‘influence’ here may encompass changes in the mean response
or that of higher order uncertainty. In our work we focus exclusively on changes in
the mean. For a wider review of variable importance techniques, and the different
goals that a variety of approaches may achieve see Wei et al. (2015a).

Much of the initial work in VImp focused on estimating the partial derivative of
the response with respect to one or two input variables (Frey and Patil, 2002).
This is a global VImp measure when the model is linear, but perhaps less useful
(though still potentially interesting) in non-linear models where it is often defined
as a local importance measure. In high dimensional settings these methods can be
discretized across a hyper-cube to allow for the identification of, e.g., linearity in
a non-linear model (Helton and Davis, 2002). Due to their local behaviour, we do
not incorporate them into our visualizations below.

Some VImp measures arise naturally out of a model structure. The most familiar
would be those based on summary statistics created from regression models, such
as standardized coefficient values, (partial) correlation coefficients, and R2. Many
of these can be extended to non-linear models such as generalized additive models
(Wood, 2000), or projection pursuit regression (Friedman and Stuetzle, 1981). R2

in particular seems useful as a VImp measure, as it can be defined for a wide
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variety of statistical models and can be decomposed into main and potentially
high order interaction effects, yielding a VInt measure in addition.

Similarly, other model-structure based methods arise out of now standard machine
learning techniques. Random forests, for example, involves the use of the Gini
coefficient, and the reduction in mean square error, to catalog a variable’s influence
on the ‘purity’ of a model output (Breiman, 2001). This can naturally be seen as
a VImp measure. Others have extended these approaches to introduce conditional
and permutation VImp statistics which aim to reduce the bias that may occur due
to variable collinearity (for example, see Hothorn et al., 2006).

Conditional variants of permutation variable importance were proposed by Strobl
et al. (2008) for a random forest. This method examines splits of the trees in
a random forest and permutes the variables within these subgroups (see Section
2.2.2 for more details). Whereas Strobl et al. (2008) relied on the splitting of trees
to determine the subgroups, a model-agnostic approach was introduced by Molnar
et al. (2020b) that builds the subgroups explicitly from the conditional distribution
of the variables. In tree-based models such as CART and random forests, Ishwaran
et al. (2010) proposed a VImp called minimal depth, which is the proximity of a
variable to the root node, averaged across all trees.

Permutation importance was introduced by Breiman (2001) and is measured by
calculating the change in the model’s predictive performance after a variable has
been permuted. The algorithm works by initially recording the model’s predic-
tive performance, then, for each variable, randomly permuting a variable and
re-calculating the predictive performance on the new dataset. The variable impor-
tance score is taken to be the difference between the baseline model’s performance
and the permuted model’s performance when a single feature value is randomly
shuffled. A similar agnostic permutation concept was developed by Fisher et al.
(2019). This method permutes inputs to the overall model instead of permuting
the inputs to each individual ensemble member. In situations where no embedded
variable importance is available, a model-agnostic approach such as permutation
importance is a useful tool.

In theory any of the above global importance measures could be used in our visu-
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alizations. However, providing code for each would be a daunting task. Instead we
take a pragmatic approach and use the associated VImp measure with the model
that we are fitting. In cases where there is no such obvious method, we use the
Fisher et al. (2019) agnostic permutation approach discussed above to measure
VImp.4

2.2.2 Measuring variable interaction
Measuring variable interaction in a machine learning model can be considerably
harder than estimating marginal importance. Even the definition of the term
‘interaction’ is disputed (Boulesteix et al., 2015). We focus here on bivariate
interaction only, though higher order interactions may certainly be present in many
situations. Friedman and Popescu (2008) state that a function f(x) exhibits an
interaction between two of its variables xk and xl if the difference in the value
of a function f(x) as a result of changing the value of xk depends on the value
of xl. That is, the effect of one independent variable on the response depends
on the values of a second independent variable. Often, an interaction is taken
to mean a simple multiplication of two (continuous) variables (e.g. Berrington de
González and Cox, 2007), though in machine learning models much more complex
relationships can exist. We follow the definition of Friedman and Popescu (2008)
by considering an interaction to be estimated from the difference between joint and
marginal partial dependence; a full mathematical definition is given below. Even
this definition should not be used without care, as in the case of highly correlated
or potentially confounding variables.

In tree-based models such as CART and random forests, much focus has been on
measuring interactions via the structure of trees (e.g. Ishwaran et al., 2010; Deng,
2019). If two variables are used as splits on the same branch, this might initially
appear like a measure of interaction. However, this does not separate out the
interaction from potential marginal effects. The problem is partially overcome by
permuting the variables (individually for a VImp, jointly for VInt), to assess the
effect on prediction performance. The resulting VInt measure is known as pairwise
prediction permutation importance (Wright et al., 2016).

4In our implementation, any available VImp may be used.
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For models that are not tree-based, or when a model-agnostic measure is required, a
variety of other methods can be used. Many of these are based on the idea of partial
dependence (Friedman, 2000). The partial dependence measures the change in the
average predicted value as specified feature(s) vary over their marginal distribution.

The partial dependence of the model fit function g on predictor variables S (where
S is a subset of the p predictor variables) is estimated as:

fS(xS) = 1
n

n∑
i=1

g(xS, xCi
) (2.1)

where C denotes predictors other than those in S, {xC1 , xC2 , ..., xCn} are the values
of xC occurring in the training set of n observations, and g() gives the predictions
from the machine learning model. For one or two variables, the partial dependence
functions fS(xS) are plotted (a so-called PDP) to display the marginal fits.

Friedman’s H-statistic or H-index (Friedman and Popescu, 2008) is a VInt measure
created from the partial dependence by comparing the partial dependence for a
pair of variables to their marginal effects. Squaring and scaling gives a value in
the range (0, 1):

H2
jk =

∑n
i=1[fjk(xij, xik) − fj(xij) − fk(xik)]2∑n

i=1 f 2
jk(xij, xik) (2.2)

where fj(xj) and fk(xk) are the partial dependence functions of the single variables
and fjk(xj, xk) is the two-way partial dependence function of both variables, where
all partial dependence functions are mean-centered.

The H-statistic requires O(n2) predicts for each pair of variables, and so can be
slow to evaluate. Sampling from the training set will reduce the time, though
at a cost of increasing the variance of the partial dependence estimates and the
H-statistic.

When the denominator in Equation 2.2 is small, the partial dependence function
for variables j and k is flat, and small fluctuations in the numerator can yield spu-
riously high H-values. Biased partial dependence curves will also lead to inflated
H. This occurs in some machine learning approaches which exhibit regression to
the mean in their one-way partial dependencies. Furthermore biased partial de-
pendence curves are a particular problem in the presence of correlated predictors.
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These issues with the H-statistic seem to be not widely known by practitioners
(though see Apley and Zhu, 2020), and we provide a short illustration of these
problems in the appendix.

In our visualizations throughout this paper, we use the square-root of the average
un-normalized (numerator only) version of Friedman’s H2 for calculating pairwise
interactions:

Hjk =
√√√√ 1

n

n∑
i=1

[fjk(xij, xik) − fj(xij) − fk(xik)]2 (2.3)

This reduces the identification of spurious interactions and provides results that
are on the same scale as the response (for regression). It does not, however, remove
the possibility that some large H-values arise from correlated predictor variables.

We follow the convention of Hastie et al. (2009) by using the logit scale for both the
partial dependence and in calculation of the H-statistic when fitting a classification
model with a binary response. If the response is multi-categorical a near-logit is
used, defined as:

gk(x) = log[pk(x)] − 1
K

K∑
k=1

log[pk(x)] (2.4)

where k = 1, 2, ..., K and pk(x) is the predicted probability of the k-th class. PDPs
of gk(x) from Equation 2.4 can reveal the dependence of the log-odds for the k-th
class on different subsets of the input variables.

Alternatives to the H-statistic have been suggested, which could be used in place of
the the H-statistic in our visualizations. Hooker (2004) uses a functional ANOVA
construction to decompose the prediction function into variable interactions and
main effects. Greenwell and Boehmke (2020) suggested a partial dependence-based
feature interaction which uses the variance of the partial dependence function as
a measure of importance of one variable conditional on different fixed points of
another.

2.2.3 Heatmap visualization with seriation
Traditionally, variable importance and interaction are displayed separately, with
variable interaction itself spread over multiple plots, one for each variable. We
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2.2. Visualizing variable importance and interaction

direct the reader to Chapter 8 of Molnar (2019) for examples. We propose a
new heatmap display showing VImp on the diagonal and VInt on the upper and
lower diagonals. The benefit of such a display is that one can see which variables
are important as individual predictors and at the same time see which pairs of
variables jointly impact on the response. It also facilitates easy comparison of
multiple model fits, which is far less straightforward with separate VImp and VInt
displays.

We illustrate the heatmap using a random forest fit to a college applications data
set (American Statistical Association, 1995), with Enroll (i.e., the number of new
students enrolled) as the response. The data was gathered from 777 colleges across
the U.S. and contains 18 variables ranging from economic factors (such as room
and board and book costs) to the number of applications received and accepted.
As some of the variables are skewed they are log-transformed prior to building the
model. The data was split 70-30 into training and test sets. A value of R2 = 0.96
was obtained for the test set. All plots were made from the training set. See the
supplementary materials for a description of the data and transformations.

Figure 2.1 shows our heatmap with two different orderings. Figure 2.1(a) has the
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(b) Leaf sort algorithm

Figure 2.1: Heatmap from random forest of college application data. In (a) variables
are in original order. In (b), the heatmap is re-ordered using leaf sort. In (b) we can see
three important and mutually interacting variables, F.Undergrad, Accept and Apps.
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2.2. Visualizing variable importance and interaction

variables in their original order, while Figure 2.1(b) uses the leaf-sorting algorithm
(described below). The purple color scale used on the off-diagonal shows the Fried-
man’s H-statistic values (un-normalized) with deeper purple indicating a higher
VInt. Similarly the green color scale on the diagonal represents the level of VImp,
here measured using an embedded approach supplied by the random forest (in this
case, the increase in node purity). We use colorblind-friendly, single-hued sequen-
tial color palettes from Zeileis et al. (2020) going from low to high luminance in
both cases, designed to draw attention to high VInt/VImp variables. From the
improved ordering in Figure 2.1(b), there are three clearly important and poten-
tially interacting variables, F.Undergrad (the number of full-time undergraduate
students), Accept (the number of applicants accepted), and Apps (the number of
applications received), with F.Undergrad having the largest VImp when predicting
Enroll.

Many authors have investigated the benefits of re-ordering (also known as seri-
ation) for graphical displays, see for example Hurley (2004), Hahsler et al. (2008)
and Earle and Hurley (2015). The benefits of reordering the variables in Figure
2.1(b) are clear. The right-hand plot lends itself to easy interpretation whereas
the left-hand plot does not.

Most seriation algorithms start with a matrix of dissimilarities or similarities be-
tween objects and produce an ordering where similar objects are nearby in the
sequence. Our goal here is a little different. As well as placing mutually interact-
ing variables nearby in the sequence, we would like to bring important variables
or pairs of variables to the start of the sequence so that the most relevant portion
of the heatmap will be in the top-left corner.

We use the leaf sort seriation algorithm from Earle and Hurley (2015). This
uses hierarchical clustering followed by a sorting step. Let vi be a measure of
variable importance and sij be the interaction measure between variables i and
j. Treating the matrix of interactions as a similarity matrix, we first construct
a hierarchical clustering. This produces a dendrogram, resulting in a variable
ordering where high-interacting variables are nearby. Using this ordering in a
heatmap generally brings high interactions close to the diagonal, but ignores our
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2.2. Visualizing variable importance and interaction

goal of placing important variables early in the sequence. For the sorting step we
calculate for each variable a combined measure of its importance and contribution
to the interactions, defining these scores as:

wi = λ1vi + λ2 max
j ̸=i

sij.

Here λ1 and λ2 are scaling parameters to account for the fact that variable impor-
tance and interaction are not measured in the same units. Reasonable choices of
λ1 and λ2 rescale importance and interaction to, say, unit range or unit standard
deviation. We use unit range by default. As there are many possible dendrogram
orderings consistent with a hierarchical clustering of the matrix of interactions, the
sorting step re-orders the dendrogram leaves so that the weights wi are generally
decreasing.

Sorting the variables in this way will achieve our goals of placing high-interacting
pairs of variables nearby in the sequence, while simultaneously pulling predictors
with high importance and interaction to the top-left of the heatmap, leaving less
relevant predictors to the bottom-right. Setting λ2 = 0 or λ1 = 0 produces plots
which sort by descending VImp or max VInt respectively. For all future heatmap
plots, we use the sorting strategy discussed above to optimize the arrangement of
variables. After using seriation to re-order the heatmap variables, filtering can be
applied to limit the display to the most important or interacting variables; this
strategy is especially useful when there are large numbers of predictors.

The heatmap display can be further used to compare different model fits. In
Figure 2.2 we compare the random forest to a k-nearest neighbours (kNN) fit. In
the left panel of Figure 2.2 we have a heatmap of a kNN fit (with k = 7 neighbours
considered), while the right panel shows the random forest heatmap. To make a
direct comparison of the heatmaps, we swap the embedded VImp measures that
are available from a random forest fit and instead measure importance with an
agnostic permutation approach that allows direct comparison of both the kNN
and random forest models. Furthermore, we set both heatmaps to use the same
color scale for the VImp and VInt values.

We see in Figure 2.2 that both the random forest and kNN fit identify F.Undergrad
as the most important variable for predicting the number of students enrolled. The
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(a) kNN fit
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(b) Random forest fit

Figure 2.2: A comparison of a kNN and random forest fit on the college application data.
Both fits identify F.Undergrad as the most important variable as well as having similar
mutual interactions between F.Undergrad, Accept and Apps. The kNN fit identifies
many more moderate interactions between variables, especially concerning the variable
Private

top three variables are identical in both models, though the VImp values are much
smaller in general across the kNN fit (e.g. the measured VImp for F.Undergrad
for the kNN and random forest fits are 0.16 and 0.6 respectively). Both fits show
mutual interactions between F.Undergrad, Accept and Apps. However, the kNN fit
also suggests a moderate interaction between Private (i.e., whether the university
was public or private) and F.Undergrad, which appears somewhat lower in the
random forest fit. As Private has a relatively low VImp in both model fits, a
simple VImp screening could miss its relevance to the fit. We note though, that
this kNN-random forest comparison is for the sake of illustration only, as in this
instance the kNN fits poorly by comparison with the random forest, having a test
mean square error (MSE) over three times bigger.

2.2.4 Network visualization
As our second offering for displaying VIVI, we propose a network plot that shares
similar benefits to the heatmap display but differs from it by giving a visual repre-
sentation of the magnitude of the importance and interaction values not only via
color but also by the size of the nodes and edges in a graph. In this plot, each
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2.2. Visualizing variable importance and interaction

variable is represented by a node and each pairwise interaction is represented by a
connecting edge. See Figure 2.3(a) for an example. The color scales were chosen
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Figure 2.3: Network plot of a random forest fit on the college application data. Three
mutually interacting and important variables can be seen, namely F.Undergrad, Accept
and Apps. In (a) all of the variables are displayed. In (b) the network plot has been
filtered to display pairs of variables with high VInt and clustered to highlight variables
with mutually high VInt.

to match that used in the heatmap, with node size and color luminance increasing
with variable importance. Similarly, edge width and color reflects the strength of
the VInt. By default we choose a radial layout to display the variables (although
this can be changed according to preference) and use the same seriation of vari-
ables as the heatmap, with the variables of high importance and high interaction
strength placed in a clock-wise arrangement starting at the top. The benefit of
such a display is that one can quickly decipher the magnitude of the importance
and interactions of the variables as well as seeing which variables both individually
and jointly impact on the response.

In Figure 2.3(a) we again use the random forest fit of the college application
data, using the same VImp and VInt measures as in Figure 2.1. In the network
plot the strong mutual interactions between F.Undergrad, Accept and Apps and
are represented by thick, intensely purple lines. F.Undergrad is identified as the
most important single predictor and is represented by a large, intensely green
node. For settings with large number of predictors, it will be useful to filter the
display to focus on high VIVI variables. An additional step groups or clusters the
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2.3. Visualizing partial dependence and individual conditional expectation

variables according to VImp or VInt values. For example, Figure 2.3(b) shows a
network plot, filtered to display pairs of variables with high VInt and clustered to
show groups with mutually similar VInt. Here it is clear that the cluster colored
pink contains the variables with the largest VInt scores. In this example we use
hierarchical clustering, but in our implementation, the graph clustering methods
provided by the package igraph (Csardi and Nepusz, 2006) are directly available.

2.3 Visualizing partial dependence and
individual conditional expectation

We introduce new variants of partial dependence and individual conditional expec-
tation plots in two different layouts. With these plots, we can further investigate
predictor effects singly and pairwise, especially for those predictors deemed impor-
tant in our VIVI plots. Additionally, our new plots combine displays of variable
pairs, thus highlighting the presence of strong correlations where VInt measures
may mislead. Conventionally, partial dependence plots are shown singly or in lin-
ear layouts, see Section 8.1 of Molnar (2019) for examples. By comparison, our
new displays are more compact, richer, and benefit from seriation.

2.3.1 Individual conditional expectation curves
Goldstein et al. (2015) described individual conditional expectation (ICE) curves,
which are closely related to partial dependence plots (PDPs). While a PDP shows
the average partial relationship between the response and one or two features S,
ICE plots display a collection of curves, each showing the estimated relationship
between the response and the feature S, at an observed value of other features.
Recalling Equation (1), the ICE curves consist of g(xS, xCi

) versus xS, i =
1, 2, . . . , n, while the PDP curve is their average fS(xS). If the ICE curves follow
a similar pattern then the PDP is a useful overall summary, but if the pattern
varies, then the feature effect is not homogeneous.
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2.3. Visualizing partial dependence and individual conditional expectation

2.3.2 Generalized partial dependence pairs plot with ICE
curves

We propose a generalized pairs partial dependence plot (GPDP) with one-way
partial dependence and ICE curves with a superimposed partial dependence curve
on the diagonal, the bivariate partial dependence on the upper diagonal and scatter
plots of raw variable values on the lower diagonal, all of which are colored by the
predicted values ŷ. Figure 2.4 provides an example. With the generalized pairs
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Figure 2.4: GPDP of a random forest fit on the college data showing the seven most
influential variables. From the changing one and two-way partial dependence, we can
see that F.Undergrad, Accept and Apps have some impact on the response. However,
as they are highly correlated and have similar increasing marginal effects, the potential
interactions identified by the H-statistic are likely to be spurious.

plot, an analyst can quickly identify which variables singly or jointly impact on
the fit. We use a diverging palette so deviations from the average response are
emphasized. Here, high values of ŷ are shown in dark red and low values are
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2.3. Visualizing partial dependence and individual conditional expectation

shown in dark blue. Mid-range values are shown in yellow. To avoid interpreting
the PDPs where there are no data (and hence potentially spurious H-statistics), we
mask out extrapolated areas by plotting the convex hull. For maximum resolution
of the bivariate PDPs, the range of the collection of PDP surfaces dictates the
limits of the color map. As predictions for individual observations and ice curves
are likely to fall beyond these limits, colors are assigned using the closest value in
the color map limits.

The ordering of the variables matches that of our heatmap and network plots.
The GPDP differs from the previous plots by showing us the distribution of the
explanatory variables (lower-diagonal), the exact nature of any linear/non-linear
effects through the use of ICE curves (diagonal), and the average behaviour of the
interactions through the use of two-way partial dependence (upper-diagonals). For
the ICE curves we have limited the graphic to display a maximum of 30 randomly
sampled curves by default, to allow individual ICE curves to be seen. As with
the other visualizations, our GPDP can handle both categorical responses and
predictors.

Figure 2.4 shows an example of a GPDP of the college applications data. In
the interest of space, we pre-filter this plot to show the seven most influential
variables. The bivariate PDPs show the response surface over the convex hull of
each variable pair. The lower diagonal plots indicate that F.Undergrad:Accept,
F.Undergrad:Apps and especially Accept:Apps are highly correlated with similar
increasing marginal effects on the diagonal, suggesting that the the high H-values
between these variables are likely to be spurious. This is verified by the bivariate
linear PDPs for these variables. As Private is a factor with two levels (i.e., yes or
no), the partial dependence for each factor level is shown in the upper-diagonal
(with yes in red and no in blue). The remaining variables would appear to have
little effect either singly or jointly on the response. This can be seen from the flat
one-way PDP and ICE curves on the diagonal and the flat two-way PDPs.

2.3.3 Partial dependence zenplot
Our final display uses the methods of Hofert and Oldford (2020) to show selected
panels of the all-pairs PDP in a space-saving layout, which we call a zen-partial
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2.3. Visualizing partial dependence and individual conditional expectation

dependence plot (ZPDP). Zenplots (zigzag expanded navigation plots) were de-
signed for showing pairwise plots of high-dimensional data in a zigzag layout. The
motivation for zenplots is that they focus on interesting 2D displays, and they
permit examination of high-dimensional data. Indeed, Hofert and Oldford (2018)
present an example where they successfully explore pairwise dependence of 465
variables via 164 zenplots. Here we propose to adapt zenplots for bivariate partial
dependence plots.

To describe the construction, consider a network plot showing VImp/VInt such as
that in Figure 2.3(a). Then delete edges with VInt below a threshold, leaving a
graph such as that in Figure 2.3(b). We wish to build partial dependence plots
showing pairs of variables with high VInt, that is, visiting each of the edges in our
thresholded graph. For a connected graph, the greedy Eulerian path algorithm of
Hurley and Oldford (2011) visits each edge at least once, starting from the highest
weighted edge and moving through edges giving preference to the highest-weight
available edge. If the graph is not even, some edges may be visited more than once,
or additional edges are visited. If the graph is not connected, we form sequences
for the connected sub-graphs, which are optionally joined into a single sequence.

Zenplots use the zigzag display algorithm of Hofert and Oldford (2020) and allow
for the display of high-dimensional data by alternating plot axes in a zigzag-like
pattern where adjacent axes share the same variable. We adapt this concept replac-
ing bivariate data plots with bivariate partial dependence plots. As interpretation
issues may arise when the distribution of some of the variables is highly skewed,
we display a rug plot on each axis to show the distribution of the data. For ease
of viewing, the rug plots are a single color and use alpha blending to highlight
the distribution. As with our GPDP, there is an option to mask areas where the
partial dependence has been extrapolated. The resulting plot displays the most
important interacting variables in as small a space as is possible, vastly reducing
the number of plots that would be required for interpretation compared with a
default matrix scatter plot of PDPs.

In Figure 2.5, we show a ZPDP for the random forest fit to the college applications
data. The ZPDP shows the bivariate PDPs corresponding to each of the edges
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Figure 2.5: ZPDP of a random forest fit on the college data. We can see that the
predicted value for the number of students enrolled increases with each of the variables.

of Figure 2.3b. The sequence of plots is obtained from an Eulerian visiting the
edges starting with the highest-weight edge, here that is between F.Undergrad and
Accept, and following available edges in order of preference by weight thereafter.
The resulting Eulerian is F.Undergrad, Accept, Apps, F.Undergrad, Private, Ac-
cept, P.Undergrad. The plots shown correspond to a subset of those in Figure
2.4, limited to the more interesting high-interaction pairs. This more compact
display helps focus the reader’s attention where it is needed, especially as the
plots are approximately ordered by decreasing H-index. The variables Private
and P.Undergrad show little evidence of marginal importance, and notwithstand-
ing the relatively large H-values, there is not much evidence of interaction with
other predictors.
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2.4. Case study: cervical cancer risk classification

2.4 Case study: cervical cancer risk
classification

Cervical cancer remains one of the most prevalent forms of cancer in women glob-
ally, ranking fourth in the global cancer incidence in women (Bray et al., 2018).
The link between cervical cancer and sexually transmitted diseases (STDs) has
been well established. The long-term use of hormonal oral contraceptives is asso-
ciated with increased risk (Smith et al., 2003). Furthermore, having multiple chil-
dren has been shown to increase risk (Lukac et al., 2018), particularly in women
previously infected with HPV.

Here we examine and create visualizations for data concerning cervical cancer risk
factors (Fernandes et al., 2017). Based on the previous studies, we would expect
our visualizations to align with prior identification of important variables, with the
addition of gaining new information about how the variables interact. The data
is comprised of historical medical records (such as a patient’s STD history, oral
contraceptive or intrauterine device [IUD] use) and personal information (such as
age and sexual activity). Due to the personal nature of the questions asked for the
collection of the data, several patients decided not to answer some of the questions,
particularly those concerning STDs. The data has been previously studied (for
example see Alsmariy et al., 2020). The full dataset contains 36 variables with 858
observations and uses Biopsy (Healthy or Cancer) as the response.

For this case study, we use a subset of the variables (see supplementary materials
for a listing). Preliminary exploration of the data shows that many variables are
highly skewed and contain zero values; in this case we use a log(x + 1) transfor-
mation. The data is split 70-30 into training and test sets. We fit a classification
gradient boosting machine (GBM) model (Friedman, 2000) to the training data,
with Biopsy as the response. The accuracy on the test set was measured to be
0.93, and the area under the curve (AUC) was 0.73. All plots were made using
the training data, with all PDPs and the H-statistic measured on the logit scale.

Figure 2.6 displays a heatmap of the GBM fit on the cervical cancer risk data,
using a permutation VImp method. Reading from the top-left, the first seven
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Figure 2.6: Heatmap of a GBM fit on the cervical cancer data. The first seven variables
have the highest VIVI scores. Age and No_preg have the strongest interaction.

variables have the highest VIVI scores. Overall, Age has the highest importance
followed closely by Horm_Cont_yrs (the number of years a patient has taken
hormonal contraceptives). This is in agreement with the studies mentioned above.
Age also shares the strongest interaction with No_preg (number of pregnancies),
which has a medium Vimp but is highly important in terms of its interaction. We
can see multiple interactions throughout the top seven variables. Of note is the
interaction between STDs_No (number of STDs a patient has previously had) and
No_sex_par (number of sexual partners). Both of these variables share a strong
interaction but have low VImps and they may have been mistakenly eliminated
from a model were VImp scores to be used as the sole variable selection metric.

We further explore the impact of the top five variables from Figure 2.6 on cancer
classification in the GPDP plot of Figure 2.7. To compare response groups, the
ICE plots on the diagonal show 25 instances sampled from each of the Cancer and
Health groups. The ICE curves are colored according to the predicted log-odds
of cancer for that instance. As there is only one red curve, the predicted model
accords most observations low cancer probabilities, even for those known to have
cancer. The solid black lines on the diagonal of Figure 2.7 show single variable
PDPs. The PDP curve for Age, the single most important predictor, has a mostly
decreasing log-odds trend up to an age of 43 (≈ 3.75 on the log scale), with a steep
incline thereafter. But we can see from the Age scatterplots there are few cases
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Figure 2.7: GPDP of a GBM fit on the cervical cancer data. The presence of the
STD condylomatosis (STDS_condy) increases the risk of cervical cancer. Risk increases
substantially at higher ages and with prolonged use of hormonal contraceptives.

with ages beyond 43, so the pattern in this area is not supported by much data.
The pattern for the Horm_Cont_yrs PDP is similar to that for Age, where log-
odds of cervical cancer increases rapidly beyond eight years. In this case though,
there are quite a few observations in this region supporting this finding.

According to Figure 2.6, the predictors No_preg and Age have the strongest in-
teraction. The bivariate PDP plot for No_preg:Age indicates the form of this
interaction. A high number of pregnancies is associated with low cancer proba-
bility for middle age groups, but is associated with a higher cancer probability
for older and, interestingly, younger patients. Note that in the plots with one
numeric and one categorical variable, such as the plot for STD_condy (STDs:
condylomatosis) and Age, the numeric variable is always drawn on the x-axis,
notwithstanding the label is on the y-axis. This is to allow the plot to be more
easily read. In this plot, the bivariate PDP is the same as two PDPs for each level
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2.4. Case study: cervical cancer risk classification

of STDs_condy (where the green curve is for STDs_condy = 1). Although this
pair has a relatively high VInt score (as seen in Figure 2.6), there does not appear
to be an interaction present in the bivariate PDP, as the difference between the
two curves does not vary with age.

To focus just on predictors with high pairwise interaction scores, we turn to a
network plot. Figure 2.8 displays a network plot of the GBM fit to the cervical
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Figure 2.8: Network graph of a GBM fit on the cervical cancer data, filtered to show
pairs of variables with H-index greater than 0.08.

cancer risk data, filtered to show pairs of variables with a H-index greater than
0.08 (with the cutoff chosen after inspection of the histogram of H values). The
selected variables include the five variables appearing in Figure 2.7, and three
additional variables, namely No_sex_par, STDs_No, and IUD_yrs (number of
years with an intrauterine device), with eight relevant interactions between them.
This display has some benefits over the heatmap display of Figure 2.6. Firstly, it
focuses directly on pairs of variables with high interaction, particularly with the
choice of network layout. Secondly, in the heatmap plot, even with seriation, some
high-interaction pairs of variables may not be positioned nearby which detracts
from readability. For example in Figure 2.6, associating the relevant variables
with the strong interaction for (First_sex_inter, STDS_No) requires considerable
effort from the reader. However, this strong interaction is immediately obvious in
Figure 2.8.

To explore these interacting variables further, we use a ZPDP in Figure 2.9 to show
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Figure 2.9: ZPDP of a GBM fit on the cervical cancer risk data. High cancer probability
occurs with high number of pregnancies and high age. The color scale is the same as
that of Figure 2.7.

the bivariate PDPS for the eight interactions. The Eulerian path starts with the
pair of variables with the highest H-index (here No_preg:Age), and from there to
Age:STDs_cond_y, ending up at No_preg:IUD_yrs. An additional plot is added
corresponding to an edge between Horm_Cont_yrs and IUD_yrs to complete
the Eulerian. (In this example, it would be possible to construct a ZPDP based
on an Eulerian visiting each edge of the graph in Figure 2.8 exactly once, but
this Eulerian ignores edge weights.) The STDs_No:No_sex_par plot (third row,
second column) is a flat surface with no evidence of interaction, despite these
variables having a moderate H-index. Interestingly, in the No_preg:IUD_yrs plot
(third row, first column), the probability of developing cervical cancer is increasing
with IUD_yrs, with a steeper gradient for moderately high No_preg. Further
investigation is needed to determine the nature of this effect.

To summarize, we have used our visualizations to identify and examine some clear
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risk factors associated with developing cervical cancer. Our novel approach allowed
us to examine specific pairs of variables that interact and through our use of graphs
and PDPs, we can examine how each variable affects the model’s predictions.
Specifically, the age of a patient and the number of years of hormonal contraceptive
use seem to be important risk factors, agreeing with previous studies. From Figure
2.7, the women who took hormonal contraceptives for eight or more years appear
to have a higher risk cervical cancer, which is in agreement with the findings of
Smith et al. (2003). Surprisingly, as seen in Figure 2.6, Dx.HPV (i.e., whether
the patient has had a previous diagnosis of HPV) was ranked to have middling
importance, despite the known link between HPV and cervical cancer. Neither did
we see evidence of an interaction between No_preg and Dx.HPV, which contrasts
with Lukac et al. (2018). These differences may be due to the low frequency of
positive cases in the data.

2.5 Discussion
We have presented innovative and informative methods to visualize the importance
and interactions of variables simultaneously from a model. The seriated heatmap
of Section 2.2.3 and the network plot of Section 2.2.4 are effective in determining
which variables have the most impact on the response in a model fit. We view
VIVI measures displayed in heatmap and network plots as a starting point for
further detailed exploration of the nature of variable effects and interactions in the
GPDP and ZPDP. The ZPDP construction is a novel application of the recently
proposed zenplots of Hofert and Oldford (2020), which should prove particularly
useful to focus exploration on high-VIVI subsets of variables.

Our methods are intuitive, flexible and easily customisable. Built-in or model-
agnostic variable importance measures may be used in our heatmap and network
displays. In our work to date, we use the model-agnostic H-statistic. Model-
agnostic measures are particularly useful when comparing two or more fits. The
heatmap and network displays will also be useful for comparing different VIVI
measures for the same fit.

As calculation of the VIVI matrix and our visualizations are available for any
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subset of the data, stratified versions or facetted displays will give insight into
higher-order predictor interactions. A drawback to the H-statistic is calculation
speed, which is highly model dependent, though sampling and parallel calculation
offer useful speed-ups. For example, the 14 × 14 H-matrix for the GBM fit in
Figure 2.6 computed on 30 randomly selected observations took approximately 16
seconds on a MacBook Pro 2.3 GHz Dual-Core Intel Core i5 with 8GB of RAM.
Calculation for the 17-predictor random forest fit in Figure 2.1 is much slower,
taking approximately 79 seconds, even though here we used just 20 randomly se-
lected observations. A second drawback we have identified is that high H values
can occur in settings where there is no feature interaction, especially in the pres-
ence of high variable correlation. The presence and nature of interactions can be
further verified in the bivariate partial dependence plot, thus avoiding misleading
conclusions.

A bivariate importance measure, perhaps obtained by permuting pairs of variables,
could be used in place of the H-statistic in the heatmap and network visualiza-
tions. It would also be interesting to explore the interaction measures of Hooker
(2004) and Greenwell and Boehmke (2020) in our visualizations, and whether these
measures avoid the issues identified with the use of H.

A number of variants of the GPDP and ZPDP could be investigated in future
work. One possibility for the bivariate PDP, is to subtract the two marginals
plotting fjk − fj − fk, which corresponds directly to the H-statistic. Alternatively,
accumulated local effects (ALE) functions (Apley and Zhu, 2020) could be used
in place of PDPs in our matrix layouts. ALE functions were constructed with
the goal of counteracting the bias issues of partial dependence functions. Another
option might be to replace the partial dependence f in Equation 2.3 with the
corresponding ALE function, giving a new interaction measure.

2.6 Appendix
We explore some limitations of the H-statistic using a simulated dataset. We
demonstrate the benefits of the un-normalized version of H, and show how corre-
lated variables can result in spuriously high interaction measures.
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Using the Friedman benchmark equation (Friedman, 1991),

y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + ϵ (2.5)

where xj ∼ U(0, 1), j = 1, 2, . . . , 10; ϵ ∼ N(0, 1)

we simulate 1,000 observations and fit a random forest. There are five important
variables with an interaction between x1 and x2, and five additional predictors
x6, x7, . . . x10 unrelated to the response.

In Figure 2.10(a) and (b) we compare the normalized and un-normalized versions
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(b) Un-normalized H
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(c) Correlated variables.

Figure 2.10: Comparison of the normalized and un-normalized H-statistic and the effect
of including correlated variables for a random forest model. In (a) multiple spurious
interactions are detected when using the normalized H-statistic. In (b) the spurious
interactions have mostly disappeared when using the un-normalized version. In (c) (un-
normalized H) a moderate spurious interaction between the correlated variables x4 and
x5 is detected .

of the H-statistic for the simulated data. Colour legends are not useful here and
are omitted. In all cases, the x1:x2 interaction is correctly identified. However,
in (a) there are numerous spurious strong interactions among the noise variables.
In (b) using un-normalized H these spurious strong interactions disappear. The
culprit here is the denominator in Equation 2.2, which for variables x6, x7, . . . x10

will be close to zero, thus artificially inflating H. This is the rationale behind our
use of the un-normalized H-statistic in our examples throughout.

A more subtle cause of spuriously inflated H is due to bias in the partial depen-
dence curve. This is a particular problem in the presence of correlated predictor
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variables (for example, see Apley and Zhu, 2020). To demonstrate this, we re-
place x5 with 0.3x5 + 0.7x4 in Equation 2.5 thus introducing a strong correlation
(≈ 0.92) between x4 and x5. The resulting VIVI heatmap of the random forest fit
in Figure 2.10(c) shows a moderate x4:x5 interaction which is spurious. Even in
the absence of correlation, bias can occur if the fit exhibits regression to the mean.
For example, this occurs with tree-based fits such as a random forest, where pre-
dictions cannot lie outside the range of training set responses. This bias is evident
in Figure 2.10(b) and (c) as the light purple squares in the top-left section of the
heatmaps.
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CHAPTER 3
Visualisations for Bayesian
Additive Regression Trees

Tree-based regression and classification has become a standard tool in modern data
science. Bayesian Additive Regression Trees (BART) has in particular gained wide pop-
ularity due its flexibility in dealing with interactions and non-linear effects. BART is
a Bayesian tree-based machine learning method that can be applied to both regression
and classification problems and yields competitive or superior results when compared to
other predictive models. As a Bayesian model, BART allows the practitioner to explore
the uncertainty around predictions through the posterior distribution. In this paper, we
present new Visualisation techniques for exploring BART models. We construct con-
ventional plots to analyse a model’s performance and stability as well as create new
tree-based plots to analyse variable importance, interaction, and tree structure. We
employ Value Suppressing Uncertainty Palettes (VSUP) to construct heatmaps that
display variable importance and interactions jointly using colour scale to represent pos-
terior uncertainty. Our new Visualisations are designed to work with the most popular
BART R packages available, namely BART, dbarts, and bartMachine. Our approach is
implemented in the R package bartMan (BART Model ANalysis).
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3.1 Introduction
Bayesian Additive Regression Trees (BART; Chipman et al., 2010) is a non-
parametric sum-of-trees-based ensemble method. BART has been shown to be
a useful predictive tool and has been applied in diverse areas such as risk man-
agement (Liu et al., 2015), proteomics (Hernández et al., 2015), and avalanche
forecasting (Blattenberger and Fowles, 2014). The BART method has also been
extended into many areas, such as survival analysis (Sparapani et al., 2016) and
causal inference (Hill, 2011; Hahn et al., 2020). Its excellent empirical perfor-
mance has motivated works on its theoretical foundations (Linero and Yang, 2018;
Prado et al., 2021). BART now enjoys widespread use due to its competitive
performance against other tree-based predictive models, such as Random Forest
(Breiman, 2001) and Gradient Boosted Trees (Friedman, 2000).

BART models are used for making predictions for both binary and continuous re-
sponse variables and are fit using the R packages dbarts (Dorie, 2022), bartMachine
(Kapelner and Bleich, 2016), and BART (Sparapani et al., 2021), among others.
These packages offer limited Visualisations and in some cases leave it to the user
to manually create their own Visualisations by extracting information from the
fitted model. Our goal is to create novel Visualisations and to streamline this
process for the aforementioned BART packages by creating a suite of plots for
and evaluating both the BART fit and the posterior distribution. In our work,
various aspects of a BART model can be assessed (e.g., variable importance and
variable interaction) by analysing the structure of the trees used in the model.
However, our approach goes beyond many standard machine learning Visualisa-
tion techniques by allowing for uncertainty in the posterior to propagate into the
diagrams.

One of the more challenging aspects of model Visualisation is the depiction of un-
certainty. The predictions from the BART models we create exhibit uncertainty
associated with the posterior distribution, and the way we choose to represent this
uncertainty may have an impact on how the model is analysed and how our audi-
ence interprets the findings. This issue has been well studied in areas that regularly
deal with uncertainties in data (e.g. Pang et al., 1997; Brodlie et al., 2012). For
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example, error bars, confidence intervals, or quantile intervals are common tools
used to display uncertainty. However, these tools cannot be universally applied to
all situations where displaying the uncertainty is necessary, such as in heatmaps
or point clouds. When using point clouds to map data over many iterations, 95%
confidence ellipses can be used to encircle points. An example of this can be seen
in Section 3.3.3.

Methods for producing Visualisations of importance and interaction for standard
machine learning models can be found in Inglis et al. (2022). However, in Bayesian
models it is important to include the uncertainties that arise as part of the calcu-
lation of a full joint posterior distribution. Our new displays use a method called
Value Suppressing Uncertainty Palettes (Correll et al., 2018), which allows for
both the value and the uncertainty to be displayed in a single plot. Traditional
methods for displaying a value and uncertainty simultaneously require a 2D bivari-
ate map, conventionally displayed as a square (for example, see Robertson and
O’Callaghan, 1986; Teuling et al., 2011). However, due to the large colour-space
of 2D bivariate maps, the ability to distinguish between two different visual as-
pects can become challenging. VSUPs improve on this method by using an arc to
assign colours and blend together data values with high uncertainty so that values
become more distinguishable as the uncertainty decreases. This reduction of the
visual colour-space helps to both distinguish between low and high uncertainty
and promotes caution when the uncertainty is high (Correll et al., 2018).

By examining the trees in a BART model we can learn about the stability and
variability of tree structures as the algorithm iterates to build the posterior. We
offer new tree-based plots that focus attention on certain aspects of the model fit
in an intuitive way. We provide space-saving layouts as well as providing various
sorting/filtering methods and colouring options. When combined with ordina-
tion techniques, we provide easy to use tools which aid in highlighting interesting
aspects of the model fit, such as variable importance or common interactions.

Multidimensional scaling (MDS) plots are a common method for graphically dis-
playing relationships between objects in multidimensional space (Torgerson, 1952).
Objects that are similar appear closer on the graph, whereas objects objects that
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are less similar are farther away. MDS can be used to reduce the number of
dimensions in high-dimensional data as well as interpret dissimilarities as graph
distances. We construct an MDS display of a BART fit and extend it to display the
uncertainty. For each iteration of the BART fit, we perform MDS on proximities
and rotate each plot to match a particular target iteration. From this we get a
point cloud, where a confidence ellipse is used to encircle each observation. With
this display the analyst can explore, for example, outliers that may require further
investigation.

Aside from our three main novel Visualisations, we include a selection of standard
diagnostic plots, such as trace, residual, and overall model fit plots, that will
quickly assess aspects such as convergence and model behavior. Each of our plots
can be run on any of the aforementioned R-packages, despite their differing formats
and function arguments.

While we make what we believe to be good default choices for the plots we produce,
we provide the option to adjust many of the settings. Each aspect of the design of
our plots is given careful consideration; we focus on efficient layouts, which includes
both clustering and filtering, colour choice, and effectively displaying uncertainty.
Our new displays are appropriate for regression and classification fits and are
designed to work with the three aforementioned BART packages but could readily
be extended to incorporate other BART packages. Our implementation is available
as the R package bartMan (BART Model ANalysis) which is found at https:
//github.com/AlanInglis/bartMan.

The outline of this paper is as follows: in Section 3.2 we describe the formula-
tion of a BART model and provide a brief discussion on how to access variable
importance and variable interactions. In Section 3.3 we describe our new Visualisa-
tions for assessing variable importance and variable interactions with uncertainty,
tree-based analysis, outlier identification with multidimensional scaling, and a se-
lection of enhanced model diagnostic plots on a simple example. In Section 3.4 we
study BART’s variable importance and variable interaction methods compared to
a model agnostic approach. In Section 3.5 we demonstrate our new methods on
a case study. Finally, in Section 3.6 we conclude by discussing potential advan-
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tages and disadvantages of our approach, as well as potential avenues for further
research.

3.2 Bayesian Additive Regression Trees and
Variable Importance

We begin with by reviewing Bayesian additive regression trees and follow with a
review of both variable importance and variable interactions in a BART model.

3.2.1 A Short Introduction to Bayesian Additive
Regression Trees

In this section we provide a brief overview of the BART model to aid the reader
in understanding our later Visualisations. Those looking for a more complete de-
scription should see Chipman et al. (2010). BART is a Bayesian non-parametric
model based on an ensemble of trees that can be used for predicting continuous
and multi-class responses. Unlike regression models where a linear structure is
pre-specified, BART does not assume any functional form for the model, and so
automatically uncovers main and interaction effects. Given a continuous response
variable yi with associated predictors xi, the BART model, with m trees is ex-
pressed as:

yi =
m∑

j=1
g(xi, Tj, Mj) + ϵi, (3.1)

where ϵi ∼ N(0, σ2) and g(xi, Tj, Mj) = µjℓ is a function that assigns a predicted
value for the observations falling into terminal node ℓ of tree j. Tj represents the
structure/topology of tree j including the split variables and the values associated
with the splits Mj = (µj1, · · · , µjbj

) represent the set of predicted values at the bj

terminal nodes of the trees.

The tree structure T is composed of binary splitting rules of the form [xj ≤ c],
where observations which satisfy the condition go to the left and the remainder
to the right. The trees are updated at each iteration in a Markov chain Monte
Carlo approach where each tree structure is modified by either growing, pruning,
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changing, or swapping nodes. Growing a tree means that a terminal node is
randomly chosen and two new terminal nodes are created, while pruning collapses
a pair of terminal nodes to their parent. A splitting rule can also be changed to a
different rule, or swapped for another splitting rule in the same tree. In the grow
and change moves a new splitting rule is required and is proposed by uniformly
sampling a splitting variable and a split value though the exact generation of these
rules is implementation dependent.

Figure 3.1 shows an example of the tree structure modifications in action. In
Figure 3.1, a tree, T k

1 , is generated from BART in 4 different instances, where
k = 1, 2, 3, 4 indicates the iteration number in which the tree is updated. In the
full BART model multiple trees are estimated and the predictions are created from
the sum of the µ values across the trees. The tree is displayed as an icicle plot
(Kruskal and Landwehr, 1983) with the splitting rules (that is, covariates and split
points) shown as coloured rectangles and the terminal nodes µjℓ are shown as grey
rectangles. Icicle plots were first introduced by Kruskal and Landwehr (1983) as
a way to display hierarchical data in a space efficient manner. We use icicle plots
to display our tree plots in later sections.
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Figure 3.1: An example of a tree, T k
1 , generated from BART over k = 1, 2, 3, 4 iterations.

displayed as an icicle plot with the splitting rules (that is, covariates and split points)
shown as coloured rectangles and the terminal nodes µjℓ are shown as grey rectangles.
In panel (a), k = 1, observations that satisfy the splitting criterion go left and tree T

(1)
1

has two internal nodes and three terminal nodes. Moving from panel (a) to (b) shows
the grow move for the tree. Reverting from (b) back to (a) corresponds to a prune move.
Panel (c) shows the change move as the splitting rule that defines µ13 and µ14 in T

(2)
1 is

changed. Finally, in (d) the swap move can be seen when comparing the internal nodes
of T

(3)
1 and T

(4)
1 .

In panel (a) of Figure 3.1 at iteration 1, observations that satisfy the splitting
criterion go left and tree T

(1)
1 has two internal nodes and three terminal nodes.

The grow move is shown going from panel (a) to panel (b), that is T
(1)
1 to T

(2)
1 .

An example prune move would correspond to T
(2)
1 reverting to T

(1)
1 . In panel (c)
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we can see the change move as the splitting rule that defines µ13 and µ14 in T
(2)
1 is

changed. Finally, in (d) the swap move can be seen when comparing the internal
nodes of T

(3)
1 and T

(4)
1 .

As a Bayesian model, BART adopts a set of prior distributions for the tree struc-
ture, terminal node parameters, and residual variance. To control the depth and
shape of the tree structure, a branching process prior is considered where the prob-
ability of a node being non-terminal at depth d is proportional to α(1+d)−β, where
α ∈ (0, 1) and β ≥ 0. Chipman et al. (2010) recommend α = 2 and β = 0.95 as
default, which favours shallow and balanced trees. A side effect of this choice is
that noise (i.e. uninformative) variables are often chosen in shallower tree struc-
tures as the tree prior can outweigh the likelihood when a large number of trees
is used. The terminal node parameters µjℓ are assumed to be independent and
identically distributed, that is, µjℓ ∼ N(0, σ2

µ), where σ2
µ is the residual variance of

the terminal node parameters, which is usually fixed. The value of σ2
µ is usually set

with the aim of forcing the trees to be shallow and shrink their predictions towards
zero so that each tree only contributes a small amount to the overall prediction.
Finally, the prior on the residual variance σ2 is an Inverse Gamma.

Posterior sampling is based on a Metropolis-within-Gibbs MCMC structure where
the trees are sequentially updated through partial residuals. For one MCMC
iteration, each tree in the ensemble is modified and then compared to its previous
version via a Metropolis-Hastings update. The update involves a marginalised
likelihood and the tree prior. The marginalised likelihood is an essential element
to avoid trans-dimensional MCMC, and simplifies computation. Given the tree
structure, all terminal node parameters µjℓ are updated based on a closed-form
posterior conditional distribution. After updating all trees, the variance σ2 is
updated; a more complete description can be found in Chipman et al. (2010) and
Tan and Roy (2019).

In the above, we have described the BART model for a univariate and continuous
response variable. However BART has been extended into many different areas,
such as survival analysis (Sparapani et al., 2016; Linero et al., 2021), time series
analysis (Starling et al., 2020), multivariate skewed response (Um, 2021), and high-
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dimensional data (Hernández et al., 2018; Linero and Yang, 2018; He et al., 2019).
While in this work we do not apply our methods to these extensions of BART,
there is in principle no reason why our methodology could not be extended to
incorporate the above BART extensions.

3.2.2 Variable Importance and Variable Interaction
Calculations with BART

Variable importance is a measure of a single variable’s impact on the response.
Multiple methods exist for evaluating variable importance, depending on the model;
for a comprehensive review of different variable importance techniques see Wei
et al. (2015a). Chipman et al. (2010) propose a method called the inclusion pro-
portion to evaluate the variable importance in a BART model from the posterior
samples of the tree structures. Their measure of variable importance first calcu-
lates for each iteration the proportion of times a variable is used to split nodes
considering all m trees, and then averages these proportions across all iterations.

More formally, let K be the number of posterior samples obtained from a BART
model. Let crk be the number of splitting rules using the rth predictor as a
split variable in the kth posterior sample of the trees’ structure across m trees.
Additionally, let c.k = ∑p

r=1 crk represent the total number of splitting rules found
in the kth posterior sample across the total p variables. Therefore, zrk = crk/c.k

is the proportion of splitting rules for the rth variable, and the average use per
splitting rule is given by:

VImpr = 1
K

K∑
k=1

zrk (3.2)

However Chipman et al. (2010) noted that this method of evaluating importance
is less effective when the number of trees, m, is large because weakly influential
predictor variables can be added to the tree structure and so may provide spurious
importance values for the non-important variables. As m decreases this effect is
diminished because the less important variables get swapped out of the trees for
more informative variables.
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Variable interaction is generally considered as when a pair (or more) of variables
jointly impact on the response. In our work we focus on bivariate interactions
only. Kapelner and Bleich (2016) suggested a measure of interaction obtained by
observing successive splitting rules in each tree. Let crqk be the number of splitting
rules using predictors r and q successively (in either order) in the kth posterior
sample. Additionally, let c..k = ∑p

r=1
∑p

q=1 crqk represent the total number of suc-
cessive splitting rules found in the kth posterior sample. We follow the convention
of Kapelner and Bleich (2016) and we treat the order of successive splits as not
important and we sum the r, q counts with the q, r counts. Therefore, the propor-
tion zrqk = crqk/c..k, provides an estimate of the interaction between variables r

and q:

VIntrq = 1
K

K∑
k=1

zrqk (3.3)

As this method follows a similar technique to evaluating the inclusion proportion,
the same pitfalls noted by Chipman et al. (2010) apply, namely that the prior
distribution may favour trees containing successive predictor variables where there
is no true interaction present if the number of trees is large. For a comparison of
both the variable importance and variable interaction methods against a model
agnostic approach for evaluating these metrics, see Section 3.4.

It should be noted that if any of the variables used to build the BART model are
categorical, the aforementioned BART packages replace the categorical variables
with d dummy variables, where d is the number of factor levels. For some of our
plots, the inclusion proportions for variable importance and interaction are then
adjusted by aggregating over factor levels. This provides a complete picture of the
importance of a factor, rather than that associated with individual factor levels.

Since both the VImp and VInt values are calculated from the full posterior, it
is trivial to compute an uncertainty associated with their measurement, simply
by storing the importance and interaction calculations per iteration. These can
be summarised by the usual means by which posterior distributions are analysed.
We will use uncertainty metrics obtained from these distributions in our variable
importance and interaction displays of Section 3.3.
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3.3 New visualisations for BART
To illustrate our new Visualisations we use a subset of the iris data (Fisher, 1936)
where the response is binary and made up of two species (that is, setosa and
versicolor). We then fit a BART model to the data using bartMachine, using the
default setting of 1000 iterations with a burn-in of 250. For simplicity of exposition
we set the number of trees to be 20.

We introduce the following Visualisations: improved plots of variable importance
and interaction which include the uncertainty induced by the posterior distri-
bution of trees; plots of the tree structures which show the splitting variables,
the split distribution, and the terminal node values; the ability to identify outly-
ing and influential observations through the terminal node proximity matrix and
multi-dimensional scaling; and a set of enhanced model diagnostics for identifying
convergence and performance issues.

3.3.1 Variable Importance and Interaction with
Uncertainty

In this section we present visualisations of the variable importance methods de-
scribed in Section 3.2.2. In Figure 3.2 we show the median of the inclusion pro-
portion as a black point, with the variables ordered from the largest median im-
portance measure (at the top) and descending. In this case the 25% to 75%
quantile interval extending from each point is displayed as a grey bar. We can
see that Petal.Length is the most important variable and that Sepal.Width and
Petal.Width have similar inclusion proportions. Sepal.Width importance has a
lower degree of uncertainty, as indicated by the relatively small quantile interval,
whereas the Petal.Width importance has a large quantile interval associated with
it, and therefore its importance measure should be viewed with a level of caution.
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Sepal.Length

Petal.Width

Sepal.Width

Petal.Length

0.1 0.2 0.3 0.4 0.5

Importance

Figure 3.2: Inclusion proportions for the iris data are shown with the 25% to 75%
quantile interval extending from the points. Here Petal.Length is ranked as the most
important variable.

In Inglis et al. (2022), the authors propose using a heatmap to display both impor-
tance and interactions simultaneously, where the importance values are on the di-
agonal and interaction values on the off-diagonal. The advantage of such a display
is that it allows one to easily identify which variables are relevant as separate pre-
dictors while also seeing which variable pairs have high interaction. This method,
coupled with the seriation technique described by Inglis et al. (2022), brings pre-
dictors with high importance and interaction to the top-left of the heatmap and
less relevant predictors to the bottom-right.

Here we adapt the heatmap displays of importance and interactions to include
the uncertainty using a VSUP. The colours for the VSUP heatmap were carefully
chosen to be distinguishable, colour-blind friendly, and to aid in highlighting high
values, while still making the uncertainty prominent. To achieve this, we follow
the advice of Strode et al. (2019), who build upon the work of Trumbo (1981),
and aim to highlight and focus the reader’s attention on the interesting data.
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(a) (b)

Figure 3.3: In (a) the importance values are on the diagonal and interaction values
on the off-diagonal. Petal.Length is the most important variable and there is a strong
interaction between Petal.Length and Petal.Width. In (b) the same values values are
shown but with the coefficient of variation included by use of a VSUP. Both the impor-
tance measure of Petal.Length, and the interaction measure between Petal.Length and
Petal.Width have low coefficient of variation.

Figure 3.3 presents a comparison of heatmaps showing the importance and in-
teractions jointly with and without uncertainty. In both heatmaps the variable
importance is displayed on the diagonal and the interactions on the off-diagonal.
In (a), we can see that Petal.Length is the most important variable when predicting
Species. There also appears to be a strong interaction between Petal.Length and
Petal.Width. In (b) the same values are shown but with a measure of uncertainty
included, in this case the coefficient of variation (CV). Other error metrics such as
standard deviation can be applied, though in the case of using proportions larger
values tend to have greater uncertainty and so our preference is for the CV. In
both (a) and (b) the same method is used to obtain the importance and interaction
scores, resulting in comparable scales. Comparing the two plots we observe that
in (b) the most important variable, Petal.Length, has a small variation relative
to its mean. The Petal.Length and Petal.Width interaction value has a low coef-
ficient of variation and is consequently highlighted in (b), whereas Petal.Length
and Sepal.Length have a low interaction score with relatively high variation.
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3.3.2 Tree-Based Plots
In this section we examine more closely the structure of the decision trees created
when building a BART model. Examining the tree structure may yield information
on the stability and variability of the tree structures as the algorithm iterates
to create the posterior. By sorting and colouring the trees appropriately we can
identify important variables and common interactions between variables for a given
iteration. Alternatively we can look at how a single tree evolves through the
iteration to explore the fitting algorithm’s stability.

Variable

Petal.Length

Petal.Width

Sepal.Length

Sepal.Width

Stump/Leaf

Figure 3.4: A single tree over 1000 iterations. The coloured bars indicate which variable
is used for the split at that point. Grey boxes indicate stumps or terminal nodes. The
vertical black lines in the terminal nodes indicate the proportion of the data being split
into the left or right terminal node.

In Figure 3.4, we show how a single selected tree changes over all 1000 post burn-
in iterations. We use an icicle plot to display the trees. As noted by Barlow and
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Neville (2001), icicle plots are preferred by users when compared to other methods
to display decision trees and use space more efficiently. Additionally, the number of
observations within each decision tree node is represented in icicle plots by scaling
the node size accordingly. In Figure 3.4, each parent node is coloured according
to the variable with the terminal nodes all coloured a dark grey. A stump is
represented by a solid grey square (although stumps can be removed from the plots
if desired). (More options to colour the nodes by certain parameters are shown
in later plots in this section.) With this display we see how a tree evolves over
iterations. Here we see the prevalence of Petal.Length as a splitting variable (red
rectangles) once again indicating the importance of this predictor. Additionally,
most iterations have a single split on the root node, with very few trees showing
an interaction. As the nodes are sized according to the number of observations,
we observe that in the seventh and eighth rows some trees have an empty, white
space. In this case most of the observations fall into the single terminal node on
the left. The remaining observations go right and split again.

In our tree displays, it is also useful to view different aspects or metrics. In Figure
3.5 we explore some of these aspects by displaying all the trees in a selected itera-
tion (in this case, we chose the iteration with lowest residual standard deviation).
We consider variations which colour terminal nodes and stumps by the mean re-
sponse (panel (a)), colour them by the terminal node parameter value (panel (b)),
sort the trees by structure starting with the most common tree and descending to
the least common tree found for easy identification of the most important splits
(panel (c)), or sort the trees by depth (panel (d)). As the µ values in (b) are cen-
tred around zero, we use a single-hue, colourblind friendly, diverging colour palette
to display the values. For comparison, we use the same palette to represent the
mean response values in (a).
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(a) (b)

(c) (d)

Figure 3.5: All trees in a selected iteration. In (a) the terminal nodes and stumps are
coloured by the mean response. In (b) the terminal nodes and stumps are coloured
by the predicted value µ. In (c) we sort the trees by structure starting with the most
common tree and descending to the least common tree shape and in (d) we sort the trees
by tree depth.

Different interesting findings are seen in the four panels. Panel (b) indicates that
tree 5 (the top right tree displayed) has a much greater influence on the overall pre-
dictions than the others, which seems surprising given the nature of the shrinkage
prior used in BART which aims to shrink the terminal node parameters towards
zero. From (c) we observe that the most common tree structure in this iteration
is actually a stump. The most common non-stump tree type has Sepal.Width as
the root with a single binary split. Furthermore, in this iteration Petal.Length
and Sepal.Width are both used as a splitting variable an equal number of times.
In (d) it is quickly identified that the vast majority of trees in this iteration have

58



3.3. New visualisations for BART

one or zero splits.

When the number of variables or trees is large it can become harder to identify
interesting features. We provide a plot that can be used to highlight interest-
ing features by accentuating selected variables by colouring them brightly while
uniformly colouring the remaining variables a light grey. When coupled with the
sorting shown previously in Figure 3.5 we have found that this more clearly iden-
tifies relationships of interest. As the iris data has very few predictors, we omit
this plot here but an example of it can be seen the larger case study example of
Figure 3.14 in Section 3.5.

Finally, as an alternative to the sorting of the tree structures, seen in Figure 3.5
(c), we provide a bar plot summarising the tree structures. Figure 3.6 shows a
barplot of the frequency of the tree types over all iterations, filtered to show the
top 10 most frequent trees, where the legend indicates the tree structure with the
node sizes equally proportioned. To count the tree structures, we use the same
sorting algorithm as Figure 3.5 (c). This seems most useful when summarising a
large number of trees (though again these plots can also be created for a single tree
across iterations or to display all trees in a single iteration). We can see that the
most common tree type over all iterations is the tree that has a single binary split
on Petal.Length, with the second most common being the tree that has a single
binary split on Sepal.Width. Additionally, we can see that Petal.Length appears
in several of the other top 10 most common tree structures. This is in agreement
with the inclusion proportion variable importance plot of Figure 3.2 which tells us
that Petal.Length is used as a splitting rule most often.
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0 2000 4000 6000

Count

Variable Petal.Length Petal.Width Sepal.Length Sepal.Width Stump

Figure 3.6: Bar plot of the top 10 most frequent tree types over all iterations. Trees
with a single binary split on Petal.Length occur the most often.

3.3.3 Outlier Identification with Multidimensional Scaling
Proximity matrices combined with multidimensional scaling (MDS) are commonly
used in random forests to identify outlying observations (Breiman, 2001). Both
proximites and MDS have been shown to be useful tools and can be applied to
wide range of data types, including genomic and ecological data (for example,
see Englund and Verikas, 2012; Cutler et al., 2007). However, to our knowledge,
these methods have not yet been implemented for a BART model. When two
observations lie in the same terminal node repeatedly they can be said to be similar,
and so an N×N proximity matrix is obtained by accumulating the number of times
at which this occurs for each pair of observations, and subsequently divided by the
total number of trees. A higher value indicates that two observations are more
similar. The proximity matrix is then visualised using classical MDS (henceforth
MDS) to plot their relationship in a lower dimensional projection.

In BART there is a proximity matrix for every iteration and thus a posterior
distribution of proximity matrices. While trivial to then apply MDS to each matrix
we introduce a rotational constraint so that we can similarly obtain a posterior
distribution of each observation in the lower dimensional space. We first choose a
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target iteration (we use the iteration with lowest residual standard deviation) and
apply MDS. For each subsequent iteration we rotate the MDS solution matrix to
match this target as closely as possible using Procrustes’ method. We end up with
a point for each observation per iteration per MDS dimension. We then group
the observations by the mean of each group and produce a scatterplot, where each
point represents the centroid of the location of each observation across all the MDS
solutions. This allows for an easier to read estimate of potentially outlying data
points. We extend this further by displaying the 95% confidence ellipses around
each observation’s posterior location in the reduced space. Since these are often
overlapping we have created an interactive version that highlights an observation’s
ellipse when hovering the mouse pointer above the ellipse (Figure 3.7 shows a
screenshot of this interaction in use). The observation number is also displayed
during this action.

In Figure 3.7, each point represents the centroid of the location of each observation
across all the MDS solutions and are coloured according to their class (in this case,
either Species). We can see that most of the variability is, unsurprisingly, in the
first-dimension, and while some points have quite different posterior distributions,
the uncertainty on many of them is large. Observation 86 appears to have a large
uncertainty and is separated by some distance from the other observations in that
class. This is an interesting finding as previous outlier detection studies using the
iris data (such as Acuna and Rodriguez (2004) and Liu et al. (2015)) have not
identified this observation as an outlier. Further investigation, by examining the
tree structure and a proximity matrix plot (which, in the interest of space, we omit
here) show that this observation is commonly found in the same nodes as those
observations from the other class.

61



3.3. New visualisations for BART

Figure 3.7: Interactive MDS plot of the iris data where the points are coloured by
class (in this case, either Species). Each 95% confidence ellipse corresponds to each
observation’s posterior location. When hovering the mouse pointer over an ellipse, the
ellipse is highlighted and the observation is displayed.

3.3.4 Enhanced BART model diagnostics
In this section, we examine some of the more common issues a researcher may
face when running a BART model. These include checking for convergence, the
stability of the trees, the efficiency of the algorithm, and the predictive performance
of the model. In our experience, most popular BART R packages are limited in
scope for creating informative model Visualisations (with the possible exception
of bartMachine which features versions of Figures 3.8 and 3.9). Our goal in these
plots is to provide a convenient and useful summary of the model’s characteristics
which is invariant to the choice of package. A useful side effect of these plots is the
ability to compare BART fits from different BART R packages. In the following
section we show a selection of diagnostic plots using both the bartMachine and
dbarts packages to build our models. Both models have the same hyperparameters
of 1000 iterations with a burn-in of 250 and 20 trees. We use the same two-species
subset of the iris data as before.
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3.3.4.1 Acceptance Rate of Trees

As discussed in Section 3.2, BART uses a Metropolis-Hastings algorithm to de-
termine the type of tree structure accepted at each tree in each MCMC iteration.
The trees are individually modified by either a grow, prune, change, or swap step
and compared to its previous version by calculating the acceptance ratio. The ac-
ceptance rate is therefore measured as the percentage of accepted proposed trees
across the iterations.

Figure 3.8 shows the post burn-in percentage acceptance rate across 1000 iterations
for both BART models, where each point represents a single iteration. A regression
line is shown to indicate the changes in acceptance rate across iterations and to
identify the mean rate. Both plots are forced to display the same vertical axis
range. Clearly there is a higher acceptance rate (approx 35%) in the dbarts
fit. None of the iterations in dbarts have zero trees accepted, while this occurs
commonly for bartMachine. This can also be seen in Figure 3.4 where there are
runs of identical trees, indicating that no new trees were accepted during this
period.
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(a) Acceptance rate per iteration using
bartMachine
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(b) Acceptance rate per iteration using
dbarts

Figure 3.8: Post burn-in acceptance rate of trees per iteration for a bartMachine and
dbarts fit in (a) and (b), respectively. A black regression line is shown to indicate the
changes in acceptance rate across iterations and to identify the mean rate. We can see
that the dbarts fit has a higher acceptance rate than the bartMachine fit.
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3.3.4.2 Tree Depth, Node Number, and Split Distribution

As with the acceptance rate, the average tree depth and average number of all
nodes per iteration can give an insight into the fit’s stability. Figure 3.9 displays
these two metrics for both BART fits. A locally estimated scatterplot smoothing
(LOESS) regression line is shown to indicate the changes in both the average tree
depth and the average number of nodes across iterations. From Figure 3.9 (a)
and (c), we can see that both the post burn-in average tree depth and the average
number of nodes per iteration is much more stable in the dbarts fit. However,
although we use the default number of iterations suggested by the bartMachine
package, increasing this may improve stability.
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(a) Average tree depth from bartMachine.
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(b) Average tree depth from dbarts.
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(c) Average number of nodes from
bartMachine.
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(d) Average number of nodes from dbarts.

Figure 3.9: In the top row we show the post burn-in average tree depth per iteration for
a bartMachine and dbarts fit in (a) and (b), respectively. In the bottom row we show
the post burn-in average number of nodes per iteration for a bartMachine and dbarts
fit in (c) and (d), respectively. A black LOESS regression curve is shown to indicate the
changes in both the average tree depth and number of nodes across iterations.
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Figure 3.10 shows the densities of split values over all post burn-in iterations
for each variable for both models (in green), combined with the densities of the
predictor variables (labelled “data”, in red). This plot appears to be new; we have
not found anything similar in any of the existing packages. We can see that the
split value density for Sepal.Width in the bartMachine fit, in (a), has large peak
at around 3.2 and the bartMachine fit’s split values have more modes.
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(a) Split value distribution obtained from a
bartMachine fit.
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(b) Split value distribution obtained from a
dbarts fit.

Figure 3.10: Split values densities (in green) over all iterations for each variable overlayed
on the densities of the predictors (in red) for a bartMachine fit in (a) and a dbarts fit
in (b).

In addition to the previous plots, we provide a panel of basic summary diagnostics
of the model fit which can be used for both classification and regression models. For
the former, we display metrics such as precision-recall and ROC (with uncertainties
included), a confusion matrix, fitted value plots, and a histogram of predicted
probabilities. For the latter, we show a trace plot of the model variance, a Q-Q
plot, and an array of model performance plots and residual plots over all iterations.
In the interest of space, we exclude the summary diagnostics for the classification
model and display the summary diagnostic plots for the regression model only, as
seen in Section 3.5.

65



3.4. Comparative analysis of variable Importance and Interactions in a BART model

3.4 Comparative analysis of variable
Importance and Interactions in a BART
model

In this section we provide an examination of the variable inclusion proportion
methods for evaluating importance and interactions in a BART model (as outlined
in Section 3.2.2) by comparing the raw inclusion proportions with and without
uncertainty included against alternative methods used to assess the importance
and interactions of variables. These alternative methods do not allow for the
inclusion of uncertainty in the metrics they create.

As previously discussed, BART models obtain a measure of importance by observ-
ing the proportion of times a variable is used as a split variable across all trees,
averaged over all iterations. The more times a variable is used as a split variable,
the more important that variable is deemed to be. Similarly, a measure of interac-
tion can be obtained in a BART model by observing the proportion of successive
splits over all trees, averaged over all iterations. However, as noted by Chipman
et al. (2010), this method of assessing importance (and interactions) comes with
certain pitfalls. Namely, if the number of trees is large, then non-important pre-
dictor variables can be preferred as the likelihood is relatively flat and so the tree
prior dominates. This can lead to to spurious importance and interactions scores
for variables that, in reality, have little influence on the response. This effect can
be mitigated somewhat by the inclusion of uncertainty to evaluate the reliability
of the measured importance or interaction scores. Additionally, Chipman et al.
(2010) state that decreasing the number of trees when building the model dimin-
ishes this effect as less important variables get swapped out of the trees for more
informative variables.

To compare the usefulness of a BART model’s importance and interactions, we
compare the BART methodology, with and without uncertainty included, against
a model agnostic approach to assess the importance and interactions. To mea-
sure the agnostic variable importance we use a permutation method. Permutation
importance was first introduced by Breiman (2001) and works by calculating the
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change in the model’s predictive performance after a variable has been randomly
permuted. That is, a model score is initially recorded, then a single variable is
randomly permuted (this is repeated for each variable) and the model score is re-
calculated on the new dataset. The difference between the baseline model’s perfor-
mance and the permuted model’s performance is taken as the variable importance
score. To measure the agnostic interactions we use Friedman’s H-statistic (or H-
index) (Friedman and Popescu, 2008). For this method the partial dependence for
a pair of variables is compared to their marginal effects.

Friedman’s H-statistic is defined as:

H2
jk =

∑n
i=1[fjk(xij, xik) − fj(xij) − fk(xik)]2∑n

i=1 f 2
jk(xij, xik) (3.4)

where fjk(xj, xk) represents the two-way partial dependence function of both vari-
ables, fj(xj) and fk(xk) represent the partial dependence functions of the single
variables, and all partial dependence functions are mean-centered. The obtained
measure is scaled in the range (0,1). Inglis et al. (2022) note, however, that varia-
tions in the numerator can lead to spuriously high H-values when the denominator
in (3.4) is small because the partial dependence function for the variables j and k

is flat in this case. To combat this, the square-root of the average un-normalized
(numerator only) version of Friedman’s H2 for calculating pairwise interactions is
suggested:

Hjk =
√√√√ 1

n

n∑
i=1

[fjk(xij, xik) − fj(xij) − fk(xik)]2 (3.5)

To explore and compare the variable importance and variable interactions, we
generate data using the Friedman benchmark equation (Friedman, 1991):

y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + ϵ

where xj ∼ U(0, 1), j = 1, 2, . . . , 10; ϵ ∼ N(0, 1).

We simulate 250 observations and fit a BART model using the dbarts R package,
using the default number of iterations (1000) and burn-in (100). We then set the
number of trees to be 20, 100, and 200 to evaluate how well the BART model can
capture the importance and interactions. There are five important variables and

67



3.4. Comparative analysis of variable Importance and Interactions in a BART model

an interaction between x1 and x2 in Equation 3.6, and five additional predictors
x6, x7, . . . x10 unrelated to the response.

In the first column of Figure 3.11 (panels (a), (d), and (g)) we use the alter-
native agnostic permutation approach for measuring importance and Friedman’s
H-statistic to obtain the interaction measures. In the second column (panels (b),
(e), and (h)) we calculate the standard BART model variable inclusion proportion
for the importance and interactions. Finally, in the third column (panels (c), (f),
and (i)), we display the same information as in the second column but with uncer-
tainty included, in this case via the coefficient of variation. For each row of Figure
3.11 we set the number of trees to 20, 100, and 200.
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(a) Agnostic Method
with 20 trees.
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(b) Inclusion proportion
method with 20 trees.

(c) Inclusion proportion with
uncertainty with 20 trees.
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(d) Agnostic Method
with 100 trees.
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(e) Inclusion proportion
method with 100 trees.

(f) Inclusion proportion with
uncertainty with 100 trees.
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(g) Agnostic Method
with 200 trees.
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(h) Inclusion proportion
method with 200 trees.
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Figure 3.11: Comparison of different methods to determine importance and interactions
in a BART model with 20, 100, and 200 trees in the first, second, and third rows
respectively.

Using the alternative agnostic method (first column) the five important variables
are identified with x4 being ranked as the most important and the interaction
between x1 and x2 is prominent. This remains consistent, regardless of the number
of trees used when building the model. When using the inclusion proportions
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(second column) the interaction between x1 and x2 is strong and individually x1

and x2 are the most important. In (b) the five important variables are identified.
However, as the number of trees increases (see (e) and (h)) variables x6, . . . , x10

are incorrectly designated as important. Spurious values are measured for both
importance and interactions when increasing the number of trees. Examining the
VSUPs (third column) the interaction between x1 and x2 is prominent and the
five important variables are again evident. Increasing the number of trees has the
effect of increasing the relative uncertainty for the spurious values and therefore,
highlights the variables of interest. For example, if we compare panels (e) and
(f) each based on 100 trees, we see that most of the spurious importance and
interaction values in (e) have a moderate degree of relative uncertainty in (f).

It is worth noting that for 20, 100, or 200 trees, although the agnostic method had
relatively consistent results, this method may not be computationally practical as it
is a slow calculation which gets compounded by the increase in trees. Additionally,
the agnostic approach would have be repeated multiple times to allow a measure
of uncertainty to be obtained. Conversely, calculating the inclusion proportion
is quick. For example, calculating the inclusion proportion for importance and
interactions for when the number of trees is 20 (as in panels (b) and (c)) took
approximately 1.5 seconds on a MacBook Pro 2.3 GHz Dual-Core Intel Core i5 with
8GB of RAM. Whereas, using the agnostic approach to measure the importance
and uncertainty (as in panel (a)) took approximately 43 seconds on the same
machine. When viewed with the uncertainty included, the inclusion proportion
method performs well when compared to the agnostic method, particularly when
the number of trees is low.

3.5 Case Study: Seoul Bike Sharing Data
In this section we apply our methods on a larger real-world data set. Here we
examine and create Visualisations concerning bike sharing data from Seoul, South
Korea (Sathishkumar, 2020). The data contains 14 features and includes weather
data (for example, humidity, rainfall, snowfall, and several others), the time of the
bike rental (in seasons, months, and days), and some local information (such as
if the day of rental was a holiday), with the total number of bikes rented per day
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as the response. The original data contained 8760 hourly observations which we
summarise to obtain the daily counts. For a full description of the data see the
Supplementary Materials. The data has been previously studied in Sathishkumar
and Yongyun (2020a) and Sathishkumar et al. (2020) who found that the tem-
perature of the day was an important factor for predicting the total number of
rentals. Sathishkumar and Yongyun (2020b) also found that the individual month
and season play a significant role in predicting bike rentals.

For our study we fit a BART model, using the BART package, with 1000 iterations,
a burn-in of 100, and 100 trees, with the goal of investigating which of the pre-
dictor variables has a significant impact on the response. We apply a cube root
transformation to the response as initially the residuals displayed some evidence
of non-normality. As mentioned in Section 3.2.2 on factor dummy variables, we
perform an aggregation of the dummy variables’ inclusion proportions for both
the importance and the interactions so these metrics can be assessed on the entire
factor. The variables treated as factors in the data are Month (the month of the
year a bike is rented), Season (season of the year a bike is rented), Wkend (if the
day of bike rental is a weekend or not), and Holiday (if the day of bike rental is a
public holiday or not).

To begin Figure 3.12 shows the model’s diagnostics to assess the stability of the
model fit. The top two rows indicate a reasonable performance of the residuals
with a moderately stable convergence of the residual standard deviation. The black
vertical line in the trace plot indicates the separation between the pre and post
burn-in period. The bottom row shows that the model fits the training data well
and that the Month is clearly the most important variable for predicting the count
of bikes rented. This makes intuitive sense as more bikes are rented during the
months with better weather, hence the variable Month should have a significant
impact on the response. However, in the bottom right panel, we can see that
Month has a large 25-75% quantile interval when compared to the other variables.
The second most important variable is Season followed by Temp (average daily
temperature in ◦C).
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Figure 3.12: General diagnostic plots for a BART regression fit on bike sharing demand
data. Top left: A QQ-plot of the residuals after fitting the model. Top right: σ by
MCMC iteration. Middle left: Residuals versus fitted values with 95% credible intervals.
Middle right: A histogram of the residuals. Bottom Left: Actual values versus fitted
values with 95% credible intervals. Bottom right: Variable importance plot with 25 to
75% quantile interval shown. We can see in the bottom left panel that the model fits
the training data reasonably well, with a good convergence seen in the top right panel.

We explore the impact of the variables on the response by examining the impor-
tance and interactions jointly in the variable importance and variable interaction
plots of Figure 3.13. For illustration purposes only we show the plot without un-
certainty in the left panel and with uncertainty on the right (as before we use the
coefficient of variation).

72



3.5. Case Study: Seoul Bike Sharing Data

M
on
th

R
ai
nf
al
l

So
la
r.R

Se
as
on

Te
m
p

H
um
id
ity

W
ke
nd

H
ol
id
ay

Vi
si
bi
lit
y

Ye
ar

Sn
ow
fa
ll

D
ew
.P
t

W
in
d.
Sp
d

Wind.Spd

Dew.Pt

Snowfall

Year

Visibility

Holiday

Wkend

Humidity

Temp

Season

Solar.R

Rainfall

Month

0.00

0.01

0.02

0.03

0.04

0.05
Vint

0.0

0.1

0.2

0.3

0.4
Vimp

(a) (b)

Figure 3.13: In (a) Variable importance and interaction plot without uncertainty. In (b)
the same values are shown but with the uncertainty included by use of a VSUP. In (b)
we can see that the interaction values between Month and several other variables have
a low coefficient of variation associated with them.

In Figure 3.13 (a) we observe a strong interaction between the variable Month
and several others, notably; Rainfall (in mm), Solar.R (Solar radiance in mJ/m2),
Season, and Temp. These interaction effects are somewhat intuitive, as we would
expect the weather (that is, rainfall and temperature) to be vastly different for
each month and season. For example, during Winter months, the number of
bike rentals is significantly lower due to bad weather. The strongest interaction
can be seen between Month and Rainfall. In Figure 3.13(b) many of the low
importance and interaction scores have high relative uncertainty, so the viewer’s
attention is drawn to the interesting variables. The most important variable Month
remains important relative to its uncertainty. Equally, the strong interactions
observed in (a) between Month and several others have a low associated variation
in (b). In (a) all variables except Month have similar importance scores, but
relative to uncertainty, the importance of the last seven variables (Humidity to
Wind.Spd) is reduced, represented by greeny-grey colours along the diagonal (b).
The interactions between these variables are mostly low and/or with high relative
uncertainty, the interaction between Snowfall and Year being an exception.
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In Figure 3.14 we take a deeper look at the structure of the trees for a selected
iteration. As before we choose the iteration with the lowest residual standard
deviation. As with the importance and interactions, by default we recombine the
categorical variables to display the entire factor. With such a large number of
predictors, it can become challenging to effectively display a distinguishable hue
for each when plotting the trees. To combat this we can select the most interesting
variables observed in Figure 3.13 and highlight them by using bright discernible
colours. To aid in efficient examination, we sort the trees by frequency of tree type
and remove the stumps.

Variable

Month

Season

Temp

Solar.R

Rainfall

Others

Figure 3.14: All trees from a selected iteration, highlighting the most interesting variables
and sorted by the frequency of tree type. In this case, the terminal nodes are coloured
dark grey and the stumps have been removed.

In this iteration we can see that the most common tree is a single binary split with
Month as the parent. It should also be noted that Month is chosen as the root
parent more frequently than any other variable and also appears deeper in several
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other trees and is subsequently the most common variable found in this iteration.
The previously noted interactions between Month and the other variables can be
observed in the lower portion of the plot. We can also see in Figure 3.14 that
for the variable Month, most of the observations fall into a single terminal node,
making one terminal node much larger than the other. Upon further investigation,
the ensemble is commonly splitting between the warmer and colder months for this
variable, such that the observations corresponding to January and February (the
coldest months with the fewest bike rentals) comprise the smaller terminal node.

We employ our MDS plot in Figure 3.15 to help find outliers. Here we can see
that each observation has moderate uncertainty, represented by the surrounding
95% uncertainty ellipses. We have highlighted observation 347 which lies slightly
farther away from the group. Inspecting this observation in the data tells us that
this observation corresponds to bike rentals on December 24th, which is a public
holiday. Bike rentals were well below average for this day, particularly for a public
holiday, which has usually high bike rentals. The temperature on this day was also
well below average. This may indicate as to why this particular observation lies
slightly farther from its group.

347

Figure 3.15: MDS plot of a BART fit on the Seoul bike sharing data. The observations
appear to have a moderate degree of uncertainty. Observation 347 (highlighted) appears
to be an outlier as it lies slightly farther away from its group.
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To summarise, we have used our Visualisations to identify and examine variables
associated with the prediction of bike rentals in Seoul, South Korea. Our approach
allowed us to examine the overall model fit and how individual and pairs of vari-
ables impact on the fit. Through our tree-based plots we can examine the inner
structure of our fit. Specifically, we found the month a bike was rented was ranked
the most important variable. Our methods rated Season as an important predic-
tor, agreeing with previous studies (Sathishkumar and Yongyun, 2020b). We also
find Temperature to be important, again verifying the findings of Sathishkumar
and Yongyun (2020a) and Sathishkumar et al. (2020). These findings indicate that
bike rentals are significantly affected by weather conditions, as during periods of
cold, wet, or snowy weather, bike rentals are reduced.

3.6 Discussion
We have presented new and informative Visualisations for posterior evaluation of
BART models. We extend the traditional method of assessing variable importance
and variable interactions by including the uncertainty that comes with Bayesian
models in our point plots and heatmaps that feature the value suppressing un-
certainty palettes methods of Correll et al. (2018). With our tree-based plots in
Section 3.3.2 we can examine the structure of the decision trees that are created
when building the model as well as providing useful summaries of tree types by
way of grouping tree structures by different metrics. We display outlier detection
methods by way of an interactive multidimensional scaling plot in Section 3.3.3
to provide an in-depth examination of a model’s fit. Finally, we provide a selec-
tion of enhanced model diagnostic plots in Section 3.3.4, which are practical for
assessing a model fit via a suite of plots that visualise aspects of a model such as
stability, tree acceptance rate, average number of nodes, and average tree depth
plots. These plots also provide a useful summary of the overall model fit via con-
vergence, residual, and Q-Q plots (for regression), and ROC, precision-recall, and
confusion matrices (for classification). Our approach is simple to use, adaptable,
customisable, and can be useful for comparing different BART model fits.

Our importance and interaction plots can be useful in determining which variables
have the greatest impact on the response and the inclusion of uncertainty can
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help in deciding if a given variable’s importance is worthwhile. A drawback to
this method is that the use of inclusion proportions as an importance/interaction
measure relies on the splitting rules in the model. Since BART chooses the split-
ting rule uniformly across all variables, non-important variables can be included.
This effect can be mitigated by selecting a smaller number of trees, however this
may limit the predictive performance of the model, as noted by Chipman et al.
(2010). The examples of Section 3.4 show that using the proportions alone as an
importance measure can be misleading, but that the use of a VSUPs with relative
uncertainty provide a correction.

A current drawback occurs when the number of trees and/or MCMC iterations
is large, so that the computational time to build the data frame of trees used for
producing these visualisations can vary, depending on the R package used. For
example, a model with 20 trees and 500 MCMC iterations took approximately
8.2, 9.2, and 90 seconds for a BART, dbarts, and bartMachine fit, respectively, on
a MacBook Pro 2.3 GHz Dual-Core Intel Core i5 with 8GB of RAM. The disparity
between bartMachine and the other packages is due to the way bartMachine uses
a Java back-end to extract the raw node data from the model. Although some
steps were taken to speed up this process, it remains largely outside of our control.

Our methods are flexible and can be easily extended to work with other BART
packages, such as bayesplot (Gabry et al., 2019), which is an R package that
provides a large library of plotting methods for use with Bayesian models fits.
Similarly, our methods could be extended to incorporate different extensions of
BART, such as the methods of Prado et al. (2021) for model trees BART (MOTR-
BART). Rather than having a single value for the prediction at the node level,
MOTR-BART estimates a linear predictor using the covariates that were used as
split variables in the relevant tree. A different method for measuring the impor-
tance and interactions could also be investigated for future work, such as DART
(Linero, 2018), which modifies a BART model by placing a Dirichlet hyper-prior
on the splitting proportions of the regression tree prior. When using DART, Linero
(2018) recommend selecting predictor variables from a so-called median probabil-
ity model (Barbieri and Berger, 2004) to conduct variable selection, where the
median probability model is defined as a model containing variables whose poste-
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rior inclusion probability is at least 50%. Alternatively, Shapley values (Shapley,
1997) could be used to measure importance.
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CHAPTER 4
vivid: An R package for Variable

Importance and Variable
Interactions Displays for Machine

Learning Models

We present vivid, an R package for visualizing variable importance and variable inter-
actions in machine learning models. The package provides a range of displays includ-
ing heatmap and graph-based displays for viewing variable importance and interaction
jointly and partial dependence plots in both a matrix layout and an alternative layout
emphasizing important variable subsets. With the intention of increasing a machine
learning models’ interpretability and making the work applicable to a wider readership,
we discuss the design choices behind our implementation by focusing on the package
structure and providing an in-depth look at the package functions and key features. We
also provide a practical illustration of the software in use on a data set.

4.1 Introduction
Our motivation behind the creation of the vivid package is to investigate ML
models in a way that is simple to understand while also offering helpful insights
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into how variables affect the fit. We do this through the use of heatmaps, network
graphs, and both a generalized pairs plot style partial dependence plot (PDP)
(Friedman, 2000) and a space saving PDP based on key variable subsets. While
the techniques and fundamental goals of these visualizations have been discussed
in Inglis et al. (2022), we focus here on the implementation details of the pack-
age by providing a complete listing of the functions and arguments included in
the vivid package with further examples indicating advanced usage beyond that
previously shown. In this work we examine the decisions made when design-
ing the package and provide an in-depth look at the package functions and fea-
tures with the intention of making the work applicable to a larger readership.
This article outlines the general architectural principles implemented in vivid,
such as the data structures we use and data formatting, function design, fil-
tering techniques, and more. We illustrate each function by way of a practical
example. Our package vivid is available on the Comprehensive R Archive Net-
work at https://cran.r-project.org/web/packages/vivid or on GitHub at
https://github.com/AlanInglis/vivid.

In recent years machine learning (ML) algorithms have emerged as a valuable tool
for both industry and science. However, due to the black-box nature of many
of these algorithms it can be challenging to communicate the reasoning behind
the algorithm’s decision-making processes. With the need for transparency in
ML growing it is important to gain understanding and clarity about how these
algorithms are making predictions (Antunes et al., 2018; Felzmann et al., 2019).
Many R packages are now available that aid in creating interpretable machine
learning (IML) models such as iml (Molnar et al., 2018), DALEX (Biecek, 2018),
and lime (Hvitfeldt et al., 2022). For a comprehensive review of IML see Molnar
(2022), and Biecek and Burzykowski (2021).

How we choose to visualize aspects of the model output is of vital importance
in how a researcher can interpret and communicate their findings. Consequently
model summaries such as variable importance and variable interactions (VImp
and VInt; together we term these VIVI) are frequently used in various fields to
comprehend and explain the hidden structure in an ML fit. In ecology they are
employed to determine the causes of ecological phenomena (e.g. Murray and Con-
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ner, 2009); in meteorology VImp measures and partial dependence plots are used
to examine air quality (e.g. Grange et al., 2018); in bioinformatics, understanding
gene-environment interactions have made these measures an important tool for
genomic analysis (e.g. Chen and Ishwaran, 2012).

In Table 4.1 we summarize VIVI measures and visualizations provided by a se-
lection of R packages. VIVI measures from fitted ML models fall into two cat-
egories; model specific (embedded) methods or model agnostic methods. In em-
bedded methods the variable importance is incorporated into the ML algorithm.
For example random forests (RF; Breiman, 2001) and gradient boosting machines
(GBM; Friedman, 2000) use the tree structure to evaluate the performance of
the model. Bayesian additive regression tree models (BART; Chipman et al.,
2010) also use an embedded method to obtain VIVI measures by looking at the
proportion of splitting rules used in the trees. Specifically for random forests, the
randomForestExplainer package (Paluszynska et al., 2020) provides a set of tools
to understand what is happening inside a random forest and uses the concept of
minimal depth Ishwaran et al. (2010) to assess both importance and interaction
strength by examining the position of a variable within the trees. For gradient
boosted machines (GBMs) the EIX (Maksymiuk et al., 2021) package can be used
to measure and identify VIVI and visualize the results.
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Package Package Description Visualizations Description

vivid

Contains a suite of plots for viewing
VIVI jointly and the partial dependence.
Both model-agnostic and model-specific
methods are catered for.

Heatmaps and network plots to
view VIVI jointly. Univariate,
bivariate PDPs, ICE curves
with functionality to plot all
pairs and a PDP in a "zenplots"
style. Built with ggplot2.

vip

A general framework for constructing VImp
plots from various types of ML models in R.
Both model-agnostic and model-specific
methods are catered for.

Has built-in ggplot2
functionality to display
VIVI measures. Also provides univariate
PDPs and ICE curves and ability to
plot Shapley values.

iml
A general framework for analysing the
behavior of ML models. Includes
model-agnostic VIVI measures.

Ability to plot VIVI measures
using lollipop, dot, and barplots.
Also includes univariate and
bivariate PDPs, ICE curves,
LIME, and Shapley visualizations.
Built with ggplot2.

flashlight
A general framework for analyzing
the behavior of ML models.
Includes model-agnostic VIVI measures.

Ability to plot VIVI measures using barplots.
Includes univariate and bivariate PDPs,
ICE curves, Global surrogate, and
SHAP visualizations.
Built with ggplot2.

DALEX
A general framework for analyzing the
behavior of ML models.
Includes model-agnostic VImp measures.

Contains a suite of visualizations including
Ceteris Paribus, Shapley, PDPs,
model performance, and diagnostic
plots. Built with ggplot2.

lime
A general framework for fitting a local
interpretable model.
Includes model-agnostic VImp measures.

Ability to create VImp and model
visualizations using barplots and
heat maps. Can also create
interactive plots. Built with ggplot2.

randomForestExplainer

Contains a set of model-specific tools
to determine which random forests
variables are most important.
Can assess VIVI

Ability to create VIVI plots displaying
the mean minimal depth distribution
and conditional minimal depth. Can also
display multi-way importance, pairs plots
containing different metrics, and Bivariate
PDP. Built with ggplot2.

EIX

Contains a set of model-specific tools
to determine which GBM
variables are most important.
Can assess VIVI

Ability to create VIVI plots using
lollipops, barplots, and heatmaps.
Can also display dot and radar plots.
Built with ggplot2.

varImp

Computes model-specific random forest
VImps for the conditional
inference random forest (cforest) of the
party package.

None available.

randomForest Used to build random forest models.
Can assess VImp.

Offers VImp, error rate, and
univariate PDPs. Built using base R.

bartMachine
Used to build Bayesian additive
regression tree models.
Can assess VIVI.

Ability to plot VIVI measures with
uncertainty included using barplots.
Also includes a suite of model diagnostic
plots and univariate PDP. Built using
base R.

pdp
A general framework for constructing
PDPs from various types machine
learning models.

Can plot univariate, bivariate, and
trivariate PDPs and ICE curves.
Built with ggplot2.

ICEbox Used to create Individual Conditional
Expectation (ICE) plots.

Can plot univariate and bivariate
PDPs and ICE curves.
Built with ggplot2.

Table 4.1: Summary of a selection of R packages that can be used to assess the vari-
able importance, variable interactions, or partial dependence and if these metrics
are model-specific or model-agnostic. A brief description of available visualizations
for evaluating model behavior is also provided. Our vivid package differentiates
itself by allowing the VIVI measures to be viewed jointly and allowing all pairs of
PDPs to displayed in a single plot. For more on the lime and varImp packages
see Hvitfeldt et al. (2022) and Probst (2020) respectively.

82



4.1. Introduction

Model-agnostic methods are techniques that can, in principle, be applied to any
ML algorithm. Agnostic methods not only provide flexibility in relation to model
selection but are also useful for comparing different fitted ML models. An exam-
ple of a model agnostic approach for evaluating VImps is permutation importance
(Breiman, 2001). This method calculates the difference in a model’s predictive
performance following a variable’s permutation; implementations are available in
iml, flashlight, vip (Greenwell and Boehmke, 2020), and DALEX packages. For
VInts, Friedman’s H-statistic (Friedman and Popescu, 2008) is an agnostic interac-
tion measure derived from the partial dependence by comparing a pair of variables’
partial dependency with their marginal effects. Packages iml and flashlight pro-
vide implementations.

Partial dependence plots (PDPs) were first introduced by Friedman (2000) as a
model agnostic way to visualize the relationship between a specified predictor
variable and the fit, averaging over other predictors’ effects. Similar to PDPs,
individual conditional expectation curves (ICE; Goldstein et al., 2015) show the
relationship between a specified predictor and the fit, fixing the levels of other
predictors at those of a particular observation. PDP curves are then the average
of the ICE curves over all observations in the dataset. R packages offering PDPs
include pdp, (Greenwell, 2017), iml, and DALEX; the package ICEbox (Goldstein
et al., 2015) provides ICE curves and variations.

In vivid we provide a suite of functions (see Table 4.2) for calculating and visual-
izing variable importance, interactions and the partial dependence. Our displays
conveniently show (both model specific and agnostic) VImp and VInt jointly using
heatmaps and network graphs, thus providing a more informative picture identify-
ing relevant features. Our generalized PDP (GPDP) displays partial dependence
plots in a matrix layout combining univariate and bivariate partial dependence
plots with variable scatterplots. We furthermore provide a more compact version
of the GDPD, the so-called zen-partial dependence plot (ZPDP) consisting only
of those bivariate partial dependence plots with high VInt. All of our displays are
designed to quickly identify how variables, both singly and jointly, affect the fitted
response and can be used for regression or classification fits. As the output of our
displays are ggplot2 objects (Wickham, 2016), they are easily customizable and
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provide the flexibility to create custom VIVI visualizations.

Function Description Type
vivi Create a VIVI matrix of class vivid VIVI

construction
vividReorder Reorders a square matrix so high VIVI values are pushed

to the top left of the matrix
VIVI
construction

CVpredictfun Predict function VIVI
construction

viviHeatmap Heatmap plot of VIVI values Visualization
viviNetwork Network plot of VIVI values Visualization
pdpVars Univariate partial dependence plot with ICE curves dis-

played as a grid
Visualization

pdpPairs Pairs plot showing bivariate PDP, ice/univariate PDP,
and data

Visualization

pdpZen A zigzag expanded navigation plot (zenplot) displaying
partial dependence values

Visualization

zPath Constructs a zenpath for connecting and displaying
pairs to be used with pdpZen

Utility

as.data.frame.vivid Takes a matrix of class vivid and turns it into a data
frame

Utility

vip2vivid Takes measured importance and interactions from the
vip package and turns them into vivid matrix which
can be used for plotting

Utility

Table 4.2: Summary of functions available in the vivid package. The main con-
struction function is vivi which is used to calculate the VIVI values for subsequent
use in the visualizations.

This paper is structured as follows. First we introduce a dataset and fits mod-
els that will be used as examples throughout this paper. Following this, we de-
scribe vivid functionality for calculating VIVI. We then move on to visualizations
and focus on the functionality provided by the two functions viviHeatmap and
viviNetwork for displaying VIVI, and two functions for displaying PDPs namely,
pdpPairs and pdpZen. Finally we provide some concluding discussion.

4.2 Example: Data and Models
The well-known Boston housing data (Harrison Jr and Rubinfeld, 1978) from the
R package MASS (Venables and Ripley, 2002) concerns prices of 506 houses and
14 predictor variables including property attributes such as number of rooms and
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social attributes like crime rate and pollution levels. The response is the median
value of owner-occupied homes in $1000s (medv).

We first fit a random forest (using the randomForest package). In order to avail
of embedded variable importance scores for the random forest, the importance
argument must be TRUE.

library("randomForest")
library("MASS")
set.seed(1701)
data("Boston")

rf <- randomForest(medv ~.,
data = Boston,
importance = TRUE)

Next we fit a gradient boosted machine (using the xgboost package). For the
GBM we set the maximum number of boosting iterations, nrounds, to 100 as no
default is provided in xgboost.

library("xgboost")
gbst <- xgboost(data = as.matrix(Boston[,1:13]),

label = as.matrix(Boston[,14]),
nrounds = 100)

In the following sections we will explain how aspects of the two fits can be compared
with vivid software. We will also explain aspects of our software design with
reference to these fits.

4.3 Calculating VIVI
The first step in using vivid is to calculate variable importance and interactions
for a model fit. The vivi function calculates both of these, creating a square,
symmetric matrix containing variable importance on the diagonal and variable
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interactions on the off-diagonal. Required inputs are a fitted ML model, a data
frame on which the model was trained, and the name of the response variable for
the fit. The returned matrix has importance and interaction values for all variables
in the supplied data frame, other than the response. Variables that are not used
by the supplied ML fit will have their importance and interaction values set to
zero. Our visualizations functions viviHeatmap and viviNetwork are designed to
show the results of a vivi calculation, but will work equally well for any square,
symmetric matrix with identical row and column names. Note, the symmetry
assumption is not required for viviHeatmap. viviNetwork uses interaction values
from the lower-triangular part of the matrix only.

The code snippet below shows the creation of a vivid matrix for the random forest
fit. For clarity, we include all of the vivi function arguments for the random forest
fit, though only the first three arguments are required. Other arguments will be
described in the Section on vivid matrix additional arguments.

library("vivid")

set.seed(1701)
viviRf <- vivi(fit = rf,

data = Boston,
response = "medv",
reorder = FALSE,
normalized = FALSE,
importanceType = ’agnostic’,
gridSize = 50,
nmax = 500,
class = 1,
predictFun = NULL)

In the absence of any model-specific importance measure we use an agnostic permu-
tation method described by Fisher et al. (2019) to obtain the variable importance
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4.3. Calculating VIVI

scores. In this method a model error score (root mean square error) is calculated,
then each feature is randomly permuted and the model error is re-calculated. The
difference in performance is considered to be the variable importance score for that
feature.

The vivi function calculates importance using an S3 method called
vividImportance. We provide methods for randomForest, ranger (Wright and
Ziegler, 2017), mlr (Bischl et al., 2016), mlr3 (Lang et al., 2019), and tidymodels
(Kuhn and Wickham, 2020) to access embedded model-specific measures. When
vivi is provided with a model fitted using one of these packages, importance
defaults to the embedded method, as set when the model was fit. By specify-
ing importanceType = "agnostic" in the call to vivi as in the example above,
agnostic importance is calculated instead. If the model fit offers more than one
embedded importance measure, these may be selected by specifying suitable values
to importanceType. vivid relies on the package flashlight package to calculate
agnostic importance via flashlight::light_importance which currently works
for numeric and numeric binary responses only.

For variable interactions, we use the model-agnostic Friedman’s H-statistic to iden-
tify any pairwise interactions. As discussed in Inglis et al. (2022), we recommend
the unnormalized version of the H-statistic which prevents detection of spurious
interactions which can occur when the bivariate partial dependence function (used
in the construction of the H-statistic) is flat. In the case of a binary response
classification model, we follow Hastie et al. (2009) and compute the H-statistic
and partial dependence using the logit scale.

The vivi function calculates interactions using an S3 method called
vividInteraction, which again relies on the flashlight package to calculate
Friedman’s H-statistic via flashlight::light_interaction. Friedman’s H-
statistic is the only interaction measure currently available in vivid, though the
method of Greenwell et al. (2018) could also be used for this purpose. Embedded
interaction measures could easily be encorporated via S3 methods in future.

flashlight simplifies the calculation of VIVI values as it allows a custom pre-
dict function to be supplied for the calculation of agnostic importance and the
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H-statistic; this flexibility means importance and the H-statistic can be calcu-
lated for any ML model. We supply an internal custom predict function called
CVpredictfun to both flashlight::light_importance and
flashlight::light_interaction. CVpredictfun is a wrapper around CVpredict
from the condvis2 package, which adds an option for the classification to select
(via the class argument to vivi) the class to be used for prediction and calculates
predictions on the logit scale by default. CVpredict accepts a broad range of fit
classes thus streamlining the process of calculating VIVI.

In situations where the fit class is not covered by CVpredict (as is the case for
the GBM model created from xgboost), supplying a custom predict function to
the vivi function by way of the predictFun argument allows the agnostic VIVI
values to be calculated. In the code snippet below, we build the vivid matrix for
the GBM fit by providing a custom predict function. A custom predict function
must be of the form given in the code snippet. For brevity we omit some of the
optional vivi function arguments.

pFun <- function(fit, data, ...) predict(fit, as.matrix(data[,1:13]))

set.seed(1701)
viviGBst <- vivi(fit = gbst,

data = Boston,
response = "medv",
reorder = FALSE,
normalized = FALSE,
predictFun = pFun)

4.3.1 vivid matrix additional arguments
The vivi function takes 10 arguments. Some of these have been discussed above,
including fit, data, response, importanceType, and predictFun. Here we pro-
vide a summary of the remaining arguments. First, the normalized argument
determines if Friedman’s H-statistic should be normalized or not (see Inglis et al.,
2022, for the pros and cons of each version). The arguments gridSize and nmax
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are used to set the size of the grid for evaluating the predictions and maximum
number of data rows to consider, respectively. As the calculation of the H-statistic
can be slow (as discussed in Section Calculating VIVI) lowering the grid size can
provide a significant speed boost. However this increase in speed can come at
the expense of predictive accuracy. Additionally, sampling the data via nmax can
offer a practical speed boost. The default values for gridSize and nmax are 50
and 500, respectively. These values were chosen as to provide reasonable compu-
tational time while maintaining predictive accuracy. As nmax randomly samples
rows of the data, to get reproducible results a seed must be set before running the
vivi function.

When reorder = TRUE (the default setting) we apply a seriation technique to
reorder the matrix so that both high values of importance and interactions are
pushed to the top left of the matrix. This allows the user to quickly identify and
highlight the variables with the greatest impact on the response in the model. We
use the leaf sort algorithm of (Earle and Hurley, 2015) to generate the reordering;
see Inglis et al. (2022) for more details. If reorder = FALSE, then the vivid
matrix is returned in the same order as the variable names in the data set. However,
as the output of vivi is a matrix, a custom ordering can be easily applied. This will
be useful when there is a specific reason for ordering the matrix in a certain way,
such as to compare two different fits side by side. reorder = TRUE has the same
effect as the vividReorder function (seen in Table 4.2). Having vividReorder as
a separate exported function allows the user to reorder any matrix using the same
sorting methodology. An example of using the vividReorder can be seen in the
Heatmap of Variable Importance and Variable Interactions Section.

4.3.2 Speed tests
A drawback of using Friedman’s H-statistic as a measure of interaction is that it
is a computationally expensive calculation for models that are slower to produce
predictions. Consequently, the time taken to build the vivid matrix can vary.
Figure 4.1 below shows the build time (rounded to the nearest second) averaged
over five runs for the creation of a vivid matrix with default parameters for
different ML algorithms using the Boston Housing data. As the Boston housing
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data has 13 predictor variables, Friedman’s H-statistic is computed for 91 predictor
pairs. The ML algorithms are: GBM, random forest, support vector machine
(SVM), neural network (NN), and k-nearest neighbors (KNN). The SVM, NN,
and KNN were built using the e1071 (Meyer et al., 2021), nnet (Venables and
Ripley, 2002), and kknn (Schliep and Hechenbichler, 2016) packages, with the
KNN being built through the mlr3 (Lang et al., 2019) framework. Each of the
models were built using their default settings and, for each model fit, the agnostic
VImp was measured. The speed tests were performed on both a 2017 MacBook
Pro 2.3 GHz Dual-Core Intel Core i5 with 8GB of RAM (MBP 2017 in Figure 4.1)
and a 2021 32GB MacBook M1 Pro (MBP 2021 in Figure 4.1). In Figure 4.1 we
can see that a NN model created using the nnet package was the fastest for both
scenarios. Surprisingly, the time to build the vivid matrix for a random forest
model created from the ranger package was over 1.5 times longer than the random
forest fit from the randomForest package for MBP 2017. Interestingly, repeating
these tests for MBP 2021, the ranger calculation is reduced by over 60% while
the randomForest actually increases by 47%.

NN

GBM

SVM

KNN

randomForest

ranger

0 50 100 150

Time (s)

MBP 2017

MBP 2021

Figure 4.1: Mean time over five runs, on separate MacBook machines, for the creation
of a vivid matrix for different models.

In all of the vivid functions making use of model predictions (namely vivi, and
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the three variants of partial dependence plots described in the next section) we
provide two arguments to reduce the number of predictions necessary. These are
gridSize, which controls the number of points at which predictions are to be
made, and nmax which specifies the maximum number of observations for which
predictions are to be evaluated.

4.3.3 Alternative construction of a vivid matrix
A further way to create a valid vivid matrix is to construct one from variable
importance and interaction values calculated elsewhere. The package vip offers
these, for which we provide a convenient translation function. vip provides the
ability to evaluate interactions using a method called the feature importance rank-
ing measure (FIRM; see Greenwell et al., 2018, for more details). The vip2vivid
function we provide in vivid takes VIVI values created in vip and turns them into
a vivid matrix, that can be subsequently used with our plotting tools. For exam-
ple, in the code below, model-specific VImp and FIRM VInt scores are calculated
for the random forest fit, and subsequently arranged into a vivid matrix with the
VImps on the diagonal and VInts on the off-diagonal. In the first two lines of the
code block below, we calculate the model specific VImps and FIRM VInt using
the vip package, before finally applying our vip2vivid function to transform the
results into a vivid matrix.

library("vip")
vipVImp <- vi(rf, method = ’model’)
vipVInt <- vint(rf, feature_names = names(Boston[-14]))
vipViviMat <- vip2vivid(importance = vipVImp, interaction = vipVInt)

4.4 Heatmap of Variable Importance and
Variable Interactions

The viviHeatmap function constructs a heatmap displaying both importance and
interactions, with importance on the diagonal and interactions on the off-diagonals.
In the following examples we display the importance and interaction values ob-
tained from the vivid matrix, however we are not limited to displaying these
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4.4. Heatmap of Variable Importance and Variable Interactions

measures. As the only required input for the viviHeatmap is a matrix (not nec-
essarily symmetric), a user may choose to create a matrix containing different
measures, such as correlation values in the upper and lower diagonals and the
skewness values on the diagonal. Color palettes for the importance and interac-
tions are optionally provided via impPal and intPal arguments. For the default
color palette we choose single-hue, color-blind friendly sequential color palettes
from Zeileis et al. (2020), where low VIVI values are represented by low lumi-
nance color values and and high VIVI by high luminance colors, which aids in
highlighting values of interest.

The ordering of the heatmap is taken from the ordering of the input matrix. As
reorder was set to FALSE when building both the random forest and GBM fit
vivid matrix, the ordering of the heatmaps matches the variable order in the
dataset. This is useful for directly comparing multiple heatmaps, however it does
not necessarily lend itself for easy identification of the largest VIVI values. If we
were to seriate both vivi-matrices separately, we would end up with different
optimal orderings for each matrix. An alternative is to create a common ordering
by averaging over the two vivid matrix objects and applying the vividReorder
function to the result. Both VIVI matrices are then re-ordered using the newly
obtained variable order. The code below shows such a strategy for our chosen
model fits.

viviAvg <- (viviRf + viviGBst) / 2
viviAvgReorder <- vividReorder(viviAvg)
ord <- colnames(viviAvgReorder)
viviRf <- viviRf[ord,ord]
viviGBst <- viviGBst[ord,ord]

Arguments impLims and intLims specify the range of importance and interaction
values to be mapped to colors. Default values are calculated from the maximum
and minimum VIVI values in the vivid matrix. Importance and interaction values
falling outside the supplied limits are squished to the closest limit. It can be useful
to specify these limits in the situation where there is an extremely large VIVI value
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4.4. Heatmap of Variable Importance and Variable Interactions

that dominates the display, or where we wish two or more plots to have the same
limits for comparison purposes, as in the example below.

viviHeatmap(viviRf, angle = 45, intLims = c(0,1), impLims = c(0,8))
viviHeatmap(viviGBst, angle = 45, intLims = c(0,1), impLims = c(0,8))

Figure 4.2 shows our improved ordering so that variables with high VIVI values
are pushed to the top left of the plots. Filtering can also be applied to the input
matrix to display a subset of variables. When compared to the GBM fit in (b), the
random forest fit in (a) appears to create weaker interactions and lower importance
scores. Both plots identify lstat as being the most important. Both fits also show
that lstat interacts with several other variables. Notably the strongest interaction
in both fits are different. Namely lstat : crim (where crim is the per capita crime
rate by town) for the random forest fit and lstat : nox (where nox is parts per 10
million nitrogen oxides concentration) for the GBM fit.
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Figure 4.2: Agnostic variable importance and variable interaction scores for a random
forest fit in (a) and GBM fit in (b) on the Boston housing data displayed as a heatmap.
The random forest fit appears to produce weaker interactions and lower importance
scores when compared to the GBM fit. Both fits identify lstat as the most important
followed by rm. In both fits we can see that lstat has numerous interactions with other
variables, notably crim in the random forest fit in (a) and nox in the GBM fit in (b).
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4.4. Heatmap of Variable Importance and Variable Interactions

To provide a broader context and application of the vivid package, in Figure 4.3,
we show a comparison of the VIVI values obtained from vivid with those obtained
from the randomForesExplainer package in a viviHeatmap. This package uses
the concept of minimal depth to assess the importance and interaction values by
examining the position of a variable within the trees (for more details see Ishwaran
(2007)). In Figure 4.3, the conditional minimal depth (see 3.1 Section of this thesis
for more details) is used for the interaction values.

As the randomForesExplainer package returns asymmetric interaction values (for
example, the interaction between lstat:rm may have a different value than the in-
teraction between rm:lstat), the upper and lower triangles of Figure 4.3 differ.
A single interaction value could be obtained by averaging over the variable pairs.
Additionally, in Figure 4.3 we exclude interactions with themselves, which are
measured in the randomForesExplainer package (for example rm:rm). It should
also be noted that as lower values are considered to have greater importance/inter-
actions when using the minimal depth method, consequently, the color scale has
been inverted in Figure 4.3 to be inline with the previously shown heatmaps. In
Figure 4.3, we can see that both lstat and rm are the most important, which is
in agreement with the permutation approach used in Figure 4.2. However, when
compared to Friedman’s H-statistic in Figure 4.2, we get quite a contrasting re-
sult for the interaction values. In Figure 4.3 we can see that there are many more
detected interactions among the variables, with the variable pair rm and lstat hav-
ing the greatest interaction in both the upper and lower portions of the heatmap.
However, in 4.2 the interaction between lstat and rm is given far less significance.
Another stark difference is the asymmetry of the interaction values. For example,
crim:ptratio has a moderate interaction in the upper triangle of Figure 4.3 (having
a minimal depth of around 3.5), whereas the interaction between ptratio:crim in
the lower portion of the heatmap displays a lower interaction interaction value.
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Figure 4.3: Variable importance and interaction values obtained from the
randomForestExplainer package displayed as a heatmap from vivid. The most impor-
tant variables are lstat and rm, with these variables displaying the greatest interaction.

4.5 Network of Variable Importance and
Variable Interactions

The viviNetwork function constructs a network graph displaying both importance
and interactions. Similar to the heatmap, this function takes a vivid matrix as the
only required input and provides a visual representation of the magnitude of the
importance and interaction values through the size of the nodes and edges in the
graph, in addition to color. In the plot each variable is represented as a node, with
its importance being represented through size and color such that larger, darker
nodes indicate a higher importance. Each pairwise interaction is represented by a
connecting edge, where larger interaction values get thicker, darker edges; Figure
4.4 provides an example. This type of plot benefits from being able to quickly
identify the magnitude of the importance and interactions of the variables that
have the most impact on the response in an efficient manner. The viviNetwork
function follows the same convention as the heatmap and allows custom color
palettes for the importance and interactions to be provided via the impPal and

95



4.5. Network of Variable Importance and Variable Interactions

intPal arguments and the range of VIVI values to be mapped to the colors can
be specified via the impLims and intLims arguments.

By default, we choose a circular layout to display the graphs as when coupled
with the seriation techniques described previously, variables with high VIVI are
grouped in a clock-wise arrangement starting at the top. This arrangement allows
for quick identification of variables with high VIVI. Custom layouts are possible
by providing a numeric matrix with two columns and one row per node to the
layout argument. Additionally, any of the layouts available in the igraph package
(Csardi and Nepusz, 2006) can be passed to layout. This can be useful for for
producing force-directed layouts, which try to produce a visually appealing graph
with minimal cross-over of the edges and organizes edges so that they are of a
similar length.

We provide options to filter the graph via the intThreshold and removeNode
arguments. This helps to highlight variables with high VIVI scores, which can be
useful in settings with many predictors. The intThreshold argument filters edges
with weight (i.e., VInt value) below a specified value and removeNode removes
nodes with no connecting edges after thresholding interaction values. We can
optionally cluster similar variables together with respect to their VIVI scores via
the cluster argument, thereby aiding in the process of highlighting variables of
interest. The cluster argument can take either a vector of cluster memberships
for nodes or an appropriate igraph clustering function. We allow for a multitude
of clustering and filtering approaches, some of which are shown below.

In the interest of space, we only include network plots displaying VIVI values for
the GBM fit. In Figure 4.4 we show both a default network plot including all
variables in (a) and a filtered and clustered network plot in (b). For the filtered
plot we select VIVI values above the median. This selection allows us to focus only
on the variables with the most impact on the response. The variables that remain
are lstat, nox, rm, crim, dis (weighted mean of distances to five Boston employ-
ment centers), age (proportion of owner-occupied units built prior to 1940), and
ptratio (pupil-teacher ratio by town). We then perform a hierarchical clustering
treating variable interactions as similarities, with the goal of grouping together
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high-interaction variables. Finally we rearrange the layout using igraph. Here,
igraph::layout_as_star places the first variable (deemed most relevant using
the VIVI seriation process above) at the center, which in Figure 4.4 (b) empha-
sizes its key role as the most important predictor which also has the strongest
interactions. The first line in the following code block shows the default network
plot for the GBM fit. The remaining code outlines the aforementioned process for
the clustered and filtered network.

viviNetwork(viviGBst)

intVals <- viviGBst
diag(intVals) <- NA
impTresh <- quantile(diag(viviGBst),.9)
intThresh <- quantile(intVals,.9,na.rm=TRUE)
sv <- which(diag(viviGBst) > impTresh |

apply(intVals, 1, max, na.rm=TRUE) > intThresh)
h <- hclust(-as.dist(viviGBst[sv,sv]), method="single")

viviNetwork(viviGBst[sv,sv],
intLims = c(0,1),
impLims = c(0,8),
cluster = cutree(h, k = 3), # specify number of groups
layout = igraph::layout_as_star)
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Figure 4.4: Network plots showing VIVI scores obtained from a GBM fit on the Boston
housing data. In (a) we display the all values in a circle. In (b) we use a hierarchical
clustering to group variable with high VIVI together and rearrange the layout using an
igraph function.

In Figure 4.4 (a), when displaying all the variables, we can clearly identify which
variables have the highest VIVI values. The large darker nodes of lstat and rm

indicate their importance and the dark, thick connecting edge between lstat and
nox tell us that these two variables strongly interact. In (b), after applying a
hierarchical clustering on the variables with a VIVI value in the top 10%, we can
see the strongest mutual interactions have been grouped together for the GBM fit.
Namely, lstat, nox, crim, rm, and dis are all grouped together. The remaining
variables are individually clustered.

We provide a conversion of vivid matrix objects to a data frame via an as.data.frame
method, which facilitates plotting with base R and ggplot2. The following code
snippet shows the structure of the first four rows of the created data frame for
the random forest VIVI matrix, where we can see that each variable pair is repre-
sented with their corresponding VIVI value. This data frame can then be easily
manipulated and plotted as, for example, a barplot of either VImp or VInt values.

class(viviRf)<- c("vivid", class(viviRf))
head(as.data.frame(viviRf), 4)
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#> Variable_1 Variable_2 Value Measure Row Col
#> 1 lstat lstat 4.7720394 Vimp 1 1
#> 2 nox lstat 0.1789794 Vint 2 1
#> 3 rm lstat 0.2562817 Vint 3 1
#> 4 crim lstat 0.3371364 Vint 4 1

4.6 Partial Dependence and Individual
Conditional Expectation Curves

4.6.1 Univariate Partial Dependence Plot
The pdpVars function constructs a grid of univariate PDPs with ICE curves for
selected variables. We use ICE curves to assist in the identification of linear or
non-linear effects. The fit, data frame used to train the model, and the name of
the response variable are required inputs. In the code below, we show an example
of the partial dependence and ICE curves for each feature from the GBM fit,
with output shown in Figure 4.5. We use the custom GBM predict function given
previously.

pdpVars(data = Boston,
fit = gbst,
response = ’medv’,
vars = colnames(viviGBst),
predictFun = pFun

)

All of our PDP variants handle categorical responses and predictors. The color
palette is customized via the pal argument. In all of our PDPs, this defaults to a
diverging palette which accentuates fitted values that differ from the average. Dark
red and dark blue are used to indicate high and low values of ŷ respectively. The
middle values are displayed in yellow. The nIce argument specifies the number
of ICE curves to be drawn. This is either a single number specifying the number
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of observations to be sampled for the ICE curves, or a vector of row indices. The
default value for nIce is 30, which allows individual curves to be seen.

The ordering of the PDPs is taken from the ordering of variables in the data set,
however custom ordering or filtering is obtained via the var argument (seen in the
code above). As with the construction of the vivid matrix, the gridSize and
nmax arguments determine the number of predictions required.

Figure 4.5: Partial dependence plot (black line) with individual conditional expectation
curves (colored lines) of a GBM fit on the Boston housing data. The changing partial
dependence and ICE curves of lstat and rm indicate that these variables have some
impact on the response.

In Figure 4.5 we can see from the changing PDP and ICE curves that lstat and
rm have the clearest impact on the response, with the predicted median house
price being higher for low values of lstat and high values of rm. Additionally, the
predicted median house price appears to be higher for low values of dis before
leveling off at around 2.5. The remaining variables have generally flat partial
dependence and ICE curves.

4.6.2 Generalized Pairs Partial Dependence Plot
The pdpPairs function creates a generalized pairs partial dependence plot (GPDP).
In our GPDP, we use a matrix layout and plot the univariate partial dependence
(with ICE curves) on the diagonal, bivariate partial dependence on the upper di-
agonal and a scatterplot of the data on the lower diagonal, where all colours are
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assigned to points and ICE curves by the predicted ŷ value. As with the univariate
PDP, the fit, data frame used to train the model, and the name of the response
variable are required inputs. However, in the code below we include additional
arguments which are described in the following paragraph.

filteredVars <- colnames(viviGBst)[1:5]
rmHigh <- sample(which(Boston$rm > mean(Boston$rm)), 25)
lstatLow <- sample(which(Boston$lstat < mean(Boston$lstat)), 25)

set.seed(1701)
pdpPairs(data = Boston,

fit = gbst,
response = "medv",
gridSize = 20,
nIce = c(rmHigh, lstatLow),
var = filteredVars,
convexHull = TRUE,
fitlims = "pdp",
predictFun = pFun)

In the above code, we filter the plot to display only the interesting variables seen
in previous plots by passing a vector of variable names via the var argument.
In this case, we select the first five variables from our vivid matrix. We also
chose to display 50 ICE curves, where 25 instances are sampled from rows above
the mean value for rm and the other 25 are sampled from rows below the mean
value for lstat. These values were chosen as it seems evident in Figure 4.5 that
as the number of rooms increases and as the lower status value of the population
decreases, the predicted median house price goes up. The previously mentioned
arguments from pdpVars for controlling the color palette, grid size, the number
of rows of data considered, and the number of ICE curves drawn can equally be
applied to our GPDP.

For our GPDP, we follow the general design choices in vivid and so provide the

101



4.6. Partial Dependence and Individual Conditional Expectation Curves

functionality to specify the range of predicted values to be mapped to the colors via
the fitlims argument. As before the custom limits allow for a direct comparison
of different model fits should they require. We set the default fit range for the color
map for the GPDP to the range of the collection of PDP surfaces with fitlims
= ‘pdp’. The setting of this argument at its default value allows for maximum
resolution of the bivariate PDPs. Since predictions for specific observations and
ICE curves could exceed these bounds, the closest value within the color map’s
bounds is used to allocate colors. Alternatively to set the full range of the data as
the limits we can use fitlims = ‘all’.

In the upper diagonals we exclude extrapolated areas from the bivariate PDPs to
prevent interpretation of the PDPs in areas where there are no data. The removal
of extrapolated areas is a default setting but can be removed with the argument
convexHull = FALSE. In this example, we set the grid size equal to 20 (with the
default being 10). We increase the value from the default grid size here, despite
this increasing processing time since the data set is reasonably small. As with
the previous PDPs, we use the custom predict function to generate PDPs for the
GBM fit.

In Figure 4.6, in addition to the univariate PDPs, we capture the effects of the
variables on the response via the bivariate PDP on the upper-diagonal and the
distribution of the data in the lower-diagonal. The scatterplots are useful for de-
termining if any of the variables are highly correlated, as highly correlated variables
may spuriously affect the partial dependence and give erroneous results (Apley and
Zhu, 2020). Of note in Figure 4.6 are the variables lstat and rm. We can clearly
see that when the number of rooms (rm) is high and the percentage of lower status
of the population (lstat) is low, the predicted ŷ median house price value is high.
This is exemplified in the changing bivariate PDP.
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Figure 4.6: Filtered generalized pairs partial dependence plot for a GBM fit on the
Boston housing data. From both the univariate and bivariate PDPs, we can see that
lstat and rm have an impact on the response. As lstat decreases and rm increases,
predicted median house price value goes up. The bivariate PDP of lstat : nox shows

that as nox increases, the predicted value decreases.

In the case of categorical predictors, the partial dependence for each factor level
is shown in the upper-diagonal (for an example of this, see Inglis et al. (2022)).
Additionally, in classification scenarios, being able to select specific rows of data
to display their corresponding ICE curves can be useful for displaying ICE curves
from particular classes.

4.7 Zen Partial Dependence Plots
The pdpZen function creates a PDP that utilizes a space-saving method based on
graph Eulerians to show the bivariate partial dependence, which we call zen-partial
dependence plots (ZPDP). This plot is based on the zigzag expanded navigation
plots, known as zenplots (Hofert and Oldford, 2020), available in the zenplots
package. Zenplots were created to display paired graphs of high-dimensional data
focusing on the most important 2D displays. In our adaptation we show bivariate
PDPs that focus on the most important interacting variables in a compact zigzag
layout, helpful when predictor space is high-dimensional.
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The code below illustrates pdpZen, here displaying the first five variables from
GBM’s vivid matrix. Later we show an example focusing on high-interacting pairs
of variables. We use the same convention as our previous PDPs with regard to color
palette and limits, grid size, and the number of rows considered for evaluation. The
ZPDP also has a variable rug plot on each axis to avoid interpretation problems
that may occur in the presence of skewness.

pdpZen(data = Boston,
fit = gbst,
response = "medv",
convexHull = TRUE,
zpath = colnames(viviGBst)[1:5],
predictFun = pFun)

The argument zpath specifies the variables to be plotted, defaulting to all dataset
variables aside from the response. In the code above, zpath is the vector lstat,
nox, rm, crim and dis. The resulting plot shows the bivariate PDP for every
consecutive pair of variables in a zigzag layout. Figure 4.7 shows the resulting
visualization.
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Figure 4.7: Zen partial dependence plot for the GBM fit on the Boston data. Here we
display first five variables from the GBM’s vivid matrix. Only plots for consecutive
variables are shown.

104



4.7. Zen Partial Dependence Plots

4.7.1 Zen-paths

ZPDP are most useful when the bivariate PDPs plotted are selected to be an
interesting subset of all pairwise plots. To obtain this subset, we consider a network
graph displaying VIVI values, such as that in Figure 4.4 (a). We then filter the
edges below a selected interaction value, leaving only highly interacting variable
pairs, as in Figure 4.4 (b). Our goal is to then build a ZPDP consisting of the
bivariate plots represented by each edge of the thresholded graph. The zPath
function creates a sequence or sequences of variable paths for use in pdpZen.

The zPath function takes four arguments. These are: viv - a matrix of interaction
values, cutoff - exclude interaction values below this threshold, method - a string
indicating which method to use to create the path, and connect - a logical value
indicating if separate Eulerians should be connected

Two methods are provided, either "greedy.weighted" or "strictly.weighted".
The first option uses the greedy Eulerian path algorithm of Hurley and Oldford
(2011) (available in the PairViz package Hurley and Oldford, 2022) for connected
graphs. This visits each edge at least once, beginning at the edge with the highest
weight and traversing through the remaining edges, giving priority to the highest-
weighted edge. Some edges may be visited more than once or additional edges may
be visited if the number of nodes in the graph is not even. The second method
"strictly.weighted" (provided by zenplot) visits edges strictly in decreasing
order by weight (here the interaction values). If connect is TRUE the sequences
obtained by the strictly weighted method are concatenated to form a single path.

In the code below, we provide two examples of creating zen-paths, from the top
10% of interaction scores in viviGBst.

intThresh <- quantile(intVals,.9,na.rm=TRUE)
zpGw <- zPath(viv = viviGBst, cutoff = intThresh,
method = ’greedy.weighted’)
zpGw
#> [1] "nox" "lstat" "dis" "ptratio" "lstat" "rm" "crim"
#> [8] "lstat" "tax" "rm" "nox"
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zpSw <- zPath(viv = viviGBst, cutoff = intThresh, connect = FALSE,
method = ’strictly.weighted’)
zpSw
#> [[1]]
#> [1] "nox" "lstat" "dis"
#>
#> [[2]]
#> [1] "lstat" "rm" "nox"
#>
#> [[3]]
#> [1] "lstat" "crim" "rm"
#>
#> [[4]]
#> [1] "ptratio" "lstat" "tax"

Our first created zen-path object, zpGw, uses the greedy.weighted method and
visits each edge at exactly once. The second zen-path uses the strictly.weighted
method with connect = FALSE. zpSw consists of four unconnected paths. The
zenplots for two of these paths are constructed below.

pdpZen(data = Boston,
fit = gbst,
response = "medv",
zpath = zpGw,
convexHull = TRUE,
predictFun = pFun)

pdpZen(data = Boston,
fit = gbst,
response = "medv",
zpath = zpSw,

106



4.7. Zen Partial Dependence Plots

convexHull = TRUE,
predictFun = pFun)

Note that there are 7 different variables involved in high interactions, which could
be displayed in a 7×7 GPDP, showing a total of 21 bivariate PDPs. But only 8
of these have VInt values above the 90% quantile, and Figure 4.8 (b) using the
strictly.weighted path shows just these bivariate PDPs compact layout. Using
the greedy.weighted sorting method in (a) produces a smaller, neater plot but
at the expense of including some plots that are not particularly interesting (for
example the pair dis : ptratio).
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Figure 4.8: ZPDP for a GBM fit on the Boston data. In (a) the zpath is defined by
the greedy.weighted sorting method. In (b), the sorting method is defined by the
strictly.weighted method and is unconnected. For low values of lstat and and high
values of rm, predicted median house price value increases.
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4.8 Summary
We have presented a detailed exposition of our R package vivid which contains
a suite of integrated functions implementing algorithms and novel visualizations
for exploring variable importance and variable interactions in machine learning
models. Our techniques are intuitive, adaptable, easy to customize and facilitate
model comparison. When building the vivid matrix to use in our heatmap and
network visualizations, VIVI metrics that are model specific or model-agnostic may
be employed. For measuring interactions we currently only provide the option to
use the agnostic Friedman’s H-statistic. However, as outlined in the Calculating
VIVI Section, the inclusion of different VIVI measures is easily possible.

Our vivid package is a useful addition to the other packages in the area of model
visualization, such as those discussed in the Introduction Section. Our heatmap
and network plots efficiently determine which variables have the greatest impact on
the response. When coupled with the seriation, filtering, and clustering techniques,
these visualizations enhance the interpretation of ML predictions. Our GPDP and
ZPDP can be used to provide a thorough examination of the behavior of a fitted ML
model by examining the individual variable effects and their pairwise interactions.
These plots combine the bivariate PDP, ICE curves, and scatterplots of the raw
variable values. They further allow focusing on subsets of variables with high VInt,
and so allow us to efficiently explore a fitted ML model by focusing attention to
only the most important aspects.

For future work, the inclusion of other model summaries could be incorporated into
vivid, such as the interaction statistics described in Greenwell et al. (2018) or the
use of Accumulated Local Effects (ALE; Apley and Zhu, 2020). This latter method
was created to address bias problems with partial dependency functions and could
be used in place of the bivariate PDPs seen in both the GPDP and ZPDP. However
the calculation of an agnostic, easily interpretable variable interaction measure that
accounts for correlated variables remains an ongoing research goal.
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CHAPTER 5
Conclusion

In this thesis we have introduced novel methods to visualise different aspects of
ML model fits with the goal of improving post-hoc interpretability. The meth-
ods presented are innovative and informative for visualising the importance and
interactions of variables as well as various facets of model behaviour.

In Chapter 2 we proposed methods for visualising variable importance and vari-
able interactions in ML models through the use of heatmap and network plots.
Coupled with the seriation techniques discussed Chapter 2, a more complete pic-
ture of which variables have the most impact on the response in a model fit is
provided. Using the VIVI values as a starting point of model investigation, we
provided a more in-depth analysis of the variable effects and interactions in our
GPDP and ZPDP. Our GPDP is useful for investigating both the bivariate and
univariate variable effects by displaying the partial dependence in a generalised
pairs plot matrix style. By incorporating ICE curves into the display, we demon-
strate the precise nature of any linear or non-linear effects, along with displaying
the distribution of the predictor variables. In our ZPDP we expand upon the work
of Hofert and Oldford (2020) by presenting a novel method to visualise the partial
dependence of variable subsets containing high VIVI measures. In doing so, we
focus attention on which variables have the most impact on the predictions.
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In Appendix 2.6 of Chapter 2, we examine the use of Friedman’s H-statistic as a
measure of interaction. It can produce spurious results in situations where there is
no interaction present. To avoid any potential misinterpretation of the H-statistic
values, our GPDP can be used to investigate the nature of any interactions that
may be present.

In Chapter 3 we presented visualisations for posterior evaluation of BART models.
We broaden the conventional approach to evaluating the importance and inter-
actions of variables by incorporating the uncertainty that comes with Bayesian
models. Using a technique called value suppressing uncertainty palettes, we were
able to show the importance, the pairwise interactions, and uncertainty associated
with these values in a single heatmap, using colour scale to represent posterior
uncertainty. We explored the structure of the decision trees in a BART model
by use of our tree plots. Through the use of a multidimensional scaling plot we
provided outlier detection and we presented a suite of plots for enhanced model
diagnostics, which can be used for gaining a deeper understanding of the behaviour
of a model fit. These include visualisations for assessing stability, the acceptance
rate of trees, average tree depth and nodes, as well as providing an overall model
fit summary via convergence and residual plots.

For evaluating the importance and interactions in a BART model, we used the
inclusion proportion of these values. This method counts splitting rules and con-
verts these summaries into corresponding VIVI values. However, a drawback of
this method is that non-important variables may be included as BART selects the
splitting rule uniformly across all variables. This may lead to spurious VIVI values
being obtained. As discussed by Chipman et al. (2010), using a small number of
trees can offset any spurious values being measured, but this comes at the expense
of predictive performance. However, when coupled with the use of a VSUP that
displays the relative uncertainty, we provide a correction and has the advantage
of being able to be used when the number of trees is large.

In Chapter 4 we presented a detailed discussion of the implementation of our R
software package vivid, which contains a collection of integrated functions imple-
menting algorithms and novel visualizations for investigating variable importance
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and variable interactions in machine learning models. In vivid all aspects, from
the coded-functions to visualisations, have been carefully designed for efficiency in
use and interpretation. Our methods are intuitive, flexible, and easily customis-
able. Model-specific or model-agnostic methods can be used in our vivid matrix.
However, custom VIVI values can be supplied to our vivid matrix which can be
used in our heatmap and network plots.

Finally, the implementation of the proposed methods presented in this work are
freely available at https://github.com/alaninglis in the repositories named
vivid for Chapters 2 and 4 and bartMan, for Chapter 3. Thus, all analyses in this
thesis are reproducible and methodologies are available to interested practitioners.

5.1 Limitations
In this section we discuss some limitations of our proposed methods.

Scalability
Scalability is an important consideration when it comes to statistical visualisations.
A visualisation’s capacity to handle large amounts of data without becoming dif-
ficult to understand and avoiding information overload is a challenging task. To
mitigate information overload, our visualisations have been carefully designed to
clearly and effectively communicate the relevant information they contain, while
avoiding unnecessary complexity. For example, the heatmap and network graph
described in Chapters 2 and 4 make use of seriation techniques that can help avoid
any potential information overload. As shown in Chapter 4, these graphics are cre-
ated by passing a seriated vivid matrix to the plotting functions. Consequently,
these plots will display the most relevant variables in the top left of the graphic
(as for the heatmap) or at the top of the plot (as for the network graph), thereby
highlighting the most influential variables. Filtering can be further applied to the
seriated vivid matrix, before being passed to the plotting functions, to limit the
number of variables to be displayed in the visualisations. In the case of the net-
work plot, we additionally provide a filtering option to eliminate variables with
VIVI values below a selected threshold.
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In Figure 3.4 of Chapter 3, we present a graphic for visualising how a single tree
changes over each iteration. In this example we use the default value of 1000
iterations. However, if a larger number of iterations is chosen, this graphic can
become quickly overcrowded and difficult to read. We recommend this graphic to
be used when the number of iterations is ≤ 1000. In situations where more than
1000 iterations are used, using the summary plots (as shown in Figure 3.5) may
be preferable.

Correlated Variables
Correlation between variables is an important element when explaining predictive
models. In the case of multicollinearity, where two or more variables are highly
correlated and provide similar information, it becomes difficult for a model to dif-
ferentiate the contribution of each variable to the prediction, making it challenging
to assess their importance and interaction values. In Chapter 2, Section 2.6, we
show how correlated variables can result in spuriously high interaction measures,
which in turn gets translated to a user via our visualisations. The lower portion
of our GPDP can be used to visually check if two variables are correlated, thereby
mitigating any misrepresentation of importance/interactions. However, we also
recommend evaluating any potential correlation between variables in conjunction
with our proposed visualisations. Several R-packages are available for assessing and
visualising correlations, such as corrplot (Wei and Simko, 2021) and corrgrapher
(Morgen and Biecek, 2020). The latter of which displays correlations in a network
plot.

Higher Order Interactions
Visualising higher order interactions in machine learning models can be challeng-
ing. Currently our proposed methods can only visualise bivariate interactions.
Although the H-statistic described in Chapter 2 can be extended to compute
higher order interactions, visualising an interaction between three or more vari-
ables is challenging. The pdp package (Greenwell, 2017) can be used to create
partial dependence plots with three dimensions and the easyalluvial package
(Koneswarakantha, 2022) can be used to plot more than three dimensions side by
side in an alluvial style plot.
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5.2 Future Work
Our research approached the research question of how to visualise model behaviour
from different perspectives, including model-agnostic explanations and model-
specific explanations. However, there are numerous potential improvements to
explore and new directions for research to go.

For future work we could consider different agnostic methods to be used in place
of the partial dependence in our GPDP and ZPDP discussed in Chapters 2 and 4.
For example, accumulated local effects (ALE) functions were created by Apley and
Zhu (2020) as an alternative to PDPs and were designed as a method to compen-
sate for the bias issues present in partial dependence. In our work to date, we only
implement Friedman’s H-statistic as a model-agnostic measure of interaction. As
discussed in Chapter 4, the H-statistic is a computationally expensive calculation.
Although we provide options to sample the data and limit the size of the grid used
for evaluating predictions, the time taken to evaluate the H-statistic can still be
slow and is highly model dependant. Consequently, a new measure of interaction
could be produced to both decrease computational time and reduce any potential
bias present in the H-statistic using ALE functions by replacing the the partial
dependence functions used in the H-statistic equation (i.e, Equation 2.2) with the
corresponding ALE functions. In a similar manner, additional agnostic methods
to measure the variable importance could be investigated, such as conditional per-
mutation importance or a partial dependence-based variable importance measure,
such as the method described in Greenwell et al. (2018).

From a visualisation perspective, although we did not preform external valida-
tion, such as a large scale user study, other members of the machine learning
research group provided useful feedback concerning design elements. This infor-
mation proved to be especially useful and subsequently, as of this date, our vivid
package has over 8,000 downloads from CRAN and multiple citations. However,
a large scale validation approach is a useful tool for future projects.

In our heatmaps and network graphs we show bivariate interactions only. An in-
teresting avenue of research would be to investigate visualisations that are both
intuitive and informative for higher dimension interactions. In relation to visual-
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ising BART model fits, we presented tree-based plots that can be used to examine
the structure of the decision trees. This could be expanded upon by creating in-
teractive plots that allow a user to select individual trees to investigate further.
Additionally, developing new methods for effectively visualising the posterior un-
certainty associated with BART models presents both challenges and promising
areas for future study.
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