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Abstract
Genome-wide association studies have previously identified 23 genetic loci associated with circulating fibrinogen
concentration. These studies used HapMap imputation and did not examine the X-chromosome. 1000 Genomes imputation
provides better coverage of uncommon variants, and includes indels. We conducted a genome-wide association analysis of 34
studies imputed to the 1000 Genomes Project reference panel and including ∼120 000 participants of European ancestry (95 806
participants with data on the X-chromosome). Approximately 10.7 million single-nucleotide polymorphisms and 1.2 million
indels were examined.We identified 41 genome-wide significant fibrinogen loci; of which, 18 were newly identified. Therewere
no genome-wide significant signals on the X-chromosome. The lead variants of five significant loci were indels. We further
identified six additional independent signals, including three rare variants, at two previously characterized loci: FGB and IRF1.
Together the 41 loci explain 3% of the variance in plasma fibrinogen concentration.

Fibrinogen is a coagulation factor crucial to clot formation, and
an active regulator of the inflammatory response (1). It is a strong
and established predictor of cardiovascular disease, auto-
immune disorders and cancer (1–5). Circulating fibrinogen con-
centration has a moderate heritability of 34–46% (6–8). Previous
genome-wide association studies (GWAS) have highlighted
genetic loci involved in inflammatory pathways such as the
acute-phase response and interleukin-1 and -6 signaling as
main determinants of fibrinogen concentration (9–13).

The variance in fibrinogen concentration explained by genetic
loci identified in these previous GWAS is less than 1/10th of its es-
timated heritability (11). It is, therefore, likely that a part of the
heritability stems from genetic variants that are not well-tagged
by the single-nucleotide polymorphisms (SNPs) found in Hap-
Map, including further common, uncommon and rare SNPs,
and other types of variants such as insertions or deletions (in-
dels). Additionally, a part of the heritability could be explained
by variants on the X-chromosome, which has not previously
been interrogated.

To better interrogate the full range of genetic variants, includ-
ing those with low minor allele frequency (MAF) that may have
been poorly tagged by HapMap variants, we performed a meta-
analysis of 34 GWAS imputed using 1000 Genomes Project refer-
ence panels (14), including the X-chromosome. We performed a
joint/conditional analysis to identify additional independent sig-
nals within known and new loci associated with plasma fibrino-
gen concentration.

Results
Autosomal meta-analysis

Participant characteristics in each study are shown in Supple-
mentary Material, Table S1, covariates adjusted for by each
study are shown in Supplementary Material, Table S2 and gen-
omic inflation factors are shown in Supplementary Material,
Table S3. Themeta-analysis of the autosomes included 9 492 263
SNPs and 841 128 indels, of which 4354 SNPs and 420 indels at 41
loci were genome-wide significant. Of these, 18 loci are new sig-
nals (Table 1), while 23 have been associatedwith fibrinogen con-
centration by previous GWAS (Table 2). Among genome-wide
significant variants, 14 of 4354 were rare (MAF ≤ 0.01), and a

further 477 were uncommon (0.01 <MAF ≤ 0.05). The lead var-
iants of known locus SNX13 and novel loci ATXN2L, GYS2,
GIMAP4 and IFT122 were indels. Separate QQ plots of all auto-
somal variants, common variants, uncommon variants, rare
variants, SNPs and indels are shown in Supplementary Mater-
ial, Figure S1. A Manhattan plot of all autosomal variants is
shown in Supplementary Material, Figure S2. Additionally, a
Manhattan plot highlighting rare and uncommon variants is
shown in Supplementary Material, Figure S3. Heterogeneity I2

and P-values are shown in Supplementary Material, Table S4.
Only rs7439150 at the fibrinogen gene cluster showed significant
heterogeneity (I2 = 50.0, P = 0.0004). Regional plots are shown in
Supplementary Material, Figure S4, and forest plots are shown
in Supplementary Material, Figure S5. Associations with rare
variants were found at the two most robust fibrinogen loci: the
fibrinogen gene cluster and the IRF1 locus (lead variant anno-
tated to C5orf56). Associations with uncommon variants were
also found at these loci, as well as at SPPL2A and HNF4A. At
one known locus (SNX13) and four new loci (IFT122, GIMAP4,
GYS2 and ATXN2L) the lead variant was an indel. At each of
these loci there were also SNPs in linkage disequilibrium with
the indel that reached genome-wide significance. CD300LF
was the only previously identified locus that was not repre-
sented among our significant results. The previously reported
lead variant in CD300LF, rs10512597 (P-value: 1.8 × 10−7), had a
smaller effect size [β: −0.006 ln(g/l)] than was previously
reported [β = −0.008 ln(g/l)]. There was no strong evidence of
heterogeneity (I2 = 22.7, P = 0.11).

Conditional analysis

Two loci (fibrinogen gene cluster and IRF1) harbored multiple
jointly significant variants (Table 3). Forest plots of the addition-
al variants discovered through conditional analysis are shown in
Supplementary Material, Figure S6, and their heterogeneity I2

and P-values are shown in Supplementary Material, Table S4.
At the fibrinogen gene cluster, five variants were jointly signifi-
cant: the lead variant rs7439150, an additional common variant
rs76289367, and three rare variants, rs150768229, rs6054
and rs148685782. rs148685782 showed significant heterogeneity
(I2 = 65.0, P-value = 0.0004). At the IRF1 locus three variants
were jointly significant: the lead variant, rs2057655, and two
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uncommon variants, rs12777 and 5:131786964. Of the secondary
signals, rs12777 is in strong linkage disequilibrium with a previ-
ously associated SNP, rs1242111 (R2 = 0.8), while 5:131786964 is a
new independent signal (R2 = 0.0). The uncommon variants near
SPPL2A were not significant in the conditional analysis. The

uncommon lead variant rs141272690 was only marginally
significant in the primary analysis (P = 1.89 × 10−8), so that even
a small correlation with the lead common variant rs12913259
(R2 = 0.02) raised the P-value above the threshold in the condi-
tional analysis.

Table 1. Association of the lead variants at 18 newly identified loci with natural log transformed plasma fibrinogen concentration (g/l)

Locus Variant Position Closest gene eQTL NSYN variants A1/A2 Frequency β P-values

2p25.3 rs7588285 3 648 186 COLEC11 C/G 0.20 0.0074 1.2 × 10−08

3p25.3 rs62246343 9 543 642 LHFPL4 T/C 0.17 0.0071 2.2 × 10−08

3q21.1 rs1976714 122 864 771 PDIA5 T/G 0.35 −0.0055 2.3 × 10−08

3q21.3 3:129228166 129 228 166 IFT122 RPL32P3 D/R 0.10 0.009 1.0 × 10−08

7p14.2 rs2710804 36 084 529 EEPD1 C/T 0.37 0.0055 2.9 × 10−09

7q36.1 7:150289652 150 289 652 GIMAP4 GIMAP4 D/R 0.21 −0.0073 9.3 × 10−11

8p23.1 rs7012814 9 173 358 LOC157273 A/G 0.47 0.0060 2.1 × 10−10

9q22.2 rs3138493 92 219 260 GADD45G SEMA4D T/C 0.48 −0.0054 2.5 × 10−09

10q23.31 rs2250644 91 008 879 LIPA T/C 0.33 0.0054 2.2 × 10−08

10q26.13 rs2420915 122 840 277 MIR5694 WDR11 A/G 0.09 −0.0094 5.2 × 10−09

11p12 rs7934094 43 505 707 TTC17 G/T 0.22 −0.0083 2.5 × 10−13

12p12.1 12:21703935 21 703 935 GYS2 R/D 0.37 0.0062 8.4 × 10−09

12q24.12 rs7310615 111 865 049 SH2B3 SH2B3 SH2B3 C/G 0.50 −0.0069 1.5 × 10−13

15q15.1 rs56702977 42 671 308 CAPN3 ZFP106 A/G 0.13 0.0080 2.1 × 10−09

16p11.2 16:28845027 28 845 027 ATXN2L TUFM D/R 0.39 0.0061 7.7 × 10−10

16q22.2 rs1035560 72 032 730 PKD1L3 HP C/T 0.40 0.0064 2.6 × 10−12

17q21.2 rs7224737 40 289 364 RAB5C STAT3 HSPB9 A/G 0.24 0.0061 6.1 × 10−09

19q13.33 rs73058052 50 099 422 PRR12 IRF3 PRRG2 T/C 0.16 0.0074 2.0 × 10−08

eQTL indicates the gene with the strongest significant association between its expression levels in blood and the lead variant or its proxy. NSYN variants indicates genes

containing non-synonymous variant correlated to the lead variant (R2 > 0.9). A1 indicates the coded allele. A2 indicates the other allele. Frequency is the frequency of the

coded allele. β indicates the β-coefficient adjusted for age, sex, population structure and study-specific covariates, such as center or case/control status. The β-coefficient

can be interpreted as the ln(g/l) change in fibrinogen per 1 unit change in the dosage of the coded allele.

Table 2. Association of the lead variants at 23 known loci with natural log-transformed plasma fibrinogen concentration (g/l)

Locus Variant Position Closest gene eQTL NSYN variants A1/A2 Frequency β P-values

1p31.3 rs1892534 66 105 944 LEPR T/C 0.38 −0.0073 4.3 × 10−15

1q21.3 rs61812598 154 420 087 IL6R IL6R A/G 0.39 −0.0115 2.7 × 10−36

1q44 rs10157379 247 605 599 NLRP3 NLRP3 C/T 0.38 −0.0103 6.3 × 10−29

2q12 rs1558643 102 731 691 IL1R1 T/C 0.40 0.0058 3.1 × 10−10

2q13 rs6734238 113 841 030 IL1F10 IL1RN G/A 0.41 0.0106 6.7 × 10−30

2q34 rs715 211 543 055 CPS1 CPS1 C/T 0.32 −0.0082 4.3 × 10−16

2q37.3 rs59104589 242 237 902 HDLBP STK25 T/C 0.34 −0.0083 8.2 × 10−19

3q22.2 rs9840812 135 843 162 PPP2R3A PCCB C/T 0.23 0.0117 1.7 × 10−27

4p16.3 rs59950280 3 452 345 HGFAC A/G 0.34 0.0075 1.7 × 10−12

4q31.3 rs7439150 155 481 541 FGB FBG A/G 0.20 0.0313 9.5 × 10−181

5q31.1 rs2057655 131 807 624 C5orf56 SLC22A4 A/G 0.21 −0.0203 1.8 × 10−73

7p21.1 7:17904452 17 904 452 SNX13 R/D 0.48 0.0067 1.3 × 10−13

7p15.3 rs71520386 22 853 521 TOMM7 T/C 0.20 0.0066 5.1 × 10−09

8q24.3 rs11780978 145 034 852 PLEC GRINA A/G 0.40 0.0059 5.5 × 10−10

10q21.3 rs7916868 64 988 931 JMJD1C A/T 0.49 0.0089 1.6 × 10−22

11q12.2 rs11230201 59 996 994 MS4A6A MS4A6A G/C 0.41 −0.0057 4.5 × 10−10

12q13.12 rs2731439 51 060 350 DIP2B DIP2B T/C 0.36 −0.0064 8.7 × 10−12

14q24.1 rs367677 69 273 090 ZFP36L1 G/A 0.22 0.0077 1.8 × 10−12

15q21.2 rs12913259 51 014 716 SPPL2A T/C 0.30 −0.0068 2.3 × 10−12

16q12.2 rs11859517 53 181 247 CHD9 T/C 0.29 −0.0074 8.9 × 10−14

20q13.12 rs1800961 43 042 364 HNF4A HNF4A T/C 0.03 −0.0170 1.2 × 10−10

21q22.2 rs9808651 40 466 468 PSMG1 A/G 0.27 −0.0095 2.5 × 10−20

22q13.33 rs75347843 51 112 361 SHANK3 ARSA A/G 0.19 0.0084 1.8 × 10−10

eQTL indicates the gene with the strongest significant association between its expression levels in blood and the lead variant or its proxy. NSYN variants indicates genes

containing non-synonymous variant correlated to the lead variant (R2 > 0.9). A1 indicates the coded allele. A2 indicates the other allele. Frequency is the frequency of the

coded allele. β indicates the β-coefficient adjusted for age, sex, population structure and study-specific covariates, such as center or case/control status. The β-coefficient

can be interpreted as the ln(g/l) change in fibrinogen per 1 unit change in the dosage of the coded allele.
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X-chromosome meta-analysis

The meta-analysis of the X-chromosome included 251 747 SNPs
and 26 448 indels. There were no genome-wide significant var-
iants detected on the X-chromosome. This was true in both
sex-specific meta-analyses, and in the combinedmeta-analyses,
irrespective of whether the sex-specific results were combined
using inverse-variance weighted meta-analysis or sample size
based meta-analyses. QQ plots and Manhattan plots for the
X-chromosome are shown in Supplementary Material, Figures
S7 and S8.

Functional annotation

Genome-wide significant associations with other traits were
found for 28 out of the 41 loci, of which 10 were associated with
cholesterol levels, 7 were associated with C-reactive protein, and
5 were associated with platelet count (Supplementary Material,
Table S5). Out of the 41 lead variants, 20 were associated with
blood expression levels of one or more neighboring genes (Sup-
plementary Material, Table S6). Notably, rs1035559 at 16q22.2
was exclusively associated with HP expression levels (P = 9.8 ×
10−198), and rs7224737 at 17q21.2 was exclusively associated
with STAT3 expression levels (P = 5.4 × 10−12). Out of the 41 lead
variants, 36 were available in HaploReg V2. Detailed annotation
of these variants as well as 457 correlated SNPs is shown in Sup-
plementary Material, Table S7. Eight of these SNPs are predicted
to influence the binding of miRNAs to transcripts of their host
gene. Further information about these SNPs and their effect on
miRNA binding is shown in Supplementary Material, Table S8.
Of these eight SNPs, two were lead variants. First, the fibrinogen
decreasing minor allele of lead variant rs715 in the 3′-UTRof CPS1
is predicted to create a miRNA-binding site for miR-3154. Second-
ly, the fibrinogen increasingminor allele of lead variant rs6224634
in the 3′-UTR of LHFPL4 is predicted to disrupt the binding site of
miR-6761-3p. In both cases, predicted successful miRNA-target
gene binding is associated with lower fibrinogen concentration.

Variance explained

In the Women’s Genome Health Study, the lead variant at the fi-
brinogen gene cluster explained 0.8% of the variance, and all five
jointly significant variants together explained 1.6% of the vari-
ance. At 5q31.1 the lead variant explained 0.2% of the variance,
while all three jointly significant variants together explained
0.3% of the variance. The 47 independently significant variants
at 41 loci explained 3.0% of the variance in circulating fibrinogen

concentration. The variance explained by the 23 previously iden-
tified loci was 2.6%.

Discussion
We identified 18 new autosomal loci associated with circulating
fibrinogen concentration in individuals of European ancestry,
increasing the variance explained from 2.6 to 3.0%. The small
increase in the variance explained relative to the large number
of new loci is suggestive of a highly polygenic genetic architec-
ture. At two loci (fibrinogen gene cluster and IRF1 locus) rare or
uncommon variants were jointly significant alongside common
lead variants. In five cases, the lead variant at an associated
locus was an indel. There were no significant associations on
the X-chromosome: this may be result of issues specific to the
X-chromosome rather than the absence of relevant signals. The
most important issue is that the X-chromosome is generally
poorly covered by genotyping arrays (15).

Four of the 18 new loci implicate inflammatory pathways not
previously linked to fibrinogen. First, the septin gene family is
represented at two significant loci: SEPT7 at 7p14.2 and SEPT2 at
2q37.3. Proteins from the septin gene family form cage-like struc-
tures around bacteria to facilitate autophagy (16). The link
between these processes andfibrinogen concentration is unclear.
Secondly, our results also implicate genes from the GIMAP fam-
ily, which are structurally similar to septins (17). The signal at
7q36.1 appears to be driven by one or more genes from a cluster
of eight GIMAP genes, and the lead variant is associated with
blood expression levels of four of these. Through their involve-
ment in lymphocyte maturation, these genes influence lympho-
cyte counts and diversity, and thereby also the inflammatory
response (18). Finally, the lead variant at 16q22.2 is strongly
associated with blood expression levels of the neighboring HP
(P ≤ 9.8 × 10−198), the gene encoding haptoglobin. Like fibrinogen,
haptoglobin is an acute-phase reactant. The association of
rs1035560 with fibrinogen suggests that besides sharing
upstream regulators, haptoglobin itself may be involved in the
regulation of circulating fibrinogen.

Six of the new loci appear to be closely related to STAT3, a tran-
scription factor working downstream of IL-6 that upregulates
the expression of fibrinogen and other acute-phase proteins (19).
At 17q21.2, the lead variant rs7224737 (175 kb from STAT3) was
associated with STAT3 blood expression levels (P = 5.4 × 10−12).
At 9q22.2, the lead variant rs3138493 lies upstream of GADD45G.
This gene is expressed in the liver, where it has been shown to
inhibit the Tyr705 phosphorylation of STAT3 (20). As Tyr705 phos-
phorylation of STAT3 allows it to dimerize and move into the

Table 3. Joint/conditional association of eight variants at two loci with natural log transformed plasma fibrinogen concentration (g/l)

Locus Variant Position Closest gene Annotation A1/A2 Frequency β P-values Joint β Joint P-values

4q31.3 rs7439150 155 481 541 FGB Intergenic A/G 0.205 0.0313 9.5 × 10−181 0.0259 1.9 × 10−92

4q31.3 rs150768229 155 488 301 FGB Intronic C/A 0.009 −0.0458 6.4 × 10−12 −0.0385 9.3 × 10−09

4q31.3 rs6054 155 489 608 FGB NSYN T/C 0.005 −0.1228 2.4 × 10−53 −0.1222 4.9 × 10−52

4q31.3 rs148685782 155 533 035 FGG NSYN C/G 0.005 −0.2239 1.2 × 10−87 −0.2179 4.0 × 10−82

4q31.3 rs76289367 155 546 159 FGG Intergenic G/T 0.148 0.0263 2.0 × 10−76 0.0109 1.6 × 10−11

5q31.1 rs12777 131 671 662 SLC22A4 SYN G/C 0.044 0.0240 9.3 × 10−27 0.0207 6.9 × 10−21

5q31.1 5:131786964 131 786 964 C5orf56 ncRNA I/R 0.015 −0.0543 2.5 × 10−14 −0.0428 2.0 × 10−09

5q31.1 rs2057655 131 807 624 C5orf56 ncRNA A/G 0.207 −0.0203 1.8 × 10−73 −0.0188 1.9 × 10−64

A1 indicates the codedallele. A2 indicates the other allele. Frequency is the frequencyof the codedallele. NSYN indicates a non-synonymous exonic variant. SYN indicates

a synonymous exonic variant. β indicates the β-coefficient adjusted for age, sex, population structure and study-specific covariates, such as center or case/control status.

Joint β indicates the β-coefficient of the jointly significant variants, adjusted for the above and for each other. All β coefficients can be interpreted as the ln(g/l) change in

fibrinogen per 1 unit change in the dosage of the coded allele.
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nucleus, it is essential for the upregulation of STAT3 targets like
the fibrinogen genes. At 10q26.13, the lead variant rs2420915 is
an intergenic SNP close to FGFR2. Over-expression of FGFR2, or
the related FGFR1 is required for the Tyr705 phosphorylation of
STAT3 (20). At 19q13.33, the lead variant rs73058052 is associated
with blood expression levels of IRF3. After activation in response to
viral infection, IRF3 enables the expression of type I interferons
INFA and INFB, leading to the upregulation of STAT3 (21,22). Fur-
thermore, our results point toward two SH2B adaptor proteins im-
plicated in STAT3 signaling. At 12q24.12, the lead variant
rs7310615 was associated with blood expression levels of SH2B3.
Using immortalized B lymphoblastoid cell lines, a loss of the
SH2B3 protein was accompanied by increased STAT3 phosphoryl-
ation (23). At 16p11.2, the lead variant 16:28845027 lies close to
SH2B1. The β variant of SH2B1 appears to form a complex with
STAT3, allowing STAT3 to cross through the membrane into the
nucleus as an alternative to STAT3 dimerization (24). Collectively,
these findings suggest that a wide range of disturbances to STAT3
may affect circulating fibrinogen concentration.

In addition to STAT3, our results highlight HNF4A, another
transcription factor known to regulate fibrinogen gene expres-
sion. The association between lead variant rs1800961 and circu-
lating fibrinogen has been previously been described by Wassel
et al. and Hufman et al. (12,25). rs1800961 is a non-synonymous
coding variant that has been shown to decrease HNF4A expres-
sion in vitro (26).

Themajority of rare and uncommon variants associated with
fibrinogen concentration were found at loci with common vari-
ant signals. Only the signal at HNF4Awas led by an uncommon
variant, and no signals were led by rare variants. Conditional
analysis suggests that there are two secondary signals at the
IRF1 locus led by uncommon variants, and three secondary sig-
nals near the fibrinogen gene cluster led by rare variants. The un-
common variants that were significant near SPPL2A were not
significant in the conditional analysis, but the linkage disequilib-
rium with the lead common variant was very low. Our results
suggest that common and rare variant signals are often inde-
pendent of each other, and donot support the hypothesis that as-
sociations with common variants are synthetic associations
merely reflecting linkage disequilibrium with rare variants
(27,28).

Absolute effect sizes of significant variants ranged from 0.005
to 0.033 ln(g/l) among common variants, 0.013 to 0.087 ln(g/l)
among uncommon variants and 0.036 to 0.254 ln(g/l) among
rare variants. Despite their small effect size, common variants
have helped discover biologically relevant fibrinogen loci. There-
fore, the complete lack of overlap between the effect sizes of sig-
nificant common and rare variants suggests that further rare
variants with smaller effect sizes are likely to exist at important
and possibly unknown fibrinogen loci. While the rare variants
with large effects we found were limited to the twomost import-
ant fibrinogen loci, rare variants with moderate effects may be
more widespread.

When considering not only the primary signal at the fibrino-
gen gene cluster, but also the four additional signals the variance
explained by the locus doubles from 0.8 to 1.6%. Two of these
additional signals are driven by rare non-synonymous exonic
variants (rs6054 and rs148685782) with very large effect sizes [β =
−0.12 and β =−0.21 ln(g/l), respectively]. The association between
rs6054 and fibrinogen has been described earlier in a candidate
gene study (12), and rs148685782 (also known as γAla82Gly) has
previously been reported as a causal variant for mild congenital
hypofibrinogenaemia (29–31). Furthermore, in a previous study,
we examined exome-wide genotypes using exome arrays and

identified independent associations of both rs6054 and
rs148685782 with fibrinogen (25). In the present study, however,
two further variants, rs140473879 and rs149234484, are in strong
linkage disequilibrium with rs148685782 and tag this signal.
These variants are intergenic, but each changes several regula-
tory motifs. Thus, the identification of rs148685782 as a causal
variant is not conclusive.

Strengths of this study include the use of a large ethnically
homogenous sample, and coverage of previously unexamined
uncommon and rare variants, indels and variants on the
X-chromosome. At the same time, the lack of ethnic heterogen-
eity may also be a limitation, as including different ethnicities
can help narrow down the association signal to a smaller region
(32). This study has other limitations that should be acknowl-
edged. To most effectively use the available data, we used all
34 studies in the discovery sample (33). The results have thus
not been replicated. Nevertheless, the consistent association of
these loci across the 34 studies and the strict Bonferroni correc-
tion enforcing a 5% false discovery rate ensure that essentially
all of the loci represent true associations. A second limitation is
that an approximation based on meta-analysis summary data
was used to identify additional independently associated var-
iants at the identified loci rather than a stepwise conditional ana-
lysis using individual-level data. Different methods were used to
measure plasma fibrinogen across the studies: ethylenediamine-
tetraacetic acid (EDTA) or citrate plasma samples were used, and
a variety of assays were used (34). While the association between
fibrinogen and cardiovascular disease has previously been
shown to be independent of assay type, the genetic etiology of
fibrinogenmay differ across assay types (35). However, tominim-
ize the impact on our results, studies that usedmultiple assays to
measure fibrinogen performed their analyses stratified by the
assay.

Finally, our ability to attribute these signals to causal genes re-
mains limited. For each locus we reported the gene closest to the
lead variant, but proximity alone is not strong evidence that a
gene is the underlying causal gene. Thus, we also reported the
genes whose expression levels in blood were most strongly asso-
ciated with the lead variant, and we reported genes with non-
synonymous exonic variants in high linkage disequilibrium
with the lead variant. Based on blood expression levels, some sig-
nals were characterized by a single promising candidate causal
gene, but other signals were associated with either no candidate
causal genes, or more than one. Furthermore, genetic variants
can have effects on the expression of multiple genes across dif-
ferent tissues, and these effects can be tissue specific.

We identified 41 loci that collectively explain 3% of the vari-
ance in plasma fibrinogen concentration. Of these loci, 18 had
not been identified previously through GWAS. The new loci em-
phasize the importance of STAT3 to fibrinogen regulation, and
highlight several new potential pathways that should be experi-
mentally confirmed. The use of 1000 Genomes Project imput-
ation increased our ability to assess the role of uncommon
variants, resulting in an in depth characterization of the two
most important fibrinogen loci.

Materials and Methods
Study sample

This meta-analysis was conducted within the framework of the
Cohorts for Heart and Aging Research in Genetic Epidemiology
(CHARGE) consortium (36). The study sample consists of 34 stud-
ies with 120 246 individuals of European ancestry. Twelve studies
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with 25 453 participants were not included in the previous fi-
brinogen GWAS (11). Fibrinogen concentration was measured in
citrated or EDTA plasma samples using a variety of methods in-
cluding the Clauss method, immunonephelometric methods,
immunoturbidimetric methods and prothrombin time-derived
methods as described in Supplementary Material, Table S1 and
the Supplementary Material, Methods, which further describe
the studies. All studies were approved by appropriate research
ethics committees and all respondents signed informed consent
prior to participation.

Genotyping and imputation

Genotyping, pre-imputation quality control, imputation and
analysis methods are presented in Supplementary Material,
Table S2. All studies imputed variant dosages using reference pa-
nels from the 1000 Genomes Project using markov chain haplo-
typing (MACH) or IMPUTE (14,37–39). The Phase I version 3
reference panel was used by all studies except two, which used
the Phase I version 2 reference panel. Before meta-analysis, we
excluded variants with MACH imputation quality<0.3 or IMPUTE
imputation quality<0.4 and variants with effective minor allele
count (minor allele count × imputation quality)<10. These filters
were applied at the level of individual studies. Because we
wanted to focus only on those variants that passed these filters
in a large proportion of the studies, we additionally excluded var-
iants with a total sample size of less than half of the maximum
sample size at the meta-analysis level.

Autosomal association analysis

Plasmafibrinogen concentrationwas converted to g/l and natural
log-transformed. All studies adjusted for age and sex. When ne-
cessary, analyses were also adjusted for study-specific covari-
ates, such as center or case/control status. In family studies,
linear mixed models were used to account for the family struc-
ture. Analyses were adjusted for principal components to ac-
count for the population structure and cryptic relatedness.
These adjustments are shown in Supplementary Material,
Table S2. To account for remaining stratification, we applied a
genomic control correction to the results of each of the studies
before meta-analysis. We used an inverse-variance model with
fixed-effects implemented in METAL to meta-analyze associ-
ation results (40). Heterogeneity was assessed using I2 and corre-
sponding P-values.

As proposed by Huang et al. (41), variants with P < 2.5 × 10−8

were considered genome-wide significant (based on a Bonferroni
correction for 2 000 000 tests). Significant variants were assigned
to loci in the order of ascending P-value. A variant was assigned
to a new locus when there were no significant variants within
500 kb of it belonging to a previously defined locus. Variants
were annotated to genes usingANNOVARversion 2013Mar07 (42).

X-chromosome association analysis

Of the 120 246 participants, 95 806 had imputed data on the
X-chromosome. Dosages of variants on the X-chromosome
were coded as [0,2] in men and [0,1,2] in women. This way one
allele in men has the same value as two alleles in women. Thus,
we assume full inactivation of one of the two X-chromosomes in
women. Variants in the pseudo-autosomal region were excluded.
Analyses of the X-chromosome were stratified by sex in each
study, and the studies then were meta-analyzed separately for
men and women using an inverse-variance model with fixed

effects (40). We then combined the sex-specific meta-analysis
results for variants on the X-chromosome using both an inverse-
variance weighted model with fixed effects and a sample-size
weighted model based on P-values and effect direction. The sam-
ple-sizeweightedmodel does not take the effect size into account,
and thusmay work better when there are different effects inmen
and women (43,44), as can happen when there is incomplete
inactivation in women.

Conditional analysis

Some loci may harbor multiple independent variants that affect
fibrinogen (11,45). To putatively identify these jointly significant
variants, we used an approximate method for conditional and
joint analysis using meta-analysis summary statistics imple-
mented in genome-wide complex trait analysis (46,47). The
method consists of a genome-wide stepwise selection proced-
ure selecting variants according to their conditional P-values
and, after the model has been optimized, the estimation of the
joint effects of the selected variants. This method depends on a
reference panel to estimate linkage disequilibrium patterns be-
tween variants. We used best-guess imputation for variants
with imputation quality >0.3 in 5733 unrelated individuals
from the Rotterdam Study as the reference panel (48). A descrip-
tion of the Rotterdam Study is given in the Supplementary
Methods.

Functional annotation

For each locus, we searched the National Human Genome
Research Institute GWAS catalog for genome-wide significant
associations with other traits within 100 kb of the lead variant
(49). We used the Blood eQTL browser, a publicly available data-
base, to examinewhetherany leadvariants, or theirmost correlated
HapMap proxy (with R2 > 0.8), were associated with expression
levels ofnearby genes inblood. Results fromthebloodeQTLbrowser
are based on non-transformed peripheral blood samples from 5311
individuals with replication in 2775 individuals (50). For each lead
SNP and its highly correlated neighbors (with R2 > 0.9), we used
HaploReg V2 to determine the level of conservation, association
with gene expression in a range of tissues including the liver, and
any overlap with ENCODE transcription factor binding sites, and
DNAse-hypersensitive, promoter and enhancer regions in various
cell types (51,52). Furthermore, we determined the overlap of these
SNPswithmicroRNAs andmicroRNAbinding sites (see Supplemen-
tary Methods) (53–55).

Variance explained

In the Women’s Genome Health Study, the largest contributor to
the meta-analysis, we computed a weighted genetic risk score
based on the lead variants at each genome-wide significant
locus, as well as any jointly significant variants identified in the
conditional analysis (56). A description of the Women’s Genome
Health Study is given in the Supplementary Methods. Beta coeffi-
cients from the genome-wide associationmeta-analysis including
all studieswere used asweights, except in loci withmultiple joint-
lysignificant variants. For variants at these loci, joint β-coefficients
were obtained from the conditional analysis. The genetic risk
scorewas computed as the sum of theweighted variants dosages.
The variance infibrinogen concentration explainedwas estimated
using a linear regression model. Additionally, for any loci with
jointly significant variants, we compared the variance explained
by the lead variant to the variance explained by the jointly
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significant variants. We were not able to directly compare our es-
timate of the variance explained to previous estimates, as these
had been computed in different populations and were adjusted
for age and sex. Thus, we re-calculated the variance explained
without adjustment for age and sex. For this, we used HapMap-
imputed dosages of the independently associated SNPs reported
by Sabater-Lleal et al. (11). Since the variance explained is esti-
mated on the basis of imperfectly imputed dosages, we expect
our estimates to be slightly lower than if they were based onmea-
sured genotypes.

Supplementary Material
Supplementary Material is available at HMG online.
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Heart, Lung, and Blood Institute’s (NHLBI’s) Framingham Heart
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ment of the Department of Medicine at Boston University School
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port was provided by the National Institute of Diabetes and Di-
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National Institute onAging andNational Institute for Neurologic-
al Disorders and Stroke R01 AG033193, NS017950 (S Seshadri).
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and P.S.W. are funded by the Federal Ministry of Education and
Research (BMBF 01EO1003). Helsinki Birth Cohort Study has
been supported by grants from the Academyof Finland, the Finn-
ish Diabetes Research Society, Folkhälsan Research Foundation,
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N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168,
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of Health (NIH, R01D0042157-01A, MH081802, Grand Opportunity
grants 1RC2MH089951). Part of the genotyping and analyseswere
funded by the Genetic Association Information Network (GAIN)
of the Foundation for the National Institutes of Health. Comput-
ingwas supported by BiG Grid, the Dutch e-Science Grid, which is
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by Amgen. The WHI program is funded by the National Heart,
Lung and Blood Institute, National Institutes of Health, US
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