
Journal of Robotics and Control (JRC)

Volume 4, Issue 3, May 2023

ISSN: 2715-5072, DOI: 10.18196/jrc.v4i3.18489 413

 Journal Web site: http://journal.umy.ac.id/index.php/jrc Journal Email: jrc@umy.ac.id

Application of Odometry and Dijkstra Algorithm as

Navigation and Shortest Path Determination System

of Warehouse Mobile Robot

Achmad Ubaidillah 1*, Hanifudin Sukri 2
1, 2 Department of Electrical Engineering, Universitas Trunojoyo Madura, Jawa Timur, Indonesia

Email: 1 ubaidillah.ms@trunojoyo.ac.id, 2 hanifudinsukri@trunojoyo.ac.id

*Corresponding Author

Abstract—One of the technologies in the industrial world

that utilizes robots is the delivery of goods in warehouses,

especially in the goods distribution process. This is very useful,

especially in terms of resource efficiency and reducing human

error. The existing system in this process usually uses the line

follower concept on the robot's path with a camera sensor to

determine the destination location. If the line and destination

are not detected by the sensor or camera, the robot's navigation

system will experience an error. it can happen if the sensor is

dirty or the track is faded. The aim of this research is to develop

a robot navigation system for efficient goods delivery in

warehouses by integrating odometry and Dijkstra's algorithm

for path planning. Holonomic robot is a robot that moves freely

without changing direction to produce motion with high

mobility. Dijkstra's algorithm is added to the holonomic robot

to obtain the fastest trajectory. by calculating the distance of the

node that has not been passed from the initial position, if in the

calculation the algorithm finds a shorter distance it will be

stored as a new route replacing the previously recorded route.

the distance traversed by the djikstra algorithm is 780 mm while

a distance of 1100 mm obtains the other routes. The time for

using the Djikstra method is proven to be 5.3 seconds faster than

the track without the Djikstra method with the same speed.

Uneven track terrain can result in a shift in the robot's position

so that it can affect the travel data. The conclusion is that

odometry and Dijkstra's algorithm as a planning system and

finding the shortest path are very efficient for warehouse robots

to deliver goods than ordinary line followers without Dijkstra,

both in terms of distance and travel time.

Keywords—Warehouse Robot; Navigation; Shortest Path;

Dijkstra; Odometry.

I. INTRODUCTION

The development of robotics provides conveniences for

humans [1][2][3][4]. Robot is a technological product that

combines hardware and software with a propulsion program

used in a particular job [5][6][7][8][9]. Many activities that

are too heavy for humans can be done easily with the help of

robots, such as activities that require large amounts of energy,

high costs, fast time and detailed accuracy [10][11].

Warehouse robots for delivery of goods have become an

important part of the logistics and delivery of goods in the

industry. This system improves operating efficiency and

reduces cycle times. To maximize the benefits of this system,

it is necessary to determine the fastest path for the robot to

deliver goods.

The benefits of robots in industrial activities have been

widely used such as delivery of goods, production,

packaging, picking, dropping, inventory, unloading,

manufacturing processes, controllers and others in

accelerating and increasing the quality and quantity of

production, like in [12][13][14] that develop in industrial

robot especially in manufacturing. The application of

delivery robots has existed in several developed countries

[15][16]. The navigation system usually uses a line follower

[17]. However, the system is highly dependent on the

sensitivity to recognition of the color of the line traversed. If

there is a problem in the recognition system, the robot's

navigation system will also have a problem [18][19]. This

must be overcome by the system within the robot itself

[20][21]. So the application of odometry is needed as an

alternative method that can answer some of the limitations of

line follower system [22][23][24].

The odometry system was chosen in this study because

several studies have proven that odometry has high accuracy

in measuring the distance, direction and position of the robot

without dependence on light and line search [25]. Odometry

is used to estimate position coordinates relative to the initial

position [26][27]. The odometry system requires a rotary

encoder sensor to detect the number of wheel rotations

[28][29]. Area mapping using the odometry method is to

estimate changes in the robot's position over time in a

Cartesian diagram [30][31]. The result is data on the

coordinates and direction of the robot [32][33][34].

Odometry uses actuator movement data to estimate

coordinate changes [35][36]. The robot position coordinates

include three parameters, namely the diameter of the free

wheel, the number of encoder resolutions and the number of

rotary encoder pulses [37][38][39]. This data is used as a

parameter for robot navigation combined with a holonomic

system [40][41]. Holonomic is a type of mobile

omnidirectional wheel [42][43][44]. It can move without

changing direction due to omni wheel kinematics [45][46]. It

can move forward, backward, slide sideways and rotate in a

fixed position so that it is more effective in maneuvering

[47][48]. Therefore, this study hypothesizes that holonomic

can simplify and accelerate mobile robots to maneuver in all

directions and follow the application of Dijkstra's algorithm

for the effectiveness and speed of distributing goods in

warehouses [49][50].

Journal of Robotics and Control (JRC) ISSN: 2715-5072 414

Achmad Ubaidillah, Application of Odometry and Dijkstra Algorithm as Navigation and Shortest Path Determination System

of Warehouse Mobile Robot

After the path has been mapped, the next step is finding

the shortest path in each route on the path map [51].

Searching for the shortest route becomes very important in

path planning because it is related to delay [52]. The smaller

the delay, the more reliable a system [53]. One of the methods

used for this is Dijkstra's algorithm [54]. Dijkstra's algorithm

was chosen in this study because it is simple to implement

and sufficiently detailed considering the load of each path

[55]. Dijkstra is a shortest route search method that is used in

various fields [56], such as in telecommunications [57],

regional maps [58], transportation [59], energy [60] and

others.

Some previous research on robots is [61] which

developed a mobile robot navigation system using visual

odometry based on ceiling vision. Research [62] developed

the design of an omnidirectional wheeled mobile robot. At

the same time, research [63] developed a control system for

trajectory tracking on an omnidirectional wheeled mobile

robot. But they don't consider the shortest path problem.

Another research is [64] which proposes the application of

Dijkstra's Algorithm in determining the fastest trajectory of a

wheeled soccer robot. But it doesn’t discuss about path

planning method. This research develops the application of

Dijkstra's Algorithm and odometry as a navigation system for

the fastest path in the warehouse robot delivering goods. This

study applies the movement of the holonomic drive system

and uses omnidirectional wheels [65].

This research has an essential objective in combining the

odometry system method and Dijkstra's algorithm to improve

the efficiency of warehouse robot operations. The odometry

system is used as a path planning method, where encoder or

sensor-based odometry allows the robot to determine its

position and orientation in a warehouse environment. With

this knowledge, the robot can plan an efficient path and avoid

obstacles.

In addition, this study also utilizes Dijkstra's algorithm to

find the shortest path to maximize the efficiency of robot

movement. In this context, Dijkstra's algorithm is used to

speed up the process of finding the shortest path from the

point of origin to the point of destination in a warehouse

whose structure and condition can change.

Therefore, this research contributes to the development of

warehouse robot technology by combining the odometry

approach and Dijkstra's algorithm. Combining these two

methods can increase the robot's operational efficiency, speed

up the delivery time of goods, and reduce the potential for

damage or errors that may be caused by ineffective

navigation. This research also demonstrates the potential use

of this technology in the warehouse and other logistics

contexts, where efficient and accurate path planning is

essential.

II. THEORY

A. Omnidirectional Wheel and Odometry

Omni wheels are a special wheel design that has many

wheels on the main wheel [66][67]. There are two types of

wheels, namely large core wheels and small wheels on a large

core wheel that is perpendicular to the core wheel axis

[68][69]. In contrast to normal non-holonomic robots,

holonomic omni-directional robots can move in all directions

without changing the direction of the wheels [70][71]. The

omni robot can move forward, backward, slide and rotate in

a fixed position, so that the robot is able to maneuver more

agile in tight corners [72][73][74]. Omni directional wheels

are a type of holonomic mobile robot [75][76][77]. The

kinematics of an omni wheel allows position changes

between global coordinates and internal configurations

[78][79][80].

Odometry presents changes in data over time [81][82].

Odometry estimates position coordinates relative to the

position of the actuator movement data to estimate changes

in position coordinates to initial conditions [83][84]. In the

wheeled robot odometry system, the sensor used is a rotary

encoder to detect the number of wheel rotations [85][86].

Identification of errors is determined from the integration of

velocity measurements against time in the position estimation

process [87][88].

The robot's relative position can be estimated using the

calculation of the number of pulses generated by the rotary

encoder sensor for each unit of measure which is then

converted into millimeters. The formula for the number of

pulses for each freewheel movement is equations (1) and

equation (2). The differential movement system is carried out

by two wheels, namely the right and left wheels. The number

of 𝑝𝑢𝑙𝑠𝑒𝑠𝑝𝑒𝑟_𝑚𝑚 for the right wheel is the 𝑟𝑖𝑔ℎ𝑡 𝑒𝑛𝑐 and the

left wheel is the 𝑙𝑒𝑓𝑡 𝑒𝑛𝑐. The distance between the two

wheels is 𝑤ℎ𝑒𝑒𝑙𝑏𝑎𝑠𝑒 with distance traveled (𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒) and

orientation angle (θ), as shown by equations (3), (4), and (5).

𝐾𝑤ℎ𝑒𝑒𝑙 = 2𝜋𝑟 (1)

𝑃𝑢𝑙𝑠𝑒𝑝𝑒𝑟_𝑚𝑚 =
𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛_𝑒𝑛𝑐

𝐾𝑤ℎ𝑒𝑒𝑙

 (2)

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
(𝑙𝑒𝑓𝑡 𝑒𝑛𝑐 − 𝑟𝑖𝑔ℎ𝑡 𝑒𝑛𝑐)

2
 (3)

𝜃 =
(𝑙𝑒𝑓𝑡 𝑒𝑛𝑐 − 𝑟𝑖𝑔ℎ𝑡 𝑒𝑛𝑐)

𝑤ℎ𝑒𝑒𝑙 𝑏𝑎𝑠𝑒
 (4)

𝐻𝑒𝑎𝑑𝑖𝑛𝑔 = 𝜃
180

𝜋
 (5)

Heading 𝜃 is the angle in radians. Equation (5) shows that

the heading value will be negative if the robot rotates

counterclockwise and is positive if the robot rotates

clockwise. If the distance and 𝜃 are known, then the 𝑋 and 𝑌

coordinates are obtained using the trigonometry equation.

Look at Fig. 1.

Fig. 1. Calculation of robot distance on odometry system

Journal of Robotics and Control (JRC) ISSN: 2715-5072 415

Achmad Ubaidillah, Application of Odometry and Dijkstra Algorithm as Navigation and Shortest Path Determination System

of Warehouse Mobile Robot

From the illustration of Fig. 1, the robot coordinates are

obtained with equation (6) and (7). After that, equations (8),

(9), (10), and (11) can be obtained.

𝑋𝑝𝑜𝑠 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑥 sin 𝜃 (6)

𝑌𝑝𝑜𝑠 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑥 cos 𝜃 (7)

𝑥 = 𝑋𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑋𝑝𝑜𝑠 (8)

𝑦 = 𝑌𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑌𝑝𝑜𝑠 (9)

𝑇𝑎𝑟𝑔𝑒𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √(𝑥2 + 𝑦2) (10)

The direction error value of the robot towards the

destination point is calculated by the Pythagorean theorem.

The current position and distance to the destination point are

calculated using equation (6) dan (7). Heading error can be

calculated based on the heading of the robot. 𝛽 is the target

bearing, namely the angle between the robot's current

position and the destination points. Meanwhile, parallel lines

are auxiliary lines that are parallel to the 𝑋 and 𝑌 𝑎𝑥𝑒𝑠. The

value of 𝛽 is obtained by the equation (11).

𝛽 = tan−1
(𝑌𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑌𝑝𝑜𝑠)

(𝑋𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑋𝑝𝑜𝑠)
 (11)

B. Dijkstra’s Algorithm

Dijkstra's algorithm is applied to find the shortest path on

a directed graph [89][90]. This algorithm can also be used for

undirected graphs [91][92]. It looks for the shortest path in a

number of steps [93][94]. It uses the greedy principle

[95][96]. The greedy principle in Dijkstra's algorithm always

chooses the position with the smallest weight and includes it

in the solution set [97][98]. It performs calculations against

all possibilities to find the smallest weight from each node to

node [99][100]. The mechanism of Dijkstra's algorithm can

be explained in the following steps:

● Determine the starting point, then weight the distance

from the first node to the nearest node one by one.

Dijkstra's algorithm will develop the search for the

smallest value step by step.

● Give a distance weight for each point, then set a value of

0 at the initial node and an infinite value for other nodes.

● Consider the untraversed neighboring nodes and calculate

their distance from the departure point. If this distance is

smaller than the previous distance, delete the old data,

save and recalculate the distance data with the new

distance.

● Mark the node that has been passed as a “passed node”.

Passed nodes will never be checked again. The distance

that is stored is the last distance and the most minimal

weight.

● Set “Node not passed” with the smallest distance from the

departure node as the next “Departure Node” and repeat

the steps

III. METHODOLOGY

The following Fig. 2 is a block diagram of the warehouse

delivery robot system developed in this study.

Fig. 2. Block diagram of the robotic system

The Arduino microcontroller voltage source comes from

a 12V battery which after the buck converter the voltage

drops to 5V which is then supplied to the Arduino

microcontroller and STM32f103 [101]. The motor driver

voltage source comes from a 12 V battery to obtain maximum

motor rotation speed without going through a buck converter.

MPU6050 sensor and DC motor internal encoder (RPM)

require 5V voltage. Fig. 3 is the flowchart of the system.

Fig. 3. Flowchart of the system

System stages include robot operation, trajectory

mapping, data processing and movement or action of the

robot [102]. The first operation on the robot is carried out by

the user, namely turning on the power button. Then the user

chooses robot mode for mapping or mode for delivery

(sender). The mapping area must be formed first so that it can

then be traversed [103][104].

Mapping is done by running the robot manually on its

trajectory until it returns to its starting point. With a rotary

encoder sensor that is processed using the odometry method,

the position of the robot's movement can be recorded

[105][106]. If the Robot Movement finds an intersection, the

user must press the node button. The robot path is in the form

of a graph consisting of “vertex” and “node”.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 416

Achmad Ubaidillah, Application of Odometry and Dijkstra Algorithm as Navigation and Shortest Path Determination System

of Warehouse Mobile Robot

Mapping result data is stored in the microcontroller's

internal EEPROM [107]. EEPROM was chosen as a storage

medium because it has many benefits, including reliable

design and performance and easy erasing and programming

without disturbing the board. Then the user can carry out the

sending process by pressing the keypad button according to

the destination node. The robot will send to the destination

node according to the previously mapped location. If it

reaches the destination rack, the robot will stop. After placing

the goods on the appropriate rack, the user presses a button

on the keypad to order the robot to return to the starting point.

Fig. 4 is the flowchart of robot speed control and shows

the flowchart of 3-wheel speed regulation. The system begins

by determining the 𝑘𝑝, 𝑘𝑖, 𝑘𝑑 values on the PID then the

encoder sensor reads the motor speed. The result is an RPM

value obtained through the calculation of treeomniwheel

kinematics. This value is then processed by the PID and used

as a PWM value to move the robot according to its

destination. If the robot has not reached its destination, the

process will continuously loop back to the initial process until

the robot reaches its destination. If it reaches the destination,

then the process is complete.

Fig. 4. Flowchart of robot speed control

Fig. 5 is the flowchart of node mapping system. Retrieval

of node data is carried out by the user by moving the robot

manually. The first step determines the starting position or

the position when the robot is in standby mode, and the motor

is off. The robot must be reset first by pressing the reset

button provided. Then the user must determine all the node

points on the track, including the stops on each rack. The

second step is to map the nodes by delivering the robot to

each node by pressing the '#' key. The '#' key is pressed to

save the coordinate value made at each robot stop. The last

step is to press the '*' button. This is done if all nodes have

been mapped, and all node data will be stored in EEPROM to

proceed to the following process. In the process of using

Dijkstra's algorithm, neighbors must first be identified at each

node. The identification of neighboring nodes is made by

entering each weight via the keypad.

Fig. 5. Flowchart of node mapping

Fig. 6 shows the process of weighting neighboring nodes.

The process of assigning weights to neighboring nodes must

be carried out according to the path that has been planned and

converted to a data graph stored in a matrix variable, with as

many dimensions as the nodes that have been stored. Initially,

all element values will be assigned a temporary value, namely

∞. In the conversion process, the node elements that have

neighbors are updated with the value of the elements while

the other nodes still have a value of ∞. The updated value is

the value of the distance between the nodes and their

neighboring nodes.

Fig. 6. Flowchart of weighting at neighbor node

Journal of Robotics and Control (JRC) ISSN: 2715-5072 417

Achmad Ubaidillah, Application of Odometry and Dijkstra Algorithm as Navigation and Shortest Path Determination System

of Warehouse Mobile Robot

Fig. 7 is the flowchart of Dijkstra Application. Fig. 7 is a

flowchart of applying Dijkstra's algorithm to find the shortest

route from several paths. The Dijkstra process compares all

the path weights to be selected by:

● Give the value of the weight of the distance from one node

to another then determine the departure node with a value

of 0 and ∞ at the other nodes.

● If node A to B has a distance value of 5 and from node B

to point C has a value of 2. So, the distance to node C

through node B is 5 + 2 = 7. If this distance is smaller than

the previously recorded distance, delete the old data and

resave the new distance value.

● Mark the nodes that have been skipped as 'skipped nodes'.

Missed nodes will never be checked again and the

distance stored is the last distance from the departure node

and the minimum distance value.

● Determine the node that has not been passed with the

smallest distance value from the departure node as the

next departure node and continue by repeating step 3.

Fig. 7. Flowchart of Dijkstra Application

Fig. 8 is the flowchart of trajectory. Fig. 8 is the process

for obtaining trajectory data from Dijkstra's algorithm. The

main parameter used is the value of the “target” variable

which stores the value of the destination node. The weight of

the path is then searched for and stored in the “Trajectory”

variable until the “destination” variable value is the same as

the initial or source node value. Trajectory data is taken from

Trajectory data [𝑏] or lines in the graph.

The process begins with the initialization of the source,

destination and variable 𝑖 which is then in the decision stage

if 𝑖 > 𝑣𝑒𝑟𝑡𝑒𝑥 then the process is complete. If 𝑖 < 𝑒𝑟𝑡𝑒𝑥 then

the trajectory [𝑏] is the same as the data trajectory [𝑖 − 𝑥].
Then check again if the destination is not the same as the

source, then 𝑖 = 𝑖 + 1 and the process returns to the

beginning. If the destination is the same as the source, the

process will continue to determine whether 𝑥 < 𝑖. If yes, it

will be counted until the last stage, then the process is

complete and the data is saved.

Fig. 8. Flowchart of Trajectory

The hardware requirements for realizing the wheeled

robot planning in this study are:

● STM32F103C8T6

● Motor DC

● Battery managemen System 12 V

● Driver L298N

● 3 Omni Wheel

● Motor dc JGA 25 100 RPM

● Buck Converter

● Acrylic 3mm

● Sensor of Rotary Encoder

● Sensor of IMU

● Sensor of encoder RPM internal motor

IV. RESULT AND DISCUSSION

As in research [64], which applied Dijkstra's algorithm to

a wheeled mobile robot in a soccer robot game, this research

applies and combines the Odometry method as a path mapper

with Dijkstra's algorithm as a finder of the shortest path

applied to warehouse robots. This research examines the

movement of warehouse robots using the Djikstra algorithm

and odometry as a mapping navigation system. The robot has

dimensions of 30 cm in diameter and 14 cm in height. It uses

a keypad as the tool's operating buttons and a 20x4 LCD as

an interface. Fig. 9, Fig. 10, Fig. 11 and Fig. 12 are the view

of robot.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 418

Achmad Ubaidillah, Application of Odometry and Dijkstra Algorithm as Navigation and Shortest Path Determination System

of Warehouse Mobile Robot

Fig. 9. Front view of the robot

Fig. 10. Rear view of the robot

Fig. 11. Robot view from below

Fig. 12. Robot view from above

Testing the odometry method aims to determine the actual

position of the robot, bearing angle (direction), and the

distance from the current position of the robot to a

predetermined destination point. The odometry method is

used to measure changes in the position of a moving object,

such as a warehouse robot in this case, which is based on data

analysis from sensors installed on the robot.

Odometry, in the context of robotics, usually involves the

use of sensors such as wheel encoders, which measure the

rotation of the wheels and therefore the movement of the

robot. Using this data, in combination with knowledge of

wheel size and wheel-to-movement ratio, the odometry

method can estimate the robot's position.

In this test, the odometry method refers to certain

mathematical equations related to the movement and

orientation of the robot. For example, a change in position

can be calculated by integrating the speed of the robot against

time, and a change in orientation can be calculated by

considering the number of revolutions of the wheels and the

width of the distance between the wheels.

At this stage, testing is done manually to verify the

accuracy of the odometry method. This involves performing

calculations based on mathematical equations and comparing

the results with the actual data from the robot's sensors. By

carrying out tests like this, it can be ensured that the odometry

method works effectively and reliably for use in warehouse

robot navigation systems.

The accuracy of the odometry method is very important

because it is the basis for the robot to plan routes and navigate

its environment. If the estimated position or orientation of the

robot is inaccurate, it may cause the robot to crash into

obstacles or fail to reach its destination. Therefore, it is

important to carry out thorough testing and verification of this

method.

Calculation Parameters Known:

𝐷𝑊 = 48 𝑚𝑚

𝑝𝑢𝑙𝑠𝑒𝑥 = 1500

𝑝𝑢𝑙𝑠𝑒𝑦 = 100

𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑥 = 600

𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑦 = 100

𝑥2 = 300

𝑦2 = −300

Solution:

𝐾𝑊 = 𝐷𝑊 × 𝜋 = 48 × 3.14 = 150.79 𝑚𝑚

𝑥1 =
𝑝𝑢𝑙𝑠𝑒𝑥

𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑥
𝐾𝑊 =

1500

600
× 150.79 = 376.97 𝑚𝑚

𝑦1 =
𝑝𝑢𝑙𝑠𝑒𝑦

𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑦
𝐾𝑊 =

100

100
× 150.7 = 150.79 𝑚𝑚

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √(𝑥2 − 𝑥1)2 − (𝑦2 − 𝑦1)2

 = √(300 − 376.97)2 + (−300 − 150.79)2

Journal of Robotics and Control (JRC) ISSN: 2715-5072 419

Achmad Ubaidillah, Application of Odometry and Dijkstra Algorithm as Navigation and Shortest Path Determination System

of Warehouse Mobile Robot

 = √5,924.38 + 203,211.62

 = 457.31 𝑚𝑚

𝐵𝑒𝑎𝑟𝑖𝑛𝑔 = tan−1 (
𝑦2 − 𝑦1

𝑥2 − 𝑥1
)

180

𝜋

 = tan−1 (
−300 − 150.79

300 − 376.97
)

180

𝜋

 = tan−1(5.87)
180

𝜋

 = 80.33°

The first test is three omni directions. This test aims to

determine and compare the speed of the three wheels used,

namely 𝑣1, 𝑣2, and 𝑣3 which is then multiplied by a certain

multiplier, in this case the multiplier factor is 100 rpm. The

following is an example of a calculation involving bearing

parameters calculated using the odometry method.

𝑏𝑒𝑎𝑟𝑖𝑛𝑔 = 80.33°

𝑚𝑎𝑥𝑅𝑃𝑀 = 100

𝑠𝑢𝑑𝑢𝑡 = 120

𝜔 = 0

𝑥 = 𝑚𝑎𝑥𝑅𝑃𝑀 × cos(𝑏𝑒𝑎𝑟𝑖𝑛𝑔) = 100 × cos(80.33)

𝑥 = 16

𝑦 = 𝑚𝑎𝑥𝑅𝑃𝑀 × sin(𝑏𝑒𝑎𝑟𝑖𝑛𝑔) = 100 × sin(80.33)

𝑦 = 99

𝑣1 = (𝑥 × cos(𝑠𝑢𝑑𝑢𝑡)) − (𝑦 × sin(𝑠𝑢𝑑𝑢𝑡)) + 𝜔

𝑣1 = (16 × cos(120)) − (99 × sin(120)) + 0 = −77.14

𝑣2 = (𝑥 × cos(𝑠𝑢𝑑𝑢𝑡)) + (𝑦 × sin(𝑠𝑢𝑑𝑢𝑡)) + 𝜔

𝑣2 = (16 × cos(120)) + (−99 × sin(120)) + 0 = 93.14

𝑣3 = −(𝑥 + 𝜔) = −(16 + 0) = −16

TABLE I. TESTING OF THREE OMNI-DIRECTION

No. Degrees (⁰) v1 v2 v3

1 0 9 -10 1

2 45 11 2 -9

3 90 6 6 -12

4 180 9 -10 1

5 225 -10 2 9

6 270 -6 -6 12

7 315 2 -11 8

Table I is a three omni-direction calculation based on

angles. 𝑣 is the speed of the robot obtained from the encoder

sensor on each motor.

The next result is trajectory mapping. The purpose of

mapping is to find out the coordinates of each node and the

distance between nodes. Then the process of determining the

shortest path is done by Dijkstra's algorithm.

In the mapping process, the selection of the position of

the node point is determined by the user by pressing the (#)

button. The coordinate value of the node will be read and

stored in the nodeMapp variable. The nodeMapp variable is

a matrix variable with dimensions of 2x50, where row 0 is

used to store 𝑋 values and row 1 to store 𝑌 values. The

“nodeCount” variable will store the total value of the many

nodes stored. If the user presses (∗), the mapping will stop

and continue to the next step. Fig. 13 shows the track scheme

used and mapped.

Fig. 13. Track mapping

TABLE II. MAPPING RESULT

Node X Y

0 0 0

1 0 300

2 -300 300

3 -600 300

4 -900 300

5 -900 900

6 -600 900

7 -300 900

8 0 900

Table II is the coordinate position value at each node. The

data is coordinate values in millimeters resulting from direct

mapping. The data will then be converted to the path graph

and determine whether the node has neighbors.

The main variables that will be used as data containers are

“neighbourn” and “graphMapp”. The “neighbourn” variable

is used to store neighboring node data. The procedure for

entering neighboring nodes is done by pressing the number

on the keypad available on the robot. if the (∗) button is

pressed, it will switch to the next node to be entered by its

neighboring nodes. After all the neighboring nodes have been

entered, the program will continue to convert the data into a

path graph.

The “graphMapp” variable is the result of calculating the

distance from the selected node to its neighboring nodes by

applying the odometry method, the results of which will be

used as weights for calculations in Dijkstra. if the selected

node has no neighbors, then the value will be left 0 and not

changed. Only nodes that have neighbors will have a value

greater than zero as shown in Fig. 14. Fig. 14 is a path scheme

obtained from the results of the “graphMapp” variable data.

Following is an experiment from the initial node = 0 and

the destination node = 7. Then there are 3 path routes that can

be traversed to node 7. Then the shortest path is produced,

Journal of Robotics and Control (JRC) ISSN: 2715-5072 420

Achmad Ubaidillah, Application of Odometry and Dijkstra Algorithm as Navigation and Shortest Path Determination System

of Warehouse Mobile Robot

namely (0-3-7). Table III shows the results of comparing

distances and times from node 0 to node 7 using Dijkstra's

algorithm without Dijkstra.

Fig. 14. Path graph weighting

TABLE III. RESULTS OF COMPARISON OF ROUTE DISTANCE DATA WITH

DIJKSTRA AND WITHOUT DIJKSTRA

Route of Dijkstra Other Route

Track (0-3-7) Track (0-4-3-7)

From To
Time

(s)

Distance

(mm)
From To

Time

(s)

Distance

(mm)

0 3 9.9 780 0 4 6.9 560

3 7 8.6 790 4 3 6.8 550

 3 7 10 790

Sum: 18.5 1570 Sum: 23.7 1900

The test results show that using Dijkstra's algorithm, the

robot is able to cover a distance of 780 mm. However, if using

other routes (for example, routes designed manually or using

a different path planning algorithm), the distance traveled by

the robot is 1100 mm. That is, the use of Dijkstra's algorithm

shows a higher effectiveness of 29.09%, seen from the

decrease in the distance traveled.

In addition, Dijkstra's algorithm is also effective in

designing the shortest path from node 0 to node 7. Based on

the data, using Dijkstra's algorithm, the robot can reach its

destination by traveling a distance of 1570 mm and a time of

18.5 seconds. Without using Dijkstra's algorithm, the

distance covered is 1900 mm with a time of 23.7 seconds.

This means that with Dijkstra's algorithm, we are able to get

an effectiveness of 17.37% in terms of distance and time

traveled.

This comparison shows how Dijkstra's algorithm can

significantly improve the effectiveness and efficiency of

warehouse robot operations. In this context, effectiveness is

measured in terms of decreasing the distance traveled and

decreasing the time required to reach the goal. Therefore,

these results confirm the superiority of Dijkstra's algorithm in

planning warehouse robot paths compared to other methods.

V. CONCLUSION

Based on this research, it can be concluded that the

combination of the odometric system method and Dijkstra's

algorithm can be applied to warehouse robots for goods

delivery and is proven to be more effective and efficient both

in distance and time compared to systems without Dijkstra.

The results showed that the implementation of Dijkstra's

algorithm resulted in the fastest running, which was 17%

shorter distance and 33% faster time than the line follower

system without Dijkstra's application.

The limitation of this research is that testing and

application of the odometry system and Dijkstra's algorithm

have not been carried out on a large scale or prototype. In the

existing literature, similar studies have been carried out on a

larger scale, involving different types of barriers and other

environmental variables. However, this research is more

focused on implementing and incorporating the odometry

system and Dijkstra's algorithm.

The practical implication of this research is that this

technology, if widely applied, can generate significant cost

efficiencies in warehouse operations. This efficiency can be

measured in terms of absorption of shooting range and travel

time, which has a direct impact on reducing operational costs

and increasing productivity.

For future research, it is recommended to carry out the test

in an authentic warehouse considering the mass of goods and

the speed of delivery. In addition, consideration of the GPS

for large areas and other shortest displacements also needs to

be considered.

In closing, this study shows great potential in using the

odometry system and Dijkstra's algorithm in the context of

warehouse robots. Despite the limitations in the research

scale, the results make an essential contribution in this field

and pave the way for further research that can optimize

warehouse operations with this technology.

REFERENCES

[1] Y. Jia, B. Zhang, M. Li, B. King, and A. Meghdari, “Human-Robot

Interaction,” J. Robot., vol. 2018, 2018, doi: 10.1155/2018/3879547.

[2] M. Hamaya, T. Matsubara, T. Teramae, T. Noda, and J. Morimoto,

“Design of physical user–robot interactions for model identification of
soft actuators on exoskeleton robots,” Int. J. Rob. Res., vol. 40, no. 1,
pp. 397–410, 2021, doi: 10.1177/0278364919853618.

[3] S. Rossi, M. Staffa, and A. Tamburro, “Correction to: Socially

Assistive Robot for Providing Recommendations: Comparing a

Humanoid Robot with a Mobile Application,” Int. J. Soc. Robot., vol.
11, no. 1, p. 207, 2019, doi: 10.1007/s12369-018-0489-0.

[4] J. F. Hoorn, “Theory of Robot Communication: II. Befriending a Robot

over Time,” Int. J. Humanoid Robot., vol. 17, no. 6, pp. 1–25, 2020,
doi: 10.1142/S0219843620500279.

[5] H. Choi et al., “Intuitive Bilateral Teleoperation of a Cable-driven
Parallel Robot Controlled by a Cable-driven Parallel Robot,” Int. J.

Control. Autom. Syst., vol. 18, no. 7, pp. 1792–1805, 2020, doi:
10.1007/s12555-019-0549-8.

[6] D. Ji, T. H. Kang, S. Shim, and J. Hong, “Analysis of twist deformation

in wire-driven continuum surgical robot,” International Journal of

Control, Automation and Systems, vol. 18, no. 1, pp. 10-20, 2020 doi:
10.1007/s12555-018-0400-7.

[7] S. Shaju, T. George, J. K. Francis, M. Joseph, and M. J. Thomas,
“Conceptual design and simulation study of an autonomous indoor

medical waste collection robot,” IAES Int. J. Robot. Autom., vol. 12,
no. 1, p. 29, 2023, doi: 10.11591/ijra.v12i1.pp29-40.

[8] W. J. Jang, J. G. Kim, S. H. Lee, and D. H. Kim, “Mechanism design

for walking typed solar panel-cleaning robot using triple driving lines,”
IAES Int. J. Robot. Autom., vol. 12, no. 1, p. 1, 2023, doi:
10.11591/ijra.v12i1.pp1-19.

[9] R. Khalesi, H. Nejat Pishkenari, and G. Vossoughi, “Independent
control of multiple magnetic microrobots: design, dynamic modelling,

and control,” J. Micro-Bio Robot., vol. 16, no. 2, pp. 215–224, 2020,
doi: 10.1007/s12213-020-00136-1.

[10] A. Amin, X. Wang, A. Alroichdi, and A. Ibrahim, “Designing and

Journal of Robotics and Control (JRC) ISSN: 2715-5072 421

Achmad Ubaidillah, Application of Odometry and Dijkstra Algorithm as Navigation and Shortest Path Determination System

of Warehouse Mobile Robot

Manufacturing a Robot for Dry-Cleaning PV Solar Panels,”
International Journal of Energy Research., vol. 2023, 2023,

doi:10.1155/2023/231554.

[11] Y. Sakata and T. Suzuki, “Coverage Motion Planning Based on 3D
Model’s Curved Shape for Home Cleaning Robot,” J. Robot.

Mechatronics, vol. 35, no. 1, pp. 30–42, 2023, doi:
10.20965/jrm.2023.p0030.

[12] J. Yan and H. Cheng, “Designing and Manufacturing of Industrial

Robots with Dual- Angle Sensors Taking into Account Vibration
Signal Fusion,” Journal of Robotics., vol. 2023, 2023, doi:
10.1155/2023/1855226.

[13] X. Xie, “Industrial Robot Assembly Line Design Using Machine
Vision,” J. Robot., vol. 2023, 2023, doi: 10.1155/2023/4409033.

[14] F. Ore, B. Vemula, L. Hanson, M. Wiktorsson, and B. Fagerström,
“Simulation methodology for performance and safety evaluation of

human–industrial robot collaboration workstation design,” Int. J. Intell.

Robot. Appl., vol. 3, no. 3, pp. 269–282, 2019, doi: 10.1007/s41315-
019-00097-0.

[15] J. Hažík, M. Dekan, P. Beňo, and F. Duchoň, “Fleet Management

System for an Industry Environment,” Journal of Robotics and Control

(JRC), vol. 3, no. 6, pp. 779–789, 2022, doi: 10.18196/jrc.v3i6.16298.

[16] A. A. N. Kumaar, S. Kochuvila, and S. R. Nagaraja, “A Scalable Tree
Based Path Planning for A service Robot,” Journal of Automation,

Mobile Robotics and Intelligent Systems, vol. 16, pp. 31–45, 2022, doi:
10.14313/JAMRIS/1.

[17] A. Latif, H. A. Widodo, R. Rahim, and K. Kunal, “Implementation of

line follower robot based microcontroller atmega32a,” Journal of
Robotics and Control (JRC), vol. 1, no. 3, pp. 70–74, 2020, doi:
10.18196/jrc.1316.

[18] Y. Zhao, Y. Zhang, and J. Lee, “Lyapunov and Sliding Mode Based
Leader-follower Formation Control for Multiple Mobile Robots with

an Augmented Distance-angle Strategy,” Int. J. Control. Autom. Syst.,
vol. 17, pp. 1314-1321, 2019, doi: 10.1007/s12555-018-0194-7.

[19] S. M. Swadi, A. K. Kadhim, and G. M. Ali, “Design of Path Planning

Controller of Autonomous Wheeled Mobile Robot Based on Triple
Pendulum Behaviour,” Int. J. Mech. Eng. Robot. Res., vol. 12, no. 1,
pp. 23–31, 2023, doi: 10.18178/ijmerr.12.1.23-31.

[20] Y. Wang, K. Gong, Y. Duan, B. He, and H. Ma, “Dynamic Modelling

and Continuous Trajectory Tracking Control of Space Robots Based on

Lie Group SE (3),” International Journal of Aerospace Engineering,
vol. 2023, 2023, doi: 10.1155/2023/7435217.

[21] I. Kostavelis, E. Boukas, L. Nalpantidis, and A. Gasteratos, “Stereo-

based visual odometry for autonomous robot
navigation,” International Journal of Advanced Robotic Systems, vol.
13, no. 1, p. 21, 2016, doi: 10.5772/62099.

[22] H. Wu, Y. Gao, and S. Li, “Odometry Estimation Utilizing 6-DOF
Force Sensors and IMU for Legged Robot,” 2020 Chinese Automation

Congress (CAC), pp. 6901-6905, 2020, doi:
10.1109/CAC51589.2020.9326974.

[23] S. Takeda and T. Umetani, “Initial Localization of Mobile Robot Based

on Expansion Resetting Without Manual Pose Adjustment in Robot
Challenge Experiment,” Journal of Robotics and Mechatronics, vol.
35, no. 2, pp. 380–386, 2023, doi: 10.20965/jrm.2023.p0380.

[24] Y. Gao and L. Zhao, “Coarse TRVO: A Robust Visual Odometry with

Detector-Free Local Feature,” J. Adv. Comput. Intell. Intell.

Informatics, vol. 26, no. 5, pp. 731–739, 2022, doi:

10.20965/jaciii.2022.p0731.

[25] Q. Wang, J. Zhang, Y. Liu, and X. Zhang, “High-Precision and Fast

LiDAR Odometry and Mapping Algorithm,” J. Adv. Comput. Intell.
Intell. Informatics, vol. 26, no. 2, pp. 206–216, 2022, doi:
10.20965/jaciii.2022.p0206.

[26] G. Xie, Q. Zong, X. Zhang, and B. Tian, “Loosely-coupled lidar-

inertial odometry and mapping in real time,” Int. J. Intell. Robot. Appl.,
vol. 5, no. 2, pp. 119–129, 2021, doi: 10.1007/s41315-021-00164-5.

[27] F. Spiess, J. Friesslich, T. Kaupp, S. Kounev, and N. Strobel, “Survey

and Experimental Comparison of RGB-D Indoor Robot Navigation

Methods Supported by ROS and Their Expansion via Fusion with
Wheel Odometry and IMU Data,” Int. J. Mech. Eng. Robot. Res., vol.

9, no. 12, pp. 1532–1540, 2020, doi: 10.18178/IJMERR.9.12.1532-
1540.

[28] D. U. Rijalusalam and I. Iswanto, “Implementation kinematics

modeling and odometry of four omni wheel mobile robot on the

trajectory planning and motion control based microcontroller,” Journal
of Robotics and Control (JRC), vol. 2, no. 5, pp. 448–455, 2021, doi:

10.18196/jrc.25121.

[29] A. Kostusiak and P. Skrzypczyński, “On the Efficiency of Population-
Based Optimization in Finding Best Parameters for RGB-D Visual

Odometry,” J. Autom. Mob. Robot. Intell. Syst., vol. 13, no. 2, pp. 5–
14, 2019, doi: 10.14313/JAMRIS/2-2019/13.

[30] N. I. Giannoccaro, T. Nishida, A. Lay-Ekuakille, R. Velazquez, and P.

Visconti, “Processing of LiDAR and IMU data for target detection and
odometry of a mobile robot,” Journal of Automation, Mobile Robotics

and Intelligent Systems, vol. 16, no. 1, pp. 3-13, 2022, doi:
10.14313/JAMRIS/1-2022/1.

[31] X. Fu et al., “Self-supervised learning of LiDAR odometry based on

spherical projection,” Int. J. Adv. Robot. Syst., vol. 19, no. 1, pp. 1–13,
2022, doi: 10.1177/17298806221078669.

[32] Z. Zhao, Y. Zhang, L. Long, Z. Lu, and J. Shi, “Efficient and adaptive

lidar–visual–inertial odometry for agricultural unmanned ground
vehicle,” Int. J. Adv. Robot. Syst., vol. 19, no. 2, pp. 1–15, 2022, doi:
10.1177/17298806221094925.

[33] A. N. Albab, E. Rahmawati, M. Yantidewi, I. Sucahyo, Dzulkiflih, and

R. R. Firmansyah, “Control Position of Mobile Robot Based on

Odometry Method and PID Controller,” J. Phys. Conf. Ser., vol. 1491,
no. 1, p. 012039, 2020, doi: 10.1088/1742-6596/1491/1/012039.

[34] M. Taufiqqurohman and N. F. Sari, “Odometry Method and Rotary

Encoder for Wheeled Soccer Robot,” IOP Conf. Ser. Mater. Sci. Eng.,
vol. 407, no. 1, 2018, doi: 10.1088/1757-899X/407/1/012103.

[35] S. Saeedvand, H. S. Aghdasi, and J. Baltes, “Novel lightweight
odometric learning method for humanoid robot localization,”

Mechatronics, vol. 55, pp. 38–53, 2018, doi:
10.1016/j.mechatronics.2018.08.007.

[36] G. Gong, S. Zeng, J. Gao, Q. Zhang, and X. Wang, “Discovery and

Discrimination of Bridge Engineering Safety Issues by BIM Virtual

Scene Combined with Robotic Mapping,” Journal of Robotics, vol.
2023, 2023, doi: 10.1155/2023/3028505.

[37] B. Sebastian and P. Ben-Tzvi, “Support vector machine based real-time
terrain estimation for tracked robots,” Mechatronics, vol. 62, p.
102260, 2019, doi: 10.1016/j.mechatronics.2019.102260.

[38] A. Deo, A. Gupta, H. Khemani, and R. R. Das, “Path tracking mobile

robot using steppers,” E3S Web Conf., vol. 87, p. 01028, 2019, doi:
10.1051/e3sconf/20198701028.

[39] T. Zhang, M. Zhang, and Y. Zou, “Time-optimal and Smooth

Trajectory Planning for Robot Manipulators,” Int. J. Control. Autom.

Syst., vol. 19, no. 1, pp. 521–531, 2021, doi: 10.1007/s12555-019-
0703-3.

[40] J. Ahmed Abdulsaheb and D. Jasim Kadhim, “Real-Time SLAM

Mobile Robot and Navigation Based on Cloud-Based
Implementation,” Journal of Robotics, vol. 2023, 2023, doi:
10.1155/2023/9967236.

[41] D. H. T. Kim et al., “Adaptive Control for Uncertain Model of Omni-

directional Mobile Robot Based on Radial Basis Function Neural

Network,” Int. J. Control. Autom. Syst., vol. 19, no. 4, pp. 1715–1727,
2021, doi: 10.1007/s12555-019-1004-6.

[42] N. Zijie, L. Qiang, C. Yonjie, and S. Zhijun, “Fuzzy Control Strategy
for Course Correction of Omnidirectional Mobile Robot,” Int. J.

Control. Autom. Syst., vol. 17, no. 9, pp. 2354–2364, 2019, doi:
10.1007/s12555-018-0633-5.

[43] Y. Ueno, I. Ikemura, T. Tanaka, and Y. Matsuo, “Development of a

Front-Wheel-Steering-Drive Dual-Wheel Caster Drive Mechanism for

Omni-Directional Wheelchairs with High Step Climbing
Performance,” J. Robot. Mechatronics, vol. 34, no. 6, pp. 1431–1440,
2022, doi: 10.20965/jrm.2022.p1431.

[44] R. T. Yunardi, D. Arifianto, F. Bachtiar, J. I. Prananingrum, and U.

Airlangga, “Holonomic Implementation of Three Wheels

Omnidirectional Mobile Robot using DC Motors,” Journal of Robotics
and Control (JRC), vol. 2, no. 2, 2021, doi: 10.18196/jrc.2254.

[45] B. Wu, D. Qin, Y. Chen, T. Q. Cao, and M. Wu, “Structure design of

an omni-directional wheeled handling robot,” J. Phys. Conf. Ser., vol.
1885, no. 5, 2021, doi: 10.1088/1742-6596/1885/5/052013.

[46] X. Yang, “The invention relates to a small logistics handling trolley
based on omni-directional wheel movement,” J. Phys. Conf. Ser., vol.
2246, no. 1, 2022, doi: 10.1088/1742-6596/2246/1/012005.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 422

Achmad Ubaidillah, Application of Odometry and Dijkstra Algorithm as Navigation and Shortest Path Determination System

of Warehouse Mobile Robot

[47] L. Song, H. Ju, W. Li, C. Sun, and B. Yuan, “Design and Research of
Omni-directional Moving AGV,” J. Phys. Conf. Ser., vol. 1575, no. 1,

2020, doi: 10.1088/1742-6596/1575/1/012095.

[48] Y. Wang, H. Zhu, Y. Yu, and B. Hu, “The Path Planning and Location
Method of Inspection Robot in a Large Storage Tank Bottom,”

Computational Intelligence and Neuroscience, vol. 2023, 2023, doi:
10.1155/2023/3029545.

[49] Z. Pan, D. Wang, H. Deng, and K. Li, “A Virtual Spring Method for

the Multi-robot Path Planning and Formation Control,” Int. J. Control.
Autom. Syst., vol. 17, no. 5, pp. 1272–1282, 2019, doi: 10.1007/s12555-
018-0690-9.

[50] C. Ye, D. Zhao, S. Yu, C. Jiang, and P. Li, “Stability Improvement of
Mobile Robot with Mutative Driving Axial Distance Omni-Directional

Wheels,” 2018 IEEE International Conference on Real-time

Computing and Robotics (RCAR), pp. 325-330, 2018, doi:
10.1109/RCAR.2018.8621658.

[51] M. Fronita, R. Gernowo, and V. Gunawan, “Comparison of Genetic
Algorithm and Hill Climbing for Shortest Path Optimization

Mapping,” E3S Web Conf., vol. 31, pp. 1–5, 2018, doi:
10.1051/e3sconf/20183111017.

[52] W. Liao, X. Wei, J. Lai, and H. Sun, “Numerical Method with High

Real-time Property Based on Shortest Path Algorithm for Optimal

Control,” Int. J. Control. Autom. Syst., vol. 19, no. 6, pp. 2038–2046,
2021, doi: 10.1007/s12555-020-0196-0.

[53] Y. Liu and Y. Jiang, “Robotic Path Planning Based on a Triangular
Mesh Map,” Int. J. Control. Autom. Syst., vol. 18, no. 10, pp. 2658–
2666, 2020, doi: 10.1007/s12555-019-0396-z.

[54] X. Li, “Path planning of intelligent mobile robot based on Dijkstra

algorithm,” J. Phys. Conf. Ser., vol. 2083, no. 4, 2021, doi:
10.1088/1742-6596/2083/4/042034.

[55] I. G. S. Rahayuda and N. P. L. Santiari, “Dijkstra and Bidirectional

Dijkstra on Determining Evacuation Routes,” J. Phys. Conf. Ser., vol.
1803, no. 1, 2021, doi: 10.1088/1742-6596/1803/1/012018.

[56] D. Verma, D. Messon, M. Rastogi, and A. Singh, “Comparative Study

Of Various Approaches Of Dijkstra Algorithm,” 2021 International
Conference on Computing, Communication, and Intelligent Systems

(ICCCIS), pp. 328-336, 2021, doi:
10.1109/ICCCIS51004.2021.9397200.

[57] K. Wei, Y. Gao, W. Zhang, and S. Lin, “A Modified Dijkstra’s

Algorithm for Solving the Problem of Finding the Maximum Load

Path,” 2019 IEEE 2nd International Conference on Information and
Computer Technologies (ICICT), pp. 10-13, 2019, doi:
10.1109/INFOCT.2019.8711024.

[58] G. Deepa, M. Angamuthu, K. Rajakumar, and K. Venkatesan, “Dijkstra

Algorithm Application: Shortest Distance between Buildings,”

International Journal of Engineering and Technology, vol. 7, no. 4.10,
pp. 974-976, 2018, doi: 10.14419/ijet.v7i4.10.26638.

[59] I. E. Salem, M. M. Mijwil, A. W. Abdulqader, and M. M. Ismaeel,
“Flight-schedule using Dijkstra’s algorithm with comparison of routes

findings,” Int. J. Electr. Comput. Eng., vol. 12, no. 2, pp. 1675–1682,
2022, doi: 10.11591/ijece.v12i2.pp1675-1682.

[60] M. Lotfi et al., “A Dijkstra-Inspired Algorithm for Optimized Real-

Time Tasking with Minimal Energy Consumption,” 2020 IEEE

International Conference on Environment and Electrical Engineering
and 2020 IEEE Industrial and Commercial Power Systems Europe

(EEEIC/I&CPS Europe), pp. 1-6, 2020, doi:
10.1109/EEEIC/ICPSEurope49358.2020.9160688.

[61] Q. Lin, X. Liu, and Z. Zhang, “Mobile Robot Self-LocalizationUsing

Visual Odometry Based on Ceiling Vision,” 2019 IEEE Symposium
Series on Computational Intelligence (SSCI), pp. 1435-1439, 2019,
doi: 10.1109/SSCI44817.2019.9003092.

[62] T. T. Pham, M. T. Le, and C. N. Nguyen, “Omnidirectional mobile
robot trajectory tracking control with diversity of inputs,” International

Journal of Mechanical Engineering and Robotics Research, 10(11),
639-644, 2021, doi: 10.18178/ijmerr.10.11.639-644.

[63] S. Morales, J. Magallanes, C. Delgado, and R. Canahuire, “LQR

Trajectory Tracking Control of an Omnidirectional Wheeled Mobile
Robot,” 2018 IEEE 2nd Colombian Conference on Robotics and

Automation (CCRA), pp. 1-5, 2018, doi:
10.1109/CCRA.2018.8588146.

[64] A. Ubaidillah, A. F. Ibadillah, I. Turmudzi, and A. Rachmad,

“Representation of Soccer Robotics in The Fastest Trajectory

Tracking,” IEEE 8th Information Technology International Seminar
(ITIS), pp. 90–95, 2022, doi: 10.1109/ITIS57155.2022.10010172.

[65] K. N. Hitesh, J. M. Kumar Reddy, K. T. Ilayarajaa, R. M. Joany, and

V. Vijayakumar, “IOT Based Omni Directional Robot Control by
Using ARM-Series,” IOP Conf. Ser. Mater. Sci. Eng., vol. 590, no. 1,
2019, doi: 10.1088/1757-899X/590/1/012054.

[66] S. Fadlo, N. Rabbah, and A. Ait Elmahjoub, “Energy estimation based

on path tracking for a differential drive wheeled mobile robot,” E3S

Web Conf., vol. 229, pp. 1–5, 2021, doi:
10.1051/e3sconf/202122901029.

[67] A. J. Clark, K. A. Cissell, J. M. Moore, and X. Liu, “Evolving

Controllers for a Transformable Wheel Mobile Robot,” Complexity,
vol. 2018, pp. 1-12, 2018, doi: 10.1155/2018/7692042.

[68] W. Ao, L. Zhang, H. Zhang, Z. Li, and G. Huang, “Structure Design
and Event-Triggered Control of a Modular Omnidirectional Mobile

Chassis of Life Support Robotics,” Fractal and Fractional, vol. 7, no.
2, p. 121, 2023, doi: 10.3390/fractalfract7020121.

[69] B. He, S. Wang, and Y. Liu,”Underactuated robotics: a

review,” International Journal of Advanced Robotic Systems, vol. 16,
no. 4, pp. 1-29, 2019, doi: 10.1177/1729881419862164.

[70] G. Yi, J. Mao, Y. Wang, S. Guo, and Z. Miao, “Adaptive Tracking

Control of Nonholonomic Mobile Manipulators Using Recurrent
Neural Networks,” Int. J. Control. Autom. Syst., vol. 16, no. 3, pp.
1390–1403, 2018, doi: 10.1007/s12555-017-0309-6.

[71] Z. Hong, W. Du, and H. Wang, “Design and Implementation of Path

Planning for Wheel-Track Hybrid Mobile Robot,” Mob. Inf. Syst., vol.
2022, 2022, doi: 10.1155/2022/6418706.

[72] B. Xu and C. Sem-Lin, “Motion Trajectory Error of Robotic Arm

Based on Neural Network Algorithm,” J. Control Sci. Eng., vol. 2023,
2023, doi: 10.1155/2023/3958434.

[73] N. A. Abd Rahman, K. S. M. Sahari, N. A. Hamid, and Y. C. Hou, “A

coverage path planning approach for autonomous radiation mapping
with a mobile robot,” International Journal of Advanced Robotic
Systems, vol. 19, no. 4, 2022, doi: 10.1177/17298806221116483.

[74] A. M. El-Dalatony, T. Attia, H. Ragheb, and A. M. Sharaf, “Cascaded
PID Trajectory Tracking Control for Quadruped Robotic Leg,” Int. J.

Mech. Eng. Robot. Res., vol. 12, no. 1, pp. 40–47, 2023, doi:
10.18178/ijmerr.12.1.40-47.

[75] J. Santos, A. Conceição, T. Santos, and H. Araújo, “Remote control of

an omnidirectional mobile robot with time-varying delay and noise
attenuation,” Mechatronics, vol. 52, pp. 7–21, 2018, doi:
10.1016/j.mechatronics.2018.04.003.

[76] A. Saenz, V. Santibañez, E. Bugarin, A. Dzul, H. Ríos, and J.
Villalobos-Chin, “Velocity Control of an Omnidirectional Wheeled

Mobile Robot Using Computed Voltage Control with Visual Feedback:

Experimental Results,” Int. J. Control. Autom. Syst., vol. 19, no. 2, pp.
1089–1102, 2021, doi: 10.1007/s12555-019-1057-6.

[77] F. Umam, M. Fuad, I. Suwarno, A. Ma'arif, and W. Caesarendra,
“Obstacle Avoidance Based on Stereo Vision Navigation System for

Omni-directional Robot,” Journal of Robotics and Control (JRC), vol.
4, no. 2, pp. 227-242, 2023, doi: 10.18196/jrc.v4i2.17977.

[78] P. L. Wu, J. J. Li, and J. S. Shaw, “Development of an Omnidirectional

AGV by Applying ORB-SLAM for Navigation Under ROS
Framework,” J. Autom. Mob. Robot. Intell. Syst., vol. 16, no. 1, pp. 14–
20, 2022, doi: 10.14313/JAMRIS/1-2022/2.

[79] Q. Ran, S. Yao, X. Chen, and G. Bi, “Trajectory Tracking of Swing-

Arm Type Omnidirectional Mobile Robot,” Math. Probl. Eng., vol.
2022, 2022, doi: 10.1155/2022/3297789.

[80] Y. Zhao, “Dynamic Path Planning Analysis of Warehouse Handling

Robot,” J. Sensors, vol. 2022, pp. 1–7, 2022, doi:
10.1155/2022/4434971.

[81] G. Ziwei and L. Rong, “2D Range Flow-based Odometry fusing

LiDAR and IMU,” 2019 IEEE International Conference on Robotics

and Biomimetics (ROBIO), pp. 2761-2765, 2019, doi:
10.1109/ROBIO49542.2019.8961747.

[82] S. A. S. Mohamed, M. H. Haghbayan, T. Westerlund, J. Heikkonen, H.
Tenhunen, and J. Plosila, “A Survey on Odometry for Autonomous

Navigation Systems,” IEEE Access, vol. 7, pp. 97466–97486, 2019,
doi: 10.1109/ACCESS.2019.2929133.

[83] G. Liu, J. Guan, H. Liu, C. Wang, and X. L. Wang, “Multirobot

Collaborative Navigation Algorithms Based on Odometer/Vision

Journal of Robotics and Control (JRC) ISSN: 2715-5072 423

Achmad Ubaidillah, Application of Odometry and Dijkstra Algorithm as Navigation and Shortest Path Determination System

of Warehouse Mobile Robot

Information Fusion,” Math. Probl. Eng., vol. 2020, pp. 1-16, 2020, doi:
10.1155/2020/5819409.

[84] X. Zhao, H. Min, Z. Xu, X. Wu, X. Li, and P. Sun, “Image antiblurring

and statistic filter of feature space displacement: Application to visual
odometry for outdoor ground vehicle,” J. Sensors, vol. 2018, 2018, doi:
10.1155/2018/2987819.

[85] S. Maldonado-Bascón, R. J. López-Sastre, F. J. Acevedo-Rodríguez,

and P. Gil-Jiménez, “On-board correction of systematic odometry

errors in differential robots,” J. Sensors, vol. 2019, 2019, doi:
10.1155/2019/8269256.

[86] J. Zhu, Y. Tang, X. Shao and Y. Xie, “Multisensor Fusion Using Fuzzy

Inference System for a Visual-IMU-Wheel Odometry,” in IEEE
Transactions on Instrumentation and Measurement, vol. 70, pp. 1-16,
2021, doi: 10.1109/TIM.2021.3051999.

[87] Z. Huai and G. Huang, “Robocentric visual–inertial odometry,” The

International Journal of Robotics Research, vol. 41, no. 7, pp. 667-689,
2022, doi: 10.1177/0278364919853361.

[88] Y. Teekaraman, I. Kirpichnikova, H. Manoharan, R. Kuppusamy, and

A. Radhakrishnan, “Uncovering Resilient Actions of Robotic

Technology with Data Interpretation Trajectories Using Knowledge

Representation Procedures,” Security and Communication Networks,
vol. 2023, 2023, doi: 10.1155/2023/7419259.

[89] C. Gu, A. Feng, G. Wang, and X. Liu, “Robot Path Planning of

Improved Adaptive Ant Colony System Algorithm Based on Dijkstra,”
J. Robot., vol. 2022, 2022, doi: 10.1155/2022/9229155.

[90] Y. Sun, M. Fang, and Y. Su, “AGV Path Planning based on Improved

Dijkstra Algorithm,” J. Phys. Conf. Ser., vol. 1746, no. 1, 2021, doi:
10.1088/1742-6596/1746/1/012052.

[91] L. S. Liu et al., “Path Planning for Smart Car Based on Dijkstra

Algorithm and Dynamic Window Approach,” Wirel. Commun. Mob.
Comput., vol. 2021, pp. 1-12, 2021, doi: 10.1155/2021/8881684.

[92] Q. Liu, H. Xu, L. Wang, J. Chen, Y. Li, and L. Xu, “Application of
Dijkstra Algorithm in Path Planning for Geomagnetic Navigation,”

2020 IEEE 11th Sensor Array and Multichannel Signal Processing

Workshop (SAM), pp. 1-4, 2020, doi:
10.1109/SAM48682.2020.9104382.

[93] Z. Halim, A. Khan, M. Sulaiman, S. Anwar, and M. Nawaz, “On

finding optimum commuting path in a road network: A computational

approach for smart city traveling,” Trans. Emerg. Telecommun.
Technol., vol. 33, no. 2, pp. 1–28, 2022, doi: 10.1002/ett.3786.

[94] B. Zhang and D. J. Hu, “Retraction Note: Research on the construction

and simulation of PO-Dijkstra algorithm model in parallel network of

multicore platform,” Eurasip J. Wirel. Commun. Netw., vol. 2022, no.
121, pp. 1-14, 2022, doi: 10.1186/s13638-022-02201-8.

[95] W. Hadikurniawati, E. Winarno, A. Hernawan, and D. Abdullah,

“Retracted: Optimization of ISP Service Maintenance Router Using
Dijkstra and Flyod-Warshall Algorithm,” J. Phys. Conf. Ser., vol. 1114,
no. 1, 2018, doi: 10.1088/1742-6596/1114/1/012101.

[96] A. Alyasin, E. I. Abbas, and S. D. Hasan, “An Efficient Optimal Path
Finding for Mobile Robot Based on Dijkstra Method,” 2019 4th

Scientific International Conference Najaf (SICN), pp. 11-14, 2019, doi:
10.1109/SICN47020.2019.9019345.

[97] T. Irfan, R. Hakimi, A. C. Risdianto, and E. Mulyana, “ONOS Intent

Path Forwarding using Dijkstra Algorithm,” 2019 International

Conference on Electrical Engineering and Informatics (ICEEI), pp.
549-554, 2019, doi: 10.1109/ICEEI47359.2019.8988853.

[98] Z. Ullah, H. Bashir, R. Anjum, S. A. Alqahtani, S. Al-Hadhrami, and
A. Ghaffar, “Analysis of the Shortest Path in Spherical Fuzzy Networks

Using the Novel Dijkstra Algorithm,” Math. Probl. Eng., vol. 2021, pp.
1-15, 2021, doi: 10.1155/2021/7946936.

[99] L. Wenzheng, L. Junjun, and Y. Shunli, “An Improved Dijkstra's

Algorithm for Shortest Path Planning on 2D Grid Maps,” 2019 IEEE

9th International Conference on Electronics Information and
Emergency Communication (ICEIEC), pp. 438-441, 2019, doi:
10.1109/ICEIEC.2019.8784487.

[100] H. Li, P. Tong, and X. Zhang, “Method for Determining the Location

of Highway Passenger Transportation Hubs Using POI Data and the

Dijkstra Algorithm in Large City,” Math. Probl. Eng., vol. 2022, 2022,

doi: 10.1155/2022/2189598.

[101] C. Zhou, Z. Chen, X. Lv, D. Gao, and M. Zhao, “Design of intelligent

sorting trash dustbin based on STM32,” E3S Web Conf., vol. 198, pp.
1–4, 2020, doi: 10.1051/e3sconf/202019804032.

[102] X. He, Y. Kuang, N. Song, and F. Liu, “Intelligent Navigation of Indoor
Robot Based on Improved DDPG Algorithm,” Mathematical Problems
in Engineering., vol. 2023, 2023, doi: 10.1155/2023/6544029.

[103] N. Matsui et al., “Local and Global Path Planning for Autonomous

Mobile Robots Using Hierarchized Maps,” J. Robot. Mechatronics,
vol. 34, no. 1, pp. 86–100, 2022, doi: 10.20965/jrm.2022.p0086.

[104] B. Tan, “Soccer-assisted training robot based on image recognition

omnidirectional movement,” Wirel. Commun. Mob. Comput., vol.
2021, pp. 1-10, 2021, doi: 10.1155/2021/5532210.

[105] M. Ouyang, Z. Cao, P. Guan, Z. Li, C. Zhou, and J. Yu, “Visual-

gyroscope-wheel odometry with ground plane constraint for indoor
robots in dynamic environment,” IEEE Sensors Letters, vol. 5, no. 3,
pp. 1-4, 2021, doi: 10.1109/LSENS.2021.3057088.

[106] J. Li et al., “A Lightweight Stereo Visual Odometry System for

Navigation of Autonomous Vehicles in Low-Light Conditions,” Wirel.
Commun. Mob. Comput., vol. 2022, 2022, doi: 10.1155/2022/5249449.

[107] G. Schatzberger, F. P. Leisenberger, P. Sarson, and A. Wiesner, “High

efficient low cost EEPROM screening method in combination with an

area optimized byte replacement strategy which enables high reliability
EEPROMs,” 2018 IEEE 36th VLSI Test Symposium (VTS), pp. 1-6,
2018, doi: 10.1109/VTS.2018.8368631.

