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Abstract—One of the technologies in the industrial world 

that utilizes robots is the delivery of goods in warehouses, 

especially in the goods distribution process. This is very useful, 

especially in terms of resource efficiency and reducing human 

error. The existing system in this process usually uses the line 

follower concept on the robot's path with a camera sensor to 

determine the destination location. If the line and destination 

are not detected by the sensor or camera, the robot's navigation 

system will experience an error. it can happen if the sensor is 

dirty or the track is faded. The aim of this research is to develop 

a robot navigation system for efficient goods delivery in 

warehouses by integrating odometry and Dijkstra's algorithm 

for path planning. Holonomic robot is a robot that moves freely 

without changing direction to produce motion with high 

mobility. Dijkstra's algorithm is added to the holonomic robot 

to obtain the fastest trajectory. by calculating the distance of the 

node that has not been passed from the initial position, if in the 

calculation the algorithm finds a shorter distance it will be 

stored as a new route replacing the previously recorded route. 

the distance traversed by the djikstra algorithm is 780 mm while 

a distance of 1100 mm obtains the other routes. The time for 

using the Djikstra method is proven to be 5.3 seconds faster than 

the track without the Djikstra method with the same speed. 

Uneven track terrain can result in a shift in the robot's position 

so that it can affect the travel data. The conclusion is that 

odometry and Dijkstra's algorithm as a planning system and 

finding the shortest path are very efficient for warehouse robots 

to deliver goods than ordinary line followers without Dijkstra, 

both in terms of distance and travel time. 

Keywords—Warehouse Robot; Navigation; Shortest Path; 

Dijkstra; Odometry. 

I. INTRODUCTION 

The development of robotics provides conveniences for 

humans [1][2][3][4]. Robot is a technological product that 

combines hardware and software with a propulsion program 

used in a particular job [5][6][7][8][9]. Many activities that 

are too heavy for humans can be done easily with the help of 

robots, such as activities that require large amounts of energy, 

high costs, fast time and detailed accuracy [10][11]. 

Warehouse robots for delivery of goods have become an 

important part of the logistics and delivery of goods in the 

industry. This system improves operating efficiency and 

reduces cycle times. To maximize the benefits of this system, 

it is necessary to determine the fastest path for the robot to 

deliver goods. 

The benefits of robots in industrial activities have been 

widely used such as delivery of goods, production, 

packaging, picking, dropping, inventory, unloading, 

manufacturing processes, controllers and others in 

accelerating and increasing the quality and quantity of 

production, like in [12][13][14] that develop in industrial 

robot especially in manufacturing. The application of 

delivery robots has existed in several developed countries 

[15][16]. The navigation system usually uses a line follower 

[17]. However, the system is highly dependent on the 

sensitivity to recognition of the color of the line traversed. If 

there is a problem in the recognition system, the robot's 

navigation system will also have a problem [18][19]. This 

must be overcome by the system within the robot itself 

[20][21]. So the application of odometry is needed as an 

alternative method that can answer some of the limitations of 

line follower system [22][23][24].  

The odometry system was chosen in this study because 

several studies have proven that odometry has high accuracy 

in measuring the distance, direction and position of the robot 

without dependence on light and line search [25]. Odometry 

is used to estimate position coordinates relative to the initial 

position [26][27]. The odometry system requires a rotary 

encoder sensor to detect the number of wheel rotations 

[28][29]. Area mapping using the odometry method is to 

estimate changes in the robot's position over time in a 

Cartesian diagram [30][31]. The result is data on the 

coordinates and direction of the robot [32][33][34]. 

Odometry uses actuator movement data to estimate 

coordinate changes [35][36]. The robot position coordinates 

include three parameters, namely the diameter of the free 

wheel, the number of encoder resolutions and the number of 

rotary encoder pulses [37][38][39]. This data is used as a 

parameter for robot navigation combined with a holonomic 

system [40][41]. Holonomic is a type of mobile 

omnidirectional wheel [42][43][44]. It can move without 

changing direction due to omni wheel kinematics [45][46]. It 

can move forward, backward, slide sideways and rotate in a 

fixed position so that it is more effective in maneuvering 

[47][48]. Therefore, this study hypothesizes that holonomic 

can simplify and accelerate mobile robots to maneuver in all 

directions and follow the application of Dijkstra's algorithm 

for the effectiveness and speed of distributing goods in 

warehouses [49][50].  
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After the path has been mapped, the next step is finding 

the shortest path in each route on the path map [51]. 

Searching for the shortest route becomes very important in 

path planning because it is related to delay [52]. The smaller 

the delay, the more reliable a system [53]. One of the methods 

used for this is Dijkstra's algorithm [54]. Dijkstra's algorithm 

was chosen in this study because it is simple to implement 

and sufficiently detailed considering the load of each path 

[55]. Dijkstra is a shortest route search method that is used in 

various fields [56], such as in telecommunications [57], 

regional maps [58], transportation [59], energy [60] and 

others. 

Some previous research on robots is [61] which 

developed a mobile robot navigation system using visual 

odometry based on ceiling vision. Research [62] developed 

the design of an omnidirectional wheeled mobile robot. At 

the same time, research [63] developed a control system for 

trajectory tracking on an omnidirectional wheeled mobile 

robot. But they don't consider the shortest path problem. 

Another research is [64] which proposes the application of 

Dijkstra's Algorithm in determining the fastest trajectory of a 

wheeled soccer robot. But it doesn’t discuss about path 

planning method. This research develops the application of 

Dijkstra's Algorithm and odometry as a navigation system for 

the fastest path in the warehouse robot delivering goods. This 

study applies the movement of the holonomic drive system 

and uses omnidirectional wheels [65]. 

This research has an essential objective in combining the 

odometry system method and Dijkstra's algorithm to improve 

the efficiency of warehouse robot operations. The odometry 

system is used as a path planning method, where encoder or 

sensor-based odometry allows the robot to determine its 

position and orientation in a warehouse environment. With 

this knowledge, the robot can plan an efficient path and avoid 

obstacles. 

In addition, this study also utilizes Dijkstra's algorithm to 

find the shortest path to maximize the efficiency of robot 

movement. In this context, Dijkstra's algorithm is used to 

speed up the process of finding the shortest path from the 

point of origin to the point of destination in a warehouse 

whose structure and condition can change. 

Therefore, this research contributes to the development of 

warehouse robot technology by combining the odometry 

approach and Dijkstra's algorithm. Combining these two 

methods can increase the robot's operational efficiency, speed 

up the delivery time of goods, and reduce the potential for 

damage or errors that may be caused by ineffective 

navigation. This research also demonstrates the potential use 

of this technology in the warehouse and other logistics 

contexts, where efficient and accurate path planning is 

essential. 

II. THEORY 

A. Omnidirectional Wheel and Odometry  

Omni wheels are a special wheel design that has many 

wheels on the main wheel [66][67]. There are two types of 

wheels, namely large core wheels and small wheels on a large 

core wheel that is perpendicular to the core wheel axis 

[68][69]. In contrast to normal non-holonomic robots, 

holonomic omni-directional robots can move in all directions 

without changing the direction of the wheels [70][71]. The 

omni robot can move forward, backward, slide and rotate in 

a fixed position, so that the robot is able to maneuver more 

agile in tight corners [72][73][74]. Omni directional wheels 

are a type of holonomic mobile robot [75][76][77]. The 

kinematics of an omni wheel allows position changes 

between global coordinates and internal configurations 

[78][79][80]. 

Odometry presents changes in data over time [81][82]. 

Odometry estimates position coordinates relative to the 

position of the actuator movement data to estimate changes 

in position coordinates to initial conditions [83][84]. In the 

wheeled robot odometry system, the sensor used is a rotary 

encoder to detect the number of wheel rotations [85][86]. 

Identification of errors is determined from the integration of 

velocity measurements against time in the position estimation 

process [87][88]. 

The robot's relative position can be estimated using the 

calculation of the number of pulses generated by the rotary 

encoder sensor for each unit of measure which is then 

converted into millimeters. The formula for the number of 

pulses for each freewheel movement is equations (1) and 

equation (2). The differential movement system is carried out 

by two wheels, namely the right and left wheels. The number 

of 𝑝𝑢𝑙𝑠𝑒𝑠𝑝𝑒𝑟_𝑚𝑚 for the right wheel is the 𝑟𝑖𝑔ℎ𝑡 𝑒𝑛𝑐 and the 

left wheel is the 𝑙𝑒𝑓𝑡 𝑒𝑛𝑐. The distance between the two 

wheels is 𝑤ℎ𝑒𝑒𝑙𝑏𝑎𝑠𝑒 with distance traveled (𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒) and 

orientation angle (θ), as shown by equations (3), (4), and (5).  

𝐾𝑤ℎ𝑒𝑒𝑙 = 2𝜋𝑟 (1) 

𝑃𝑢𝑙𝑠𝑒𝑝𝑒𝑟_𝑚𝑚 =
𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛_𝑒𝑛𝑐

𝐾𝑤ℎ𝑒𝑒𝑙

 (2) 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
(𝑙𝑒𝑓𝑡 𝑒𝑛𝑐 − 𝑟𝑖𝑔ℎ𝑡 𝑒𝑛𝑐)

2
 (3) 

𝜃 =
(𝑙𝑒𝑓𝑡 𝑒𝑛𝑐 − 𝑟𝑖𝑔ℎ𝑡 𝑒𝑛𝑐)

𝑤ℎ𝑒𝑒𝑙 𝑏𝑎𝑠𝑒
 (4) 

𝐻𝑒𝑎𝑑𝑖𝑛𝑔 = 𝜃
180

𝜋
 (5) 

Heading 𝜃 is the angle in radians. Equation (5) shows that 

the heading value will be negative if the robot rotates 

counterclockwise and is positive if the robot rotates 

clockwise. If the distance and 𝜃 are known, then the 𝑋 and 𝑌 

coordinates are obtained using the trigonometry equation. 

Look at Fig. 1. 

 

Fig. 1. Calculation of robot distance on odometry system 
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From the illustration of Fig. 1, the robot coordinates are 

obtained with equation (6) and (7). After that, equations (8), 

(9), (10), and (11) can be obtained.  

𝑋𝑝𝑜𝑠 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑥 sin 𝜃 (6) 

𝑌𝑝𝑜𝑠 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑥 cos 𝜃 (7) 

𝑥 = 𝑋𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑋𝑝𝑜𝑠 (8) 

𝑦 = 𝑌𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑌𝑝𝑜𝑠 (9) 

𝑇𝑎𝑟𝑔𝑒𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √(𝑥2 + 𝑦2) (10) 

The direction error value of the robot towards the 

destination point is calculated by the Pythagorean theorem. 

The current position and distance to the destination point are 

calculated using equation (6) dan (7). Heading error can be 

calculated based on the heading of the robot. 𝛽 is the target 

bearing, namely the angle between the robot's current 

position and the destination points. Meanwhile, parallel lines 

are auxiliary lines that are parallel to the 𝑋 and 𝑌 𝑎𝑥𝑒𝑠. The 

value of 𝛽 is obtained by the equation (11). 

𝛽 = tan−1
(𝑌𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑌𝑝𝑜𝑠)

(𝑋𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑋𝑝𝑜𝑠)
 (11) 

B. Dijkstra’s Algorithm  

Dijkstra's algorithm is applied to find the shortest path on 

a directed graph [89][90]. This algorithm can also be used for 

undirected graphs [91][92]. It looks for the shortest path in a 

number of steps [93][94]. It uses the greedy principle 

[95][96]. The greedy principle in Dijkstra's algorithm always 

chooses the position with the smallest weight and includes it 

in the solution set [97][98]. It performs calculations against 

all possibilities to find the smallest weight from each node to 

node [99][100]. The mechanism of Dijkstra's algorithm can 

be explained in the following steps:  

● Determine the starting point, then weight the distance 

from the first node to the nearest node one by one. 

Dijkstra's algorithm will develop the search for the 

smallest value step by step. 

● Give a distance weight for each point, then set a value of 

0 at the initial node and an infinite value for other nodes. 

● Consider the untraversed neighboring nodes and calculate 

their distance from the departure point. If this distance is 

smaller than the previous distance, delete the old data, 

save and recalculate the distance data with the new 

distance. 

● Mark the node that has been passed as a “passed node”. 

Passed nodes will never be checked again. The distance 

that is stored is the last distance and the most minimal 

weight. 

● Set “Node not passed” with the smallest distance from the 

departure node as the next “Departure Node” and repeat 

the steps 

III. METHODOLOGY  

The following Fig. 2 is a block diagram of the warehouse 

delivery robot system developed in this study.  

 

Fig. 2. Block diagram of the robotic system  

The Arduino microcontroller voltage source comes from 

a 12V battery which after the buck converter the voltage 

drops to 5V which is then supplied to the Arduino 

microcontroller and STM32f103 [101]. The motor driver 

voltage source comes from a 12 V battery to obtain maximum 

motor rotation speed without going through a buck converter. 

MPU6050 sensor and DC motor internal encoder (RPM) 

require 5V voltage. Fig. 3 is the flowchart of the system. 

 

Fig. 3. Flowchart of the system  

System stages include robot operation, trajectory 

mapping, data processing and movement or action of the 

robot [102]. The first operation on the robot is carried out by 

the user, namely turning on the power button. Then the user 

chooses robot mode for mapping or mode for delivery 

(sender). The mapping area must be formed first so that it can 

then be traversed [103][104].  

Mapping is done by running the robot manually on its 

trajectory until it returns to its starting point. With a rotary 

encoder sensor that is processed using the odometry method, 

the position of the robot's movement can be recorded 

[105][106]. If the Robot Movement finds an intersection, the 

user must press the node button. The robot path is in the form 

of a graph consisting of “vertex” and “node”.  



Journal of Robotics and Control (JRC) ISSN: 2715-5072 416 

 

Achmad Ubaidillah, Application of Odometry and Dijkstra Algorithm as Navigation and Shortest Path Determination System 

of Warehouse Mobile Robot 

Mapping result data is stored in the microcontroller's 

internal EEPROM [107]. EEPROM was chosen as a storage 

medium because it has many benefits, including reliable 

design and performance and easy erasing and programming 

without disturbing the board. Then the user can carry out the 

sending process by pressing the keypad button according to 

the destination node. The robot will send to the destination 

node according to the previously mapped location. If it 

reaches the destination rack, the robot will stop. After placing 

the goods on the appropriate rack, the user presses a button 

on the keypad to order the robot to return to the starting point.  

Fig. 4 is the flowchart of robot speed control and shows 

the flowchart of 3-wheel speed regulation. The system begins 

by determining the 𝑘𝑝, 𝑘𝑖, 𝑘𝑑 values on the PID then the 

encoder sensor reads the motor speed. The result is an RPM 

value obtained through the calculation of treeomniwheel 

kinematics. This value is then processed by the PID and used 

as a PWM value to move the robot according to its 

destination. If the robot has not reached its destination, the 

process will continuously loop back to the initial process until 

the robot reaches its destination. If it reaches the destination, 

then the process is complete. 

 

Fig. 4. Flowchart of robot speed control  

Fig. 5 is the flowchart of node mapping system. Retrieval 

of node data is carried out by the user by moving the robot 

manually. The first step determines the starting position or 

the position when the robot is in standby mode, and the motor 

is off. The robot must be reset first by pressing the reset 

button provided. Then the user must determine all the node 

points on the track, including the stops on each rack. The 

second step is to map the nodes by delivering the robot to 

each node by pressing the '#' key. The '#' key is pressed to 

save the coordinate value made at each robot stop. The last 

step is to press the '*' button. This is done if all nodes have 

been mapped, and all node data will be stored in EEPROM to 

proceed to the following process. In the process of using 

Dijkstra's algorithm, neighbors must first be identified at each 

node. The identification of neighboring nodes is made by 

entering each weight via the keypad. 

 

Fig. 5. Flowchart of node mapping  

Fig. 6 shows the process of weighting neighboring nodes. 

The process of assigning weights to neighboring nodes must 

be carried out according to the path that has been planned and 

converted to a data graph stored in a matrix variable, with as 

many dimensions as the nodes that have been stored. Initially, 

all element values will be assigned a temporary value, namely 

∞. In the conversion process, the node elements that have 

neighbors are updated with the value of the elements while 

the other nodes still have a value of ∞. The updated value is 

the value of the distance between the nodes and their 

neighboring nodes. 

 

Fig. 6. Flowchart of weighting at neighbor node  
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Fig. 7 is the flowchart of Dijkstra Application. Fig. 7 is a 

flowchart of applying Dijkstra's algorithm to find the shortest 

route from several paths. The Dijkstra process compares all 

the path weights to be selected by: 

● Give the value of the weight of the distance from one node 

to another then determine the departure node with a value 

of 0 and ∞ at the other nodes.  

● If node A to B has a distance value of 5 and from node B 

to point C has a value of 2. So, the distance to node C 

through node B is 5 + 2 = 7. If this distance is smaller than 

the previously recorded distance, delete the old data and 

resave the new distance value.  

● Mark the nodes that have been skipped as 'skipped nodes'. 

Missed nodes will never be checked again and the 

distance stored is the last distance from the departure node 

and the minimum distance value.  

● Determine the node that has not been passed with the 

smallest distance value from the departure node as the 

next departure node and continue by repeating step 3.  

 

Fig. 7. Flowchart of Dijkstra Application  

Fig. 8 is the flowchart of trajectory. Fig. 8 is the process 

for obtaining trajectory data from Dijkstra's algorithm. The 

main parameter used is the value of the “target” variable 

which stores the value of the destination node. The weight of 

the path is then searched for and stored in the “Trajectory” 

variable until the “destination” variable value is the same as 

the initial or source node value. Trajectory data is taken from 

Trajectory data [𝑏] or lines in the graph. 

The process begins with the initialization of the source, 

destination and variable 𝑖 which is then in the decision stage 

if 𝑖 > 𝑣𝑒𝑟𝑡𝑒𝑥 then the process is complete. If 𝑖 <  𝑒𝑟𝑡𝑒𝑥 then 

the trajectory [𝑏] is the same as the data trajectory [𝑖 − 𝑥]. 
Then check again if the destination is not the same as the 

source, then 𝑖 =  𝑖 +  1 and the process returns to the 

beginning. If the destination is the same as the source, the 

process will continue to determine whether 𝑥 < 𝑖. If yes, it 

will be counted until the last stage, then the process is 

complete and the data is saved. 

 

Fig. 8. Flowchart of Trajectory  

The hardware requirements for realizing the wheeled 

robot planning in this study are: 

● STM32F103C8T6 

● Motor DC 

●  Battery managemen System 12 V 

● Driver L298N 

● 3 Omni Wheel 

● Motor dc JGA 25 100 RPM 

● Buck Converter 

● Acrylic 3mm 

● Sensor of Rotary Encoder 

● Sensor of IMU 

● Sensor of encoder RPM internal motor 

IV. RESULT AND DISCUSSION 

As in research [64], which applied Dijkstra's algorithm to 

a wheeled mobile robot in a soccer robot game, this research 

applies and combines the Odometry method as a path mapper 

with Dijkstra's algorithm as a finder of the shortest path 

applied to warehouse robots. This research examines the 

movement of warehouse robots using the Djikstra algorithm 

and odometry as a mapping navigation system. The robot has 

dimensions of 30 cm in diameter and 14 cm in height. It uses 

a keypad as the tool's operating buttons and a 20x4 LCD as 

an interface. Fig. 9, Fig. 10, Fig. 11 and Fig. 12 are the view 

of robot. 
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Fig. 9. Front view of  the robot 

 

Fig. 10. Rear view of  the robot 

 

Fig. 11. Robot view from below 

 

Fig. 12. Robot view from above 

Testing the odometry method aims to determine the actual 

position of the robot, bearing angle (direction), and the 

distance from the current position of the robot to a 

predetermined destination point. The odometry method is 

used to measure changes in the position of a moving object, 

such as a warehouse robot in this case, which is based on data 

analysis from sensors installed on the robot. 

Odometry, in the context of robotics, usually involves the 

use of sensors such as wheel encoders, which measure the 

rotation of the wheels and therefore the movement of the 

robot. Using this data, in combination with knowledge of 

wheel size and wheel-to-movement ratio, the odometry 

method can estimate the robot's position. 

In this test, the odometry method refers to certain 

mathematical equations related to the movement and 

orientation of the robot. For example, a change in position 

can be calculated by integrating the speed of the robot against 

time, and a change in orientation can be calculated by 

considering the number of revolutions of the wheels and the 

width of the distance between the wheels. 

At this stage, testing is done manually to verify the 

accuracy of the odometry method. This involves performing 

calculations based on mathematical equations and comparing 

the results with the actual data from the robot's sensors. By 

carrying out tests like this, it can be ensured that the odometry 

method works effectively and reliably for use in warehouse 

robot navigation systems. 

The accuracy of the odometry method is very important 

because it is the basis for the robot to plan routes and navigate 

its environment. If the estimated position or orientation of the 

robot is inaccurate, it may cause the robot to crash into 

obstacles or fail to reach its destination. Therefore, it is 

important to carry out thorough testing and verification of this 

method. 

Calculation Parameters Known: 

𝐷𝑊 = 48 𝑚𝑚 

𝑝𝑢𝑙𝑠𝑒𝑥 = 1500 

𝑝𝑢𝑙𝑠𝑒𝑦 = 100 

𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑥 = 600 

𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑦 = 100 

𝑥2 = 300 

𝑦2 = −300 

Solution:  

𝐾𝑊 =  𝐷𝑊 × 𝜋 = 48 × 3.14 = 150.79 𝑚𝑚 

𝑥1 =  
𝑝𝑢𝑙𝑠𝑒𝑥

𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑥
𝐾𝑊 =  

1500

600
× 150.79 = 376.97 𝑚𝑚 

𝑦1 =  
𝑝𝑢𝑙𝑠𝑒𝑦

𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑦
𝐾𝑊 =  

100

100
× 150.7 = 150.79 𝑚𝑚 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √(𝑥2 − 𝑥1)2 − (𝑦2 − 𝑦1)2 

 = √(300 − 376.97)2 + (−300 − 150.79)2 
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 = √5,924.38 + 203,211.62 

 = 457.31 𝑚𝑚 

𝐵𝑒𝑎𝑟𝑖𝑛𝑔 = tan−1 (
𝑦2 − 𝑦1

𝑥2 − 𝑥1
)

180

𝜋
 

 = tan−1 (
−300 − 150.79

300 − 376.97
)

180

𝜋
 

 = tan−1(5.87)
180

𝜋
 

 = 80.33° 

The first test is three omni directions. This test aims to 

determine and compare the speed of the three wheels used, 

namely 𝑣1, 𝑣2, and 𝑣3 which is then multiplied by a certain 

multiplier, in this case the multiplier factor is 100 rpm. The 

following is an example of a calculation involving bearing 

parameters calculated using the odometry method. 

𝑏𝑒𝑎𝑟𝑖𝑛𝑔 = 80.33°   

𝑚𝑎𝑥𝑅𝑃𝑀 = 100    

𝑠𝑢𝑑𝑢𝑡 = 120    

𝜔 = 0 

𝑥 = 𝑚𝑎𝑥𝑅𝑃𝑀 × cos(𝑏𝑒𝑎𝑟𝑖𝑛𝑔) = 100 × cos(80.33) 

𝑥 = 16 

𝑦 = 𝑚𝑎𝑥𝑅𝑃𝑀 × sin(𝑏𝑒𝑎𝑟𝑖𝑛𝑔) = 100 × sin(80.33) 

𝑦 = 99 

𝑣1 = (𝑥 × cos(𝑠𝑢𝑑𝑢𝑡)) − (𝑦 × sin(𝑠𝑢𝑑𝑢𝑡)) + 𝜔 

𝑣1 = (16 × cos(120)) − (99 × sin(120)) + 0 = −77.14 

𝑣2 = (𝑥 × cos(𝑠𝑢𝑑𝑢𝑡)) + (𝑦 × sin(𝑠𝑢𝑑𝑢𝑡)) + 𝜔 

𝑣2 = (16 × cos(120)) + (−99 × sin(120)) + 0 = 93.14 

𝑣3 = −(𝑥 + 𝜔) = −(16 + 0) = −16 

TABLE I.  TESTING OF THREE OMNI-DIRECTION  

No. Degrees (⁰) v1 v2 v3 

1 0 9 -10 1 

2 45 11 2 -9 

3 90 6 6 -12 

4 180 9 -10 1 

5 225 -10 2 9 

6 270 -6 -6 12 

7 315 2 -11 8 

 

Table I is a three omni-direction calculation based on 

angles. 𝑣 is the speed of the robot obtained from the encoder 

sensor on each motor.  

The next result is trajectory mapping. The purpose of 

mapping is to find out the coordinates of each node and the 

distance between nodes. Then the process of determining the 

shortest path is done by Dijkstra's algorithm.  

In the mapping process, the selection of the position of 

the node point is determined by the user by pressing the (#) 

button. The coordinate value of the node will be read and 

stored in the nodeMapp variable. The nodeMapp variable is 

a matrix variable with dimensions of 2x50, where row 0 is 

used to store 𝑋 values and row 1 to store 𝑌 values. The 

“nodeCount” variable will store the total value of the many 

nodes stored. If the user presses (∗), the mapping will stop 

and continue to the next step. Fig. 13 shows the track scheme 

used and mapped. 

 

Fig. 13. Track mapping  

TABLE II.  MAPPING RESULT 

Node X Y 

0 0 0 

1 0 300 

2 -300 300 

3 -600 300 

4 -900 300 

5 -900 900 

6 -600 900 

7 -300 900 

8 0 900 

 

Table II is the coordinate position value at each node. The 

data is coordinate values in millimeters resulting from direct 

mapping. The data will then be converted to the path graph 

and determine whether the node has neighbors. 

The main variables that will be used as data containers are 

“neighbourn” and “graphMapp”. The “neighbourn” variable 

is used to store neighboring node data. The procedure for 

entering neighboring nodes is done by pressing the number 

on the keypad available on the robot. if the (∗) button is 

pressed, it will switch to the next node to be entered by its 

neighboring nodes. After all the neighboring nodes have been 

entered, the program will continue to convert the data into a 

path graph. 

The “graphMapp” variable is the result of calculating the 

distance from the selected node to its neighboring nodes by 

applying the odometry method, the results of which will be 

used as weights for calculations in Dijkstra. if the selected 

node has no neighbors, then the value will be left 0 and not 

changed. Only nodes that have neighbors will have a value 

greater than zero as shown in Fig. 14. Fig. 14 is a path scheme 

obtained from the results of the “graphMapp” variable data.  

Following is an experiment from the initial node = 0 and 

the destination node = 7. Then there are 3 path routes that can 

be traversed to node 7. Then the shortest path is produced, 
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namely (0-3-7). Table III shows the results of comparing 

distances and times from node 0 to node 7 using Dijkstra's 

algorithm without Dijkstra. 

 

Fig. 14. Path graph weighting 

TABLE III.  RESULTS OF COMPARISON OF ROUTE DISTANCE DATA WITH 

DIJKSTRA AND WITHOUT DIJKSTRA  

Route of Dijkstra Other Route 

Track (0-3-7) Track (0-4-3-7) 

From To 
Time 

(s) 

Distance 

(mm) 
From To 

Time 

(s) 

Distance 

(mm) 

0 3 9.9 780 0 4 6.9 560 

3 7 8.6 790 4 3 6.8 550 

    3 7 10 790 

Sum:  18.5 1570 Sum: 23.7 1900 

 

The test results show that using Dijkstra's algorithm, the 

robot is able to cover a distance of 780 mm. However, if using 

other routes (for example, routes designed manually or using 

a different path planning algorithm), the distance traveled by 

the robot is 1100 mm. That is, the use of Dijkstra's algorithm 

shows a higher effectiveness of 29.09%, seen from the 

decrease in the distance traveled. 

In addition, Dijkstra's algorithm is also effective in 

designing the shortest path from node 0 to node 7. Based on 

the data, using Dijkstra's algorithm, the robot can reach its 

destination by traveling a distance of 1570 mm and a time of 

18.5 seconds. Without using Dijkstra's algorithm, the 

distance covered is 1900 mm with a time of 23.7 seconds. 

This means that with Dijkstra's algorithm, we are able to get 

an effectiveness of 17.37% in terms of distance and time 

traveled. 

This comparison shows how Dijkstra's algorithm can 

significantly improve the effectiveness and efficiency of 

warehouse robot operations. In this context, effectiveness is 

measured in terms of decreasing the distance traveled and 

decreasing the time required to reach the goal. Therefore, 

these results confirm the superiority of Dijkstra's algorithm in 

planning warehouse robot paths compared to other methods. 

V.  CONCLUSION 

Based on this research, it can be concluded that the 

combination of the odometric system method and Dijkstra's 

algorithm can be applied to warehouse robots for goods 

delivery and is proven to be more effective and efficient both 

in distance and time compared to systems without Dijkstra. 

The results showed that the implementation of Dijkstra's 

algorithm resulted in the fastest running, which was 17% 

shorter distance and 33% faster time than the line follower 

system without Dijkstra's application. 

The limitation of this research is that testing and 

application of the odometry system and Dijkstra's algorithm 

have not been carried out on a large scale or prototype. In the 

existing literature, similar studies have been carried out on a 

larger scale, involving different types of barriers and other 

environmental variables. However, this research is more 

focused on implementing and incorporating the odometry 

system and Dijkstra's algorithm. 

The practical implication of this research is that this 

technology, if widely applied, can generate significant cost 

efficiencies in warehouse operations. This efficiency can be 

measured in terms of absorption of shooting range and travel 

time, which has a direct impact on reducing operational costs 

and increasing productivity. 

For future research, it is recommended to carry out the test 

in an authentic warehouse considering the mass of goods and 

the speed of delivery. In addition, consideration of the GPS 

for large areas and other shortest displacements also needs to 

be considered. 

In closing, this study shows great potential in using the 

odometry system and Dijkstra's algorithm in the context of 

warehouse robots. Despite the limitations in the research 

scale, the results make an essential contribution in this field 

and pave the way for further research that can optimize 

warehouse operations with this technology. 
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