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Abstract

The work in this thesis relates to the field of gravimetry, the measurement of gravitational
fields and their variations, which is carried out using highly-sensitive accelerometers known
as gravimeters. By using gravimeters to measure the changes in gravitational field strength
from place to place, it is possible to detect differences in the concentration of mass around the
gravimeter and this has historically been used to monitor geophysical activity (such as variations
in groundwater, volcanic activity or glacial mass), for geological exploration (such as searching
for mineral or hydrocarbon resources) and many other applications.

This work covers a range of topics in gravimetry, starting with the use of computer programs
to simulate the gravitational fields that would be generated when a submarine travelled past a
stationary gravimeter, or array of gravimeters, situated underwater. This is done with the aim
of estimating the efficacy of a new gravimeter known as the ‘Wee-g’ under development at
the University of Glasgow at the time of writing and also has applications to the gravitational
detection of submarines more generally. The gravitational field of a 100m-long submarine is
simulated, using a simplified one-dimensional density profile approximating the real density
variations along the length of a large submarine. The simulated gravity field is then compared to
the sensitivity of a prototype Wee-g gravimeter of 5µGal/

√
Hz to give an initial estimate of the

maximum detection range of such a signal by the Wee-g, which is found to be approximately
20m. Then, synthetic noisy signals are made by combining the simulated gravity signals with
real Wee-g sensor noise data and digital signal processing methods are used to try and recover the
corrupted signal from the noise in a way that maximises the detection range. Matched filtering
is applied which uses foreknowledge of the signal being searched for to significantly increase
the signal to noise ratio (SNR) in the noisy data by an order of magnitude, which increases the
Wee-g’s detection range of the modelled submarine to ∼ 30m.

In addition, computer programs are made that determine a quantity known as the terrain cor-
rection at a given gravity survey point using digitised elevation data describing the surrounding
topography. Terrain correction is the effect that the presence of surrounding hills and valleys
has on the gravitational field strength at a location and, if it is not accounted for, substantial
variations in gravity (and hence, potentially useful information) can be partially or completely
obscured. Methods already exist to calculate the terrain correction but these are either slow and
laborious, inaccurate (in comparison to contemporary gravimeter performance) or both, while
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the program presented in this work makes use of modern computing speed and high-accuracy
elevation maps to improve on these. The terrain correction program presented here analyses ter-
rain out to a distance of 166.735km from the survey point, using 1m-resolution LiDAR elevation
data to describe the nearest 2km2, and can calculate terrain correction values in approximately
9s when run on a computer with 8GB of RAM. Terrain at all distances from the survey point is
modelled using many flat-topped rectangular prisms and the gravitational field strength due to
each prism is calculated using an already existing analytic solution. An in-depth analysis of the
terrain correction computation of the innermost 2km is carried out to compare the accuracy of
the method used with simple analytic solutions. This analysis concludes that terrain corrections
can be calculated with an uncertainty of 2µGal or less when using 1m2-resolution elevation
data, provided the terrain immediately around the survey point has an incline of less than 10◦.

Finally, two gravity surveys carried out in January of 2020 by the author with a Scintrex
CG-5 commercial gravimeter are described: one in the Campsie Fells — a range of hills roughly
10km north of Glasgow — and the second in the cloisters of the Gilbert-Scott building on the
University of Glasgow campus. The Campsies survey is compared with a gravimeter survey of
the same region carried out in 1969 and discrepancies of up to a few mGal are observed, under-
stood to be due to terrain correction inaccuracies in the older survey. Results from the survey
in the cloisters are compared to the gravitational field due to underfloor air ducts described by
plans of the building but little correlation is found. This is suspected to be the result of either
inaccuracies in the building plans or the impact of environmental noise on the measurements.
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Chapter 1

Introduction

1.1 Gravity

Gravity has been a subject of human inquiry since antiquity, beginning with Aristotle (384 to 322
BCE) who postulated that heavy objects like earth and water were imbued with the quality of
‘gravity’ which causes their downward motion, towards the centre of the world, which he saw
as their natural place [1]. Aristotle also theorised that the rate at which heavy objects fall due to
gravity was proportional to their weight. This was experimentally disproven in the 16th century,
most rigorously by Galileo Galilei (1564 to 1642) who concluded that all objects fall at the same
rate, regardless of their mass, provided that air resistance is negligible.

In 1687, Issac Newton published his Philosophiæ Naturalis Principia Mathematica (Math-

ematical Principles of Natural Philosophy) [2] in which he described gravity as a force acting
between all massive objects, with a strength inversely proportional to the square of the distance
between them. The magnitude of this gravitational force can be calculated using Newton’s Uni-
versal Law of Gravitation, shown in equation eq. (1.1).

F = GM1M2
r
|r|3

, (1.1)

where F is the gravitational force vector in N, G is the gravitational constant (G = 6.67 ×
10−11 m3 kg−1 s−2), M1 and M2 are the individual masses of the two objects in kg and r is
the distance vector between the objects in metres [2]. From this equation, the concept of a grav-
itational field can be derived as the acceleration a 1 kg test mass would experience when placed
a certain distance from a massive object. This acceleration is known as the gravitational field
strength and can be calculated using equation (1.2),

g = GM
r
|r|3

, (1.2)

where, M is the mass of the object in question.
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Equation 1.2 can be generalised to find the gravitational field due to any volume, V , with a
non-uniform density distribution, ρ(r), using the following expression,

g = G
∫
A

r− r0

|r− r0|3
ρ(r)dV , (1.3)

where dV is an infinitesimal volume element within the volume, A, and r is the vector to this
element from the computation point (where g is to be calculated) and r0 is the vector from the
origin to the computation point.

In 1915, Albert Einstein (1879 to 1955) published his theory of general relativity [3,4] which
revolutionised the understanding of gravity as arising due to the curvature of spacetime, rather
than an instantaneous, force acting between distant objects (as John Wheeler put it, “space acts
on matter, telling it how to move. In turn, matter reacts back on space telling it how to curve.”
[5]). General relativity explains phenomena Newtonian gravity cannot, such as the anomalous
perihelion precession of the planet Mercury, gravitational time dilation, gravitational lensing
and gravitational waves, among others. However, the practical differences between Einstein’s
theory of gravity and that of Newton are only significant in situations of extreme mass and/or
velocity which are extremely uncommon in most terrestrial circumstances, in which Newton’s
theory remains a highly accurate approximation.

On the surface of a planet like the Earth, gravity is most clearly observable as a downwards
force felt by all objects with non-zero mass as a result of the gravitational attraction of the
planet’s own mass. The resulting magnitude of gravitational field strength, g, on the Earth’s
surface is, on average g ≈ 9.8ms−2 but the exact value differs slightly from place-to-place.
Variations in local g arise due to changes in latitude or elevation above (or below) mean sea level,
the shape of surrounding topography, and because of variations in the thickness and density of
the Earth’s crust. That surface gravitational field strength is affected by density variations in
the Earth’s crust has been of particular interest in many fields of study because this provides
the opportunity to use measurements of these gravity variations to help detect and characterise
underground density changes.

1.2 Gravimetry and its applications

Gravimetry is the practice of using specialised accelerometers known as gravimeters to measure
the strength of gravitational fields, g, and to identify changes in g between different locations or
over time, which are known as gravitational anomalies. Traditionally, gravitational anomalies
have been described using units of ‘Gal’ (named after Galileo Galilei) instead of the SI unit of
acceleration, ms−2, and these share the relation, 1Gal = 0.01ms−2. Units of Gal will be used
frequently in this work and some conversions between Gal, mGal and µGal and ms−2 are listed
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Figure 1.1: Map of global gravity anomaly as measured by the GRACE (Gravity Recovery
And Climate Experiment) satellite. Image provided by University of Texas Center for Space
Research and NASA (2016) [6].

in table 1.1 for reference.

SI units (ms−2)
1Gal 1×10−2

1mGal 1×10−5

1µGal 1×10−8

Table 1.1: Table of conversions between Gal and ms−2

Gravity anomalies on the surface of the Earth are typically several orders of magnitude
smaller than the total gravitational field strength of, on average, g ≈ 9.81ms−2 (981Gal). This
can be seen in fig. 1.1 which shows a global map of gravity anomalies as measured by the
GRACE (Gravity Recovery And Climate Experiment) satellite that operated between 2002 and
2017. The largest gravity anomalies on a global scale are of the order of hundreds of mGal
(∼ 1× 10−3 ms−2) while on a smaller, regional scale less than a few hundred kilometres, they
are usually a few tens of mGal (∼ 1× 10−4 ms−2) or less. At an even smaller scale of a few
kilometres or less, gravitational anomalies are most commonly tens to hundreds of µGal in size.

Because of the properties of gravity, gravimetry can be used to collect useful information
about mass distributions and density variations on and below the Earth’s surface, which has
made it a useful tool in geophysics and the Earth sciences more broadly. The following will give
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an overview of some of the applications of gravimetry.

1.2.1 Resource exploration

Gravimetry is most commonly used in the detection and characterisation of underground de-
posits of mineral or hydrocarbon resources alongside other prospecting methods such as seismic
and electromagnetic techniques [7, 8]. Broadly speaking, this is done by studying the surface
gravitational anomalies caused by underground density variations, specifically for those caused
by density contrasts between a mineral deposit or geological feature of interest and the rock
surrounding it. In the past, gravimetry has been used in this way to help estimate the depth of
ore deposits detected through other means [9] and to help identify the size and contents of such
deposits by analysing the associated gravity anomaly in detail [8]. For the case of particularly
large and/or dense deposits such as metal sulphide orebodies (important sources of non-ferric
metal ores with densities ranging from 3750kgm−3 to 7700kgm−3 [8, 10]), the surface gravity
anomaly can be as large as a few mGal [11] and gravimetry can be used as a primary detection
method [12, 13].

Gravimetric methods are also used to locate certain geological features that are known to
coincide with deposits of useful resources or to constrain an area of exploration by other means
within likely regions. This method of indirect search is common when searching for oil and gas
reserves, which are often found near large formations of salt (salt domes) that can trap hydrocar-
bons in their vicinity when they form [14, 15]. In addition, borehole gravimetry is a method of
determining the average density of a chosen layer of subterranean rock by measuring the change
in gravity at different depths down a vertical (or almost-vertical) borehole (see fig. 1.2) [16].
Through repeated borehole gravity measurements, it is possible to observe changes in the den-
sity of rock strata over time which has been an important method of searching for and monitoring
the depletion of hydrocarbon reservoirs [16, 17].

Gravimeter surveys for resource exploration are often required to be carried out over large
areas, tens or even hundreds of kilometres in size, to search entire regions and this can be costly
and time-consuming to do using land-based surveying methods. Instead, airborne gravimetry is
a popular method of large-area gravity surveying, in which gravimeters carried by helicopters
or light aircraft are flown over the region of interest to survey it faster and at reduced cost,
especially in hard-to-access areas [18–20]. The main difficulty of airborne gravimetry is that
flying platforms like helicopters and light aircraft are a strong source of vibrations which can
severely impact the accuracy of on-board gravimeters and are generally only accurate to within
a few hundreds of µGal at best [19, 20].
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Figure 1.2: Diagram depicting how borehole gravimetry is able to measure the average density,
ρ , of a certain layer of rock by observing the change in gravity, ∆g, that results from a given
change in depth down the borehole, ∆z, which marks the distance from the top of the layer to its
base. Image from Ander et. al. (1997) [16].

1.2.2 Hydrology and glaciology

Hydrology is the study of how water is distributed and moves around the surface, underground
and atmosphere of the Earth, phenomena which have a critical impact on global climates and
ecosystems [21]. Gravimetry has been an important tool in hydrology to detect temporal and
spatial changes in the amount of water stored at and below the Earth’s surface and to validate
established hydrological models of these systems [21–23]. Most gravity data used for hydrology
has been collected by the Gravity Recovery and Climate Experiment (GRACE) and the GRACE
Follow-On (GRACE-FO) satellite gravimetry missions (the former of which operated from 2002
to 2017 and the latter from 2018 to the present) that aim to map the Earth’s gravity field with a
horizontal resolution of roughly 400-500km2 [22, 24, 25].

GRACE gravity data has been used to monitor changes in continental groundwater storage
and has been used to observe changes in the upper surface of the water table in a region (below
which, porous material is saturated with water) to within an accuracy of a few centimetres [26].
Such observations have been used to observe seasonal changes in water storage [27,28] as well as
the multi-year depletion of groundwater reserves associated with droughts [29–32]. Similarly,
long-term reductions in the total mass of glaciers and ice caps due to rising global average
temperatures have also been detected by the GRACE experiment and the observed mass change
has been used to improve estimates of the effect this has on sea levels [33–35]. During the
operation of the first GRACE experiment, between 2002 and 2016, a global reduction in glacial
mass of approximately 3000Gt was observed, a reduction of 199±32Gt per year, which would
result in an increase in global sea level of about 8mm [35]. The magnitude of the gravitational
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Figure 1.3: Water table surface height variations in Africa over the course of more than a year
derived from GRACE satellite gravimetry measurements (from Han et.al. (2005) [26]).

anomalies associated with the aforementioned hydrological and glaciological effects is generally
∼ 1µGal (∼ 1×10−8 ms−2) [24].

1.2.3 Volcanology and tectonics

Gravimetry is commonly used in the field of Volcanology to help investigate the underground
structure and plumbing of active volcanoes and to observe transient gravity anomalies caused
by volcanic activity. The geological structure of volcanoes can manifest significant density
contrasts due to volumes of higher-density magma and volcanic rock close to lower-density,
uncompacted rock or ash which result in positive and negative gravity anomalies at the surface.
In extreme cases, these anomalies can have magnitudes of up to 30mGal or −60mGal, relative
to the surrounding region, while other cases may exhibit little or no overall gravity anomaly
[36]. Measurement of these anomalies can be used to survey deep and near-surface magmatic
structures to better understand the mechanisms and characteristics of volcanoes [36–38].

Underground movements of magma are commonly accompanied by changes in surface grav-
ity resulting from subterranean displacements of mass and monitoring these gravity changes can
be a useful source of information about ongoing volcanic activity. The magnitude of these grav-
ity changes depends on how much mass is displaced and its depth below the surface but such
signals are generally quite small, of the order of 10s of µGal or less [39]. The monitoring of
these gravity changes is particularly useful when performed in concert with other monitoring
techniques such as observing seismic activity, ground deformations and gas emissions near a
volcano, which can be used together to help forecast when volcanic eruptions are likely to oc-
cur [40–42].

Because surface gravity changes are directly linked to mass movements, volcano gravimetry
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can help determine the cause of other observed phenomena; for example, identifying whether
a particular surface deformation is caused by the growth of a gas pocket or a similarly-sized
magma intrusion, since the latter will result in a much larger gravity anomaly. Gravimetry is
a particularly important tool for cases where magmatic intrusion is not accompanied by either
seismic signals or ground deformation, in which case it becomes the primary method of detecting
such phenomena [43].

Gravimetry has also found applications as a method of observing and studying tectonic ef-
fects like earthquakes and other large-scale dynamic changes in the structure of the Earth’s crust.
For example, large earthquakes have been observed to cause lasting changes in regional gravity
(usually of a few µGal) because of vertical displacements of the crust and changes in the densi-
ties of the crust and mantle [44–46]. Studying these anomalies has helped better understand the
causes and effects of individual earthquakes — for example, by clarifying the fault line and any
resulting mass redistributions — and earthquake processes more generally [47–49].

1.2.4 Archaeology and void detection

Small-scale gravimetry surveys can be used to detect subterranean voids because of the density
contrast between such open spaces and the surrounding rock. This has applications in the fields
of archaeology, as a non-intrusive method of searching for suspected buried structures [50–52];
in defence applications, to search for tunnels or larger underground installations [53]; and in
engineering, to investigate bedrock quality and search for possible sources of sinkholes [54,55].
The use of gravimetry for such purposes is generally quite rare due to high instrument costs and
difficulty of these surveys which are commonly searching for small signals (commonly only a
few µGal) and frequently must be performed in noisy urban environments that limit detector
performance.

1.3 Corrections for Gravimetry

In order to use gravimetry to detect underground density variations, it is necessary to isolate
gravitational anomalies caused by the features of interest (such as density variations) from those
caused by other factors (such as a change in latitude, elevation or in the surrounding topography).
This is done using a process known as gravitational correction (or gravitational reduction) in
which the size of the effects caused by other factors are calculated as accurately as possible then
removed from the data, leaving only the effects of interest. Calculating the size of most of these
effects can be done using relatively simple equations that are reproduced below along with more
information about the effects themselves.
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1.3.1 Latitude correction

The Earth is not a perfect sphere but is, in fact, an oblate spheroid, meaning that the poles are
slightly closer to the Earth’s centre than the equator. In addition, the centrifugal acceleration
due to the rotation of the Earth gets weaker as one moves closer to the poles as the distance
to the planet’s rotational axis decreases. Both of these effects cause the sea level gravitational
field strength to gradually increase from 9.78 m/s at the equator to 9.83 m/s at the poles. An
expression for the sea level gravitational field strength, gθ , in ms−2 at a latitude of θ rad is given
by [12],

gθ (θ) = ge(1+5.2970414×10−3 sin2θ+2.32718×10−5 sin4θ

+1.262×10−7 sin6θ+7×10−10 sin8θ) ,
(1.4)

where ge is an accurate measure of the vertical gravitational field strength at the equator. In
this work the value used is ge = 9.7803267715ms−1 (from Moritz [56]) with which eq. (1.4)
can calculate gθ values with an uncertainty of ±1× 10−9 ms−1 (±0.1µGal). From this, the
difference in gθ between two points at latitudes θ1 and θ2 due to the latitude difference alone
can be found with,

∆gλ = gθ (θ2)−gθ (θ1) , (1.5)

which is known as the latitude effect or latitude correction. At all latitudes, the variation in gθ

per kilometre travelled towards the nearest pole is of the order of ∼ 100mGalkm−1 and is as
large as ∼ 800mGal per kilometre travelled north or south at a latitude of ±45◦ [12].

1.3.2 Elevation corrections

Local gravitational field strength is affected by the elevation above sea level, h, of a location in
three separate ways, known as the free-air correction, Bouguer correction and curvature correc-
tion, all of which are solely dependent on h.

Free-air correction

The free-air effect describes the reduction in gravitational field strength that occurs when moving
to higher elevations due to the increasing distance from the centre of the Earth, leading to a
decrease in g. The rate at which vertical gravitational field decreases (i.e. the vertical gravity
gradient) is also dependent on R but for positions on the surface of the Earth, where elevation
changes are approximately 0.1% of the total radius, this change can be assumed to be linear. For
a change in elevation of ∆h metres on the Earth’s surface, the free-air effect can be calculated
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with an uncertainty of < 1×10−9 ms−2 [57] using,

∆gfa =−2GME∆h
RE

2 ,

=−3.086×10−6
∆h , (1.6)

where ∆gfa is the free-air effect in ms−2, G is the gravitational constant, and ME and RE are the
mass and mean radius of the Earth in kg and m, respectively [12]. For locations at an elevation
∆h metres from sea level, the free-air correction is applied by subtracting ∆gfa from measured
gravity.

Bouguer correction

A greater than zero elevation at a point on the surface of the Earth implies the presence of
additional material below the location in the form of a hill of some kind, the mass of which will
act to increase g at the location, acting in opposition to the free-air effect. The Bouguer effect is a
simple, first approximation of this gravitational effect that makes the assumption that all material
between a location and sea level forms a completely flat slab of infinite horizontal extent and a
uniform density, ρB, with a thickness equal to the point’s elevation, ∆h. Such an object is known
as a Bouguer slab or Bouguer plate and its vertical gravitational field, ∆gB, can be calculated
analytically with an uncertainty of < 1×10−9 ms−2 [57] using the simple expression,

∆gB = 2πGρB∆h ,

= 4.192×10−10
ρB∆h , (1.7)

where ∆gB is in ms−2, ρB is an estimated average density of terrain in the region in kgm−3 and
∆h is the the thickness of the Bouguer slab (i.e. the elevation of the survey point relative to sea
level) in m.

The Bouguer correction (also known as the Bullard A correction [58, 59]) is usually applied
to gravity data by subtracting ∆gB from local measured g. More careful consideration is needed
for locations that are below-ground (mine shafts, boreholes, etc.) or underwater, where ∆gB

becomes negative and ρB must be the average density of the surrounding rock or water, as
appropriate.

Curvature correction

The Bouguer slab is only a very simple approximation of terrain on the Earth’s surface and
a more accurate model is necessary to calculate high-accuracy gravity corrections. The cur-
vature correction (also known as the Bullard B correction [58, 59]) makes an adjustment to
the Bouguer correction that replaces the flat, infinitely-extending Bouguer slab with a curved,
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truncated spherical cap that more realistically represents the surrounding terrain, as shown in
fig. 1.4a. This change in how mass is distributed leads to a change in g at the survey point;
firstly, because the infinite slab is replaced with a finite object and secondly, because parts of
the cap (the black areas in fig. 1.4a) are moved downwards relative to the slab due to its cur-
vature. These two effects act in opposite directions, the former acting to decrease g and the
latter acting to increase it, in comparison to an infinite Bouguer slab. The combined effect of
these changes gives the curvature correction, gc, the magnitude of which depends on the survey
point’s elevation above sea level, h, and the surface radius used for the truncated spherical cap.

By convention (following from Bullard in 1936 [59]), a cap surface radius of 166.735km is
generally used when calculating curvature corrections because this minimises the variations in
gc over an elevation range of 0m to 4000m, which applies to most of the Earth’s surface. This
is demonstrated in fig. 1.4b which plots variation in gc over this elevation range for the case of
several different cap radii. Ultimately, the choice of a 166.735km cap radius is somewhat arbi-
trary but the standardisation of the curvature correction in this way helps maintain consistency
between different gravity surveys. Using this standard cap radius, a good approximation for the
curvature correction, ∆gc, in ms−2 is calculated by the power series,

∆gc = Ah−Bh2 +Ch3 +Dh4 , (1.8)

where h is the elevation above sea level in metres and A= 1.464139×10−3 s−2, B= 3.533047×
10−7 m−1s−2, C = 1.002709× 10−13 m−2s−2 and D = 3.002407× 10−18 m−3s−2 [58]. When
near sea-level, the curvature correction results in a 14µGalm−1 change in gravity when the
elevation of the survey point is increased [60].

As mentioned in section 1.3.1, the Earth is an oblate spheroid which means it’s curvature
varies slightly with latitude and, therefore, the curvature correction also has some latitude-
dependency. The impact of this latitude-dependence is more significant at higher elevations but
at the latitudes and elevations used in this work, eq. (1.8) has an accuracy better than 0.01µGal
so is a suitable and time-saving approximation. At extremes of latitude (near poles or equator)
and when there are large differences in elevation between survey points, it may be necessary for
high-accuracy surveys to use the exact solution for ∆gc such as that given by LaFehr [60].

1.3.3 Terrain correction

The gravitational terrain correction, ∆gtc, (also called the Bullard C correction [58,59]) accounts
for the gravitational effects arising from the topography around a survey point and is widely
considered the most complicated and tedious to calculate of the corrections discussed [61–63].
Any topographic variations (i.e. departures from completely flat surroundings) around a location
will act to reduce g and the more rugged the surroundings are, the larger this effect is. For
example, Yen [62] calculated terrain corrections to be only a few mGal in size in relatively flat
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(a)

(b)

Figure 1.4: (a): Representation of the Bouguer infinite slab and the truncated spherical cap
approximations used in the Bullard A and Bullard B corrections, respectively, to model the
gravitational effect of the ground between a survey point and mean sea level. (b): Graph showing
how the magnitude of the curvature correction varies with elevation (i.e. thickness of the cap)
for the case of several different cap surface radii. Both diagrams from LaFehr (1991) [60].
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regions of Taiwan but greater than 90mGal in very mountainous areas.
The size of the terrain effect is difficult to calculate exactly and is generally estimated by

dividing terrain features into discrete regions, simplifying the real topography of these and using
analytic solutions to find g due to these representations. Terrain correction calculation is the
main topic of chapter 3 of this work and a detailed description of it and how it can be calculated
are found in section 3.1.

1.3.4 Time-varying corrections

As well as the gravitational corrections that relate to the location and surroundings of a grav-
ity survey point, it is also important to correct for time-varying changes in g at a location that
can otherwise obscure signals of interest. One of the most significant time-varying effects is
the Earth tides; the periodic elastic deformation of the Earth’s crust caused by the gravitational
tidal forces of the Sun and Moon. This causes periodic, latitude-dependent changes in elevation
(of approximately 0.2m - 0.3m at most [64] which result in significant variations in g of up
to 0.3mGal over the course of hours and days [58]. The tide signals consist of two main fre-
quency components arising from the motion of the Sun-Earth-Moon system, one with a period
of approximately 24 hours (known as Diurnal i.e. daily) due to the gravitational influence of
the sun and one with a roughly 12-hour period (known as semidiurnal — half-daily) due to the
Moon. The exact gravitational effect of the Earth tides can be accurately modelled using equa-
tions [57] or suitable software implementations of these (e.g. the free software Tsoft [66]) and
can then be subtracted from data to correct for it. Established methods of calculating the Earth
tides can do so with an uncertainty of less than 0.1µGal [57]. Figure 1.5 shows an example of
measured gravity variation over the course of 19 days alongside the theoretical effect of Earth
tides on g over the same period. The total period of oscillations can be seen to vary as the diurnal
and semidiurnal frequency components of the tides move in and out of phase with one another
(because their periods are, in fact, slightly more than 24 hours and 12 hours, respectively).

Ocean tides can also cause time-varying changes in g due to the shifting mass of water on the
earth’s surface and the slight deformations of the crust that result due to the loading of the water
mass on the sea floor (an effect known as ‘ocean loading’). The magnitude of these gravitational
effects depends on the elevation and proximity to the coastline of the survey point in question
and can be as large as 20µGal at particularly susceptible locations [12,67]. Ocean loading effects
on gravity are generally slightly out of phase with the Earth tides due to the perturbation of tidal
currents by bathymetry (seafloor topography), which can delay the movement of water to and
from coastlines [68]. The magnitude of gravitational ocean loading effects can be calculated
mathematically with an uncertainty of < 0.1µGal [69].

For high-accuracy gravity surveys, other time-varying effects may need to be considered as
well, such as g changes caused by variations in atmospheric pressure and groundwater levels. In
the case of the former, a change in local atmospheric pressure indicates a change in the mass of
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the air column above a gravity survey point, which affects the vertical gravitational field strength
at that point. An approximate relationship between a change in atmospheric pressure, ∆P, and
the resulting gravitational effect, ∆gP is given by [70],

∆gP =−3.56µGal/kPa . (1.9)

If local pressure is measured with an accuracy of ∼ 10kPa or better, this expression can calculate
∆gP with a maximum error of roughly 0.1µGal. Because atmospheric pressure changes are
usually only a kPa or less over the course of a day, the resulting ∆gP is normally less than 1µGal
during field surveys and rarely considered. However, the passage of high pressure weather
formations like thunderstorms can cause more significant changes of pressure and gravitational
effects of more than 10µGal in a few hours [70].

Similarly, a change in groundwater level (i.e. the level below which most porous rocks
and underground cavities are fully saturated with water — also called the water table) indicates
a change in mass below a location that will affect local gravitational field strength. The ex-
act gravity change accompanying a certain groundwater level change, ∆w, will depend on the
porosity of the geology in the region and so is difficult to calculate precisely. Instead, an up-
per estimate of the gravitational effect, ∆gw, caused by a groundwater level change, ∆w, can
be calculated analytically by assuming the ground is completely porous and using a Bouguer
slab approximation, as shown in eq. (1.7), with a slab density of ρ = 1000kgm−3 and letting
∆h = ∆w which gives [12],

∆gw = 4.192×10−10
∆w ms−2 , (1.10)

∆gw = 41.92µGal/m . (1.11)

The uncertainty in the calculation of this effect is difficult to determine but is mostly dependant
on how accurately groundwater level can be measured and how well the surrounding geology
and its porosity is known [12].

Most surveys also correct for instrumental drift — the erroneous gradual change in mea-
sured g arising due to internal factors in the survey instruments themselves — and this will be
described in more detail in section 1.4.

1.3.5 Bouguer anomaly

After applying all the corrections listed so far (latitude, free-air, Bouguer, curvature, terrain
and time-varying corrections), the remaining gravity variations are referred to as the ‘Bouguer
anomaly’ or ‘complete Bouguer anomaly’ which, in theory, shows gravitational changes due
to underground density variations. If the terrain and curvature corrections are left out during
the correction process then the result is referred to as the ‘simple Bouguer anomaly’ and if
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only latitude and free-air corrections are applied the result is called the ‘free-air anomaly’ [71].
For convenience, a comparison of the non-time-varying gravitational corrections discussed is
presented in section 1.3.5.

Table 1.2: Table comparing the various gravitational corrections; their dependencies, magnitudes and un-
certainties. The uncertainty values given assume that there is no uncertainty in latitude and elevation of
gravitational survey points.

Gravitational correction Dependency Effect magnitude Uncertainty

Latitude, ∆gλ Latitude variation
∼ 0.1mGalkm−1

to ∼ 0.8mGalkm−1
* < 0.1µGal

Free-air, ∆gfa Elevation −0.3086mGalm−1 < 0.1µGal
Bouguer, ∆gB Elevation 0.112mGalm−1 † < 0.1µGal
Curvature, ∆gc Elevation ∼ 14µGalm−1 ‡ < 0.01µGal
Terrain, ∆gtc Topography ∼ 1mGal to ∼ 10mGal § Method-dependent ∥

Earth tides
Latitude, Longitude,

Time (period: ∼ hours
to months)

∼ 100µGal to 300µGal < 0.1µGal

Ocean loading

Latitude, Longitude,
Proximity to ocean

Time (period: ∼ hours
to months),

Up to ∼ 20µGal < 0.1µGal

Atmospheric pressure, ∆gP
Weather, Time

(period: ∼ hours) −3.56µGalkPa−1 ∼ 0.1µGal

Groundwater level, ∆gw
Precipitation, Time

(period: days to seasons) 41.192µGalm−1 Varies #

* Depending on the latitude at which the survey is being performed.
† Assuming a ground density of 2670kgm−3.
‡ When near sea level.
§ When in moderately hilly surroundings.
∥ Different methods of terrain correction and their associated uncertainties are discussed in detail in

section 3.1.
# Depends on how accurately the groundwater level and porosity of the surrounding geology are known.

1.4 Gravimeters

Gravimeters are devices used to measure the strength of the gravitational field at a given location
and are, in essence very sensitive accelerometers that can measure tiny variations in g on the
surface of a planet like the Earth. In contrast with other high-accuracy accelerometers like
seismometers, gravimeters must also demonstrate a long-term stability and repeatability when
taking measurements in order to reliably characterise changes in gravity; either between multiple
locations or at one point over time.



16

Gravimeters can be grouped into two categories determined by their capabilities — Absolute
gravimeters and Relative gravimeters — which will now be described in more detail:

Absolute gravimeters: Absolute gravimeters are devices that directly measure the accelera-
tion due to gravity, g, at a particular location. They do this either by measuring the oscillation
period of a pendulum of known length (which is dependent on g) or through careful measure-
ment of the acceleration of a freely-falling mass in a vacuum using laser interferometry. The
pendulum method was the first method to be developed and deployed in early gravimeters but
free-fall gravimeters have since demonstrated a greater accuracy and most contemporary abso-
lute gravimeters are free-fall devices. These instruments work by, essentially, using a freely
falling mass as one of the end mirrors of a vertical interferometer arm and interfering this light
with that from a perpendicular, fixed-length reference arm to precisely measure the mirror’s
position, from which its free-fall acceleration can be determined [72, 73].

More recently, another type of absolute gravimeter has been developed called an atom
gravimeter, which works on the same principle as a traditional free-fall gravimeter but mea-
sures the acceleration of a cloud of freely-falling atoms cooled to cryogenic temperatures [74].
Atom gravimeters utilise atom interferometry, wherein a cloud of atoms is directed, split into
two and recombined using laser pulses (analogous to beam-splitters and mirrors in optical inter-
ferometers) and, due to the wave characteristics of matter, a path difference in the trajectories
of the split and recombined atoms causes a detectable phase shift. Using an appropriate experi-
mental layout, this path difference can be made to depend on the strength of the inertial forces
that affect the moving atoms in the system and so can be used to measure these forces, including
the gravitational field strength, g [75, 76].

Modern absolute gravimeters are very accurate but tend to be large, heavy and expensive
devices. For example, the Micro-g Lacoste FG5-X absolute gravimeter, pictured in fig. 1.6a,
weighs 150kg and costs approximately $US500,000 while commonly demonstrating a mea-
surement accuracy of roughly 2µGal [73]. Their large size and weight means that these devices
aren’t practically useful for conducting regional gravitational surveys and they are usually used
to establish gravitational ‘base stations’ instead, where exact g is well-known.

Relative gravimeters: Relative gravimeters are devices that measure relative changes in grav-
itational acceleration, g, over time and between locations but are unable to determine the total
magnitude of g as absolute gravimeters can. Contemporary relative gravimeters work using
some variation of a vertical spring balance system where a test mass is suspended by a zero-
length spring; a spring that is pre-tensioned during manufacture so that it’s un-stretched length
is theoretically zero [77]. If this suspension is constructed in the correct way, the downwards
force of gravity on the mass can be balanced almost exactly by the restoring force of the spring
system over its entire range of motion (one notable variation is a superconducting gravimeter,
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(a) (b)

Figure 1.6: (a): Photo of a Micro-g LaCoste FG5-X absolute gravimeter [80]. (b): Photo of a
Scintrex CG-6 relative gravimeter [79].

where a superconducting test mass is suspended by magnetic levitation [78]). A change in g will
alter the vertical position of the test mass until a new equilibrium is reached and careful moni-
toring of the test mass position allows the size of the gravity change, ∆g, to be measured. After
their manufacture, relative gravimeters must be calibrated to identify how exactly the movement
of the test mass relates to a change in local g. This is most commonly done by transporting the
device between two locations where the magnitude of g is already known to a high degree of
accuracy, such as gravitational base stations previously established using absolute gravimeters.

Modern relative gravimeters tend to be less expensive and heavy than absolute gravimeters
but are still complicated and costly instruments. For example, a Scintrex CG-6 quartz spring
relative gravimeter costs approximately $US100,000, weighs 5.2kg, has a 0.1µGal reading res-
olution and exhibits tares of less than 5µGal when repositioned under normal operating condi-
tions [79]. Relative gravimeters are generally much more portable than absolute devices and are
used more frequently when carrying out gravity surveys of extended regions, sometimes using
measurements at absolute gravimeter base stations to convert their relative ∆g measurements
into variations in overall g.
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1.4.1 Noise in gravimeters

The performance of both absolute and relative gravimeters is affected by various factors which
are unrelated to the gravitational field strength that show up in gravimeter data as unwanted
sources of noise. The most significant of these factors are the tilt of the instrument, variations in
external temperature and vibrations coupled into the system, all of which can obscure or distort
gravitational signals and usually determine the accuracy limits of a gravimeter.

Device tilt is significant because gravimeters are only sensitive in a single direction since
they work by measuring the height of a falling test mass or the linear displacement of a test mass
on a spring (or equivalent system). Therefore, if the gravimeter’s sensitive axis is misaligned
with the gravitational field, g, by an angle, θ , then it will instead measure gθ , where

gθ = gcosθ , (1.12)

which will lead to an underestimate of the true g. This means that gravimeters must be carefully
levelled before use to accurately measure g and most commercial devices are equipped with tilt-
sensors and an adjustable base to facilitate this. Also, if θ is measured during device operation
it is possible to use equation eq. (1.12) to estimate the true g from the observed gθ but any
uncertainty when measuring θ will lead to uncertainty in the calculated g.

Temperature changes can also affect the physical function of gravimeters and have a par-
ticularly significant impact in spring-based relative gravimeters since the spring constant (i.e.

the stiffness) of the spring used in these systems usually has some temperature dependence. A
change in spring constant will cause a change in the equilibrium position of the test mass that
the instrument will be unable to distinguish from a real change in g and so contribute to error in
the data. To reduce the impact of temperature changes, gravimeters are generally insulated or
internally temperature-controlled to minimise the temperature variations of the device’s internal
components. The effect of temperature can also be removed from gravity data to some extent
through consideration of the temperature-dependent behaviour of the spring material used and
close monitoring of temperature changes, estimating the size of the effect and subtracting it from
data.

Gravimeters are also very sensitive to external vibrations which can interfere with the pre-
cise position measurements of falling or suspended test masses used in both absolute and relative
devices. Relevant sources of vibrational noise include anthropogenic effects like the device be-
ing bumped or ground vibration due to nearby infrastructure as well as vibrations from wind or
seismic effects like earthquakes or even waves crashing on distant shoreline. These vibrational
noise sources tend to have a much higher frequency than gravitational signals of interest, which
change much slower over time or almost not at all, so the effect of vibrational noise can be re-
duced by averaging gravimeter data over a period of time. To counter vibrational noise, some
high-accuracy gravimeters use sophisticated active isolation systems to insulate them from the
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effects of ground motion and let them measure free-falling masses (and thereby, g) even more
accurately. This adds to the complexity, size and cost of the device and so such vibration iso-
lation systems are usually only found on absolute gravimeters at gravitational base stations and
not used for field surveys.

The sensitivity of different gravimeters is usually compared by considering the amplitude
spectral density (ASD) of individual device measurements, which describes how a device’s ac-
celeration sensitivity varies with the frequency of acceleration it is subjected to. The ASD of a
measurement is found by taking the square-root of the power spectral density (PSD) of the same
measurement and is commonly used to describe the performance of accelerometers and various
electrical components such as op-amps *. Since power spectral density is presented with units of
power per frequency (commonly W/

√
Hz), the units of amplitude spectral density are the square

root of this, namely amplitude per square-root of frequency (amplitude/
√

Hz). In the case of
gravimeters, the ASD of measurements is usually expressed in units of Gal/

√
Hz and the ASD

at a frequency of 1Hz is often used when making comparison between device sensitivities.

1.4.2 The ‘Wee-g’ MEMS gravimeter

Much of the work in this thesis is focused around a new type of relative gravimeter under devel-
opment at the University of Glasgow, at the time of writing, that aims to be substantially smaller
and cheaper than its contemporaries while still exhibiting good performance. This device, called
the ‘Wee-g’, is based on a miniaturised mass-on-a-spring system small enough to be classified
as a MEMS (Micro Electro-Mechanical Systems) device and its performance as a gravimeter
was first demonstrated by a measurement of the Earth tides over five days (see section 1.3.4) in
2016 [81].

MEMS are miniaturized mechanical or electro-mechanical devices with features that range
from ∼ 1µm to several millimetres in size. They are most commonly made out of semiconduc-
tors, particularly silicon, for which microfabrication techniques have been well-developed by
the integrated circuit industry. MEMS devices have found many applications and can be used to
make many types of sensor, such as accelerometers, microphones and pressure sensors, capable
of matching or exceeding the capabilities of their macro-scale counterparts. In addition, MEMS
are often cheaper to make due to the well-developed microfabrication processes used in their
production that allow the batch-production of many devices at once to reduce unit cost. This
has resulted in the proliferation of small, low-cost MEMS sensors that are commonly used in
smartphones, cars and other consumer electronics [82].

The Wee-g MEMS gravimeter measures relative changes in local gravitational field strength,
g, by monitoring the displacement of a tiny, 0.02mg, test mass suspended by four spring can-
tilevers as pictured in fig. 1.7. The position of the test mass is measured in one direction only

*An ASD plot effectively presents the same information as a PSD plot but the vertical scale of the former is
linear, which can be preferable when variations in spectral density are relatively small.
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(indicated by the red arrow in fig. 1.7b) so, like other spring gravimeters, the device must be care-
fully levelled with its sensitive axis oriented vertically to avoid tilt-induced errors. Also, the stiff-
ness of the four silicon spring cantilevers is temperature dependent so the entire Wee-g device
(pictured partially-assembled in fig. 1.7a) is placed in a thermally insulated and temperature-
controlled enclosure to reduce temperature-induced errors.

In 2019, the Wee-g was used to measure gravity for 19-days and produced the measurement
of Earth tides shown in fig. 1.5, demonstrating its long-term stability [65]. The amplitude spec-
tral density of this measurement is plotted in fig. 1.8 and clearly shows the presence of signals
with frequencies that correspond to the diurnal and semidiurnal periods of the Earth tides, high-
lighted by the left-most grey area. The main series in fig. 1.8 is comprised of data collected using
a fast sampling rate of 20Hz (the orange line) and data collected with a slower sampling rate of
0.18Hz (the blue line), the latter of which was used for most of the measurement to reduce the
digital storage space required. The fast-sampling dataset in fig. 1.8 also shows the presence of
signals corresponding to microseismic vibrations — seismic signals originating from the effect
of ocean waves on the coast and seafloor [83, 84] — and due to the resonant frequency of the
Wee-g mass-on-spring system, itself. The unlabelled peak at approximately 25mHz does not
have a real geophysical source but was caused by the temperature control electronics used at
the time [65]. Also, the blue and yellow lines can be seen to decrease in amplitude at higher
frequencies but this is simply a result of low-pass filtering the data.

The yellow line in fig. 1.8 plots the ASD of the true electronic noise floor of the sensor and
is used to estimate the sensitivity of the Wee-g itself in the higher-frequency region, which is
otherwise dominated by seismic noise. Ideally, a seismometer would have been used in tandem
with the Wee-g during the measurement so that higher-frequency seismic effects could be mea-
sured and subtracted from the gravimeter data but no seismometer was available. Instead the
electronic noise floor serves as an estimate of the device’s best performance. The noise floor
is measured by altering the device operation in such a way that its output is decoupled from
any gravitational field changes or inertial movements, giving a measure of the noise originating
within the device itself.

Analysis of the data in fig. 1.8 by Prasad [65] concludes that during this measurement, the
Wee-g achieved a peak sensitivity of ∼ 18µGal/

√
Hz when using a 20Hz sampling rate. More

recent iterations of the Wee-g have demonstrated improved noise performance over that shown
in fig. 1.8. Figure 1.9 shows the ASD of a 10-minute sensor noise measurement (comparable to
the yellow line in fig. 1.8) taken in May 2023 by a newer Wee-g device, showing a sensitivity of
∼ 5µGal/

√
Hz at a frequency of 1Hz which is comparable to commercially available relative

gravimeters.
As well as demonstrating comparable noise performance to contemporary commercial gravime-

ters, the Wee-g promises at least an order of magnitude reduction in the size, weight and cost of
a relative gravimeter [85], thanks to its nature as a MEMS-based sensor. Such a device would
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(a)

(b)

Figure 1.7: (a): Photograph of a Wee-g MEMS gravimeter. The device is shown mounted in
an open package which is placed inside a thermally controlled enclosure inside another external
casing when assembled for use. (b): Labelled close-up of the moving parts of a Wee-g MEMS
gravimeter.
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Figure 1.8: Amplitude spectral density plot for drift-corrected data from a 19-day measurement
of gravity by a MEMS gravimeter for data collected using sampling rates of 0.18Hz (blue line)
and 20Hz (orange & yellow lines). Due to a plotting error, data is only shown to a lower
frequency limit of Notable signals are visible in the data with frequencies corresponding to
the Earth tides, microseismic vibrations and at the resonant frequency of the detector. The
unlabelled peak at ∼ 25mGal. was caused by the device temperature control electronics. The
yellow line shows a measurement of sensor noise, obtained by decoupling the device’s output
from gravitational and inertial disturbances, giving a measure of the devices internal noise floor.

Figure 1.9: ASD of a 10min-long Wee-g sensor noise measurement performed in 2023 using
a sampling frequency of 5Hz. The sensor output was decoupled from gravitational and inertial
signals during the measurement to characterise the internal noise of the device, arising from its
electronics.
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have a significant impact on the field of gravimetry, making it more affordable to projects with
limited budgets and allowing new strategies of sensor deployment that are unfeasible with larger
and more expensive gravimeters. For example, the Wee-g’s small size and weight could allow it
to be drone-mounted and used to conduct aerial gravity surveys of extended regions at reduced
cost when compared to the traditional approach of using large, expensive gravimeters carried
by light aircraft [18, 19]. Also, the Wee-g’s low cost would substantially reduce the financial
risk associated with deploying a gravimeter in remote locations for extended periods of time
to take long-term measurements and support the simultaneous deployment of multiple devices
in arrays. A gravimeter array using Wee-g sensors is currently being planned as part of the
‘NEWTON-g’ project which aims to establish a long-term gravity imaging network on Mt Etna,
an active volcano in Sicily, to better understand correlations between gravitational changes and
volcanic eruptions [86].

As mentioned previously, much of the work in this thesis is focused around the Wee-g,
with chapter 2 investigating the potential use of Wee-g arrays to detect submarines and chapter
4 detailing a gravity survey conducted using a contemporary gravimeter, performed to set a
benchmark to test future Wee-g sensors against.



Chapter 2

Modelling the detection of submarines by
gravimeters and gravimeter arrays

This chapter describes the work done to simulate the gravitational field of submarines and the
detection of these signals by arrays of gravimeters. The case that is modelled involves short-
range detection (under 50 metres) of a passing submarine by an array of multiple gravimeters,
as this exploits the potential advantages of the Wee-g MEMS gravimeter under development at
the University of Glasgow at the time of writing, spring 2023 (as discussed in section 1.4.2).
This PhD thesis was part-funded by the UK defence technology company QinetiQ in order to
support the work carried out in this chapter.

First, some background is given on contemporary underwater sensing techniques and their
advantages and disadvantages are discussed; particularly active and passive sonar, as these are
two of the most commonly used methods of submarine detection. Then, the gravitational method
of detecting submarines is described and compared to sonar methods. The advantages of the
Wee-g MEMS gravimeter and the use of gravitational detector arrays will then be described as
this sets out the motivation for the following modelling work. The gravitational model that has
been made will be described in detail, showing how a submarine was represented and how its
gravitational field was calculated. Then, simulations of gravity at a single gravimeter and an
array of gravimeters due to a submarine passing will be presented.

2.1 Underwater sensing

Underwater sensing can be defined as the detection and/or location of underwater objects and
has many different applications [87]. These include detecting fish and coral for marine ecology
or commercial fishing purposes [88, 89], mapping the topography of the sea floor or lake beds
(bathymetry) [90–94] and also in defence applications for the location submarines or other ves-
sels [95–97]. Underwater sensing is a very different challenge in comparison to sensing in air or

24
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vacuum, primarily because electro-magnetic radiation (i.e. light) of all wavelengths is heavily
attenuated underwater due to absorption and scattering as it propagates. Even in pure water at
the least-attenuated wavelengths (in the violet and ultraviolet range at λ = 380nm to 490nm
[98, 99]), light has an attenuation length of approximately 250m−1 [100], meaning that after
travelling 250m in this medium, such light will have its intensity reduced by a factor of 1/e to
approximately 37% of its original intensity. This effect is even more pronounced in seawater,
predominantly because of increased light scattering by small particles and organisms suspended
in the medium [101, 102]. In deep ocean water, at a depth of ∼ 200m, the ambient intensity of
visible light falls to 1% of that at the ocean surface and in more turbid (i.e. hazy) coastal waters,
this 1% light intensity is reached at depths of only tens of metres (the region between the sur-
face and the 1% light intensity depth is known as the euphotic — meaning ‘well-lit’ in Greek
— zone) [103, 104]. Light is also heavily attenuated by liquid water in the radio, microwave,
infrared, ultraviolet and higher-frequency parts of the EM spectrum [105].

The strong attenuation of light by water means that it cannot be used effectively to detect
objects or transmit information over long distances underwater as it can in air or vacuum. This
means that sensing and location techniques like optics, radar and GPS location (using visual
light, radio waves and microwaves, respectively) are far less useful in a marine environment.
While underwater environments are much less suitable for light detection methods than air or
vacuum, acoustic signals can travel further and faster in water than in air and, as a result, the
most commonly used method of underwater detection is sonar [96, 106, 107].

2.1.1 Sonar

Sonar detection methods use acoustic waves to find and/or locate objects and can be split into
two different approaches known as active sonar [108,109] and passive sonar [110]. Active sonar
works by first emitting acoustic waves and then listening for the reflection of the emitted signal
by underwater objects or the sea floor. By timing the interval between a signal being emitted and
its reflection being detected, and using sophisticated signal processing, it is possible to determine
the location, distance and even relative speed of a detected object. This method has been used
to detect submarines at a range of over 14km in favourable conditions [109]. Passive sonar, on
the other hand, works without emitting any acoustic signals and instead only listens for sounds
made by objects of interest (e.g. marine animals, surface ships, submarines) and filtering them
out from background noise. Its detection range varies greatly depending on how much noise is
emitted by the object in question.

As mentioned, there are many different applications for underwater sensing, however, it is
most commonly used for defence applications on military submarines or surface ships as a way
of detecting other submerged or surface vessels and in these contexts, sonar methods have sev-
eral disadvantages. One drawback of active sonar is that when a sonar signal is emitted it is easy
for the passive sonar of another submarine or a surface vessel to detect it which means that it
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shouldn’t be used by a submarine trying to stay undetected [111]. Also, the emitted acoustic
waves can be so intense that they damage the nearby environment and organisms in the water.
The main drawbacks of passive sonar are that it can be rendered less effective through the design
of quieter propulsion systems and is incapable of detecting anything that isn’t emitting noise,
such as a stationary ship, submarine or the sea floor. Both sonar methods are also adversely af-
fected by bad weather or proximity to waves breaking on a shoreline because these can increase
the acoustic background noise.

2.1.2 Gravitational sensing

Gravimetry offers a unique benefit compared to sonar sensing methods in that it is impossible
for any object (or more accurately, any variation in density) to hide the change in gravitational
field caused by its mass. This means that any object heavy enough (or with sufficiently large
internal density variations) that is within the sensitive range of a gravitational sensor will be
detected. Also, like passive sonar, gravitational sensing does not require the emission of any
acoustic signals so a gravimeter can operate without giving its position away. Unlike passive
sonar, however, gravitational sensing can also be used to detect objects emitting little or no
sound like stationary or quiet vessels or the sea floor.

There are also drawbacks to gravitational sensing, the most obvious of which is that, due
to the inherent weakness of the gravitational field, the gravitational signal from even the largest
of ships and submarines will be very small and difficult to detect. In theory, these fields could
be reduced further by adjusting the internal layout of vessels to try and reduce large changes in
density (relative to the vessel’s surroundings) over short distances. This would reduce the size
of the gravitational anomaly caused by the vessel but such design changes could only be done
to a limited extent while maintaining operational capability.

Also, as described in section 1.4, gravimeters are very sensitive to sources of noise like de-
vice tilt, vibration and temperature variation so it is very challenging to make sensitive devices
and operate them in potentially noisy environments. These drawbacks mean that even with
highly sensitive devices, the detection range of underwater gravitational sensors will likely be
limited in comparison to sonar detection methods. The gravitational detection scenarios mod-
elled in this work are those in which a gravimeter or array of gravimeters are deployed on the
sea floor, attempting to detect a submarine as it passes nearby.

2.2 Modelling the gravitational field of a submarine

The aim of this work is to estimate the detection range of a Wee-g MEMS gravimeter when used
underwater to detect submarines. By modelling the gravitational field around a hypothetical
submarine and comparing this to the sensitivity of the Wee-g gravimeter, an estimate of the
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device’s maximum range can be found. Because the gravitational signal of a submarine is likely
to be very small and hard to detect, this estimate will help decide whether the Wee-g is suitable
for these applications and whether further work is worth pursuing. Also, modelling background
noise in the measurement will help indicate what averaging time and data extraction techniques
would be necessary to detect the submarine signal in a real environment. This section will
describe how the gravitational detection of a submarine was simulated and the approximations
and estimates made in this process.

2.2.1 Making a density model of a submarine

The first problem when trying to simulate the gravitational field caused by a submarine is in
how to describe the shape and density distribution to a sufficient degree of accuracy. The de-
sign and internal layout of submarines is determined by their function: they need to be capable
of submerging, moving underwater and resurfacing while carrying various sensors, means of
propulsion and weapons systems as well as housing a crew for long periods of time. This results
in submarines having a complicated, non-uniform density that is difficult to describe mathemat-
ically, making calculating a submarines exact gravitational field a daunting prospect. As well
as this, detailed descriptions of the internal layout of submarines aren’t publicly available for
security reasons so this work will instead make simple assumptions about the density variations
within a submarine and will not be finding exact detection ranges.

To make a model of a submarine, it was decided to use a suitably sized cylinder with a
length-varying density chosen to approximate the size, shape and internal density variations of a
large submarine. The dimensions chosen for the cylinder were a length of 100 m and a diameter
of 10 m, as shown in fig. 2.1a. For the length-varying density, a one-dimensional density profile
was provided by the author’s supervisor, Prof. Giles D Hammond, that is presented in fig. 2.1b.
This profile describes the cylinder’s density as varying in a roughly sinusoidal fashion along its
length, consisting of regions more dense than the surrounding water at the midpoint and near
either end and areas less-dense than water elsewhere. There are also two spikes in density added
close to and equidistant from the midpoint to represent particularly heavy equipment, such as a
nuclear reactor. The specific density values used have been chosen such that the overall density
of the cylinder is very similar to that of the surrounding water to make it neutrally buoyant and
capable of maintaining a fixed depth when submerged underwater. While this density profile is
unlikely to match that of a real submarine, it has been confirmed as a reasonable estimate by Dr.
Gillian Marshall of QinetiQ, a UK-based defence company and part-sponsor of this work.

All models presented in this work assume the submarine is travelling in a straight line at a
fixed depth and that it’s density does not change. It is also assumed that the submarine modelled
is travelling through an isotropic and uniform-density environment of seawater with a density of
ρw = 1030kgm−3 (ρw is chosen as the approximate density of seawater at 10◦C with a salinity
of 35 ppt (parts per thousand) [112]; slightly more dense than pure water due to dissolved salts).
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(a)

(b)

Figure 2.1: (a) Schematic of a submarine and the cylindrical object used to represent it when
calculating its gravitational field. (b) A length-varying density profile similar to the one describ-
ing the cylinder used to represent a submarine. The real density profile used is not shown here
on request of QinetiQ. The dashed line marks, ρw the density of water.



29

In reality, the density of seawater varies spatially and temporally with changes in temperature
and salinity [112, 113] but consideration of these effects is beyond the scope of this work.

The total mass of the specified cylinder with this density profile applied is 8089600kgm−3

and its volume is approximately 7854m3. The cylinder has an overall density of about 1029.6kgm−3,
making it effectively neutrally buoyant in its surroundings.

2.2.2 Calculating the gravitational field

Now that a model of a submarine has been made, the gravitational field around it needs be
calculated to compare with the known sensitivity of the Wee-g MEMS gravimeter. As mentioned
in section 1.1 the gravitational field vector g around any density distribution ρ(r) can be found
with eq. (1.3),

g = G
∫
A

r− r0

|r− r0|3
ρ(r)dV , (1.3)

where G is the gravitational constant, ρ(r) describes the density distribution, V is the volume
of the cylinder and r is the vector from a volume element, dV , to the point at which g is being
found.

The integration in eq. (1.3) is difficult to solve for the submarine density model because
of it’s cylindrical shape and length-varying density. Instead of trying to find an exact analytic
solution, this work uses a Finite Element Analysis (FEA) technique to find approximate values
of g and its components.

Finite Element Analysis

Finite Element Analysis (FEA) is a numerical method that splits a complex problem into many
smaller, simpler elements, solves them individually, and then combines the element solutions to
find an approximate answer to the overall problem. FEA methods are commonly used in engi-
neering and physics for the numerical modelling of systems described by differential equations
or other analytic solutions that become very difficult to solve for all but the most simple of sit-
uations. This technique takes advantage of a computer’s high processing speed to run relatively
simple calculations many times, replacing complicated mathematics with a multitude of simpler,
small-scale assumptions. FEA analyses can easily become very computationally demanding be-
cause they tend to require a very large number of very small elements to form suitably accurate
representations. Increasing the number of elements used will cause the FEA solution to con-
verge on the true answer but at some point a compromise must be made between the number of
elements — and therefore, the time the analysis takes — and the desired accuracy.

Numerical methods have been used in the past to calculate gravitational fields for gravity
inversion as part of gravimetry [114,115] and in astronomy to compute the gravitational field of
asteroids [116]. Here, an FEA method is used to solve eq. (1.3) for the case of the cylindrical,
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Figure 2.2: Demonstration of how a cylinder is divided into cylindrical polar volume elements
as part of the finite element analysis performed to numerically calculate its gravitational field.

submarine-like object described in section 2.2.1. To do this, the cylinder is first imagined to
be divided into N cylindrical polar volume elements in the way shown in fig. 2.2, with each
element given a density determined by the length-varying density profile of the object. Then,
the gravitational field due to each element is calculated separately using a simplified method that
will be described below. Finally, the overall g due to the entire cylinder is found by summing the
contributions of all the elements. In this way, eq. (1.3) is changed from the complicated integral
over an object with a varying density into the straightforward summation shown by eq. (2.1),

g =
N

∑
i

gi , (2.1)

where gi is the gravitational field strength at the computation point due to the ith mass element
of the cylinder. Then, the x,y,z-components of gi are given by,

gxi =
N

∑
i

gi cosθi sinφi , (2.2)

gyi =
N

∑
i

gi sinθi sinφi , (2.3)

gzi =
N

∑
i

gi cosφi , (2.4)

where θi is the angle between the vector gi and the x-axis in the x-y plane and φi is the angle
between gi and the z-axis.

For each element, gi is found by assuming all of the element’s mass is located at it’s centre
of mass and then using Newton’s law of universal gravitation 1.2 to find the gravitational field of
this point mass. For non-spherically symmetric objects, this is an inaccurate assumption and will
only find an approximation of the true gi due to the element. The accuracy of this assumption
increases when elements are either smaller or farther away from the computation point because
this will make them appear more point-like. Since the distantness of elements is dictated by the
situation being considered, the FEA’s accuracy is controlled by the number of elements used,
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N, because when more elements are used, each one is smaller. Therefore, a sufficient number
of elements, N, must be used for the FEA to calculate an accurate value of g due to the entire
cylinder, and the exact amount necessary will depend on the proximity of the cylinder to the
computation point. How an appropriate N is chosen will be covered later in section 2.2.3.

To find gi using a point mass approximation, it is necessary to know where the element’s
centre of mass is in relation to the computation point to find appropriate values for r in eq. (1.3)
and θi and φi in eqs. (2.2) to (2.4). This is simple for symmetric objects with a uniform density
for which the centre of mass is always at the geometric centre but more complicated for cylin-
drical polar elements like the one pictured in fig. 2.3a due to their asymmetry. In this case, the
element’s centre of mass is not at it’s centre but is instead closer to the shorter of its two curved
faces by an amount dependent on the element’s size and position. This can be seen in fig. 2.3b
which shows how the element’s centre of mass is not half-way along its thickness but is instead
closer to the coordinate origin.

The radial distance from the z-axis to an element’s centre of mass rcom can be calculated
mathematically using the following method. For any object, the vector from the origin to its
centre of mass, Rcom can be found with eq. (2.5),

Rcom =
1
M

∫
r dM , (2.5)

where M is the total mass of the object and r is the vector to an infinitesimal mass element,
dM, within it. In a Cartesian coordinate system, Rcom consists of (x,y,z) components shown in
eq. (2.6) and in a cylindrical polar system the components change to those shown in equation
eq. (2.7).

Rcom =
1
M

(∫
x dM î+

∫
y dM ĵ +

∫
z dM k̂

)
, (2.6)

Rcom =
1
M

(∫
r cosθ dM î+

∫
r sinθ dM ĵ+

∫
z dM k̂

)
. (2.7)

For the case of the cylindrical polar volume elements used here, eq. (2.7) can be simplified
thanks to the uniform density and partial symmetry of individual elements. Due to symmetry,
the centre of mass of an element will always be halfway along its length in the k̂ direction and
halfway along its angular extent in the θ direction, with only the radial position, rcom, unknown.
By considering the arrangement shown in fig. 2.3b where the element is bisected into two equal
halves by the x-axis, it is clear that rcom is equal to the component of eq. (2.6) in the î direction
and can therefore be expressed as,

rcom =
1
M

∫
r cosθ dM . (2.8)

This expression will apply for cylindrical polar elements in all locations, including those not
bisected by the x-axis because of how such elements are defined in a cylindrical polar coordinate
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(a) A cylindrical polar volume element of thickness L, angular size δθ and inner and outer radii R1 and
R2, respectively.

(b) Top-down view of a cylindrical polar volume element. The centre of mass is labelled with a dot and
its radial distance from the centre is rcom.

Figure 2.3: Isometric and plan diagrams of cylindrical polar volume elements like those used in
the Finite Element Analysis method to find gravity due to a cylindrical object.
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system. In the FEA model, individual elements have a uniform density, ρ , and so the cylindrical
polar mass element dM can be expressed as

dM = ρ dV . (2.9)

Using the appropriate volume element for cylindrical polar coordinates, dV = r dr dθ dz , and the
substitution shown in eq. (2.9), eq. (2.8) becomes eq. (2.10), below, which can then be evaluated
by using the element boundaries as limits of integration,

rcom =
ρ

M

L∫
0

δθ

2∫
− δθ

2

R2∫
R1

r2 cosθ dr dθ dz , (2.10)

where L, δθ , R1 and R2 are the thickness, angular size and inner and outer radii of the element,
as shown in fig. 2.3a. Evaluating this integral results in the following:

rcom =

(
R2

3 −R1
3)ρ

3M

L∫
0

δθ

2∫
− δθ

2

cosθ dθ dz ,

=
2
(
R2

3 −R1
3)ρ

3M
sin

(
δθ

2

) L∫
0

dz ,

rcom =
2
(
R2

3 −R1
3)ρL

3M
sin

(
δθ

2

)
. (2.11)

The mass of the element, M, in eq. (2.11) can also be expressed only in terms of the element’s
dimensions and density by calculating the element’s volume. This is done by integrating the
volume element, dV , over the element dimensions.

V =

L∫
0

δθ

2∫
− δθ

2

R2∫
R1

r dr dθ dz ,

=

(
R2

2 −R1
2)

2

L∫
0

δθ

2∫
− δθ

2

dθ dz ,

V =

(
R2

2 −R1
2)δθL

2
. (2.12)

Substituting eq. (2.12) into eq. (2.11) using M = ρV then gives eq. (2.13) for rcom in terms of
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the element’s dimensions,

rcom =
4(R2

3 −R1
3)

3(R2
2 −R1

2)δθ
sin

(
δθ

2

)
. (2.13)

Once rcom is found for an element, it is then relatively easy to find the location of this
element’s centre of mass relative to the computation point when calculating gi (this is described
in more detail in the next section). Then, when gi for all elements has been calculated, the total
gravitational field due to the entire cylinder, g, can be calculated using eq. (2.1). Since a large
number of elements is required for the FEA to be accurate, it is sensible to use a computer to save
time when calculating gi values and the total g. To do this, MATLAB scripts and functions have
been written to carry out the FEA method described above to estimate g due to the submarine-
like cylinder detailed in section 2.2.1.

2.2.3 A MATLAB model of the gravitational field of a submarine

As mentioned in the last section, Finite Element Analysis (FEA) methods split problems into
a large number of smaller domains and apply simplified solutions to each separately, relying
on high computing speed to perform the many calculations reasonably quickly. For this work,
the FEA described has been implemented in a series of MATLAB scripts and functions that
approximate the gravitational field strength at a point as the cylindrical submarine-like density
described in section 2.2.1 moves past. These programs are structured so that there is one main
program run by the user which accepts all relevant input parameters and refers to other MATLAB
scripts as functions in the course of calculating the desired output. Two main programs were
made to calculate gravitational field strength and its components at a single position or at a
square array of multiple positions as a submarine density model is moved past in a straight line.
Both of these programs refer to the same two function scripts that allow the program to describe
the starting position of the cylindrical submarine model and to find g at the computation point or
points during its travel. Full copies of these MATLAB scripts are presented in appendix A and
a more detailed summary of them will now be given.

‘single_detector_g_field.m’ and ‘multiple_detector_g_field.m’ — the main programs: As
mentioned, these are the only programs actually run by the user and simulate the gravitational
field at either a single location (‘single_detector_g_field.m’) or at a square grid of multiple loca-
tions (‘multiple_detector_g_field.m’) as a cylindrical submarine density model travels past in a
straight line. For inputs, these programs require the dimensions of the cylindrical density (length
and radius), its starting position and orientation, the length-varying density profile describing the
cylinder (in the form of a vector of density values) and the density of the background medium.
Also needed are the number of radial, angular and length elements to split the cylinder into for
the FEA analysis (how these are chosen for this work is covered later in this section), details
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of the cylinder’s trajectory (in the form of the total distance moved and the distance interval to
use when calculating g) and, for ‘multiple_detector_g_field.m’, the number of sensors in the
detector array and their spacing.

After all necessary inputs are provided, these programs call the first function script, ‘cylin-
der_elements.m’, which generates a cylinder of the specified dimensions and orientation at the
given starting location, divides this cylinder into the specified number of cylindrical polar ele-
ments and calculates the centre-of-mass coordinates, volume and density of each element. Fol-
lowing this, the second function script, ‘cylinder_g.m’ is called which calculates the total grav-
itational field, g, and its x-, y-, z-components at the computation point (or points, in the case of
a sensor array) at regular intervals during the cylinder’s motion and stores the results as vectors,
which can then be plotted or outputted to a file. At this point, the ‘multiple_detector_g_field.m’
program differs from ‘single_detector_g_field.m’ by repeatedly applying ‘cylinder_g.m’ using
suitable displacements to the cylinder elements’ starting positions which allows calculation of
the gravitational field at the various locations in the sensor array. This results in multiple vectors
showing g variation at each sensor in the array which are then stored as elements of a cell array
for plotting or outputting.

‘cylinder_elements.m’ — the first function: This function starts by describing a vertical
cylinder of the specified dimensions, centred at the origin and divided into cylindrical polar vol-
ume elements using the number of radial, angular and length elements. The number of elements
that the cylinder is to be divided into is specified in the input of the main programs by the vari-
ables Nr,Nθ and Nl which describe the number of elements to use in the radial, angular and
length-wise directions. The volume, V of each element is calculated using eq. (2.12) and the
radial position of each element’s centre of mass, rcom, is found with eq. (2.13). These quanti-
ties (and other values describing the element features) are stored in arrays of size Nr ×Nθ ×Nl

in such a way that a quantity’s index in the array corresponds to it’s position in the cylinder
such that the Nr-dimension counts elements from the central axis of the cylinder outwards, the
Nθ -dimension counts clockwise around the z-axis (starting from the positive x-axis) and the
Nl-dimension counts elements along the cylinder length from its lowest face.

Following this, the Cartesian coordinates of each element’s centre of mass are determined
(and stored as arrays of x-coordinates, y-coordinates and z-coordinates) from the calculated rcom

values and the partial symmetry of each element, which (due to each element’s uniform den-
sity) means the centre of mass is always located halfway along it’s angular and length-wise
extents (see fig. 2.3). A vector describing the density, ρ , of each length segment of the cylinder
is read from an external file (in this work, a ‘.xls’ file type is used) and then re-sized into an
Nr ×Nθ ×Nl-sized array to describe the density of all elements in each length segment (since
a one-dimensional density profile is used here, all elements in a given length segment have the
same density). Finally, the element coordinates are all rotated about the origin using rotation
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matrices to give the desired cylinder orientation and then translated from the origin to the spec-
ified starting point of the cylinder’s motion. The results of this program are arrays describing
the centre-of-mass coordinates, volumes and densities of all elements describing the specified
cylinder at the starting position of its trajectory.

‘cylinder_g.m’ — the second function: This function moves the cylinder elements described
along the desired trajectory in increments and calculates g and it’s x,y,z-components at the origin
at each step of the motion using eq. (1.3) to calculate the gravity field due to each element and
eqs. (2.1) to (2.4) to find the total g and its components. The mass of each element is found from
its volume and density values and with this, the contribution to g at the origin of each element
can be found at each step and the element’s coordinates. The components of g (gx, gy and gz)
are found by converting the Cartesian coordinates of elements to a spherical polar coordinate
system (r,θ ,φ ) and then using eqs. (2.2) to (2.4). Both the step size and total number of steps
used in the trajectory must be provided at the start and, once gravity values have been calculated
for a step, all element coordinates are incremented by one step size in the direction of motion
and the process repeats.

Choosing the appropriate number of elements

As mentioned in section 2.2.2, the FEA method is only accurate when the number of elements
used during the analysis, N, is large enough to make the point-mass assumption used to calculate
gi (the gravitational field due to individual elements) reasonable. In addition, the point-mass
approximation becomes less accurate when elements are close to the computation point and,
therefore, more elements are needed when the cylindrical density in question is nearby. To get
an idea of how many elements are required, the FEA model was used to find the gravitational
field of a cylinder multiple times while increasing the number of elements used. This was
repeated at different distances from the cylinder to see exactly how proximity and the number
of elements used affects the calculated g.

The cylinder used for this test had the same dimensions as the submarine-like density pro-
file described in section 2.2.1 (R = 5m, L = 100m) but was given a uniform density of ρ =

3000kgm−3, chosen arbitrarily, and had its central axis aligned with the z-axis. For simplicity,
the number of elements the cylinder was divided into was decided by a single variable, Nα , that
dictated how many radial, angular and length elements were to be used (Nα = Nr = Nθ = Nl).
Examples of how the cylinder was divided for different values of Nα are shown in fig. 2.4.

It is clear from fig. 2.4 that using an equal number of radial, angular and length elements
is not the most efficient way to divide the cylinder because this approach exaggerates the num-
ber of radial elements used which will make the program take longer to run. The surplus of
radial elements has no benefit because the accuracy of the FEA will instead be limited by the
number of angular and length elements used, and length elements will generally be underused
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Figure 2.4: Examples of how cylinders were split into elements when trying to find an appro-
priate number of elements to use. Here Nα is a constant equal to the chosen number of radial,
angular and length elements.

in comparison (as visible in fig. 2.4) which will negatively accuracy. A more efficient method
of dividing the cylinder is not investigated in this work because the less efficient programs still
only take a matter of seconds to run on contemporary computers.

Figure 2.5 shows the results of running the FEA using increasing values of Nα when trying
to calculate the x-component of the gravitational field gx when the cylinder’s central axis is a
distance, x, from the origin. The calculated gx varies greatly at low values of Nα before quickly
converging to a consistent value when Nα gets larger and the FEA gets more accurate. As
expected, fewer elements are needed to make gx converge when the cylinder is farther away
because a point-mass approximation is a better representation of more distant objects. Even for
the closest case considered where x = 20m, variations in gx when Nα = 10 are less than 1µGal,
lower than the observed noise performance of the Wee-g MEMS gravimeter at time of writing.

An Nα of 30 is used for all further calculations comparing the FEA to the analytic solution
to ensure any inaccuracies aren’t due to an insufficient number of elements being used.

2.2.4 Testing the accuracy of the model

Now that FEA model of gravity around a cylinder has been presented, it is important to check
whether its results are accurate in order to have confidence in the predictions it makes. To do
this, the model’s performance has been compared to that of an analytic solution made by Na
et al. [117] for finding the gravitational attraction due to a vertically-oriented, uniform density
cylinder as pictured in fig. 2.6.

Analytic solution

The analytic solution finds the radial and angular components of gravitational field strength, gr

and gθ , shown in fig. 2.6 using eqs. (2.14) and (2.15) and from these the Cartesian components,
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Figure 2.5: Graph showing how the number of elements affects performance of the FEA when
at different distances from the cylinder in question. gx is the x-component of gravity due to a
uniform-density vertical cylinder and Nα is the number of angular, radial and length elements
used (Nα = Nr,Nθ ,Nl).

Figure 2.6: Diagram of the uniform density cylinder considered when comparing the FEA model
with an analytic solution. The point at which gravitational field strength is calculated is shown
by the blue dot.
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gx and gz, can also be found with eqs. (2.16) and (2.17):

gr = GM
[

1
r2 −

L
r3 P1(cosθ)+

(
L2 − 3

4
R2

)
1
r4 P2(cosθ)

+

(
3R2L

2
−L3

)
1
r5 P3(cosθ)+ . . .

]
, (2.14)

gθ = GM
[
− L

2r3
dP1(cosθ)

dθ
−
(

L2

3
− R2

4

)
1
r4

dP2(cosθ)

dθ

−
(

3R2L
8

− L3

4

)
1
r5

dP3(cosθ)

dθ
+ . . .

]
, (2.15)

gx = gr cosθ +gθ sinθ , (2.16)

gz = gr sinθ −gθ cosθ , (2.17)

where r, and θ are the polar coordinates from the centre of the cylinder’s top face to the com-
putation point (see fig. 2.6); R, L and M are the radius, length and mass of the cylinder; G is the
gravitational constant (G = 6.67× 10−11 m3 kg−1 s−2) and Pn(cosθ) is the nth order Legendre
polynomial in cosθ . For reference, the first three Legendre polynomials and their differentials
as used in eqs. (2.14) and (2.15) are [118]:

P1(cosθ) = cosθ ,
dP1(cosθ)

dθ
=−sinθ , (2.18)

P2(cosθ) =
1
2
(
3cos2

θ −1
)
,

dP2(cosθ)

dθ
=−3sinθ cosθ , (2.19)

P3(cosθ) =
1
3
(
5cos3

θ −3cosθ
)
,

dP3(cosθ)

cosθ
=−15

2
sinθ cos2

θ +
3
2

sinθ . (2.20)

This analytic solution is not valid for calculating g at positions that are too close to the
cylinder’s axis. Specifically, if z is the perpendicular distance between the cylinder’s axis and
the computation point, the accuracy of the calculated gx and gz values decreases as x approaches
the limit of x = L or x = R and are invalid when x < L or x < R. This is kept in mind when
comparing the performance of the FEA model and the analytic solution and some disagreement
is expected when approaching the limits mentioned. It should also be noted that the analytic
solution as used here is not entirely accurate because only the first three terms of the Legendre
polynomial are considered. However, this is still a good approximation when not close to the
x < L or x < R limits [117].

Comparing the FEA and analytic solutions

The FEA model and analytic solution were used to calculate gx and gz at a point as the cylin-
der pictured in fig. 2.6 moved past in a vertical straight line trajectory, parallel to the x-axis.



40

It was decided arbitrarily to use cylinder dimensions of R = 5m, L = 20m, and a density
ρ = 3000kgm−3. The cylinder’s geometric centre was moved from x = −200m to x = 200m
and gx and gz were calculated in 1 metre intervals along the trajectory. This was repeated for
several parallel trajectories at different z positions, ranging from 20m to 150m, to find where the
cylinder was far away enough from the x < L,R limit that inaccuracies in the analytic solution
would be negligible.

Figure 2.7 shows some examples of gx and gz found by both models as the cylinder moved
past along three different z trajectories. The general shape of the FEA and analytic solutions
show close agreement but there is some difference between them in places, most easily visible
at the peaks in gx and gz. The disagreement between the models is more clearly shown by
fig. 2.8 which plots the percentage difference between the maximum gz calculated by the FEA
and analytic solutions for all x positions used. The percentage difference, ∆, was calculated by
first finding the difference between the FEA and analytic gz values and then determining what
percentage of the FEA value this difference amounted to.

As the x-position of the moving cylinder increases, the percentage difference between gx

values found by the FEA and analytic models decreases and seems to be tending to zero. This
suggests that the FEA is finding accurate results because the analytic solution is known to in-
crease in accuracy as x gets farther from the limit x < L,R and this is where the most agreement
is shown. This is not a direct confirmation that the FEA model is accurate in the region where
x < L,R but suggests that the FEA has been correctly implemented here and that, as long as
enough elements are used, should be accurate in near-field regions too.

2.3 Simulating submarine detection by Wee-g MEMS gravime-
ters

As mentioned at the start of this chapter, the aim of this area of work is to investigate how
effective the Wee-g MEMS gravimeter would be when used for the gravitational detection of
submarines. With the FEA program and submarine density model described in section 2.2, it is
now possible to approximate the gravity field around a submarine and to use this to estimate the
maximum detection range of these fields by the Wee-g. In addition, arrays of multiple Wee-g
detectors can be simulated to look at the benefits of using sensor arrays to detect submarines,
something the Wee-g is well suited to because of its low cost. This section will present and
discuss the results of using the FEA program to simulate single Wee-g detectors and detector
arrays when attempting to detect the gravitational field of a submarine-like density.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.7: Comparisons between the FEA method and analytic solution when calculating g at
the origin as a vertical cylinder with uniform density moves past, travelling in the z-direction.
The cylinder modelled is described in section 2.2.4.
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Figure 2.8: Percentage difference, ∆ between the FEA and analytic solutions when finding the
maximum gz at a point when a uniform-density cylinder, like the one in fig. 2.6, moves past in
a straight line in the x-direction with it’s central axis z metres above the point. Specifically, ∆

shows the difference between the gz values found by the two solutions as a percentage of that
found by the FEA solution.

2.3.1 Single detector

The first situations considered are those shown in fig. 2.9a, in which a cylindrical density travels
in a straight line past a single detector located at the origin. The cylindrical density used is
described in section 2.2.1: 100m long with a radius of 5m and the submarine-like length-varying
density profile shown in fig. 2.1. During the simulation, this cylinder moves in a straight line
in the x-z plane from x = −200m to x = 200m with a constant speed of 5ms−1 (≈ 10 knots,
a realistic value for a submerged submarine [119]) at a fixed z-distance from the detector. This
motion takes 80s, during which the gravitational field magnitude |g| and its x-z components, gx

and gz, are calculated at the detector in 0.4s intervals.
To estimate the detection range of the Wee-g, this simulation was repeated several times

using cylinder trajectories with different z-positions relative to the detector. The gravitational
fields resulting from these simulations can then be compared with the known sensitivity of the
Wee-g to infer a detection range of the device. Figures 2.9b to 2.9d plot the results of some of
these simulations performed for a number of different z values.

Figures 2.9b and 2.9c show that despite having the same overall density as water, the cylin-
drical density still causes a change in gravitational field strength when it moves past the detec-
tor. This is because of the length-varying density of the cylinder: when one part is significantly
closer to the detector than the rest, that part’s density will have a dominant effect on determining
gravitational field strength. This explains why, for example, gz in fig. 2.9c becomes negative
around 25s because at this point, the large less-dense parts of the cylinder are closer than the
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(a) (b)

(c) (d)

Figure 2.9: (a): Diagram of the situation being modelled. (b), (c) and (d): Plots showing how
gx, gz, and |g| at the detector vary with time during the cylindrical density’s motion.
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(much heavier) middle area of the cylinder and so have a dominant effect on total gz. This effect
becomes more pronounced when z is smaller and the cylinder is closer to the detector because,
in such cases, there is a more disparate distance from the detector to the nearest part than to the
rest of the cylinder. This also explains why a distinct, double-peak shape can be seen in figs. 2.9c
and 2.9d when z is below 30m because of the individual interactions of the two density peaks
either side of the cylinder’s centre, visible in fig. 2.1. The close-range gx profile in fig. 2.9b
looks yet more complicated since the overall gx shifts between being positive and negative (i.e.
pointing left and right) multiple times in quick succession as the cylinder passes. However, this
behaviour is easily explained by considering the particular shape of the density profile; first gx is
positive (to the right) as the first large lower density region closes on the detector, it then shifts
negative (to the left) as the first density peak approaches, then switches positive (to the right)
again as the first peak passes, and then reaches zero as the two peaks become equidistant from
the detector. This same behaviour is then observed in reverse as the cylinder continues travelling
past the mid-point of its journey, because of the symmetry of the density profile.

Perhaps counter-intuitively, the gravitational field at the 40s point in figs. 2.9c and 2.9d, at
the midpoint of its journey, is seen to actually reduce at smaller z values. This is because in this
position, both of the central density peaks and large low density areas either side of them become
equally distant from the detector, thanks to the density profile’s symmetry, and the low density
areas (being large enough to make the entire cylinder neutrally buoyant) begin to substantially
cancel out the effect of the peaks.

As discussed, a submerged neutrally-buoyant object will only have a gravitational field dis-
tinct from the surrounding water because of its internal density variations. If these density
variations are too small, or if the object is too far away for them to be spatially resolved, a
gravimeter would not be able to distinguish it from the surrounding water. This is visible in
fig. 2.9 where larger values of z lead to reduced variations in gravitational field at the detector
position. Because a gravimeter would detect a submarine by the density variations within it, it
could be possible to identify the type of submarine from these variations if it is close enough, as
well as simply detecting its presence. Investigating this further would require various different
submarine density models to be made as well as improving their accuracy, and is beyond the
scope of this work.

Detection range

As mentioned in the section 1.4.2, the most recent version of the Wee-g has demonstrated a
noise-limited sensitivity of ∼ 5µGal/

√
Hz at a frequency of 1Hz (see fig. 1.9, meaning it can

detect gravitational changes as small as 5µGal when using an averaging time of 1s. By compar-
ing this to the predicted maximum gravity signal caused when the submarine like density moves
past a point at different distances, it is possible to make an estimate of the maximum range at
which the Wee-g would be able to detect the gravitational field of real submarines.
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Currently, the Wee-g is a one-dimensional detector, meaning it is only sensitive to gravita-
tional fields in a single direction: along the vertical axis of the test mass shown in fig. 1.7b.
Here, the maximum detection range will be found by assuming that the detector’s sensitive axis
is aligned with the z direction as shown in fig. 2.9a so that it measures gz. Figure 2.9c shows
that when the submarine model moves past the detector at 20m, the simulated gz peaks twice
at approximately 7µGal and is more than 5µGal for a few seconds in total, which suggests that
the Wee-g’s maximum detection range of this object would be just over 20m. However, it is
important to consider that the simulation is a simplification of the real-world scenario it aims to
model and this will cause the predicted detection range to differ from the true value.

For example, the cylindrical density model used to represent a submarine is only a rough
approximation of a real submarine, in terms of its shape and internal density and this could
affect the accuracy of the simulation significantly. Real submarines are not entirely cylindrical
in shape for hydrodynamic reasons and their internal density is very complicated as discussed in
section 2.2.1. Also, it is assumed that the Wee-g would be able to achieve the same sensitivity of
5µGal/

√
Hz when used in an underwater environment as it has demonstrated in land-based field

tests [85]. In reality, using the Wee-g underwater (presumably inside a waterproof enclosure)
could expose the device to additional sources of environmental noise which could worsen it’s
noise performance and reduce the detection range. These additional noise sources could be due
to an increase in vibrational noise from ocean currents and differences in the acoustic properties
of water compared to air; as well as changes in local gravitational field caused by varying water
density (as temperature/salinity changes), and the effect of waves on the ocean surface.

This is a very short detection range, substantially less than the length of the submarine itself,
but such a detector could still be useful in shallow waters such as those near ports or coastlines.

2.3.2 Gravimeter arrays

According to the simulations detailed in this chapter, a single gravimeter is only likely to detect
submarines at short ranges. However, the area of sensor coverage could be increased by using
multiple gravimeters simultaneously, spread apart from each other in lines or arrays. Detector
arrays are commonly used in other fields — such as sonar detection, radar detection, seismology
and astronomy [120–125] — to better determine the direction that a signal originates from and
to improve noise performance (and hence, detection range) by correlating measurements from
multiple detectors.

Using gravimeters in arrays could offer similar benefits as for other sensors but deploying
many gravimeters at once is an expensive prospect because of the high-cost of contemporary
devices. The Wee-g MEMS gravimeter would be particularly well-suited to use in arrays since
its significantly lower cost per-unit would make gravimeter arrays more affordable, while still
offering good performance. In this section, basic models of submarine detection by gravimeter
arrays are presented to explore the advantages of this mode of operation. This work only con-
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siders simple arrays, either a one-dimensional line of equally-spaced detectors or a regular 2D
square grid of detectors, with the centre of the array at the coordinate origin which are modelled
using the array program described in section 2.2.3.

1D arrays

The 1D arrays modelled here consist of 4 gravimeters arranged in a straight line in intervals of
5m positioned around the origin, as shown in figs. 2.10a and 2.10c. Each sensor in the arrays
is assumed to be sensitive in one direction only, and to have its sensitive axis pointing in the
z-direction. In both cases, the submarine density moves at 5ms−1 along a path parallel to the
x-axis and in the same plane as the array but displaced by 20m in the z-direction. Plots of gz

at each detector as the submarine moves past are shown in fig. 2.10b for the parallel array and
fig. 2.10d for the perpendicular array, relative to the cylinder’s path of motion.

For the case shown in fig. 2.10a, where the submarine’s path is parallel to the detector array,
all sensors in the array measure the same gravity profile but in delayed intervals, due to the
detectors being spread out along the path of travel. If the submarine’s position and motion were
unknown, the measurements shown in fig. 2.10b could be used to deduce that the submarine
travels parallel to the array, since this is the only way all detectors would measure the same
changes in gz with the observed delay. Also, the submarine’s direction of travel could be found
by observing which detectors in the array measure changes in gz first, since this shows which
side of the array that the submarine approaches first. In addition, an estimate of the vessel’s
speed could be made from the time delay between gz readings in different detectors and their
relative position in the array. One limitation of the array in fig. 2.10a is that it would not be
able to identify which side of the x-axis the submarine is travelling on, as the path shown, where
z = 20m, will result in the same gz measurements as a path for which z =−20m.

The other case modelled here is that shown in fig. 2.10c where a submarine travels along
the same path as before but past an array aligned along the z-axis, perpendicular to the direction
of travel. As shown in fig. 2.10d, this causes detectors in the array to measure different gravity
profiles, due to their different proximities to the submarine’s path, but without the delay between
peak gz measurements seen in the parallel case. Detectors farther from the submarine’s path
are seen to measure smaller and slower changes in gz as it moves past which can be used to
identify which side of the array the submarine is travelling on and the lack of delay between
detectors indicates a perpendicular path. However, because there is no time delay between
detector readings, this array cannot determine the direction that the submarine is travelling in.

In reality, it is likely that a passing submarine won’t be moving exactly parallel or perpendic-
ular to a linear detector array as modelled here. In these in-between cases, the detected gz by the
detectors in an array is expected to appear as a combination of the results modelled in figs. 2.10b
and 2.10d, showing a time delay between measurements as well as differences in the strength of
gz changes at each detector. Extracting information about the submarine’s location or direction
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(a) (b)

(c) (d)

Figure 2.10: Modelling of 1D detector arrays. (a) and (c) show top-down diagrams of a subma-
rine’s motion past 1D gravimeter arrays aligned either parallel or perpendicular to the subma-
rine’s direction of travel. (b) and (d) plot the gz at each detector in the arrays during the motion
shown in (a) and (c), respectively. Detectors 1 to 4 list detectors from left to right in (a) and top
to bottom in (c). In both situations, the arrays are centred on the origin and the submarine travels
in the same plane, along the line z = 20m.
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of travel relative to the array will be more complicated in these cases and developing techniques
to do so is beyond the scope of this work. Similar problems of array signal processing have been
addressed in other fields of study to extract information from array signals [120] and some tech-
niques developed for these purposes could be useful in gravitational arrays as well. However,
some of these methods may not work for gravimeter arrays due to the particular properties of the
gravitational force, like its high speed of propagation (the speed of light, c ≈ 3×108 ms−1) and
the inability to block incoming gravitational signals from a specific direction. Models like those
presented in this chapter will be useful when developing signal processing systems trying to
extract useful information (such as the direction to the source, its speed and direction of travel)
from gravimeter array data.

2D arrays

Simulations shown in fig. 2.10 show that, in some cases, 1D gravimeter arrays have limitations
in their ability to determine the location and direction of travel of a passing submarine. One way
to improve upon these arrays would be to extend them in a second dimension and this section
presents a basic simulation of submarine detection by such 2D gravimeter arrays.

Figure 2.11 shows the results of modelling gz at the square 10x10 array of gravimeters visible
in fig. 2.11a as the submarine density described in section 2.2.1 travels over the array. The
submarine in the simulation moves at a speed of 5ms−1 in a straight line, parallel to the x-axis
for which z = 20m and the grid spacing of the array is 8m. Due to the number of detectors in
the array, it is inconvenient to plot gz as a function of time for all detectors simultaneously so,
instead, surface plots of gz at the detectors in the array have been made for three points during
the submarine’s motion (at 25s, 32s and 45s), shown in fig. 2.11b. The cylinder position at these
times is shown in the schematic in fig. 2.11a in which the position of detectors in the array is
indicated by green dots. The surface plots themselves only show the 80m×80m area occupied
by the array and each vertex on the surface corresponds to a detector position.

From the surface plots in fig. 2.11, a similar gravity profile to earlier simulations can be seen
but these plots offer a more complete visualisation of the shape of the gravitational field around
the submarine density modelled here. As with the 1D array simulations, models like this one
would be useful when designing the layout of future gravimeter arrays and developing signal
processing techniques for them. In future such models could also be useful when designing
submarines to try and reduce the gravitational field that they generate as much as possible by
changing how internal mass is distributed.

2.3.3 Matched Filtering to extend detection range

Since the gravitational signals simulated in this chapter are small (only a few µGal), the detection
range of submarines using a gravimetric method is likely to be limited and any signal processing
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(a) (b)

Figure 2.11: Modelling of a 2D detector array. (a) top-down schematics of the submarine mo-
tion, 20m above the array in the z-direction, at the indicated times. (b) corresponding surface
plots of gz at the detector array.
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methods that could improve the performance of a detection system would be very useful. Here,
the use of signal processing methods is investigated with the aim of reducing the impact of noise
when searching for submarine gravity signals in an attempt to increase the detection range of
the Wee-g. To do this, noisy submarine gravity signals are generated by combining simulated
submarine signals (made using the method described in section 2.2) with real Wee-g sensor noise
data and then attempts are made to independently identify the injected signal amongst the noise.
An 10 minute-long example of Wee-g sensor noise data recorded in 2023 is shown in fig. 2.12a
and its corresponding ASD plot is the one already presented in fig. 1.9, at the end of the previous
chapter. As fig. 1.9 shows, the spectral density of this noise does not seem to have any overall
upward or downward trend with increasing frequency, indicating that the noise is mostly random
in nature (since random noise has a spectral density that is constant at all frequencies).

Figure 2.12b shows the same excerpt of noise after a submarine gravity profile has been
added to it at the 5-minute point. The submarine profile added is shown separately in fig. 2.13a
and describes the gz due to a submarine travelling past a sensor at 5ms−1 in a straight path for
which z = 30m (see fig. 2.9a); making it 10m beyond the estimated maximum detection range
of the Wee-g of ∼ 20m. Note that the duration of the template shown in fig. 2.13a has been
extended to match the duration of the noise data when it is added to it, as visible in fig. 2.12b
. gz in these extended parts of the added signal is simply assumed to be zero for convenience,
rather than being calculated properly by choosing suitable start and end points of the submarine
when generating the signal. This is unlikely to cause any significant errors in the rest of this
work because at the time extents shown in fig. 2.13a (time= 0s and 80s), gz is only ∼ 5nGal,
far below the noise level and close to zero on the scale of fig. 2.13a.

A zoomed in depiction of the noise before and after the signal is added to the noise is shown
in fig. 2.13b which demonstrates how a signal of this size (with a peak gz of 2.8µGal) is quite
hard to distinguish from the surrounding noise. Because of this, the injected signal would likely
be difficult to identify if its position in the noisy data was unknown. However, if it is assumed
that the shape of the signal being searched for (here, the submarine profile shown in fig. 2.13a)
is known in advance, it becomes possible to more effectively search for that signal by looking
for parts of the noisy data that correlate strongly with it. This process is known as matched
filtering and is commonly used to extract known signals from random noise in the fields of
digital communications, sonar, radar and astronomy [126–129].

Matched filtering is a signal processing technique that incrementally moves an expected
signal template over a noisy data series and, at each step, quantifies how correlated the template
is with the section of data that it currently overlies. Matched filtering is mathematically defined
by finding the linear time-invariant (LTI) filter that maximises the signal-to-noise ratio (SNR)* of
a noisy data series consisting of a known signal corrupted by additive stationary† stochastic noise

*The SNR is defined as the ratio between the signal power and the noise power in a measurement and is defined
mathematically in eq. (2.23).

†For noise to be considered stationary, its characteristics (such as mean, variance and spectral distribution) must
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(a)

(b)

Figure 2.12: (a): Sensor noise recorded by a Wee-g gravimeter, obtained by decoupling the
sensor output from gravitational and inertial effects, leaving a measure of the electronic noise
floor of the device. (b): An artificial noisy submarine gravity signal, generated by adding a
simulated submarine gravity signal, made using the method described in section 2.2 with z =
30m, to the noise data shown in (a).
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(a) (b)

Figure 2.13: (a): The submarine gravity signal used when making the artificial noisy signal
shown in fig. 2.12b. The submarine signal was made using the method described in section 2.2
and considering a straight line trajectory for which z = 30m (see fig. 2.9a). (b): Close-up of the
sensor noise and artificial signal plots in fig. 2.12 showing the small size of the gravity signal in
comparison to the surrounding noise.

[130]. A full definition of the matched filter is given in many textbooks on signal processing
[130,131] but will not be presented here for the sake of brevity. For a noisy signal x(t) containing
some known template signal s(t), the matched filter output ymf(t) is given by the convolution,

ymf(t) = hmf(t)∗ x(t) , (2.21)

where hmf(t) is the impulse response of the matched filter, which is defined as a time-reversed
copy of the template signal,

hmf(t) = s(−t) . (2.22)

Using eqs. (2.21) and (2.22), a matched filter was applied to both the noise-only data series
shown in fig. 2.12 and the noisy signal shown in fig. 2.12b, using the submarine signal shown
in fig. 2.13a as the template. The results of this are presented in fig. 2.14 and allow the matched
filter’s detection of the signal template amongst the noise to be examined in detail. The filter
output in figs. 2.14a and 2.14b is seen to vary substantially with time as the degree of correlation
between the template and the random noise it overlies changes, but there is a distinct additional
signal around the 5:40 point in fig. 2.14b which coincides with the location of the peak of
the submarine gravity signal within the data. This strongly implies the successful detection

not change over time.



53

(a)

(b)

Figure 2.14: (a): Result of applying a matched filter to the 10 minute-long Wee-g sensor noise
measurement shown in fig. 2.12a, while using the submarine signal shown in fig. 2.13a as the
signal template. (b): Result of applying the same matched filter as in (a) to the noisy submarine
signal measurement shown in fig. 2.12b. The noticeable peak at 5:40 in (b) coincides with the
location of the injected signal.

of the submarine signal by the matched filter and the greater amplitude of this peak that its
surroundings would make it detectable even if the noise-only data in fig. 2.14a was unknown
(which would probably be the case in a real detection scenario).

The effectiveness of the matched filtering performed here can be quantified by considering
the effect it has on the SNR of the data it is applied to, which is here defined as,

SNR =

∣∣ymf(tpeak)
∣∣2

σ2 , (2.23)

where ymf(tpeak) is the peak amplitude of the filtered signal which occurs at time tpeak and,
therefore,

∣∣ymf(tpeak)
∣∣2 is the peak signal power at that moment. σ is the standard deviation

of the filtered, ‘noise only’ data and σ2 is the variance, which is equivalent to noise power
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when the noise is random and has a mean of zero (as it does here). Using eq. (2.23), the SNR
of the unfiltered noisy signal in figs. 2.12b and 2.13b can be determined, taking ymf(tpeak) as
2.8µGal and σ = 4.81µGal which gives an SNR of 0.34. For the filtered result, the peak signal
is ymf(tpeak) = 8.62×104 and the noise standard deviation is σ = 1.7×104, the SNR is 25.71,
meaning that the matched filter has improved the SNR by a factor of ∼ 76.

The output of a matched filter can be used to detect the presence of a template signal in
a noisy dataset by choosing a suitable threshold that the filter output is only likely to exceed
whether a real signal is present in the data. Finding a suitable level at which to set this threshold
depends on the ambient level of noise in the filtered signal and how acceptable false positive
detections are in the detection scenario considered. Exact threshold levels can be calculated
mathematically [130] but this will not be looked into here due to time restraints.

The matched filter was also applied to a different artificial signal, shown in fig. 2.15a, which
was made from a separate, 30 minute-long Wee-g sensor noise measurement, having the same
submarine signal in fig. 2.13a added at the 15 minute point. This was done to test whether
the matched filter could repeat the signal detection on a different noise sample and to see if
the peak in the filter output due to a successful detection was consistently larger than the noise
fluctuations in the filter output over a long period. A plot of this signal and the matched filtering
result are shown in figs. 2.15a and 2.15b, respectively, and again demonstrate a substantial peak
in the filter output corresponding with the location of the injected signal. For this case, the
standard deviation of the 30 minute noise sample (before the signal was added) is 4.84µGal and
the peak amplitude of the injected signal is ymf(tpeak) = 2.8µGal, giving an initial, unfiltered
SNR of 0.34. For the output of the matched filter, σ = 1.79×104 and speak = 7.53×104, giving
a post-filtering SNR of 17.7; an increase in SNR by a factor of 52.84 over the unfiltered data.

In both of the cases shown here, matched filtering substantially improves the SNR of simu-
lated submarine gravity signals corrupted by Wee-g sensor noise data and allows a signal cor-
responding to a submarine travelling 30m away to be detected; an improvement of 10m on the
estimated detection range with unfiltered data. This suggests that matched filtering would be an
effective way to improve the detection range of Wee-g gravimeters when deployed underwater
which would allow a larger area of sensor coverage to be provided by a given device. How-
ever, as mentioned at the end of section 2.3.1, it should be kept in mind that the simulations
in this work rely on very basic assumptions about the density distribution of the submarine be-
ing detected (see fig. 2.1) and assume that the Wee-g could achieve the same sensitivity when
deployed underwater in a waterproof enclosure. Because of these assumptions, the detection
ranges predicted in this section should be treated as rough estimates only.

Future work could attempt to make more accurate estimates of the Wee-g’s submarine de-
tection range by making more accurate models of the density variations within a submarine to
get more realistic estimates of the resulting gravitational field. Additionally, the density of sub-
marines with different sizes and internal layouts could be modelled and matched filtering could
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(a)

(b)

Figure 2.15: (a): A 30 minute-long sample of Wee-g sensor noise data with the submarine signal
shown in fig. 2.13a added to it at the 15:00 point. (b): The result of applying a matched filter
to the data shown in (a) while using the same signal in fig. 2.13a as the matched filter template.
The significant peak in the filtered output coincides with the real location of the corrupted signal,
indicating the matched filter has successfully detected it.
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be used in an attempt to distinguish between detected signals originating from different density
distributions, to identify the target of detection. Matched filtering is well-suited to this task and
is commonly used for target classification in the fields of radar detection, sonar detection and
gravitational wave astronomy [132–134]. Alternatively, machine learning methods have been
developed that perform the same detection and characterisation tasks as matched filtering but
are faster and more effective [135]. These techniques are likely also applicable to gravimetric
submarine detection and could allow further improvement of the Wee-g’s effective detection
range.

2.4 Conclusion

Using gravity to detect submarines offers some unique benefits when compared to commonly
used contemporary methods like sonar but will also likely have a comparatively limited range
due to the inherent weakness of the gravitational force. This chapter details work done to simu-
late gravitational detection of submarines by single gravimeters and gravimeter arrays to inves-
tigate the size of such fields and estimate what detection range could be achieved using Wee-g
MEMS gravimeters. Matched filtering is also investigated as a way of increasing this detection
range by more efficiently searching for the expected signal in a noisy data set.

The model approximates the complicated density distribution of a submarine using a cylinder
of similar proportions with a length-varying density chosen to resemble the linear density profile
of a real submarine. The specific density profile used is not presented here for security reasons
but an approximation of this profile is shown in fig. 2.1. A finite element analysis (FEA) is used
to calculate gravitational field strength at a chosen point around the object by dividing it into
many cylindrical polar volume elements and using a point mass approximation to find g due to
every element individually. The accuracy of this method is tested against an analytic solution
for gravity around a cylinder of uniform density and shown to be a good approximation, as long
as enough elements are used in the FEA.

The gravitational field at a detector when the submarine model moves past in a straight
line is simulated using the described FEA method in regular intervals as the submarine density
model is moved past the chosen point along the desired path. These simulations are repeated for
straight-line paths at varying distance from the detector and an estimate of the detection range
of the Wee-g gravimeter is made by comparing the results to the 5µGal/

√
Hz noise level of the

device determined from sensor noise measurements (see fig. 2.12a). Assuming that the Wee-g
would be capable of the same noise performance when deployed in a waterproof housing on the
sea floor, its maximum detection range of the submarine model is estimated to be approximately
20m by comparing the peak signal amplitude to the noise level.

Further modelling investigates the use of arrays of multiple Wee-g gravimeters used to detect
a passing submarine to investigate the advantages of gravimeter arrays in comparison to single
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detectors. These models are based on the same FEA method but extended to simulate gravita-
tional field at multiple detectors in an array as the submarine density model travels past. The
first of these models consider 1D arrays consisting of 4 gravimeters arranged in a line as the sub-
marine travels past either parallel or perpendicular to the array. These show that, in the parallel
case, the submarine’s speed and direction of travel can be inferred from phase delays in signals
between detectors while, in the perpendicular case, the array can determine which side of the
array the submarine is travelling on. Models are also made of submarine detection by a simple
2D gravimeter array, consisting of a square 11x11 grid of detectors and stills from surface plots
of gravity at each detector are shown which allow a better visualisation of the gravitational field
around the submarine. Use of 2D arrays could allow better localisation of submarines within
range of the array but signal processing methods to do this are not investigated in this work.

Finally, matched filtering was investigated as a way to increase the predicted 20m detec-
tion range of submarines by the Wee-g gravimeter, using foreknowledge of the shape of the
gravity signal being searched for to better extract it from background noise. To do this, syn-
thetic noisy submarine signals were generated by combining simulated gravity signals (from
section 2.2) with real Wee-g sensor noise data and then applying matched filtering to recover the
noise-corrupted signal. In the case of a simulated signal for a submarine travelling at a range of
30m with speed 5ms−1, corrupted with approximately 5µGal/

√
Hz sensor noise, the matched

filter was able to boost SNR enough that the signal (with a peak amplitude of 2.8µGal) became
clearly visible in the filter output. This was demonstrated on two different synthetic noisy sig-
nals, one 10 minutes long and the other 30 minutes long, both containing the same simulated
30m submarine signal somewhere amongst the noise. In both cases the filtering increased SNR
significantly: by a factor of ∼ 76 in the 10 minute dataset and a factor of ∼ 53 in the 30 minute
dataset, with the submarine signal clearly identifiable by a large peak in filter output. From this,
it is concluded that matched filtering increased the detection range of the Wee-g by 10m in this
case and would be worth considering for the real-life implementation of gravitational submarine
detection in the future.



Chapter 3

Modelling gravitational terrain correction
using high-resolution LiDAR elevation
data

As mentioned in the introduction, there are many factors that determine the gravitational field
strength at a point on the Earth’s surface, such as the point’s elevation and latitude as well as the
surrounding topography and crust density. In order to use gravimeters to identify variations in
crust density alone, it is necessary to calculate the size of the other effects and remove them from
gravity survey data using the gravitational corrections described in section 1.3. Of these correc-
tions, the gravitational effect of topography surrounding a measurement point, known as the ter-
rain effect, is the most difficult and time-consuming to calculate. This section will outline why
the terrain effect is important to consider and describe how it can be calculated relatively quickly
using digital topographic data. This work aims to use particularly high-resolution LiDAR eleva-
tion data, available for the Campsie Fells (a range of hills north of Glasgow, Scotland), to find
µGal accuracy terrain corrections.

3.1 Terrain correction overview

Broadly speaking, the terrain correction is an adjustment made to the Bouguer correction that
replaces the infinite flat slab of terrain surrounding the measurement point (the Bouguer plate)
with a more realistic consideration of topography. Any real-world deviation from the Bouguer
plate, in the form of hills or valleys, around a gravitational measurement point will always act
to reduce the vertical gravitational field strength, g. This is because hills act as an excess mass
above the level of the measurement point and valleys act as a deficit of mass below, both of
which reduce the downward pull of gravity when compared to the Bouguer plate assumption.

Ideally, the terrain correction would be found by integrating Newton’s universal law of grav-
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Figure 3.1: Diagram showing what causes gravitational terrain effects. Red-shaded areas are the
deviations of the terrain from the hypothetical Bouguer plate and gtc is the gravitational effect
these deviations have, which is known as the terrain effect or terrain correction.

ity, eq. (1.3) over the volume of all surrounding hills and valleys, shown by the coloured areas
in fig. 3.1. When doing this, all hills should be assumed to have the same density as the average
rock density for the region and valleys should be treated as having the negative of this density
to adjust the Bouguer correction appropriately. Usually, the average local rock density is not
well known when performing gravity surveys and detecting variations in density is often the
purpose of the survey itself. When a more accurate value is not known, it is commonly assumed
that the average density of terrain is ρt = 2670kgm−3 [12, 58] and this assumption will be used
throughout this work.

Underwater terrain, known as bathymetry, also has a similar effect on terrain correction as
regular topography but must be treated slightly differently [58]. First, the regular topographic
effect should be found, while treating any bodies of water as flat ground at the height of the
water’s surface. Then a separate bathymetric terrain correction can be calculated and added to
the topographic value to find the combined terrain effect. The bathymetric terrain correction is
found by integrating over the volume between the water surface and the bathymetry below while
assigning this volume a density of ρ = ρt −ρw where ρt is the average density of rock in the
region and ρw is the average density of the water.

In reality, integrating Newton’s law of gravity over the volume of surrounding hills and val-
leys to find terrain correction due to topography or bathymetry is not straightforward because
the surfaces involved are usually complicated and difficult to describe mathematically. Instead,
the terrain correction calculation can be approximated by replacing the real terrain features with
simplified volumes, the gravitational fields of which are easier to calculate. The earliest method
of doing this was developed by Hayford and Bowie [136] and improved on by Hammer [137].
This method divides the terrain surrounding the survey point into polar segments using a trans-
parent template overlaid on the topographic map, as shown in fig. 3.2. The average elevation
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Figure 3.2: Diagram showing how local topography is divided into polar segments by overlaying
a transparent template in the Hammer method of terrain correction (Picture taken from Seigel
(1995) [12]).
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of each segment is estimated by comparison with the topographic map or in situ at the mea-
surement point and the gravitational effect of each segment is found using pre-calculated tables,
derived from equations for the gravitational field strength at the centre of a hollow cylinder*.
This technique has been widely used but is time-consuming and inconsistent due to the manual
estimates that it requires and has a limited accuracy, which is worsened in areas of more severe
topographic relief (when originally published, the method was quoted as having an accuracy of
approximately 0.1mGal) [137].

A faster method is to represent terrain using many vertical rectangular prisms (i.e. rectangu-
lar cuboids) of varying height and find g at the measurement point due to each prism using an
analytical expression developed by Nagy for this purpose [138, 139]. This method needs to use
a very large number of prisms to accurately represent terrain and so requires a large number of
calculations to find the overall gtc but is easily implemented using a computer. Other methods
include vertical prisms with sloping tops or line-mass approximations of prisms as well as meth-
ods using Fourier analysis or representing terrain using parabolic surfaces [58, 62, 140–143].

It is common to use a combination of different methods when calculating terrain correction
to speed up the process whilst maintaining accuracy. In particular, the Hammer method is often
used to analyse terrain close to the measurement point and faster methods, like the rectangular
prism approach, are used to analyse all other terrain quickly. In this work, terrain correction is
calculated using only the rectangular prism method to simplify and speed up the process while
using particularly high resolution terrain data and prism analysis for areas near the measurement
point to maintain high accuracy. The following section will describe this method and how it was
applied differently to terrain at different distances from the measurement point.

3.1.1 The rectangular prism method of calculating terrain correction

The rectangular prism method of terrain correction uses an array of vertically-oriented rectangu-
lar prisms (also known as ‘right rectangular prisms’, a type of cuboid) to form a representation of
the topography around a survey point, as shown in fig. 3.3. The gravitational field at the survey
point due to each prism is calculated using an analytic solution developed by Nagy [138, 139]
which takes the form,

gz(x,y,z) = Gρ

[∣∣∣∣∣∣∣∣∣∣∣∣x ln(y+ r)+ y ln(x+ r)− z tan−1 xy
zr

∣∣∣∣x2

x1

∣∣∣∣y2

y1

∣∣∣∣z2

z1

]
, (3.1)

where gz is the vertical gravitational field strength at the survey point due to the rectangular
prism with boundaries described by x1, x2, y1, y2, and z1, z2, G is the universal gravitational
constant (G = 6.67×10−11 m3 kg−1 s−2), ρ is the density of the prism, x,y,z are the coordinates

*A hollow cylinder is used for this because individual segments have an inner and outer radius, as shown in
hammer template figure and segments in any given ring form segments of a hollow cylinder. A full derivation is
not provided here for the sake of brevity.
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Figure 3.3: 2D diagram showing how rectangular prisms are used to represent hills and valleys
around a gravity survey point, P, in order to find terrain correction with the prism method.

of the prism’s interior and r, is the distance to a point (x,y,z) within the prism’s interior, r =√
x2 + y2 + z2.
This expression finds an exact solution for gz around a vertical rectangular prism and is

derived by integrating Newton’s universal law of gravitation over the volume of the prism and
isolating the z-component of field strength. Solving for the stated boundary conditions, x1, x2,
y1, y2, and z1, z2, this expression becomes a sum of 8 terms,

gz = δgz(x2,y2,z2)−δgz(x1,y2,z2)+δgz(x1,y1,z2)−δgz(x2,y1,z2)

+δgz(x1,y2,z1)−δgz(x2,y2,z1)+δgz(x2,y1,z1)−δgz(x1,y1,z1) ,
(3.2)

where gz is the vertical component of gravitational field strength at the chosen point due to
the rectangular prism and δgz is as shown in eq. (3.1). A complete derivation of eq. (3.1) is
presented by Nagy [139] and MacMillan [144] but is avoided here for the sake of brevity, as it is
both lengthy and complicated. In some cases, it is possible for the arguments of the logarithms
in the first and/or second terms of eq. (3.1) to be zero (for example when x1 = y1 = z1 = 0), and
in these cases those terms will be undefined, as a result of ln(0) being undefined. If any terms of
eq. (3.1) are undefined during calculation, they should be set to zero because they have a zero-
limit in this case, as detailed by Nagy [139]. When any of the terms in eq. (3.1) are undefined,
they should be set to zero because, according to Nagy, at the locations where undefined terms
arise (on the corners, edges and planes of the prism in question) they can be shown to have a
zero-limit. The proof of this is mathematically complicated and will not be reproduced here for
the sake of brevity.

The accuracy of the prism method is determined by how closely the prism representation
matches the real terrain it represents, which depends on the horizontal size of the prisms used
and the accuracy and resolution of the topographic data. This is because using prisms with a
smaller horizontal size effectively increases the resolution of the prism representation of the
topographic data and more accurate topographic data means a closer match to the real terrain.
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A straightforward way of making such a prism representation is to use elevation data ar-
ranged in a format known as a Digital Elevation Model (DEM) which describes the topography
of a region with a square 2D grid of elevation values. This format is particularly convenient
because the regular 2D array of elevation values in the DEM can easily be used to choose the
heights of prisms in a prism model of the same region. With this approach, the x-y size of prisms
in the terrain model is determined by the horizontal resolution of the DEM, so a more accurate
prism representation (i.e. one using smaller elements) can be made by using a higher-resolution
DEM. The task then is to find or make DEMs that describe the surroundings of the location at
which terrain correction is to be found to a high degree of accuracy.

This method of terrain correction is generally considered to be unsuitable for application to
topography close to a survey point, within approximately 200m to 1000m. This is because,
due to past limitations in available computing power and the resolution of topographic data,
only low-resolution prism representations have been feasible, which will form a less accurate
representation of the real terrain, especially nearby terrain. In the region close to a survey point,
discrepancies between real topography and the prism representation can lead to large errors in
calculated terrain correction, so the rectangular prism method is less accurate in these regions.
As a result it has been mostly used for finding terrain correction due to more distant terrain,
while closer regions are analysed using the slower and more labour-intensive Hammer method.

In this work, the rectangular prism method of terrain correction is used to analyse terrain
across all distances from a measurement point (out to a standard outer limit, detailed in the next
section), using high-resolution LiDAR data to make a high resolution prism representation of
the nearby terrain to maintain accuracy. The following section describes how topographic maps
were obtained to describe all areas of terrain around chosen survey points in this work.

3.1.2 Map generation

As mentioned in the previous section, the accuracy of terrain corrections found using the prism
method is determined by the cross-sectional size of the prism elements which is itself determined
by the horizontal resolution of the DEM used. Following this, the simplest approach to high
accuracy terrain correction would be to use a single DEM with a very high resolution but this
is problematic when considering a large area of terrain due to the large number of elements and
computing load that would result. Specifically, handling large DEMs requires the use of equally
large arrays and using this data to evaluate eq. (3.1) means a large number of these arrays must
be created and stored in computer memory simultaneously, which can lead to crashes if there is
not enough memory available.

A much less memory-intensive approach is to divide the calculation into different zones
of terrain, determined by their distance from the computation point, and use lower resolution,
less computationally demanding DEMs when analysing distant terrain. Because of the inverse-
square relationship between gravitational field and distance, this will have little effect on the
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Figure 3.4: Outline of two differently-sized square maps showing how the variable R is used to
describe their size.

accuracy of the overall terrain correction since each distant element only has a very small con-
tribution to gtc. Conversely, it is important that the highest resolution DEMs are used when
analysing terrain immediately surrounding a survey point because terrain within the first few
hundred meters can have a substantial impact on overall terrain correction.

In this work, the calculation of terrain correction is divided into three zones: an inner zone,
middle zone and outer zone, and a lower map resolution is used for more distant zones. These
are arranged as concentric square regions centred on the survey point and the zone size will be
described by R, the distance along the x-axis (or y-axis) from the survey point to the map edge,
as shown in fig. 3.4. Square maps were used because this is more convenient when using the
prism model in which elements have a square base cross-section.

The position of the zone boundaries is determined by examining past work on terrain correc-
tions in the literature and in some cases exaggerating these to ensure high accuracy. The details
of what zone boundaries were chosen, what DEM resolution was used and the source of this
height data are given separately for each zone in the following subsections.

Inner zone

Because of the large effect terrain in the inner zone can have, it is particularly important that
accurate elevation data are used when finding terrain correction due to this region. For this
work, airborne LiDAR elevation data was used that describes the elevation of the inner zone to
either centimetre or millimetre accuracy (accuracy varies for different regions) with a horizontal
resolution of 1m. Airborne LiDAR is a commonly used method of gathering high accuracy to-
pographic data using laser ranging systems onboard light aircraft, helicopters or (more recently)
drones [145] and the Campsie Fells dataset is available in DEM format online [146].

There is no single answer in the literature for what the extent of the inner zone should be.
In most published gravity surveys, inner zone radius varies between 100m and a few kilometres
[141, 147–149], depending on the desired accuracy of the survey, the surrounding topography,
and the experience or company policy of those performing it. Here, a larger radius of R = 1km
is used in order to avoid inner zone size limiting the accuracy of terrain correction and because
this size of 1m resolution DEM could still be computed quickly. For each survey point in the
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Figure 3.5: Example of a DEM used when describing inner zone topography using LiDAR data
for the 2km2 around a measurement point (indicated by the red dot) in the Campsie Fells.
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Campsies, a 2km2 inner zone DEM was extracted from the overall LiDAR dataset and aligned
so that the survey location was at its centre, at the shared vertex of the four centremost elements.
An example of an inner zone DEM is shown in fig. 3.5 with the survey point marked at its centre.

It was found that the accuracy of the rectangular prism method of terrain correction is im-
proved by ignoring the nearest 4 elements to the survey point during calculation, which effec-
tively assumes the nearest 2 m2 are totally flat, in the case of 1m element resolution. This is
covered in more detail later in section 3.3.2.

Middle zone

The middle zone concerns terrain beyond the inner zone up to a chosen limit and so lower
resolution DEMs than for the inner zone can be used when calculating terrain correction without
causing a significant loss of accuracy. The LiDAR data used for inner zone corrections could
not simply be downsampled to make lower resolution DEMs for the middle zone because the
available dataset does not describe a large enough area. Instead, topographic data for the middle
zone were obtained in the form of Ordinance Survey contour maps, available online under an
open government licence [150]. These contour maps have a horizontal resolution of 50m and
contour intervals of 10m but are not available in DEM format, meaning they had to be converted
before use in the prism terrain correction model.

The contour data is in a digital vector format called a "Shapefile" (.shp) which is specifically
designed for describing geographical features using what is known as Geographical Information
System (GIS) software. In this work, the open-source GIS software, QGIS version 2.18.14 [151]
was used to transform these contour maps into DEMs using linear interpolation methods built
in to the software. Figure 3.6 shows an example of contour data of the Campsie Fells and
the resulting 50m resolution DEM made using QGIS. The DEMs made from the contour maps
were chosen to have a 50m horizontal resolution and an extent of R = 25km giving them an
area of 50km2, centred on the survey point of interest. The 50m horizontal resolution was
chosen because it matched the resolution of the contour maps from which the DEMs were made.
Making a higher resolution of DEM (25m) from the same contour data was tested but ultimately
led to a sub-microGal effect on terrain correction, so is unnecessary for this work. The central
2km2 of the middle zone is ignored when finding terrain correction in this work because this
area is already considered by the inner zone calculation and details on how this is done are given
later in section 3.2.

Outer zone

The outer zone consists of terrain beyond the middle zone out to a chosen limit and, once again,
even lower resolution DEMs can be used when calculating terrain correction without a signif-
icant loss in accuracy, due to the inverse-square behaviour of gravitational field with distance.
By convention, an outer radius of 166.735km is used when finding the terrain correction due
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(a) (b)

(c)

Figure 3.6: (a) and (b): Example of OS contour data and a corresponding 50m2-resolution DEM
made from it. The contour interval is 10m. (c): A full 50km2, DEM with a 50m2-resolution
like those used to calculate terrain correction due to topography in the middle zone.
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to distant topography [58, 152]. Terrain beyond this limit will only have a significant effect if
it is extremely rugged or when there is a large elevation difference between different measure-
ment points in a gravity survey [152]. In this work, there is not a great deal of terrain beyond
166.735km (most of the Scottish highlands are within this limit) and the survey points consid-
ered have an elevation difference of approximately 200m at most so this outer limit is considered
suitable and used for all terrain corrections.

In the Campsies region, the 166.735km outer zone contains large areas of ocean (the North
sea and Irish sea) and so the terrain effect due to the bathymetry of these areas will likely have
a significant effect and must be considered as well. To do this, publicly available DEMs were
obtained that describe both the topography and bathymetry of the relevant area with a resolution
of 15 ′′ (arcseconds; corresponding to an approximately 450m2 horizontal resolution on the
Earth’s surface). This data, the GEBCO 2020 grid [153], is a combination of satellite radar
data describing topography and bathymetry data obtained through various techniques and is
downsampled to make 500m2-resolution DEMs like the one shown in fig. 3.7 mapping the
topography and bathymetry of the outer zone region.

3.2 MATLAB program to calculate terrain correction

A series of MATLAB programs have been written in order to use the prism method described in
section 3.1.1 to calculate terrain correction from suitable inner, middle and outer zone DEM’s
describing the topography around a measurement point. For clarity, the program is divided into
four separate MATLAB scripts, one of which handles all input data and calls the other three
scripts as functions to calculate the terrain correction. MATLAB version R2015b was used
when making these scripts and they are presented in appendix B. This section will describe how
they work in detail and show some examples of their use on real-world terrain.

For map input the main program reads three square DEMs describing the inner, middle and
outer zones that are described in in section 3.1.2, all of which must have the measurement point
at their centre. As mentioned in the previous section, it is important that, where these maps
overlap, the terrain correction is only calculated once using the highest-resolution data describ-
ing the region in question. For example, the centre 2km2 of the middle zone is already described
at a higher resolution by the inner zone, so the terrain correction due to this part of the middle
zone DEM must be discarded. To do this, the programs can divide a DEM into many smaller
subsections, which will be called quadrants, and then ignore those quadrants outside of the spec-
ified zone boundaries when calculating terrain correction. By carefully choosing the number of
quadrants a DEM is divided into, areas already considered by higher-resolution DEMs can be
ignored in larger, lower-resolution zones without additional DEM processing beforehand.

For example, by dividing a 340km2 outer zone into a 68× 68 grid of 5km2 subsections,
those forming the 50km2 centre area can be removed to ignore the area already covered by
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Figure 3.7: Example of a 500m2-resolution DEM used to describe outer zone topography and
bathymetry around a survey point in the Campsie Fells, marked by the red dot, out to a distance
of 166.735km, shown by the red circle. The full map is 340km2 in size.
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Figure 3.8: Example of an outer zone DEM divided into a 68×68 array of quadrants, resulting
in each having a side length of 5km, allowing the central 50km2 to be ignored easily. Elevation
is set to zero (the same elevation as the survey point) beyond a radius of 166.735km so that only
terrain within a circular area is considered.

the middle zone, as shown in fig. 3.8. It should be emphasised that since it is only possible to
ignore entire quadrants at once, the number of quadrants, div, must be chosen carefully so that
areas to be removed are exactly covered by an integer number of quadrants. Dividing the DEMs
into quadrants also has the benefit of reducing the computer memory required when running the
program because smaller DEMs are handled at one time. This was found to avoid crashes and
even increase the processing speed when analysing particularly large or high-resolution DEMs.

A radial limit of 166.735km is applied to the outer DEM so that only terrain in a circular
area of this radius is considered when finding terrain correction, as is convention. This is done
by setting the elevation of every point on the DEM beyond R = 166.735km to be equal to that
of the measurement point, as shown in fig. 3.8, meaning regions beyond this boundary will have
no impact on terrain correction.
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3.2.1 Terrain correction program description

‘terrain_correction.m’ — the main program: The first MATLAB script acts as the primary
program where all inputs are accepted and where the output — the calculated terrain correction
— is delivered and is the only program manually run by the user. It requires the file path to the
inner, middle and outer zone DEM files in ‘GeoTIFF’ (.tif) format, from which it automatically
determines each map’s horizontal resolution and makes 2D arrays containing the x-position,
y-position and elevation of each DEM data point, relative to the map’s centre. The program
also requires the inner and outer limits, R1 & R2, of all three zones, where R is as shown in
fig. 3.4, as well as a number, div, to specify how many quadrants each zone is to be divided into
(where the result is div×div quadrants). For the zones described in section 3.1.2 the following
input values are used: inner zone, R1 = 0m, R2 = 1km, div = 20; middle zone, R1 = 1km,
R2 = 25km, div = 50; outer zone, R1 = 25km, R2 = 170km, div = 68. The terrain correction
at the measurement point is calculated separately for each the inner, middle and outer zones
using the ‘zone_TC.m’ function (described below) and the total terrain correction is found by
summing the contributions of each zone.

‘zone_TC.m’ — first function: This function takes a DEM describing the inner, middle or
outer zone, divides it into the specified number of quadrants, removes quadrants outside the
given zone boundaries, and then calls other functions, described below, to use the Nagy prism
method described in section 3.1.1 to calculate gz at the origin due to each quadrant. The total
terrain correction at the centre of the DEM in question is then calculated by summing the gz

contributions of all elements in all quadrants.
The ‘zone_TC.m’ function can also find the effect on terrain correction due to bathymetry

(i.e. underwater topography) as well as normal topography and works on the assumption that all
terrain at elevations below sea level is in fact underwater and the water density is 1030kgm−3.
This is done by first separating the input DEM into two new versions that describe topography
(above-water elevation) and bathymetry (underwater elevation) separately and then calculating
the contribution to gz from each appropriately, using the approach described in section 3.1.
The topography-only DEM is made by simply replacing all elevations below sea level with a
flat surface at sea level height (an elevation of 0m) and, similarly, the bathymetry-only map
has all areas above sea level replaced with a flat surface at sea level elevation. The terrain
correction at the survey point due to each of these maps is then calculated separately using the
‘prism_method_topography.m’ function for the topography and the ‘prism_method_topography.m’
for bathymetry, which are described below. The total terrain correction is then the sum of the
results from the topographic and bathymetric calculations.

The ‘zone_TC.m’ function can also be used to make plots of the topography and/or bathymetry
maps before or after being divided into quadrants (like the ones shown in figs. 3.8, 3.9a and 3.9b),
as well as plots showing the contributions to gz from each element in the DEM (like those shown
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later in fig. 3.10).

‘prism_method_topography.m’ and ‘prism_method_bathymetry.m’ — the second func-
tions: These functions use the Nagy prism method described in section 3.1.1 to calculate the
gravitational terrain correction at the centre of a DEM describing topography (in the case of
‘prism_method_topography.m’) or bathymetry (in the case of ‘prism_method_bathymetry.m’)
around a gravity survey point located at the origin. For input, both functions require the x,y-
coordinates and elevations (relative to the survey point) of each point on the surface of the DEM,
the horizontal resolution of the DEM (which is automatically determined from the DEM in the
‘terrain_correction.m’ program) and the average density of rock. The ‘prism_method_bathymetry.m’
function also requires the elevation above sea level of the survey point (also determined in ‘ter-
rain_correction.m’) and the average density of water as inputs.

The topographic contribution to terrain correction is calculated by ‘prism_method_topography.m’
which defines rectangular prism elements as extending from the level of the survey point up or
down to the topographic surface described by the DEM (as in fig. 3.3) and then uses eqs. (3.1)
and (3.2) to find gz due to each prism and sums the results. For the bathymetric contribution,
‘prism_method_bathymetry.m’ defines prisms as originating at sea level and extending down to
the bathymetric surface described by the DEM and thus requires the elevation of the survey point
as additional input so that sea level elevation can be determined. The density of prisms in the
topographic case is simply the average density of rock but in the bathymetric case the density
used must be the difference between the average density of rock and average density of water.
These functions also both ignore the 4 prisms immediately surrounding the measurement point
when finding terrain correction for the inner zone (thus assuming this area to be completely flat)
as this was found to produce more accurate results, as discussed further in section 3.3 later.

With both of these functions, care is taken at every step of eq. (3.1) to set individual terms
to zero if they are undefined, as instructed by Nagy [139] and discussed in section 3.1.1. Also,
it was found that input elevation values must be stored using MATLAB’s ‘double’ data type
instead of the ‘single’ data type, the latter of which only stores digits up to the 7th number after
the decimal place during calculations. Use of the ‘single’ data type caused significant errors
because very small variations between terms are important in eq. (3.1), particularly when x ≪ y

or y≪ x. All programs in this work have been written to ensure that elevation values are handled
using the ‘double’ data type, which stores digits up to the 15th number after the decimal place,
to avoid errors.

3.2.2 Terrain correction examples

To demonstrate the terrain correction program’s performance, two locations in the Campsie Fells
were chosen (shown in fig. 3.9) as hypothetical gravimeter survey points and the program was
used to calculate terrain correction at both of them. The two survey points will be referred
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to as point A and point B and their locations and the surrounding topography are shown in
fig. 3.9. Point A sits at latitude 55.981013◦ and longitude −4.221537◦ at an elevation of 71.13m
above sea level and point B is at latitude 55.993601◦ and longitude −4.225659◦ at 220.69m
above sea level (the point elevations have been determined from the LiDAR data describing the
Campsie Fells). These two survey points were chosen because they have significantly different
topography in their immediate surroundings, which helps demonstrate the models performance
in different situations.

Sets of inner, middle and outer zone DEMs were made for both survey points (using the
zones described in section 3.1.2) and the MATLAB program used these to calculate the terrain
corrections to be 1.6235mGal at point A and 2.8585mGal at point B. The program was run on
a PC with 8GB of physical memory and a 3.2GHz CPU and took approximately 9s to read
a set of 3 input DEMs and calculate the corresponding terrain correction value. The above
results are comparable to published terrain correction values from surveys in similarly hilly
surroundings [62, 147], which find terrain corrections to be between 1mGal to 3mGal, using
established terrain correction methods (a combination of the Hammer method and rectangular
prism or line-mass assumptions). This shows that the rectangular prism-only method described
in section 3.1.1 is producing believable results, but a more in-depth investigation of its accuracy
is undertaken in section 3.3.

The program is also able to make surface plots showing the gz contribution of each element in
a prism representation of terrain and such plots were made for the nearest 200m2 around survey
points A and B, shown in fig. 3.10. These help verify that the program is working as intended
by demonstrating that nearby areas of large topographic relief have a larger effect on gz at the
survey point than more flat or distant areas, as expected when calculating terrain correction.

To investigate the program’s handling of distant terrain in more detail, it was run repeatedly
while gradually increasing the square radius, R (as defined in fig. 3.4), of terrain considered,
making the plot of terrain correction against R shown in fig. 3.11. This plot shows how the
specific topography at different distances contributes to the terrain correction at the survey point.
For example, the topography in the surrounding 2km (R = 1km) of survey point B accounts for
over half of the total terrain correction due to the steep surroundings while for point A this region
only accounts for a small fraction of the total terrain correction. Conversely, the middle zone
has a larger effect on terrain correction for point A as this is where the more rugged terrain of
point B’s inner zone is considered for point A.

For both survey points, terrain in the outer zone has a sub-0.1mGal effect on terrain cor-
rection which is a good example of why terrain beyond 22km often ignored in mGal-accuracy
gravity surveys but is very significant in microgravity surveys.
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(a) (b)

(c) (d)

Figure 3.9: (a) & (b): 2km2 inner zone DEMs of the two survey points in the Campsie Fells
used when testing the terrain correction program, plotted in MATLAB. (c): A roughly 13km2

map of the local region showing the position of the two survey points. (d): Large-scale, 340km2

map showing the location of the survey points in Scotland where the red box indicates the area
shown in (c).
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(a) (b)

(c) (d)

Figure 3.10: (a) & (c): Topographic maps showing the 200m2 area surrounding survey points
A and B, respectively, with some features labelled. In both maps, the survey points are located
at (0,0,0). (b) & (d): Colour plots of the same areas showing the results of applying the prism
method of terrain correction to the corresponding DEMs. The plots show the contribution to gz
(i.e. terrain correction) at the survey point due to each 1m2 prism element in the prism represen-
tation of the topography.
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Figure 3.11: Graph showing how terrain correction at the two survey points shown in fig. 3.9
varies as the square radius R of topography considered by the terrain correction program is
increased. The lines are each delineated into three colours to indicate the range of the inner zone
(100m to 1km), middle zone (1km to 25km) and outer zone (25km to 170km) used in this
work.
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3.3 Investigating model accuracy

As discussed in section 3.1.1, the accuracy of the rectangular prism method of terrain correction
is determined by the resolution and accuracy of the input elevation data it has to work with.
Due to difficulty in gathering accurate and high-resolution elevation data, the rectangular prism
method is generally considered unsuitable for calculating inner zone terrain corrections, where
accurately representing the topography is particularly important. This work aims to use high-
resolution LiDAR data and a similarly high-resolution rectangular prism analysis to try and
maintain accuracy when using this prism method to find terrain corrections due to nearby terrain
as well. This section covers the work done to determine whether the program is successful
in this by testing its accuracy using simplified terrain geometries and corresponding analytical
solutions for gz (terrain correction) due to these bodies.

3.3.1 Comparison to the Hammer method

In section 3.2.2 the terrain correction program is applied to two locations in the Campsie Fells
and shown to produce results that are believable in comparison to previously published terrain
corrections calculated in similarly hilly terrain. This is a good indication that the program is
working correctly but does not confirm this definitively as the published values did not use the
exact same survey locations so the results in this work may only be similar by coincidence.

To test more rigorously if the rectangular prism method had been implemented correctly
in the program, it was used to calculate the terrain correction due to a single annular segment,
like the one shown in fig. 3.12a. This was done because such annular segments are used in the
Hammer method of terrain correction and the terrain correction (gz) due to these objects can be
calculated easily using the analytic expression,

gz =
Gρ π

n

(√
R1

2 +h2 −
√

R2
2 +h2 +(R2 −R1)

)
, (3.3)

where G is the gravitational constant (G = 6.67×10−11 m3 kg−1 s−2), ρ is the average density of
rock in the region (assumed to be 2670kgm−3), n is the number of angular segments that form
a whole annulus, R1 and R2 are the inner and outer radii of the segment and h is the height of its
top face, relative to the survey point [137]. If the rectangular prism method has been correctly
implemented, there should be close agreement between it and the analytic solution in eq. (3.3)
when both are used to calculate gz due to the same object.

When carrying out this test, an annular segment was chosen for which R1 = 15m, R2 = 50m,
h = 10m and ρ = 2670kgm−3. A rectangular prism representation of this segment was then
made using prisms with a base size of 1m2 and is shown in fig. 3.12b. Then the terrain cor-
rection due to this segment was calculated analytically using eq. (3.3) and then again by the
MATLAB program using a prism representation of the segment described by a corresponding
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(a)

(b)

Figure 3.12: (a): Schematic of a single annular segment like those used in the Hammer method
of terrain correction. (b): Diagram showing a prism representation of a Hammer segment used
when testing the rectangular prism terrain correction program against the Hammer analytical
solution.
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Figure 3.13: Schematic of a conically sloping quarter-wedge used to test how accurately the
rectangular prism method can find the terrain correction, gz due to nearby sloping surfaces. The
analytic expression in eq. (3.4) calculates gz at its thinnest point, shown in red.

DEM. The calculated gz values were 38.00µGal from the analytic solution and 37.07µGal from
the prism method, giving a sub-µGal discrepancy between the two methods of 0.93µGal, prob-
ably arising from the imperfect prism representation of the curved surfaces of the segment. The
close match between the analytical and prism calculations suggests that the rectangular prism
method is implemented correctly in the MATLAB program and the 1m resolution DEM achieves
an accuracy of less than a few µGal.

3.3.2 Rectangular prism representation of sloped terrain

The representations of terrain made using the rectangular prism method are fundamentally lim-
ited in their ability to accurately represent sloping surfaces due to their flat-topped shape. As has
been mentioned, the accuracy of these representations can be increased by using prisms with a
smaller base size but there is a lower limit to the size of prisms that can be used, dictated by the
available computing power and the horizontal resolution of available topographic data. Ideally,
this work would investigate the use of sloping-topped vertical prisms which could be used to
make more accurate representations of real topography using analytic solutions for gz due to
triangular, rectangular and n-sized vertical prisms with sloping tops that have been published
in the literature [140, 149]. However, due to the time limitations, an investigation of the use of
these methods for finding terrain correction is left to future work. Instead, a more detailed in-
vestigation is carried out into how effective the flat-topped rectangular prisms are when used to
model a simple nearby sloping surface to test how accurate the method is when used to calculate
inner zone terrain corrections using real topography.

The object chosen for this analysis is a conical quarter-slope, shown in fig. 3.13, for which
the vertical component of gravitational field, gz, at the thinnest point of the wedge is given by
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Figure 3.14: Example of a rectangular prism representation of a conical quarter-slope for which
R = 50m, α = 10◦ and h ≈ 8.82m using prisms with a base size of 1m2 . The prism closest to
the origin is coloured red and discussed further in the text.

the analytical expression,

gz =
πGρR

2
√

R2 +h2

(√
R2 +h2 −R

)
, (3.4)

where G is the gravitational constant, ρ is the density of the object and R and h are its radius
and the height of its distant side, respectively [63]. Once again, a density of ρ = 2670kgm−3 is
used for all calculations and G = 6.67×10−11 m3 kg−1 s−2.

This particular object was chosen because its sloping face curves around the gz calculation
point such that there is a uniform slope towards the computation point in multiple directions
which makes the shape harder to reproduce using flat-topped rectangular elements and helps
determine the ‘worst-case’ accuracy of the prism method. Also, for this shape, gz at the com-
putation point is described by a relatively simple analytic solution and the object has a finite
extent which makes it far easier to model with the finite prism representation. By calculating
gz using the rectangular prism method and comparing this to the analytic solution found using
eq. (3.4), the accuracy of the prism method can be determined as the dimensions of the slope
or size of the prism elements are changed. Figure 3.14 gives a visual example of a rectangular
prism element representation of a conic slope made when calculating terrain correction using
the prism method. To make this representation, the height of prisms was determined from the
height of the sloping surface when at positions coincident with their x-y centres.

During this analysis, it was found that the prism element closest to the computation point,
marked red in fig. 3.14, has a very large effect on calculated gz (even when the prisms used are
very small) and that ignoring this prism during the course of calculation actually improved the
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agreement between the prism and analytic methods. This is made clear in the following results
and figures and is why the ‘prism_method.m’ program described in section 3.2 was made to
ignore the four prisms adjacent to the measurement point when calculating inner zone terrain
corrections.

Figure 3.15a plots the gz calculated by the prism method and the analytic solution as the el-
ement size used in the former is varied for a slope where α = 5◦ and R = 40m. This shows that
as the base size of elements used is decreased, the gz value from the prism method always gets
closer to the analytic solution, as is expected because a smaller element size leads to a more ac-
curate, higher-resolution prism representation of the slope. The results also demonstrate that, for
a given element size, including the nearest prism in the calculation leads to a large overestimate
in gz while ignoring it causes a much smaller underestimate, especially when larger element
sizes are used. This is because the nearest element, like all flat-topped prisms, is an inaccurate
representation of a sloping surface but, because it is adjacent to the computation point, it has a
particularly damaging effect on the accuracy of the calculated gz (due to the inverse-square re-
lationship between gravitational field strength and distance) so excluding it improves accuracy.
Figures 3.15b and 3.15c plot the percentage error (∆) between the prism and analytic solutions
as element size is changed and show that there is an approximately linear relationship between
element size and the percentage error (i.e. when the element size is doubled, the percentage error
increases by approximately a factor of 2). For a slope angle of 5◦, radius of 40m, and element
size of 1m the modelling determines an error between the prism and analytic solutions of ap-
proximately −0.1µGal if the nearest prism is ignored and roughly 1.5µGal if it is not (which
corresponds to a percentage error, ∆, of approximately −2% and 37%, respectively).

Models were also made that used a fixed element size of 1m and slope angle of 5◦ while
varying the total radius of the slope to investigate the effect this has on the accuracy of gz

found by the prism method. The results of this modelling are shown in fig. 3.16 and figs. 3.16a
and 3.16b again show that ignoring the prism closest to the origin significantly reduces the error
in the prism method relative to the analytic solution. Figure 3.16a also shows that as slope
radius is increased from 10m to 200m, gz values increase, as expected, but the size of the error
between the analytic and prism methods, ∆g does not vary much. This suggests that most of the
error arises from prisms closest to the origin which explains why figs. 3.16b and 3.16c show the
percentage error decreasing with increasing radius due to total gz increasing while error remains
relatively fixed (Numerically, the size of the error changes from ∆g = 0.82µGal when R = 10m
to ∆g = 0.808µGal when R = 200m).

Now that the error in gz has been found to be relatively unaffected by the radius of the
slope, the effect of varying the slope angle, α , will be investigated with a similar approach,
using a fixed element size of 1m2 and a slope radius of 40m. The results of these models are
shown in fig. 3.17 for a range of slope angles from 1◦ to 30◦ in 1◦ increments. Figures 3.17c
and 3.17d show that when the nearest prism element is ignored in the analysis, the error in
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(a)

(b) (c)

Figure 3.15: (a): Graph showing how varying element size affects gz calculated using a rectan-
gular prism method for a conic quarter-wedge for which R = 40m and α = 5◦. (b): Graph of
the percentage difference, ∆, between the analytic and the prism method gz values shown in (a)
plotted against element size. (c): Close up of the red line in (b).
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(a)

(b) (c)

Figure 3.16: (a): Plot showing how varying the radius, R, of the conic slope affects the gz
calculated by the prism method and that found using the analytic solution for cases when the
nearest prism is considered and ignored. (b): Plot of percentage difference between gz found
using the prism and analytic methods, ∆, when the innermost element is included or ignored in
the prism method of finding gz. (c): Close-up of the red line in (b).
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(a) (b)

(c) (d)

Figure 3.17: (a): Plot showing how varying the slope angle, α , the slope shown in fig. 3.13
affects the gz calculated at it’s thinnest point using both the prism method of terrain correction
and the analytical solution given by eq. (3.4). The prism method result is given for cases when
the prism nearest the computation point is both included and ignored during analysis. (b): Plot
of percentage difference, ∆, between gz found using the prism method and gz as found by the
analytic solution. (c): Plot of the red line in (b) only, in which the nearest prism is ignored when
calculating gz. (d): Plot of the difference between gz found by the prism method when ignoring
the nearest prism and gz found by the analytic solution.



85

Figure 3.18: Plot showing how the difference, ∆g, in µGal between gz calculated analytically
and with the prism method, varies with the slope angle of a conic quarter-slope, up to an angle
of 90◦. Results are shown for cases where the prism method ignores and includes the nearest
prism during calculation.

the prism method gets larger as the slope gets steeper. Conversely, it is clear from figs. 3.17a
and 3.17b that the opposite behaviour is observed if the nearest prism is not ignored, in which
case the accuracy of the prism method improves as the slope angle increases. Figure 3.18 plots
how the difference between analytic and prism solutions varies out to a slope angle of 90◦ and
shows that including the nearest prism leads to a more accurate solution at angles greater than
approximately 40◦. However, it is standard practice when choosing gravitational survey points
to avoid locations on a significant slope or excessively close to steep terrain in an attempt to
reduce the total magnitude of terrain correction and the size of its associated errors. Because of
this, real survey points will rarely be right next to steep terrain features and thus including the
nearest prism will, in most real cases, be less accurate than ignoring it when calculating terrain
corrections with the flat-topped prism method.

As mentioned before, the error in the prism method, ∆g, gets larger as the slope angle, α ,
increases if the nearest prism is ignored, as shown in figs. 3.17c and 3.17d. Because the slope
radius, R, has been shown to have a negligible effect on ∆g and the element size is fixed at
1m2 in this work, the predominant factor determining the accuracy of gz as found by the prism
method is α . Because of this, fig. 3.17d can be used to estimate the size of the error (∆g) when
the prism method is applied to conic quarter-slopes of any radius when using this particular
element size. For example, when α = 5◦, 10◦, 20◦ or 30◦, the resulting error is approximately
∆g = 0.1µGal, 0.4µGal, 1.5µGal and 3.5µGal, respectively.

Figure 3.17d could be used to estimate the maximum error in the flat-topped prism method
when applied to nearby sloping terrain but the total gz and related ∆g would be even larger if
a full, 360◦ conic slope were used instead of a quarter-slope, so this will be considered to find
an upper estimate of the error. Due to the rotational symmetry of a conic quarter-slope, the gz
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and ∆g due to a full 360◦ slope would simply be a factor of four larger than those for a quarter-
slope of equivalent α . This means that the same relationship between α and ∆g as in fig. 3.17d
would be observed but with all y-axis values multiplied by four. A full 360◦ conic slope would
result in α values of 5◦, 10◦, 20◦ or 30◦ causing an error in the flat-topped prism method of
approximately ∆g = 0.4µGal, 1.6µGal, 6µGal and 14µGal, respectively. Since this sort of
conical slope in which terrain slopes towards the computation point constantly in all directions
will result in the largest gz and ∆g for any given slope angle, these results represent the upper
limit for the estimated error of the flat-topped prism method of terrain correction.

3.4 Conclusion

High-quality terrain correction calculation is a vital part of collecting sub-mGal accuracy data
from gravimetric surveys but contemporary methods of finding terrain correction (such as the
Hammer method) are time-consuming and have limited accuracy, particularly when there is
significant terrain relief in the first few hundred metres of a survey point. In this work the flat-
topped prism method of terrain correction developed by Nagy is applied to terrain at all distances
from a survey point out to the standard limit of 166.735km using three different resolutions of
prism analysis divided into an inner, middle and outer zone. This method of terrain correction
has traditionally been considered insufficiently accurate to use when analysing inner zone terrain
due to limitations in computing power and the lack of accurate, high-resolution topographic data
meaning only a low-resolution analysis was possible. This work aims to use modern computing
power and 1m2-resolution LiDAR elevation data to calculate high-accuracy terrain corrections
for both nearby and distant terrain using the Nagy prism method to improve on the speed and
accuracy of traditional methods.

The Nagy prism method of terrain correction models terrain around a survey point using
an array of vertical, flat-topped rectangular prisms and uses an analytic solution for the vertical
component of gravity (gz) due to such prisms to calculate the terrain correction. Here, MAT-
LAB programs have been written that apply this method to Digital Elevation Models (DEMs)
describing topography around a survey point using a prism resolution dictated by the horizontal
resolution of the supplied DEM elevation data. This means that DEMs with a higher reso-
lution will be analysed using higher-resolution rectangular prisms (i.e. prisms with a smaller
base size) which will lead to a more accurate representation of terrain and calculation of terrain
correction. Because of the inverse-square relationship between gravitational field strength and
distance, more distant terrain can be analysed using a lower prism resolution without sacrificing
accuracy to speed up calculation. To take advantage of this, the terrain correction calculation is
split into an analysis of 3 different DEMs describing inner, middle and outer zone terrain around
a single survey point and a lower DEM resolution is used to describe more distant zones. The
total terrain correction is then found by summing the contributions due to terrain in each zone,
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out to the chosen limit of 166.735km from the survey point.
For an example, two survey points, A and B (shown in fig. 3.9), are chosen in the Campsie

Fells, north of Glasgow, and the MATLAB programs are used to calculate terrain correction
at each. When performing this analysis, the inner zone was defined as a square-shaped 2km2

area, centred on the survey point in question and its topography was described using extracts
from 1m2-resolution LiDAR DEMs of the Campsies region, available from the Scottish Gov-
ernment [146]. The middle zone was a square-shaped 50km2 area centred on the survey point
and its central 2km2 area, already being described by the inner zone, was ignored when find-
ing terrain correction. Suitable 50m2-resolution middle zone DEMs were made from freely
available 50m2-resolution Ordnance Survey contour data of the region [150]. The outer zone
was a square 340km2 area centred on the survey point and its central 50km2 was also ignored
as well as terrain beyond a radial distance of 166.735km from the survey point at the centre.
500m2-resolution outer zone DEMs were extracted from the GEBCO grid dataset [153] which
describes both topography and bathymetry far from the survey point. The MATLAB programs
treat any ground elevation below sea level as being underwater and find terrain correction due to
such areas appropriately.

The calculated terrain correction for each survey point was 1.6235mGal at point A and
2.8585mGal at point B; believable values for moderately hilly surroundings [62, 147]. On a
PC with 8GB of physical memory and a 3.2GHz CPU, the program took approximately 9s
to calculate a single terrain correction value from a set of 3 input DEMs. Colour plots were
made of the immediately surrounding topography for each survey point and compared to plots
of the terrain correction contribution of every corresponding prism in the analysis which show
the expected behaviour, where nearby and/or large features causing the largest terrain effects
(see fig. 3.10). Similarly predictable behaviour is shown in fig. 3.11 which plots the calculated
terrain correction as the outer radius used in the analysis is varied, which also demonstrates the
large effect inner zone topography can have on overall terrain correction.

Despite producing believable results, further tests of the MATLAB model were carried out
to ensure the Nagy prism method was implemented correctly in the programs written and to
estimate their accuracy when used to calculate terrain corrections. For the first of these tests,
the MATLAB programs were applied to a hypothetical terrain consisting of a single flat-topped
polar segment (shown in fig. 3.12), equivalent to those used in the Hammer method of terrain
correction, and the results from the MATLAB prism method were compared to an analytic so-
lution. This showed a discrepancy of just under 1µGal for a segment close to the computation
point, likely caused by imperfect representation of curved faces of the segment by rectangular
prism elements. The close agreement between the prism analysis and the analytic solution sug-
gests that the programs written are working as intended and any remaining errors are inherent in
the Nagy prism approach to modelling curved or sloping surfaces.

An estimate of the prism terrain correction method’s accuracy when applied to inner zone
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terrain using a 1m2 resolution was found by considering simplified sloping topography and
comparing the values found by the prism method with an analytic solution. The simplified
topographies used for this assume terrain slopes towards the survey point consistently in all
directions out to a fixed radius, forming conical slopes for which there is a relatively simple
analytic solution for gz [63]. These shapes were chosen because their combination of slope and
radial curvature around the survey point makes them particularly hard to reproduce using flat-
topped rectangular prisms which allows an upper estimate of the error in the prism method to
be found (since terrain surrounding a real survey point is unlikely to be as challenging for the
prism method).

By varying the radius and slope angle of the slope considered, it was found that most of the
error in the prism method arises when analysing the nearest 10 metres or so, with the size of this
error determined by the slope angle. Given this, a reasonable estimate of error can be found for a
certain slope angle as long as the first few tens of metres of terrain are considered (here a radius
of 40m is used). A plot of error against slope angle was made (shown in fig. 3.17d) and used to
conclude that the prism method has an error of less than 2µGal when applied to inner zone terrain
with a 10◦ slope in all directions towards the computation point. This result is used to conclude
that for real gravitational survey points, where terrain is likely to be more favourable, the use
of 1m2 resolution DEMs to find terrain correction as described in this chapter will contribute
an additional error of less than 2µGal to terrain correction calculations; while saving time and
effort compared to older techniques.



Chapter 4

Field Surveys with a Scintrex CG-5
Gravimeter

During January of 2020 gravimetric surveys were carried out in and around Glasgow, Scot-
land using a Scintrex CG-5 relative gravimeter, borrowed from collaborators at INGV (Instituto
Nazionale di Geofisica e Vulcanologia, National Institute of Geophysics and Volcanology) Cata-
nia, Italy. An outdoor survey was performed in the Campsie Fells, a range of hills 15km north of
Glasgow (in the same area that was considered in section 3.2.2) and another survey was carried
out on the University of Glasgow campus in the cloisters of the Gilbert-Scott building (which
are beneath part of the building but exposed to outdoor temperatures and winds). The aim of
these surveys was to take gravity measurements using a contemporary, commercially-available
gravimeter at outdoor locations in both rural and urban environments to use as a comparison
when testing MEMS gravimeters in future. This chapter will first give an overview of the Scin-
trex CG-5 gravimeter and its capabilities and then describe the gravitational surveys carried out
and their results.

4.1 The Scintrex CG-5 gravimeter

The Scintrex CG-5 Autograv is a commercially available relative gravimeter released in 2006
that uses a fused quartz spring-balance system to measure changes in local gravitational field
strength and its relevant specifications are detailed below, according to the device’s operating
manual [154]. The CG-5 has a resolution of 1µGal (1×10−8 ms−2) and can detect changes in
gravitational field strength over a range of more than 8Gal (0.08ms−2). The device’s suscepti-
bility to tares (i.e. offsets in measurement resulting from experiencing external kinetic shocks)
is such that tares are usually < 5µGal for shocks up to 20N. The device is tilt-sensitive and can
be manually levelled using an adjustable tripod that comes with it and built-in tilt sensors that
detect its angle off-vertical with an accuracy of ±0.5 arcseconds. Internal data processing soft-

89



90

ware automatically applies gravitational corrections due to changes in tilt during measurement
within a range of ±200 arcseconds but the best accuracy is achieved when tilt off vertical is
less than ±10 arcseconds, which results in tilt-induced errors of ∼ 0.1µGal [57]. The stiffness
of the quartz spring system is temperature-dependent, which can cause changes in proof mass
position indistinguishable from gravity changes and so the system is temperature-controlled to
within 0.5mK by an internal heating system. Any remaining temperature change of the spring
system is monitored and a gravitational temperature correction is automatically applied to the
detector’s output readings to account for this.

Like all spring-based gravimeters, the CG-5 exhibits a long-term drift in measurements due
to elastic relaxation of the spring and also because of ageing of the on-board temperature sensors.
Under stable conditions, this drift is approximately linear and, when properly calibrated, the
device applies a linear drift correction which reduces the rate of drift to approximately 0.02mGal
per day. Internal software can also provide an Earth tide correction as long as information about
the approximate position on the Earth is provided. Finally, the internal software can perform a
basic Hammer terrain correction using the method described in section 3.1 desired, though this
feature is not used for any of the surveys in this work.

When taking a measurement, the CG-5 records 6Hz raw data (i.e. 6 measurements per sec-
ond) which is then averaged and saved as 1Hz data (by default) for a specified observation time
of up to 256 seconds. When complete, the standard deviation σ of all measurements in an ob-
servation is saved and can be used to calculate an error in the mean, E(µ), by assuming the
background noise is normally distributed (i.e. Gaussian) and using the relationship

E(µ) =
σ√
N

, (4.1)

where N is the number of 1Hz measurements taken during the observation [154]. This as-
sumption is not particularly reliable because the noise in CG-5 measurements is unlikely to be
truly normally distributed because of the device’s aforementioned linear drift and non-Gaussian
external noise sources, such as seismic noise.

4.2 Gravity Survey in the Campsie Fells

The Campsie Fells (or Campsies) are a range of hills in the central lowlands of Scotland, approx-
imately 10 miles north of Glasgow. These hills were selected as the site of an outdoor gravimetry
survey using the borrowed Scintrex CG-5 gravimeter because of their proximity to the Univer-
sity of Glasgow and the high-resolution LiDAR elevation data describing the topography of the
region.
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Figure 4.1: 50m-resolution Digital Elevation Model (DEM) of the Campsie Fells showing the
9 survey points used in a gravimetry survey with the Scintrex CG-5. The contrast of the DEM
represents elevation, with the lightest areas corresponding to 570m above sea level and the
darkest, 5m.
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4.2.1 Survey Locations

Before carrying out the survey, a total of 9 locations in the Campsies, pictured in fig. 4.1, were
chosen to use as survey points, all lying along the B822 road travelling from the south to north of
the hills. These survey points are all in lay-bys or car parks along the road to allow easy access
by car and to provide a relatively smooth and flat surface immediately around the gravimeter
to reduce errors in terrain correction. This also ensured that the 2km× 2km area around each
survey point (the inner zone) was covered by the available LiDAR elevation data to increase the
accuracy when calculating terrain corrections later.

When performing the survey, the exact positioning of the gravimeter was decided in-situ
to ensure that the first few metres around the detector were as flat as possible, in line with
the assumptions made when calculating terrain correction discussed in section 3.1.1. After the
survey location was decided, a GPS device was used to record its global coordinates but, due
to a hardware failure, this data was later realised to be unusable. This realisation was after
the CG-5 had been returned to its owner so a repeat of the survey using a working GPS was
not an option. Instead, exact coordinates of the survey points were estimated by reference to
aerial photography of the survey locations [155] and the 1m-resolution LiDAR elevation data
describing the nearby topography. Had the GPS worked as intended, elevation above sea level
could have been determined with an uncertainty of ∼ 10mm.

While it would be possible to use aerial photography alone to estimate the coordinates of the
survey locations, greater accuracy can be achieved by comparison with the LiDAR data, thanks
to its high vertical accuracy (the LiDAR dataset available gives elevation values to centimetre
accuracy or better). For example, fig. 4.2 shows an aerial photograph of the car park used as the
location for survey point 4 alongside a LiDAR DEM describing the same area. The high vertical
accuracy of the LiDAR data allows detailed features of the car park to be identified in the DEM
so that the survey point can be located on both maps and the correct elevation above sea level can
be extracted from the LIDAR map later. Errors will arise using this method due to the incorrect
location of the measurement point on the aerial photos and any mistakes when positioning it on
the DEM but it is estimated to be accurate to within 1m to 3m. This is not an ideal method of
locating the measurement points used during the survey and some errors are expected, though
the resulting estimates are likely accurate to within 1m to 3m of the real locations.

The elevation above sea level of survey locations was determined using the LiDAR data
to the nearest centimetre or millimetre (depending on the vertical accuracy of the data at the
point in question) and ranges from roughly 35m above sea level at point 1 to 328m at point 5.
However, the aforementioned 1m to 3m uncertainty when determining the horizontal position
of a measurement point could lead to a significant error in the point’s elevation if its immediate
surroundings are not flat (since the true location could be 1m to 3m further along a sloping
surface). By looking at the LiDAR DEMs describing the inner zone around each measurement
point, it was determined that this elevation error could be as large as ±25cm at the least flat
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(a) (b)

Figure 4.2: (a): Aerial photograph of the car park in the Campsie Fells used as point 4 in the
Campsies gravimetry survey with the approximate position marked by the red cross (image from
google [155]). (b): 1m-resolution LiDAR DEM of the same area in which the shape and detailed
features of the car park (such as the grassy areas) are visible in elevation differences.

measurement points, where the local ground gradient is ≈ 5◦.
At a µGal level of accuracy, vertical gravitational field strength, gz, varies quickly with

elevation because of the combined impact of the free-air, Bouguer and curvature effects, as
described in section 1.3.2. The steep vertical gradient of gz means that an elevation uncertainty
of ±25cm at a survey point will result in a noticeable gz uncertainty of about ±75µGal (when
assuming the average density of rock is ρ = 2670kg). Since the size of this error depends on
how flat terrain is around a given survey point, separate estimates were made for each survey
point, using the relevant LiDAR maps, and are given alongside the results of the survey (denoted
as E(∆gz) in table 4.1 later). The size of this uncertainty varied from 15µGal to 75µGal at the
measurement points used in the survey, making it much larger than the uncertainties associated
with calculating the other gravitational corrections (listed in section 1.3.5). Because of this,
Eh(gz) is treated as the dominant source of uncertainty, and uncertainties in the corrections are
treated as negligible in comparison.

4.2.2 Survey Technique

When carrying out the gravity survey in the Campsie Fells, the CG-5 was transported by car,
strapped to the back seat with a seatbelt. At each survey location, the measurement point was
chosen and the CG-5 was positioned on it’s tripod and levelled manually to within 10 ′′ (arcsec-
onds) of vertical, according to its internal tilt sensors. It was then left untouched for 60 seconds
to allow the internal spring system to settle and, after this, gravity measurements were recorded
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for 90 seconds before returning to the car and moving to the next location. As mentioned above,
a GPS device was used to record the exact position of each survey point but, due to a techni-
cal fault in the GPS device, this data was unusable and position was estimated from satellite
photography and LiDAR topography maps of the region instead.

The CG-5 was drift-calibrated before the survey to automatically adjust the measurements
to account for linear drift and repeat readings were also taken at points 3 and 5 at the end of
the survey to identify any residual drift. The only other time-dependent correction applied to
the data was an Earth tide correction, calculated and applied by the CG-5 itself, which resulted
in an approximately 25µGal change over the duration of the survey (about 2.5 hours). The
remaining gravitational corrections were calculated for each measurement point after the survey,
using the expressions in section 1.3 for the free-air, Bouguer, latitude and curvature corrections.
Terrain corrections were calculated using both the hammer method described in section 3.1 and
the rectangular prism program described in section 3.1.1 to expand on comparison between
the methods in that section. It should be noted that survey points 3 and 5 in this chapter are
the same locations as survey points A and B used in section 3.1.1 to demonstrate the terrain
correction program. Once all gravitational corrections were calculated, they were combined
with the measured gz as described in section 1.3.2 to find the Bouguer anomaly, a corrected
value for ∆gz, which can be used to identify underlying variations in gz caused by sub-surface
density anomalies. As mentioned in the previous section, Eh(gz) is the gz uncertainty caused by
the uncertainty in determining the elevation of survey points and is assumed to be the dominant
source of error, with other uncertainties treated as negligible.

4.2.3 Results

The results of the CG-5 measurements at the 9 survey locations in the Campsie Fells are pre-
sented in table 4.1, along with the various gravitational corrections calculated at each point and
the elevation of the survey points, h. The estimated error in elevation of each survey point (aris-
ing from uncertainty in their horizontal location, as discussed in section 4.2.1) is also given as
E(h), and so is the error in ∆gz that this could cause, E(∆gz). For all Campsies measurements,
the standard deviation, σ , during each 90 second observation was approximately 100µGal or
less so using eq. (4.1) gives an estimated error in the mean gz of less than 12µGal (ignoring
any systematic errors in the measurement). Figure 4.3a plots the elevations, h, of the 9 survey
points and fig. 4.3b plots the measured and corrected ∆gz values relative to the ∆gz values at
point 1. Similar plots showing how the various gravitational corrections change between survey
points are presented in figs. 4.4a and 4.4b, with the former showing larger-magnitude correc-
tions (free-air, Bouguer and latitude effects) and the latter showing smaller corrections (terrain
and curvature effects).

From fig. 4.4, it is apparent that a substantial part of the measured change in gravitational
field strength, ∆gz, during the survey arises due to the combined free-air and Bouguer effects



95

Su
rv

ey
po

in
t

h
[m

]
E
(h
)

[m
]

∆
g z

[m
G

al
]

E
h(

∆
g z
)*

[m
G

al
]

∆
g f

a
[m

G
al

]
∆

g B
[m

G
al

]
∆

g λ
[m

G
al

]
∆

g c
[m

G
al

]
∆

g t
c,

h
[m

G
al

]
∆

g t
c,

p
[m

G
al

]
∆

g t
ot
,p

[m
G

al
]

1
38

.9
82

5
0.

05
0

0.
01

5
0

0
0

0
0

0
0

2
59

.0
62

5
0.

2
2.

31
1

0.
06

0
-7

.4
31

2.
69

5
2.

61
4

0.
03

5
0.

60
2

0.
58

2
3.

81
7

3
71

.1
3

0.
15

0.
99

1
0.

04
5

-1
1.

15
5

4.
04

5
3.

83
0

0.
05

2
1.

28
1

1.
25

0
2.

97
0

4
22

1.
88

2
0.

25
-2

8.
45

7
0.

07
5

-5
7.

67
7

20
.9

13
4.

90
6

0.
25

7
2.

71
3

2.
44

5
0.

69
9

5
32

8.
21

1
0.

1
-4

4.
75

0
0.

03
0

-9
0.

49
0

32
.8

11
6.

08
0

0.
39

2
1.

39
6

1.
27

5
5.

18
2

6
28

4.
90

5
0.

1
-2

7.
21

0
0.

03
0

-7
7.

12
6

27
.9

66
7.

44
1

0.
33

8
0.

69
7

0.
62

6
13

.5
46

7
19

5.
07

5
0.

15
-1

2.
14

5
0.

04
5

-4
9.

40
5

17
.9

14
8.

67
4

0.
22

1
1.

16
8

1.
07

3
9.

37
7

8
81

.2
32

5
0.

1
0.

72
6

0.
03

0
-1

4.
27

3
5.

17
5

10
.0

48
0.

06
6

1.
84

7
1.

89
7

-2
.1

88
9

14
4.

65
25

0.
2

-1
2.

47
5

0.
06

0
-3

3.
84

4
12

.2
72

13
.0

49
0.

15
4

0.
20

9
0.

21
2

-4
.3

17

Ta
bl

e
4.

1:
R

es
ul

ts
of

th
e

re
la

tiv
e

gr
av

im
et

ry
su

rv
ey

in
th

e
C

am
ps

ie
Fe

lls
.

Su
rv

ey
po

in
t1

is
ch

os
en

as
th

e
re

fe
re

nc
e

po
in

tf
or

th
e

su
rv

ey
an

d
al

l
m

ea
su

re
d

gr
av

ity
va

lu
es

an
d

ca
lc

ul
at

ed
co

rr
ec

tio
ns

ar
e

pr
es

en
te

d
as

di
ff

er
en

ce
s

re
la

tiv
e

to
th

os
e

at
th

is
po

in
t.

H
er

e,
h

is
th

e
el

ev
at

io
n

ab
ov

e
se

a
le

ve
lo

f
a

su
rv

ey
po

in
t,

E
(h
)

is
th

e
es

tim
at

ed
er

ro
r

in
h,

∆
g z

is
th

e
m

ea
su

re
d

di
ff

er
en

ce
in

g z
re

la
tiv

e
to

th
at

at
su

rv
ey

po
in

t1
,E

h(
∆

g z
)

is
th

e
m

ax
im

al
er

ro
r

in
∆

g z
ca

us
ed

by
E
(h
),

∆
g f

a
is

th
e

fr
ee

-a
ir

co
rr

ec
tio

n,
∆

g B
is

th
e

B
ou

gu
er

co
rr

ec
tio

n,
∆

g λ
is

th
e

la
tit

ud
e

co
rr

ec
tio

n,
∆

g c
is

th
e

cu
rv

at
ur

e
co

rr
ec

tio
n,

∆
g t

c,
h

an
d

∆
g t

c,
p

ar
e

th
e

te
rr

ai
n

co
rr

ec
tio

n
ca

lc
ul

at
ed

us
in

g
th

e
H

am
m

er
an

d
pr

is
m

m
et

ho
ds

,r
es

pe
ct

iv
el

y,
an

d
∆

g t
ot
,p

is
th

e
co

rr
ec

te
d

g z
fo

un
d

by
ap

pl
yi

ng
al

lc
or

re
ct

io
ns

to
th

e
m

ea
su

re
d

da
ta

sh
ow

n
in

th
e

∆
g z

co
lu

m
n

(u
si

ng
on

ly
th

e
pr

is
m

m
et

ho
d

fo
rt

er
ra

in
co

rr
ec

tio
n)

.

*
T

hi
s

qu
an

tit
y,

th
e

er
ro

r
ar

is
in

g
du

e
to

th
e

un
ce

rt
ai

nt
y

in
su

rv
ey

po
in

te
le

va
tio

n,
is

ge
ne

ra
lly

fa
r

la
rg

er
th

an
ot

he
r

m
ea

su
re

m
en

te
rr

or
s

ar
e

ex
pe

ct
ed

to
be

an
d,

th
er

ef
or

e,
se

rv
es

as
a

re
as

on
ab

le
ap

pr
ox

im
at

io
n

fo
rt

he
ov

er
al

le
rr

or
in

th
e

as
so

ci
at

ed
m

ea
su

re
m

en
t.



96

(a)

(b)

Figure 4.3: (a): Graph of elevation above sea level at the 9 survey points used in the Campsies
survey. The error in these elevations is not visible on the scale used. (b): Graph of the change
in gravity measured with the CG-5 gravimeter and the same data after applying the gravitational
corrections described in section 1.3 using the prism method of terrain correction (gtot,p in ta-
ble 4.1). The majority of the difference between the measured and corrected ∆gz is caused by
elevation-dependent effects. Uncertainties in plots (a) and (b) are too small to be visible on the
scales used.
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(a)

(b)

Figure 4.4: (a): Calculated change in the free-air correction, ∆gfa, Bouguer correction, ∆gB,
and latitude correction, ∆gλ , relative to point 1 for the Campsies survey points. (b): Change in
terrain correction calculated using the Hammer method, and the prism method, ∆gtc,h and ∆gtc,p,
and change in the curvature correction, ∆gc; all relative to point 1. Uncertainties in plots (a) and
(b) are too small to be visible on the scales used.
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caused by the different elevations of the survey points. The effect of latitude is smaller but still
significant, causing a change of over 10mGal between points 1 and 9 (where point 9 is roughly
17km north of point 1). The curvature effect, shown in fig. 4.4b, is the smallest of all calculated
corrections, due to elevation differences between points not being excessively large, but it is still
significant in this survey at a sub-mGal level of accuracy.

As in section 3.3.1, the terrain corrections for the Campsies survey were calculated us-
ing both the Hammer and prism-based terrain correction programs described in sections 3.1
and 3.1.1 (note, points 3 and 4 in the Campsies survey are the same as points A and B shown
in fig. 3.9). It should be noted that the digitised Hammer method using LiDAR data presented
in the terrain chapter is being used for comparison here and that the traditional hammer method
is likely to be much less accurate than this due to errors in topographic maps and manual esti-
mation of inner zone elevations. The terrain corrections at each survey point, calculated using
both methods, are plotted in fig. 4.4b and are shown to agree quite closely with one another,
especially when the surrounding terrain is less rugged and terrain corrections are smaller. Point
8 is notably the only case where the prism method finds a larger value of terrain correction than
the Hammer method but this is still thought to still reflect the inaccuracy of the latter method
and to be a product of the specific topography surrounding this point (here, surroundings are
particularly flat for the first few hundred metres before large hills begin, the gravitational effect
of which is probably underestimated in places by the Hammer segment representation). When
applying gravitational corrections to the measured ∆gz, terrain correction values calculated with
the prism method are used because, as mentioned in section 3.3.1, the prism approach is a higher
resolution analysis method and is more accurate, especially when in more rugged surroundings.

Analysing corrected data

In fig. 4.3b the corrected ∆gz at all measurement points is displayed as the red line, calculated by
applying all gravitational corrections to the measured data, leaving only the underlying changes
in gravity. As described in section 1.3, these remaining gravity anomalies will predominantly
be caused by underground variations in density, so can be used to investigate the subterranean
rock composition of the region. The most prominent feature in the corrected gravity profile is
a peak in ∆gz between survey points 5 and 7, which suggests the presence of higher-density
rock in the vicinity of these points. To try and explain this anomaly, a map of the bedrock
geology of the Campsies was found to see if there are significant variations in surface rock
composition correlated with the location of the anomaly. The map used here is the 1 : 625000
scale Bedrock Geology UK North map available online [156] from the British Geological Survey
(BGS) which is a downscaled version of 1 : 50000 scale maps [157, 158] compiled from many
outcrop samples, excavations and boreholes [159, 160]. The lower resolution 1 : 625000 scale
maps are used here as they are simpler and still provide sufficient information for a comparison
between bedrock composition and the measured ∆gz variations in the Campsies survey. An
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Figure 4.5: Geological bedrock composition map and key showing part of the Campsie Fells
around CG-5 survey points 3 to 8 (labelled) [157].

excerpt from the 1 : 625000 map showing the Campsie Fells is presented in fig. 4.5, with the
position of nearby survey points marked, and shows that there are some variations around the
location of the anomaly (points 5 to 7) but these are not particularly extensive.

In fig. 4.5, the pink-shaded areas describe regions where the surface layer of bedrock is
made of igneous extrusive basalt. A rock is classified as igneous extrusive if it was formed
from molten rock which solidified while above the Earth’s surface, and the rock type (eg basalt)
is determined by its specific mineral composition [161]. Yellow-shaded areas represent areas
of agglomerate, another igneous extrusive rock but one formed of compacted volcanic ejecta
consisting of rounded volcanic bombs cemented in a matrix of solidified volcanic ash [161].
Agglomerate is commonly found at, or near the site of, past volcanic craters. The dark green
areas indicate igneous intrusive rock, formed from molten rock that solidified while beneath the
Earth’s surface; a slower cooling process that can lead to different physical properties (including
density) in comparison to igneous extrusive rocks. The remaining areas indicate sedimentary
rock which are formed of compacted particles of other rocks and/or organic materials, cemented
together by pressure over time, and which tend to be less dense than igneous rocks [161, 162].

Comparing figure 4.5 with the corrected gz in fig. 4.3b shows that the large gravitational
anomaly observed between survey points 5 to 7 does coincide with some variations in bedrock
composition around points 6 and 7, but it is unclear whether these variations are the sole cause
of the anomaly. The density of each bedrock type shown in fig. 4.5 is not known precisely and
rocks of any given type (basalt, for example) can exhibit a wide range of densities, making it
difficult to accurately model the gravitational effect of these areas of bedrock. Furthermore, the
bedrock map only gives information about the upper surface of the bedrock layer so the structure
of density variations deeper than this is not known, and may be a much more significant cause
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of the observed anomalies.
Further search of the literature found that an earlier gravitational survey of the entire Camp-

sies region was carried out by W. R. Cotton, published in 1969 [163], in which particular at-
tention was paid to the yellow area near point 6 in fig. 4.5, which Cotton names the Waterhead
central volcanic complex. This survey was performed using three different relative gravime-
ters at various points: a Worden ‘Prospector’, which has an accuracy of 10µGal; a Worden
‘Pioneer’, which has an accuracy of 15µGal and a Frost gravimeter, which has an accuracy of
20µGal [57,163]. It is unclear which device was used when taking observations around the Wa-
terhead area so the gravimeter accuracy for this survey is assumed to be at least that of the Frost
gravimeter, 20µGal. However, as will be discussed later, a significant amount of error is likely
to have been introduced into Cotton’s survey during the correction process so the accuracy of
his data is likely worse than that of the instruments used.

Cotton’s survey detected a large positive gravity anomaly centred near the Waterhead vol-
canic complex and a contour map of the measured Bouguer anomaly is presented in fig. 4.6, with
nearby measurement points from the more recent CG-5 survey superimposed (survey point 9 is
not visible in fig. 4.6, but still lies within the area covered by the full Bouguer anomaly map).
Cotton attempted to determine the source of the large anomaly by modelling the gravitational
effect of theorised, sub-surface, density variations in the shape of spheres, cylinders and flat-
topped cones (frustums). From this, Cotton concluded the cause of the anomaly at Waterhead
to be a 8km× 6km solidified magma chamber, roughly elliptical in shape (with its long axis
oriented northwest-southeast) and extending from 500m to 6km below the surface.

A brief comparison will now be made between the results from Cotton’s gravitational survey
in 1969 and those from the CG-5 survey, carried out approximately 50 years later. It is important
to note that the Cotton survey and the CG-5 survey each use a different zero point for reference
when giving relative change in gravitational field and, by coincidence, the zero reference of the
older survey seems to match point 2 of the CG-5 survey. To assist comparison of the surveys,
fig. 4.7 plots the corrected results from the CG-5 survey using point 2 as the zero reference
alongside the gz values from Cotton’s Bouguer anomaly map at the same locations, shown in
fig. 4.6. The data from Cotton’s survey presented in fig. 4.7 was read from the contour map and
so is only accurate to the nearest 0.5mGal.

The old and more recent gravity surveys agree most closely at survey points 1 and 6 where
∆gz values are approximately 500µGal less in the CG-5 survey than in Cotton’s survey. That
both surveys agree relatively well at point 1 (the zero point originally used in the CG-5 survey)
and point 6 (near where the peak gravity anomaly is observed in both surveys) is a good confir-
mation of the presence and approximate magnitude of the large gravity anomaly observed near
point 6 in the CG-5 survey. The surveys also agree quite closely at point 9 (not shown in fig. 4.6)
where the CG-5 survey observed a ∆gz of −8µGal and Cotton’s survey measured approximately
−7.5µGal.
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There are larger disagreements between the surveys at all other measurement points and
∆gz values from the CG-5 survey are consistently less than those observed in Cotton’s survey.
The next closest agreement between the surveys is at point 3, where there is approximately a
1.5mGal decrease in the newer survey and points 5 and 7 both show a decrease of about 3mGal.
The largest differences between the surveys are seen at points 4 and 8 where the decrease in ∆gz

between the new and old survey is 5.5mGal and 6mGal, respectively.
These differences are all much larger than the expected error margins of the CG-5 survey

as discussed in section 4.2.3 so point to either real changes in Bouguer anomaly in the region
over the 50 years since Cotton’s survey or errors in the execution of or corrections applied to
either survey. The Campsie fells are not a particularly geologically active region so it seems
very unlikely that such significant changes in Bouguer anomaly could have happened over the
course of just 50 years so the accuracy of Cotton’s survey will be scrutinised more closely.

It should be noted that the two largest points of disagreement between the surveys (points
4 and 8) are also the locations where terrain correction is the largest, as seen in fig. 4.4b, and
that the surveys agree most closely where terrain correction is the smallest (at points 1, 6 and
9). This suggests that at least part of the disagreement between the surveys is due to inaccura-
cies in the terrain corrections calculated by Cotton, which is understandable given the method
of correction he was using. Cotton used the traditional Hammer method of terrain correction
described in section 3.1 which relies heavily on manual estimates of the topographic relief in
the immediate surroundings of a survey point and finding average elevations from topographic
maps, making it very susceptible to human error. The Hammer method is known to be espe-
cially inaccurate in areas of more rugged terrain because of the increased difficulty of accurately
estimating distances and elevation changes, even when using surveying equipment, which can
lead to errors of up to 3mGal or more in hilly surroundings [152].

When the Hammer method was calculated in this work from the same elevation data as
used in the prism method (producing the ∆gtc,h correction shown in table 4.1 and fig. 4.4b),
the disagreement between the two methods was ∼ 0.26mGal at most. This is an indication
of the inherent inaccuracy of the Hammer method when topography is well known, but the
disagreement between Cotton’s data and the CG-5 data is far larger than this, suggesting that
the remainder of the discrepancy is, indeed, due to his errors when estimating topography. This
supports the theory that the discrepancy of several mGal between Cotton’s results and those of
the CG-5 data is mostly due to errors in his estimates of the topography.

Cotton also only considered terrain out to a radius of roughly 22km from the measurement
point when finding terrain corrections instead of the 166.735km limit used when correcting the
CG-5 survey. This could have a noticeable effect on calculated terrain correction as, even though
survey points are quite close together (so the distant terrain is generally similar), the difference
in elevation between survey points can significantly affect the terrain correction at each one due
to these same distant regions [58, 152]. An example of this is visible in fig. 3.11 which shows
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that, for survey points 3 and 4 in the Campsies, outer zone topography (25km to 166.735km
from the survey point) has an effect of over 50µGal on terrain correction.

Another part of the difference between the old and new surveys may be explained by the
fact that Cotton did not consider the curvature correction when analysing his data. As shown by
the ∆gc line in fig. 4.4b, this will lead to errors of up to 400µGal at the measurement points of
the CG-5 survey and will be even more significant at higher elevations. Also, the comparison
between surveys has a limited accuracy as hand-drawn 0.5mGal contour diagrams like the one
shown in fig. 4.6 are used to read Bouguer anomaly values for Cotton’s survey. Cotton does
provide more accurate results tables for each survey point in his work [163] but the location of
most points is not included and the remaining locations can only be approximated from maps of
the same scale as the Bouguer anomaly contour maps.

Because of the aforementioned errors in Cotton’s survey, the CG-5 survey is concluded to be
a more accurate measure of Bouguer anomaly along the traverse from points 1 to 9 in fig. 4.1,
though it consists of far fewer measurement points. This survey could serve as the basis for a
re-surveying of the region or as a benchmark when testing future gravimeters, such as the Wee-g
described in section 1.4.2.

4.3 Measurements in the cloisters of the Gilbert-Scott build-
ing at the University of Glasgow

As well as performing a gravity survey in the Campsie Fells, the borrowed Scintrex CG-5 was
used to perform a localised survey of gravity in the cloisters (also called the undercroft) of the
Gilbert-Scott building at the University of Glasgow. This location was chosen to complement the
Campsies survey by setting a benchmark for gravity measurements in more built-up, urban areas
and in buildings, against which the performance of future MEMS gravimeters can be compared.

The cloisters of the Gilbert-Scott building are a roughly 20m×30m, flat, paved area of the
ground floor of the building that are open to the outside on both sides but covered overhead by
the rest of the building, above vaulted ceilings shown in fig. 4.8. This was a convenient space
to perform a gravitational survey thanks to its large, flat floor and due to its proximity to the
University of Glasgow physics department, where the CG-5 was being kept.

4.3.1 Survey technique

Gravity measurements were taken at 75 points in the cloisters, arranged in the 9× 11 grid of
positions shown in fig. 4.9 excepting grid nodes obstructed by columns (which are shown as the
shaded areas in fig. 4.9). For reference, measurement points on the grid are split into lines and
stations to indicate east-west and north-south position respectively, resulting in 9 lines and 11
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Figure 4.8: Photo looking south in the cloisters of the Gilbert-Scott building at the University
of Glasgow Gilmorehill campus showing several columns and the vaulted ceilings (photo from
University of Glasgow website [164]).

stations as labelled. The dimensions of the cloisters and positions of all measurement points
were recorded after the survey using a tape measure to find the distance between the points and
the surrounding walls and pillars. With this method, the position of the points is found to an
estimated accuracy of ±2cm

When taking measurements, the CG-5 was positioned as close as possible to the desired
survey point by estimating it’s location relative to the surrounding columns and walls. This was
made easier by the survey points being in line with and/or equidistant from the surrounding
columns and further assisted by the arrangement of paving slabs on the floor in some cases. An
example of this is visible in fig. 4.10 in which the CG-5 is shown recording measurements in the
cloisters at the line 4, station 2 location indicated in fig. 4.9.

Due to the large number of points, the survey was conducted over the course of several days
and repeat measurements were used to account for any day-to-day variation in gravity (due to
changes in atmospheric pressure and groundwater levels) and combine data from different days
into a single dataset. At the start and end of each survey session, measurements were taken at
the line 1, station 2 point and all other gravity values from that session are adjusted to be relative
to this measurement. The measurement taken at the line 1, station 2 point at the end of each
survey session was used to remove residual linear drift in the detector over the duration of the
session.

The CG-5 was transported to the cloisters on foot (a 5-minute walk), set on its tripod and
levelled, and left stationary for 5 minutes before beginning the survey to improve noise perfor-
mance by allowing the spring system time to settle (as suggested by Seigel [12]). To reduce
anthropogenic noise from passing pedestrians, all measurements were taken in the evenings af-
ter 6pm, when the building was less busy. In the case that a measurement was disturbed by
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Figure 4.9: Schematic of the cloisters of the Gilbert-Scott building at the University of Glasgow
where a gravity survey was performed (not to scale). The 75 measurement points used in the
survey are labelled with red crosses.
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Figure 4.10: Photo of the CG-5 gravimeter taking data in the cloisters of the Gilbert-Scott
building at the University of Glasgow. The detector is positioned at line 4, station 2 on the
map in fig. 4.9.

someone walking past the device, the measurement was retaken. When moving between mea-
surement points in the cloisters, the CG-5 was left to settle at the new position for 30 seconds
before each measurement and then recorded data for 90 seconds. An integration time of between
120 to 150 seconds has been suggested in the literature to maximise the CG-5’s sensitivity [165]
but the shorter time of 90 seconds was used here to speed up collecting data, on account of the
large number of survey points. After each measurement, the tilt of the device was checked and
if it had moved past ±10 ′′ of vertical while recording data, the measurement was repeated.

Most gravitational corrections described in section 1.3 and used in the Campsies survey were
not applied to the cloisters data because of the small survey area and small elevation changes
involved. This means there will be little variation in terrain or elevation corrections between
survey points and any underlying effects are likely to show as a constant gradient in the data, so
any localised gravity anomalies will still be observable. The only corrections applied were those
performed internally by the CG-5 itself, namely Earth tide, tilt and temperature corrections.

4.3.2 Results

The results from the cloisters gravity survey are presented in fig. 4.11 as a 0.02mGal-interval
contour plot of ∆gz (relative to the line 1, station 2 point). This contour plot uses a spline
interpolation to estimate ∆gz values in-between survey points and the location of columns in the
measurement area are indicated by transparent grey shapes.

The data shows variations in ∆gz of more than ±100µGal in the survey area over relatively
short distances which suggests that the observed effects are caused by some combination of
the surrounding building and underground density variations. Of these two effects, it is more
likely that the latter are the main cause of the observed ∆gz features because the above-ground
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structure of the cloisters is quite symmetrical around the surveyed area and there is no obvious
symmetry in the observed gravity data. No further attempt is made in this work to model the
gravitational effect of the surrounding building due to time limitations and the complexity of the
surrounding architecture.

To investigate the presence of underfloor density variations further, copies of the original
building plans of the Gilbert-Scott building were obtained from the University of Glasgow li-
brary and relevant excerpts from these are reproduced in fig. 4.12. These plans show air ducts
running beneath the floor of the cloisters that are approximately 2m× 2m in profile, judging
from the cross-section in fig. 4.12b. If accurate, this would mean that all survey points around
the edges of the cloisters and through the centre (all points on lines 1, 5 and 9 and stations 1 and
11) lie above or very close to sizeable cavities that will reduce ∆gz at these points. Since the
reference point for the survey (line 2 station 1) is itself above an air duct, points not above ducts
ought to see a positive relative gravity anomaly, ∆gz, and those above air ducts should see the
same or a similar ∆gz (assuming that the air ducts shown in fig. 4.12a are the dominant source of
gz variations). However, this behaviour is not seen consistently in the results shown in fig. 4.11.
For example, ∆gz is larger in line 2 than line 1 for all stations, as expected but there is significant
variation in ∆gz between different stations on the same lines (even when excluding interpolated
data where columns are present) which are not explained by the layout of the planned air ducts.
Similar behaviour is observed at line 5 where ∆gz is close to zero at some stations but not others
and lines 8 and 9 even show the opposite behaviour expected, where gz above an air duct is
greater than that over solid ground in some places (station 10, lines 8 and 9, for example).

To more directly examine the effect of the underfloor air ducts shown in fig. 4.12, a simu-
lation of the expected gravitational effect was made by representing the underfloor ducts with
rectangular prisms of suitable size and density and using the Nagy prism method described in
section 3.1.1 to calculate the resulting gz. The dimensions of the air ducts were read from the
to-scale building plans shown in fig. 4.12* and a model of the ducts was constructed, consisting
of 5 rectangular prisms labelled A to E, arranged as shown in fig. 4.13a. Along their shorter
side, prisms A,B,D and E each have an extent of 1.8m and prism C has an extent of 1.37m,
while along their longer side, prisms A and E each have an extent of 19.94m and prisms B,C
and D have an extent of 29.26m. In the vertical direction, the prism extents were approximated
to a rectangular cross-section using fig. 4.12b as a reference (ignoring the non-flat upper and
lower faces shown) and the upper and lower faces of all prisms were chosen to be at −0.44m
and −1.94m, respectively. The results of this simulation are presented in fig. 4.13b, showing
how the calculated gz varies in the same area surveyed during the CG-5 measurement, which is
also indicated by the dotted red line in fig. 4.13a. Comparison between fig. 4.13b and fig. 4.11
shows little agreement between the simulated gravity field and the survey data, with the latter

*The full plans, too large to present in fig. 4.12, include scale bars, allowing the dimensions of the air ducts to
be identified.
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Figure 4.11: Contour plot of measured gravity anomaly in the cloisters of the Gilbert-Scott
building at the University of Glasgow. ∆gz values are relative to that measured at the line 1,
station 2 point and the contour interval is 0.02mGal. Structural stone columns of the building in
the measurement area are shown as transparent grey objects.
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(a)

(b)

Figure 4.12: (a): Building plans of the cloisters of the Gilbert-Scott building at the University
of Glasgow showing underfloor air ducts around the edge and through the centre of the floor as
labelled. (b): Cross-section plan of the air duct running along one of the edges of the cloisters.
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(a) (b)

Figure 4.13: (a): Cloisters layout with ducts, red rectangle shows extent of survey area (b):
Simulated gz due to the ducts

showing gz variations tens of µGal larger than the features in the simulated data with little spatial
correlation.

Disagreements between the observed gravity anomalies and the simulated gravity field of the
air ducts could be explained by inaccuracies in the plans themselves, which are over 140 years
old and likely only describe the intention of what was to be made and are not a detailed, as-built
description of the building. It is plausible that the ducts may have been partially filled in (with
stone or other heavy material) during or after the original construction, which could explain why
evidence of the ducts’ presence is only seen in places in fig. 4.11. Also, there may be additional
underground structures or density variations not described in the building plans that may have a
significant effect, or the impact of the above-ground building structure could have a larger and
less-symmetrical effect on gravity than originally thought. Finally, there may be errors in the
measured gravity data, arising either internally in the detector or externally through vibrational
noise or systematic errors that have distorted the results of the survey in places.

Systematic errors are known to occur occasionally when using spring-based gravimeters
where the spring system does not return to the same level after being moved or struck, resulting
in an offset or tare in the data [12]. The detector was not exposed to any large physical shocks
during the cloisters measurements and no extreme tares are obvious from the repeat measure-
ments carried out to quantify linear drift during the surveys. Despite this, it is possible that
there are tares in the data that occurred when the detector was being repositioned and that these
contributed to the unexpected results in fig. 4.11, when compared to the air duct plans.
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Since carrying out the CG-5 survey, colleagues of the author have attempted to repeat mea-
surement of the large anomaly in the cloisters while testing prototypes of the Wee-g MEMS
gravimeter described in section 1.4.2. However, the cloisters were found to be too noisy of an
environment to take accurate measurements in, thought to be because of ground motion from
pedestrian traffic. The prototype sensor used for this had previously shown much better perfor-
mance when in less busy indoor and other outdoor locations and the cloisters have since been
discounted as a location for further gravimetric testing. It is still unclear whether the results of
the CG-5 survey showed little evidence of the ducts due to unconsidered underground density
variations or environmental noise in the cloisters.

4.4 Conclusion

A Gravitational survey was carried out along a roughly South-North traverse of the Campsie
Fells (a range of hills 10 miles north of Glasgow, Scotland) using a Scintrex CG-5 gravimeter,
the results of which are compared with a previous survey of the entire Campsie region performed
by W. Cotton in 1969 [163]. The present survey consists of far fewer data points but uses a
modern relative gravimeter (the CG-5) and a more accurate process of gravitational correction
when analysing the results; including correction for the Earth’s curvature and consideration of
terrain corrections out to 166.735km using the LiDAR/rectangular prism method described in
chapter 3. The results of the CG-5 survey are directly compared to 0.5mGal contour plots from
the 1969 survey and show general agreement in describing a large gravity anomaly around a
geological feature in the region referred to as the Waterhead volcanic complex by Cotton. There
is some disagreement between the surveys on the exact magnitude and position of the anomaly
which is attributed primarily to the less-accurate gravitational correction procedure used in the
earlier survey. Specifically, Cotton used the Hammer method of terrain and relied on manual,
in-situ, estimates of the topography immediately surrounding survey points which can lead to
errors of 3mGal or more when in moderately hilly surroundings, as in this case. Cotton also
ignored curvature correction and only analysed terrain out to a distance of 22km when finding
terrain correction.

The accuracy of the CG-5 survey is limited to ±75µGal by uncertainty in the elevation of
survey points arising because of a failure in the GPS equipment used during the survey, which
could be rectified in future by repeating the survey using a working GPS system. Additional
surveys are suggested to expand on the coverage of the single South-North traverse performed
here to re-map the entirety of the Waterhead gravity anomaly using modern measurement and
correction procedures. In Cotton’s survey, gravitational modelling was used to infer the cause
of the anomaly to be an 8km× 6km solidified magma chamber extending from 500m to 6km
below the surface and more accurate gravity data would allow this conclusion to be tested.
Finally, repeat surveys in the near future will likely be performed with MEMS gravimeters
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developed at the University of Glasgow and the survey presented here can act as a benchmark to
compare these devices against to test their performance.

A second gravity survey using the CG-5 was conducted in the cloisters of the Gilbert-Scott
building at the University of Glasgow Gilmorehill campus to see if this would also be a suitable
location for tests of future MEMS gravimeters. Gravity measurements were taken at a grid of 75
positions in the cloisters (where not obstructed by columns) and a 20µGal-interval contour plot
was made showing the results (see fig. 4.11). Because the survey took place in a confined and
mostly flat area, most of the gravitational corrections described in section 1.3 are not applied to
the collected data as they are likely to be insignificant in comparison to local changes in grav-
itational field (the only corrections applied were a tide correction and drift correction). Gravity
anomalies with a range of 260µGal were detected during the survey and background vibrational
noise in the area was found to be fairly low when surveys were performed in the evenings (after
6pm).

To try and determine the cause of the observed gravity anomalies in the cloisters, plans of
the Gilbert-Scott building were obtained (shown in fig. 4.12) which show that sizeable air ducts
run underneath parts of the area surveyed. A basic simulation of the gravitational effect these
ducts would cause was made by representing them as rectangular prisms and using the Nagy
analytic solution presented in chapter 2. The results of this simulation (shown in fig. 4.13) show
little correlation with the results of the CG-5 survey, which suggests either errors or noise in
the gravity data collected or some inaccuracy or incompleteness of the plans obtained (which
is plausible as they are over 140 years old). No consideration was given to the gravitational
effect that the surrounding building’s structure could have which could partly explain some of
the observed anomalies and this is left to future work.

Since carrying out this survey, colleagues of the author have attempted further gravity mea-
surements in the cloisters using prototype Wee-g devices but these have all found the area dif-
ficult to take accurate measurements in due to high environmental noise, thought to be due to
ground motion from pedestrian traffic. Future measurements with Wee-g devices are planned to
be carried out elsewhere.



Chapter 5

Conclusion

This work is broadly concerned with the modelling of gravitational fields that the currently in-
development Wee-g MEMS gravimeter may be used to detect in future, in order to investigate
the devices potential usefulness and/or to assist with the future data processing of results. The
first chapter gives an introduction to gravity, gravimetry and the Wee-g MEMS gravimeter and
the following chapters describe the modelling of gravitational fields of submarines, an improved
method of calculating gravitational terrain corrections for terrestrial gravimetry, and a gravita-
tional survey performed locally using a borrowed Scintrex CG-5 gravimeter. This chapter will
give a brief summary of the work done in each of these 3 chapters as well as suggestions for
future work on each.

5.1 Modelling submarine gravity

A finite element analysis (FEA) approach was used to simulate the gravitational field at a point
or array of points as a submarine-approximating object moved past in a straight line to simulate
submarine detection by single gravimeters or gravimeter arrays. The structure and density distri-
bution of a real submarine is complicated so a simplified length-varying density was assigned to
a cylinder of appropriate size (approximately 100m long with a 10m diameter) to make an ap-
proximation of a submarine. The linear density profile chosen for the cylinder was chosen such
that the cylinder has a neutral buoyancy in seawater overall but is more dense halfway along
its length and less dense either side of this, representing a heavy engine and air filled buoyancy
tanks allowing it to maintain depth (detail of the density profile used is not given for security
reasons at the request of QinetiQ, an industrial partner to this part of work). The FEA used to
find the gravitational field due to the cylinder was programmed using MATLAB and divides the
object into many cylindrical polar volume elements and calculates g due to each individual ele-
ment using a point mass approximation, assuming all of an elements mass is located at its centre
of mass. This method’s accuracy was tested by applying it to a uniform-density cylinder and
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comparing the calculated gravitational field to an analytic solution for such an object (developed
by Na et al. [117]) which show good agreement with each other, provided the cylinder is not
too close to the computation point (where the analytic solution is not accurate) and sufficient
elements are used in the FEA.

The MATLAB model was then used to calculate the gravitational field strength, g, at a single
point or array of positions as the submarine-like density moved past to simulate the gravitational
signal at a gravimeter or array trying to detect it. In these simulations, the submarine density
moved in a straight-line path some distance above the detector/array and detectors were assumed
to be sensitive in one direction only, parallel to the z-axis, like the Wee-g mems gravimeter. Sim-
ulations were repeated using submarine trajectories at varying distances above the detector/array
and plots of gz as a function of time at single detectors were made as well as animated surface
plots showing gz at all detectors in an array during the submarine’s motion. These plots were
used to estimate the maximum detection range of a similarly sized submarine by the Wee-g
gravimeter to be approximately 20m; determined by comparing the size of the peak gz signal
with the 5µGal/

√
Hz noise floor of a Wee-g prototype, determined from measurements taken in

2023. This suggests that the Wee-g could be useful for the short-range detection of submarines
in shallow waters around coasts or near ports and use of detector arrays could extend sensor
coverage over a larger area.

Matched filtering was also investigated as a way to increase the predicted 20m detection
range of Wee-g gravimeter, through improved extraction of a submarine gravity signal from a
noise-corrupted measurement. To do this, synthetic noisy submarine signals were generated
by combining simulated submarine gravity signals with real Wee-g sensor noise data and then
matched filtering was used to try and recover the injected signal. In the case of a simulated signal
for a submarine travelling at a range of 30m and speed 5ms−1 corrupted with approximately
5µGal/

√
Hz sensor noise, the matched filter was able to boost SNR enough that the signal (with

a peak amplitude of 2.8µGal) became clearly visible in the filter output. This was demonstrated
on two different synthetic noisy signals, one 10 minutes long and the other 30 minutes long
and in both cases the filtering increased SNR significantly and the 30m-range submarine signal
became clearly identifiable, indicating that the detection range had increased by 10m.

The results of this work can be concluded as a preliminary validation that the Wee-g gravime-
ter could have applications in the short-range detection of submarines up to 30m away. It should
be kept in mind, however, that these results are predicated on the Wee-g being able to achieve
comparable detector performance deployed underwater (In a watertight container) as on land,
and on the assumptions about submarine density variations are sensible assumptions.

Future work

The biggest source of inaccuracy in the submarine gravity models presented in this work is likely
to be due to the submarine density model used, which is only a very basic approximation of the
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density variations inside a real submarine. More accurate simulations could be developed that
consider a cylindrical object with a more sophisticated linear density profile and/or with radial
variations in density as well, to improve realism and better simulate gravitational field. Different
density models could also be made that model the gravitational fields around submarines of
different sizes and internal layouts to investigate how this affects detection range.

The modelling of sensor arrays demonstrated that they would allow additional information
to be gathered about a detected submarine such as its speed, direction of travel and the azimuth
to the submarine from the array but extracting this information from array data would require
sophisticated data analysis methods. There may be some degree of crossover between the signal
processing required for gravitational arrays and already existing methods (eg. for radar/sonar ar-
rays) but there may be unique challenges associated with the nature of the gravitational field that
could be addressed by further investigation. Future work could also investigate how gravimeter
arrays should be designed for a given purpose, such as monitoring a river mouth or port entrance,
and consider the specific signal processing that would be required for a given array layout.

The use of gravimeter arrays could also allow the overall sensitivity of the array to be in-
creased past that of a single sensor by correlating measurements from different sensors in the
array using machine learning methods similar to those developed for use in gravitational wave
astronomy [135]. These methods can be used to extract a transient signal from background
noise, providing that the shape of the signal is already known beforehand, improving the signal
to noise ratio and potential detection range. Submarine gravity simulations like those made in
this work could be used to make the large amounts of example data required to ‘train’ such ma-
chine learning algorithms and, if submarines with different density profiles are simulated, could
potentially allow the identification of known types of submarine from their observed gravity
profile.

5.2 Modelling gravitational terrain corrections using high-
resolution LiDAR elevation data

Accurate gravitational terrain correction is the most complicated correction that must be applied
to gravity survey data to extract useful information and traditional methods of calculating it
are inaccurate and time-consuming. This work has demonstrated that by using high-resolution
LiDAR elevation data, inner zone terrain corrections (i.e. analysis of terrain within the first
kilometre or so of a measurement point) can be calculated in a matter of seconds and to a higher
degree of accuracy than earlier methods (such as the Hammer method). This is achieved using
MATLAB programs that apply the Nagy flat-topped prism method of terrain correction to terrain
around a survey point out to the standard limit of 166.735km in 3 stages, considering an inner,
middle and outer zone of terrain, each using an appropriate resolution of analysis.
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The terrain correction program is applied to 2 example locations in the Campsie Fells, north
of Glasgow, where topography is described using digital elevation models (DEMs) with resolu-
tions of 1m2 for the inner zone (0km to 1km from the survey point), 50m2 for the middle zone
(1km to 25km from the survey point) and 500m2 for the outer zone (25km to 170km from the
survey point). The terrain corrections calculated for these two locations are 1.6235mGal and
2.8585mGal, believable values for moderately hilly surroundings, and were calculated in ∼ 9s
each on a PC with a 3.2GHz processor and 8GB of RAM.

The accuracy of the terrain correction program was tested by applying it to geometrically
simple terrain surfaces and comparing its results to those found using suitable analytic solutions
for the simple topography considered. This approach was used to confirm that the Nagy prism
method used in the program was implemented correctly by applying it to a single ‘Hammer
segment’, a flat-topped, cylindrical polar volume element of terrain of specified height, used in
the traditional Hammer method of terrain correction. The terrain correction calculated by the
MATLAB program was compared to the analytic solution for a Hammer segment and a close
agreement was observed, suggesting that the Nagy prism method used in the program is working
as intended.

Simple sloping topographies were also considered to test the program’s accuracy when
analysing inclined terrain very close to the survey point, since this is where the 1m2 resolu-
tion Nagy flat-topped prism approach used in the program is least accurate. The topography
used in these tests sloped towards the survey point uniformly in all directions out to a given
radius, forming a conical depression (or hill, equivalently). This shape was chosen because it
maximises the potential error arising when applying the prism method (because of the slope in
all directions) and terrain correction can be calculated using a simple analytic expression for a
conically sloping quarter-wedge. These tests found that the accuracy of the Nagy prism method
was improved by ignoring the 4 prisms adjacent to the survey point in the prism representation
and found that most of the remaining error is primarily determined by the slope angle. The
relationship between error in the Nagy prism method and the slope angle used was calculated
and plotted for a full conical slope of various angles and determined to be below than 2µGal
when slope angle is > 10◦. This is taken as a reasonable upper estimate of the accuracy of the
MATLAB program when applied to inner zone terrain around real survey points, where terrain
is unlikely to slope away in all directions at such a steep angle.

Future work

This work attempts to overcome the limited accuracy of the Nagy rectangular prism represen-
tation of terrain by using 1m2 resolution elevation data and an equally high-resolution prism
analysis but some inaccuracy still remains. The accuracy of the MATLAB program presented
could be improved by simply increasing the resolution of the elevation data and analysis used but
improvements could also be made by moving beyond the flat-topped rectangular prism model
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of topography used in the Nagy method. Analytic solutions for gz due to rectangular, triangular
and n-sided prisms with sloping tops have been published in the literature and could be used
to more accurately represent surrounding topography and calculate terrain corrections in future
programs. These analytic solutions are more complicated than that for regular, flat-topped, Nagy
prisms so it may be more efficient to only use this sort of analysis when considering terrain ex-
tremely close to the survey point (perhaps defining a new ‘inner-inner’ zone).

5.3 Field surveys with a Scintrex CG-5 gravimeter

Two outdoor gravity surveys were performed using a Scintrex CG-5 relative gravimeter bor-
rowed from collaborators at INGV Catania with the aim of establishing benchmark measure-
ments that future MEMS gravimeters developed at the University of Glasgow can be tested
against. The first of these surveys was performed in the Campsie Fells (hills north of Glas-
gow) and consists of 9 survey points along a road passing some of the most rugged terrain in
the area along an approximately south-to-north traverse. The survey was carried out in a sin-
gle day, transporting the CG-5 by car and the standard gravitational corrections described in
section 1.3 were applied to the data afterwards to determine the change in Bouguer anomaly
between measurement points. During this process, the terrain corrections were found using
the high-resolution Nagy prism method described in section 3.1.1 with topographic information
from the same sources as described in section 3.1.2.

After applying gravitational corrections, the Bouguer anomaly data observed in the CG-
5 survey was compared to a Bouguer anomaly contour plot of the same region from a 1969
survey by W. Cotton to assess whether the results are believable. Both surveys show general
agreement on the overall shape of the Bouguer anomaly across the 9 survey points used in the
CG-5 survey and both identify a particularly large anomaly around a geological feature Cotton
refers to as the Waterhead volcanic complex. There is a varying degree of disagreement between
the two surveys, ranging from 0.5mGal to 6mGal which is attributed to the less accurate terrain
correction method used in Cotton’s survey.

The accuracy of the CG-5 survey is limited by an uncertainty in the elevation of each survey
point arising due to a failure in the GPS system used. Because of this, the exact position of
the gravimeter at each survey point had to be estimated from aerial photographs of the survey
locations [155] and the corresponding elevation of these points was found from the LiDAR
DEMs used when finding terrain correction. This process resulted in an estimated uncertainty
in survey point elevation of up to ±25cm (depending on the steepness of surrounding terrain),
which causes a potential error in Bouguer anomaly of up to ±75µGal when applying elevation-
dependent gravitational corrections.

The second gravitational survey was carried out on the University of Glasgow campus, in
the cloisters of the Gilbert-Scott building; a roughly 25m×35m paved flat area on the ground
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floor, open to the outdoors on two sides while still being mostly sheltered from wind and rain by
the rest of the building. Measurements were taken with the CG-5 at a grid of 75 survey points
(shown in fig. 4.9) over the course of 3 days, using repeat measurements of the same positions to
tie together surveys from separate days. Most gravitational corrections described in section 1.3
were not applied to the results of this survey because of the flat nature and small size of the
survey area (only a tide correction and drift correction were applied to the results).

The results of the survey are displayed in a coloured contour plot fig. 4.11 and show varia-
tions in gravity greater than ±120µGal in places which were thought to be caused by a combina-
tion of underground density variations and the gravitational effects of the surrounding building’s
structure. Plans of the building were obtained that show a series of air ducts beneath the floor
of the cloisters but only sporadic correlation is apparent between the underfloor layout and the
observed gravitational field, suggesting either errors in the survey or inaccuracies in the plans
(which are over 140 years old). A model of the gravitational field expected to be caused by the
ducts was made and showed little correlation with the survey results which gravitational field
variations with a larger amplitude than the predicted duct signals. From this it is concluded that
the detection of the ducts was not successful, due either to environmental noise during the survey
or inaccuracies in the building plans.

Future work

Additional gravity surveys in the Campsie Fells could be performed to test the accuracy of
the findings of the survey carried out in this work and to more comprehensively map the large
anomaly observed in the region by Cotton’s survey. Such measurements would be a good way
to demonstrate the practical in-the-field capabilities of future Wee-g MEMS devices or other
portable gravimeters. Further mapping of the large gravity anomaly associated with the Water-
head volcanic complex seen by Cotton could also allow a more accurate determination of the
characteristics of this geological feature.

Further gravity surveys in the cloisters of the Gilbert-Scott building at the University of Glas-
gow could be attempted to investigate whether the results of the original survey are dominated
by environmental noise (as they appear to be) or not. Also, future work could look at modelling
the gravitational effect of the building above and around the cloisters survey area to determine
the impact that this had on the measurement.



Appendix A

Programs to simulate gravity of a passing
submarine

This appendix contains copies of the MATLAB scripts described in section 2.2.3 to simulate the
gravitational field of a submarine passing a single gravimeter or gravimeter array.

‘single_detector_g_field.m’

1 % - This calculates g and its components at a gravimeter as a ...

submarine-like cylinder moves past.

2 % The cylinder has a length-varying density described by ...

'density_plot.xls'.

3 % The function "cylinder_elements.m" finds the centre of mass of ...

cylindrical polar elements describing the cylinder when at its ...

starting location and the function "cylinder_g.m" moves these along ...

the specified trajectory while calculating g and its components at ...

the origin.

4

5 %% defining inputs and outputs

6 % ===Inputs===

7

8 G = 6.67e-11; % gravitational constant

9

10 %% details of the cylindrical density and the 4 trajectories

11 % cylinder specifications

12 l = 100; % cylinder length in metres

13 R = 5; % cross-sectional radius

14 Th = pi/2; % angle between central axis of cylinder and z-axis

15 Ph = 0; % angle in x-y plane between central axis of cylinder and +ve x-axis

16

120
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17 % starting point of cylinder's centre

18 x0 = -200;

19 y0 = 0;

20 z0 = 20;

21

22 % details of the cylinder's motion

23 di = 400; % distance moved in x-direction

24 ni = 400; % number of steps in the movement

25 s = di/ni; % step size

26 t = s/5; % time taken for each step assuming the submarine has a speed ...

of 5 m/s

27

28 %% describing locations of cylinder elements for a vertical cylinder ...

centred at (x0,y0,z0)

29 nr = 30; % number of radial elements

30 nt = 30; % number of angular elements

31 nl = 100; % number of length elements

32

33 % ===Outputs===

34 % vectors describing how gravity varies at the origin during the motion:

35 % gxtot - x-component of gravitational field

36 % gytot - y-component of gravitational field

37 % gztot - z-component of gravitational field

38 % gtot -- magnitude of total gravitational field

39

40

41 %% making cylinder

42 % finding locations of cylinder elements for a cylinder centred at the ...

origin with the specified location and orientation:

43 [x,y,z,v,P] = cylinder_elements(l,R,Th,Ph,x0,y0,z0,nr,nt,nl); % see ...

'cylinder_elements.m'

44

45

46 %% moving the cylinder and calculating gravity at the origin at each step

47

48 % function that finds g at the (i,j,k) detector when the cylindrical ...

density moves past:

49 [gtot,gxtot,gytot,gztot] = cylinder_g(ni,s,x,y,z,v,P); % see 'cylinder_g.m'

50

51 % converting g values to microGal

52 g = gtot * 100e6;

53 gx = gxtot * 100e6;

54 gy = gytot * 100e6;

55 gz = gztot * 100e6;
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‘multiple_detector_g_field.m’

1 % - This model calculates g at a gravimeter array when a cylinder with ...

linear density distribution 'P' moves past.

2 % The gravimeter array is a cubic arrangement of equidistant detectors ...

collectively centred on the origin.

3 % This script uses "cylinder_elements.m" to generate the ...

submarine-like density and "cylinder_g.m" to move the cylinder and ...

find the resulting g.

4

5 %% defining inputs and outputs

6 % ===Inputs===

7 G = 6.67e-11; % gravitational constant

8

9 %% describing the array of detectors

10 a = 8; % separation of detectors

11 nx = 10; % number of detectors in x-direction

12 ny = 10; % number of detectors in y-direction

13 nz = 1; % number of detectors in z-direction

14

15 % coordinates of detectors

16 ax = (-(nx-1)*a/2):a:((nx-1)*a/2);

17 ay = (-(ny-1)*a/2):a:((ny-1)*a/2);

18 az = (-(nz-1)*a/2):a:((nz-1)*a/2);

19

20 %% details of the cylindrical density and its trajectory

21 l = 100; % length in metres

22 R = 5; % cross-sectional radius

23 Th = pi/2; % angle between central axis of cylinder and z-axis

24 Ph = 0; % azimuth of central axis of cylinder relative to +ve x-axis

25

26 % starting point of cylinder's centre

27 x0 = -200;

28 y0 = 10;

29 z0 = 10;

30

31 % details of the cylinder's motion

32 di = 400; % distance moved in x-direction

33 ni = 400; % number of steps in the movement - Note changing this affects ...

how the x-axis is labelled, best results at 400

34 s = di/ni; % step size

35 t = s/5; % time taken for each step assuming the submarine has a speed ...

of 5 m/s

36

37 %% describing locations of cylinder elements for a vertical cylinder ...
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centred at (x0,y0,z0)

38 nr = 30; % number of radial elements

39 nt = 30; % number of angular elements

40 nl = 100; % number of length elements

41

42 % ===Outputs===

43 % cell arrays containing vectors of gravitational field for each ...

detector in the array:

44 % gx - x-component of gravitational field

45 % gy - y-component of gravitational field

46 % gz - z-component of gravitational field

47 % g -- magnitude of total gravitational field

48

49

50 %% making cylinder

51 % finding locations of cylinder elements for a cylinder centred at the ...

origin and alligned with the z-axis:

52 [x,y,z,v,P] = cylinder_elements(l,R,Th,Ph,x0,y0,z0,nr,nt,nl); % see ...

'cylinder_elements.m'

53

54

55

56 %% loops to move the cylinder and calculate the components of g at each ...

step at each detector

57 % cell arrays to store g,gx,gy,gz values at each detector location

58 g = cell(ny,nx,nz);

59 gx = cell(ny,nx,nz);

60 gy = cell(ny,nx,nz);

61 gz = cell(ny,nx,nz);

62

63 % loops that iterate over each detector and find g and its components at ...

that point.

64 for k = 1:nz

65 for j = 1:ny

66 for i = 1:nx

67 % shifting the cylinder's starting point to account for the ith,jth,kth ...

detector's offset from the centre

68 x2 = x - ax(i);

69 y2 = y - ay(j);

70 z2 = z + az(k);

71

72 % function that finds g at the (i,j,k) detector when the cylindrical ...

density moves past:

73 [gtot,gxtot,gytot,gztot,rho] = cylinder_g(ni,s,x2,y2,z2,v,P); % see ...

'cylinder_g.m'

74
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75 % finding g values in microGal

76 gtot = gtot * 100e6;

77 gxtot = gxtot * 100e6;

78 gytot = gytot * 100e6;

79 gztot = gztot * 100e6;

80

81 % storing the g values of each detector in cell arrays.

82 g{j,i,k} = gtot; % total magnitude of g

83 gx{j,i,k} = gxtot; % x-component

84 gy{j,i,k} = gytot; % y-component

85 gz{j,i,k} = gztot; % z-component

86 end

87 end

88 end

‘cylinder_elements.m’

1 % Function that finds the cartesian coordinates of cylindrical polar ...

volume elements of a cylinder of specified size

2 % Cylinder is centred at x0,y0,z0. Number of elements used and the ...

orientation of the cylinder are also specified

3

4 function [x,y,z,v,P] = ...

cylinder_elements(length,radius,elevation,azimuth,x0,y0,z0,nr,nt,nl)

5 %% input and output documentation:

6 % ---Inputs---

7 % length = Length of the cylinder

8 % radius = Radius of the cylinder

9 % elevation = angle between the cylinder's axis and the z-axis

10 % azimuth = angle in the x-y plane between the cylinder's axis and ...

the x-axis

11 % x0,y0,z0 = x,y,z coordinates of the cylinder's starting position ...

(defined from the cylinder's centre)

12 % nr,nt,nl = number of radial, angular and length elements used to ...

describe the cylinder

13 %

14 % ---Outputs---

15 % x,y,z = coordinates of the centres of mass of all cylindrical polar ...

elements used to describe the cylinder

16 % v = volumes of all elements used to describe the cylinder

17 % P = densities of all elements used to describe the cylinder (derived ...

from mass_plot.xls)

18
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19

20 %% describing locations of cylinder elements for a cylinder centred at ...

the origin and alligned with the z-axis:

21 dr = radius / nr; % size of radial elements

22 dt = (2*pi) / nt; % size of angular elements

23 dl = length / nl; % size of length elements

24

25 r1 = 0:dr:radius-dr; % range of inner radii of elements

26 r2 = dr:dr:radius; % range of outer radii of elements

27 rcom = (4*(r2.^3 - r1.^3)*sin(dt/2)) ./ (3*dt*(r2.^2 - r1.^2)); % range ...

of radial distances to the centre of mass of elements

28

29 th = 0:dt:(2*pi)-dt; % range of angular position of elements

30 l = (-length/2 + (dl/2)):dl:(length/2 - (dl/2)); % range of element ...

positions along the length of the cylinder

31

32 [Rcom,Th,L] = meshgrid(rcom,th,l); % resizing rbcom,tb and lb vectors to ...

be 3D arrays of equal size

33

34 % elevation = elevation + (pi/2); % this makes the cylinder axis ...

alligned with the x-y plane when Thb = 0, else it is alligned with ...

the z-axis

35

36 %% rotating and translating element coordinates to shift the cylinder to ...

its actual location

37 Ry = [cos(elevation),0,sin(elevation) ; 0,1,0 ; ...

-1*sin(elevation),0,cos(elevation)]; % rotation matrix to rotate ...

coords about y-axis to give correct elevation angle

38 Rz = [cos(azimuth),-1*sin(azimuth),0 ; sin(azimuth),cos(azimuth),0 ; ...

0,0,1]; % rotation matrix to rotate coords about z-axis to give coor

39

40 R1 = meshgrid(r1,th,l);

41 R2 = meshgrid(r2,th,l);

42

43 % preallocating variables to speed up loop

44 X = zeros(nt,nr,nl);

45 Y = zeros(nt,nr,nl);

46 Z = zeros(nt,nr,nl);

47 x = zeros(nt,nr,nl);

48 y = zeros(nt,nr,nl);

49 z = zeros(nt,nr,nl);

50 v = zeros(nt,nr,nl);

51

52 % loop which carries out the translation and rotations for each cylinder ...

element

53 for i = 1:nt
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54 for j = 1:nr

55 for k = 1:nl

56 [d,e,f] = pol2cart(Th(i,j,k),Rcom(i,j,k),L(i,j,k));

57

58 % describing x,y,z coords of ith,jth,kth element

59 X(i,j,k) = d;

60 Y(i,j,k) = e;

61 Z(i,j,k) = f;

62

63 % describing the volume of ith,jth,kth element

64 v(i,j,k) = (R2(i,j,k)^2 - R1(i,j,k)^2) * (dt/2) * dl;

65

66 % rotating about the y-axis to the correct elevation, Thb

67 o = Ry * [X(i,j,k) ; Y(i,j,k) ; Z(i,j,k)];

68 x(i,j,k) = o(1);

69 y(i,j,k) = o(2);

70 z(i,j,k) = o(3);

71

72 % rotating about the z-axis to the correct azimuth, Phb

73 q = Rz * [x(i,j,k) ; y(i,j,k) ; z(i,j,k)];

74 x(i,j,k) = q(1);

75 y(i,j,k) = q(2);

76 z(i,j,k) = q(3);

77

78 % translating the coordinates to the centre the cylinder on the desired ...

location

79 x(i,j,k) = x(i,j,k) + x0;

80 y(i,j,k) = y(i,j,k) + y0;

81 z(i,j,k) = z(i,j,k) + z0;

82 end

83 end

84 end

85

86 %% Describing the density of elements

87 % reading a linear density model of the cylinder from an excel file

88 a = xlsread('density_plot.xls','Sheet1');

89 p = a(:,2); % density of each length section of the cylinder

90

91 % making an array of size (nr,nt,nl) describing the density of all elements

92 [d,e,P] = meshgrid(rcom,th,p); % d and e are unused variables

93

94 % calculating the volume of each element

95 v = (R2.^2 - R1.^2) * (dt/2) * dl; % matrix of element volumes, required ...

to find g

96 end
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‘cylinder_g.m’

1 % - Function that finds g at the origin due to a cylinder split into ...

cylindrical polar elements as it moves past the origin

2

3 function [gtot,gxtot,gytot,gztot] = cylinder_g(ni,s,x,y,z,v,P)

4 %% input and output documentation:

5 % inputs:

6 % ni - number of steps in the cylinder's movement

7 % s - step size of cylinder movement

8 % x,y,z - initial coordinates of the centres of mass of the cylinder ...

elements

9 % v - array containing the volume of each element

10 % P - array containing the density of each element

11

12 % outputs:

13 % gtot - magnitude of g at the origin

14 % gxtot - x-component of g at the origin

15 % gytot - y-component of g at the origin

16 % gztot - z-component of g at the origin

17

18 %% preparing some important variables

19 G = 6.67e-11; % gravitational constant

20

21 % preallocating variables to speed up loop later on

22 gtot = zeros(1,ni);

23 gxtot = zeros(1,ni);

24 gytot = zeros(1,ni);

25 gztot = zeros(1,ni);

26

27

28 %% loop to find total g and its components over time

29 t = 1; % counter to use in loop

30 while t ≤ ni

31 x = x + s; % x coords of elements at the current time

32

33 [ph,th,r] = cart2sph(x,y,z); % polar coordinates of all cylinder ...

elements at the current step

34

35 %% finding total g at centre due to all elements

36 % g and its components due to individual elements

37 g = (G*v.*(P)) ./ (r.^2); % using size, density and radial distance ...

arrays to find g contributions

38 gx = g .* cos(th) .* cos(ph); % x-component of each g contribution

39 gy = g .* cos(th) .* sin(ph); % y-component of each g contribution
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40 gz = g .* sin(th); % z-component of each g contribution

41

42 % total g components

43 gxtot(t) = -1*sum(sum(sum(gx)));

44 gytot(t) = -1*sum(sum(sum(gy)));

45 gztot(t) = -1*sum(sum(sum(gz)));

46

47 % total g (magnitude)

48 gtot(t) = sqrt(gxtot(t)^2 + gytot(t)^2 + gztot(t)^2);

49

50 t = t + 1;

51 end



Appendix B

Programs to calculate terrain correction

This appendix contains copies of the MATLAB programs described in section 3.2 to calculate
gravitational terrain corrections using Digital Elevation Models of topography and bathymetry.

‘terrain_correction.m’

1 % Program to calculate terrain correction from 3 DEMs describing ...

topography (and optionally bathymetry) around a gravitational survey ...

point

2 %% defining inputs and outputs

3 % ===Inputs===

4 % density -- average density of rock in kg/m^-3

5 % path_s --- filepath to the inner zone DEM in .tif format

6 % path_m --- filepath to the middle zone DEM in .tif format

7 % path_l --- filepath to the outer zone DEM in .tif format

8 % div_s ---- number of quadrants to divide inner zone DEM into during ...

analysis

9 % div_m ---- number of quadrants to divide middle zone DEM into during ...

analysis

10 % div_l ---- number of quadrants to divide outer zone DEM into during ...

analysis

11 % inlim_s -- inner limit of the inner zone map in metres (usually zero)

12 % inlim_m -- inner limit of the middle zone map in metres

13 % inlim_l -- inner limit of the outer zone map in metres

14 % outlim_s - outer limit of the inner zone map in metres

15 % outlim_m - outer limit of the middle zone map in metres

16 % outlim_l - outer limit of the outer zone map in metres

17

18 % ===Outputs===

19 % tc_s ----- inner zone terrain correction

20 % tc_m ----- middle zone terrain correction

129
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21 % tc_l ----- outer zone terrain correction

22 % tc ------- total terrain correction

23

24 density = 2670; % rock density to use in calculations

25

26 % - directory of DEMs -

27 path_s = '-file directory here-';

28 path_m = '-file directory here-';

29 path_l = '-file directory here-';

30

31 % number of divisions to split the maps into during the analysis

32 div_s = 20;

33 div_m = 50;

34 div_l = 68;

35

36 % inner and outer limits to use for the maps

37 inlim_s = 0;

38 outlim_s = 1000;

39

40 inlim_m = 1000;

41 outlim_m = 25000;

42

43 inlim_l = 25000;

44 outlim_l = 170000;

45

46

47 %% reading map data from .tif files

48 % === inner zone map ===

49 info_s = geotiffinfo(path_s); % getting details of the map (for finding ...

x,y coords)

50 [topo_s,stats_s] = geotiffread(path_s); % reading the .tif file into a ...

matrix

51 topo_s(topo_s < 0) = 0;

52 e_s = stats_s.CellExtentInWorldX;

53

54 % x-y coordinates of map data points

55 [x_s,y_s] = pixcenters(info_s);

56 [x_s,y_s] = meshgrid(x_s,y_s);

57

58 % extracting map center coordinates

59 px_s = stats_s.XWorldLimits(1) + (stats_s.RasterExtentInWorldX/2);

60 py_s = stats_s.YWorldLimits(1) + (stats_s.RasterExtentInWorldY/2);

61 p0 = [px_s,py_s]; % x-y coords of computation point (using british ...

national grid coordinates)

62 p0(3) = interp2(x_s,y_s,flipud(topo_s),p0(1),p0(2)); % interpolating to ...

find elevation at p0
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63

64 x_s = x_s - p0(1);

65 y_s = y_s - p0(2);

66 topo_s = topo_s - p0(3);

67

68 % === middle zone map ===

69 info_m = geotiffinfo(path_m); % getting details of the map (for finding ...

x,y coords)

70 [topo_m,stats_l] = geotiffread(path_m); % reading the .tif file into a ...

matrix

71 topo_m(topo_m < 0) = 0;

72 e_m = stats_l.CellExtentInWorldX;

73

74 % x-y coordinates of map data points

75 [x_m,y_m] = pixcenters(info_m);

76 [x_m,y_m] = meshgrid(x_m,y_m);

77

78 % shifting coords so the center is at (0,0,0)

79 x_m = x_m - p0(1);

80 y_m = y_m - p0(2);

81 topo_m = topo_m - p0(3);

82

83 % === outer zone map ===

84 info_l = geotiffinfo(path_l); % getting details of the map (for finding ...

x,y coords)

85 [topo_l,stats_l] = geotiffread(path_l); % reading the .tif file into a ...

matrix

86 topo_l(topo_l < 0) = 0;

87 e_l = stats_l.CellExtentInWorldX;

88

89 % x-y coordinates of map data points

90 [x_l,y_l] = pixcenters(info_l);

91 [x_l,y_l] = meshgrid(x_l,y_l);

92

93 % shifting coords so the center is at (0,0,0)

94 x_l = x_l - p0(1);

95 y_l = y_l - p0(2);

96 topo_l = topo_l - p0(3); %

97

98 %% Terrain correction due to small map

99 tc_s = zone_TC(x_s,y_s,topo_s,p0(3),e_s,div_s,inlim_s,outlim_s,density);

100

101

102 %% Terrain correction due to medium map

103 tc_m = zone_TC(x_m,y_m,topo_m,p0(3),e_m,div_m,inlim_m,outlim_m,density);

104
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105

106 %% Terrain correction due to large map

107 tc_l = zone_TC(x_l,y_l,topo_l,p0(3),e_l,div_l,inlim_l,outlim_l,density);

108

109

110 %% total terrain correction

111 tc = tc_s + tc_m + tc_l;

‘zone_TC.m’

1 % Splits a DEM into quadrants and finds total gz at (0,0) using ...

rectangular prism approximation

2 % (DEM analysed one quadrant at a time to decrease memory load).

3 % Includes bathymetry by assuming everything below sea level to be ...

underwater (pw = 1000kg^m-3).

4 function [gz] = zone_TC(X,Y,topo,h,element,div,inlimit,outlimit,density)

5 %% defining inputs and output

6 % ===inputs===

7 % X,Y ------ coordinates of prism centres

8 % topo ----- topographic map of the region (describes the height of prisms)

9 % h -------- elevation of survey point (used when considering bathymetry)

10 % element -- x-y side length of prisms

11 % div ------ parameter that decides how many cells to split the DEM into ...

(div x div array)

12 % inlimit -- x and y extent within which cells are ignored

13 % outlimit - x and y extent beyond which cells are ignored

14 % density -- density of rock

15 wdensity = 1030; % density of water in kg/m^3, used when considering ...

bathymetry

16

17 % ===output===

18 % gz ------- vertical component of gravitational field at (0,0)

19

20

21 %% splitting map into quadrants

22 s = size(topo);

23

24 % div decides the number of regions to divide the map into (to give num ...

x num regions)

25 siz = s(1)/div; % number of regions in each direction

26

27 N = siz*ones(1,div); % # of regions in x direction

28 M = siz*ones(1,div); % # of regions in y direction
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29

30 Quadrants = mat2cell(topo,M,N); % cell array made of the divided ...

quadrants of the topography

31 xx = mat2cell(X,M,N); % corresponding cell array with x-coords of ...

divided quadrants

32 yy = mat2cell(Y,M,N); % corresponding cell array with y-coords of ...

divided quadrants

33 Nr = length(N) * length(M); % total number of regions (used for plotting)

34

35

36 %% Identifying distant quadrants and ignoring too-distant quadrants ...

(according to specified inner and outer limits for this zone)

37 q = size(xx); % finding number of quadrants in the cell arrays

38

39 % finding the closest element to (0,0) in each cell, these are used when ...

checking limits

40 for i = 1:q(1)

41 for j = 1:q(2)

42 xnear(j,i) = min(min(abs(xx{j,i})));

43 ynear(j,i) = min(min(abs(yy{j,i})));

44 end

45 end

46

47 % --defining limits as logical arrays--

48 cellsize = element*siz; % side length of each region

49 % outer limit

50 ox = (xnear ≥ -outlimit + cellsize/2) .* (xnear ≤ outlimit - ...

cellsize/2); % x limits

51 oy = (ynear ≥ -outlimit + cellsize/2) .* (ynear ≤ outlimit - ...

cellsize/2); % y limits

52 OL = ox .* oy; % logical matrix showing cells within the outer limits

53

54 % inner limit

55 ix = (xnear < -inlimit + cellsize/2) + (xnear > inlimit - cellsize/2);

56 iy = (ynear < -inlimit + cellsize/2) + (ynear > inlimit - cellsize/2);

57 IL = ix + iy; % summing the two logical matrices to combine them, the ...

next line changes any 2's back to boolean 1's

58 a = find(IL ̸= 0); IL(a) = 1; % logical matrix showing cells beyond the ...

inner limits

59

60 % combining the two to give one logical array showing which cells are ...

within the limits

61 lims = OL.*IL;

62

63 [xout,yout] = find(lims == 1); % coords of cells outside the limits

64
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65

66 %% making separate topography and bathymetry maps

67 for i = 1:div

68 for j = 1:div

69 qu = Quadrants{i,j}; % ith map quadrant

70 above = qu ≥ -h;

71 below = qu < -h;

72

73 qu_a = qu;

74 qu_b = qu;

75

76 qu_a(below) = -h;

77 qu_b(above) = -h;

78

79 land{i,j} = qu_a;

80 water{i,j} = qu_b;

81 end

82 end

83

84

85 %% terrain correction due to topography and bathymetry (calculated ...

separately)

86 % for the case when no quadrants are within the given boundaries:

87 if sum(size(xout)) ≤1

88 gz = 0;

89

90 % for all other cases:

91 else

92 % finding terrain correction due to each valid quadrant

93 Gz_land = cell(size(land)); % empty cell arrays to hold gz values of ...

each element in a quadrant

94 Gz_water = cell(size(water));

95

96 % - considering topography -

97 % applying prism_method.m function to each quadrant sequentially

98 for I = 1:length(xout) % looping over the number of quadrants

99 xI = xx{xout(I),yout(I)}; % x data for current quadrant

100 yI = yy{xout(I),yout(I)}; % y data for current quadrant

101 Land = land{xout(I),yout(I)}; % elevation data for current quadrant

102

103 % gz of each element for current quadrant (using h = 0 in prism_method.m ...

so it applies to topohraphy)

104 gzI_land = prism_method_topography(xI,yI,Land,element,density);

105 Gz_land{xout(I),yout(I)} = gzI_land;

106 end

107
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108 % summing all quadrants to find total gz due to topography

109 for k = 1:sum(sum(lims == 1))

110 a = Gz_land{yout(k),xout(k)};

111 Gzo_land(k) = sum(sum(a));

112 end

113

114 % - considering bathymetry -

115 % applying prism_method.m function to each quadrant sequentially

116 for I = 1:length(xout) % looping over the number of quadrants

117 xI = xx{xout(I),yout(I)}; % x data for current quadrant

118 yI = yy{xout(I),yout(I)}; % y data for current quadrant

119 Water = water{xout(I),yout(I)}; % elevation data for current quadrant

120

121 % gz of each element for current quadrant (using h = h in prism_method.m ...

so it applies to bathymetry)

122 gzI_water = prism_method_bathymetry(xI,yI,Water,element,density,wdensity,h);

123 Gz_water{xout(I),yout(I)} = gzI_water;

124 end

125

126 % summing all quadrants to find total gz due to bathymetry

127 for k = 1:sum(sum(lims == 1))

128 a = Gz_water{yout(k),xout(k)};

129 Gzo_water(k) = sum(sum(a));

130 end

131

132 % total gz

133 gz = sum(sum(Gzo_land))+ sum(sum(Gzo_water));

134 end

‘prism_method_topography.m’

1 %% function that finds the terrain correction at (0,0) due to the input ...

topography using the Nagy rectangular prism method

2 function [gz] = prism_method_topography(x,y,land,e,p)

3 %% defining inputs and outputs

4 % ===Input===

5 % x,y -- coordinates of prism centres

6 % land - topographic map of the region

7 % e ---- x-y side length of prisms

8 % p ---- density of prisms

9 %

10 % ===Output===

11 % gz --- vertical component of gravitational field at origin [mGal]
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12

13

14 %% Finding the boundaries of the prisms

15 x1 = x - e/2; x2 = x + e/2;

16 y1 = y - e/2; y2 = y + e/2;

17 z1 = zeros(size(land)); z2 = (land);

18

19 % This line ensures that z1 has NaN's in the same places as in z2, which ...

leads to the edge

20 % elements of the imported topographic map (which are NaN due to the ...

interpolation) being ignored

21 z1(isnan(z2)) = NaN;

22

23

24 %% treating the 4 elements immediately surrounding the centre as flat; ...

setting their height = 0 (so z2-z1 = 0)

25 R = sqrt(x.^2 + y.^2); % radial distance from the centre of all points

26 z2(R < 2*e) = 0; % elements within a distance of 2*elementsize have no ...

effect

27 % (^ since elements are square, this acts on inner 4 elements only)

28

29

30 %% Finding g at the origin

31 % This replaces any individual terms that are undefined (i.e. NaN or ...

Inf) with zero.

32 % gz is the final answer, it is found from 8 terms: gz1, gz2, ... , gz8.

33 % Each term itself has 3 sub-terms: gz1a, gz1b and gz1c.

34 % Each sub-term is evaluated on separate lines and replaced with zero if ...

it is NaN or Inf.

35

36 G = 6.67e-11; % gravitational constant

37

38 % function that finds radius

39 r = @(x,y,z) (sqrt(x.^2 + y.^2 + z.^2));

40

41 %% finding the 8 terms

42 % finding gz1 (x2,y2,z2)

43 gz1a = (-1*G*p) .* (x2.*log(y2 + r(x2,y2,z2)));

44 gz1a(isnan(gz1a)) = 0;

45 gz1a(isinf(gz1a)) = 0;

46

47 gz1b = (-1*G*p) .* (y2.*log(x2 + r(x2,y2,z2)));

48 gz1b(isnan(gz1b)) = 0;

49 gz1b(isinf(gz1b)) = 0;

50

51 gz1c = (-1*G*p) .* ((z2.*atan((x2.*y2) ./ (z2.*r(x2,y2,z2)))));
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52 gz1c(isnan(gz1c)) = 0;

53 gz1c(isinf(gz1c)) = 0;

54

55 gz1 = gz1a + gz1b - gz1c;

56

57

58 % finding gz2 (x1,y2,z2)

59 gz2a = (-1*G*p) .* (x1.*log(y2 + r(x1,y2,z2)));

60 gz2a(isnan(gz2a)) = 0;

61 gz2a(isinf(gz2a)) = 0;

62

63 gz2b = (-1*G*p) .* (y2.*log(x1 + r(x1,y2,z2)));

64 gz2b(isnan(gz2b)) = 0;

65 gz2b(isinf(gz2b)) = 0;

66

67 gz2c = (-1*G*p) .* ((z2.*atan((x1.*y2) ./ (z2.*r(x1,y2,z2)))));

68 gz2c(isnan(gz2c)) = 0;

69 gz2c(isinf(gz2c)) = 0;

70

71 gz2 = gz2a + gz2b - gz2c;

72

73

74 % finding gz3 (x1,y1,z2)

75 gz3a = (-1*G*p) .* (x1.*log(y1 + r(x1,y1,z2)));

76 gz3a(isnan(gz3a)) = 0;

77 gz3a(isinf(gz3a)) = 0;

78

79 gz3b = (-1*G*p) .* (y1.*log(x1 + r(x1,y1,z2)));

80 gz3b(isnan(gz3b)) = 0;

81 gz3b(isinf(gz3b)) = 0;

82

83 gz3c = (-1*G*p) .* ((z2.*atan((x1.*y1) ./ (z2.*r(x1,y1,z2)))));

84 gz3c(isnan(gz3c)) = 0;

85 gz3c(isinf(gz3c)) = 0;

86

87 gz3 = gz3a + gz3b - gz3c;

88

89

90 % finding gz4 (x2,y1,z2)

91 gz4a = (-1*G*p) .* (x2.*log(y1 + r(x2,y1,z2)));

92 gz4a(isnan(gz4a)) = 0;

93 gz4a(isinf(gz4a)) = 0;

94

95 gz4b = (-1*G*p) .* (y1.*log(x2 + r(x2,y1,z2)));

96 gz4b(isnan(gz4b)) = 0;

97 gz4b(isinf(gz4b)) = 0;
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98

99 gz4c = (-1*G*p) .* ((z2.*atan((x2.*y1) ./ (z2.*r(x2,y1,z2)))));

100 gz4c(isnan(gz4c)) = 0;

101 gz4c(isinf(gz4c)) = 0;

102

103 gz4 = gz4a + gz4b - gz4c;

104

105

106 % finding gz5 (x2,y2,z1)

107 gz5a = (-1*G*p) .* (x2.*log(y2 + r(x2,y2,z1)));

108 gz5a(isnan(gz5a)) = 0;

109 gz5a(isinf(gz5a)) = 0;

110

111 gz5b = (-1*G*p) .* (y2.*log(x2 + r(x2,y2,z1)));

112 gz5b(isnan(gz5b)) = 0;

113 gz5b(isinf(gz5b)) = 0;

114

115 gz5c = (-1*G*p) .* ((z1.*atan((x2.*y2) ./ (z1.*r(x2,y2,z1)))));

116 gz5c(isnan(gz5c)) = 0;

117 gz5c(isinf(gz5c)) = 0;

118

119 gz5 = gz5a + gz5b - gz5c;

120

121

122 % finding gz6 (x1,y2,z1)

123 gz6a = (-1*G*p) .* (x1.*log(y2 + r(x1,y2,z1)));

124 gz6a(isnan(gz6a)) = 0;

125 gz6a(isinf(gz6a)) = 0;

126

127 gz6b = (-1*G*p) .* (y2.*log(x1 + r(x1,y2,z1)));

128 gz6b(isnan(gz6b)) = 0;

129 gz6b(isinf(gz6b)) = 0;

130

131 gz6c = (-1*G*p) .* ((z1.*atan((x1.*y2) ./ (z1.*r(x1,y2,z1)))));

132 gz6c(isnan(gz6c)) = 0;

133 gz6c(isinf(gz6c)) = 0;

134

135 gz6 = gz6a + gz6b - gz6c;

136

137

138 % finding gz7 (x1,y1,z1)

139 gz7a = (-1*G*p) .* (x1.*log(y1 + r(x1,y1,z1)));

140 gz7a(isnan(gz7a)) = 0;

141 gz7a(isinf(gz7a)) = 0;

142

143 gz7b = (-1*G*p) .* (y1.*log(x1 + r(x1,y1,z1)));
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144 gz7b(isnan(gz7b)) = 0;

145 gz7b(isinf(gz7b)) = 0;

146

147 gz7c = (-1*G*p) .* ((z1.*atan((x1.*y1) ./ (z1.*r(x1,y1,z1)))));

148 gz7c(isnan(gz7c)) = 0;

149 gz7c(isinf(gz7c)) = 0;

150

151 gz7 = gz7a + gz7b - gz7c;

152

153

154 % finding gz8 (x2,y1,z1)

155 gz8a = (-1*G*p) .* (x2.*log(y1 + r(x2,y1,z1)));

156 gz8a(isnan(gz8a)) = 0;

157 gz8a(isinf(gz8a)) = 0;

158

159 gz8b = (-1*G*p) .* (y1.*log(x2 + r(x2,y1,z1)));

160 gz8b(isnan(gz8b)) = 0;

161 gz8b(isinf(gz8b)) = 0;

162

163 gz8c = (-1*G*p) .* ((z1.*atan((x2.*y1) ./ (z1.*r(x2,y1,z1)))));

164 gz8c(isnan(gz8c)) = 0;

165 gz8c(isinf(gz8c)) = 0;

166

167 gz8 = gz8a + gz8b - gz8c;

168

169

170 %% resulting gz

171 gz = gz1 - gz2 + gz3 - gz4 - gz5 + gz6 - gz7 + gz8;

‘prism_method_bathymetry.m’

1 %% function that finds the terrain correction at (0,0) due to input ...

bathymetry using an FEA method with rectangular prism elements of ...

uniform size

2

3 function [gz] = prism_method_bathymetry(x,y,water,e,p_r,p_w,h)

4 %% defining inputs and outputs

5 % ===Input===

6 % x,y -- coordinates of prism centres

7 % water - bathymetric map of the region

8 % e ---- x-y side length of prisms

9 % p_r -- density of rock

10 % p_w -- density of water
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11 % h ---- elevation difference between sea level and computation point (0,0)

12 %

13 % ===Output===

14 % gz = vertical component of gravitational field at origin [mGal]

15

16 %% Density to use for prisms

17 p = p_r - p_w;

18

19 %% Finding the boundaries of the prisms

20 x1 = x - e/2; x2 = x + e/2;

21 y1 = y - e/2; y2 = y + e/2;

22 z1 = zeros(size(water))-h; z2 = (water);

23

24 % This line ensures that z1 has NaN's in the same places as in z2, which ...

leads to the edge

25 % elements of the imported topographic map (which are NaN due to the ...

interpolation) being ignored

26 z1(isnan(z2)) = NaN;

27

28

29 %% treating the 4 elements immediately surrounding the centre as flat; ...

setting their height = -h (so z2-z1 = 0)

30 R = sqrt(x.^2 + y.^2); % radial distance from the centre of all points

31 z2(R < 2*e) = -h; % elements within a distance of 2*elementsize have no ...

effect

32 % (^ since elements are square, this acts on inner 4 elements only)

33

34

35 %% Finding g at the origin

36 % This replaces any individual terms that are undefined (i.e. NaN or ...

Inf) with zero.

37 % gz is the final answer, it is found from 8 terms: gz1, gz2, ... , gz8.

38 % Each term itself has 3 sub-terms: gz1a, gz1b and gz1c.

39 % Each sub-term is evaluated on separate lines and replaced with zero if ...

it is NaN or Inf.

40

41 G = 6.67e-11; % gravitational constant

42

43 % function that finds radius

44 r = @(x,y,z) (sqrt(x.^2 + y.^2 + z.^2));

45

46 %% finding the 8 terms

47 % finding gz1 (x2,y2,z2)

48 gz1a = (-1*G*p) .* (x2.*log(y2 + r(x2,y2,z2)));

49 gz1a(isnan(gz1a)) = 0;

50 gz1a(isinf(gz1a)) = 0;
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51

52 gz1b = (-1*G*p) .* (y2.*log(x2 + r(x2,y2,z2)));

53 gz1b(isnan(gz1b)) = 0;

54 gz1b(isinf(gz1b)) = 0;

55

56 gz1c = (-1*G*p) .* ((z2.*atan((x2.*y2) ./ (z2.*r(x2,y2,z2)))));

57 gz1c(isnan(gz1c)) = 0;

58 gz1c(isinf(gz1c)) = 0;

59

60 gz1 = gz1a + gz1b - gz1c;

61

62

63 % finding gz2 (x1,y2,z2)

64 gz2a = (-1*G*p) .* (x1.*log(y2 + r(x1,y2,z2)));

65 gz2a(isnan(gz2a)) = 0;

66 gz2a(isinf(gz2a)) = 0;

67

68 gz2b = (-1*G*p) .* (y2.*log(x1 + r(x1,y2,z2)));

69 gz2b(isnan(gz2b)) = 0;

70 gz2b(isinf(gz2b)) = 0;

71

72 gz2c = (-1*G*p) .* ((z2.*atan((x1.*y2) ./ (z2.*r(x1,y2,z2)))));

73 gz2c(isnan(gz2c)) = 0;

74 gz2c(isinf(gz2c)) = 0;

75

76 gz2 = gz2a + gz2b - gz2c;

77

78

79 % finding gz3 (x1,y1,z2)

80 gz3a = (-1*G*p) .* (x1.*log(y1 + r(x1,y1,z2)));

81 gz3a(isnan(gz3a)) = 0;

82 gz3a(isinf(gz3a)) = 0;

83

84 gz3b = (-1*G*p) .* (y1.*log(x1 + r(x1,y1,z2)));

85 gz3b(isnan(gz3b)) = 0;

86 gz3b(isinf(gz3b)) = 0;

87

88 gz3c = (-1*G*p) .* ((z2.*atan((x1.*y1) ./ (z2.*r(x1,y1,z2)))));

89 gz3c(isnan(gz3c)) = 0;

90 gz3c(isinf(gz3c)) = 0;

91

92 gz3 = gz3a + gz3b - gz3c;

93

94

95 % finding gz4 (x2,y1,z2)

96 gz4a = (-1*G*p) .* (x2.*log(y1 + r(x2,y1,z2)));
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97 gz4a(isnan(gz4a)) = 0;

98 gz4a(isinf(gz4a)) = 0;

99

100 gz4b = (-1*G*p) .* (y1.*log(x2 + r(x2,y1,z2)));

101 gz4b(isnan(gz4b)) = 0;

102 gz4b(isinf(gz4b)) = 0;

103

104 gz4c = (-1*G*p) .* ((z2.*atan((x2.*y1) ./ (z2.*r(x2,y1,z2)))));

105 gz4c(isnan(gz4c)) = 0;

106 gz4c(isinf(gz4c)) = 0;

107

108 gz4 = gz4a + gz4b - gz4c;

109

110

111 % finding gz5 (x2,y2,z1)

112 gz5a = (-1*G*p) .* (x2.*log(y2 + r(x2,y2,z1)));

113 gz5a(isnan(gz5a)) = 0;

114 gz5a(isinf(gz5a)) = 0;

115

116 gz5b = (-1*G*p) .* (y2.*log(x2 + r(x2,y2,z1)));

117 gz5b(isnan(gz5b)) = 0;

118 gz5b(isinf(gz5b)) = 0;

119

120 gz5c = (-1*G*p) .* ((z1.*atan((x2.*y2) ./ (z1.*r(x2,y2,z1)))));

121 gz5c(isnan(gz5c)) = 0;

122 gz5c(isinf(gz5c)) = 0;

123

124 gz5 = gz5a + gz5b - gz5c;

125

126

127 % finding gz6 (x1,y2,z1)

128 gz6a = (-1*G*p) .* (x1.*log(y2 + r(x1,y2,z1)));

129 gz6a(isnan(gz6a)) = 0;

130 gz6a(isinf(gz6a)) = 0;

131

132 gz6b = (-1*G*p) .* (y2.*log(x1 + r(x1,y2,z1)));

133 gz6b(isnan(gz6b)) = 0;

134 gz6b(isinf(gz6b)) = 0;

135

136 gz6c = (-1*G*p) .* ((z1.*atan((x1.*y2) ./ (z1.*r(x1,y2,z1)))));

137 gz6c(isnan(gz6c)) = 0;

138 gz6c(isinf(gz6c)) = 0;

139

140 gz6 = gz6a + gz6b - gz6c;

141

142



143

143 % finding gz7 (x1,y1,z1)

144 gz7a = (-1*G*p) .* (x1.*log(y1 + r(x1,y1,z1)));

145 gz7a(isnan(gz7a)) = 0;

146 gz7a(isinf(gz7a)) = 0;

147

148 gz7b = (-1*G*p) .* (y1.*log(x1 + r(x1,y1,z1)));

149 gz7b(isnan(gz7b)) = 0;

150 gz7b(isinf(gz7b)) = 0;

151

152 gz7c = (-1*G*p) .* ((z1.*atan((x1.*y1) ./ (z1.*r(x1,y1,z1)))));

153 gz7c(isnan(gz7c)) = 0;

154 gz7c(isinf(gz7c)) = 0;

155

156 gz7 = gz7a + gz7b - gz7c;

157

158

159 % finding gz8 (x2,y1,z1)

160 gz8a = (-1*G*p) .* (x2.*log(y1 + r(x2,y1,z1)));

161 gz8a(isnan(gz8a)) = 0;

162 gz8a(isinf(gz8a)) = 0;

163

164 gz8b = (-1*G*p) .* (y1.*log(x2 + r(x2,y1,z1)));

165 gz8b(isnan(gz8b)) = 0;

166 gz8b(isinf(gz8b)) = 0;

167

168 gz8c = (-1*G*p) .* ((z1.*atan((x2.*y1) ./ (z1.*r(x2,y1,z1)))));

169 gz8c(isnan(gz8c)) = 0;

170 gz8c(isinf(gz8c)) = 0;

171

172 gz8 = gz8a + gz8b - gz8c;

173

174

175 %% resulting gz

176 gz = gz1 - gz2 + gz3 - gz4 - gz5 + gz6 - gz7 + gz8;
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