
An Evaluation Framework to Drive Future Evolution of a Research Prototype

David Nutter, Stephen Rank and Cornelia Boldyreff
Faculty Of Applied Computing Sciences

University Of Lincoln,UK
LN6 7TS

{dnutter,srank,cboldyreff}@lincoln.ac.uk

Abstract

The Open Source Component Artefact Repository (OS-
CAR) requires evaluation to confirm its suitability as a de-
velopment environment for distributed software engineers.
The evaluation will take note of several factors including us-
ability of OSCAR as a stand-alone system, scalability and
maintainability of the system and novel features not pro-
vided by existing artefact management systems. Addition-
ally, the evaluation design attempts to address some of the
omissions (due to time constraints) from the industrial part-
ner evaluations.

This evaluation is intended to be a prelude to the evalua-
tion of the awareness support being added to OSCAR; thus
establishing a baseline to which the effects of awareness
support may be compared.

1 Introduction

As part of the GENESIS project [6, 14, 13, 12] the Open
Source Component Artefact Repository (OSCAR) [10, 4]
was developed and has been used to store software arte-
facts created by other components of the system, including
a work-flow engine, management metrics tool and a project
management application. OSCAR is also being used in
other projects to provide basic operations on artefacts and
consequently requires continuous maintenance and evolu-
tion. To assist in directing this evolution, an evaluation of
this prototype form of OSCAR is required.

The evaluation discussed here is intended to complement
our previous work on evaluating the awareness support be-
ing introduced in the OSCAR system [9]. Other than estab-
lishing the capabilities of the base OSCAR environment it
is not intended to continue that work. Instead, a more fo-
cussed evaluation of OSCAR is sought; the evaluation of
GENESIS was necessarily broad, as the scope of the GEN-
ESIS system demanded a holistic evaluation. In order to
direct the evolution of OSCAR, a more thorough under-

standing of user’s reactions to the system than that provided
by the industrial evaluation undertaken within the GENE-
SIS project is required as OSCAR and its simpler cousin
SAM were “hidden” behind other GENESIS components
during that evaluation. It has been noted that evaluation of
certain aspects of a software system may itself may be a
driver of evolution [2], thus a thorough evaluation of OS-
CAR may assist in identifying new directions for evolution
and re-engineering of the existing code-base, beyond the
immediate goals of projects re-using the system.

As a collaborative system, OSCAR has different eval-
uation requirements from a non-collaborative application.
For example, the evaluation must demonstrate that OSCAR
improves the relationship and understanding between users
over that achieved by existing methods such as email file
exchange and telephone. These properties are not easily
measured by studying the system alone; user involvement is
necessary to obtain the best results. However, certain sys-
tem properties such as the presence of documentation and
usability criteria may be useful as indicators of how good
the system will be in a collaborative conttext

2 Industrial Partner Evaluation Results

The evaluation of GENESIS by the industrial partners
was performed using a checklist to compare the initial user
requirements to the finished platform. The tasks undertaken
by each partner were simulations based on their existing
practices; one partner was an ERP solution vendor and sim-
ulated a typical three-site customisation project, the other
used data and developers from an old project to re-run the
project and added an observer who would inject events to
simulate real world problems. These would include un-
scheduled activity (deviations from the work plan, feed-
back in the development process) and other small problems.
The partner then evaluated how well the platform dealt with
these occurrences.

The industrial partners’ evaluation studied several as-
pects of the finished GENESIS platform. Firstly, both part-

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Lincoln Institutional Repository

https://core.ac.uk/display/57295?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ners confirmed that theirProcess management require-
ments were addressed by the work-flow system, however
risk management facilities were missing and one partner
had difficulties changing an instance of a running process.
Secondly, one of the partners confirmed that the multiple
methods (local and remote) of accessing the toolset worked
correctly, thus addressing theirAccessibility requirements
for remote working etc. Thirdly, both partners confirmed
that theResource Managementapplication worked ac-
cording to their expectations.

Certain aspects of the system (ease of installation, flex-
ibility, learnability, reliability and a few others) were as-
sessed in a purely subjective manner by both partners. This
was mainly due to time constraints and the difficulty of
quantifying these nebulous traits. It was therefore necessary
to rely on user impressions rather than rigorous analysis.

Though the GENESIS platform supported metrics calcu-
lation based on the workflow model and items in the artefact
repository, neither of the partners had identified anyMet-
rics requirements in the simulated projects. Though such
requirements did exist in other projects, and thus the metrics
functionality is likely to be used if GENESIS was deployed
fully in the partner organisations, this omission meant the
metrics component of the GENESIS platform was not eval-
uated.

Unfortunately, the OSCAR component was deemed “not
evaluable from the users’ point of view” since it was not
directly accessible by the platform’s users. Consequently
the following evaluation framework has been developed to
address this omission.

3 Evaluation Design

Before any modifications beyond corrective maintenance
are made to OSCAR an evaluation of the current utility and
quality must be conducted, in order to establish a baseline
against which any perfective modifications may be com-
pared. This is to ensure that improvement in utility com-
mensurate with the effort expended has been provided.

Firstly, thequality of the original code is important for
future modifications. If much time must be spent perform-
ing corrective maintenance, less time will be available for
perfective and adaptive maintenance. Related to quality,
maintainability aspects such as the pertinence of the docu-
mentation and the state of the software support suite includ-
ing test-cases is important for promoting developer compre-
hension. If OSCAR is difficult to maintain, it will be like-
wise difficult to add new features to it. Maintainability is
also linked to usability: if a system is not used, no feedback
to drive the maintenance effort will reach the developers.

Secondly OSCAR intends to providenovel featurescur-
rently not offered by traditional artefact or configuration
management systems. Any evaluation must show that these

features exist and furthermore, are useful to developers or
as a basis for additional funtionality.

Thirdly the scalability of the system is important for
large groups of users though for small groups (of, say, 1–5
people) this may not be a problem. Scalability and perfor-
mance are aspects ofusability, the most important aspect of
which from a user point of view is the usability of the stand-
alone client, as this will be the first point of contact with the
OSCAR system an ordinary user has. When OSCAR was
hidden behind the other components of GENESIS, whether
this client was suitable or not was not as important. As the
only general-purpose interface to the stand-alone OSCAR
system, the usability must be thoroughly examined before
modifications are made to the interface.

To be successful, future modifications must lead to im-
provement in one or more of the above areas and, perhaps
more importantly, lead to no significant deterioration of the
existing capabilities. The evaluation criteria discussed be-
low will be applied to the modified system versions to verify
this. To this end, the Goal Question Metric (GQM) [1] ap-
proach has been selected to perform this evaluation. How-
ever, while the original GQM [16] methodology focusses
on measurement of the software process and its products,
our model is intended to lead to direct improvements of the
product and process. The information gained from apply-
ing “true” GQM models is often used for just this task, our
methodology merely removes an extra step.

Since a large user community is not available to question
or examine, this baseline evaluation will necessarily be lim-
ited to using more passive techniques or tolerating small,
biased, sample sizes. Therefore, at this stage of the evalu-
ation semi-automated evaluation of code quality and main-
tainability [15] will be the major focus of evaluation, with a
simple checklist [7] and metrics-based [11] examination of
the client’s usability according to accepted best-practice in
user interface design. The possibilities for future evaluation
of the baseline code are discussed below inOperational
Evaluation.

3.1 Quality Aspects

The system possesses several quantifiable quality as-
pects. Though no scale has been defined—since metrics
may be applicable to some aspects more than others—the
closer the score to zero (no problems) the better:

Comprehension A poorly structured program is difficult
to maintain, especially by other people than the origi-
nal authors. Lots of issues with complexity and poor
modularity may lead to an unmaintainable legacy

Existing problems These would include known defects,
the presence of outdated documentation and a consis-
tently high defect rate.

2



ProcessProblems with the development process would be
indicated by outdated or missing documentation and
test-cases, poor version control, a consistently high de-
fect rate for that class or subsystem and ownership is-
sues. Several defects in the process that produced OS-
CAR have already been identified [5] and care must be
taken to ensure these do not recur.

Usability Visual clutter, inconsistent terminologyetc.
make it hard for users to learn to use the system and
may discourage them from persevering with it.

3.2 Maintainability Evaluation

The maintainability of the system will be a decision
based on the following metrics and assessment criteria. En-
tries marked with an asterisk (throughout the rest of this
paper) rely on qualitative interpretation of the source data
rather than other techniques:

Defect density The defect density of code is a good indi-
cator of code quality. The lower the density of defects
(per thousand lines of code), the better the code qual-
ity. Defect density may vary within software systems
depending on quality and complexity of each of the in-
dividual subsystems, though work[8] has been under-
taken to address this difficulty in quantification.

Complexity Looping and other decision making constructs
can make comprehension difficult if they are too large
or too deeply nested. It is generally better to increase
call depth rather than adding more inner loops, for ex-
ample.

Call depth Deep call structures reduce the ease of program
comprehension and debugging. The call depth should
be reduced where possible, but not at the expense of
modularity.

Modularity Tightly-coupled multi-function classes should
be avoided where possible as they make comprehen-
sion and debugging more difficult.

Module size & duplication Large modules should be
avoided where practical, but not at the expense of
adding tight coupling to other classes. Use of utility
packages to abstract common functionality from the
rest of the system should be employed.

Ownership issues* If certain parts of the system are only
understood by one developer, this should be addressed.

Test cases and documentationThe presence of test cases
and other support tools are indicative of a verifiable
level of functionality and thus quality. A check to see
if the documentation is pertinent or obsolete should be
made. If obsolete, comprehension is penalised.

3.3 User Interface Evaluation

In addition to the criteria above, the user interface will be
evaluated using several special criteria. During the devel-
opment of OSCAR, two developers undertook a qualitative
review of the user interface as a precursor to pair-based fur-
ther development of the interface. During this process, sev-
eral common problems in the interface design were discov-
ered and this is reflected in the following specialist criteria.
As before, an asterisk indicates qualitative interpretation:

Consistency Consistency of terminology between differ-
ent parts of the client must be checked. Synonyms for
operations lead to user confusion and should be elimi-
nated. Additionally, misleading names for functional-
ity (subjective decision) should be avoided. A glossary
of terms should be readily available.

Clarity Labels and explanatory text should be well lined
up. Misalignment or obscured information will lose
points. Additionally, use of special purpose dialogs
should be kept to a minimum (e.g., for file selection).
Where one should use a dialog is a subjective decision,
however.

Succinctness (clicks-per-operation)If the client requires
too many individual commands for common opera-
tions (check in, check out, edit meta-data etc) it will
be cumbersome to use. Similarly, if common individ-
ual commands are difficult to access (in menus etc) the
client will be similarly cumbersome. Presence of key-
board shortcuts a bonus.

Extensibility* Related to maintainability, the interface
must be extendable. Recent experience in the Geni-
SOM [3] indicate that this system is extensible; allow-
ing the addition of a new workspace view based on a
map visualisation.

Nesting depth The “depth” of screens, menus and dialogs
is important. If they are nested too deeply the user may
get lost. However, a tradeoff must be made with visual
clutter.

Application integration The ease of integrating external
applications such as editors and viewers should be ex-
amined. Since the client can’t do everything itself, in-
tegrating external software should be easy.

Visual clutter* For the GUI client only. The more widgets
there are per screen, the more difficult the client is to
comprehend at first glance. Thus, unused functional-
ity should be hidden away. However, this requirement
must be balanced with that of nesting depth.

3



Goal Purpose Improve
Issue the usability of
Object the client application
Viewpoint User

Question Is the interface consistent and clear?
Metrics Instances of inconsistent terminology

Instances of poor layout

Question Is the user interface responsive and accessible?
Metrics Regular operations accessible in< 2 clicks

All operations accessible in< 6 clicks
Subjective impression of responsiveness
Nesting depth< 3

Question Does it integrate well with other applications?
Metrics Time taken to integrate five arbitrary applications

Goal Purpose Improve
Issue the quality of
Object the OSCAR back end
Viewpoint Developer

Question Is the test coverage sufficient?
Metrics Total modules - modules without test cases
Question Is the system too complex?
Metrics (automated) nesting depth

(automated) coupling and module size
(automated) call depth

Question Is the code consistent?
Metrics (automated) style checker
Question Is the system extensible?
Metrics Count of facia classes/interfaces

Count of plugins

Goal Purpose Assess
Issue the maintainability of
Object the OSCAR code base
Viewpoint Developers (current/new)

Question Is it well structured?
Metrics (automated) call depth

Manual check for duplicates
(automated) modularity

Question Is the test suite sufficient?
Metrics Simple test coverage, as above.
Question Is it well documented?
Metrics Instances of outdated/incomplete docs

Number of undocumented classes

Table 1. Sample of the GQM model for OSCAR

4



Goal Purpose Improve
Issue the success of
Object the development process
Viewpoint Developer/Manager

Question Is the documentation pertinent?
Metrics Instances of outdated/incomplete docs
Question Are the requirements fulfilled?
Metrics Checklist survey of requirements
Question Are all parts of the system understood by 2 or more developers?
Metrics Manual survey
Question Is the defect rate declining?
Metrics Count fix commits in CVS log over time

Goal Purpose Improve
Issue the deployability
Object of OSCAR
Viewpoint User

Question How much time is required for system management?
Metrics Time to perform routine maintenance (cleanup)

Time to restore system from crash
Question Is the install process well documented?
Metrics Subjective impression of document
Question Is the system quick to install?
Metrics Timed install

3.4 GQM Model

Table 1 shows the initial GQM model for this software
system. The quantitative aspects of the system are associ-
ated with particular goals and used to generate various ques-
tions to be answered using metrics or a qualitative assess-
ment of the system.

The metrics output and qualitative interpretation will be
used to develop a maintenance plan for OSCAR which
will attempt to remove any extant maintainability problems
and focus future work on areas that need attention. Be-
low, the future evaluation design is discussed, detailing the
steps needed to evaluate OSCAR’s utility to users in greater
depth, rather than OSCAR’s utility to future developers.

Furthermore, additional problems spotted during the
evaluation (which necessitates some study of code and an-
cillary software artefacts alongside automated metrics gen-
eration) but not part of the overall model will be corrected
by the developers. If these problems are both detectable
by measurement and likely to recur, the model will be ex-
panded to include them. Thus the model will evolve along
with the OSCAR system as it develops.

Due to space constraints and the need for thorough dis-
cussion of the methodology, a typical set of results from an
evaluation run is not presented here. As we refine the eval-
uation model and improve the software, we will publish a
“typical” result set with discussion of the issues and impli-

cations of the results.

3.5 Operational Evaluation

Any future evaluation will be based on the findings of the
GENESIS project industrial partner’s evaluation, brief find-
ings of which were discussed earlier. This evaluation was
high-level and ignored the possibility of running OSCAR
as a stand-alone system. In order to build on the existing
results, a similar approach has been selected to complement
the GQM; that of a user questionnaire derived from some of
the questions that are difficult to answer by using metrics.

The purpose of the expanded evaluation will be twofold:
gauge the user response to the OSCAR concept of meta-data
enriched, “active” artefacts and to verify that OSCAR is
useful to developers performing everyday tasks, something
that the preliminary evaluation cannot determine. However,
evaluation of any modifications (such as the addition of
awareness support) beyond the basic OSCAR system will
be undertaken in the context of those projects, not the evo-
lution of OSCAR.

The target user base will be a small number of research
students initially, and potentially a number of partners in
wider research collaborations that we are involved in. In
addition, OSCAR will be re-used in a number of other re-
search activities aside from this ongoing evaluation.

5



4 Conclusions

Extensive evaluation of OSCAR was not possible in the
short timeframe of the GENESIS project, though ensuring
usability and thus maintainability is absolutely necessary
for the ongoing successful evolution and use of OSCAR in
further projects. The problems identified in the process that
developed OSCAR originally [5] may recur without ongo-
ing software measurement and evaluation; indeed the lack
of regular evaluation was mooted as a probable cause of
problems such as user misunderstandings and design de-
fects. Given plans to integrate the prototype version of OS-
CAR with other projects, evaluation has been deemed nec-
essary.

The framework discussed here is intended to provide a
lightweight, ongoing evaluation of the basic OSCAR code
in order to drive the maintenance effort and ensure that the
software’s quality and usability do not degrade over time.
This framework does not perform many of the tasks found
in more thorough evaluations such as direct user involve-
ment and observation. However, this lightweight evaluation
can be conducted very quickly by a single developer with
the help of readily available software tools. In contrast,
a thorough evaluation would take considerably longer, in-
volve more people and would require a user base willing to
be studied on a regular basis.

The necessity and desirability of conducting more rig-
orous evaluation of the system on occasion was alluded to
earlier in this paper, for example when user-focussed eval-
uation of OSCAR extensions such as awareness is carried
out. To this end the future evaluations involving users dis-
cussed earlier will be tailored to the circumstances of the
occasion. We believe that an evaluation of this sort, where
possible, will provide sufficient high quality evaluation data
to indicate that OSCAR is capable of directly supporting
collaboration. Due to the lack of user involvement in the
GQM-based evaluation discussed in this paper, the results
obtained from it will necessarily be of limited use in di-
rectly assessing the success of the collaborative properties
of the system. However, general software quality can only
help support the development of these features.

References

[1] V. R. Basili, G. Caldiera, and H. D. Rombach.Encyclopae-
dia Of Software Engineering, chapter The Goal Question
Metric Approach. Wiley, 1994.

[2] C. Boldyreff. Determination and evaluation of web accessi-
bility. In Proceedings of WETICE 2002, pages 35–41. IEEE
Computer Society, June 2002.

[3] C. Boldyreff and J. Brittle. Self-organizing maps applied
in visualising large software collections. In A. V. Deursen,
C. Knight, J. I. Maletic, and M.-A. Storey, editors,Proceed-
ings of the 2nd IEEE Workshop on Visualising Software for

Understanding and Analysis, pages 99–104. IEEE, Septem-
ber 2003.

[4] C. Boldyreff, D. Nutter, and S. Rank. Active artefact man-
agement for distributed software engineering. InWork-
shop on Cooperative Support for Distributed Software En-
gineerng Processes, Proceedings of COMPSAC 2002, pages
1081–1086. IEEE, August 2002.

[5] C. Boldyreff, D. Nutter, and S. Rank. Communication and
conflict issues in collaborative software research projects. To
appear in 3rd Open Source Software workshop, ICSE 2004,
March 2004.

[6] M. Gaeta and P. Ritrovato. Generalised environment for pro-
cess management in cooperative software engineering. In
International Computer Software and Applications Confer-
ence, volume 26, pages 1049–1059, Oxford, England, Au-
gust 2002. IEEE.

[7] J. Harvey, editor.The Evaluation Cookbook. Learning Tech-
nology Dissemination Initative, 1998.

[8] Y. K. Malaiya and J. Denton. Module size distribution and
defect density. InProceedings of ISSRE’00, pages 62–71,
San Jose, California, October 2000. IEEE Computer Soci-
ety.

[9] D. Nutter and C. Boldyreff. Historical awareness support
and its evaluation in collaborative software engineering. In
Proceedings of WETICE 2003, pages 171–176. IEEE Com-
puter Society, June 2003.

[10] D. Nutter, S. Rank, and C. Boldyreff. Architectural require-
ments for an Open Source Component and Artefact Repos-
itory System within GENESIS. InProceedings of the Open
Source Software Development Workshop, pages 176–196.
University Of Newcastle, February 2002.

[11] R. S. Pressman.Software Engineering: A Practitioners Ap-
proach, chapter Software Process and Project Metrics, pages
79–112. McGraw-Hill, 5th edition, 2001.

[12] P. Ritrovato. Generalised enviroment for process manage-
ment in cooperative software engineering. InWorkshop on
Cooperative Supports for Distributed Software Engineering
Processes, Proceedings of COMPSAC2002, pages 1049–
1053. IEEE, August 2002.

[13] P. Ritrovato. IST project fact sheet: GEneralized eNviron-
ment for procEsS management in cooperatIve Software en-
gineering. http://istresults.cordis.lu/, March 2004.

[14] P. Ritrovato. Open solution to managing distributed software
developments. http://istresults.cordis.lu/, March 2004.

[15] N. Truong, P. Roe, and P. Bancroft. Static analysis of stu-
dents’ Java programs. In R. Lister and A. Young, edi-
tors, Proceedings of the Sixth Australian Computing Edu-
cation Conference (ACE2004), volume 30 ofConferences
In Research and Practice in Information Technology, 2004.
Dunedin, New Zealand.

[16] R. van Solingen and E. Berghout.The Goal/Question/Metric
Method: A Practical Guide for Quality Improvement of Soft-
ware Development. McGraw Hill, 1999.

6


