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The aim of this article is to present a method for the online guidance update for a launcher
ascent trajectory that is based on the utilization of a neural network approximator. Gen-
eration of training patterns and selection of the input and output spaces of the neural
network are presented, and implementation issues are discussed. The method is illustrated
by a 2-dimensional launcher simulation.
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1. Introduction

The problem of computing optimal guidance commands
to shape the trajectory of a launcher vehicle during its flight
has been a subject of study for decades. Early methods re-
lied on simplified dynamic equations in order to be able
to determine analytic expressions, Laws, of the guidance
commands. One of these laws is the bilinear tangent law
[1], which can be used to compute the optimal pitch an-
gle by an expression of the form tan(c1t + c2)/(c3t + c4).
This law has been used successfully in launcher vehicles
and is near optimal during the non-atmospheric part of the
flight.

Modern methods try to avoid simplifying the dynamics at
the expense of more complicated expressions and the need
of an iterative process in order to achieve convergence to
the desired optimal guidance commands [2–4]. The current
approaches can be classified as indirect methods or direct
ones [5]. Indirect approaches [4] are based on the theory of
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calculus of variations. They are usually fast in convergence,
but it is sometimes difficult to provide an initial value for the
iteration. On the other hand, direct methods [6] are based on
the transcription of the infinite dimensional optimal prob-
lem to a non-linear programming one; however this tran-
scription is made at the expense of a discretization of the
original problem.

Recently, the use of neural network approximators has
been proposed as an alternative to the solution of this
problem. The advantage of this approach is that the neural
approximator can be trained before the flight using the
dynamic equations without any simplifications and with as
many test scenarios as desired [7].

When considering an actual ascent flight of a launcher
vehicle, an optimal nominal trajectory and its corresponding
guidance parameters are usually computed off-line before
takeoff. However, perturbations on the trajectory such as
winds, unmodelled dynamics, for instance in aerodynamic
forces, or non-nominal behavior of the vehicle, for instance
in the thrust profile, make the introduction of changes in
nominal guidance necessary during the flight [6].

This online re-optimization shall be performed periodi-
cally during the flight and in general it cannot rely on the
same methods and dynamic modelling as the ones used
for the off-line nominal optimization. This is because their
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complexity usually requires human analysis in the loop, and
the fact that onboard real-time computation is significantly
more limited than the one used at ground.

That is why other forms of solving these online optimiza-
tion problems have been devised. As discussed before, the
solution can be obtained by introducing simplifications on
the dynamics so as to generate analytic expressions for an
approximate solution of the problem [8].

Though successful in practice, this method can handle
only small deviations from the nominal trajectory. This lack
of robustness may have as a consequence delays in the
launch date, for instance, due to adverse weather condi-
tions that cannot be handled by the proposed guidance [9].
Another alternative, which is more robust in the sense dis-
cussed in the previous paragraph, is the introduction of a
neural network approximator as an aid in the computation
of the online guidance parameters. The neural approxima-
tor has the advantage that it can be trained off-line using a
wide variety of flight scenarios, without any need of intro-
ducing simplifications on the dynamic model. Once carefully
trained, the neural network parameters can be loaded in the
vehicle's guidance computer and used in the computation of
the guidance online, as network interrogation is a very fast
process [7]. The latter is very useful due to the fact that it
should be updated by real-time measurements.

The aim of this paper is to present a method that com-
bines the characteristics of the classical guidance with a
neural network approximator, trying to exploit the best of
the two approaches. Though simple in its conception, the
method involves several steps which will be described in
this paper. The first sections are devoted to present a gen-
eral description which can be adapted to several types of
problems. Afterwards, an application to a specific example
of guidance command computation for a 2-D trajectory for
an elliptical transfer orbit applied to a launcher's last stage is
presented.

Section 2 gives some background on the optimal con-
trol problem that has to be solved in order to compute the
guidance commands and the neural approximator. Section
3 discusses the definition of the input and output spaces of
the neural approximator. Section 4 describes the algorithm
used to generate the patterns for the training of the neural
network. Section 5 is devoted to describe the online guid-
ance update process while Section 6 illustrates the method
by means of a launcher example. Finally, summary and con-
clusions are presented in Section 7.

2. Background

2.1. Optimal control problem

We start by recalling the classical optimal control prob-
lem in the interval [t0, tf ], adopting the notation of Kraft [10].
Controls g(t) : R → Rq and design parameters � ∈ Rq� are
sought in order to minimize the functional relation

min
u,�

�0[t0, z(t0), tf , z(tf )]+
∫ tf

t0
�0[t, z(t),g(t),�] dt (1)

subject to a set of dynamic, boundary and algebraic con-
straints given by

0= ż− f[t, z(t),g(t),�] (2)

0=�[t0, z(t0), �, z(�), tf , z(tf )] (3)

0��[t, z(t),g(t),�] (4)

where � ∈ [t0, tf ], and the dynamics is represented by func-

tion f : Rp+q+�q+1 → Rp. The boundary constraints are de-
fined by � : R3×(p+1) → Rr , and the algebraic restrictions
are given by � : Rp+q+�q+1 → Rs. This problem is solved as-
suming nominal dynamic conditions in order to obtain the
nominal states zN(t) and nominal guidance controls gN(t).

2.2. Neural approximator

Several neural networks types and topologies could be
used in this method. In this study, a multiple linear output
feedforward network is proposed as the neural approxima-
tor, N : Rs+1 → Rq, which can be written as

N(t,D)=
H∑
i=1

vi�(	i)− s (5)

with 	i=
∑s

k=1 
k
i Dk+
it−hi and activation function �. The

output weights are given by vectors vi, the output threshold
by s, and 
i and 
k

i represent the hidden weights while hi
is used for the hidden thresholds. Function D measures the
difference between the actual and the nominal final condi-
tions. The algorithm proposed for network training is the
Levenberg Marquardt one [11].

3. Neural network I/O spaces

In this section, the definition of the input and output
spaces of the neural network is presented. Themain task that
has to be performed in order to be able to use a neural net-
work approximator to provide guidance parameter updates
during the vehicle's flight is to define the input space of the
approximator. This is the case because it is clear that the
output of the neural network will be the guidance param-
eters or some function of them, for instance the difference
with respect to the previously computed nominal ones.

The input parameters of the network should reflect in
one form or another the reality that the vehicle is facing at
the instant the online guidance computation is taking place.
For instance, the current state vector and also possibly the
current perturbations on the dynamic forces could be chosen
as the input parameters of the network.

As the perturbations on the dynamic forces may not al-
ways be available during the flight, the choice of the input
space is based on state vector information. One option is to
choose the current state, or its difference with respect to
the nominal one, as the network input parameters. This ap-
proach defines an input space which is based only on local
real-time information.

Another alternative is to use some function of the actual
flight conditions rather than directly adopting the current
state. In this work we have chosen a function D, which mea-
sures the deviations of the current trajectory final conditions
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from the nominal ones. In this way, though sacrificing the
direct use of current information, the input space of the
neural approximator is more uniform than the one based
on the direct use of the current state. This is due to the
fact that it is not based only on local information, but it
also reflects the ability of the vehicle to reach the desired
final conditions under non-nominal flight. In other words,
function D is obtained computing final conditions at tf by
means of using actual real-time information.

At a given flight time t1, function D is computed by prop-
agating the current state variables, sensed by the vehicle's
navigation system, up to the nominal final time. The final
conditions reached by this propagation will most probably
be different from the desired final nominal conditions, re-
flecting the actual perturbations that have acted on the ve-
hicle up to time t1, thus the nominal final conditions can be
subtracted from the propagated ones in order to complete
the definition of function D.

The neural approximator N : Rs+1 → Rq shall be a
function that maps the ability of the vehicle to reach final
conditions D, onto a correction on the nominal guidance
parameters �G, as follows:

�G =N(t,D) (6)

where the number of guidance parameters is q. In other
words, for each time during the flight, and each deviation
from the final conditions, we are seeking for a function that
furnishes the related correction to the nominal guidance in
order to achieve the desired final conditions. For each partic-
ular problem, the variables taking part in �G and in D have
to be selected appropriately.

4. Training set generation

In this section the generation of the patterns for the
training of the neural approximator is discussed. Once the
input/output spaces of the neural approximator have been
defined, we shall describe in more detail the algorithm pro-
posed for the generation of the patterns that will be used
for neural network training.

We start by discussing the generation of a single pattern.
Let us assume that a nominal trajectory, composed by nom-
inal states zN and nominal guidance gN , has been obtained
by solving the optimal control problem of Section 2.1 under
nominal conditions. Then, as before, take t1 as a fixed time in
the flight, and zN(t1) as the corresponding nominal state vec-
tor. Let us consider a perturbation �z(t1) on the state vector
at time t1 and call the perturbed state z̃(t1)= zN(t1)+�z(t1).

In order to generate a single pattern, two procedures have
to be considered. One of them will furnish the value of the
input part of the pattern, while the other one will provide
the corresponding output.

On the one hand regarding the input, the perturbed state
z̃(t1) is propagated to the final time and the achieved fi-
nal conditions are compared against the nominal, which
defines D.

Formalizing the previous paragraph, we define the final
condition vector as cf ∈ Rrf . The nominal final condition, cNf ,
is a fixed vector which is obtained from the nominal trajec-
tory. The propagated final condition vector, cPf , is dependent

both on the start time of the propagation and on the per-
turbed state vector at that time, thus cPf [t, z̃(t)] : Rp+1 → Rrf .
Hence, D is computed by subtracting the two final condition
vectors, D[t1, z̃(t1)]= cPf [t1, z̃(t1)]− cNf .

Let us call zPf [t, z(t)] : Rp+1 → Rp the final state resulting
from the propagation of the state (t, z(t)) under the nomi-
nal control gN , and c : Rp → Rrf the function that maps
the final state vector into final conditions. With this nota-
tion, we can write function D as D[t1, z̃(t1)]=c(zPf [t1, z̃(t1)])−
c(zPf [t1, zN(t1)]).

A bound on the magnitude of function D can be derived
assuming that function f(t, •,gN) is Lipschitz with constant
Lf uniformly in t and g inside an open convex set contain-
ing the trajectories zN and z̃; and that a Lipschitz constant Lc
exists on function c on a sufficiently large neighborhood of
cNf , the nominal final condition. Under the previous assump-
tions, and following a derivation similar to that of Khalil [12],
p. 79, we have that

z̃(t)= z̃(t1)+
∫ t

t1
f (s, z̃,gN)ds (7)

zN(t)= zN(t1)+
∫ t

t1
f (s, zN ,gN)ds (8)

these identities, together with the Lipschitz condition, imply

‖z̃(t)− zN(t)‖� ‖z̃(t1)− zN(t1)‖ +
∫ t

t1
Lf ‖z̃− zN‖ds (9)

Applying the Gronwall lemma, integrating, and evaluating
at t = tf , we have that

‖zPf [t1, z̃(t1)]− zPf [t1, zN(t1)]‖� ‖�z(t1)‖ exp[Lf (tf − t1)] (10)

Now, due to the Lipschitz assumption on c we can write

‖D[t1, z̃(t1)]‖� Lc‖zPf [t1, z̃(t1)]− zPf [t1, zN(t1)]‖ (11)

� Lc‖�z(t1)‖ exp[Lf (tf − t1)] (12)

which gives the bound on D.
Resuming the discussion on the generation of a single

pattern, and regarding the output, a new optimal control
problem is set up with initial time t1, considering z̃(t1) as ini-
tial condition, and with control function gN(t)+�G(t) which
allows the introduction of an optimal correction �G(t), to the
nominal guidance that takes into account the perturbed ini-
tial condition. Although this new optimal guidance will be
a function of time inside the interval [t1, tf ], we shall focus
only on time t1, and consider �G(t1) for the computations
that follow.

Thus, a single pattern is defined by considering the rela-
tionship

{t1,D[t1, z̃(t1)]} ←→ �G(t1)

Keeping time t1 unchanged, different perturbations can be
introduced to the nominal state vector, so that a set of pat-
terns is defined for time t1.

Finally selecting times different from t1 and repeating
the above procedure, the construction of the training set is



Author's personal copy

480 C. Filici, R.S. Sánchez Peña / Acta Astronautica 66 (2010) 477 -- 485

completed. In order to summarize the above discussion, the
complete algorithm is presented:

1. For a given time ti (i= 1, . . . ,N).
(a) Perturb the nominal state vector by �zj (j= 1, . . . ,M).
(i) Propagate the perturbed state to final time and com-

pute D.
(ii) Considering the perturbed state, re-optimize guid-

ance parameters to get �G.
(iii) Store pattern {t,D[t, z̃(t)]} ←→ �G(t).
(b) j= j+ 1 and GOTO (1a)

2. i= i+ 1 and GOTO (1)

5. Online guidance update process

In this section we describe how the neural approximator
is used in the computation of the online guidance updates.
These will rely on the usage of the neural approximator and
will enhance the nominal guidance that has been computed
off-line.

Nominal guidance is computed off-line before the flight
by means of an optimal control algorithm and usually re-
quires engineering analysis in order to achieve appropriate
convergence conditions. This nominal solution, after com-
puting, is stored and used during the flight as a reference
guidance which is enhanced by the introduction of the neu-
ral approximator that will take into account the actual per-
turbations on the trajectory in real-time.

In essence, during the flight, the guidance computer
shall issue guidance commands to the vehicle's attitude
control system. If no perturbations were encountered, these
guidance commands shall be equal to the nominal ones.
However, perturbations are expected and thus the nominal
guidance will be augmented by the result of the evaluation
of the neural approximator.

At a given time t1 during the flight, the current state
vector z(t1) provided by the navigation system which in-
cludes the actual perturbations, is propagated until nominal
final time in order to assess the difference between nomi-
nal and propagated final conditions. In other words, at time
t1 function D[t1, z(t1)] is evaluated. Once D is obtained, it is
possible to interrogate the previously trained neural approx-
imator in order to compute the correction to the nominal
guidance, �G.

Thus, at a given time t1 during the flight, the guidance
command g shall have the form

g(t1)= gN(t1)+N{t1,D[t1, z(t1)]} (13)

This can be repeated for any subsequent time, providing
thus a means for reshaping the trajectory until final time,
where the current final condition is expected to be close to
the nominal one.

It is possible to outline a derivation of a bound for the
difference between the current and the nominal final con-
ditions. Besides the assumptions made to derive the bound
on D in Section 4, let us assume that function f(t, z, •) is
Lipschitz with constant Lg uniformly in t and z, inside an

open ball centered in the nominal control gN , then following
[12]

z(t)= z(t1)+
∫ t

t1
f (s, z,gN +N)ds (14)

zN(t)= zN(t1)+
∫ t

t1
f (s, zN ,gN)ds (15)

which, by adding and subtracting f (s, z,gN), and noting that
z(t1)= z̃(t1), imply

‖z(t)− zN(t)‖� ‖z̃(t1)− zN(t1)‖ +
∫ t

t1
Lg‖N‖ds

+
∫ t

t1
Lf ‖z− zN‖ds (16)

The approximator N(t,D) is continuous by definition, and
D is bounded due to expression (12), so N is evaluated on
a compact set, and consequently a constant  exists such
that ‖N‖�. Then, by means of the Gronwall lemma and
noting that t� tf , we have that

‖z(t)− zN(t)‖� [‖�z(t1)‖ + Lg(tf − t1)] exp[Lf (t − t1)] (17)

Now, evaluating the previous inequality at t= tf and due to
the Lipschitz assumption on c we can write

‖c(z(tf ))− c(zN(tf ))‖
� Lc{[‖�zN(t1)‖ + Lg(tf − t1)] exp[Lf (tf − t1)]} (18)

which gives the bound on the error in the final conditions
with respect to the nominal ones.

It shall be noted that the proposed method allows flexi-
bility in the final time, thus, the current trajectory may end
at a time different from tf , say t̂f . If we assume that function
f (t, z(t),gN(t) +N(t)) is continuous in [tf , t̂f ], the previous
bound can be extended as

‖c(z(t̂f ))− c(zN(tf ))‖� Lc‖(z(t̂f ))− z(tf )‖ + ‖z(tf )− zN(tf )‖)
(19)

From the continuity assumption on f, there exists a constant
� such that, the first term of the right-hand side can be
bounded by

‖(z(t̂f ))− z(tf )‖�
∫
[tf ,t̂f ]
‖f (s, z(s),gN(s)+N(s))‖ds

� �|t̂f − tf | (20)

so that, from (19), the following bound is obtained:

‖c(z(t̂f ))− c(zN(tf ))‖� Lc{|t̂f−tf |�+ [‖�zN(t1)‖+Lg(tf−t1)]

× exp[Lf (tf − t1)]} (21)

It is interesting to note that when t1 approaches tf , the
previous bound depends mainly on the terms |t̂f − tf |� and
‖�zN(t1)‖. If the former could be disregarded (for instance,
if t̂f ≈ tf ), then the bound would depend on the constant Lc
and on the difference between the current and the desired
states.



Author's personal copy

C. Filici, R.S. Sánchez Peña / Acta Astronautica 66 (2010) 477 -- 485 481

6. Example

In this section, the proposed method is applied to a spe-
cific example. Practical issues that arise during the imple-
mentation of the method in order to be applied to this ascent
trajectory problem are also discussed.

The example is a 2D ascent of a 3-staged launcher vehicle
carrying a 2.4 T payload, to an elliptical transfer orbit with
perigee and apogee heights of 170km and 18000km respec-
tively, adapted from [13]. The launch profile consists of four
phases, being the first one a 28 s vertical ascent (Table 1).
The durations of the first three phases are fixed, while the
duration of the last phase is constrained to be less or equal
than a predetermined value. The first stage of the vehicle is
active during the first and second phases of the flight. The
dynamic model studied considers the radius vector, veloc-
ity magnitude, flight path angle, longitude and mass as the
states variables.

The whole set of controls is composed by the pitch, roll
and yaw angles; however being the flight constrained to lay
inside a vertical plane, the yaw angle can be assumed to be
zero. Moreover, as vehicle longitudinal axis symmetry is as-
sumed, also the roll angle can be disregarded. Thus the con-
trol angle present in this example is the pitch angle, which
is modelled by the bilinear tangent guidance law.

The nominal trajectory together with the nominal guid-
ance are computed by means of the direct shooting method
TOMP [10], taking as objective function the payload mass. As
a result of this optimization, the duration of the final stage
is also obtained, with total flight duration of 847 s.

The computed nominal optimal trajectory is stored and
comprises the final payload mass, the final stage duration
and a function describing the parameters of the bilinear tan-
gent guidance law of the pitch angle for the whole flight.

This example focuses on the last part of the flight. Per-
turbations on the states (radius and velocity magnitude) at
given moments ti >750 s during the last stage are consid-
ered. These perturbations may be the result of unmodelled
dynamics or vehicle non-nominal performance during the
previous portions of the flight. Here, the neural approxima-
tor takes care of these discrepancies during the flight, as de-
scribed next.

The generation of the training patterns is performed by
randomly perturbing the state vector at times ti with 5 s in-
tervals. In this example we are taking the maximum pertur-
bation on the radius as �r=2km, and the one on the velocity
magnitude as �v = 50m/s over nominal values of 6562km
and 8387m/s, respectively. Note that if these perturbations
are not corrected, they would produce a 1500km error in

Table 1
Vehicle characteristics.

Stage number First Second Third

Stage mass (T) 174.50 38.33 9.70
Stage fuel mass (T) 157.00 34.00 8.50
Drag effective area (m2) 12.60 12.60 12.60
Vacuum thurst (kN) 2992.00 760.00 62.00
Nozzle area (m2) 2.96 0.78 0.06
Isp (s) 268.36 296.52 434.67
Burn time (s) (nominal) 28+ 110.00 130.00 578.88
Active in phase 1–2 3 4

apogee and a 2km error in perigee, approximately. As the
neural approximator is expected to reduce the effect of these
perturbations when the vehicle approaches the end of its
flight, it is convenient, in this region of the input space, to
generate training patterns with smaller perturbations. In the
example considered, a maximum �r =1km has been chosen
for times t >800 s.

Then, as described in Section 4, to compute the input pat-
terns to the guidance neural approximator, the perturbed
state is propagated to final time in order to obtain D, by
comparing final nominal vs. optimal parameters. These pa-
rameters have been chosen as the difference in apogee and
perigee altitude at final time, thus, D(ti)= (�apo,�per).

Computation of the output patterns is performed by run-
ning new optimizations that take the perturbed state as
initial condition so as to obtain optimal corrections �G to
the nominal guidance gN . Final condition dispersions are ac-
counted for by means of imposing the following constraints
on them: ±10km for the apogee and ±3km for the perigee.
In this example, the control is the pitch angle, which is mod-
elled by a three parameter bilinear tangent guidance law
[1,14] mentioned in the introductory section. Also the time
of engine cutoff, TCO is introduced as a guidance parameter,
which completes the definition of the neural approximator
output patterns �G = (c1, c2, c3,�Tco). This provides a time
dependent law with parameters that do not need to be up-
dated each time the pitch angle is needed. It also has a very
small number of parameters, so that the training process is
not so time consuming. Finally it provides a quasi optimal
model for pitch guidance in vacuum flight.

It is interesting to note that the objective function of these
re-optimizations has been chosen to be different from the
one used when computing the nominal trajectory (i.e. the
payloadmass). This is due to the fact that the re-optimization
result is going to be used online during the flight (indi-
rectly, through the neural approximator), and at that time
the payload mass cannot be changed. That is why for the
re-optimizations performed in order to obtain the correc-
tions to the guidance parameters �G, the payload mass is
assumed to be fixed. Hence, a cost function different from
the one used in the nominal trajectory computation shall be
selected by taking into account that it is reasonable to ask
for the new guidance parameters not to differ much from
the nominal ones in order to avoid big loads on the attitude
control system [7]. Thus, this cost function has been chosen
as a function of the difference between the re-optimized and
the nominal guidance, i.e. the norm of �G(t).

Generation of the training patterns involves a great num-
ber of optimizations which in principle may take some time
in order to be completed. However, as the guidance param-
eters are defined as the addition of a correction �G to the
nominal ones, a very good starting point for the iterative pro-
cess of the optimization consists in taking this augmented
guidance term �G equal to zero. Thus, the generation of the
patterns takes a fraction of the time that it would normally
take under other conditions. A similar approach has been
presented in [7].

After these processes are completed a total number of
6400 patterns, 400 for each ti, is available for training. These
patterns have three inputs and four outputs, and in order
to ease the learning process, instead of training one neural
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Table 2
Summary of the results.

Ex. N �TN SD(�apo) SD(�per) SD(�apo) SD(�per)
nominal nominal neural neural

(s) (km) (km) (km) (km)

1a 200 10 6.7× 102 1.2× 100 1.2× 100 9.0× 10−2

1b 200 5 6.9× 102 1.1× 100 1.6× 100 8.3× 10−2

1c 200 2.5 6.8× 102 1.2× 100 2.3× 100 9.6× 10−2

1d 200 1.25 6.5× 102 1.2× 100 2.1× 100 9.0× 10−2

2a 200 5 1.4× 103 2.5× 100 6.1× 100 3.4× 10−1

2b 200 5 6.5× 102 1.3× 100 1.8× 100 2.2× 10−2

2c 200 5 6.8× 102 7.5× 100 1.3× 102 4.8× 100

approximator, the training set is partitioned in four, one set
for each of the outputs. Thus, four neural approximators are
trained to be used for guidance.

In this example, a simple network topology consisting of
a feedforward network with one hidden layer is proposed. It
is a well-known result from neural network theory that the
approximation error depends both on the number of hidden
neurons and on the number of patterns [15]. In this study
the number of neurons in the hidden layer has been cho-
sen to be 9. The training method used involves non-linear
programming and the Levenberg Marquardt method was se-
lected for this problem [16,17].

The trained networks are finally used to augment nom-
inal guidance in ascent flight simulations. The initial state
vector is propagated with a high fidelity numerical integra-
tion method [18] using nominal guidance until time t0 =
750 s. Here a random perturbation to the states is introduced
and the neural guidance is activated.

The neural approximator is interrogated at discrete in-
tervals �TN during the flight. To do so, it is first necessary to
propagate the dynamics until final time in order to obtain
the deviations between desired and achieved final parame-
ters, which are used as inputs to the neural approximator.
With this input data, the approximator is used in order to
obtain a correction to the nominal guidance that will aid in
the achievement of the desired final parameters.

By means of this setting, several tests were performed
which are summarized in Table 2. The first set of tests in-
troduces perturbations on the radius and velocity magni-
tude at time t0 = 750 s. These random perturbations are of
the same maximum magnitude as those used to generate
the training patterns. Four different tests are defined, each
of them with a different value of the network interroga-
tion step �TN . All tests involve N = 200 flight ascent sim-
ulations. Relevant parameters of the tests are the standard
deviation of the achieved final parameters, SD(�apo), SD(�per)
for both the nominal and the neural augmented guidance
schemes.

The second set of tests are aimed at verifying the neu-
ral approximator generalization property. Thus, ascent flight
simulations are carried out introducing perturbations that
were not accounted for during the training. Test 2a intro-
duces perturbations on r and v at time t0 but of twice the
magnitude of those used to generate the training patterns.
Test 2b introduces perturbations on r and v at time 700 s<t0.
Test 2c introduces perturbations on r, v and flight path angle
� (with maximum magnitude 1◦) at time t0.

Results of the set of tests 1 show that the neural approx-
imator was successful in reducing orbit injection errors by
one or two orders of magnitude. Typically it could drive an
apogee height error greater than 600km, resulting from the
nominal guidance to values of the order of 1–4km. The same
can be stated on the perigee height error, which is driven
from values greater than 1km to magnitudes smaller than
100m.

Also note that from the results of these tests, changes in
the size of the network interrogation interval �TN do not
significantly impact the achieved neural guidance final pa-
rameters, as they remain inside the prescribed constraints
for the final apogee and perigee values, i.e. ±10 and ±3km
respectively.

Results of tests 2a and 2b are very similar to those dis-
cussed previously. This shows that for these tests, the neu-
ral approximator generalization property provided a suitable
guidance under non-trained conditions. Test 2c is somewhat
different from the other tests, as it considers the introduc-
tion of a perturbation on a state variable (the flight path
angle, �) that was not used for training, which is why the per-
formance of the approximator was lower than in the other
tests; however the neural guidance was able to reduce the
errors of the nominal guidance, driving the solution near the
desired final parameter values.

Figs. 1–3 show the pitch resulting from the proposed
guidance together with the nominal one for some of the test
cases presented. Also, a plot of the resulting correction on
the final time is presented for test 1a.

6.1. Practical computational issues

In this section some practical issues related to compu-
tation times for the procedures involved in the proposed
method will be discussed.

The off-line computations are the most time consuming,
as they require the generation of patterns and the network
training. The neural approximator training requires the gen-
eration of a set of patterns, which are the result of several
optimizations. The computational cost in terms of elapsed
time of the application of this procedure to the example un-
der study is of approximately 30min. After the patterns are
available, four neural approximators are trained to adjust
these patterns, the average computing time for training be-
ing 75min. This implies no practical problem, because it can
be made off-line before the actual flight. The platform used
here is a Pentium M, with a 1.7GHz processor and Fortran
90 programming language.

As described before, the computation of the online guid-
ance updates entails two procedures. One of them is the
generation of the neural approximator input and the other
is the evaluation of the approximator itself. The generation
of the neural approximator input requires the forward prop-
agation of the current state vector, which is assumed to be
provided by the navigation system with negligible error. The
numerical propagation is performed using the nominal dy-
namic model and with methods that ensure a solution of
high accuracy [18], and though it is not a trivial compu-
tation, our simulations on the example studied show that
the average computing time is less than 10ms on the same
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Fig. 1. Resulting vs. nominal pitch angle, and final time difference, case 1a.
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Fig. 3. Resulting vs. nominal pitch angle, cases 1d and 2b.

platform mentioned previously. This computation time is
compatible with an online guidance scheme to be applied
during the flight, which would probably be implemented
on a faster PC board and with a real-time programming
language.

On the other hand, it is widely known that the inter-
rogation of the neural approximator is a very fast process
[15]. This is confirmed by this example, where the average
computing time for network evaluation was approximately
10�s.
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7. Conclusions

A method for online guidance updates using neural net-
works has been presented. The main idea is to obtain a guid-
ance approximator to be used online during the ascent flight
of a launcher vehicle, with a training process performed off-
line, prior to the flight. In this way, all the time consuming
training is compressed in the neural approximator, which is
available during the flight and provides a very fast means
for obtaining online guidance corrections.

Definition of the neural approximator input and output
spaces is discussed. Neural approximator input patterns are
taken as errors in the desired end of flight conditions, while
the output patterns are defined as the corrections on nomi-
nal guidance arising from an optimization of the flight under
non-nominal conditions.

These definitions allow for off-line generation of training
patterns that are used in the learning process of the neural
approximator. The construction of the training set is typically
performed by numerical simulations, as it is not practical to
obtain such large number of data from actual flights, due
to the fact that an enormous amount of flights would be
necessary.

The method is applied during the flight by propagat-
ing the current state vector to final time and obtaining
the deviations from the desired end conditions. The latter
are used in order to interrogate the neural approximator
which provides as a result a correction to the nominal
guidance.

An example is presented, based on an ascent launcher
flight to an elliptical orbit. Details on the application of the
method on this example are presented, together with the
computing times involved.

The results of the example studied show that the neu-
ral approximator is successful in handling perturbations
on the state vector during the flight so that the resulting
trajectory final orbit conditions are more accurate than
the ones that result from the application of the nominal
guidance.

The method, as presented, provides a means to reshape
the trajectory when a desired performance, e.g. final orbital
conditions, is not achieved. This is done taking into account
the nominal dynamics, thus a possible enhancement to the
method would be to include the ability to reshape the tra-
jectory under non-nominal dynamics.

The application of the method depends mainly on the
fact that a suitable approximator can be defined and com-
puted, that is why we consider that a parameter that has
to be carefully chosen in order to apply the method is
the dimension of the input space of the neural approxi-
mator. Choosing a very large input space dimension may
make training not practical even though it is performed
off-line.

Extension to other flight phases is possible in principle,
due to the flexibility of the method which would allow its
application with practically no changes. If for instance the
whole flight sequence is considered, our approach would be
to define a different neural approximator for each phase.
In principle, all of the approximators would have the same
I/O space structure, e.g. deviations from the final flight con-
ditions as inputs, etc., and would be trained with optimal

trajectories considering the same objective function as pre-
sented in this report. However, the method allows for flexi-
bility on these aspects also.

Moreover, one possible way to treat the particular case
of a flight phase where inflight constrains are relevant is to
include some measure of the compliance with inflight con-
straints in the neural approximator input space. This may
be suitable for inflight constraints whose assessment can
be compressed in a few parameters. Otherwise, the input
space dimension would be very large, and training would be
hard to achieve. Another alternative is to note that the in-
flight constraints would be part of the full dynamic model
that is used not only to compute the nominal trajectory,
but also to build the training set of the neural approxi-
mator; thus the trained network will provide guidance up-
dates that are at the same time feasible in terms of inflight
constraints.
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