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The vibrational properties of multi-walled carbon nanotubes (MWCNTs) are studied, especially the influ-
ence of the shear deformation and the boundary conditions on the non-coaxial frequencies. A high order
continuum beam model is proposed, which can be applied to study the transverse vibrations of MWCNTs,
including those that could have initial deformations due to defects or external actions. Using the model it
was found that the non-coaxial intertube frequencies are independent of the shear deformation and the
boundary conditions. This result is important considering that the concentric structure of MWCNTs is a
crucial geometrical characteristic and a non-coaxial vibration would affect their electronic and optical
properties.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

The vibrational behavior of carbon nanotubes (CNTs) is very
important in the design of materials for nanoelectronics, nanode-
vices, nanocomposites and specific applications as nanotweezers
and antiferromegnetic atomic force microscopy (AFM) tips [1,2].
Moreover, often shorter CNTs are preferred to prevent undesirable
kinking and buckling.

Experimental tests at nanoscale are very cumbersome and
molecular simulation is computationally very expensive for large
scale systems still for cluster of computers. For this reason, contin-
uum mechanical models are an attractive alternative to study the
vibrational properties of multi-walled carbon nanotubes (MWCNTs)
[3].

In the frame of continuum mechanics and finite element meth-
od (FEM) there are four main alternatives: Beam model, shell mod-
el [4], spring-mass model [5] and 3D truss model [6,7]. As it was
demonstrated in [8,9] it is contended that the accuracy of the shell
FEM solution and a high order beam model (HBM) are comparable.
Obviously, the accuracy of the FEM solution can be improved add-
ing elements, but with a higher computational cost.

On the other hand, in the frame of beam models, the following
main alternatives could be selected: (a) single-beam model [10,11]
in which is assumed that all nested individual tubes of a MWCNT
ll rights reserved.
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remain coaxial during vibration and thus can be described by a sin-
gle deflection curve. Obviously, such a model cannot be used to
study non-coaxial intertube vibrations of MWCNTs. (b) N-beam
model in which each CNT is modeled as individual elastic beam
interacting each other by the interlayer van der Waals (vdW) inter-
action forces. For this alternative, in most papers, Euler–Bernoulli
beam model (EBM) is used [12–14] but some papers use Timo-
shenko beam model (TBM) [15–17] and HBM [18].

The main objective of this paper is to propose a HBM which can
be applied to study the transverse vibrations of MWCNTs, includ-
ing those that could have initial deformations due to defects or
external actions. The model is based on the theory for thin-walled
beams developed by Ambrosini et al [19] and considers shear
deformations, rotatory inertia and the interlayer vdW interaction
forces. The proposed model can be applied for any boundary con-
dition. Using the model, a numerical study was carried out and it
was found that the non-coaxial intertube frequencies are indepen-
dent of the shear deformations and the boundary conditions.

2. Continuum model for MWCNT

A left-handed rectangular global coordinates system (x, y, z)
shown in Fig. 1 is adopted. The associated displacements are des-
ignated n, g, and f. In Fig. 1, A represents the centroid and O the
shear center. Obviously, for concentric MWCNTs, A and O are coin-
cident, but in some cases the nanotubes could have initial defor-
mations due to, e.g., defects, external actions, attached masses in
CNT-based resonators, etc. In this case, the general model should
be applied. When A and O are coincident, as a result of the axial
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Fig. 1. Coordinate systems and associated displacements.
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symmetry of nanotubes, only displacement n is considered in plane
xy.

A single elastic beam model cannot describe the relative inter-
tube vibrations for a double or multiwalled carbon nanotube. A
multiple beam model is presented in this paper. In the MWCNT
model, each of the nested nanotubes is described as an individual
elastic beam, and the flexural deflections of all nested tubes are
coupled through the vdW interaction between any two adjacent
tubes. The torsional deflections remain uncoupled. Therefore, flex-
ural and torsional vibrations of an N-wall CNT are described by the
following N equations:
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Fig. 2. Diameter and thickness defin
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In these equations the subscripts 1,2, . . . ,n denote the quantities of
the innermost tube, its adjacent tube, and the outermost tube,
respectively. E and G are the Young and shear modulus respectively,
q denotes the mass density, Ju is the sectorial second moment of
area (warping constant), Jd is the torsion modulus, ay is the coordi-
nate of the shear center and J0 is the polar moment of inertia about
shear center. cmi is the mean value of the shear strain over a cross-
section z = constant given by:

cmi ¼
Qx

kxFiG
ð7Þ

where Qx is the shear stress resultant on the cross section. kx denote
the Cowper’s shear coefficients that could be obtained using the
approximate equations given by Ebner and Billington [20]. Fi and
Ji are the cross sections and the moment of inertia of the ith tube,
respectively. Fi and Ji are functions of d which is the mean diameter
of the nanotube and h which is the thickness of the nanotube
(Fig. 2).

Several discussions have been carried about the proper value of
the thickness, being 0.34 nm, the value more accepted. The mass
density of the nanotube, q is ranged from 1.3 to 2.3 g/cm3.

The deflections of the tubes are coupled through the vdW inter-
tube interaction p. Since the inner and outer tubes are originally
concentric and the vdW interaction is determined by the interlayer
spacing between the tubes, the net vdW interaction pressure re-
mains zero for each tube if they vibrate coaxially and share the
same deflection curve. For a multi walled beam model, the tubes
are described by individual deflections curves that may not be
coincident. Therefore, for small amplitude non-coaxial linear vibra-
tion, the vdW interaction pressure at any position n between two
tubes depends linearly of the difference of their deflection curves
at that position

pðzÞ ¼ c n2ðzÞ � n2ðzÞ½ � ð8Þ

where c is the intertube vdW interaction coefficient. The coefficient
c can be estimated as [21]:

ck ¼
320ð2rkÞ
0:16a2 erg=cm2 k ¼ 1;2; . . . ;n� 1 ð9Þ

where a = 0.142 nm and rk is the radius of the tube considered.
Using the Fourier transform, an equivalent system with eight

first-order partial differential equations with eight unknowns is
obtained in the frequency domain for each tube. For each nano-
tube, four geometric and four static unknown quantities are se-
lected as components of the state vector v: displacement n,
ition for SWCNT and DWCNT.



Table 1
Fundamental frequency (THz). Nanotube A.

DT DE ST SE

Yoon et al. [17] 0.0728 0.0745 0.0731 0.0746
This paper 0.0728 0.0742 0.0731 0.0742
Difference % 0.00 0.40 0.00 0.54

Table 2
Fundamental frequency (THz). Nanotube B.

DT DE ST SE

Yoon et al. [17] 0.141 0.144 0.141 0.144
This paper 0.140 0.143 0.140 0.144
Difference % 0.71 0.69 0.71 0.00

Fig. 3. Non-coaxial frequencies. DWCNT simply supported.

Fig. 4. Non-coaxial frequencies. DWCNT clamped–clamped.
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bending rotation /x, normal shear stress resultant Qx, bending mo-
ment My, torsional rotation h and its spatial derivative h0, total tor-
sional moment MT and bimoment B:

v iðz;xÞ ¼ fn;/y;Qx;My; h; h
0;Mt; BgT ð10Þ

in which, the torsional moment is given by

MT ¼ Hu þ HK ð11Þ

with HK = GJd h0 = Saint Venant torsion moment and Hu is the flex-
ural–torsional moment with respect to the shear center due to
the axial stress forces which act along the tangent to the arc of
the section contour.

After some mathematical operations, the final system obtained
is:

@v
@z
¼ Av ð12Þ

in which A(Aij) is the system matrix given by:

A ¼
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. ..
. . .

. ..
.
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The Aii matrix has the data of the ith nanotube. The Aij matrix
with i – j, has the vdW coefficient coupling the nanotubes. For
the particular case of a DWCNT, the A matrix is given in Appendix
A. When the nanotubes are concentric, the model can exclude the
analysis of the warping constraint, reducing the system to a six
first-order partial differential equations with six unknowns. In this
case the sate vector is:
Table 3
Fundamental frequency (THz). Nanotube A. Simply supported.

L = 7 nm L = 14 nm

DT DE Diff. % DT

Coaxial 0.272 0.289 6.25 0.0728
Non-coaxial 0.982 0.983 0.10 0.964

Table 4
Fundamental frequency (THz). Nanotube A. Clamped–clamped.

L = 7 nm L = 14 nm

DT DE Diff. % DT

Coaxial 0.502 0.628 20.0 0.154
Non-coaxial 1.060 1.113 4.76 0.971
v�i ðz;xÞ ¼ n;/y;Q x;My; h;M
�
t

� �T ð14Þ

where M�
t is the torsional moment given only for the Saint Venant

torsion moment. Furthermore, the coordinates of the shear center
with the centroid are coincident, therefore ay = 0. The new system
is:

@v�
@z
¼ A�v� ð15Þ

For a DWCNT A⁄ is given in Appendix A.
The system A⁄ may be easily integrated using standard numer-

ical procedures, such as the fourth-order Runge-Kutta method, the
predictor – corrector algorithm or other approaches. In order to
solve the two-point value problem encountered both in the deter-
mination of natural frequencies and in dynamic response calcula-
tions, the latter must be transformed to an initial value problem
as shown, for example, by Ebner and Billington [20]. The procedure
is normally applied in the transfer matrix method. Natural fre-
L = 28 nm

DE Diff. % DT DE Diff. %

0.0742 1.92 0.0185 0.0186 0.54
0.964 0.00 0.964 0.965 0.10

L = 28 nm

DE Diff. % DT DE Diff. %

0.167 7.88 0.041 0.042 1.80
0.971 0.05 0.965 0.965 0.00



Fig. 5. Natural frequencies and modal shapes. DWCNT clamped–clamped.

Table 5
Fundamental frequency (THz). Commercial nanotube. Simply supported.

L = 18.25 nm L = 36.5 nm L = 50.0 nm

DT DE Diff. % DT DE Diff. % DT DE Diff. %

Coaxial 0.116 0.123 5.77 0.0307 0.0312 1.66 0.0166 0.0167 0.90
Non-coaxial 1.386 1.409 1.63 1.386 1.401 1.07 1.393 1.402 0.64

Table 6
Fundamental frequency (THz). Commercial nanotube. Clamped–clamped.

L = 18.25 nm L = 36.5 nm L = 50.0 nm

DT DE Diff. % DT DE Diff. % DT DE Diff. %

Coaxial 0.218 0.278 21.58 0.066 0.071 7.41 0.036 0.038 4.73
Non-coaxial 1.424 1.427 0.21 1.392 1.411 1.35 1.387 1.406 1.35

D. Ambrosini, F.de Borbón / Computational Materials Science 53 (2012) 214–219 217
quencies are determined by means of the well-known Thomson’s
method.

3. Numerical results and discussion

Afterward, the coaxial and non-coaxial frequencies are obtained
for nanotubes of different aspect ratios. The influence of shear
deformation and boundary conditions is studied.

3.1. Model validation

In order to validate the beam model and the methodology pro-
posed, numerical examples are reproduced from [17]. Four beam
models are used: double Timoshenko (DT), double Euler (DE), sin-
gle Timoshenko (ST) and single Euler (SE) beam.
The nanotubes in consideration have the following mechanical
and geometric properties:
Nanotube A
 Nanotube B
di = 0.7 nm
 di = 7 nm

de = 1.4 nm
 de = 7.7 nm

E = 1 TPa; G = 0.4 TPa
m = 0.25; h = 0.35 nm
kx = 0.8; q = 2.3 g/cm3
The DWCNTs are considered simply supported. A vdW interac-
tion coefficient c = 200(2r)/0.16a2 is considered. The aspect ratio is



Fig. 6. Fundamental frequencies. Commercial DWCNT.
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L/de = 10. The obtained results for the fundamental frequency are
presented in Tables 1 and 2.

For both DWCNTs, the results obtained whit the proposed mod-
el are in excellent agreement with those of referenced paper [17].
3.2. Coaxial and non-coaxial frequencies of nanotube A

In order to investigate the vibration characteristics of different
aspect ratio nanotubes (5, 10 and 20), numerical examples are car-
ried out with the double Timoshenko (DT) and double Euler (DE)
beam models. The support conditions considered are simply sup-
ported and clamped–clamped. First, the nanotube A corresponding
to Section 3.1 is studied. The results are presented in Tables 3 and
4.

The first coaxial frequency obtained with the Timoshenko beam
model is lower than the frequency of the Euler beam model for the
two boundary conditions. The difference in the frequencies be-
tween the two models is 6.23% for simply supported and 20.0%
for clamped, in shorter nanotubes, for the coaxial frequency. This
difference diminishes in nanotubes with larger aspect ratios. These
facts are consistent with the beam theories.

The first non-coaxial frequency is essentially the same for the
simply supported nanotube analyzed with either the Euler or
Timoshenko beam models considering different aspect ratios,
indicating that the shear deformation has not influence on the
non-coaxial frequency (Fig. 3).

For the clamped–clamped nanotubes, the first non-coaxial fre-
quencies are slightly different. The 7 nm length nanotube has a
higher frequency but with the increase of length, the frequencies
tend to be similar (Fig. 4). Finally, for the sake of illustration, the
first three frequencies and modal shapes for a clamped–clamped
DWCNT of 28 nm length is showed in Fig. 5.
3.3. Coaxial and non-coaxial frequencies of commercial nanotubes

Next, a double-walled nanotube of commercial diameters is
studied. The internal and external diameters are di = 2.95 and
de = 3.65 nm. The vdW coefficient is considered as c = 320(2r)/
0.16a2. The results are presented in Tables 5 and 6 and Fig. 6.
Similar conclusions are obtained with this example. Meanwhile
the first coaxial frequency changes with the increase of length of
the nanotube, the non-coaxial frequency remains practically
invariable for all the aspect ratios.

Analyzing the two examples, we can conclude that the non-
coaxial frequency seems not to be dependent of the boundary con-
dition of the nanotube.

In what concerns to shear deformations, the difference between
the first non-coaxial frequencies obtained with the two simply
supported beam models is close 0.1% for Section 3.2, excluding
the shorter clamped–clamped nanotube. For the Section 3.3, the
discrepancy in the non-coaxial frequencies is more important but
always considerably inferior to the changes experimented for the
coaxial frequency. Therefore, it can be assumed that the non-coax-
ial frequencies are insensitive to shear deformations.
4. Conclusions

A theoretical approach based on a HBM is proposed to study the
transverse vibrations of MWCNTs, including those that could have
initial deformations. The model is applicable to arbitrary boundary
conditions. It was numerically validated against other results from
the literature and the numerical results are in good agreement
with those of referenced work.

A numerical study was carried out to study the coaxial and non-
coaxial natural frequencies for DWCNTs of different aspect ratios
and different boundary conditions. In what concerns to shear
deformations, the difference between the first non-coaxial fre-
quencies obtained for the two boundary conditions analyzed is
small, excluding the shorter clamped–clamped nanotube. In this
case, the discrepancy in the non-coaxial frequencies is more
important but always considerably inferior to the changes experi-
mented for the coaxial frequency. Therefore, it can be assumed that
the non-coaxial frequencies are insensitive to shear deformations.
Moreover, analyzing the numerical examples, we can conclude that
the non-coaxial frequency seems not to be dependent of the
boundary condition of the nanotube. These results are important
taking into account that the concentric structure is the geometrical
characteristic of DWCNTs, such a non-coaxial vibration would cru-
cially affect their electronic and optical properties.

Finally, it must be emphasized that, although only concentric
DWCNTs examples are presented, the proposed model allows the
consideration of MWCNTs with initial deformations.
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Appendix A

System matrix for DWCNT. General model.



System matrix for DWCNT. Concentric DWCNT model.

A ¼

0 1 1
kF1G 0 0 0 0 0 0 0 0 0

0 0 0 1
EJ1

0 0 0 0 0 0 0 0

�qF1x2 þ c1 0 0 0 0 0 �c1 0 0 0 0 0
0 �qJ1x2 �1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1

GJd1
0 0 0 0 0 0

0 0 0 0 �qJ01x2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1

kF2G 0 0 0

0 0 0 0 0 0 0 0 0 1
EJ2

0 0

�c1 0 0 0 0 0 �qF2x2 þ c1 0 0 0 0 0
0 0 0 0 0 0 0 �qJ2x2 �1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1

GJd2

0 0 0 0 0 0 0 0 0 0 �qJ02x2 0

2
666666666666666666666666664

3
777777777777777777777777775

A ¼

0 1 1
kxF1G 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1
EJ1

0 0 0 0 0 0 0 0 0 0 0 0

�qF1x2 þ c1 1 0 0 �qF1ayx2 0 0 0 �c1 0 0 0 0 0 0 0
0 �qJ1x2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 � 1

EJu 0 0 0 0 0 0 0 0

�qF1ayx2 0 0 0 �qJ01x2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 Bh0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1

kxF2G 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1
EJ2

0 0 0 0

�c1 0 0 0 0 0 0 0 �qF2x2 þ c 1 0 0 �qF2ayx2 0 0 0
0 0 0 0 0 0 0 0 0 �qJ2x2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 � 1

EJu

0 0 0 0 0 0 0 0 �qF2ayx2 0 0 0 �qJ02x2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 Bh0 1 0

2
6666666666666666666666666666666666664

3
7777777777777777777777777777777777775
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