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A B S T R A C T

It is a tenet of ecological theory that two competing consumers cannot stably coexist on a single limiting

resource in a homogeneous environment. Many mechanisms and processes have since been evoked and

studied, empirically and theoretically, to explain species coexistence and the observed biological

diversity. Facilitative interactions clearly have the potential to enhance coexistence. Yet, even though

mutual facilitation between species of the same guild is widely documented empirically, the subject has

received very little theoretical attention. Here, we study one form of intraguild mutualism in the

simplest possibly community module of one resource and two consumers. We incorporate mutualism as

enhanced consumption in the presence of the other consumers. We find that intraguild mutualism can

(a) significantly enhance coexistence of consumers, (b) induce cyclic dynamics, and (c) give rise to a bi-

stability (a ‘joint’ Allee effect) and potentially catastrophic collapse of both consumer species.

� 2012 Elsevier B.V. All rights reserved.
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1. Introduction

Explaining coexistence of multiple species and finding mecha-
nisms for the maintenance of biological diversity are two of the
most fundamental questions in ecology, and are increasingly
important issues in the face of global anthropogenic change and
biodiversity loss. Theoretical results such as Tilman’s R*-rule
(Tilman, 1982) and the generalized competitive exclusion princi-
ple (Levin, 1970) send the clear message that coexistence among
competing species is difficult to achieve. For example, the R*-rule
says that the species that can drive the resource (R) to the lowest
level will win the competition and exclude other species.
Theoretical and empirical research has since focused on variability
and trade-offs that promote coexistence, such as spatial extent,
temporal variation, stochasticity and others, e.g. Levin and Culver
(1971), Holt (1984), Chesson (1994), Hanski and Gilpin (1997), and
Chesson (2000). Most of these efforts focus on models and
experiments that consider only antagonistic interactions even
though positive interactions also pervade in ecological communi-
ties (Boucher, 1982; Bruno et al., 2003). Positive interactions are a
natural candidate mechanism to promote species coexistence, and
have been found to enhance ecosystem function in various ways
(Stachowicz, 2001; Cardinale et al., 2002; Xie et al., 2011).
However, relatively little work has been done in this regard
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especially for facilitation among animal species; much of the
research has dealt with facilitation in plants (Callaway, 1995;
Bertness and Leonard, 1997).

A form of facilitation of which very little is known is intraguild
mutualism (Crowley and Cox, 2011), where consumers competing
for the same resources also facilitate one another. The idea of
intraguild mutualism goes back to Charnov et al. (1976), who
theorized several mechanisms of predator mutual facilitatation.
When different predator species hunt in different locations or at
different times, then a prey trying to avoid one predator could be
more available to another. Charnov et al. (1976) mentions how
nocturnal predation by owls may drive prey to forage during
daytime where hawks can spot them – and vice versa. Other
examples are that mammals may hunt under dense cover and drive
prey into the open where it is available for avian predators – and
vice versa (Korpimäki et al., 1996; Eccard et al., 2008). Sublethal
predation by fish on clams has been found to facilitate lethal
predation by shorebirds and predatory whelks (Meyer and Byers,
2005).

In general, increased feeding success and predator avoidance
are the most commonly cited potential benefits between otherwise
competing species (Dickman, 1992). Losey and Denno (1998)
measured predation rates of two beetle species on aphids and
showed that joint predation was greater than individual predation
combined. Similar results of facilitation between predators were
obtained, for example, by Cardinale et al. (2003), Meyer and Byers
(2005), Bshary et al. (2006), Eccard et al. (2008), and Fodrie et al.
(2008) in a wide variety of study systems. The mutual positive
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effect of predator defense or avoidance is documented by Hay
(1986), Hoeck (1989), among others.

A recent review by Crowley and Cox (2011) highlights the
current increase in recognition of the importance and ubiquity of
facilitative interactions in ecology, see also Bruno et al. (2003).
Specifically, they argue that there is ample empirical evidence for
facilitative interactions and mutualism (reciprocal facilitation)
within a guild, but that theoretical models of intraguild
mutualism are rare. Stanton (2003) used path analysis to explore
how pairwise mutualistic interactions affect systems of more than
two species. Gross (2008) focused on the aspect of predator
avoidance and studied a differential equations model of compet-
ing species whose death rates decrease in the presence of other
species. He found that this mechanism produced stable multi-
species communities with a single resource. Holland and
DeAngelis (2009) consider a general two-species model where
density-dependent rates can shift competitive interactions to
mutualism, but the authors neither consider specific mechanisms
nor address intraguild mutualism.

Here, we develop and analyze a model of resource competi-
tion, where consumption of each competitor can be enhanced by
the presence of the other. Crowley and Cox (2011) suggest
several community modules of varying topology, in which the
effects of intraguild mutualism should be explored. Our work
aims to shed light onto these effects in the most basic module,
that of one resource and two competing consumers. By focusing
on the most basic module, we isolate the fundamental processes
of intraguild mutualism in order to thoroughly understand them
and establish foundations for further inquiry. Our model
consists of three equations, one for the resource and two for
the consumers. We distinguish between two scenarios, the
chemostat scenario, which is characterized by a constant supply
rate of the resource and equal wash-out rates for all three
species (Smith and Waltman, 1995); and the logistic scenario,
which is characterized by a logistically growing resource
population and species-specific death rates. Our approach to
understanding the dynamics of this three-dimensional system
begins with simple linear predation and facilitation functions,
and considers two special cases of parameter values. When the
two consumers are identical, the system reduces to a two-
dimensional model of a predator with self-facilitation
(Section 3). When facilitation acts in one direction only, the
system remains three-dimensional but the number of param-
eters is greatly reduced (Section 4). These two special cases help
understand the dynamics of the general system, but they are
worthy of study in their own right, as both of these cases are
observed in nature. Finally, we briefly discuss the effect of
nonlinear predation and facilitation functions (Section 5), and
we construct the possible dynamics of the full three-dimen-
sional model from the results of the two previous sections
(Section 6).

2. Model

We model the dynamics of two consumer species, x, y, and their
resource, z. In the absence of the consumers, the resource grows
according to some function G. Consumers per-capita catch rates are
hi(z), modified to include consumer mutualism via functions fi.
There are linear death rates, di, of the consumers and yields 1/ei.
Altogether, the model reads

ẋ ¼ xðh1ðzÞ f 1ðyÞ � d1Þ;
ẏ ¼ yðh2ðzÞ f 2ðxÞ � d2Þ;
ż ¼ GðzÞ � e1xh1ðzÞ f 1ðyÞ � e2yh2ðzÞ f 2ðxÞ:

(1)

We distinguish two scenarios. In the chemostat scenario, we
consider G(z) = d(zin � z) as the supply rate and outflow of the
resource, and d1 = d2 = d as the outflow rate of the consumers. In
the logistic scenario, we choose logistic growth G(z) = rz(1 � z/K),
and we allow the consumer death rates di to be distinct. Parameters
zin, r, and K are the inflow concentration, the growth rate and the
carrying capacity of the resource, respectively. We also refer to the
consumers as predators. While we do not claim that all of the
above mentioned facilitation mechanisms occur in a true chemo-
stat, we suggest that the chemostat scenario, because of its
simplicity, provides useful insights into the fundamental process of
facilitation in isolation of any confounding factors.

The functions hi describe a non-decreasing functional response;
they could be linear or saturating (type II) (Holling, 1959).
Functions fi model facilitation if fi > 1. We assume that fi(0) = 1 and
that these functions are non-decreasing. For (mathematical)
simplicity, we consider linear functions where the strength of
facilitation is proportional to the density of the facilitating
population. We also discuss the case of saturating functions,
where each additional competing consumer has a smaller
facilitative effect and where the total possible positive effect is
bounded above. In reality, it is likely that at very high densities of a
competing consumer the facilitative effect decreases. Similarly,
one could include self-facilitation by allowing functions fi to
depend on some linear combination of densities of the two species.
We leave this case for future studies.

With constant functions fi = 1, we have a classical situation.
There is no stable coexistence, unless the two species have the
same ‘break-even concentrations’ for the resource (Kot, 2001). In
the chemostat case, the species that can subsist on a lower resource
level will drive the other to extinction. The lowest possible
resource level is given by hi(z) = di. In the logistic case, the same
relation holds unless there are limit cycles. Coexistence between
the predators may be obtained along a stable limit cycle, provided
at least one of the hi are saturating response functions (Koch, 1974;
Armstrong and McGehee, 1980; Kot, 2001).

3. Identical consumers – reduced system

We begin our analysis of system (1) with the special case that all
parameters for the two consumer species are equal. With this
assumption, the plane {x = y} is invariant for the dynamics. On this
plane, the dynamics are completely determined by the reduced
system

ẋ ¼ xðhðzÞ f ðxÞ � dÞ;
ż ¼ GðzÞ � 2exhðzÞ f ðxÞ; (2)

where the factor of 2 in the last term reflects the fact that two
consumer species of equal strength impact the resource. System
(2) has an alternative interpretation as a two-species predator–
prey model with predator intra-specific facilitation and can be
studied in its own right. In that interpretation f quantifies the
facilitative effect of predator x on itself, and the yield is 1/(2e).
Predator self-facilitation is quite common when predators hunt in
packs, as in many canids. It also appears to be widespread in
consumer–resource relationships in general, having been observed
in terrestrial invertebrates (So and Dudgeon, 1989), aquatic
invertebrates (Bertness, 1989) and parasites (Ogden et al.,
2002). We refer to Berec (2010) for a recent in-depth study of
the dynamic effects of self-facilitation in predators. For our model,
we study the stability of the resource-only (semi-trivial) state as
well as conditions for the existence and stability of a (positive)
coexistence state.

3.1. The chemostat scenario

In the chemostat case, we choose G(z) = d(zin� z), as well as linear
functions h(z) = az and f(x) = 1 + ax. After nondimensionalizing



Fig. 1. Illustration of the possible qualitative behavior of the reduced mutualism

model with chemostat dynamics, see (2). When the catch rate (A) is large enough

consumers can invade and coexist. When the catch rate is too small but mutualism

(C) is strong enough then we observe an Allee effect; the predator will go to

extinction from small initial density.

F. Assaneo et al. / Ecological Complexity 14 (2013) 64–7466
x ¼ x̃d=ð2aeÞ; z ¼ z̃zin and t ¼ t̃=d and dropping the tildes for
convenience, the system reads

ẋ ¼ xðAzð1 þ CxÞ � 1Þ;
ż ¼ 1 � z � xzð1 þ CxÞ;

(3)

where A = azin/d and C = da/(2ea). The semi-trivial state is unstable
if A > 1. A coexistence state is given by the relations

z ¼ 1

Að1 þ CxÞ ; Cx2 þ ð1 � ACÞx þ 1 � A ¼ 0: (4)

The explicit solution for x is

x ¼ 1

2C
AC � 1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAC � 1Þ2 � 4Cð1 � AÞ

q� �
: (5)

Now we see that there are three cases. (a) If A > 1, then the zero
steady state is unstable; there is exactly one coexistence state. (b) If
A < 1 and AC < 1 then there are no coexistence states. (c) If A < 1
and AC > 1, then there are two coexistence states, provided the
expression under the square root is positive. The latter condition is
equivalent to

C > C� ¼ 1

A2
2 � A þ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � A
ph i

; (6)

which actually implies C > 1/A. We also get the relationship (1/
A)x + z = 1.

The Jacobian at the positive steady state is

J ¼ ACxz x=z
�zð1 þ 2CxÞ �1=z

� �
: (7)

It turns out that the trace of the Jacobi matrix is always negative at
the positive steady state. When A > 1, this is easily seen from

trðJÞ ¼ ACxz � 1

z
¼ Cx

1 þ Cx
� Að1 þ CxÞ < ð1 � AÞCx < 0: (8)

For A < 1, we checked the condition numerically. In particular,
there cannot be a Hopf bifurcation in this system. The sign of the
determinant depends on the steady state. We have

detðJÞ ¼ xð1 þ 2Cx � ACÞ: (9)

Substituting the explicit expression for x from (5), we see that the
determinant is positive (a) if A > 1 and x > 0 or (b) if A < 1 and x is
the larger of the two positive steady states.

Mathematical summary: When A > 1, then the semitrivial
steady state is unstable and the unique coexistence state is stable.
When A < 1 and C < C*, then the predator cannot persist in the
system. When A < 1 and C > C*, then the semitrivial state is locally
stable and there are two coexistence states. The one with the larger
consumer density is stable. The consumer experiences a strong
Allee effect, i.e. a small initial population of consumers will die out
and only a sufficiently large initial consumer density will
guarantee persistence (Allee, 1949), see Fig. 1.

Biological summary: If the catch rate of the consumer is large
enough to ensure persistence in the absence of facilitation, then
facilitation will not change the behavior qualitatively. A small
population will grow to a stable steady state; only it will grow
faster and to a higher steady state value with facilitation. If the
catch rate of the consumer is too small to sustain the population in
the absence of facilitation, then a strong enough facilitative effect
can help the population persist, but only if the population density
is high enough initially.

3.2. The logistic scenario

This time, we choose G(z) = rz(1 � z/K), and h, f as in the
previous section. After nondimensionalizing x ¼ x̃r=ð2aeÞ; z ¼ z̃K
and t ¼ t̃=r and dropping the tildes for convenience, system (2)
reads

ẋ ¼ xðAzð1 þ CxÞ � BÞ;
ż ¼ zð1 � zÞ � xzð1 þ CxÞ;

(10)

where A = aK/r, B = d/r and C = ra/(2ea). The semi-trivial state is
unstable when A > B. A coexistence state satisfies the cubic
equation

C2x3 þ 2Cx2 þ ð1 � CÞx þ B

A
� 1 ¼ 0; (11)

and z = B/(A(1 + Cx)). When A > B, then the cubic polynomial has
exactly one positive root by Descartes’ rule of signs. When A < B,
then there are zero or two positive roots. By Descartes’ rule again,
we need C > 1 for there to be two positive roots. If C > 1, then a
saddle-node bifurcation occurs at

A� ¼ B

1 þ ð�4 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 3C
p

Þ=9CðC � ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 3C
p

Þ=3 � ð1=3ÞÞ
; (12)

so that the system has two positive steady states whenever A 2 (A*,
B).

At a positive steady state, the Jacobi matrix can be reduced to

J ¼ ACxz Bx=z
�zð1 þ 2CxÞ �z

� �
: (13)

The trace of this matrix is zero if x = 1/AC. Substituting this
expression into the steady state equation (11), we obtain a curve in
parameter space on which a Hopf bifurcation can occur, provided
the determinant is positive there, namely

C�� ¼ 1 þ 2A þ A2

A3 þ ð1 � BÞA2
: (14)

Mathematical summary: When A > B, then the semitrivial
steady state is unstable. The unique coexistence state is stable
when C < C** and unstable with a stable limit cycle when C > C**.
When A < B, the situation is more complex. When C is small, then
the predator cannot persist in the system. As C increases, there is a
saddle node bifurcation, whereby a stable and unstable coexis-
tence state emerge. Implicitly, the critical value of C is given by



Fig. 2. Illustration of the possible qualitative behavior of the reduced mutualism model with logistic dynamics as a function of catch rate (A) and strength of mutualism (C).

(Left) Bifurcation diagram for death rate B = 1. To the right of the vertical line, the predator can invade and coexist. To the left of the vertical line, the zero state of the predator is

locally stable. The predator has an Allee effect above the solid curve. At the dashed curve, the coexistence state undergoes a Hopf bifurcation, so that there is bistability

between the extinction state and a limit cycle. For even larger values of C, the population can crash (region not shown). (Right) The coexistence state is an unstable focus; the

oscillations in the predator density grow and eventually fall below the Allee threshold so that the predator becomes extinct. Parameters are A = 0.9, B = 1, and C = 9.
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(12). Increasing C further causes a Hopf bifurcation when C = C** at
the larger coexistence state and the appearance of a stable limit
cycle; see Fig. 2. For very large values of C, the limit cycle
disappears in a global bifurcation. More precisely, as the limit cycle
grows, it approached the saddle point and becomes a homoclinic
orbit at the bifurcation point. As that happens, the predator goes
extinct; see Fig. 2.

Biological summary: Strong enough facilitation can destabilize
the positive predator steady state and introduce oscillations. If the
predator catch rate is high enough to survive in the absence of
facilitation, then oscillations will remain bounded and the predator
will persist. If the predator catch rate in the absence of facilitation
is too low for persistence, then, as before, an Allee effect can
emerge for strong enough facilitation. In that case, strong
facilitation can lead to large oscillations, which, in turn, can push
the predator below the Allee threshold and consequently to
extinction. Hence, facilitation is not necessarily beneficial for the
population.

4. Facilitation – reduced system

Another very instructive way to reduce the complexity of model
(1) is to assume that only one species facilitates resource uptake for
the other. There is abundant empirical evidence for such
interactions in natural systems, particularly between birds and a
variety of terrestrial and marine taxa; see Kajiura et al. (2009) and
references therein. For example, double-crested cormorants
(Phalacrocorax auritus) have been observed to feed on fish flushed
out of hiding, but not consumed, by foraging southern stingrays
(Thalassia testudinum). Already Charnov et al. (1976) mentions that
the Rufous Babbler (Pomatostomus iridorei), while foraging for
other food, flushes insects which it does not eat but which are then
eaten by other species.

Our setup is as follows. We assume that species x has the lower
R* value in the sense of Tilman (1982), so that it wins the
competition in the absence of facilitation. We then assume that
species y benefits from the presence of x but not vice versa. We
start with the chemostat scenario.

4.1. The chemostat scenario

We choose the functions G, hi, fi of model (1) as in Section 3.1, with
f1 = 1. After non-dimensionalizing x ¼ x̃d=ð2a1e1Þ; y ¼ ỹd=ð2a2e2Þ,
and z, t as in (3), and dropping the tildes for convenience, we
obtain

ẋ ¼ xðA1z � 1Þ;
ẏ ¼ y½A2zð1 þ CxÞ � 1�;
ż ¼ 1 � z � z½x þ ð1 þ CxÞy�;

(15)

where Ai = aizin/d, and C = ad/e1a1 . The condition that species x has
a lower R* value than species y translates into A1 > A2.

The resource-only steady state (0, 0, 1) is invasible by x if A1 > 1
and by y if A2 > 1. If A2 > 1, then x can invade the semi-trivial state
(0, A2 � 1, 1/A2) since A1 > A2 by assumption. If A1 > 1, then y can
invade the semi-trivial state (A1 � 1, 0, 1/A1) provided

C > C� ¼ ðA1=A2Þ � 1

A1 � 1
: (16)

In particular, species y can invade if facilitation by species x is
strong enough. If the invasion conditions are satisfied, the
coexistence state is given explicitly by the expressions

x ¼ 1

C

A1

A2
� 1

� �
; y ¼ A2

A1
ðA1 � 1Þ þ 1

C

A2

A1
� 1

� �
; z ¼ 1

A1
; (17)

see Fig. 3. We show that this unique coexistence state is stable
when it exists. The Jacobian at the coexistence state reads

J ¼
0 0 A1x

A2Cyz 0 A1y
�zð1 þ CyÞ �1=A2 �A1

2
4

3
5: (18)

Since all coefficients of the characteristic polynomial are positive,
the Routh–Hurwitz conditions for stability reduce to

A1y þ A2x > A2Cxyzð1 � A1Þ: (19)

Since the coexistence state only exists if A1 > 1, this condition is
always satisfied. We illustrate the coexistence region in terms of C

versus A2 in Fig. 3 for two different values of A1. Surprisingly, the
two curves intersect. When A2 < 1, the strength, C, with which
species x has to support species y to enable persistence decreases
as A1 increases. There are two opposite effects at work. Higher A1

implies lower resource level (1/A1) at which species y tries to
invade, so that we expect a higher value of C would be necessary.
However, with increasing A1, the steady state level of species x also
increases, and the facilitation that species y receives from this
increased density more than compensates for the lower resource



Fig. 4. Coexistence region of both consumers with asymmetric mutualism and

predation dynamics. Below the solid curve, where facilitation (C) is weak and catch

rate of species y (A1) is small, species x excludes species y from the system. Above

the solid curve, the two can coexist. Above the dash-dot curve, coexistence is

unstable. The dashed vertical line gives the threshold of A2 according to (27). When

A1 = 1.5 condition (27) is never satisfied. Death rates Bi are set to unity. Please note

that the plot is only relevant where A2 < A1, by the assumption that x be the better

competitor in the absence of facilitation.
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Fig. 3. Coexistence region of both consumers with facilitation in the chemostat

scenario. Stable coexistence between all three species occurs above the curve, when

facilitation (C) and catch rate of the inferior consumer (A2) are large enough. Below

the curve, species x exclude species y from the system. The assumption that species

x is competitively superior implies that A2 < A1, so the values of A2 are restricted to

the region to the left of the dashed vertical line in the case A1 = 1.5.
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level. In fact, differentiating the expression in (16) with respect to
A1 shows that C increases with A1 if and only if A2 > 1.

Biological summary: In this scenario, the competitively
inferior species (in the absence of facilitation) can invade when
rare and coexist stably with the superior species provided the
superior species offers some facilitation. In fact, strong enough
facilitation can even allow for persistence of an inferior competitor
that would go extinct in the absence of the superior competitor/
facilitator. If the inferior competitor can persist by itself in the
absence of competition (A2 > 1), then the level of facilitation
required from the superior competitor increases with the catch
rate of the superior competitor. If the inferior competitor cannot
persist by itself, then the level of facilitation by the superior
competitor required for species y to coexist is much higher overall,
but it is decreasing with the catch rate of the superior competitor.

4.2. The logistic scenario

With logistic growth for the prey, the nondimensional
equations (x ¼ x̃r=ð2a1e1Þ, y ¼ ỹr=ð2a1e1Þ, z, t as in (10)), read

ẋ ¼ xðA1z � B1Þ;
ẏ ¼ y½A2zð1 þ CxÞ � B2�;
ż ¼ zð1 � zÞ � z½x þ ð1 þ CxÞy�;

(20)

where Ai = aiK/r, Bi = di/r and C = ar/(e1a1). Species x outcompetes
species y if (A1/B1) > (A2/B2). We introduce the notation Ri = Bi/Ai,
so that the assumption about x being the stronger competitor gives
Tilman’s R*-rule R1 < R2 (Tilman, 1982).

The prey-only state (0, 0, 1) is invasible by x if A1 > B1 and by y if
A2 > B2. Species x invades the semi-trivial state (0, 1 � R2, R2) since
R2 > R1. Species y invades the semi-trivial state (1 � R1, 0, R1) only
if

C > C� :¼ ðR2=R1Þ � 1

1 � R1
: (21)

Under this condition, the coexistence state is given explicitly by the
expressions

x ¼ ð1 � R1Þ
C�

C
; y ¼ R1

R2
ð1 � R1Þ 1 � C�

C

� �
; z ¼ R1: (22)
All expressions are positive by assumption.
The Jacobi matrix at the coexistence state is

J ¼

0 0 A1x

A2CR1y 0
B2

R1
y

�R1ð1 þ CyÞ �R2 �R1

2
664

3
775: (23)

The only condition of the Routh–Hurwitz criteria for stability that
is not automatically satisfied is

A1CR1xy þ A1R1x þ B2R2y

R1
> A1A2CR2xy; (24)

which can be rewritten as

0 < A1CR1xy 1 � B2

R1

� �
þ A1R1x þ B2R2y

R1

¼ A1CR1ð1 � R1Þ
C�

C
y 1 � B2

R1

� �
þ A1R1ð1 � R1Þ

C�

C
þ B2R2y

R1

¼ Z 1 � C�

C

� �
þ A1

R2 � R1

C
;

where

Z ¼ ð1 � R1Þ A1 1 � R1

R2

� �
ðR1 � B2Þ þ B2

� �
: (25)

The stability condition is therefore equivalent to

C > C� � A1ðR2 � R1Þ
Z

if Z > 0

C < C� � A1ðR2 � R1Þ
Z

if Z < 0:
(26)

There are two possible cases. If Z > 0, then the coexistence state
is stable whenever it exists. When Z < 0, then the coexistence state
can be destabilized by increasing C sufficiently much above C*; see



Fig. 5. Illustration of the effect of nonlinear functional response on the dynamics of

the mutualism for identical consumers in the chemostat scenario. A Hopf

bifurcation occurs at the dashed curve. Higher values of mutualism (C) are

required for persistence when D, Q > 0 The solid lines have Q = 0.5, and D = 0, 1 as

indicated. The dashed lines are the reference case Q = D = 0.
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Fig. 4. The condition Z < 0 is equivalent to

A2 <
B2

B1

A1ðR1 � B2Þ þ B2

R1 � B2
: (27)

In contrast to Fig. 3, this case requires higher values of C for
coexistence for higher values of A1. While the increase in x with A1

at the semi-trivial equilibrium in the chemostat scenario is linear,
this increase is bounded in the logistic scenario. Therefore, a higher
value of x cannot necessarily alleviate lower prey levels.

Biological summary: As before, sufficiently strong facilitation
from the superior competitor can allow an inferior predator to
persist (even if it would not on its own) at a stable coexistence
state. Stronger facilitation can destabilize the coexistence state and
lead to oscillatory coexistence.

5. Nonlinear predation and facilitation

The linear predation and facilitation functions that we used
thus far are not particularly realistic. Predators are satiated at high
prey density, which results in bounded predation functions (e.g.
Holling II). Likewise, facilitation will eventually level off, so that fi

become bounded functions when there are many consumers.
Intuition would suggest that with saturating functions for hi and fi,
similar effects can be observed as in the linear cases discussed
above, except that higher values of C are needed to produce the
same dynamic behavior. We confirm this intuition in the case of
identical consumers in the chemostat scenario by extending the
analysis in Section 3.1.

In addition, a nonlinear functional response can give rise to
consumer–resource cycles as in the famous model by Rosenzweig
and MacArthur (1963). When we have identical predators in the
logistic case (Section 3.2), such consumer–resource cycles occur for
a wider range of parameters if there is mutualism.

5.1. Identical consumers in the chemostat scenario

In system (2), we choose monotone, saturating functions for the
functional response and the strength of facilitation as

hðzÞ ¼ az

1 þ qz
; f ðxÞ ¼ 1 þ ax

1 þ bx
: (28)

In nondimensional form, the equations read

ẋ ¼ x
Az

1 þ Qz

ð1 þ ðD þ CÞxÞ
1 þ Dx

�1

� �
;

ż ¼ 1 � z � zx

1 þ Qz

ð1 þ ðD þ CÞxÞ
1 þ Dx

;

(29)

where A = azin/d, C = ad/(2ae), D = bd/(2ae), and Q = qzin, and the
units for x, z, t are the same as in Section 3.1. Parameters D, Q

measure how fast the facilitation function and the functional
response saturate.

The analysis is similar to the previous case, but the expressions
are more cumbersome. It turns out that (a) if A > 1 + Q then the
semi-trivial state is unstable; the consumer can invade, and there
is a unique positive stable equilibrium; (b) if A < 1 + Q, then the
semi-trivial state is locally stable; if C is large enough, then the
consumer has an Allee effect, i.e. it can persist stably only if it has a
high enough initial density. The threshold value for C in the second
case is

C� ¼ 1

A2
1 þ VðAD þ 1Þ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðAD þ 1Þ

ph i
; (30)

where V = 1 + Q � A. For D = Q = 0, this expression reduces to (6).
The effect of Q and D is that when A < 1 + Q, higher values of C are
required for persistence of the consumer, see Fig. 5.
Biological summary: When catch rates saturate, stronger
facilitation is required for persistence of the consumer and stable
coexistence. As long as the facilitation function is non-decreasing
(as we always assume here) the possible dynamics of the two
species are qualitatively the same as with linear facilitation and
catch rates – but hold for different parameter values.

5.2. Identical consumers in the logistic scenario

The non-dimensionalized system (10) with a type II functional
response but linear facilitation function reads

ẋ ¼ x
Azð1 þ CxÞ

1 þ Qz
�B

� �
;

ż ¼ zð1 � zÞ � xzð1 þ CxÞ
1 þ Qz

;

(31)

where A = aK/r, B = d/r, C = ar/(2ea), and Q = qK. Units of x, z, t are
the same as in Section 3.2. For C = 0, we obtain the model by
Rosenzweig and MacArthur (1963), which has a globally attracting
limit cycle, provided A > (2BQ/(Q � 1)) + BQ and Q > 1.

The coexistence equilibria satisfy a cubic equation, very similar
to the one in (11). As a result, we obtain the following qualitative
behaviors. When A > B(1 + Q) then the predator can persist in the
system; there is a unique coexistence state. When A < B(1 + Q)
then the predator can have an Allee effect if C is large enough. The
value of C required for a coexistence state in this case increases
with Q (Fig. 6).

The Jacobi matrix at a coexistence state is given by

J ¼ 1

1 þ Qz

ACxz Bx=z

�zð1 þ 2CÞ zðQ � 1Þ � 2Qz2

� �
: (32)

Fig. 6 shows that the Hopf bifurcation occurs for smaller and
smaller values of A as the strength of facilitation, C, increases. In
fact, even very low mutualism reduced the A-value required for
limit cycles dramatically.

Biological summary: The classical Rosenzweig–MacArthur
model allows for a stable coexistence point or a stable limit cycle,
provided the predator has a large enough catch rate. Introducing
facilitation into this model has two effects. First, when the catch
rate is so small that the predator will die out in the absence of
facilitation, then strong enough facilitation can give rise to an Allee
effect, as before in Section 3.2. Second, facilitation helps destabilize



Fig. 6. Illustration of the effect of nonlinear functional response on the dynamics of

the mutualism for identical consumers in the logistic scenario. Higher levels of

mutualism (C) are required for persistence, yet cycles appear for lower values of C;

compare Fig. 2. Parameters values are B = 1, Q = 1.5. Limit cycles without mutualism

appear for C = 0 and A > 7.5.
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the coexistence state and limit cycles can occur for parameter
values that would not give limit cycles in the absence of
facilitation.

6. The full model

In this section, we combine the results from the two previous
simplified cases to infer the dynamics of the full system of intraguild
mutualism. We continue to use linear mutualism functions.

6.1. The chemostat scenario

The nondimensional system with linear functional response
and mutualism function reads

ẋ ¼ x½A1zð1 þ C1yÞ � 1�;
ẏ ¼ y½A2zð1 þ C2xÞ � 1�;
ż ¼ 1 � z � z½xð1 þ C1yÞ þ yð1 þ C2xÞ�;

(33)

where Ai = aizin/d and Ci = aid/(aiei). The units of x, y, z, t are the
same as in Section 4.1. A coexistence state is given by the
admissible solution of

A1A2C1C2z2 � ðA1A2C1C2 þ A1C2 þ A2C1Þz þ C1 þ C2 ¼ 0; (34)
Fig. 7. Coexistence regions in the three-species system with chemostat dynamics with re

satisfy A1 > 1, A1 > A2. Species y can invade and the two can coexist if C2 is large enough. 

and if both have sufficiently high initial density.
so that

x ¼ 1 � A2z

A2C2z
; y ¼ 1 � A1z

A1C1z
; (35)

are positive. At a coexistence state, we also have z + x/A1 + y/A2 = 1.
Case I: A1 > A2 > 1
Both semi-trivial steady states exist, and species x can invade

species y. In addition, species y can invade species x, leading to
coexistence, provided

C2 >
ðA1=A2Þ � 1

A1 � 1
; (36)

see Fig. 7, panel (a).
Case II: A1 > 1 > A2 Only species x can persist by itself. Species y

can invade and coexist if (36) is satisfied; see Fig. 7, panel (a).
Case III: 1 > A1 > A2 No semi-trivial states exist. The two

species have a ‘joint Allee effect’, meaning that for large enough Ci,
the coexistence state exists and is locally stable. Hence, if
mutualism is strong enough and if both species have a high
enough initial density, then the two species can coexist; see Fig. 7,
panel (b).

We replaced the linear functional responses and mutualism
functions with Holling type II functions as in Section 5.1 and
explored the qualitative behavior of the system numerically. The
results we saw are exactly what one would expect. A type II
functional response means a lower catch rate so that higher levels
of mutualism are required to obtain coexistence. If mutualism is
also modeled by a bounded function, then the required strength
may exceed the upper bound. In that case, mutualism cannot be
strong enough to allow for coexistence. The effect of nonlinear
functional response and facilitation function turns out to be much
more interesting in the logistic case, so that we do not pursue it
here any further.

Biological summary: There are two cases to consider. If the
superior competitor can persist in the absence of facilitation, then
the inferior competitor will invade and the two will coexist stably
if there is sufficient facilitation from the superior species. If neither
of the two species can persist by themselves, then sufficiently
strong mutualism can allow both species to coexist stably,
provided their initial densities are high enough. The two species
exhibit a ‘joint Allee effect’. We come back to this case in the
discussion; see also Lutscher and Iljon (in press).

6.2. The logistic scenario

The nondimensional system with nonlinear functional response
and linear mutualism function reads
spect to the strength of mutualism of the two species (Ci). Panel (a, left) Catch rates

Panel (b, right) 1 > A1 > A2. The two species can coexist if mutualism is high enough
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ẋ ¼ x
A1z

1 þ Q1z
ð1 þ C1yÞ � B1

� �
;

ẏ ¼ y
A2z

1 þ Q2z
ð1 þ C2xÞ � B2

� �
;

ż ¼ zð1 � zÞ � z
x

1 þ Q1z
ð1 þ C1yÞ þ y

1 þ Q2z
ð1 þ C2xÞ

� �
;

(37)

where Ai = aiK/r, Bi = di/r, Ci = rai/(2eiai), and Qi = qiK. Units of x, y, z, t

are the same as in Section 4.2.
When A1 > B1(1 + Q1), then species x can invade the prey-only

state (0, 0, 1). The semi-trivial state

x ¼ A1ðA1 � B1ð1 þ Q1ÞÞ
ðA1 � B1Q1Þ2

; y ¼ 0; z ¼ B1

A1 � B1Q1
(38)

is stable in the x–z plane provided Q < 1 or A1 < (2B1Q1)/
(Q1 � 1) + B1Q1; otherwise there is a stable limit cycle; compare
Section 5.2. Species y can invade the semi-trivial state if

C2 >
1

x

B2ð1 þ Q2zÞ
A2z

� 1

� �
; (39)

where x and z are the steady-state values from (38). Similar
relationships hold when x and y are exchanged by exchanging
indices 1 and 2.

A coexistence state is given by the solution of the cubic equation
for species z as

z3 � z2 þ B1B2ðC1Q2 þ C2Q1Þ � A1B2C2 � A2B1C1

A1A2C1C2
z þ B1B2ðC1 þ C2Þ

A1A2C1C2

¼ 0: (40)

To find conditions for the existence of a positive solution, we study
the equation

z3 � z2 þ g1z þ g2 ¼ 0; g2 > 0: (41)

Local extrema are given by the solutions of

3z2 � 2z þ g1 ¼ 0; i:e: z� ¼
1

6
2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 � 12g1

q� �
: (42)

Positive solutions of (40) exist only if the cubic is negative at z+.
When Q1,b are large, then z� are not real, so that no positive
solutions of the cubic can exist. When Q1,2 are small enough so that
z+ is real (and positive), then the level set

z3
þ � z2

þ þ g1zþ þ g2 ¼ 0 (43)
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Fig. 8. (Left) Illustrating the joint Allee effect by plotting the density of species y for dif

extinction, and species x with it. When y(0) is intermediate, both species can stably coex

species y to low values and from there to extinction. The different initial values are y(0)

A1 = 0.95, A2 = 0.85, B1 = 1, B2 = 0.9, Q1 = 0.1, Q2 = 0.05, C1 = 6, C2 = 5. (Right) Illustrating cyc

species (compare Fig. 2). Parameters are as before, except Q2 = 0.1, C1 = 17, C2 = 14.
gives the boundary in parameter space between the existence and
non-existence of positive solutions for z, and hence the boundary
between coexistence and (partial) extinction of all species. Plotting
this level set, we found that there are positive solutions for z,
provided the mutualism coefficients C1,2 are large enough, similar
to the chemostat case. Since these plots are qualitatively exactly
the same as for the chemostat case, we do not present them here.

Investigating the various cases, we find the exact same
qualitative behavior as in the chemostat scenario. Specifically,
(i) if species x can invade at low density, then the invasion
condition for species y is given by (39), which leads to a qualitative
behavior as in Fig. 7, left panel. (ii) if no species can invade at low
density and if the coefficients Q1,2 are small enough, then there is a
joint Allee effect, provided the mutualism coefficients C1,2 are large
enough (from (40)); see Fig. 8 (left panel). This scenario leads to a
qualitative behavior as in Fig. 7, right panel.

In both cases, with or without joint Allee effect, increasing the
strength of mutualism can lead to population cycles. If there is no
joint Allee effect, all three species will coexist in a limit cycle. If
there is a joint Allee effect, then the two predator species could be
driven to extinction if cycles become too large; see Fig. 8 (right
panel).

Finally, we consider the effect of intraguild mutualism on
cyclic coexistence of predators. When C1,2 = 0, system (37)
admits for cyclic coexistence via a transcritical bifurcation of
limit cycles as follows. With only one predator, the system is a
Rosenzweig–MacArthur system and admits a limit cycle. Under
certain conditions, the second predator can invade along the
limit cycle, and both can coexist in a limit cycle (Kot, 2001). A
necessary condition is that one predator does better at low prey
density whereas the other grows faster at high prey density (Hsu
et al., 1978). This coexistence mechanism depends on a very fine
balance and may occur only in a very narrow interval of
parameter values. For example, with A1 = 8, A2 = 6, B1 = 1,
B2 = 0.8, and Q1 = 3, the two species coexist in the range of
Q2 2 [2.63, 2.643]. Species x does better at low prey density,
species y at high density.

Now we add very weak intraguild mutualism of C1,2 = 0.01.
Then the coexistence region along a limit cycle is Q2 2 [2.57, 2.704],
which is much larger than for C1,2 = 0. Fig. 9 shows such limit cycles
and demonstrates that the two predators are in phase with one
another. We tested this result for a variety of other parameter
combinations, and for all of them we found that the interval of Q2

that permits coexistence along a limit cycle is larger when weak
mutualism is added. In practice, this result means that even if
mutualistic effects are relatively small, they may lead to
time
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 = 0.03 (dashed), y(0) = 0.1 (solid), and y(0) = 0.35 (dash-dot). Parameter values are

ling to extinction when there is no stable coexistence by plotting the density of each



Fig. 9. Cyclic coexistence of two mutualistic predators on one prey. For Q2 < 2.57 there is a stable limit cycle between y and z with x = 0. As Q2 increases, there is a transcritical

bifurcation of limit cycles, and the coexistence limit cycle becomes stable. For Q2 larger than 2.704, the limit cycle between x and z with y = 0 is stable against invasion by y.

Parameters are A1 = 8, A2 = 6, B1 = 1, B2 = 0.8, and Q1 = 3.
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substantially increased likelihood of coexistence between two
competing species.

Biological summary: The system with logistic growth of the
resource shows the same qualitative behavior as in the chemostat
case, and in addition, it supports population cycles. Mutualism can,
in fact, destabilize a stable coexistence state. Where coexistence is
dependent on population cycles, as in the Rosenzweig–MacArthur
model, even low levels of mutualism can enlarge the range of
parameters that lead to cycles and to cyclic coexistence.

7. Discussion

Mutualistic interactions between species are well documen-
ted empirically but much less studied theoretically than
competitive or exploitative interactions (Boucher, 1982; Bruno
et al., 2003). Intraguild mutualism in particular could be a
mechanism for coexistence between competing species, and
could therefore contribute to the creation and maintenance of
biological diversity (Stachowicz, 2001). Crowley and Cox (2011)
propose a theoretical research program on intraguild mutualism,
based on studying several community modules. To our knowl-
edge, this work is the first step in this research program towards
understanding causes and effects of intraguild mutualism from a
modeling perspective.

Even within each of the modules proposed by Crowley and Cox
(2011), one has to make modelling decisions as to which processes
are affected by mutualism. Gross (2008) assumed that death
rates of competing species decreased in the presence of their
Table 1
Summary of models and main results. ‘‘Identical consumers’’ refer to the case in which tw

functional response; fi are facilitation functions.

Section Consumers Scenario hi fi

3.1 Identical Chemostat Linear Linear 

3.2 Identical Logistic Linear Linear 

4.1 Different Chemostat Linear Linear 

4.2 Different Logistic Linear Linear 

5.1 Identical Chemostat Nonlinear Nonlinear

5.2 Different Logistic Nonlinear Linear 

6.1 Different Chemostat Linear Linear 

6.2 Different Logistic Nonlinear Linear 
competitors and found stable coexistence between many compe-
titors on a single resource. Alternatively, based on empirical
evidence (e.g. Losey and Denno, 1998), we modeled mutualistic
interaction by increased feeding rates in the presence of the
mutualist. In the first subcase (Section 3), we demonstrated how
bistability (Allee effect) can emerge from mutualism. In the second
subcase (Section 4), we explored how facilitation can lead to
coexistence of consumers and to persistence of consumer that
would go extinct on its own. In both cases, the dynamics of the
logistic case included cyclic behavior, but not in the chemostat
case. Nonlinearities did not introduce new behavior in the
chemostat case, but did so in the logistic case, where cycles are
present in the absence of mutualism, and mutualism enhances the
propensity to cycle (Section 5). In the final section, we put the
pieces of the puzzle together and explored some more complex
dynamical issues numerically; see Table 1.

One of our results is also that stable coexistence between two
intraguild mutualists occurs over a much larger set in parameter
space than without mutualistic interactions. Hence, these results
by Gross (2008) are robust and independent of the particular
mechanism. In addition, we found that mutualism can be a
mechanism for destabilization of a stable coexistence state and for
emergence of population cycles. This effect only occurred for the
logistic scenario. Our results here differ from the results by Gross
(2008), who found limit cycles also with linear prey renewal, which
corresponds to our chemostat scenario. We speculate that this
difference results from the different implementation of mutualism.
In our model, enhanced consumption of resources appears in the
o consumer species have identical parameter values. hi denote consumer–resource

Results

Facilitation extends coexistence region. Allee effect.

Strong facilitation can give large oscillations. Allee effect.

Facilitation promotes coexistence when supporting the inferior

competitor.

In addition, strong facilitation leads to oscillatory coexistence.

 Stronger levels of facilitation required for coexistence. Allee effect.

If facilitation is essential bistability can emerge. When catch rates are

large, limit cycles can occur.

When superior competitor persists by itself, facilitation can promote

persistence of the inferior competitor. If no competitor persist by itself,

then reciprocal or joint Allee effect emerges.

In addition, population cycles are possible. Mutualism can destabilize a

stable coexistence state.



F. Assaneo et al. / Ecological Complexity 14 (2013) 64–74 73
consumer and in the resource equations. In the model by Gross
(2008), the mutualistic reduction of death rates appears only in
the consumer equation; the effect on the resource is only indirect.
Since this effect is only indirect, it could act similarly to a delay,
which can easily destabilize a steady state. The third effect that we
found is that of a joint Allee effect for the consumer species:
neither can persist on the given resource alone, but jointly they
can with sufficiently high initial density. A similar effect has
recently been found theoretically in a plant–pollinator system
(Lutscher and Iljon, in press). We are not aware of empirical
evidence for such an effect. However, it is conceivable that so-
called ‘ecosystem engineers’ (Cuddington et al., 2009) would
show such effects.

The interaction between an Allee effect (joint or not) and
population cycles can lead to a catastrophic collapse of a cyclic
population when the cycle becomes so large that it drops below the
Allee threshold at its low point. A similar effect was already
observed by Conway and Smoller (1986) in a predator–prey system
with Allee effect of the prey. Hence, intraguild mutualism can lead
to a variety of complex patterns that are otherwise absent from a
competitive system.

As part of our analysis, we identified two special cases of
parameter regimes that correspond to ecologically relevant
situations on their own, namely intraspecific facilitation in a
two-species model and uni-directional facilitation in a three-
species model. The analysis of these two reduced systems provided
crucial understanding of possible patterns in the full systems, yet
was much simpler to understand. This observation can help
uncover similarities between seemingly quite different ecological
scenarios through mathematical scaling.

In addition to cyclic coexistence, systems with competing
consumers can also show chaotic dynamics (Abrams et al., 2003).
The two predator densities are intermediately correlated in such
scenarios. Mutualism tends to synchronize cyclic predator
populations; see for example Figs. 8 and 9. This mechanism could
be a reason for why we did not see any chaotic dynamics in our
simulations, but finding chaos was not our main focus. The
question of whether mutualism decreases the likelihood of chaos
should be explored in the future.

An important next step in this research is to include spatial
movement into the models. We observe that the sign patterns of
the Jacobi matrix for the two-dimensional models in Section 3
allows for diffusion-induced instability. Hence, we expect
spatial patterns to form when we simply add diffusion terms
of sufficiently different magnitude to both species. Our
preliminary numerical investigations show that the same is
true for the full three-species system (plots not shown), see
White and Gilligan (1998) for detailed conditions on Turing
patterns in three-species systems. An alternative and much
more challenging approach would be to model movement
behavior of different intraguild mutualist species where one
moves in response to the other as well as the prey. In such a
movement model, one could study how higher catch rates in the
presence of a competing species might emerge as a result of
different (optimal?) foraging strategies.
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