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In the past years, several support vector machines (SVM) novelty detection approaches have been applied
on the network intrusion detection field. The main advantage of these approaches is that they can char-
acterize normal traffic even when trained with datasets containing not only normal traffic but also a
number of attacks. Unfortunately, these algorithms seem to be accurate only when the normal traffic
vastly outnumbers the number of attacks present in the dataset. A situation which can not be always
hold.

This work presents an approach for autonomous labeling of normal traffic as a way of dealing with sit-
uations where class distribution does not present the imbalance required for SVM algorithms. In this case,
the autonomous labeling process is made by SNORT, a misuse-based intrusion detection system. Exper-
iments conducted on the 1998 DARPA dataset show that the use of the proposed autonomous labeling
approach not only outperforms existing SVM alternatives but also, under some attack distributions,
obtains improvements over SNORT itself.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In the past years network security has become a serious prob-
lem. In the early years of the Internet, the set of network protocols
that supported it worked reasonable well. However as the Internet
grew, underlying security faults in those protocols were observed.
Security faults in protocols such as ARP, TCP, TELNET, SMTP and
FTP have caused most of known attacks against network data con-
fidentiality, authenticity and availability. Currently most of these
problems have been fixed, however new ways to develop attacks
are discovered everyday.

Network managers must be well prepared in order to prevent
network attacks, e.g., being informed about new vulnerabilities.
For several years, intrusion detection systems (IDS) provided an
invaluable help to network managers, becoming an integral part
of any network security package.

In the intrusion detection field two different approaches can be
observed: misuse detection and anomaly detection (Mukherjee,
Heberline, & Levitt, 1994). The main idea behind misuse detection
is to represent attacks in a form of a pattern or a signature in such a
way that even variations of these attacks can be detected. Based on
these signatures, this approach detects attacks through a large set
ll rights reserved.
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of rules describing every known attack (Tsai, Hsu, Lin, & Lin, 2009;
Wu & Yen, 2009). The main disadvantage of the signature based
approach is its difficulty for detecting unknown attacks. The main
goal of the anomaly detection approach is to build a statistical
model for describing normal traffic. Then, any deviation from this
model can be considered an anomaly, and recognized as an attack.
Notice that when this approach is used, it is theoretically possible
to detect unknown attacks, although in some cases, this approach
can lead to a high false attack rate. This ability to detect unknown
attacks has been the cause of the increasing interest in developing
new techniques to build models based on normal traffic behavior
in the past years.

The anomaly detection approach has been a very active re-
search topic inside the machine learning community and it has
been the subject of many articles over the past years. One of the
most successful approaches is based on the idea of collecting data
only from network normal operation. Then, based on this data
describing normality, any deviation would be considered an
anomaly. Different techniques were proposed for characterizing
the concept of normality (Catania & García Garino, 2008; Hofmeyr,
Forrest, & Somayaji, 1998; Lee & Stolfo, 1998). In practice, however,
it is difficult to obtain clean data to implement these approaches.
Verifying that no attacks are present in the training data can be
an extremely hard task, and for large samples this is simply infea-
sible. On the other hand, if the data containing attacks is assumed
attack free, intrusions similar to the ones present in the training
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data will be accepted as normal patterns, resulting in inaccurate
models and consequently, an increment in the number of
misdetections.

Recently, different authors proposed the use of unsupervised
algorithms for dealing with datasets presenting not only normal
traffic but also a considerable number of attacks (Eskin, Arnold,
Prerau, Portnoy, & Stolfo, 2002; Feng, Wu, Wu, Xiong, & Zhou,
2005; Laskov, Schafer, & Kotenko, 2004). This situation could be
considered more suitable than using datasets with only normal
traffic instances. In this sense, SVM for novelty detection
(Schölkopf, Platt, Shawe-taylor, Smola, & Williamson, 2001; Tax
& Duin, 1999) was proposed as an alternative approach with a sig-
nificant success rate.

Unfortunately, as noticed by Eskin et al. (2002), SVM for novelty
detection works under the assumption that the number of normal
traffic instances vastly outnumbers the number of anomalies. Eskin
suggests datasets with a proportion of at least 98.5% of normal
traffic.

To the best of the authors knowledge, there is no study which
confirms the number of attacks laying under such low proportion.
Informal observations of real traffic however, show that it is possi-
ble to find periods of time where the number of attacks presents in
traffic could easily outnumber normal traffic instances. This situa-
tion can be observed in commonly used datasets for intrusion
detection evaluation such as the 1998 DARPA dataset (Lippmann
et al., 2000). This dataset was provided by DARPA to the machine
learning community in the context of the 1999 KDD Cup for eval-
uating different IDS approaches. Since its publication DARPA data-
set has been widely used by many IDS researchers over the years.
Interestingly, the 1998 DARPA class distribution does not exhibit
the required imbalance. Moreover, the percentage of attacks pres-
ent in the dataset is around 50%. Certainly, under these situations
algorithms such as SVM for novelty detection could suffer consid-
erable performance loss.

To deal with these imbalanced class distribution situations a
novel approach is proposed. The idea is to provide a strategy for
autonomous labeling only normal traffic, following the hypothesis
that using an autonomous labeling tool may help reducing the
presence of attacks in the traffic instances used for training, and
consequently improving the performance of SVM for novelty
detection. In this work, SNORT (Roesch, 1999), a very well known
misuse signature-based IDS system, is proposed as a strategy for
autonomous labeling normal traffic.

The rest of the work is organized as follows: in Section 2 main
characteristics of SVM for novelty detection are briefly discussed,
together with its application to the traffic network detection field.
Then, in Section 3, a new approach for autonomous labeling normal
traffic is presented. In Section 4 a set of experiments is conducted
on the 1998 DARPA dataset in order to evaluate the performance of
the different approaches. Finally, conclusions and future work are
provided in Section 5.
2. SVM for novelty detection

Since its introduction in the mid-1990s (Boser, Guyon, &
Vapnik, 1992; Cortes & Vapnik, 1995; Vapnik, 1998), The SVM
algorithm has been widely used, being the subject of many articles
on classification and other pattern recognition problems (Lee &
Verri, 2002).

SVM approach for classification differ from other classification
algorithms by three important properties. First, its formulation
presents an important theoretical result, proving that the general-
ization error is minimized when the margin is maximized, where
the margin is defined as the distance of the solution hyperplane
to its closest point (Vapnik, 1998). This property is unique to
SVM and is one of its main advantages when compared to other
classification algorithms. Another important property is that the
search for the maximal margin is a convex (quadratic) optimiza-
tion problem, i.e., with only one minima, resulting in an efficient
learning stage. In most cases, the input data points are not separa-
ble by the separation surface, so a standard approach (first intro-
duced for the Perceptron algorithm of Rosenblatt (1958)), is to
project the data points to higher dimension feature space. That usu-
ally affects the generalization error. However, for SVM, it can be
proven (Vapnik, 1998) that for the maximal margin, the generaliza-
tion error is still minimal, regardless of the dimension of the fea-
ture space. Finally, the formulation of the optimization problem
(as shown in the next section for SVM for novelty detection) can
be expressed solely in terms of the dot product between the fea-
ture vectors (denoted its kernel), which further reduces the compu-
tational complexity by permiting an efficient pre-computation of
these quantities.

SVM for novelty detection is a generalization of the core SVM
ideas for classification problems. Traditional SVM approaches for
classification uses as input training data consisting of a mixture
of data labeled by two classes. In the intrusion detection problem
this would consist of data labeled both as attack and non-attack.
The model constructed by these approaches discriminates the in-
put space in two infinite regions, one per class, using a hyperplane
as a separation surface. In contrast, the main idea in SVM for nov-
elty detection (Schölkopf et al., 2001; Tax & Duin, 1999) is to use as
input a description of only the normal class of objects (non-attack
in IDS), assuming the rest as anomalies (in our problem, the at-
tacks). The model constructed by this approach discriminates the
input space in a finite region containing the normal objects, while
all the rest of the (infinite) space is assumed to contain the
anomalies.

The SVM for novelty detection variants appear in the literature
of intrusion detection with different names, which could lead to
some confusion. In some cases they are referenced as SVM one-
class algorithms. SVM for non supervised learning is another
widely used name by some authors. Although, all of these names
describe important characteristics of this kind of algorithms, in this
work the term SVM for novelty detection will be preferred.

Two major approaches were proposed for generalizing SVM to
the problem of novelty detection. One approach, proposed by Tax
and Duin (1999), is based on the idea of finding a hypersphere with
center c and minimal radius R containing the normal data, discrim-
inating all other data not in the sphere as anomalies. As in standard
SVM approaches, the discriminating surface (the sphere), as well as
the data, may be mapped into a higher dimension feature space by
a kernel function (see more details in next section). Another ap-
proach proposed by Schölkopf et al. (2001) tries to separate the
normal data points from the anomalies by finding the hyperplane
that is maximally distant from the origin. When a RBF kernel is
used, it was shown that the two approaches converge to the same
solution (Campbell, 2000). In this work the Tax’s approach is pre-
ferred, which is explained in more detail below. For a description
of Schölkopf’s hyperplane formulation the reader is referred to
Schölkopf et al. (2001).

2.1. SVM based on the hypersphere formulation

The sphere formulation has an intuitive geometric idea: the
normal data {xi, i = 1, . . . ,N} can be concisely described by a sphere,
of center c and radius R, first projecting the data to some high-
dimensional feature space by the mapping U, obtaining the pro-
jected set of points {U(xi), i = 1, . . . ,N}, and assuming the projected
normal points lie within the sphere. A graphical example of this can
be observed in Fig. 1. Non-separability of the training data in the
feature space can be addressed by introducing slack variables



Fig. 1. The geometric representation of the sphere formulation. The sphere of
center c and the minimal radius R which enclose all the normal data points.
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{ni, i = 1, . . . ,N}, one per data point xi. The use of slack variables
allows for some (projected) normal data points to lay outside the
sphere. Although, this may lead to a number of (projected) anom-
alies lying within the sphere as well.

The main insight of the hypersphere formulation is to note that
the margin maximization approach of standard SVM maps into the
hypersphere formulation by finding, among all possible hyper-
spheres that encloses all the normal data points, the one with
smaller volume. Formally,

minR2R;n2RN R2 þ 1
mN

XN

i¼1

ni ð1Þ

where besides of minimizing the radius R, it minimizes the size of
the slack variables. The constant m gives the trade-off between the
two terms: volume of the sphere and the number of target objects
rejected.

To enforce the fact that normal points, minus their non-nega-
tive slacks, lies within the sphere, the above minimization is
subject to the following constraints:

ðUðxiÞ � cÞðUðxiÞ � cÞT 6 R2 þ ni

ni P 0: ð2Þ

for all i = 1, . . . ,N, where the l.h.s. of the first constraint is no more
than the distance of the feature vector U(xi) to the center c of the
sphere.

To solve the constraint optimization problem (1) subject to
constraints (2), the Lagrangian is minimized

LðR; c; ni;ai; biÞ ¼ R2 þ 1
mN

X
i

ni �
X

i

ai R2 þ ni � ðUðxiÞ � pUðxiÞ
�

� 2c � pUðxiÞ þ c � pcÞÞ �
X

i

bini ð3Þ

with Lagrange multipliers ai P 0 and bi P 0. The standard trick in
SVM that leads to a formulation based on kernels consists on min-
imizing the Lagrangian on all but the Lagrange multipliers ai. That
is, the parcial derivatives w.r.t. R, c,ni are set to zero, to obtain the
new constraints:

PN
i¼1

ai ¼ 1;

c ¼
PN

i
aiUðxiÞPN

i
ai

¼
PN

i
aiUðxiÞ

0 6 a ¼ 1
mN � bi

� �
6

1
mN ;

ð4Þ

for which, after resubstituting in the Lagrangian (3), a new Lagrang-
ian over ai is obtained
LðaiÞ ¼
XN

i

aiðUðxiÞ � pUðxiÞÞ �
XN

i;j

aiajðUðxiÞ � pUðxjÞÞ

¼
XN

i

aikðxi; xiÞ �
XN

i;j

aiajkðxi;xjÞ:

In the above equation one can see that the mapping U(xi) of data-
points xi to a high-dimensional feature space can be formulated so-
lely by the kernel function k(xi,xj), a function over the inner product
U(xi)�pU(xj) in the feature space. Commonly used kernels are linear,
sigmoid, polynomial, among others.

One of the most successful kernels used in the field of network
traffic anomaly detection is the radial basis function (RBF), shown
in Eq. (5)

kðxi;xjÞ ¼ e�cðUðxiÞ�UðxjÞÞ2 ; ð5Þ

where c ¼ 1
r2 . Notice that r indicates the width, or spread, of the

kernel function.
Finally, the learned model is used to classify between normal

and anomalous traffic simply by computing whether a new object
z is within the sphere, i.e., its distance to the center of the sphere is
smaller than the radius:

ðUðzÞ � cÞðUðzÞ � cÞT ¼ kðz; zÞ � 2
X

i

aikðz;xiÞ

þ
X

i;j

aiajkðz;xjÞ 6 R2 ð6Þ

where c is equated with
P

iaiUðxiÞ according to Eq. (4). To compute
the above inequality, it is necessary to find a way to obtain the ra-
dius R. For that, first note that the above inequality corresponds
with the first constraint in Eq. (2). The Lagrangian optimization the-
ory states that for those objects for which the constraint is satisfied
with an equality, the Lagrange multipliers satisfy ai – 0. Those ob-
jects are called the support vectors. To compute R then, Eq. (6) must
be solved for any of these support vectors.

2.2. Previous work on SVM for novelty detection in intrusion detection

Different authors (Eskin et al., 2002; Li, Huang, Tian, & Xu, 2003;
Laskov et al., 2004) have used SVM for novelty detection in the
intrusion detection field. The work of Eskin et al. (2002) is one of
the first on the subject. They propose a geometrical framework
to improve the performance of different kind of unsupervised
learning algorithms among which SVM is found. Laskov et al.
(2004) used the same geometrical framework presented by Eskin
and they provide a modification to SVM for novelty detection
which outperforms traditional variants. Both works use the
KDD99 DARPA dataset for training and evaluating their approach.

The work of Huang et al. (2003) proposes an improvement on
SVM for novelty detection applied to the intrusion detection field.
The idea is basically to extend hyperplane-to-origin approach of
Schölkopf et al. (2001). In their article, they assume that not only
the origin lies in the second class but also that all data points close
enough to the origin are to be considered as outliers or anomaly
data points. For the evaluation process of their approach the
authors use the 1999 DARPA dataset.

It seems clear that all these authors are aware of the limitations
of the different SVM approaches for anomaly detection. As men-
tioned by Eskin, these algorithms will work reasonably well under
the assumption that the number of normal traffic instances vastly
outnumbers the number of anomalies. Moreover, in the experi-
ments conducted by Eskin et al. (2002) they assume that a high
imbalance in class distribution is a common feature in network
traffic and they have altered the original data sets to fit into this
assumption. Unfortunately in practice, this assumption is not
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always valid. There are many situations in which for specific peri-
ods of time, the presence of intrusions vastly exceeds the number
of normal traffic instances. For instance, when a new vulnerability
is discovered and it has been widely announced, it is possible to
find attacks exploiting these vulnerability encompassing a extre-
mely high percentage of the network traffic. Thus, it seems that
anomalies in network traffic have a bursty behavior. This can be
observed in the DARPA dataset, where the percentage of anoma-
lous traffic found in some weeks is less than 0.5% but in some other
weeks the percentage raises to 70%. However, this dataset may not
be representative of the actual imbalance in a production environ-
ment. The authors are unaware of a thorough study that confirms
these claims.

It seems clear that under real traffic situations it is not always
possible to guarantee the required class distribution for training
sets, as needed by SVM approaches. A possible solution is to rely
on experts for removing known attacks from the training set, until
the desired imbalance is reached. This, however, would be an ex-
tremely expensive and tedious task. Perhaps, a more appealing
idea consist of using an autonomous labeling tool for removing a
considerable number of well-known attacks.
3. Proposed approach: Autonomous labeling of normal traffic
using SNORT

An autonomous labeling approach is proposed for dealing with
non-imbalanced class distributions, The idea behind this approach
is to provide mechanisms for excluding well-known attacks from
the dataset. Well-known attacks are the ones whose behavior have
been deeply analyzed and a set of rules haven been built for
describing such behavior. There are many tools for detecting
well-known attacks. In particular, recognizing well-known attacks
is a common task done by traditional signature-based IDS. Thus,
the use of IDS as an autonomous labeling tool can provide a good
mechanism for reducing the number of attacks in the training
dataset required for SVM for novelty detection algorithm.

The complete process is graphically represented in Fig. 2. Given
a dataset containing unlabeled network traffic instances, an auton-
omous labeling tool is used for labeling the dataset. Then, traffic in-
stances labeled as attack are discarded whereas the remaining ones
are labeled as presumably normal and used for training SVM for
novelty detection.

Notice that there is no guarantee the labeling process could be
done without errors. However, the assumption is that after the at-
tacks recognized by the autonomous labeling tool are removed
from the training data set, the number of normal traffic instances
will be sufficiently larger than the number of attacks. This way,
class distribution becomes unbalanced or at least closer to the sug-
gested imbalance.

The autonomous labeling tool proposed in this work is SNORT
(Roesch, 1999), a light and fast intrusion detection system devel-
Fig. 2. Training process using an autonomous labeling tool on a dataset.
oped by Martin Roesch in 1999. Over the past years, its popularity
grew considerably, becoming a de facto standard in the security
network field. SNORT is composed by several fast pattern matching
algorithms and a very complete and updated rule database. In re-
cent versions, SNORT has included preprocessors for flow tracking
and IP defragmentation which has improved its overall detection
performance.

However, SNORT is far from being a complete solution to the
intrusion problem. As any other misuse signature-based IDS,
SNORT fails to recognize many attacks which are not described
by a rule of its database. Another well known problem is that in
many cases, SNORT can raise an extremely high false alarm rate,
leading to production of different approaches for reducing SNORT
false alarm (Tjhai, Papadaki, Furnell, & Clarke, 2008).

The main hypothesis of this work is that although SNORT may
present a considerable number of misclassifications, it still can be
useful for reducing the proportion of attacks in the dataset and
consequently producing potentially better results for SVM for nov-
elty detection.
4. Experiments

This section evaluates the performance of the SVM for novelty
detection when SNORT is used as an autonomous labeling tool. A
set of experiments are conducted comparing performance of the
proposed approach (denoted here as SbSVM) against the standard
SVM algorithm for novelty detection. A comparison against Stand-
alone SNORT performance is also conducted in order to establish in
which situations SbSVM performance is below performance shown
by standalone SNORT. In those situation, the use of SNORT by itself
will be more convenient and the SbSVM approach should be
avoided.
4.1. Dataset description

The experiments were conducted over five weeks of the 1998
DARPA data set (Lippmann et al., 2000), widely used for intrusion
detection evaluation. DARPA dataset contains around 1.5 millions
traffic instances with almost 50% of them labeled as attacks.

For describing the input data, a total of six fields from a network
traffic instance were selected: connection time, protocol type,
source port, destination port, source IP address and destination IP
address. These fields have been used in previous works (Catania
& García Garino, 2008) and have provided a good trade off between
overall performance and the computational effort needed for train-
ing process.

Selected fields are represented according to Table 1 resulting in
a total of 14 attributes used for training SVM for novelty detection
alternatives.

To improve SVM performance and to avoid possible numerical
problems, features are normalized between the interval [0,1] as
suggested in Hsu, Chang, and Lin (2008).
Table 1
Features representation.

Feature Size

Connection time 3
Protocol Type 1
Source port 1
Destination port 1
Source IP address 4
Destination IP address 4



Table 2
SNORT performance evaluation on DARPA data set with different attack distributions.

Attack Distribution (%) DR (%) sd FA (%) sd

1 87.15 4.09 4.45 0.21
2 86.59 3.03 4.43 0.28
5 87.13 1.71 4.37 0.20
10 86.67 1.18 4.41 0.24
20 86.88 1.07 4.35 0.31
50 86.84 0.59 4.38 0.27
60 87.00 0.45 4.47 0.40
80 87.02 0.43 4.52 0.47

Table 3
Selected values for c and m.

m 0.0 0.01 0.1 0.2 0.27 0.4 0.6 0.7 0.9 1.0
c 1 2 4 8 12 20 35
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4.2. Dataset sampling

A randomly selected 1% subset of the DARPA data is used for the
training process, whereas another 0.5% subset is used for testing
purposes, following standard ratios used in classification problems.

For the training process, standard SVM approach uses the whole
1% including both normal and anomalous traffic. In the case of the
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Fig. 3. ROC curves under 1%, 2%, 5
SbSVM approach, as mentioned in Section 3, attacks recognized by
SNORT are removed, resulting in a ratio smaller than 1%. On the
other hand, as SNORT does not require a training process, only
an evaluation process is carried out against the 0.5% subset.

In order to evaluate the influence different attack distributions
have on classifiers performance, experiments are conducted
against datasets containing distributions with 1.0% 2.0%, 5.0%,
10%, 20%, 50%, 60% and 80% of attacks. The 0.01 fraction of the
whole DARPA dataset (i.e., 1% of it) with a proportion of attacks
p% is sampled from the whole dataset in two steps, one that sam-
ples attacks from the set of all attacks, and another for sampling
the normal data from the set of all normal traffic instances. To
maintain the p% ratio of attacks in the resulting 1% dataset, a frac-
tion p � 10�4 of attacks are randomly and uniformly sampled from
the set of all attacks. Similarly, a fraction of (1 � p) � 10�4 is ran-
domly and uniformly sampled from the set of all normal traffic
instances.

For statistical significance a total of 20 repetitions of the exper-
iments are conducted using different randomly and uniformly se-
lected subsets for each attack distribution.

4.3. Performance metrics for IDS evaluation

Standard performance metrics for IDS evaluation are used for
comparing the different approaches discussed. These metrics cor-
respond to Attack Detection rate (DR) and False Alarm rate (FA).
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DR is computed as the ratio between the number of correctly
detected attacks and the total number of attacks. Whereas FA rate
is computed as the ratio between the number of normal connec-
tions that are incorrectly classified as attacks and the total number
of normal connections.

4.4. Standalone SNORT evaluation

Before evaluating the proposed labeling approach, it is impor-
tant to evaluate the classification performance (in normal traffic
and attacks) of standalone SNORT. Notice that the version of
SNORT used in this experiment is 2.8.3.2.

From a total of thousands of rules in the SNORT rule-base, only
32 matched against the whole 5 weeks of the DARPA data set.
Therefore, for improving further computations the unmatching
rules were removed from SNORT’s rule-base. The complete rule-
base is shown in Table A.5.

Table 2 shows averaged results for DR and FA, as well as their
respective standard deviations (sd) over the 20 repetitions. It can
be observed that averaged results for FA and DR obtained by
SNORT do not present a significant variation as attack distribution
grows. These results can be expected because SNORT uses the same
set of rules over all of the attack distribution datasets. The perfor-
mance presented by SNORT on DR for each attack distribution is
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Fig. 4. ROC under 20%,
around 87% and in the case of FA, the obtained value vary slightly
around 4%.

Despite a number of misclasifcations, SNORT shows a very accu-
rate performance on attack detection rate for the DARPA dataset.
Therefore, it is expected that SbSVM can bring class distribution
closer to the imbalance required by SVM algorithms for novelty
detection.
4.5. Evaluation of the SNORT-based autonomous labeling for SVM
novelty detection

The SVM implementation used in these experiments is an
extension of the libsvm (Chang & Lin, 2001) that supports the
hypersphere formulation (Russo, 2008).

An RBF kernel is chosen for both approaches (SbSVM and stan-
dard SVM). The use of an RBF kernel implies finding an appropriate
value for c (see Eq. (5)). Therefore, the performance of SbSVM and
the standard SVM algorithm is evaluated for different combina-
tions of c and the constant m (see Eq. (1)). Selected values for c
and m are shown in Table 3. Although the selected values are far
from a complete parameter set, they include a considerable param-
eter range, suitable for evaluating the proposed approach. Results
provided by SbSVM are compared with the ones computed using
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Table 4
Classification performance under different attack distribution.

% m c DR % sd FA % sd

(a)SbSVM
1% 0.10 2.00 99.65 0.74 8.84 0.54

0.10 4.00 98.40 1.41 6.51 0.42
0.10 6.00 97.08 1.91 5.66 0.36

2% 0.10 2.00 98.55 1.09 8.78 0.42
0.10 4.00 96.69 2.24 6.50 0.33
0.10 6.00 95.03 2.54 5.71 0.26

5% 0.10 2.00 94.81 1.24 8.62 0.55
0.10 4.00 92.49 1.37 6.46 0.36
0.10 6.00 90.84 1.37 5.63 0.28

10% 0.10 2.00 91.31 1.19 8.54 0.32
0.10 4.00 89.68 1.20 6.41 0.39
0.10 6.00 88.51 1.38 5.57 0.37

20% 0.10 2.00 89.80 0.81 7.73 0.34
0.10 4.00 88.76 0.87 5.83 0.31
0.10 6.00 87.01 1.05 5.18 0.32

50% 0.10 1.00 87.43 0.56 7.90 0.58
0.10 2.00 87.64 0.83 6.73 0.61
0.20 8.00 88.38 0.63 11.63 0.69

60% 0.20 4.00 88.67 0.33 13.94 0.81
0.20 6.00 87.98 0.47 12.22 0.70
0.20 8.00 87.09 0.44 11.56 0.74

80% 0.20 2.00 88.76 2.62 22.97 17.72
0.27 6.00 88.60 2.68 26.31 16.95
0.20 1.00 88.55 2.67 23.02 17.73

(b) SVM for novelty detection
1% 0.27 2.00 99.65 0.86 23.64 0.67

0.27 1.00 98.96 1.15 23.51 0.63
0.20 1.00 97.64 2.49 17.00 0.57

2% 0.40 2.00 99.86 0.28 35.86 0.77
0.40 1.00 99.69 0.34 33.82 0.65
0.27 1.00 97.48 1.12 22.94 0.55

5% 0.60 1.00 99.94 0.11 51.85 0.79
0.60 2.00 97.49 2.22 52.85 0.49
0.40 1.00 93.27 1.86 32.40 0.53

10% 0.70 1.00 99.96 0.08 60.26 0.60
0.60 1.00 94.10 0.98 49.63 0.57
0.70 2.00 83.55 2.23 61.82 0.61

20% 0.70 1.00 77.10 1.30 60.99 0.66
0.60 1.00 64.89 1.59 51.57 0.62
0.70 2.00 58.07 1.59 65.63 1.01

50% 0.60 1.00 39.99 0.86 68.31 0.88
0.60 2.00 31.54 0.87 74.80 0.76
0.60 35.00 30.14 1.13 79.06 0.70

60% 0.70 35.00 52.67 1.11 86.98 0.63
0.70 20.00 50.28 1.21 87.76 0.59
0.70 12.00 47.92 1.20 88.00 0.55

80% 0.40 2.00 25.86 17.02 82.79 4.73
0.40 4.00 25.54 17.09 83.10 3.99
0.40 8.00 25.47 17.11 83.63 3.86

Table A.5
Snort Rule set matched against 5 weeks of 1998 DARPA dataset.

SID Rule Description

[1:1156:10] WEB-MISC apache directory disclosure attempt
[1:1418:13] SNMP request tcp
[1:1419:12] SNMP request tcp
[1:1420:13] SNMP request tcp
[1:1421:13] SNMP AgentX/tcp request
[1:1445:5] POLICY FTP file_id.diz access possible warez site
[1:1762:8] WEB-CGI phf arbitrary command execution attempt
[1:1842:20] IMAP login buffer overflow attempt
[122:1:0] TCP Portscan
[122:5:0] UDP Portscan
[1:269:11] DOS Land attack
[1:270:9] DOS Teardrop attack
[1:3151:4] FINGER/ execution attempt
[1:323:6] FINGER root query
[1:3274:7] TELNET login buffer non-evasive overflow attempt
[1:330:10] FINGER redirection attempt
[1:332:9] FINGER 0 query
[1:335:6] FTP.rhosts
[1:359:6] FTP satan scan
[1:469:4] ICMP PING NMAP
[1:491:8] INFO FTP Bad login
[1:498:7] ATTACK-RESPONSES id check returned root
[1:527:10] BAD-TRAFFIC same SRC/DST
[1:546:6] POLICY FTP ‘CWD’ possible warez site
[1:547:6] POLICY FTP ‘MKD’ possible warez site
[1:584:13] RPC portmap rusers request UDP
[1:598:13] RPC portmap listing TCP 111
[1:612:7] RPC rusers query UDP
[1:613:6] SCAN myscan
[1:646:6] SHELLCODE sparc NOOP
[1:716:15] INFO TELNET access
[1:718:9] INFO TELNET login incorrect
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standard SVM for novelty detection, as well as the ones provided
by the standalone SNORT classifier.

FA and DR values for each c and m combination are used for
generating ROC curves (Fawcett, 2006) for both approaches. Figs. 3
and 4 show ROC curves together with results from SNORT
standalone classifier. In the case of standalone SNORT however,
evaluation results are plotted only as one dot on the figures (as it
is independent of c and m) whereas those c and m combinations
which performance is close to standalone SNORT are also plotted
on the ROC curves with filled squares.

Fig. 3 shows that under 1%, 2%, 5% and 10% attack distributions,
performance exhibited by SbSVM clearly outperforms standard
SVM results. On the one hand, for dataset containing 1% and 2%
of attacks, standard SVM presents most of the results above ran-
dom guess line. However, this behavior changes for the remaining
datasets, where most of the results remain under guess line. In-
stead, the proposed SbSVM approach does not suffer from this
behavior and maintains all its results above random guess line.
On the other hand, classification performance shown by standard
SVM clearly decreases as attack distribution grows, whereas in
the case of SbSVM, only a slightly performance loss can be appreci-
ated as attack number grows up to 10%.

Fig. 4 shows remaining ROC curves for datasets under 20%, 50%,
60% and 80% attack distribution. Despite the appreciable perfor-
mance loss for datasets with attack distributions above the 20%,
the proposed SbSVM approach continues outperforming standard
SVM. In this sense, it can be observed that for datasets under 20%
attack distribution, standard SVM presents only two parameter
combination above random guess line, whereas for the remaining
dataset distributions, ROC curves for standard SVM decrease far
below random guess line. In contrast, the proposed SbSVM main-
tains all its results above random guess line.

Another noticeable disadvantage observed by the standard SVM
algorithm is that all the ROC curves show a variable behavior with
abrupt performance changes along different parameters combina-
tion. A situation which is not exhibited by SbSVM.

Table 4 shows detailed performance information about the
three parameter combinations that present the best trade off be-
tween DR and FA for each approach on every attack distributions.
In other words, the highest values for DR while keeping FA values
as low as possible.

DR values higher than 87% together with a FA values lower than
10% are considered suitable for real traffic situations (values very
close to the performance showed by SNORT in Section 4.4). Those
parameter combinations whose performance is close to these val-
ues are highlighted on the table. (It is worth to notice that these
values correspond to the filled squares plotted in Figs. 3 and 4).
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In the case of the dataset under 1% attack distribution, standard
SVM provides barely good enough results. For the first two param-
eter combinations, a near-optimal detection rate is obtained.
Unfortunately together with FA values around 23%, which are con-
sidered excessively high for practical uses. More appropriate are
the results provided by the third combination, where DR value re-
mains high (97%) and FA value decreases to 17%. Beyond this attack
distribution, standard SVM presents a significant performance loss.
Moreover, in all these remaining attack distributions, none of the
results obtained by SVM exhibit a classification performance suit-
able for real traffic situations.

On the other hand, the SbSVM approach provides considerable
better results. From dataset from 1% to 50% SbSVM shows DR val-
ues from 87% to 99% with FA values oscillating from 5.5% to 8.8%,
which as was mentioned in previous paragraphs, can be considered
suitable for practical uses. For datasets under 60% attack distribu-
tion, DR values remain around 88%, however FA values oscillate
around 12%. Degradation of FA values is even more noticeable on
datasets under 80% attack distribution where FA values raise to
an useless 26%.

Despite the fact that comparing the proposed approach against
SNORT classifier is not the main focus of this work, it is worth to
notice that many of the parameter combinations for the SbSVM ap-
proach shown in Table 4 present improvements over standalone
SNORT classification performance, demonstrating generalization
of SVM over SNORT’s classifcation. SbSVM shows better-than-
SNORT results for datasets with attack distributions up to 10%,
where DR values oscillate from 88% to 97% at the expense of a
slight performance loss on FA (around 5%).

On the other hand standard SVM could not provide a classifica-
tion performance close the one exhibited by SNORT under any at-
tack distribution.

5. Conclusions

Experiments showed that the overall performance of SVM based
on the hypersphere formulation on the 1998 DARPA dataset de-
creases to unpractical values for datasets with more than 2% of at-
tacks. These results seem to confirm what has been already
discussed in Section 2.2 and references then on. When a high num-
ber of attacks are included in the dataset, SVM algorithms for nov-
elty detection are not suitable for finding an accurate domain
description. Thus, a highly imbalanced class distribution is needed
in the dataset to achieve a proper performance.

The use of an autonomous labeling tool appears to be a promis-
ing strategy for handling classes without the required distribution.
The proposed SbSVM approach provides significant better results
than standard SVM. Major benefits are shown beyond 2% attack
distribution, where standard SVM FA shows values between 50%
and 80% whereas SbSVM maintains values around 28%. Moreover,
in the case of DR, SbSVM shows an improvement from two to eight
times compared with the ones obtained with standard SVM along
different attack distribution datasets.

The proposed SbSVM approach appears to be more robust along
not only different attack distributions but also different parameter
combinations. SbSVM maintains all of its results above random
guess line, whereas standard SVM shows a variable behavior with
abrupt performance changes along over all attack distribution
datasets.

The obtained results have shown that for datasets containing up
to 50% of attacks, the autonomous labeling approach using SNORT
has improved not only SVM algorithms for novelty detection but
also standalone SNORT. For dataset with less than 20% attack dis-
tribution, SbSVM has improved more than 10% DR value while FA
value has increased around 1%. Smaller but appreciable improve-
ments have also been shown on dataset between 20% and 50%,
where SbSVM has outperformed by a 2% SNORT DR. Beyond this
point, using standalone SNORT seems to be the more convenient
strategy.

The performance of the SbSVM approach in real traffic situations
still remains unknown. Consequently, experiments will be carried
out to overcome this issue in the future.

Appendix A. Snort complete rule base

Table A.5.
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